
HP NonStop SQL/MX
Release 3.2.1 Reference
Manual
Abstract

This manual describes the syntax of SQL language elements—data types,
expressions, functions, identifiers, literals, and predicates—and SQL statements of HP
NonStop™ SQL/MX, the NonStop relational database management system based on
ANSI SQL:1999. The manual also includes embedded SQL statements and MXCI
commands.

Product Version

NonStop SQL/MX Release 3.2.1

Supported Release Version Updates (RVUs)

This publication supports J06.15 and all subsequent J-series RVUs and H06.26 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Part Number Published

691117-004 November 2013

Document History
Part Number Product Version Published

640322-001 NonStop SQL/MX Release 3.0 February 2011

663850-001 NonStop SQL/MX Release 3.1 October 2011

691117-001 NonStop SQL/MX Release 3.2 August 2012

691117-002 NonStop SQL/MX Release 3.2.1 February 2013

691117-003 NonStop SQL/MX Release 3.2.1 July 2013

691117-004 NonStop SQL/MX Release 3.2.1 November 2013

Legal Notices
 Copyright 2011, 2013 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

HP NonStop SQL/MX Release
3.2.1 Reference Manual
Index Figures Tables
1. Introduction
SQL/MX Language 1-1

MXCI SQL/MX Conversational Interface 1-2

MXCI Session 1-2

Session Attributes 1-3

Entering a Command 1-3

Case Sensitivity 1-3

Breaking the Command Line 1-3

SQL Comments 1-4

Examples of SQL Comments 1-4

Transactions in MXCI 1-5

Query Interruption and Termination in MXCI 1-5

Security 1-5

The Super ID 1-6

Guardian User ID 1-6

Guardian Super ID 1-6

Security Administrator 1-6

Security Administrator's Group 1-7

With Grant Option 1-7

Owner-Derived Grant 1-7

Derived Privilege 1-7

Derived WGO 1-7

Security Administrator Grant 1-7

Data Consistency and Access Options 1-8

SQL/MP Considerations 1-8

READ UNCOMMITTED 1-9

READ COMMITTED 1-9

SERIALIZABLE or REPEATABLE READ 1-9

SKIP CONFLICT 1-9

STABLE 1-10

Database Integrity and Locking 1-11
 Hewlett-Packard Company—691117-004
i

Contents 1. Introduction
Lock Duration 1-11

Lock Granularity 1-11

Lock Mode 1-12

Lock Holder 1-12

Transaction Management 1-13

Statement Atomicity 1-14

User-Defined and System-Defined Transactions 1-15

User-Defined Transactions 1-15

System-Defined Transactions 1-15

Rules for DML Statements 1-16

Audited and Nonaudited Tables 1-16

Effect of AUTOCOMMIT Option 1-16

Concurrency 1-16

Transaction Access Modes 1-23

READ ONLY 1-23

READ WRITE 1-23

Transaction Isolation Levels 1-23

READ UNCOMMITTED 1-23

READ COMMITTED 1-24

SERIALIZABLE or REPEATABLE READ 1-24

Non-Unique Key Considerations for SERIALIZABLE or REPEATABLE
READ 1-24

Partition Management 1-25

Internationalization 1-25

Using NonStop SQL/MX to Access SQL/MP Databases 1-25

Naming Objects 1-26

Physical Names 1-26

Logical Names 1-26

Alias Mappings 1-27

DEFINE Names 1-27

Delimiting Reserved Words in Guardian Names 1-27

Selecting or Changing Data 1-28

DATETIME Data 1-28

INTERVAL Data 1-30

NCHAR Data 1-31

Accessing Views 1-32

Access Options 1-32

SQL/MP Stored Text 1-32

SQL/MP File Organizations 1-33
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
ii

Contents 2. SQL/MX Statements
Collations 1-33

ANSI Compliance and SQL/MX Extensions 1-34

Default Settings for ANSI Compliance 1-34

ANSI-Compliant Statements 1-34

Statements That Are SQL/MX Extensions 1-35

ANSI-Compliant Functions 1-36

SQL/MX Error Messages 1-37

2. SQL/MX Statements
Categories 2-1

Data Definition Language (DDL) Statements 2-1

Data Manipulation Language (DML) Statements 2-4

Transaction Control Statements 2-4

Prepared SQL Statements 2-4

Embedded-Only SQL/MX Statements 2-5

Resource Control and Optimization Statements 2-5

Control Statements 2-5

Object Naming Statements 2-7

Alias Statements 2-7

Stored Procedure Statements 2-7

Trigger Statements 2-8

Utilities 2-8

Privileges Required to Execute Utilities 2-9

Checking DDL Locks 2-9

ALTER INDEX Statement 2-11

Syntax Description of ALTER INDEX 2-11

Considerations for ALTER INDEX 2-12

You cannot use ALTER INDEX to change the Guardian name of a partition. To
change the Guardian name of a partition, use the Modify utility with the
rename option. For more information, see Renaming Guardian Location of
Partitions of Tables, Indexes or Sequence Generators. 2-12

Renaming an Index 2-12

Effects on TMF 2-12

Effects on RDF 2-12

Examples of ALTER INDEX 2-13

ALTER SEQUENCE Statement 2-13

Syntax Description of ALTER SEQUENCE 2-15

Considerations for ALTER SEQUENCE 2-16

Authorization Requirements 2-16

Restrictions 2-16
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
iii

Contents 2. SQL/MX Statements
Examples of ALTER SEQUENCE 2-16

 ALTER SQLMP ALIAS Statement 2-17

Syntax Description of ALTER SQLMP ALIAS 2-17

Considerations for ALTER SQLMP ALIAS 2-17

Usage Restrictions 2-17

Security of Alias 2-17

Late Bind 2-18

Examples of ALTER SQLMP ALIAS 2-18

ALTER TABLE Statement 2-19

Syntax Description of ALTER TABLE 2-21

Considerations for ALTER TABLE 2-32

Effect of Adding a Column on View Definitions 2-32

Authorization and Availability Requirements 2-32

Renaming a Table 2-32

Constraints Implemented With Indexes 2-32

Adding CHECK and FOREIGN KEY Constraints 2-33

Dropping FOREIGN KEY Constraints 2-33

Altering the MAXVALUE and INCREMENT BY options on IDENTITY
columns 2-34

Altering the MAXVALUE attribute on IDENTITY columns 2-34

IDENTITY column and redefinition timestamp 2-35

Recalibrating the Sequence Generator of an IDENTITY column 2-38

Recalibrate an IDENTITY column based on the INCREMENT BY
value 2-38

Recalibrate to a user-specified value with SELECT 2-39

Recalibrate to a user-specified value without SELECT 2-39

SQL/MX Extensions to ALTER TABLE 2-40

Considerations for Referential Integrity 2-40

Effects on TMF 2-40

Effects on RDF 2-40

Effects on open blown away 2-40

Examples of ALTER TABLE 2-42

Examples of ALTER TABLE ALTER COLUMN 2-44

Create a table with the IDENTITY column 2-44

Alter the table to allow new MAXVALUE and INCREMENT BY
values: 2-44

Example of ALTER TABLE ALTER COLUMN..RECALIBRATE 2-45

ALTER TRIGGER Statement 2-48

Syntax Description of ALTER TRIGGER 2-48

Considerations for ALTER TRIGGER 2-48
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
iv

Contents 2. SQL/MX Statements
Authorization and Availability Requirements 2-48

ALTER VIEW Statement 2-49

Considerations for ALTER VIEW 2-50

Authorization and Availability Requirements 2-50

Renaming a View 2-50

Similarity Check 2-50

Effects on TMF 2-50

Example of ALTER VIEW 2-50

BEGIN WORK Statement 2-52

Considerations for BEGIN WORK 2-52

Effect on Audited Tables 2-52

Effect on Nonaudited Tables 2-52

MXCI Examples of BEGIN WORK 2-52

C Examples of BEGIN WORK 2-53

COBOL Examples of BEGIN WORK 2-53

CALL Statement 2-54

Considerations for CALL 2-55

Usage Restrictions 2-55

Required Privileges 2-55

Input Parameter Arguments 2-55

Output Parameter Arguments 2-55

Data Conversion of Parameter Arguments 2-55

Null Input and Output 2-56

Transaction Semantics 2-56

Examples of CALL 2-56

COMMIT WORK Statement 2-57

Considerations for COMMIT WORK 2-57

Begin and End a Transaction 2-57

Effect of Constraints 2-57

MXCI Examples of COMMIT WORK 2-57

C Examples of COMMIT WORK 2-58

COBOL Examples of COMMIT WORK 2-59

CONTROL QUERY DEFAULT Statement 2-60

Considerations for CONTROL QUERY DEFAULT 2-60

Scope of CONTROL QUERY DEFAULT 2-60

Relationship to CONTROL TABLE 2-61

Examples of CONTROL QUERY DEFAULT 2-61

CONTROL QUERY SHAPE Statement 2-62

Considerations for CONTROL QUERY SHAPE 2-69
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
v

Contents 2. SQL/MX Statements
Scope of CONTROL QUERY SHAPE 2-69

Examples of CONTROL QUERY SHAPE 2-69

CONTROL TABLE Statement 2-74

Considerations for CONTROL TABLE 2-77

Scope of CONTROL TABLE 2-77

Relationship to CONTROL QUERY DEFAULT 2-77

Examples of CONTROL TABLE 2-77

CREATE CATALOG Statement 2-78

Syntax Description of CREATE CATALOG 2-78

Considerations for CREATE CATALOG 2-78

Reserved Catalogs 2-78

Authorization and Availability Requirements 2-78

Examples of CREATE CATALOG 2-79

CREATE INDEX Statement 2-80

Syntax Description of CREATE INDEX 2-81

Considerations for CREATE INDEX 2-85

Authorization and Availability Requirements 2-86

Limits on Indexes 2-86

Examples of CREATE INDEX 2-86

CREATE PROCEDURE Statement 2-88

Considerations for CREATE PROCEDURE 2-93

Authorization and Availability Requirements 2-93

Examples of CREATE PROCEDURE 2-93

CREATE SCHEMA Statement 2-96

Syntax Description of CREATE SCHEMA 2-96

Considerations for CREATE SCHEMA 2-98

Duplicate Schema Subvolume 2-98

Reserved Schema Names 2-98

Examples of CREATE SCHEMA 2-99

CREATE SEQUENCE Statement 2-100

Considerations for CREATE SEQUENCE 2-103

Authorization Requirements 2-103

Restrictions 2-103

Reserved Names 2-103

Examples of CREATE SEQUENCE 2-103

CREATE SQLMP ALIAS Statement 2-104

Considerations for CREATE SQLMP ALIAS 2-105

Reserved Alias Names 2-105

Usage Restrictions 2-105
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
vi

Contents 2. SQL/MX Statements
Late Bind 2-106

Embedding the Statement in an SQL Program 2-106

Partitioned Tables 2-106

Authorization and Availability Requirements 2-106

Examples of CREATE SQLMP ALIAS 2-106

CREATE TABLE Statement 2-107

Syntax Description of CREATE TABLE 2-111

Considerations for CREATE TABLE 2-124

Reserved Table Names 2-124

Partitions 2-124

The LIKE specification 2-124

Audited and Nonaudited Tables 2-126

Authorization and Availability Requirements 2-126

Reduced Space Requirements for NOT DROPPABLE Constraints 2-126

Constraints Implemented With Indexes 2-126

Limits for Tables 2-127

Creating Partitions Automatically 2-127

IDENTITY Column and internal Sequence Generators 2-129

SG Table 2-130

Considerations for an IDENTITY column 2-130

Restrictions for an IDENTITY Column 2-131

Generating Values for an IDENTITY Column 2-132

Sequence Generator Cache 2-134

Gaps in IDENTITY column values 2-135

Gaps in sequence generator values 2-135

SQL/MX Extensions to CREATE TABLE 2-136

Considerations for Referential Integrity 2-136

Circular Dependency 2-136

Conflicting and Duplicate Constraints 2-136

Utilities 2-137

Usage and Performance 2-137

Examples of CREATE TABLE 2-137

IDENTITY column examples 2-141

CREATE TRIGGER Statement 2-144

Syntax Description of CREATE TRIGGER 2-145

Considerations for CREATE TRIGGER 2-146

Triggers and Utilities 2-146

Authorization and Availability Requirements 2-147

Trigger Types 2-147
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
vii

Contents 2. SQL/MX Statements
Restrictions on Triggers 2-149

Recompilation and Triggers 2-149

Triggers and Primary Keys 2-150

Rowsets 2-150

Examples of CREATE TRIGGER 2-151

Before and After Triggers 2-151

Rowsets and Triggers 2-152

Stored Procedures and Triggers 2-152

CREATE VIEW Statement 2-154

Syntax Description of CREATE VIEW 2-156

Considerations for CREATE VIEW 2-158

VIEW SIMILARITY CHECK 2-158

Restrictions for Similarity Check 2-159

Reserved View Names 2-159

Effect of Adding a Column on View Definitions 2-159

Authorization and Availability Requirements 2-159

Updatable and Non-Updatable Views 2-159

Examples of CREATE VIEW 2-160

DELETE Statement 2-162

Considerations for DELETE 2-166

Multi Commit Delete 2-166

Restrictions 2-167

Authorization Requirements 2-168

Transaction Initiation and Termination 2-168

Isolation Levels of Transactions and Access Options of Statements 2-168

Audited and Nonaudited Tables 2-169

SET ON ROLLBACK Considerations 2-169

SET ON ROLLBACK Restrictions 2-169

MXCI Examples of DELETE 2-169

C Examples of DELETE 2-172

COBOL Examples of DELETE 2-172

Publish/Subscribe Examples of DELETE 2-173

DOWNGRADE Utility 2-175

Considerations for DOWNGRADE 2-176

Modes of Operation for DOWNGRADE 2-176

Command Output for DOWNGRADE 2-176

Error Conditions 2-177

Recovery of a Failed DOWNGRADE Utility 2-177

Error Conditions 2-178
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
viii

Contents 2. SQL/MX Statements
Example of DOWNGRADE 2-178

DROP CATALOG Statement 2-180

Syntax Description of DROP CATALOG 2-180

Considerations for DROP CATALOG 2-180

Reserved Catalogs 2-180

Authorization and Availability Requirements 2-180

Examples of DROP CATALOG 2-180

DROP INDEX Statement 2-181

Syntax Description of DROP INDEX 2-181

Considerations for DROP INDEX 2-181

Authorization and Availability Requirements 2-181

Indexes That Support Constraints 2-181

Examples of DROP INDEX 2-182

DROP PROCEDURE Statement 2-182

Considerations for DROP PROCEDURE 2-183

Authorization and Availability Requirements 2-183

Example of DROP PROCEDURE 2-183

DROP SCHEMA Statement 2-183

Syntax Description of DROP SCHEMA 2-183

Considerations for DROP SCHEMA 2-183

Reserved Schemas 2-183

Authorization and Availability Requirements 2-184

Transaction Limits on DROP SCHEMA 2-184

Examples of DROP SCHEMA 2-185

DROP SEQUENCE Statement 2-185

Syntax Description of DROP SEQUENCE 2-185

Considerations for DROP SEQUENCE 2-185

Authorization Requirements 2-185

Restrictions 2-186

Recovery 2-186

Examples of DROP SEQUENCE 2-186

DROP SQL Statement 2-187

Considerations for DROP SQL 2-187

Authorization and Availability Requirements 2-187

Examples of DROP SQL 2-187

DROP SQLMP ALIAS Statement 2-188

Considerations for DROP SQLMP ALIAS 2-188

Usage Restrictions 2-188

Authorization and Availability Requirements 2-188
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
ix

Contents 2. SQL/MX Statements
Examples of DROP SQLMP ALIAS 2-188

DROP TABLE Statement 2-190

Syntax Description of DROP TABLE 2-190

Considerations for DROP TABLE 2-190

Restrictions 2-190

Authorization and Availability Requirements 2-190

Recovery 2-190

Examples of DROP TABLE 2-191

DROP TRIGGER Statement 2-192

Syntax Description of DROP TRIGGER 2-192

Considerations for DROP TRIGGER 2-192

Authorization and Availability Requirements 2-192

Examples of DROP TRIGGER 2-192

DROP VIEW Statement 2-193

Syntax Description of DROP VIEW 2-193

Considerations for DROP VIEW 2-193

Authorization and Availability Requirements 2-193

Examples of DROP VIEW 2-193

DUP Utility 2-194

Syntax Description of DUP 2-195

Considerations for DUP 2-198

Examples of DUP 2-200

EXECUTE Statement 2-201

Considerations for EXECUTE 2-204

Scope of EXECUTE 2-204

MXCI Examples of EXECUTE 2-204

C Examples of EXECUTE 2-205

COBOL Examples of EXECUTE 2-206

EXPLAIN Statement 2-208

Considerations for EXPLAIN 2-209

Case Considerations 2-209

Number Considerations 2-209

Machine-readable [OPTIONS 'm'] Considerations 2-210

Examples of EXPLAIN 2-211

FASTCOPY Utility 2-226

FASTCOPY TABLE Command 2-226

FASTCOPY INDEX Command 2-227

Considerations for FASTCOPY 2-227

Equivalence Requirements 2-230
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
x

Contents 2. SQL/MX Statements
Matching Indexes 2-230

Availability of Source and Target Tables 2-230

Recovery 2-231

DDL Locks 2-231

Examples of FASTCOPY 2-233

GET ALL SECURITY_ADMINS Statement 2-234

Considerations for GET ALL SECURITY_ADMINS 2-234

Authorization Requirements 2-234

Metadata Version Requirements 2-234

Invalid Security Administrator User IDs 2-234

Examples of GET ALL SECURITY_ADMINS 2-234

GIVE CATALOG Statement 2-236

Considerations for GIVE CATALOG 2-236

Authorization and Availability Requirements 2-236

Example of GIVE CATALOG 2-236

GIVE Object Statement 2-237

Considerations for GIVE Object 2-237

Authorization and Availability Requirements 2-237

Examples of GIVE Object 2-238

GIVE SCHEMA Operation 2-239

Considerations for GIVE SCHEMA 2-239

Authorization and Availability Requirements 2-239

Examples of GIVE SCHEMA 2-239

DDL Locks 2-240

GRANT Statement 2-240

Syntax Description of GRANT 2-241

Considerations for GRANT 2-243

Authorization Requirements 2-243

Security Considerations 2-243

Privileges on Views 2-244

Privileges on Stored Procedures 2-244

Examples of GRANT 2-244

GRANT CREATE CATALOG Statement 2-244

Considerations for GRANT CREATE CATALOG 2-245

Examples for GRANT CREATE CATALOG 2-245

GRANT CREATE SCHEMA Statement 2-245

Considerations for GRANT CREATE SCHEMA 2-246

Example for GRANT CREATE SCHEMA 2-246

GRANT EXECUTE Statement 2-246
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xi

Contents 2. SQL/MX Statements
Considerations for GRANT EXECUTE 2-247

Authorization and Availability Requirements 2-247

Security Considerations 2-248

Examples of GRANT EXECUTE 2-248

GRANT SECURITY_ADMIN Statement 2-249

Considerations for GRANT SECURITY_ADMIN 2-249

Authorization Requirements 2-249

Security Considerations 2-249

Metadata Version Requirements 2-250

Examples of GRANT SECURITY_ADMIN 2-250

2-250

INITIALIZE SQL Statement 2-251

Considerations for INITIALIZE SQL 2-251

Authorization and Availability Requirements 2-251

Examples of INITIALIZE SQL 2-251

INSERT Statement 2-252

Considerations for INSERT 2-257

Authorization Requirements 2-257

Transaction Initiation and Termination 2-257

Isolation Levels of Transactions and Access Options of Statements 2-258

Use of a VALUES Clause for the Source Query Expression 2-258

Inserting From Host Variables 2-258

Requirements for Inserted Rows 2-259

Using Compatible Data Types 2-259

Audited and Nonaudited Tables 2-260

Considerations for self-referencing inserts 2-260

MXCI Examples of INSERT 2-262

C Examples of INSERT 2-267

COBOL Examples of INSERT 2-267

LOCK TABLE Statement 2-268

Considerations for LOCK TABLE 2-268

Authorization Requirements 2-268

Modifying Default Locking 2-268

Unlocking Locked Tables 2-269

Effect of AUTOCOMMIT Option 2-269

Partitions and Indexes 2-269

Examples of LOCK TABLE 2-269

MODIFY Utility 2-271

Reuse an Existing Partition of a Range Partitioned Table 2-271
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xii

Contents 2. SQL/MX Statements
Manage Partitions of Range Partitioned Tables and Indexes 2-274

Manage Partitions of Hash Partitioned Tables and Indexes 2-281

Manage System-Clustered Tables 2-286

Managing a Sequence Generator 2-288

Renaming Guardian Location of Partitions of Tables, Indexes or Sequence
Generators 2-289

Considerations for MODIFY 2-290

Online Partition Management 2-291

Offline Partition Management for Range Partitions 2-291

Offline Partition Management for Hash Partitions 2-292

Offline Partition Management for System-Clustered Partitions 2-292

Offline Partition Management for Sequence Generators 2-292

Renaming Guardian Locations of Partitions of Tables, Indexes or Sequence
Generators 2-292

MODIFY and Indexes 2-293

MODIFY and TMF 2-293

MODIFY and RDF 2-294

MODIFY and Redefinition Timestamp 2-295

MODIFY and Table Reloading 2-295

Correcting File Name Problems with MODIFY 2-296

Examples of MODIFY 2-296

PREPARE Statement 2-299

Considerations for PREPARE 2-300

Availability of a Prepared Statement 2-300

Dynamic Parameters 2-300

Identifying Statements 2-300

Statement Names 2-301

MXCI Examples of PREPARE 2-301

C Examples of PREPARE 2-302

COBOL Examples of PREPARE 2-303

POPULATE INDEX Utility 2-304

Syntax Description of POPULATE INDEX 2-304

Considerations for POPULATE INDEX 2-305

Examples of POPULATE INDEX 2-306

PURGEDATA Utility 2-307

Syntax Description of PURGEDATA 2-307

Considerations for PURGEDATA 2-309

Examples of PURGEDATA 2-310

RECOVER Utility 2-311
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xiii

Contents 2. SQL/MX Statements
Syntax Description of RECOVER 2-311

Considerations for RECOVER 2-312

Examples of RECOVER 2-312

RECOVER SCHEMA Operation 2-312

Considerations for RECOVER SCHEMA 2-313

Authorization and Availability Requirements 2-313

DDL Locks 2-313

Examples of RECOVER SCHEMA 2-313

REGISTER CATALOG Statement 2-315

Considerations for REGISTER CATALOG 2-315

Authorization and Availability Requirements 2-315

Examples of REGISTER CATALOG 2-315

REVOKE Statement 2-317

Syntax Description of REVOKE 2-317

Considerations for REVOKE 2-319

Authorization Requirements 2-319

Examples of REVOKE 2-320

REVOKE CREATE CATALOG Statement 2-320

Considerations for REVOKE CREATE CATALOG 2-320

Examples for REVOKE CREATE CATALOG 2-321

REVOKE CREATE SCHEMA Statement 2-321

Considerations for REVOKE CREATE SCHEMA 2-321

Example for REVOKE CREATE SCHEMA 2-322

REVOKE EXECUTE Statement 2-323

Considerations for REVOKE EXECUTE 2-324

Authorization and Availability Requirements 2-324

Examples of REVOKE EXECUTE 2-325

REVOKE SECURITY_ADMIN Statement 2-326

Considerations for REVOKE SECURITY_ADMIN 2-326

Authorization Requirements 2-326

Metadata Version Requirements 2-326

Examples of REVOKE SECURITY_ADMIN 2-326

ROLLBACK WORK Statement 2-328

Considerations for ROLLBACK WORK 2-328

Begin and End a Transaction 2-328

MXCI Examples of ROLLBACK WORK 2-328

C Examples of ROLLBACK WORK 2-329

COBOL Examples of ROLLBACK WORK 2-329

SELECT Statement 2-330
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xiv

Contents 2. SQL/MX Statements
Considerations for SELECT 2-346

Multiple Row and Single Row SELECT Statements 2-346

Authorization Requirements 2-347

Transactions 2-347

Locking Modes 2-347

Use of Views With SELECT 2-347

Join Limits 2-348

Object Names in SELECT 2-348

AS and ORDER BY Conflicts 2-348

Stream Access Restrictions 2-348

Joining the Results of an Embedded Delete or Update 2-349

Restrictions on Embedded Deletes and Updates 2-349

DISTINCT Aggregate Functions 2-349

Considerations for Select List 2-350

Considerations for SEQUENCE BY 2-350

Considerations for GROUP BY 2-351

Considerations for ORDER BY 2-351

Considerations for UNION 2-351

Characteristics of the UNION Columns 2-351

ORDER BY Clause and the UNION Operator 2-353

GROUP BY Clause, HAVING Clause, and the UNION Operator 2-353

UNION ALL and Associativity 2-353

Access Modes and the UNION Operator 2-354

MXCI Examples of SELECT 2-355

C Examples of SELECT 2-360

COBOL Examples of SELECT 2-361

Publish/Subscribe Examples of SELECT 2-361

SELECT ROW COUNT Statement 2-363

Considerations for SELECT ROW COUNT 2-363

Limitations of SELECT ROW COUNT 2-363

Example of SELECT ROW COUNT 2-364

SET Statement 2-365

Considerations for SET Statement 2-365

SET CATALOG Statement 2-366

Considerations for SET CATALOG 2-366

Scope of SET CATALOG 2-366

MXCI Examples of SET CATALOG 2-366

C Example of SET CATALOG 2-367

COBOL Example of SET CATALOG 2-367
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xv

Contents 2. SQL/MX Statements
SET MPLOC Statement 2-368

Considerations for SET MPLOC 2-368

Scope of SET MPLOC 2-368

Examples of SET MPLOC 2-368

SET NAMETYPE Statement 2-369

Considerations for SET NAMETYPE 2-369

Scope of SET NAMETYPE 2-369

Examples of SET NAMETYPE 2-369

SET SCHEMA Statement 2-370

Considerations for SET SCHEMA 2-370

Scope of SET SCHEMA 2-370

MXCI Examples of SET SCHEMA 2-371

C Example of SET SCHEMA 2-371

COBOL Example of SET SCHEMA 2-371

SET TABLE TIMEOUT Statement 2-372

Considerations for SET TABLE TIMEOUT 2-374

MXCI Examples of SET TABLE TIMEOUT 2-374

C Examples of SET TABLE TIMEOUT 2-375

SET TRANSACTION Statement 2-376

Considerations for SET TRANSACTION 2-378

Implicit Transactions 2-378

Explicit Transactions 2-379

Degree of Concurrency 2-379

Effect on Utilities 2-379

MXCI Examples of SET TRANSACTION 2-380

C Examples of SET TRANSACTION 2-380

COBOL Examples of SET TRANSACTION 2-380

SIGNAL SQLSTATE Statement 2-381

Considerations for SIGNAL SQLSTATE 2-381

TABLE Statement 2-382

Considerations for TABLE 2-382

Relationship to SELECT Statement 2-382

Examples of TABLE 2-382

UNLOCK TABLE Statement 2-383

Considerations for UNLOCK TABLE 2-383

Authorization Requirements 2-383

Examples of UNLOCK TABLE 2-383

UNREGISTER CATALOG Statement 2-384

Considerations for UNREGISTER CATALOG 2-384
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xvi

Contents 2. SQL/MX Statements
Authorization and Availability Requirements 2-384

Example of UNREGISTER CATALOG 2-384

UPDATE Statement 2-385

Considerations for UPDATE 2-390

Use the EXPLAIN statement to check whether transactions will be rolled back
or if statement atomicity will be used. For details, see EXPLAIN Statement
on page 2-208. 2-390

Authorization Requirements 2-390

Transaction Initiation and Termination 2-391

Positioned UPDATE With AUTOCOMMIT 2-391

Isolation Levels of Transactions and Access Options of Statements 2-391

Conflicting Updates in Concurrent Applications 2-391

Requirements for Data in Row 2-392

Reporting of Updates 2-392

Updating Character Values 2-393

Audited and Nonaudited Tables 2-393

SET ON ROLLBACK Considerations 2-393

SET ON ROLLBACK Restrictions 2-393

Embedded SELECT UPDATE Behavior 2-394

Primary key restrictions 2-395

MXCI Examples of UPDATE 2-396

C Examples of UPDATE 2-400

COBOL Examples of UPDATE 2-400

Publish/Subscribe Examples of UPDATE 2-401

UPDATE STATISTICS Statement 2-402

Considerations for UPDATE STATISTICS 2-406

Physical Statistics 2-406

Using Statistics 2-406

Authorization and Locking 2-406

Transactions 2-407

Generating and Clearing Statistics for Columns 2-407

Column Lists and Access Plans 2-408

Sample Option 2-408

Sampling of Large Tables 2-408

Temporary Tables 2-409

Using Sample Table with Partitions 2-409

Managing SQL/MP Histograms 2-410

Examples of UPDATE STATISTICS 2-410

UPGRADE Utility 2-412
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xvii

Contents 3. Embedded-Only SQL/MX Statements
Considerations for UPGRADE 2-413

Modes of Operation for UPGRADE 2-413

Command Output for UPGRADE 2-413

Error Conditions 2-414

Recovery of a Failed UPGRADE Utility 2-414

Error Conditions 2-415

Example of UPGRADE 2-415

VALUES Statement 2-417

Considerations for VALUES 2-417

Relationship to SELECT Statement 2-417

Examples of VALUES 2-417

3. Embedded-Only SQL/MX Statements
ALLOCATE CURSOR Statement 3-3

Considerations for ALLOCATE CURSOR 3-4

Cursor Names 3-4

Using Extended Dynamic Cursors 3-4

WITH HOLD 3-4

C Examples of ALLOCATE CURSOR 3-4

COBOL Examples of ALLOCATE CURSOR 3-5

Publish/Subscribe Examples of ALLOCATE CURSOR 3-5

ALLOCATE DESCRIPTOR Statement 3-6

Considerations for ALLOCATE DESCRIPTOR 3-6

Defining Values in the Descriptor Area 3-7

Descriptor Names 3-7

C Examples of ALLOCATE DESCRIPTOR 3-7

COBOL Examples of ALLOCATE DESCRIPTOR 3-8

BEGIN DECLARE SECTION Declaration 3-9

C Examples of BEGIN DECLARE SECTION 3-9

C++ Examples of BEGIN DECLARE SECTION 3-9

COBOL Examples of BEGIN DECLARE SECTION 3-10

CLOSE Statement 3-11

Considerations for CLOSE 3-11

Scope of CLOSE 3-11

Reusing a Cursor 3-12

Effect on Locks 3-12

Using Extended Dynamic Cursors 3-12

C Examples of CLOSE 3-12

COBOL Examples of CLOSE 3-13
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xviii

Contents 3. Embedded-Only SQL/MX Statements
Compound (BEGIN...END) Statement 3-14

Considerations for Compound Statement 3-14

SQL Statements in the List 3-14

Executing Compound Statements in a DAM Process 3-14

SELECT Statements Within Compound Statements 3-15

C Examples of Compound Statement 3-15

DEALLOCATE DESCRIPTOR Statement 3-16

C Examples of DEALLOCATE DESCRIPTOR 3-17

COBOL Examples of DEALLOCATE DESCRIPTOR 3-17

DEALLOCATE PREPARE Statement 3-18

Considerations for DEALLOCATE PREPARE 3-19

Cursor Specification 3-19

C Examples of DEALLOCATE PREPARE 3-19

COBOL Examples of DEALLOCATE PREPARE 3-20

DECLARE CATALOG Declaration 3-21

Considerations for DECLARE CATALOG 3-21

Scope of DECLARE CATALOG 3-21

C Examples of DECLARE CATALOG 3-21

COBOL Examples of DECLARE CATALOG 3-21

DECLARE CURSOR Declaration 3-22

Considerations for DECLARE CURSOR 3-24

Default for Updatability 3-24

Order of Cursor Operations 3-25

Declaring Host Variables 3-25

WITH HOLD 3-25

C Examples of DECLARE CURSOR 3-25

COBOL Examples of DECLARE CURSOR 3-26

Publish/Subscribe Examples of DECLARE CURSOR 3-28

DECLARE MPLOC Declaration 3-29

Considerations for DECLARE MPLOC 3-30

Preprocessor and INVOKE Directive 3-30

Scope of DECLARE MPLOC 3-30

C Examples of DECLARE MPLOC 3-30

COBOL Examples of DECLARE MPLOC 3-31

DECLARE NAMETYPE Declaration 3-32

Considerations for DECLARE NAMETYPE 3-32

Scope of DECLARE NAMETYPE 3-32

C Examples of DECLARE NAMETYPE 3-32

COBOL Examples of DECLARE NAMETYPE 3-32
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xix

Contents 3. Embedded-Only SQL/MX Statements
DECLARE SCHEMA Declaration 3-33

Considerations for DECLARE SCHEMA 3-33

Scope of DECLARE SCHEMA 3-33

C Examples of DECLARE SCHEMA 3-33

COBOL Examples of DECLARE SCHEMA 3-33

DESCRIBE Statement 3-34

C Examples of DESCRIBE 3-35

COBOL Examples of DESCRIBE 3-36

END DECLARE SECTION Declaration 3-37

C Examples of END DECLARE SECTION 3-37

C++ Examples of END DECLARE SECTION 3-37

COBOL Examples of END DECLARE SECTION 3-37

EXEC SQL Directive 3-38

Considerations for EXEC SQL 3-38

Using Host Language Comments 3-38

Examples of EXEC SQL 3-38

EXECUTE IMMEDIATE Statement 3-39

Considerations for EXECUTE IMMEDIATE 3-39

Parameters 3-39

C Examples of EXECUTE IMMEDIATE 3-39

COBOL Examples of EXECUTE IMMEDIATE 3-39

FETCH Statement 3-40

Considerations for FETCH 3-42

Authorization Requirements 3-42

Ordering Fetched Rows 3-42

Too Many Values or Too Many Variables 3-42

Using Extended Dynamic Cursors 3-42

Status Information 3-42

C Examples of FETCH 3-43

COBOL Examples of FETCH 3-44

GET DESCRIPTOR Statement 3-46

SQL Item Descriptor Area of GET DESCRIPTOR 3-48

SQL Descriptor Area Data Type Declarations of GET DESCRIPTOR 3-51

Considerations for GET DESCRIPTOR 3-53

Processing Items in a Descriptor Area 3-53

Version Differences for TYPE and TYPE_FS 3-53

C Examples of GET DESCRIPTOR 3-53

COBOL Examples of GET DESCRIPTOR 3-54

GET DIAGNOSTICS Statement 3-55
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xx

Contents 3. Embedded-Only SQL/MX Statements
Statement Items of GET DIAGNOSTICS 3-57

Condition Items of GET DIAGNOSTICS 3-57

Considerations for GET DIAGNOSTICS 3-59

Processing Condition Items in the Diagnostics Area 3-59

Writing a Log of Exception Conditions 3-59

C Examples of GET DIAGNOSTICS 3-59

COBOL Examples of GET DIAGNOSTICS 3-60

IF Statement 3-61

Considerations for IF Statement 3-62

SQL Statements in the List 3-62

C Example of IF Statement 3-62

COBOL Example of IF Statement 3-63

INVOKE Directive 3-64

Considerations for INVOKE 3-66

Preserving or Overriding the INVOKE Directive 3-66

Using DEFINE Names in the Windows NT Environment 3-66

SYSKEY Column 3-66

Authorization Requirements 3-66

Using INVOKE in a C Program 3-67

C Examples of INVOKE 3-67

COBOL Examples of INVOKE 3-69

MODULE Directive 3-70

Considerations for MODULE 3-70

Directive Used by the Preprocessor 3-70

Automatic Generation of Module Names 3-71

C Examples of MODULE 3-71

COBOL Examples of MODULE 3-71

OPEN Statement 3-72

Considerations for OPEN 3-73

Establishing the Result Table 3-73

Authorization Requirements 3-73

Declaring Host Variables 3-73

Using Extended Dynamic Cursors 3-73

USING Clause 3-74

C Examples of OPEN 3-74

COBOL Examples of OPEN 3-75

SET (Assignment) Statement 3-76

C Examples of Assignment Statement 3-77

SET DESCRIPTOR Statement 3-78
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxi

Contents 4. MXCI Commands
SQL Item Descriptor Area of SET DESCRIPTOR 3-79

Considerations for SET DESCRIPTOR 3-81

Null values and SET DESCRIPTOR 3-82

DECIMAL Data Types and SET DESCRIPTOR 3-82

Using VARIABLE_POINTER 3-83

Processing Items in a Descriptor Area 3-84

Version Differences for TYPE and TYPE_FS 3-84

C Examples of SET DESCRIPTOR 3-84

COBOL Examples of SET DESCRIPTOR 3-85

WHENEVER Declaration 3-86

Considerations for WHENEVER 3-87

SQL/MX Extensions to WHENEVER 3-87

Status Codes 3-87

C Examples of WHENEVER 3-88

COBOL Examples of WHENEVER 3-88

4. MXCI Commands
ADD DEFINE Command 4-4

Considerations for ADD DEFINE 4-5

Scope of ADD DEFINE 4-5

Examples of ADD DEFINE 4-5

ALTER DEFINE Command 4-6

Considerations for ALTER DEFINE 4-6

Scope of ALTER DEFINE 4-6

Examples of ALTER DEFINE 4-7

CD Command 4-8

Considerations for CD 4-8

End of an MXCI Session 4-8

During an MXCI Session 4-8

Examples of CD 4-8

DELETE DEFINE Command 4-9

Considerations for DELETE DEFINE 4-9

Scope of DELETE DEFINE 4-9

Examples of DELETE DEFINE 4-9

DISPLAY USE OF Command 4-10

Considerations for DISPLAY USE OF 4-11

Object Types 4-11

Parallel Execution of DISPLAY USE OF 4-12

Examples of DISPLAY USE OF 4-12
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxii

Contents 4. MXCI Commands
DISPLAY USE OF SOURCE 4-14

Examples of DISPLAY USE OF Source 4-15

DISPLAY USE OF ALL | INVALID MODULES 4-16

Considerations for DISPLAY USE OF ALL | INVALID MODULES 4-17

Object Types 4-17

Examples of ALL | INVALID MODULES 4-18

DISPLAY_QC Command 4-19

Considerations for DISPLAY_QC 4-19

Using QUERYCACHE and DISPLAY_QC 4-19

Purpose of the QUERYCACHE Function Result 4-19

Result of the DISPLAY_QC Command 4-19

Examples of DISPLAY_QC 4-20

DISPLAY_QC_ENTRIES Command 4-21

Considerations for DISPLAY_QC_ENTRIES 4-21

Using QUERYCACHEENTRIES and DISPLAY_QC_ENTRIES 4-21

Purpose of the QUERYCACHEENTRIES Function Result 4-21

Result of the DISPLAY_QC_ENTRIES Command 4-21

Examples of DISPLAY_QC_ENTRIES 4-22

DISPLAY STATISTICS Command 4-23

Considerations for DISPLAY STATISTICS 4-23

Examples of DISPLAY STATISTICS 4-24

ENV Command 4-25

Examples of ENV 4-26

ERROR Command 4-27

Examples of ERROR 4-27

Exclamation Point (!) Command 4-28

Examples of ! 4-28

EXIT Command 4-29

Considerations for EXIT 4-29

Effect of EXIT on Active Transactions 4-29

Examples of EXIT 4-29

FC Command 4-30

Examples of FC 4-31

GTACL Command 4-32

Considerations for GTACL 4-32

Examples of GTACL 4-32

GET NAMES OF RELATED NODES Command 4-34

Error Conditions for GET NAMES OF RELATED NODES 4-34

Example of GET NAMES OF RELATED NODES 4-34
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxiii

Contents 4. MXCI Commands
GET NAMES OF RELATED SCHEMAS Command 4-35

Error Conditions for GET NAMES OF RELATED SCHEMAS 4-35

Example of GET NAMES OF RELATED SCHEMAS 4-35

GET NAMES OF RELATED CATALOGS 4-36

Error Conditions for GET NAMES OF RELATED CATALOGS 4-36

Example of GET NAMES OF RELATED CATALOGS 4-36

GET VERSION OF SYSTEM 4-37

Error Conditions for GET VERSION OF SYSTEM 4-37

Example of GET VERSION OF SYSTEM 4-37

GET VERSION OF SCHEMA Command 4-38

Error Conditions for GET VERSION OF SCHEMA 4-38

Examples of GET VERSION OF SCHEMA 4-38

GET VERSION OF SYSTEM SCHEMA Command 4-39

Error Conditions for GET VERSION OF SYSTEM SCHEMA 4-39

Example of GET VERSION OF SYSTEM SCHEMA 4-39

GET VERSION OF Object Command 4-40

Error Conditions for GET VERSION OF Object 4-40

Example of GET VERSION OF Object 4-40

GET VERSION OF MODULE Command 4-41

Error Conditions for GET VERSION OF MODULE 4-41

Example of GET VERSION OF MODULE 4-41

GET VERSION OF PROCEDURE Command 4-42

Error Conditions for GET VERSION OF PROCEDURE 4-42

Example of GET VERSION OF PROCEDURE 4-42

GET VERSION OF STATEMENT Command 4-43

Error Conditions for GET VERSION OF STATEMENT 4-43

Example of GET VERSION OF STATEMENT 4-43

HISTORY Command 4-44

Examples of HISTORY 4-44

INFO DEFINE Command 4-45

Examples of INFO DEFINE 4-45

INVOKE Command 4-46

Examples of INVOKE 4-46

LOG Command 4-47

Considerations for LOG 4-48

Contents of the Log File 4-48

Concurrent MXCI Sessions 4-48

Examples of LOG 4-48

LS Command 4-51
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxiv

Contents 4. MXCI Commands
Considerations for LS 4-52

Output 4-52

Defaults 4-52

Examples of LS 4-52

MODE Command 4-54

MXCI Command 4-55

Examples of MXCI Command 4-55

OBEY Command 4-56

Considerations for OBEY 4-56

Specifying Sections in Command Files 4-56

Effect of the MXCI Break Key 4-57

Examples of OBEY 4-57

REPEAT Command 4-58

Examples of REPEAT 4-58

RESET PARAM Command 4-59

Examples of RESET PARAM 4-59

SET LIST_COUNT Command 4-61

Considerations for SET LIST_COUNT 4-61

Range for Number of Rows 4-61

Examples of SET LIST_COUNT 4-61

SET PARAM Command 4-62

Considerations for SET PARAM 4-63

Using With PREPARE and EXECUTE 4-63

Examples of SET PARAM 4-63

SET SHOWSHAPE Command 4-65

Considerations for SET SHOWSHAPE 4-66

Default Control Query Shape 4-66

Examples of SET SHOWSHAPE 4-66

SET STATISTICS Command 4-68

Examples of SET STATISTICS 4-68

SET TERMINAL_CHARSET Command 4-69

Considerations for SET TERMINAL_CHARSET 4-69

SET WARNINGS Command 4-70

Examples of SET WARNINGS 4-70

SH Command 4-71

Examples of SH 4-71

SHOW PARAM Command 4-72

Examples of SHOW PARAM 4-72

SHOW PREPARED Command 4-73
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxv

Contents 5. SQL/MX Utilities
Examples of SHOW PREPARED 4-73

SHOW SESSION Command 4-74

Examples of SHOW SESSION 4-75

SHOWCONTROL Command 4-76

Examples of SHOWCONTROL 4-77

SHOWDDL Command 4-82

Considerations for SHOWDDL 4-84

Differences Between SHOWDDL Output and Original DDL 4-84

SQL/MP Conversion Issues 4-86

Examples of SHOWDDL 4-89

SHOWLABEL Command 4-98

Considerations for SHOWLABEL 4-99

SHOWLABEL Output 4-99

SHOWLABEL, DETAIL Output 4-101

Examples of SHOWLABEL 4-101

SHOWSHAPE Command 4-109

Considerations for SHOWSHAPE 4-109

Default Control Query Shape 4-109

Examples of SHOWSHAPE 4-109

SHOWSTATS Command 4-111

Consideration for SHOWSTATS 4-111

Examples of SHOWSTATS 4-112

5. SQL/MX Utilities
Privileges Required to Execute Utilities 5-2

CLEANUP Operation 5-3

Considerations 5-4

Restrictions 5-5

Examples 5-5

FIXRCB Operation 5-7

Error Conditions 5-7

Example of FIXRCB Operation 5-7

FIXUP Operation 5-8

Considerations for FIXUP Operation 5-11

Examples of FIXUP Operation 5-11

GOAWAY Operation 5-13

Syntax Description of GOAWAY 5-13

Considerations for GOAWAY 5-15

Examples of GOAWAY 5-15
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxvi

Contents 5. SQL/MX Utilities
import Utility 5-18

Considerations for import 5-27

Fast Loading and Transaction Considerations 5-27

DDL Locks 5-27

Recovery 5-28

Concurrency 5-28

Format File Sections for import 5-28

Format File Considerations––import 5-31

Input File Considerations––import 5-32

Transaction Considerations for import 5-36

import and Nullable Columns 5-37

Parallel Load for import 5-38

Programmatic Interfaces 5-39

File permissions 5-41

Displaying messages 5-41

Output File Consideration 5-41

Examples of import 5-43

Support for restarting import 5-49

INFO Operation 5-53

Considerations for INFO 5-53

Security Considerations 5-53

Other Considerations 5-53

Examples of INFO 5-54

mxexportddl Utility 5-55

Exporting Metadata and Statistics of SQL/MX Objects 5-55

Considerations for mxexportddl 5-58

Supported by mxexportddl 5-58

Not Supported by mxexportddl 5-58

Examples of mxexportddl 5-58

MXGNAMES Utility 5-59

Considerations for MXGNAMES 5-61

Temporary Work Files 5-61

Examples of MXGNAMES 5-61

mximportddl Utility 5-67

Importing Metadata and Statistics of SQL/MX Objects 5-67

Considerations for mximportddl 5-73

Supported by mximportddl 5-73

Not Supported by mximportddl 5-74

Examples of mximportddl 5-74
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxvii

Contents 6. SQL/MX Language Elements
MXRPM tool 5-75

Guidelines for map-file 5-76

Guidelines for module-list-input-file 5-76

Guidelines for log-file 5-76

Considerations 5-77

mxtool Utility 5-78

VERIFY Operation 5-79

Considerations for VERIFY 5-80

Security Considerations 5-81

Examples of VERIFY 5-82

6. SQL/MX Language Elements
Catalogs 6-3

SQL/MX Catalogs 6-3

SQL/MP Catalogs 6-3

Character Sets 6-4

Restrictions on Using Character Set Data 6-4

Collations 6-6

Columns 6-7

Column References 6-7

Derived Column Names 6-7

Column Default Settings 6-8

Examples of Derived Column Names 6-8

Constraints 6-9

Creating, Adding, and Dropping Constraints on SQL/MX Tables 6-9

Constraint Names 6-10

Restrictions on Publish/Subscribe 6-10

Creating and Dropping Constraints on SQL/MP Tables 6-10

Correlation Names 6-11

Explicit Correlation Names 6-11

Implicit Correlation Names 6-11

Examples of Correlation Names 6-11

Database Objects 6-12

Ownership 6-12

Database Object Names 6-13

Logical Names for SQL/MX Objects 6-13

Physical Names for SQL/MP Objects 6-13

Logical Names for SQL/MP Objects 6-14

DEFINE Names for SQL/MP Objects 6-14
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxviii

Contents 6. SQL/MX Language Elements
SQL/MX Object Namespaces 6-15

Considerations for Database Object Names 6-15

OBJECTS Table 6-15

Mixing Name Types 6-16

Default Name Types 6-16

Data Types 6-17

Comparable and Compatible Data Types 6-17

Character Data Types 6-17

Datetime Data Types 6-18

Interval Data Types 6-18

Numeric Data Types 6-18

Extended NUMERIC Precision 6-18

Floating-Point Data 6-20

Character String Data Types 6-22

Considerations for Character String Data Types 6-23

SQL/MP Considerations for Character String Data Types 6-25

Datetime Data Types 6-25

Considerations for Datetime Data Types 6-27

SQL/MP Considerations for Datetime Data Types Not Equivalent to DATE,
TIME, TIMESTAMP 6-27

SQL/MP Considerations for Datetime Data Types Equivalent to DATE, TIME,
TIMESTAMP 6-29

Interval Data Types 6-31

Considerations for Interval Data Types 6-32

SQL/MP Considerations for Interval Data Types 6-33

Numeric Data Types 6-34

DEFINEs 6-38

Using DEFINEs 6-38

Using DEFINEs From MXCI 6-40

DEFINEs of Class MAP 6-40

Expressions 6-41

Character Value Expressions 6-41

Examples of Character Value Expressions 6-42

Datetime Value Expressions 6-43

SQL/MP Considerations for Datetime Value Expressions 6-44

Considerations for Datetime Value Expressions 6-44

Examples of Datetime Value Expressions 6-45

Interval Value Expressions 6-47

SQL/MP Considerations for Interval Value Expressions 6-49
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxix

Contents 6. SQL/MX Language Elements
Considerations for Interval Value Expressions 6-49

Examples of Interval Value Expressions 6-51

Numeric Value Expressions 6-52

Considerations for Numeric Value Expressions 6-53

Examples of Numeric Value Expressions 6-55

Rowset Expressions 6-55

Identifiers 6-56

Regular Identifiers 6-56

Delimited Identifiers 6-56

Specifying Delimited Identifiers in OSS Command-Line Arguments 6-56

SQL/MP Considerations for Identifiers 6-57

Using SQL/MX Reserved Words in SQL/MP Names 6-57

Examples of Identifiers 6-57

Indexes 6-59

SQL/MP Indexes 6-59

SQL/MX Indexes 6-59

Keys 6-60

Clustering Keys 6-60

First (Partition) Keys 6-61

Index Keys 6-62

SQL/MP Index Keys 6-62

SQL/MX Index Keys 6-62

Primary Keys 6-63

SYSKEYs 6-63

Selecting SYSKEY 6-63

Literals 6-64

Character String Literals 6-64

Considerations for Character String Literals 6-65

SQL/MP Considerations for Character String Literals 6-66

Examples of Character String Literals 6-67

Datetime Literals 6-68

SQL/MP Considerations for Datetime Literals 6-68

Examples of Datetime Literals 6-70

Interval Literals 6-71

Considerations for Interval Literals 6-73

SQL/MP Considerations for Interval Literals 6-73

Examples of Interval Literals 6-75

Numeric Literals 6-75

Examples of Numeric Literals 6-76
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxx

Contents 6. SQL/MX Language Elements
MXCI Parameters 6-77

MXCI Named Parameters 6-77

MXCI Unnamed Parameters 6-77

Type Assignment for Parameters 6-77

Working With MXCI Parameters 6-78

Use of Parameter Names 6-78

Examples of MXCI Parameters 6-79

Null 6-80

Using Null Versus Default Values 6-80

Defining Columns That Allow or Prohibit Null 6-81

Determining Whether a Column Allows Null 6-81

Null in DISTINCT, GROUP BY, and ORDER BY Clauses 6-82

Null and Expression Evaluation Comparison 6-82

Partitions 6-83

SQL/MP Tables 6-83

SQL/MX Tables 6-83

Automatically Creating Partitions 6-84

Predicates 6-85

BETWEEN Predicate 6-85

Considerations for BETWEEN 6-86

Examples of BETWEEN 6-87

Comparison Predicates 6-88

Considerations for Comparison Predicates 6-89

Examples of Comparison Predicates 6-90

EXISTS Predicate 6-92

Examples of EXISTS 6-92

IN Predicate 6-94

Considerations for IN 6-95

Examples of IN 6-96

LIKE Predicate 6-97

Considerations for LIKE 6-97

Examples of LIKE 6-99

NULL Predicate 6-99

Considerations for NULL 6-100

Examples of NULL 6-100

Quantified Comparison Predicates 6-101

Considerations for ALL, ANY, SOME 6-102

Examples of ALL, ANY, SOME 6-102

Rowset Predicates 6-104
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxi

Contents 7. SQL/MX Clauses
Pseudocolumns 6-105

Considerations for Pseudocolumns 6-106

Schemas 6-107

Search Condition 6-108

Considerations for Search Condition 6-109

Order of Evaluation 6-109

Column References 6-109

Subqueries 6-109

Examples of Search Condition 6-109

Rowset Search Condition 6-110

Sequence Generators 6-110

SQL/MP Aliases 6-112

Stored Procedures 6-112

Subquery 6-112

SELECT Form of a Subquery 6-113

Using Subqueries to Provide Comparison Values 6-113

Nested Subqueries When Providing Comparison Values 6-113

Correlated Subqueries When Providing Comparison Values 6-114

Tables 6-114

Base Tables and Views 6-115

Example of a Base Table 6-115

Triggers 6-115

Views 6-115

SQL/MX Views 6-116

SQL/MP Views 6-116

Example of a View 6-116

7. SQL/MX Clauses
DEFAULT Clause 7-2

Syntax Description of DEFAULT 7-2

Considerations for DEFAULT 7-3

Default Value on a CREATE TABLE Statement 7-3

Examples of DEFAULT 7-4

PARTITION Clause 7-6

Considerations for PARTITION 7-7

Data Type Limitations 7-7

Decoupling of Clustering Key and Partitioning Key 7-8

Examples of Partitions 7-8

SAMPLE Clause 7-9
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxii

Contents 8. SQL/MX File Attributes
Considerations for SAMPLE 7-11

Sample Rows 7-11

Cluster Sampling 7-11

Examples of SAMPLE 7-12

SEQUENCE BY Clause 7-19

Considerations for SEQUENCE BY 7-19

Examples of SEQUENCE BY 7-21

STORE BY Clause 7-23

Considerations for STORE BY 7-24

Storage Order and Partitioning 7-24

Effect of Storage Order on Partitioning 7-25

Primary Key Storage Order 7-25

SYSKEY Storage Order 7-25

Key Column List Storage Order 7-25

TRANSPOSE Clause 7-26

Considerations for TRANSPOSE 7-28

Multiple TRANSPOSE Clauses and Sets 7-28

Degree and Column Order of the TRANSPOSE Result 7-28

Data Type of the TRANSPOSE Result 7-28

Cardinality of the TRANSPOSE Result 7-29

Examples of TRANSPOSE 7-30

8. SQL/MX File Attributes
ALLOCATE/DEALLOCATE 8-2

Considerations for ALLOCATE 8-2

AUDITCOMPRESS 8-3

Considerations for AUDITCOMPRESS 8-3

Index Default 8-3

Difference Between Compressed and Uncompressed Row Images 8-3

BLOCKSIZE 8-4

CLEARONPURGE 8-5

Considerations for CLEARONPURGE 8-5

Purpose of CLEARONPURGE 8-5

Effect Within Transactions 8-5

EXTENT 8-6

Considerations for EXTENT 8-6

MAXEXTENTS 8-7

Considerations for MAXEXTENTS 8-7
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxiii

Contents 9. SQL/MX Functions and Expressions
9. SQL/MX Functions and Expressions
Categories 9-1

Aggregate (Set) Functions 9-1

Character String Functions 9-2

Datetime Functions 9-4

Mathematical Functions 9-5

Sequence Functions 9-7

Other Functions and Expressions 9-8

Table-Valued Stored Functions 9-9

ABS Function 9-10

Examples of ABS 9-10

ACOS Function 9-10

Examples of ACOS 9-10

ABS Function 9-10

Examples of ABS 9-10

ACOS Function 9-10

Examples of ACOS 9-10

ASCII Function 9-11

Examples of ASCII 9-11

ASIN Function 9-12

Examples of ASIN 9-12

ATAN Function 9-13

Examples of ATAN 9-13

ATAN2 Function 9-13

Examples of ATAN2 9-13

AVG Function 9-14

Considerations for AVG 9-14

Data Type of the Result 9-14

Operands of the Expression 9-14

Nulls 9-14

Examples of AVG 9-15

CASE (Conditional) Expression 9-16

Considerations for CASE 9-17

Data Type of the CASE Expression 9-17

Character Data Type 9-17

Numeric Data Type 9-18

Datetime Data Type 9-18

Interval Data Type 9-18

Examples of CASE 9-18
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxiv

Contents 9. SQL/MX Functions and Expressions
CAST Expression 9-20

Considerations for CAST 9-20

Valid Conversions for CAST 9-20

Examples of CAST 9-21

CEILING Function 9-22

Examples of CEILING 9-22

CHAR Function 9-23

Examples of CHAR 9-23

CHAR_LENGTH Function 9-24

Considerations for CHAR_LENGTH 9-24

CHAR and VARCHAR Operands 9-24

SQL/MP Considerations for CHAR_LENGTH 9-24

Similarity to OCTET_LENGTH Function 9-24

Examples of CHAR_LENGTH 9-25

COALESCE Function 9-27

Considerations 9-27

Examples of COALESCE 9-28

CODE_VALUE Function 9-30

Considerations for CODE_VALUE Function 9-30

COMPILERCONTROLS Function 9-31

Considerations for COMPILERCONTROLS 9-31

Using SELECT and COMPILERCONTROLS 9-31

Examples of COMPILERCONTROLS 9-32

CONCAT Function 9-34

Concatenation Operator (||) 9-34

Considerations for CONCAT 9-34

Operands 9-34

SQL Parameters 9-34

Examples of CONCAT 9-35

CONVERTTIMESTAMP Function 9-36

Considerations for CONVERTTIMESTAMP 9-36

Relationship to the JULIANTIMESTAMP Function 9-36

Use of CONVERTTIMESTAMP 9-36

Examples of CONVERTTIMESTAMP 9-36

COS Function 9-37

Examples of COS 9-37

COSH Function 9-37

Examples of COSH 9-37

COUNT Function 9-38
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxv

Contents 9. SQL/MX Functions and Expressions
Considerations for COUNT 9-38

Operands of the Expression 9-38

Nulls 9-39

Examples of COUNT 9-39

CURRENT Function 9-40

Examples of CURRENT 9-40

CURRENT_DATE Function 9-41

Examples of CURRENT_DATE 9-41

CURRENT_TIME Function 9-42

Examples of CURRENT_TIME 9-42

CURRENT_TIMESTAMP Function 9-43

Examples of CURRENT_TIMESTAMP 9-43

CURRENT_USER Function 9-43

Examples of CURRENT_USER 9-43

DATE_ADD Function 9-44

Return type 9-44

Examples of DATE_ADD 9-44

DATEADD Function 9-44

Considerations for DATEADD 9-45

Return type 9-46

Examples of DATEADD 9-46

DATEDIFF Function 9-46

Considerations for DATEDIFF 9-47

Return type 9-47

Examples of DATEDIFF 9-47

DATEFORMAT Function 9-48

Examples of DATEFORMAT 9-48

DATE_SUB Function 9-48

Considerations for DATE_SUB 9-49

Return type 9-49

Examples of DATE_SUB 9-49

DAY Function 9-50

Examples of DAY 9-50

DAYNAME Function 9-51

Examples of DAYNAME 9-51

DAYOFMONTH Function 9-52

Examples of DAYOFMONTH 9-52

DAYOFWEEK Function 9-53

Examples of DAYOFWEEK 9-53
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxvi

Contents 9. SQL/MX Functions and Expressions
DAYOFYEAR Function 9-54

Examples of DAYOFYEAR 9-54

DECODE Function 9-55

Considerations 9-55

Examples of DECODE 9-57

DEGREES Function 9-57

Examples of DEGREES 9-57

DIFF1 Function 9-59

Considerations for DIFF1 9-59

Equivalent Result 9-59

Datetime Arguments 9-59

Examples of DIFF1 9-60

DIFF2 Function 9-62

Considerations for DIFF2 9-62

Equivalent Result 9-62

Datetime Arguments 9-62

Examples of DIFF2 9-63

EXP Function 9-65

Examples of EXP 9-65

EXPLAIN Function 9-66

Considerations for EXPLAIN 9-67

Using a Statement Pattern 9-67

Using EXPLAIN and EXPLAIN Statement 9-67

Result of the EXPLAIN Function 9-67

Examples of EXPLAIN 9-72

EXTRACT Function 9-75

Examples of EXTRACT 9-75

FEATURE_VERSION_INFO Function 9-76

Input and Output Parameters 9-76

Example of FEATURE_VERSION_INFO 9-77

FLOOR Function 9-78

Examples of FLOOR 9-78

HASHPARTFUNC Function 9-79

Considerations for HashPartFunc 9-79

Examples of HashPartFunc 9-79

HOUR Function 9-83

Examples of HOUR 9-83

INSERT Function 9-84

Examples of INSERT 9-84
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxvii

Contents 9. SQL/MX Functions and Expressions
JULIANTIMESTAMP Function 9-85

Examples of JULIANTIMESTAMP 9-85

LASTNOTNULL Function 9-86

Examples of LASTNOTNULL 9-86

LCASE Function 9-87

Examples of LCASE 9-87

LEFT Function 9-88

Examples of LEFT 9-88

LNNVL Function 9-89

Examples of LNNVL 9-90

LOCATE Function 9-91

Considerations for LOCATE 9-92

Result of LOCATE 9-92

Using UCASE 9-92

Examples of LOCATE 9-92

LOG Function 9-93

Examples of LOG 9-93

LOG10 Function 9-93

Examples of LOG10 9-93

LOWER Function 9-94

Considerations for LOWER 9-94

Examples of LOWER 9-98

LPAD Function 9-99

Examples of LPAD 9-99

LTRIM Function 9-102

Considerations for LTRIM 9-102

Result of LTRIM 9-102

Examples of LTRIM 9-102

MAX Function 9-103

Considerations for MAX 9-103

Operands of the Expression 9-103

Examples of MAX 9-103

MIN Function 9-104

Considerations for MIN 9-104

Operands of the Expression 9-104

Examples of MIN 9-104

MINUTE Function 9-105

Examples of MINUTE 9-105

MOD Function 9-106
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxviii

Contents 9. SQL/MX Functions and Expressions
Examples of MOD 9-106

MONTH Function 9-107

Examples of MONTH 9-107

MONTHNAME Function 9-108

Examples of MONTHNAME 9-108

MOVINGAVG Function 9-109

Examples of MOVINGAVG 9-110

MOVINGCOUNT Function 9-111

Considerations for MOVINGCOUNT 9-112

No DISTINCT Clause 9-112

Examples of MOVINGCOUNT 9-112

MOVINGMAX Function 9-113

Examples of MOVINGMAX 9-114

MOVINGMIN Function 9-115

Examples of MOVINGMIN 9-116

MOVINGSTDDEV Function 9-117

Examples of MOVINGSTDDEV 9-118

MOVINGSUM Function 9-119

Examples of MOVINGSUM 9-120

MOVINGVARIANCE Function 9-121

Examples of MOVINGVARIANCE 9-122

NVL Function 9-123

Considerations 9-123

Example of NVL 9-124

NVL2 Function 9-125

Considerations 9-125

Examples of NVL2 9-125

OCTET_LENGTH Function 9-126

Considerations for OCTET_LENGTH 9-126

CHAR and VARCHAR Operands 9-126

Similarity to CHAR_LENGTH Function 9-126

Examples of OCTET_LENGTH 9-127

OFFSET Function 9-128

Examples of OFFSET 9-128

PI Function 9-130

Examples of PI 9-130

POSITION Function 9-131

Considerations for POSITION 9-131

Result of POSITION 9-131
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xxxix

Contents 9. SQL/MX Functions and Expressions
Using the UPSHIFT Function 9-131

Examples of POSITION 9-132

POWER Function 9-132

Examples of POWER 9-132

QUARTER Function 9-133

Examples of QUARTER 9-133

QUERYCACHE Function 9-134

Considerations for QUERYCACHE 9-134

Using QUERYCACHE and DISPLAY_QC 9-134

Result of the QUERYCACHE Function 9-134

Examples of QUERYCACHE 9-136

QUERYCACHEENTRIES Function 9-138

Considerations for QUERYCACHEENTRIES 9-138

Using QUERYCACHEENTRIES and DISPLAY_QC_ENTRIES 9-138

Result of the QUERYCACHEENTRIES Function 9-139

Examples of QUERYCACHEENTRIES 9-140

RADIANS Function 9-143

Examples of RADIANS 9-143

RELATEDNESS Function 9-144

Example of RELATEDNESS 9-144

REPEAT Function 9-145

Examples of REPEAT 9-145

REPLACE Function 9-146

Examples of REPLACE 9-146

RIGHT Function 9-147

Examples of RIGHT 9-147

ROWS SINCE Function 9-148

Considerations for ROWS SINCE 9-148

Counting the Rows 9-148

Examples of ROWS SINCE 9-149

RPAD Function 9-150

Examples of RPAD 9-150

RTRIM Function 9-152

Considerations for RTRIM 9-152

Result of RTRIM 9-152

Examples of RTRIM 9-152

RUNNINGAVG Function 9-153

Considerations for RUNNINGAVG 9-153

Equivalent Result 9-153
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xl

Contents 9. SQL/MX Functions and Expressions
Examples of RUNNINGAVG 9-153

RUNNINGCOUNT Function 9-155

Considerations for RUNNINGCOUNT 9-155

No DISTINCT Clause 9-155

Examples of RUNNINGCOUNT 9-155

RUNNINGMAX Function 9-157

Examples of RUNNINGMAX 9-157

RUNNINGMIN Function 9-159

Examples of RUNNINGMIN 9-159

RUNNINGSTDDEV Function 9-161

Considerations for RUNNINGSTDDEV 9-161

Equivalent Result 9-161

Examples of RUNNINGSTDDEV 9-161

RUNNINGSUM Function 9-163

Examples of RUNNINGSUM 9-163

RUNNINGVARIANCE Function 9-165

Examples of RUNNINGVARIANCE 9-165

SECOND Function 9-167

Examples of SECOND 9-167

SESSION_USER Function 9-168

Examples of SESSION_USER 9-168

SIGN Function 9-168

Examples of SIGN 9-168

SIN Function 9-169

Examples of SIN 9-169

SINH Function 9-169

Examples of SINH 9-169

SPACE Function 9-170

Examples of SPACE 9-170

SQRT Function 9-170

Examples of SQRT 9-170

STDDEV Function 9-171

Considerations for STDDEV 9-171

Definition of STDDEV 9-171

Data Type of the Result 9-172

Operands of the Expression 9-172

Nulls 9-172

FLOAT(54) and DOUBLE PRECISION Data 9-172

Examples of STDDEV 9-172
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xli

Contents 9. SQL/MX Functions and Expressions
SUBSTRING Function 9-174

Considerations for SUBSTRING 9-174

Requirements for the Expression, Length, and Start Position 9-174

Examples of SUBSTRING 9-175

SUM Function 9-176

Considerations for SUM 9-176

Data Type and Scale of the Result 9-176

Operands of the Expression 9-176

Examples of SUM 9-177

TAN Function 9-178

Examples of TAN 9-178

TANH Function 9-178

Examples of TANH 9-178

THIS Function 9-179

Considerations for THIS 9-179

Counting the Rows 9-179

Example of THIS 9-179

TO_CHAR(<NUMERIC>) Function 9-181

Considerations 9-183

Examples of TO_CHAR(<NUMERIC>) 9-185

TO_CHAR(<DATETIME>) Function 9-185

Considerations 9-189

Examples of TO_CHAR(<DATETIME>) 9-190

TRANSLATE Function 9-190

TRIM Function 9-192

Considerations for TRIM 9-192

Result of TRIM 9-192

Examples of TRIM 9-192

UCASE Function 9-193

Considerations for UCASE 9-193

Examples of UCASE 9-200

UPPER Function 9-201

Examples of UPPER 9-201

UPSHIFT Function 9-202

Examples of UPSHIFT 9-202

USER Function 9-203

Examples of USER 9-203

VERSION_INFO Function 9-204

Example of VERSION_INFO 9-206
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xlii

Contents 10. Metadata Tables
VARIANCE Function 9-207

Considerations for VARIANCE 9-207

Definition of VARIANCE 9-207

Data Type of the Result 9-209

Operands of the Expression 9-209

Nulls 9-209

FLOAT(54) and DOUBLE PRECISION Data 9-209

Examples of VARIANCE 9-210

WEEK Function 9-212

Examples of WEEK 9-212

YEAR Function 9-213

Examples of YEAR 9-213

10. Metadata Tables
SQL/MX Metadata Catalogs 10-2

SQL/MX Metadata Schemas and Tables 10-3

System Schema Tables: Schema SYSTEM_SCHEMA 10-3

Definition Schema Tables: Schema
DEFINITION_SCHEMA_VERSION_vernum 10-3

System Defaults Tables (User Metadata Tables): Schema
SYSTEM_DEFAULTS_SCHEMA 10-5

MXCS Metadata Tables: Schema MXCS_SCHEMA 10-5

Histogram Tables 10-6

VALIDATEROUTINE: Schema SYSTEM_SQLJ_SCHEMA 10-6

Security Schema Tables: Schema SYSTEM_SECURITY_SCHEMA 10-7

System Schema Tables 10-8

ALL_UIDS Table 10-8

CATSYS Table 10-9

CAT_REFERENCES Table 10-9

SCHEMATA Table 10-10

SCHEMA_REPLICAS Table 10-11

System Security Schema Tables 10-11

MGM_PRIVILEGES 10-11

PRIVILEGED_USERS TABLE 10-11

Definition Schema Tables 10-12

ACCESS_PATHS Table 10-12

ACCESS_PATH_COLS Table 10-14

CK_COL_USAGE Table 10-15

CK_TBL_USAGE Table 10-15

COLS Table 10-15
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xliii

Contents 10. Metadata Tables
COL_PRIVILEGES Table 10-20

DDL_LOCKS Table 10-21

DDL_PARTITION_LOCKS 10-21

KEY_COL_USAGE Table 10-22

MP_PARTITIONS Table 10-22

OBJECTS Table 10-22

PARTITIONS Table 10-24

REF_CONSTRAINTS Table 10-25

REPLICAS Table 10-26

RI_UNIQUE_USAGE Table 10-26

ROUTINES Table 10-27

SEQUENCE_GENERATORS Table 10-28

SG_USAGE Table 10-29

TBL_CONSTRAINTS Table 10-29

TBL_PRIVILEGES Table 10-30

TEXT Table 10-32

TRIGGERS Table 10-32

TRIGGERS_CAT_USAGE Table 10-34

TRIGGER_USED Table 10-34

VWS Table 10-35

VW_COL_TBL_COLS Table 10-36

VW_COL_USAGE Table 10-36

VW_TBL_USAGE Table 10-36

System Defaults Table 10-37

SYSTEM_DEFAULTS Table 10-37

Overriding System-Defined Default Settings 10-37

Inserting Values Into the SYSTEM_DEFAULTS Table 10-38

Using the CONTROL QUERY DEFAULT Statement 10-38

Default Attributes 10-39

Character Set 10-49

Constraint Droppable Options 10-50

Data Types 10-51

Function Control 10-52

Histograms 10-52

Isolation Level 10-56

Locking 10-57

Local Autonomy 10-58

Metadata Management 10-59

Module Management 10-59
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xliv

Contents A. Quick Reference
Nonaudited Tables 10-60

Object Naming 10-60

NAMETYPE Attribute 10-61

Partition Management 10-63

Query Optimization and Performance 10-66

Query Plan Caching 10-73

Referential Action 10-75

Row Maintenance 10-75

Scratch Disk Management 10-76

About SQL/MX Scratch Disks 10-76

Sequence Functions 10-77

Statement Atomicity 10-78

Statement Recompilation 10-78

Stored Procedures in Java 10-80

Stream Access 10-80

Table Management 10-81

Trigger Management 10-83

Examples of SYSTEM_DEFAULTS Table 10-83

User Metadata Tables (UMD): Histogram Tables 10-85

Creating Histogram Tables 10-85

Generating Histogram Statistics 10-85

Histogram Table Properties 10-86

HISTOGRAMS Table 10-87

HISTOGRAM_INTERVALS Table 10-89

HISTOGRM Table 10-90

HISTINTS Table 10-91

Examples of Histogram Tables 10-92

MXCS Metadata Tables 10-95

ASSOC2DS Table 10-95

DATASOURCES Table 10-96

ENVIRONMENTVALUES Table 10-97

NAME2ID Table 10-97

RESOURCEPOLICIES Table 10-98

A. Quick Reference
A A-1

B A-1

C A-1

D A-2
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xlv

Contents B. Reserved Words
E A-2

F A-3

G A-3

H A-4

I A-4

L A-4

M A-4

O A-4

P A-4

R A-5

S A-5

T A-6

U A-6

V A-6

W A-6

B. Reserved Words
Reserved SQL/MX and SQL/MP Identifiers B-1

SQL/MP Identifiers to Avoid B-5

C. Limits

D. Sample Database
Object Names in Sample Database D-1

Sample Database Entity-Relationship Diagram D-2

DDL Statements for the Sample Database D-3

EMPLOYEE Table D-3

DEPT Table D-4

JOB Table D-5

PROJECT Table D-6

CUSTOMER Table D-6

ORDERS Table D-7

DATE_CONSTRNT Constraint D-8

ODETAIL Table D-9

PARTS Table D-9

SUPPLIER Table D-10

PARTSUPP Table D-11

PARTLOC Table D-13
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xlvi

Contents E. Standard SQL and SQL/MX
E. Standard SQL and SQL/MX
ANSI SQL Standards E-1

ISO Standards E-2

SQL/MX Compliance E-2

SQL/MX Extensions to Standard SQL E-6

Character Set Support E-7

Figures
Figure D-1. Sample Database Tables D-2

Tables
Table 1-1. Concurrent DDL/Utility Operation and File Access Modes 1-17

Table 1-2. Concurrent DDL/Utility and DML Operations 1-17

Table 1-3. Concurrent DML and DDL Operations 1-18

Table 1-4. Operations Effect on Table Timestamps 1-19

Table 1-5. Concurrency Limits on Utility Operations 1-20

Table 2-1. Maximum Key Sizes Available 2-116

Table 2-2. Maximum Row Sizes Available 2-127

Table 2-3. SG Table for IDENTITY COLUMN 2-130

Table 2-4. EXPLAIN Statement Options 2-209

Table 2-5. Fields of OPTIONS 'm' Output 2-210

Table 2-6. Cost Factors of DETAIL_COST column 2-211

Table 2-7. Rules for copying SG Table data 2-228

Table 3-1. GET DESCRIPTOR Items 3-48

Table 3-2. Descriptor Area Data Type Declarations 3-51

Table 3-3. GET DIAGNOSTICS Statement Items 3-57

Table 3-4. GET DIAGNOSTICS Condition Items 3-57

Table 3-5. SET DESCRIPTOR Descriptor Area Items 3-80

Table 6-1. Construction of the Clustering Key 6-60

Table 6-2. Clustering Key for Indexes 6-61

Table 8-1. Input and Output Parameters for FEATURE_VERSION_INFO 8-76

Table 8-2. One-to-One Uppercase and Titlecase to Lowercase Mappings 8-94

Table 8-3. Input and Output Parameters for RELATEDNESS 8-144

Table 8-4. One-to-One UCS2 Mappings 8-194

Table 8-5. Two-Character UCS2 Mapping 8-197

Table 8-6. Three-Character UCS2 Mapping 8-199

Table 8-7. Input and Output Parameters for VERSION_INFO 8-204

Table 8-8. Values for the E_TYPE and E_VALUE Parameters 8-205
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xlvii

Contents
Table 8-9. VERSION Output Column Values E_TYPE and E_VALUE
Parameters 8-205

Table B-1. Reserved SQL/MX and SQL/MP Identifiers B-1
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xlviii

What’s New in This Manual

Manual Information
HP NonStop SQL/MX Reference Manual

Abstract

This manual describes the syntax of SQL language elements—data types,
expressions, functions, identifiers, literals, and predicates—and SQL statements of HP
NonStop™ SQL/MX, the NonStop relational database management system based on
ANSI SQL:1999. The manual also includes embedded SQL statements and MXCI
commands.

Product Version

NonStop SQL/MX Release 3.2.1

Supported Release Version Updates (RVUs)

This publication supports J06.14 and all subsequent J-series RVUs and H06.25 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Document History

Part Number Published

691117-004 November 2013

Part Number Product Version Published

640322-001 NonStop SQL/MX Release 3.0 February 2011

663850-001 NonStop SQL/MX Release 3.1 October 2011

691117-001 NonStop SQL/MX Release 3.2 August 2012

691117-002 NonStop SQL/MX Release 3.2.1 February 2013

691117-003 NonStop SQL/MX Release 3.2.1 July 2013

691117-004 NonStop SQL/MX Release 3.2.1 November 2013
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
xlix

What’s New in This Manual New and Changed Information
New and Changed Information

Changes to 691117-004 manual:

Changed the existing content for MXCI Command on page 4-55.

Changes to 691117-003 manual:

Moved the following utilities from the chapter, SQL/MX Utilities on page 5-1 to the
chapter, SQL/MX Statements on page 2-1:

 DOWNGRADE Utility on page 2-175

 DUP Utility on page 2-194

 FASTCOPY Utility on page 2-226

 MODIFY Utility on page 2-271

 POPULATE INDEX Utility on page 2-304

 PURGEDATA Utility on page 2-307

 RECOVER Utility on page 2-311

 UPGRADE Utility on page 2-412

Updated the MODIFY utility syntax in Manage Partitions of Range Partitioned Tables
and Indexes on page 2-274 and Manage Partitions of Hash Partitioned Tables and
Indexes on page 2-281

Updated Considerations for GIVE SCHEMA on page 2-239

Changes to 691117-002 manual:

Added a note for 64-bit application support in SQL Descriptor Area Data Type
Declarations of GET DESCRIPTOR on page 3-51 and

SQL Item Descriptor Area of SET DESCRIPTOR on page 3-79

Added the following for sequence generator support:

ALTER SEQUENCE Statement on page 2-13

CREATE SEQUENCE Statement on page 2-100

 DROP SEQUENCE Statement on page 2-185

Gaps in sequence generator values on page 2-135

 Managing a Sequence Generator on page 2-288

Offline Partition Management for Sequence Generators on page 2-292

Sequence Generators on page 6-110
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
l

What’s New in This Manual Changes to 691117-001 manual:
 Pseudocolumns on page 6-105

Updated the following for sequence generator support:

GRANT Statement on page 2-240

REVOKE Statement on page 2-317

GIVE Object Statement on page 2-237

Considerations for SHOWDDL on page 4-85

CLEANUP Operation on page 5-3

FIXUP Operation on page 5-8

Renaming Guardian Location of Partitions of Tables, Indexes or Sequence Generators
on page 2-289

SEQUENCE_GENERATORS Table on page 10-28

Changes to 691117-001 manual:

 Statements:

 Updated REVOKE Statement on page 2-317.

 Updated ALTER VIEW Statement on page 2-49.

 Updated CREATE TABLE Statement on page 2-107.

 Updated CREATE VIEW Statement on page 2-154 and CREATE TRIGGER
Statement on page 2-144.

 Updated DELETE Statement on page 2-162.

 Updated DROP SCHEMA Statement on page 2-183.

 Updated INSERT Statement on page 2-252.

 Updated UPDATE Statement on page 2-385.

 Embedded-only SQL/MX statements:

 GET DIAGNOSTICS Statement on page 3-55.

 MXCI Commands

 Updated SHOWDDL Command on page 4-83.

 Added SHOWSTATS Command on page 4-112.

 Utilities:

 Added CLEANUP Operation on page 5-3.

 Updated DOWNGRADE Utility on page 2-175.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
li

What’s New in This Manual Changes to 691117-001 manual:
 Updated MODIFY Utility on page 2-271.

 Updated FIXUP Operation on page 5-8.

 Updated FIXRCB Operation on page 5-7.

 Updated PURGEDATA Utility on page 2-307.

 Updated UPGRADE Utility on page 2-412.

 Updated VERIFY Operation on page 5-79.

 Functions and Expressions:

 DATE_ADD Function on page 8-44.

 DATEADD Function on page 8-44.

 DATE_SUB Function on page 8-48.

 DATEDIFF Function on page 8-46.

 Metadata Tables:

 Updated the SCHEMATA Table on page 10-10

 Updated the OBJECTS Table on page 10-22.

 Updated SEQUENCE_GENERATORS Table on page 10-28.

 Updated VWS Table on page 10-35.

 Added the CQD DDL_VIEW_SIMILARITY_CHECK to Query Optimization and
Performance on page 10-66
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
lii

About This Manual
This manual describes the syntax of SQL language elements—data types,
expressions, functions, identifiers, literals, and predicates—and SQL statements of
NonStop SQL/MX, the NonStop relational database management system based on
ANSI SQL:1999. The manual also includes embedded SQL statements and MXCI
commands.

Audience
This manual is intended for database administrators and application programmers who
are using NonStop SQL/MX through MXCI—the SQL/MX conversational interface—or
as embedded SQL, ODBC, or JDBC applications to access databases. To use this
product, the reader must be familiar with Structured Query Language (SQL) and with
American National Standard Database Language SQL:1999.

Organization

Note. In this manual, SQL language elements, statements, and clauses within statements that
are extensions to the ANSI SQL:1999 standard are noted as SQL/MX extensions.

Section Description

Section 1, Introduction Introduces NonStop SQL/MX and covers topics such as
entering statements and commands in MXCI, database security,
data consistency and integrity, transaction management,
querying SQL/MP databases, and ANSI compliance and
SQL/MX extensions.

Section 2, SQL/MX
Statements

Describes the SQL statements supported by NonStop SQL/MX.

Section 3, Embedded-
Only SQL/MX Statements

Describes the SQL statements that you embed only in
programs.

Section 4, MXCI
Commands

Describes the MXCI commands that you run only in the
SQL/MX conversational interface (MXCI).

Section 5, SQL/MX
Utilities

Describes utilities that perform such tasks as duplicating files,
importing data, migrating metadata, and populating indexes.

Section 6, SQL/MX
Language Elements

Describes parts of the language, such as database objects, data
types, expressions, identifiers, literals, and predicates, which
occur within the syntax of SQL/MX statements and MXCI
commands.

Section 7, SQL/MX
Clauses

Describes clauses used by SQL/MX statements.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
liii

About This Manual Related Documentation
Related Documentation
This manual is part of the HP NonStop SQL/MX library of manuals, which includes:

Section 9, SQL/MX File
Attributes

Describes SQL/MX file attributes.

Section 8, SQL/MX
Functions and
Expressions

Describes specific functions and expressions that you can use
in SQL/MX statements.

Section 10, Metadata
Tables

Describes the user metadata tables in NonStop SQL/MX,
including system defaults.

Appendix A, Quick
Reference

Is a quick reference to commands, statements, and utilities.

Appendix B, Reserved
Words

Lists the words that are reserved in NonStop SQL/MX.

Appendix C, Limits Describes limits in NonStop SQL/MX.

Appendix D, Sample
Database

Describes the schema and tables of the sample database,
which is the basis for many examples in this manual and other
SQL/MX manuals.

Appendix E, Standard
SQL and SQL/MX

Describes how NonStop SQL/MX conforms to the ANSI
standard.

Introductory Guides

SQL/MX Comparison Guide
for SQL/MP Users

Describes SQL differences between NonStop
SQL/MP and NonStop SQL/MX.

SQL/MX Quick Start Describes basic techniques for using SQL in the
SQL/MX conversational interface (MXCI). Includes
information about installing the sample database.

Reference Manuals

SQL/MX Reference Manual Describes the syntax of SQL/MX statements, MXCI
commands, functions, and other SQL/MX language
elements.

SQL/MX Messages Manual Describes SQL/MX messages.

SQL/MX Glossary Defines SQL/MX terminology.

Section Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
liv

About This Manual Related Documentation
Installation Guides

SQL/MX Installation and
Upgrade Guide

Describes how to plan for, install, create, and
upgrade an SQL/MX database. Explains how to
install and upgrade to a higher version of SQL/MX.

NSM/web Installation Guide Describes how to install NSM/web and troubleshoot
NSM/web installations.

Connectivity Manuals

SQL/MX Connectivity
Service Manual

Describes how to install and manage the
HP NonStop SQL/MX Connectivity Service
(MXCS), which enables applications developed for
the Microsoft Open Database Connectivity (ODBC)
application programming interface (API) and other
connectivity APIs to use NonStop SQL/MX.

SQL/MX Connectivity
Service Administrative
Command Reference

Describes the SQL/MX administrative command
library (MACL) available with the SQL/MX
conversational interface (MXCI).

ODBC/MX Driver for
Windows

Describes how to install and configure HP NonStop
ODBC/MX for Microsoft Windows, which enables
applications developed for the ODBC API to use
NonStop SQL/MX.

Migration Guides

SQL/MX Installation and
Upgrade Guide

Describes how to plan for, install, create, and
upgrade an SQL/MX database. Explains how to
install and upgrade to a higher version of SQL/MX.

HP NonStop SQL/MP to
SQL/MX Database and
Application Migration Guide

Describes how to migrate databases and
applications from SQL/MP to SQL/MX.

NonStop NS-Series
Database Migration Guide

Describes how to migrate NonStop SQL/MX,
NonStop SQL/MP, and Enscribe databases and
applications to HP Integrity NonStop NS-series
systems.

Data Management Guides

SQL/MX Management
Manual

Describes how to manage an SQL/MX database.

SQL/MX Data Mining Guide Describes the SQL/MX data structures and
operations to carry out the knowledge-discovery
process.

SQL/MX Report Writer Guide Describes how to produce formatted reports using
data from an SQL/MX database.

DataLoader/MX Reference
Manual

Describes the features and functions of the
DataLoader/MX product, a tool to load SQL/MX
databases.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
lv

About This Manual Related Documentation
The NSM/web, SQL/MX Database Manager, and Visual Query Planner help systems
are accessible from their respective applications. You can download the Reference,
Messages, and Glossary online help from the HP Software Depot at
http://www.software.hp.com. For more information about downloading the online help,
see the SQL/MX Release 3.2 Installation and Upgrade Guide.

These manuals are part of the SQL/MP library of manuals and are essential
references. For more information about SQL/MP Data Definition Language (DDL) and
SQL/MP installation and management, see the following SQL/MP manuals:

Application Development Guides

SQL/MX Programming
Manual for C and COBOL

Describes how to embed SQL/MX statements in
ANSI C and COBOL programs.

SQL/MX Query Guide Describes how to understand query execution
plans and write optimal queries for an SQL/MX
database.

SQL/MX Queuing and
Publish/Subscribe Services

Describes how NonStop SQL/MX integrates
transactional queuing and publish or subscribe
services into its database infrastructure.

SQL/MX Guide to Stored
Procedures in Java

Describes how to use stored procedures that are
written in Java within NonStop SQL/MX.

Online Help

Reference Help Overview and reference entries from the SQL/MX
Reference Manual.

Messages Help Individual messages grouped by source from the
SQL/MX Messages Manual.

Glossary Help Terms and definitions from the SQL/MX Glossary.

NSM/web Help Context-sensitive help topics that describe how to
use the NSM/web management tool.

Visual Query Planner Help Context-sensitive help topics that describe how to
use the Visual Query Planner graphical user
interface.

SQL/MX Database Manager
Help

Contents and reference entries from the SQL/MX
Database Manager User Guide.

Related SQL/MP Manuals

SQL/MP Reference Manual Describes the SQL/MP language elements,
expressions, predicates, functions, and statements.

SQL/MP Installation and
Management Guide

Describes how to plan, install, create, and manage
an SQL/MP database. Describes installation and
management commands and SQL/MP catalogs
and files.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
lvi

About This Manual Notation Conventions
Notation Conventions

Icons

These icons appear in the left margins of this manual. Each icon represents a specific
context of the SQL/MX syntax and semantics:

The symbol represents the end of context-specific information in one or more
paragraphs or in a syntax diagram.

Hypertext Links

A blue underline is used to indicate a hypertext link within text. Clicking a passage of
text with a blue underline takes you to the location described. For example, this
requirement is described under Backup DAM Volumes and Physical Disk Drives on
page 3-2.

General Syntax Notation

The following list summarizes the notation conventions used for syntax presentation in
this manual:

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

Designates information that is specific to embedding SQL/MX
statements in programs. This information applies to any of the
supported programming languages.

Designates information that is specific to embedding SQL/MX
statements in C or COBOL programs.

Designates information that is specific to embedding SQL/MX
statements in Java programs.

Designates information that is specific to the SQL/MX
conversational interface (MXCI).

Designates information that is specific to queuing and publish or
subscribe services.

Embed

C/COBOL

Java

MXCI

Pub/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
lvii

About This Manual General Syntax Notation
computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Enter these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]
K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
lviii

About This Manual General Syntax Notation
Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example,
there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
lix

About This Manual Change Bar Notation
Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
lx

1 Introduction

NonStop SQL/MX allows you to use SQL/MX DML statements, which comply closely to
ANSI SQL:1999, to access SQL/MP and SQL/MX databases.

This introduction describes:

 SQL/MX Language on page 1-1

 MXCI SQL/MX Conversational Interface on page 1-2

 Security on page 1-5

 Data Consistency and Access Options on page 1-8

 Database Integrity and Locking on page 1-11

 Transaction Management on page 1-13

 Partition Management on page 1-25

 Internationalization on page 1-25

 Using NonStop SQL/MX to Access SQL/MP Databases on page 1-25

 ANSI Compliance and SQL/MX Extensions on page 1-34

 SQL/MX Error Messages on page 1-37

Other sections of this manual describe the syntax and semantics of individual
statements, commands, and language elements.

SQL/MX Language
The SQL/MX language consists of statements, commands, and other language
elements that you can use to access SQL/MP and SQL/MX databases. For more
information on the SQL/MP language, see the SQL/MP Reference Manual.

You can run SQL/MX statements from the SQL/MX conversational interface, MXCI, or
embed SQL/MX statements in programs written in C, C++, COBOL, or Java. For more
information on MXCI, see MXCI SQL/MX Conversational Interface on page 1-2. For
descriptions of individual SQL/MX statements, see Section 2, SQL/MX Statements.

Some SQL/MX statements can be used only within embedded SQL programs and
cannot be run in an MXCI session. For descriptions of these statements, see
Section 3, Embedded-Only SQL/MX Statements. For more information on embedding
SQL/MX statements in programs, see the SQL/MX Programming Guide for C and
COBOL.

MXCI commands are SQL/MX extensions that typically affect attributes of an MXCI
session. These commands can be run only in MXCI, with a few exceptions. For more
information, see Section 4, MXCI Commands.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-1

Introduction MXCI SQL/MX Conversational Interface
SQL/MX language elements are part of statements and commands and include data
types, expressions, functions, identifiers, literals, and predicates. For more information,
see Section 6, SQL/MX Language Elements. For more information on specific
functions and expressions, see Section 8, SQL/MX Functions and Expressions.

User metadata tables, such as the SYSTEM_DEFAULTS table, histogram tables, and
other tables, contain SQL/MX metadata that the user rather than the system maintains.
For more information, see Section 10, Metadata Tables.

MXCI SQL/MX Conversational Interface
MXCI, the SQL/MX conversational interface, is useful for running ad hoc queries and
for qualitatively comparing the relative efficiency of various queries.

MXCI Session

You start MXCI by using the mxci command within the OSS environment. For
example, the commands you enter and the MXCI banner might look like this:

$DATA06 TEMP 19> osh
/G/SYSTEM/SYSTEM: mxci
Hewlett-Packard NonStop(TM) SQL/MX Conversational Interface 2.3
(c) Copyright 2007 Hewlett-Packard Development Company, LP.
>>

Note. OSS is case-sensitive. You must enter the MXCI command in lower case.

During a session, MXCI prompts you to enter SQL/MX statements or MXCI commands
with one of these prompts:

You end an MXCI session with the EXIT command. See EXIT Command on
page 4-29.

After exit, the MXCI returns completion status for the session as follows:

0 - All statements executed without any errors or warnings.

1 - One or more statements in the MXCI session returned warnings.

2 - One or more statements in the MXCI session returned errors.

>> The standard prompt. Enter any MXCI command, Report Writer command,
or SQL/MX statement.

+> The continuation prompt. Continue the MXCI command or SQL/MX
statement from the previous line or enter a semicolon to end it.

.. The FC command prompt. See FC Command on page 4-30.

S> The Report Writer select-in-progress prompt, available only in Report
Writer mode. For more information, see the Report Writer Guide.

CS> The MX Connectivity Services prompt, available only in MXCS mode.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-2

Introduction Session Attributes
Session Attributes

Within an MXCI session, the tasks you perform are affected by these attributes of the
session:

Entering a Command

Each statement or command entered through MXCI must be terminated by a
semicolon (;). You can include several statements or commands on the same line
provided that each one is terminated by a semicolon.

Case Sensitivity

In MXCI, statements and commands can be in uppercase, lowercase, or mixed case
letters. All parts of statements and commands are case-insensitive except for parts that
you enclose in single- or double-quotes.

Breaking the Command Line

You can continue any statement or command over multiple lines, breaking that
statement or command at any point except within a word, a numeric literal, or a
multicharacter operator (for example, >=). When you break a string literal, you must
use the concatenation operator (||). A semicolon terminates a statement or command
that is broken over several lines.

The maximum length of a MXCI statement in NonStop SQL/MX is 4096 characters,
without any new lines or embedded carriage returns.

Parameters Parameter values set by the SET PARAM command to
substitute for parameter names when a statement executes

Prepared Statements Statements compiled for execution later in the session

Transactions Transaction modes set by the SET TRANSACTION statement
for the next transaction in the session

NAMETYPE value Attribute value ANSI or NSK indicates whether partially-
qualified object names in SQL statements executed in the
session are logical names (ANSI) or Guardian physical names
(NSK).

Default Names Default logical catalog and schema names for unqualified
names in preparable statements and set by the SET CATALOG
and SET SCHEMA statements respectively.

Default physical volume and subvolume names for unqualified
names in preparable statements and set by the SET MPLOC
statement.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-3

Introduction SQL Comments
SQL Comments

You can include comments in MXCI input lines. Comments are useful for describing a
statement or command. You can also use comments to disable specific statements or
commands without removing them from the source code, such as for debugging
purposes.

To indicate that an MXCI line is a comment, precede the comment with two hyphens
(--):

-- comment-text

All text between two hyphens and the end of the physical line is a comment. You can
include a comment within a statement or command (but not within a literal) if you use
more than one physical line to enter the statement or command.

If you include comments in an MXCI command file, MXCI prints the comments along
with the commands as it executes the file.

Examples of SQL Comments

 Show comments and SQL statements from an MXCI command file—and the
output from the SQL statements—as displayed by MXCI when the file is executed:

-- This example shows a use of the AVG function
SELECT AVG (salary) FROM persnl.employee;
(EXPR)

 49441.52

--- 1 row(s) selected.

-- This example shows a use of the DISTINCT clause.
SELECT AVG (DISTINCT SALARY)
FROM PERSNL.EMPLOYEE;
(EXPR)

 53609.89

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-4

Introduction Transactions in MXCI
Transactions in MXCI

A transaction can be user-defined or system-defined. If you attempt to exit an MXCI
session when either type of transaction is active, MXCI prompts you to specify whether
to commit or roll back the work of the transaction as follows:

There is an active transaction. Do you want to commit the
transaction?
 Y to commit transaction
 N to abort transaction
 Any other key to resume:

During an MXCI session, if the input is read from a file rather than from the keyboard
and a transaction is active when MXCI reaches the end of the input file, that
transaction is rolled back. You must issue a COMMIT WORK or ROLLBACK WORK
explicitly within the command file (after the DML statements).

Query Interruption and Termination in MXCI

In MXCI, you can interrupt and terminate a statement or command by pressing the
MXCI break key. The MXCI break key can be either Ctrl-c, Ctrl-Break, or the
OutsideView Break icon, depending on your interface.

After you press the MXCI break key, the statement or command terminates, and MXCI
returns this message and prompts you to enter another statement or command:

***WARNING[15033] Break was received.

>>

When you use the MXCI break key to terminate a transaction, the transaction might or
might not be rolled back. Execute the SHOW SESSION command to determine the
status of the transaction.

Security
Access permissions on SQL/MP objects are maintained by the Guardian environment.
Each object has associated security values that determine who can read, write to,
execute, and purge the object (“RWEP”). These security values are used by NonStop
SQL/MX to authorize access.

Access to SQL/MX objects follows the rules of the ANSI/ISO/IEC 9075:1999 SQL
standard (SQL:1999). SQL:1999 uses authorization IDs to identify users during the
processing of SQL statements. An SQL/MX authorization ID is either a valid Guardian
user name, enclosed in double quotes or the special authorization ID, PUBLIC.

SQL:1999 specifies two special authorization IDs:

 PUBLIC - the set of all authorization IDs known to the network at the present and
all future times.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-5

Introduction The Super ID
 SYSTEM - the implicit grantor of privileges to the owners of objects. You cannot
specify SYSTEM on any DDL statement. It is an internal ID, mentioned here only
because it may be visible from a query of the metadata.

The Super ID

In SQL:1999, the creator of an object is the owner of the object. In addition, NonStop
SQL/MX enables the super ID, corresponding to Guardian user-id (255,255), to act as
the owner of any object on a given node.

The super ID can create objects in a schema owned by any user. However, when the
super ID creates an object in a schema owned by some other user, the actual owner of
that object is that user, not the super ID. In addition to creating objects, the super ID
can grant or revoke privileges on objects on behalf of users who have the privilege of
performing this grant or revoke action.

The super ID can perform DDL operations on any object on behalf of the object’s
owner.

Guardian User ID

Each user authorized to log on to a node is identified by a Guardian user ID that
consists of a group and user identification. The user ID has one of these forms:

group_number,user_number or
group_name.user_name

Guardian Super ID

Each node has one special user ID called the super ID that has Guardian group 255
and user number 255. The super ID has one of these forms:

255,255 or
SUPER.SUPER

The Super ID can act as the owner of any Guardian file on the node and any object
within the domain of the SQL/MX system catalog on that node.

Security Administrator

A SQL/MX Security Administrator (SA) is a Guardian user ID designated to hold
security administrator privileges by a GRANT SECURITY_ADMIN statement. Security
administrator privileges allow a security administrator to GRANT and REVOKE object
privileges to other users without having access to the objects themselves and to
change the ownership of any SQL/MX object. The domain of a Security Administrator's
privileges is all the objects within the SQL/MX system catalog within which that user is
designated a Security Administrator (that is granted SECURITY_ADMIN).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-6

Introduction Security Administrator's Group
Security Administrator's Group

The Security Administrator's Group (SAG) is the set of currently defined security
administrators within the domain of a SQL/MX system catalog. The set might be empty.

With Grant Option

With Grant Option (WGO) is specified by SQL:1999 and refers to the right to grant a
privilege to another user and also grant WGO with that privilege. All inherent privileges
held by the owner of an object are held WGO. The With Grant Option must be explicitly
included in a GRANT statement to convey the WGO privilege, otherwise by default, the
grantee(s) of the privilege may not grant that privilege to other users.

Owner-Derived Grant

An owner-derived grant is an access privilege conveyed to a user through a privilege
held WGO that can be traced back to the owner of an object. Owner-derived grants
include the inherent privileges held by object owners, grants from the owner to other
users, subsequent grants made by those users, and so on. The set of these grants can
be visualized as hierarchies of grants rooted in each inherent privilege of the object
owners (the owner-derived hierarchy of grants).

Derived Privilege

A derived privilege is a privilege held as a result of an owner-derived grant.

Derived WGO

Derived WGO refers to a privilege held as a result of an owner-derived grant With
Grant Option.

Security Administrator Grant

A security administrator grant is an access privilege conveyed to a user that is distinct
from an owner-derived grant and is therefore outside the owner-derived hierarchy of
grants.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-7

Introduction Data Consistency and Access Options
Data Consistency and Access Options
Access options for DML statements affect the consistency of the data that your query
accesses.

For any DML statement, you specify access options by using the FOR option
ACCESS clause and, for a SELECT statement, by using this same clause, you can also
specify access options for individual tables referenced in the FROM clause.

The possible settings for option in a DML statement are:

The SQL/MX default access option for DML statements is READ COMMITTED.
However, you can set your system default for access options by specifying entries in
the SYSTEM_DEFAULTS table. See ISOLATION_LEVEL on page 10-56.

The implementation for REPEATABLE READ and SERIALIZABLE access options is
equivalent. This entry uses SERIALIZABLE for purposes of illustration.

For related information about transactions, see Transaction Isolation Levels on
page 1-23.

SQL/MP Considerations

READ COMMITTED Specifies that the data accessed by the DML statement
must be from committed rows.

READ UNCOMMITTED Specifies that the data accessed by the SELECT statement
need not be from committed rows. The BROWSE and
READ UNCOMMITTED settings are equivalent.

SERIALIZABLE or
REPEATABLE READ

Specifies that the DML statement and any concurrent
process (accessing the same data) execute as if the
statement and the other process had run serially rather
than concurrently.

SKIP CONFLICT Allows transactions to skip rows locked in a conflicting
mode by another transaction. SKIP CONFLICT cannot be
used in a SET TRANSACTION statement.

STABLE Specifies that the row being accessed by the SELECT
statement is locked while it is processed, but concurrent
use of the database is allowed. STABLE is an ANSI
extension.

Note. If your SQL/MP application uses the BROWSE, STABLE, and REPEATABLE keywords,
NonStop SQL/MX accepts these keywords as synonyms for statement-level access options
READ UNCOMMITTED, STABLE, and SERIALIZABLE (or REPEATABLE READ), respectively.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-8

Introduction READ UNCOMMITTED
READ UNCOMMITTED

This option enables you to access locked data. READ UNCOMMITTED is not available
for DML statements that modify the database. It is available only for a SELECT
statement.

READ UNCOMMITTED provides the lowest level of data consistency. A SELECT
statement executing with this access option is allowed to:

 Read data modified by a concurrent process (sometimes referred to as dirty reads)

 Read different committed values for the same item at different times or find that the
item no longer exists (sometimes referred to as nonrepeatable reads)

 Read different sets of committed values satisfying the same predicate at different
times (sometimes referred to as phantoms)

READ COMMITTED

This option allows you to access only committed data.

The implementation requires that a lock can be acquired on the data requested by the
DML statement—but does not actually lock the data, thereby reducing lock request
conflicts. If a lock cannot be granted (implying that the row contains uncommitted
data), the DML statement request waits until the lock in place is released.

READ COMMITTED provides the next higher level of data consistency (compared to
READ UNCOMMITTED). A statement executing with this access option does not allow
dirty reads, but both nonrepeatable reads and phantoms are possible.

READ COMMITTED provides sufficient consistency for any process that does not
require a repeatable read capability.

SERIALIZABLE or REPEATABLE READ

This option locks all data accessed through the DML statement and holds the locks on
data in audited tables until the end of any containing transaction.

SERIALIZABLE (or REPEATABLE READ) provides the highest level of data
consistency. A statement executing with this access option does not allow dirty reads,
nonrepeatable reads, or phantoms.

SKIP CONFLICT

This option allows transactions to skip rows locked in a conflicting mode by another
transaction. Do not use SKIP CONFLICT in a SET TRANSACTION statement. For
more information on the skip conflict access method, see the SQL/MX Queuing and
Publish/Subscribe Services manual.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-9

Introduction STABLE
STABLE

For nonaudited tables, access becomes READ COMMITTED.

This option locks all data accessed through the DML statement but releases locks on
unmodified data as soon as possible, which enables concurrent use of the database.
STABLE access locks modified data in audited tables until the end of the transaction.
STABLE is not available for DML statements that modify the database. It is available
only for a SELECT statement.

In host programs that use cursors, STABLE locks an unmodified row only when the
row is in the current position and releases the lock at the next FETCH that fills the
buffer.

You can control the number of rows read into this buffer with the
MAX_ROWS_LOCKED_FOR_STABLE_ACCESS system default attribute. The default
is one row, and the maximum number of rows depends on the size of the buffer. To
increase concurrency, you can decrease this value so that more messages are used to
return the same amount of data.

CLOSE cursor-name releases the lock from the last FETCH.

STABLE is available only with updatable cursors. If a SELECT statement cannot be
completed, access becomes READ COMMITTED.

For modified rows in audited tables, STABLE access uses exclusive locks held by the
TMF transaction that are released only when the entire transaction ends.

STABLE access provides sufficient consistency for any process that does not require a
repeatable read capability.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-10

Introduction Database Integrity and Locking
Database Integrity and Locking
To protect the integrity of the database, NonStop SQL/MX provides locks on data. For
example, NonStop SQL/MX locks a row when an executing process (either MXCI or a
host program) accesses a row to modify it. The lock ensures that no other process
simultaneously modifies the same row.

Default locking normally protects data but reduces concurrency. If your application has
problems with lock contention, you might want to use options that control the
characteristics of locks.

Locks have these characteristics:

 Lock Duration (short or long)
 Lock Granularity (table lock, partition lock, subset of rows, or single row)
 Lock Mode (exclusive, shared, no lock)
 Lock Holder (transaction or process)

Lock Duration

Lock duration controls how long a lock is held. You can specify lock duration for only
the read portion of a statement. All write locks are held until the end of the transaction
(for audited tables) or until the program releases the locks (for nonaudited tables).

You can use the LOCK TABLE statement to lock a table. How long the lock is held
depends on whether the locked table is audited or nonaudited.

Lock duration is also affected by whether you choose the SERIALIZABLE access
option for DML statements. This access option causes the maximum lock duration.

Lock Granularity

Lock granularity controls the number of rows affected by a single lock. The level of
granularity can be a table, a partition, a subset of rows, or a single row.

You can control locks for the entire table with LOCK TABLE. Otherwise, NonStop
SQL/MX determines the granularity by considering the access option you specify, the
table size and definition, and the estimated percentage of rows the query will access.

NonStop SQL/MX can automatically increase the granularity of locks for a particular
transaction, depending on processing requirements. This increase in granularity is
referred to as lock escalation. If a process holds many row locks on the same partition
of a partitioned table, NonStop SQL/MX might escalate the row locks to a partition lock.
For a nonpartitioned table, a partition lock is a table lock.

Lock escalation is affected by the value of MaxLocksPerTCB. If an application acquires
locks on more than 10% of this value, or a default of 500, since MaxLocksPerTCB's
default is 5000 for the volume, DP2 attempts to escalate to a table lock, even though
these rows may be locked only on a single partition of the table. If there are other
transactions running concurrently with locks on the table, DP2 may not be able to
escalate to a table lock, but it will keep trying.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-11

Introduction Lock Mode
You can prevent this by setting the TABLELOCK default to OFF. However, if the
number of rows locked reaches the value of MaxLocksPerTCB, that transaction will not
be able to obtain any more locks, and may be aborted. Depending on the operation,
some updates must be backed out which can seriously affect the application's
performance.

You can control the number of locks that a transaction can hold on a specific volume
and lock escalation by using SCF to change MaxLocksPerTCB to a maximum of
100,000. Use this command:

SCF ALTER $volume, MAXLOCKSPERTCB n

Lock Mode

Lock mode controls access to locked data. You can specify lock mode only for rows
that are read.

SHARE lock mode allows multiple users to lock and read the same data. EXCLUSIVE
lock mode limits access to locked data to the lock holder and to other users who
specify READ UNCOMMITTED (but not READ COMMITTED or SERIALIZABLE)
access. Lock modes are the same when you choose READ COMMITTED or
SERIALIZABLE access.

Lock mode is sometimes determined by NonStop SQL/MX. NonStop SQL/MX ensures
that an exclusive lock is in effect for write operations and usually acquires a shared
lock for operations that access data without modifying it. You choose lock mode in
these instances:

 On the LOCK TABLE statement, you can choose either EXCLUSIVE or SHARE.

 On the SELECT statement, you can specify IN EXCLUSIVE MODE or IN SHARE
MODE.

Lock Holder

The lock holder of an object depends on whether the object is audited or nonaudited:

 Locks on audited objects are held by the transaction in which the request to access
the data was made.

 Locks on nonaudited objects are held by the process that opens the object: either
MXCI or a host program.

Only the lock holder can release a lock:

 A transaction releases the locks it holds at the end of the transaction in either of
these cases:

 Locks on data read using SERIALIZABLE access
 Locks on rows updated
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-12

Introduction Transaction Management
 A process can hold a lock over the duration of one (or more) transactions, or the
process can release the lock before the transaction completes. A process releases
the locks it holds by issuing statements that affect the locks.

Stopping or abnormal termination of a process frees any locks the process holds on
nonaudited tables.

Transaction Management
A transaction (a set of database changes that must be completed as a group) is the
basic recoverable unit in case of a failure or transaction interruption. Transactions can
be defined during an MXCI session or in a host program. The typical order of events is:

1. Transaction is started.
2. Database changes are made.
3. Transaction is committed.

If, however, the changes cannot be made or if you do not want to complete the
transaction, you can abort the transaction so that the database is rolled back to its
original state.

All SQL/MX tables must be audited, and although SQL/MP tables can be nonaudited,
HP recommends that they be audited. Transactions are managed by the HP
NonStop Transaction Management Facility (TMF). This product simplifies the task of
maintaining data consistency for databases being updated by concurrent transactions.
For more information on TMF, see the Transaction Management Facility (TMF)
Introduction.

Any transaction is subject to TMF's two-hour limit on audit trails. TMF will automatically
abort a query that runs longer than two hours. You can change this limit to a maximum
of 5965 hours (about 8 months) or set it to zero. In that case, TMF will never perform
an AUTOABORT. This limit can help protect your application from runaway queries or
transactions.

In spite of the AUTOABORT setting, TMF still aborts any transaction or query that pins
the oldest MAT (master audit file) if the file is pinned because of currently active
transactions, and if audit information is filling 45% or more of the MAT's capacity.

Choose this setting with care. Increasing TMF limits degrades system performance
and increases disk space usage for the audit trail.

If you are running a business intelligence system, base the setting on how long you
expect your longest query to run. If you are running an online transaction environment,
base the setting on the longest running update transaction that you plan to have. It is
preferable to have short running transactions or batch updates with frequent COMMIT
WORK statements.

This subsection discusses these considerations for transaction management:

 Statement Atomicity on page 1-14
 User-Defined and System-Defined Transactions on page 1-15
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-13

Introduction Statement Atomicity
 Rules for DML Statements on page 1-16
 Effect of AUTOCOMMIT Option on page 1-16
 Concurrency on page 1-16
 Transaction Access Modes on page 1-23
 Transaction Isolation Levels on page 1-23

Statement Atomicity

To maintain database consistency, transactions must be controlled so that they either
complete successfully or are aborted. SQL/MX Release 1.8 automatically aborted
transactions if an error occurred while performing an SQL statement. SQL/MX Release
2.x by default does not automatically abort transactions following an error, in most
situations.

SQL/MX Release 2.x guarantees that an individual SQL statement within a transaction
either completes successfully or has no effect on the database. To retain the behavior
of SQL/MX Release 1.8, use the UPD_ABORT_ON_ERROR default. For more
information, see Statement Atomicity on page 10-78.

When an INSERT, UPDATE, or DELETE statement encounters an error, that
transaction is not aborted, but continues. The effect of the SQL/MX statement is rolled
back, so the statement has no effect on the database, but the transaction is not
aborted. This functionality is provided through an internal feature called savepoints.

Statement atomicity occurs if these conditions are met:

 The UPD_ABORT_ON_ERROR default must be set to OFF (the default.)

 The underlying table must not have referential integrity constraints, or triggers.

 The SQL query is not:

 A publish/subscribe query with stream access
 A CALL statement
 A holdable cursor
 A SELECT statement with an embedded UPDATE or DELETE
 A DDL statement
 An UPDATE STATISTICS statement

 The query plan does not choose VSBB inserts or Executor Server Process (ESP)
parallelism.

 The AUTOCOMMIT option must be set to ON.

If these conditions are not met, the transaction is aborted by NonStop SQL/MX if a
failure occurs. This behavior occurs for all INSERT, UPDATE, or DELETE statements
in SQL/MX prior to SQL/MX Release 2.x.

When NonStop SQL/MX attempts to perform an insert, update, or delete transaction
against a single row, it does not use savepoints. If the operation fails, NonStop
SQL/MX returns an error. Because no change was made to the database, nothing is
rolled back.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-14

Introduction User-Defined and System-Defined Transactions
When NonStop SQL/MX attempts to insert, update, or delete multiple rows, it uses
savepoints and if it encounters an error during the operation it issues a warning, rolls
back that statement, and continues.

For more information on the UPD_ABORT_ON_ERROR default, see Statement
Atomicity on page 10-78.

If the default INSERT_VSBB is set to USER, NonStop SQL/MX will not use statement
atomicity. Unless you are inserting only a few records you should not disable
INSERT_VSBB to use statement atomicity because performance will be affected.
Perform UPDATE STATISTICS on the tables so that row estimates are correct.

To see what rollback mode NonStop SQL/MX is choosing, you can prepare the query,
then perform EXPLAIN.

explain options 'f' my_query;

The OPT column displays token upd_action_on_error: on_rollback. A value of “x”
means that the transaction will be rolled back. Any other value means the transaction
will be aborted. For details about the output options, see EXPLAIN Statement on
page 2-208, INSERT_VSBB on page 10-75, and UPD_ABORT_ON_ERROR on
page 10-78.

For more information about the differences in auto-abort behavior between
NonStop SQL/MP and NonStop SQL/MX, see the SQL/MX Comparison Guide for
SQL/MP Users.

User-Defined and System-Defined Transactions

User-Defined Transactions

Transactions you define are called user-defined transactions. To ensure that a
sequence of statements either executes successfully or not at all, you can define one
transaction consisting of these statements by using the BEGIN WORK Statement and
COMMIT WORK Statement. You can abort a transaction by using the ROLLBACK
WORK Statement.

System-Defined Transactions

In some cases, NonStop SQL/MX defines transactions for you. These transactions are
called system-defined transactions. Most DML statements initiate transactions implicitly
at the start of execution. See Implicit Transactions on page 2-378. However, even if a
transaction is initiated implicitly, you must end a transaction explicitly with the COMMIT
WORK statement or the ROLLBACK WORK statement.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-15

Introduction Rules for DML Statements
Rules for DML Statements

 DML statements executing on audited tables, views of audited tables, and mixed
views must be performed within a transaction, except when reading data with
READ UNCOMMITED ACCESS.

 If deadlock occurs, the DML statement is canceled, but the transaction continues.

Audited and Nonaudited Tables

The TMF product works only on audited tables, so a transaction does not protect
operations on nonaudited tables. The simplest approach is to make all tables audited.
The AUDIT file attribute is the default when a table is created.

Nonaudited tables are not protected by transactions and follow a different locking and
error handling model than audited tables. Certain situations such as DML error
occurrences can lead to inconsistent data within a nonaudited table or between a
nonaudited table and its indices.

Effect of AUTOCOMMIT Option

AUTOCOMMIT is an option that can be set in a SET TRANSACTION statement. It
specifies whether NonStop SQL/MX will commit automatically, or roll back if an error
occurs, at the end of statement execution. This option applies to any statement for
which the system initiates a transaction. See SET TRANSACTION Statement on
page 2-376.

If this option is set to ON, NonStop SQL/MX automatically commits any changes, or
rolls back any changes, made to the database at the end of statement execution.
AUTOCOMMIT is set ON by default at the start of an MXCI session.

If this option is set to OFF, the current transaction remains active until the end of the
MXCI session unless you explicitly commit or roll back the transaction. The default is
OFF for embedded SQL in a C or COBOL program. The default is ON for embedded
SQL in a Java program.

Concurrency

Concurrency is defined by two or more processes accessing the same data at the
same time. The degree of concurrency available—whether a process that requests
access to data that is already being accessed is given access or placed in a wait
queue—depends on the purpose of the access mode (read or update) and the
isolation level.

NonStop SQL/MX provides concurrent database access for most operations and
controls database access through the mechanism for locking and the mechanism for
opening and closing tables. For DML operations, access and locking options affect the
degree of concurrency. See Data Consistency and Access Options on page 1-8,
Database Integrity and Locking on page 1-11, and SET TRANSACTION Statement on
page 2-376.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-16

Introduction Concurrency
These tables describe interactions between SQL/MX operations:

Table 1-1 on page 1-17 compares operations with access modes and lists DDL and
Utility operations you can start while DML operations are in progress.

Table 1-2 compares DDL and utility operations with DML operations and shows DDL
operations you can start while DML operations are in progress:

Table 1-1. Concurrent DDL/Utility Operation and File Access Modes

Access Mode

DDL Operations
You Can Start

READ
UNCOMMITTED

READ
COMMITTED STABLE SERIALIZABLE

ALTER INDEX Allowed Allowed Allowed Allowed

ALTER SEQUENCE
attributes

Allowed* Allowed* Waits Waits

ALTER TABLE
attributes

Allowed* Allowed* Waits Waits

* DDL operation aborts the DML operation

Table 1-2. Concurrent DDL/Utility and DML Operations

DML Operation in Progress

DDL Operations You Can
Start

SELECT
UNCOMMITTED

SELECT
SHARE

SELECT
EXCLUSIVE

UPDATE/
INSERT/
DELETE

ALTER INDEX Allowed* Allowed Allowed Allowed

ALTER SEQUENCE
attributes

Allowed* Allowed Allowed Allowed

ALTER TABLE attributes Allowed* Allowed Allowed Allowed

ALTER TABLE other Allowed* Waits Waits Waits

CREATE INDEX with
POPULATE

Allowed* Allowed Waits Waits

CREATE INDEX NO
POPULATE

Allowed Allowed Allowed Allowed

CREATE SEQUENCE Allowed Allowed Allowed Allowed

CREATE TRIGGER subject
table

Allowed Allowed Waits Waits

CREATE TRIGGER
referenced table

Allowed Allowed Allowed Allowed

CREATE VIEW Allowed Allowed Allowed Allowed

GRANT Allowed* Waits Waits Waits

MODIFY online operations Allowed* Allowed** Allowed** Allowed**

MODIFY offline operations*** Allowed* Allowed** Allowed** Waits
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-17

Introduction Concurrency
Table 1-3 compares DML operations you can start when DDL operations are in
progress:

POPULATE INDEX Allowed* Allowed** Allowed** Waits

REVOKE Allowed* Allowed Waits Waits

UPDATE STATISTICS Allowed Allowed Allowed Allowed**

* DDL operation aborts the DML operation
** Allowed except during commit phase
*** There are some exceptions. Dropping a partition from a hash partitioned table or index requires exclusive
access.

Table 1-3. Concurrent DML and DDL Operations (page 1 of 2)

DML Operations You Can Start

DDL Operations in Progress SELECT
UNCOMMITTED

SELECT
SHARE

SELECT
EXCLUSIVE

UPDATE/
INSERT
DELETE

ALTER INDEX Allowed* Allowed Allowed Allowed

ALTER SEQUENCE attributes Allowed* Allowed Allowed Allowed

ALTER TABLE attributes Allowed* Allowed Allowed Allowed

ALTER TABLE other Allowed* Waits Waits Waits

CREATE INDEX with
POPULATE

Allowed* Allowed Waits Waits

CREATE INDEX NO
POPULATE

Allowed Allowed Allowed Allowed

CREATE SEQUENCE Allowed Allowed Allowed Allowed

CREATE TRIGGER subject
table

Allowed Allowed Waits Waits

CREATE TRIGGER
referenced table

Allowed Allowed Allowed Allowed

CREATE VIEW Allowed Allowed Allowed Allowed

GRANT Allowed* Waits Waits Waits

MODIFY online operations Allowed* Allowed Waits Waits

MODIFY offline operations*** Allowed* Allowed** Allowed** Waits

POPULATE INDEX Allowed* Allowed** Allowed** Waits

Table 1-2. Concurrent DDL/Utility and DML Operations

DML Operation in Progress

DDL Operations You Can
Start

SELECT
UNCOMMITTED

SELECT
SHARE

SELECT
EXCLUSIVE

UPDATE/
INSERT/
DELETE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-18

Introduction Concurrency
Table 1-4 describes the effect of various DDL and utility operations on table
timestamps:

REVOKE Allowed* Allowed Waits Waits

UPDATE STATISTICS Allowed Allowed Allowed Allowed**

* DDL operation aborts the DML operation
** Allowed except during commit phase
*** There are some exceptions. Dropping a partition from a hash partitioned table or index requires exclusive
access.

Table 1-4. Operations Effect on Table Timestamps (page 1 of 2)

Alter Operation Timestamp Updated

ALTER INDEX No

ALTER SQL/MP ALIAS No*

ALTER SEQUENCE No

ALTER TABLE Yes, if you add columns or add or drop constraints
No, if you change attributes

ALTER TRIGGER No

BACKUP No

CREATE CATALOG No

CREATE INDEX Yes, if populated

CREATE PROCEDURE No

CREATE SCHEMA No

CREATE SQLMP ALIAS No

CREATE SEQUENCE No

CREATE TABLE No

CREATE TRIGGER Yes, of the table on which the trigger is defined

CREATE VIEW No

DUP No

FIXUP Yes

GRANT No

IMPORT Yes, if using fast load technique

INFO No

MODIFY, all forms Yes

mxexportddl No

MXGNAMES No

POPULATE INDEX Yes

Table 1-3. Concurrent DML and DDL Operations (page 2 of 2)

DML Operations You Can Start
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-19

Introduction Concurrency
If you restore with PARTONLY (only one or more partitions are restored) or if you
restore the entire partition (that is, the partition did not exist in the target table before
restore), the redefinition time stamp of the table is updated.

If only data is restored (the partition existed in the target table before the restore), the
last open timestamp of partition data fork is updated, and the data modification
timestamp of the partition data fork is updated.

Table 1-5 lists concurrency limits on utilities.

PURGEDATA Yes

RESTORE Yes**

REVOKE No

UPDATE STATISTICS No

VERIFY No

* Manual recompilation might be required.
** If you restore an entire table (including metadata), all timestamps are updated. The table needs to be dropped
and re-created.

Table 1-5. Concurrency Limits on Utility Operations (page 1 of 3)

Utility DML operations Other utilities
DDL
operations

Utilities that only read
metadata information:
EXPORTDDL
INFO
MXGNAMES
SHOWDDL
SHOWLABEL
VERIFY

All DML operations
(SELECT, UPDATE,
DELETE, INSERT) can be
performed concurrently.

Any utility in this
category can be
performed
concurrently.

Not
recommended.

Utilities that read both
metadata and user
data:
BACKUP
FASTCOPY (source
table only)
DUP (source table
only)

Only SELECT is allowed. Utilities that read
metadata can be
performed only
concurrently.

Not
recommended.

Table 1-4. Operations Effect on Table Timestamps (page 2 of 2)

Alter Operation Timestamp Updated
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-20

Introduction Concurrency
Utilities that read
metadata and update
user data:
IMPORT (not using
fast load)

All DML operations
(SELECT, UPDATE,
DELETE, INSERT) can be
performed concurrently.
If there are too many locks
on the partition, DP2
escalates to a table lock
which prevents concurrent
DML operations.

Utilities that read
metadata can
only be performed
concurrently.
Parallel imports
on the same table
are allowed.

Not
recommended.

Utilities that update
metadata and read
and write user data
offline:
MODIFY without
SHARED access*
POPULATE INDEX

Only SELECT is allowed.** Utilities that read
metadata can
only be performed
concurrently.

Not allowed.

Utilities that update
metadata and read
and potentially write
user data online:
MODIFY with
SHARED access
UPDATE STATISTICS

All DML operations are
allowed.

Utilities that read
metadata can
only be performed
concurrently.***

Not allowed.

Utilities that update
data and potentially
change metadata:
FIXUP
FASTCOPY (target
table only)
DUP (target table only)
IMPORT using fast
load
MODIFY when
dropping a hash
partition
PURGEDATA
RESTORE

Not allowed. Concurrent
operations are not
allowed.

Not allowed.

Utilities that read and
update metadata, but
do not change user
data:
UPGRADE
DOWNGRADE

All DML operations. Utilities that only
read metadata.

Not allowed.

Table 1-5. Concurrency Limits on Utility Operations (page 2 of 3)

Utility DML operations Other utilities
DDL
operations
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-21

Introduction Concurrency
* There are some exceptions. Dropping a partition from a hash partitioned table or index requires exclusive
access.
** The last phase of these operations requires exclusive access to the table or index, which prevents even
SELECT operations.
*** The last phase of the MODIFY operation requires exclusive access to the table or index, which prevents all
DDL and DML operations.

Table 1-5. Concurrency Limits on Utility Operations (page 3 of 3)

Utility DML operations Other utilities
DDL
operations
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-22

Introduction Transaction Access Modes
Transaction Access Modes

A transaction has an access mode that is either READ ONLY or READ WRITE. You
can set the access mode of a transaction by using a SET TRANSACTION statement.
See SET TRANSACTION Statement on page 2-376.

READ ONLY

If a transaction is executing with the READ ONLY access mode, statements within the
transaction can read, but cannot insert, delete, or update, data in tables. This
restriction means that among the DML statements, only the SELECT statement can
execute within that transaction.

If the transaction isolation level is READ UNCOMMITTED, the default access mode is
READ ONLY. Further, for READ UNCOMMITTED, you can specify only READ ONLY
explicitly by using the SET TRANSACTION statement.

READ WRITE

If a transaction is executing with the READ WRITE access mode, statements within the
transaction can read, insert, delete, or update data in tables. Therefore, any DML
statement can execute within that transaction.

If the transaction isolation level is not READ UNCOMMITTED, the default access
mode is READ WRITE. However, you can specify READ ONLY explicitly by using the
SET TRANSACTION statement.

Transaction Isolation Levels

A transaction has an isolation level that is either READ UNCOMMITTED, READ
COMMITTED, or SERIALIZABLE or REPEATABLE READ. The SQL/MX
implementation for REPEATABLE READ and SERIALIZABLE is equivalent.
SERIALIZABLE is used for purposes of illustration.

You can set the isolation level of a transaction explicitly by using a SET
TRANSACTION statement. See SET TRANSACTION Statement on page 2-376.

You can set your system default for the transaction isolation level by specifying the
ISOLATION_LEVEL entry in the SYSTEM_DEFAULTS table. The default isolation level
of a transaction is determined according to the rules specified in ISOLATION_LEVEL
on page 10-56.

READ UNCOMMITTED

This isolation level allows your transaction to access locked data. You cannot use
READ UNCOMMITTED for transactions that modify the database.

READ UNCOMMITTED provides the lowest level of data consistency. A transaction
executing with this isolation level is allowed to:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-23

Introduction Transaction Isolation Levels
 Read data modified by a concurrent transaction (sometimes referred to as dirty
reads)

 Read different committed values for the same item at different times or find that the
item no longer exists (sometimes referred to as nonrepeatable reads)

 Read different sets of committed values satisfying the same predicate at different
times (sometimes referred to as phantoms)

READ COMMITTED

This option allows your transaction to access only committed data.

The implementation requires that a lock can be acquired on the requested data—but
does not actually lock the data, thereby reducing lock request conflicts. If a lock cannot
be granted (implying that the row contains uncommitted data), the transaction request
waits until the lock in place is released.

READ COMMITTED provides the next level of data consistency. A transaction
executing with this isolation level does not allow dirty reads, but both nonrepeatable
reads and phantoms are possible.

READ COMMITTED provides sufficient consistency for any transaction that does not
require a repeatable-read capability.

SERIALIZABLE or REPEATABLE READ

This option locks all data accessed through the transaction and holds the locks on data
in audited tables until the transaction ends.

SERIALIZABLE (or REPEATABLE READ) provides the highest level of data
consistency. A transaction executing with this isolation level does not allow dirty reads,
non-repeatable reads, or phantoms.

For audited tables (SQL/MX tables are audited), SERIALIZABLE uses shared locks for
unmodified rows and exclusive locks for modified rows—but all locks are held by the
transaction and not released until the transaction ends. SERIALIZABLE prevents other
users from inserting or modifying (including delete) rows in the range of rows (key
range if using unique primary key or all rows if using non-unique column) examined by
the transaction.

Non-Unique Key Considerations for SERIALIZABLE or REPEATABLE
READ

If the SELECT statement uses a unique column (primary key), SQL/MX locks only the
rows specified in the unique key range. If the SELECT statement uses a
non-unique column, SQL/MX locks all the rows (whole table) to guarantee
REPEATABLE READ access. For information on locks, see Database Integrity and
Locking on page 1-11.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-24

Introduction Partition Management
Partition Management
You can create SQL/MX tables with multiple physical files, or partitions. Use the
CREATE TABLE Statement on page 2-107 and the CREATE INDEX Statement on
page 2-80 to create tables and indexes that include partitions. Use the MODIFY Utility
to partition tables after they have been created.

For more information, see Partitions on page 6-83 for an overview of partitions in
SQL/MX and SQL/MP files. For more information about managing partitioned files, see
the SQL/MX Installation and Management Guide.

Internationalization
Users need to be able to display data in formats appropriate to their locale and
language—in English or other Roman-character formats, in Japanese Kanji or Korean
or Chinese characters. You can select from one single-character or three double-byte
character sets. For more information about character sets in addition to restrictions on
the use of character sets, see Character Sets on page 6-4.

Using NonStop SQL/MX to Access SQL/MP
Databases

NonStop SQL/MX allows applications to use the SQL/MX engine to access SQL/MP
databases. SQL/MP tables, views, indexes, and catalogs are accessed by using
SQL/MX DML statements. For more information on the SQL/MP language, see the
SQL/MP Reference Manual.

Mixing embedded SQL calls to NonStop SQL/MP and NonStop SQL/MX from the
same application process is not supported.

NonStop SQL/MX provides support for nonstandard SQL/MP features so that you can
develop applications that use these databases. However, when you use NonStop
SQL/MX to access an SQL/MP database, you should be aware of some restrictions
involving SQL/MP features that do not directly map to NonStop SQL/MX.

The areas of support and the restrictions on access are:

Naming Objects on
page 1-26

To refer to SQL/MP database objects, use either four-part
Guardian Physical Names, three-part Logical Names, or
DEFINE Names. To accommodate the use of ANSI names,
you must create Alias Mappings from ANSI names to NSK
names.

Delimiting Reserved Words
in Guardian Names on
page 1-27

If a column or table name contains an SQL/MX reserved
word, you must delimit the reserved word in double quotes (").

Selecting or Changing Data
on page 1-28

You can select or change DATETIME Data, INTERVAL Data,
and NCHAR Data with some restrictions.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-25

Introduction Naming Objects
Naming Objects

Refer to SQL/MP database objects through MXCI or through applications by using
either physical names, logical names, or DEFINE names, as described next. For more
information, see Database Object Names on page 6-13, Object Naming on
page 10-60, or DEFINEs on page 6-38.

Physical Names

NonStop SQL/MP uses Guardian names as names for SQL tables, views, indexes,
partitions, collations, and program modules. A portion of the Guardian name (the
subvolume name) is used as an SQL/MP catalog name.

To provide flexibility, NonStop SQL/MX provides support for Guardian four-part object
names of the form:

[\node.][[$volume.]subvol.]filename

In this four-part name, \node is the name of a node on an HP NonStop system,
$volume is the name of a disk volume, subvol is the name of a subvolume, and
filename is the name of a Guardian disk file or the name of an SQL/MP table, view,
index, partition, collation, or program module.

For more information about Guardian name resolution, see Attribute Value NSK for
Guardian Names and Guardian Name Resolution on page 10-62.

Logical Names

To move toward full ANSI SQL:1999 compliance, NonStop SQL/MX provides support
for three-part logical object names of the form:

[[catalog.]schema.]name

Accessing Views on
page 1-32

You can access both protection and shorthand views with the
same security as within NonStop SQL/MP.

Access Options on
page 1-32

You can use the SQL/MP access options as synonyms for
SQL/MX access options with some restrictions.

SQL/MP Stored Text on
page 1-32

You cannot access or manipulate SQL/MP tables or views
that have been defined in specific ways. There are restrictions
on specific types of SQL/MP stored text.

SQL/MP File Organizations
on page 1-33

You cannot access SQL/MP tables that have specific file
organizations

Collations on page 1-33 You cannot access any SQL/MP tables defined with collations
other than those tables defined with the default collation. You
cannot include the SQL/MP COLLATE option in a GROUP BY
clause or an ORDER BY clause when selecting from an
SQL/MP table.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-26

Introduction Delimiting Reserved Words in Guardian Names
In this three-part name, catalog is the first part of the name, schema is the second
part of the name, and table is the third part of the name. See Catalogs on page 6-3
and Pseudocolumns on page 6-105.

For more information about logical name resolution, see Attribute Value ANSI for
Logical Names on page 10-62.

Alias Mappings

To permit the use of logical names, a user table named OBJECTS stores alias names.
The MP_PARTITIONS table stores mappings from logical object names to physical
Guardian locations. See OBJECTS Table on page 10-22 and MP_PARTITIONS Table
on page 10-22.

To create the necessary mappings from logical to physical names, use the CREATE
SQLMP ALIAS statement:

CREATE SQLMP ALIAS catalog.schema.table
 [\node.]$volume.subvol.filename

For the complete syntax and semantics, see CREATE SQLMP ALIAS Statement on
page 2-104.

To use ANSI names with the DDL Statements for the Sample Database on page D-3,
you must create an alias for each table that has been created.

For example, suppose that you have created the EMPLOYEE table with the physical
Guardian name $samdb.persnl.employee. To specify the logical name
samdbcat.persnl.employee for the employee table, enter:

CREATE SQLMP ALIAS samdbcat.persnl.employee
 $samdb.persnl.employee;

DEFINE Names

NonStop SQL/MX supports the use of DEFINE names as logical names for tables,
views, or partitions in DML statements. When NonStop SQL/MX compiles such
statements, it replaces the DEFINE name (for example, =CUSTOMERS) in the
statement with the associated Guardian physical name. DEFINE names can be
created within MXCI or can be inherited from the TACL process or the OSS shell.

For more information about DEFINEs, see DEFINEs on page 6-38.

Delimiting Reserved Words in Guardian Names

In NonStop SQL/MP, you can use reserved words in Guardian names that identify
tables, views, partitions, and collations. NonStop SQL/MX has many more reserved
words than NonStop SQL/MP. If an SQL/MX reserved word occurs as part of a
Guardian name, you must delimit it by enclosing it in double quotes—that is, it must be
a delimited identifier. See Using SQL/MX Reserved Words in SQL/MP Names on
page 6-57.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-27

Introduction Selecting or Changing Data
For example, suppose that the location of the OBJECTS table is \nsk.$system.SQL.
To determine the physical name associated with a given logical SQL/MX object name,
you can query the OBJECTS table:

SELECT guardian_name
FROM \nsk.$system."SQL".objects
WHERE logical_name = 'samdbcat.persnl.employee';

In this example, "SQL" is written as a delimited identifier because SQL is a reserved
word in NonStop SQL/MX.

Selecting or Changing Data

To select or change SQL/MP data that does not directly map to SQL/MX data types
and literals, you can use special extensions of NonStop SQL/MX with some
restrictions.

DATETIME Data

The SQL/MP DATETIME data type is specified:

DATETIME [start-field TO] end-field

The start-field and end-field specify a range of logically contiguous fields:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
FRACTION [(precision)]

The start-field must precede the end-field. The FRACTION field can include
the precision option only if the FRACTION field is the end-field.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-28

Introduction Selecting or Changing Data
Standard DATETIME Data Types

Certain DATETIME data types map directly to the ANSI standard types—DATE, TIME,
and TIMESTAMP. You can retrieve the same value as stored in an SQL/MP column
with these data types or store a value with a standard type into these SQL/MP columns
without truncation or extension.

For more information, see:

 SQL/MP Considerations for Datetime Data Types Not Equivalent to DATE, TIME,
TIMESTAMP on page 6-27

 SQL/MP Considerations for Datetime Data Types Equivalent to DATE, TIME,
TIMESTAMP on page 6-29

Truncation and Extension

If you attempt to insert a larger DATETIME value into a smaller DATETIME column,
NonStop SQL/MX implicitly truncates the value only on the fractional part. In all other
cases, NonStop SQL/MX returns an error. If you attempt to insert a smaller DATETIME
value into a larger DATETIME column, NonStop SQL/MX returns an error.

When you are storing values in a DATETIME column, you must explicitly cast the
DATETIME value in question to the desired DATETIME data type to ensure
compatibility. If extension occurs on the more significant end of a value, the values for
the missing fields are drawn from the fields of CURRENT_TIMESTAMP. If extension
occurs on the less significant end, the values are the minimum field values.

When you are comparing datetime data with different start and end fields in a WHERE
clause, you must also specify an explicit CAST to ensure compatibility.

See Casting DATETIME Data for Compatibility on page 6-30.

Using Datetime Functions

You can use SQL/MX datetime functions to select individual fields from a DATETIME
column in an SQL/MP table.

See Using SQL/MX Datetime Functions on DATETIME Data on page 6-30.

Selecting Any DATETIME Column

You can select data from any DATETIME column except those consisting of
FRACTION only.

This ANSI
standard data
type: is equivalent to this SQL/MP data type:

DATE DATETIME YEAR TO DAY

TIME DATETIME HOUR TO SECOND

TIMESTAMP DATETIME YEAR TO SECOND
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-29

Introduction Selecting or Changing Data
If you attempt to select data from a FRACTION-only column, the value is returned as
the CHAR data type consisting of a string of '#' characters with the same display
length as the length of the column.

See Selecting DATETIME Columns in SQL/MP Tables on page 6-28.

Inserting or Updating Any DATETIME Column

NonStop SQL/MX supports inserting into or updating any columns with the DATETIME
data type in SQL/MP tables except those consisting of FRACTION only. Use a special
SQL/MX DATETIME literal to insert into or update a DATETIME column. The literal is
specified:

DATETIME 'datetime' [start-field TO] end-field

See Inserting Into or Updating Any SQL/MP DATETIME Column on page 6-68.

INTERVAL Data

SQL/MP INTERVAL values represent durations of time in year-month units (years and
months), in day-time units (days, hours, minutes, seconds, and fractions of a second),
or in subsets of those units.

Year-Month Interval

Specify a year-month duration:

INTERVAL start-ym [(digits)] [TO end-ym]

The start-ym and end-ym specify a range of logically contiguous fields:

YEAR
MONTH

Day-Time Interval

Specify a day-time duration:

INTERVAL start-dt [(digits)] [TO end-dt]

The start-dt and end-dt specify a range of logically contiguous fields:

DAY
HOUR
MINUTE
SECOND
FRACTION [(precision)]

The start-dt must precede the end-dt. The FRACTION field can include the
precision option only if the FRACTION field is the end-dt.

Selecting Any INTERVAL Column

You can select data from any SQL/MP INTERVAL columns with a start field of YEAR
through SECOND. All SQL/MP INTERVAL data types that have a start field of YEAR
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-30

Introduction Selecting or Changing Data
through SECOND are directly compatible with their corresponding SQL/MX INTERVAL
data types.

If you attempt to select data from a FRACTION-only column, the value is returned as
the CHAR data type consisting of a string of '#' characters with the same display
length as the length of the column.

See Selecting INTERVAL Columns in SQL/MP Tables on page 6-33.

Inserting or Updating Any INTERVAL Column

NonStop SQL/MX supports inserting into or updating any columns with the INTERVAL
data type in SQL/MP tables except those consisting of FRACTION only. Use an
INTERVAL literal to insert into or update an INTERVAL column in the usual way. The
literal is specified:

[-]INTERVAL [-]{'year-month'|'day:time'} interval-qualifier

For the complete syntax of interval literals, see Interval Literals on page 6-71. See
Inserting Into or Updating Any SQL/MP INTERVAL Column on page 6-73.

NCHAR Data

From SQL/MX Release 2.x, you can select character data from NCHAR columns in
SQL/MP and SQL/MX tables. You can insert into or update NCHAR columns in an
SQL/MP table only when the character data being written to the table contains an even
number of bytes. A string literal you use this way can be specified:

N'string'

N associates the default character set with the string literal. The default character set is
the NATIONAL_CHARSET attribute you specify when you install NonStop SQL/MX.
For more information about setting the NCHAR default, see Character Sets on
page 6-4.

For SQL/MX Release 2.x, LIKE predicates and character string functions that refer to
double byte-encoded characters in NCHAR columns of SQL/MP and SQL/MX tables
always provide the correct results. Character string functions include INSERT, LEFT,
LOCATE, LPAD, LTRIM, POSITION, REPLACE, RIGHT, RPAD, RTRIM, SUBSTRING,
and TRIM.

Because SQL/MX Release 2.x compares and sorts all character data, including double
byte-encoded characters, on the character boundary instead of the byte boundary,
ORDER BY and GROUP BY also return the correct results. NonStop SQL/MX uses a
binary collation, so characters are always compared and sorted on the basis of their
character value, not their byte length. If the character values of compared characters
are the same, a match occurs.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-31

Introduction Accessing Views
Accessing Views

The FOR PROTECTION clause of the SQL/MP CREATE VIEW statement specifies a
protection view. If you omit this clause, the view is a shorthand view.

NonStop SQL/MX provides support for the access of SQL/MP protection views. A
protection view is derived from a single table and has associated security values that
determine who can read, write to, execute, and purge the view. Security specifically
defined on the view overrides the security on the underlying table.

NonStop SQL/MX also supports the read-only access of SQL/MP shorthand views. A
shorthand view is derived from one or more tables or other views and inherits the
security of the underlying table or tables.

Access Options

If your SQL/MP application uses the BROWSE, STABLE, and REPEATABLE
keywords, NonStop SQL/MX accepts these keywords as synonyms for statement-level
access options READ UNCOMMITTED, STABLE, and SERIALIZABLE (or
REPEATABLE READ), respectively.

SQL/MP Stored Text

You cannot access or manipulate SQL/MP tables or views that have been defined in
specific ways. There are restrictions on specific types of SQL/MP stored text, which is
SQL text that NonStop SQL/MX retrieves from the SQL/MP catalog while processing
SQL/MX text. SQL/MP stored text includes views, constraints, column defaults, first
keys, clustering keys, and partitioning keys.

In NonStop SQL/MX, these types of SQL/MP stored text are disallowed:

 Views, constraints, column defaults, and first keys cannot contain:

 UNITS function

 DATETIME string portions with nonstandard formatting

 FRACTION-only DATETIME or INTERVAL literals

 Interval literals with negative signs inside quotation mark delimiters (for
example, INTERVAL '-5' DAY)

 Identifiers named after words that are reserved in SQL/MP stored text (see
Appendix B, Reserved Words)

Views, however, can contain a select of a FRACTION-only column.

 Clustering or partitioning keys cannot contain:

 FRACTION-only DATETIME or INTERVAL columns

 Interval literals with negative signs inside quotation mark delimiters
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-32

Introduction SQL/MP File Organizations
 Identifiers named after words that are reserved in SQL/MP stored text (see
Appendix B, Reserved Words.)

NonStop SQL/MX supports SQL/MP double-quoted string literals, which are treated
correctly as strings and not as SQL/MX delimited identifiers, in SQL/MP stored text.

NonStop SQL/MX supports SQL/MP character string literals that contain a space
between the character set qualifier and character string literal, such as
_KANJI 'abcd', in SQL/MP stored text. NonStop SQL/MX does not allow a space
after the character set qualifier in SQL/MX text. For example, you must specify
_KANJI'abcd'in SQL/MX text. See Character String Literals on page 6-64.

NonStop SQL/MX supports equivalent syntax for the UNITS operator. See Operations
Equivalent to UNITS on page 6-31.

SQL/MP File Organizations

An SQL/MP table can have one of three physical file organizations: key-sequenced,
entry-sequenced, or relative. You can access these type of SQL/MP files through
NonStop SQL/MX:

 Key-sequenced tables with or without partitions
 Entry-sequenced tables that are not partitioned

You cannot access these type of SQL/MP files through NonStop SQL/MX:

 Entry-sequenced tables that are partitioned
 Relative tables

For more information about SQL/MP file organizations, see the SQL/MP Reference
Manual.

Collations

In SQL/MP tables, character columns can be sequenced by specifying a collation in
the COLLATE clause of a column data type definition in a CREATE TABLE statement.
In NonStop SQL/MP, you create a collation with the CREATE COLLATION statement. If
you do not specify a COLLATE clause, SQL/MP character columns are sequenced by
the binary value of the characters in the column.

For SQL/MX Release 2.x, you cannot access any SQL/MP tables defined with
collations other than those tables defined with the default collation (consisting of the
binary value of characters in the column). Further, you cannot include the SQL/MP
COLLATE option in a GROUP BY clause or an ORDER BY clause when selecting from
an SQL/MP table.

For more information about collations, see the CREATE COLLATION Statement,
Collation Definitions, Data Types, and the COLLATE clause of the CREATE TABLE
Statement in the SQL/MP Reference Manual.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-33

Introduction ANSI Compliance and SQL/MX Extensions
ANSI Compliance and SQL/MX Extensions
NonStop SQL/MX complies most closely with Entry Level SQL as described in ANSI
X3.135-1992 and ISO/IEC 9075:1992. NonStop SQL/MX also includes some features
from Intermediate and Full Level ANSI/ISO SQL in addition to special SQL/MX
extensions to the SQL language.

Statements and SQL elements in this manual are ANSI compliant unless specified as
SQL/MX extensions. For details about NonStop SQL/MX's conformance with
SQL:1999 standards, see Appendix E, Standard SQL and SQL/MX.

Default Settings for ANSI Compliance

To establish an ANSI-compliant database, set these default attributes as follows:

To set these default attributes, use the CONTROL QUERY DEFAULT Statement on
page 2-60. For more information on these default attributes, see System Defaults Table
on page 10-37.

ANSI-Compliant Statements

These statements are ANSI compliant, but some might contain SQL/MX extensions:

 ALLOCATE CURSOR statement
 ALLOCATE DESCRIPTOR statement
 ALTER TABLE
 BEGIN DECLARE SECTION declaration
 CALL statement
 CLOSE statement
 COMMIT WORK statement
 CREATE PROCEDURE statement
 CREATE SCHEMA statement
 CREATE TABLE statement
 CREATE TRIGGER statement
 CREATE VIEW statement
 DEALLOCATE DESCRIPTOR statement
 DEALLOCATE PREPARE statement
 DECLARE CURSOR declaration
 DELETE statement
 DESCRIBE statement

ISOLATION_LEVEL 'serializable'

NAMETYPE 'ansi'

NOT_NULL_CONSTRAINT_DROPPABLE_OPTION 'on'

PRIMARY_KEY_CONSTRAINT_DROPPABLE_OPTION 'on'

READONLY_CURSOR 'false'

REF_CONSTRAINT_NO_ACTION_LIKE_RESTRICT 'on'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-34

Introduction Statements That Are SQL/MX Extensions
 DROP PROCEDURE statement
 DROP SCHEMA statement
 DROP TABLE statement
 DROP TRIGGER statement
 DROP VIEW statement
 END DECLARE SECTION declaration
 EXEC SQL directive
 EXECUTE statement
 EXECUTE IMMEDIATE statement
 FETCH statement
 GET DESCRIPTOR statement
 GET DIAGNOSTICS statement
 GRANT statement
 INSERT statement
 OPEN statement
 PREPARE statement
 REVOKE statement
 ROLLBACK WORK statement
 SELECT statement
 SET statement
 SET CATALOG statement
 SET DESCRIPTOR statement
 SET SCHEMA statement
 SET TRANSACTION statement
 TABLE statement
 UPDATE statement
 VALUES statement
 WHENEVER declaration

Statements That Are SQL/MX Extensions

These statements are SQL/MX extensions to the ANSI standard. This list does not
include MXCI commands, all of which are SQL/MX extensions.

 ALTER INDEX statement
 ALTER SEQUENCE statement
 ALTER SQLMP ALIAS statement
 ALTER TRIGGER
 BEGIN WORK statement
 Compound (BEGIN...END) statement
 CONTROL QUERY DEFAULT statement
 CONTROL QUERY SHAPE statement
 CONTROL TABLE statement
 CREATE CATALOG statement
 CREATE INDEX statement
 CREATE SEQUENCE statement
 CREATE SQLMP ALIAS statement
 DECLARE CATALOG statement
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-35

Introduction ANSI-Compliant Functions
 DECLARE MPLOC statement
 DECLARE NAMETYPE statement
 DECLARE SCHEMA statement
 DROP CATALOG statement
 DROP INDEX statement
 DROP SEQUENCE statement
 DROP SQL statement
 DROP SQLMP ALIAS statement
 IF statement
 GET ALL SECURITY_ADMINS statement
 GIVE CATALOG statement
 GIVE Object statement
 GRANT CREATE CATALOG statement
 GRANT CREATE SCHEMA statement
 GRANT EXECUTE statement
 GRANT SECURITY_ADMIN statement
 INITIALIZE SQL statement
 INVOKE directive
 LOCK TABLE statement
 MODULE directive
 REGISTER CATALOG command
 REVOKE CREATE CATALOG statement
 REVOKE CREATE SCHEMA statement
 REVOKE EXECUTE statement
 REVOKE SECURITY_ADMIN statement
 SAMPLE clause
 SEQUENCE BY clause
 SET (assignment) statement
 SET MPLOC statement
 SET NAMETYPE statement
 SET TABLE TIMEOUT statement
 SIGNAL SQLSTATE statement
 TRANSPOSE clause
 UNLOCK TABLE statement
 UNREGISTER CATALOG command
 UPDATE STATISTICS statement

ANSI-Compliant Functions

These functions are ANSI compliant, but some might contain SQL/MX extensions:

 AVG function
 CASE expression
 CAST expression
 CHAR_LENGTH
 COUNT Function
 CURRENT
 CURRENT_DATE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-36

Introduction SQL/MX Error Messages
 CURRENT_TIME
 CURRENT_TIMESTAMP
 CURRENT_USER
 EXTRACT
 LOWER
 MAX
 MIN
 OCTET_LENGTH
 POSITION
 SESSION_USER
 SUBSTRING
 SUM
 TRIM
 UPPER
 USER

All other functions are SQL/MX extensions.

SQL/MX Error Messages
NonStop SQL/MX reports error messages and exception conditions within the SQL/MX
conversational interface, MXCI, and in the standard output of embedded SQL
programs. When an error condition occurs, NonStop SQL/MX returns a message
number and a brief description of the condition. For example, NonStop SQL/MX might
display this error message in MXCI:

*** ERROR[1000] A syntax error occurred.

The message number is the SQLCODE value (without the sign). In this example, the
SQLCODE value is 1000.

In MXCI, you can display the text associated with a message number (or SQLCODE
value) by using the ERROR command. See ERROR Command on page 4-27. The
ERROR command returns this information:

*** SQLSTATE (Err): 42000 SQLSTATE (Warn): 01500
*** ERROR[1000] A syntax error occurred.

The SQLCODE value has corresponding ANSI SQL:1999 SQLSTATE error and
warning values. In this example, 42000 (error) and 01500 (warning) are the
SQLSTATE values.

To view detailed cause, effect, and recovery information for ERROR[1000] and other
errors, see the SQL/MX Messages Manual.

For more information on how to access exception conditions within embedded SQL
programs, see the SQL/MX Programming Guide for C and COBOL.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-37

Introduction SQL/MX Error Messages
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
1-38

2 SQL/MX Statements

This section describes the syntax and semantics of NonStop SQL/MX statements that
you can run in MXCI or embed in programs written in C, C++, COBOL, or Java. For
more information on which SQL/MX statements you can embed in a particular
language, see the SQL/MX Programming Manual for C and COBOL.

Categories
The statements are categorized according to their functionality:

 Data Definition Language (DDL) Statements on page 2-1

 Data Manipulation Language (DML) Statements on page 2-4

 Transaction Control Statements on page 2-4

 Prepared SQL Statements on page 2-4

 Embedded-Only SQL/MX Statements on page 2-5

 Resource Control and Optimization Statements on page 2-5

 Control Statements on page 2-5

 Object Naming Statements on page 2-7

 Alias Statements on page 2-7

 Stored Procedure Statements on page 2-7

 Trigger Statements on page 2-8

 Utilities on page 2-8

Data Definition Language (DDL) Statements

Use these DDL statements to define, delete, or modify the definition of an SQL/MX
catalog, schema, or object, or the authorization to use an object.

ALTER INDEX Statement on
page 2-11

Changes file attributes of an index and renames the
index.

ALTER SEQUENCE Statement on
page 2-13

Maps an existing alias to a different SQL/MP table.

ALTER TABLE Statement on
page 2-19

Adds a constraint or column to a table, drops existing
constraints, changes file attributes of a table, or
renames a table.

ALTER TRIGGER Statement on
page 2-48

Alters trigger status.

ALTER SEQUENCE Statement on
page 2-13

Alters sequence generator attributes.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-1

SQL/MX Statements Data Definition Language (DDL) Statements
ALTER SEQUENCE Statement on
page 2-13

Alters SQL/MP alias attributes.

ALTER VIEW Statement on
page 2-49

Renames a view within the schema, and modifies the
view by changing one or more file attributes for the
view.

CREATE CATALOG Statement on
page 2-78

Creates a catalog on the local node.

CREATE INDEX Statement on
page 2-80

Creates an index on a table.

CREATE PROCEDURE Statement
on page 2-88

Defines an existing Java method as an SPJ and
registers it in NonStop SQL/MX.

CREATE SCHEMA Statement on
page 2-96

Creates a schema.

CREATE SEQUENCE Statement on
page 2-100

Creates a sequence generator object in the specified
schema.

CREATE SQLMP ALIAS Statement
on page 2-104

Creates mappings from logical names to physical
names for SQL/MP database objects.

CREATE TABLE Statement on
page 2-107

Creates a table.

CREATE TRIGGER Statement on
page 2-144

Creates a trigger.

CREATE VIEW Statement on
page 2-154

Creates a view.

DROP CATALOG Statement on
page 2-180

Drops an empty catalog.

DROP INDEX Statement on
page 2-181

Drops an index.

DROP PROCEDURE Statement on
page 2-182

Drops an SPJ and its stored procedure label from
NonStop SQL/MX.

DROP SCHEMA Statement on
page 2-183

Drops a schema.

DROP SEQUENCE Statement on
page 2-185

Drops all the sequence generator objects in the
specified schema.

DROP SQL Statement on
page 2-187

Removes NonStop SQL/MX from a local node.

DROP SQLMP ALIAS Statement on
page 2-188

Drops mappings from logical names to physical
names for SQL/MP database objects.

DROP TABLE Statement on
page 2-190

Drops a table.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-2

SQL/MX Statements Data Definition Language (DDL) Statements
DROP TRIGGER Statement on
page 2-192

Drops a trigger.

DROP VIEW Statement on
page 2-193

Drops a view.

EXPLAIN Statement on page 2-208 Generates and displays the result of the EXPLAIN
function.

GIVE CATALOG Statement on
page 2-236

Transfers the ownership of catalog from one
Guardian user to another.

GIVE Object Statement on
page 2-237

Transfers the ownership of the object from one
Guardian user to another.

GIVE SCHEMA Operation on
page 2-239

Transfers the ownership of a schema, and
optionally the ownership of objects within the
schema owned by the schema owner from one
user to another.

GRANT Statement on page 2-240 Grants access privileges to users for a table, view,
sequence generator or stored procedure.

GRANT CREATE CATALOG
Statement on page 2-244

Grants privileges to create a catalog for specified
users.

GRANT CREATE SCHEMA
Statement on page 2-245

Grants privileges to create a schema on a specified
catalog to specified users.

GRANT EXECUTE Statement on
page 2-246

Grants access privileges for a procedure to specified
users.

GRANT SECURITY_ADMIN
Statement on page 2-249

Grants security administration privileges to
designated users.

INITIALIZE SQL Statement on
page 2-251

Prepares a local node to run NonStop SQL/MX.
Creates SQL/MX user metadata (UMD) tables,
system metadata, and NonStop MXCS metadata
tables.

REVOKE Statement on page 2-317 Revokes access privileges for a table, view, or
sequence generator.

REVOKE CREATE CATALOG
Statement on page 2-320

Revokes the privilege to create a catalog from
specified users.

REVOKE CREATE SCHEMA
Statement on page 2-321

Revokes the privilege to create a schema on a
specified catalog to specified users.

REVOKE EXECUTE Statement on
page 2-323

Revokes access privileges for a procedure to
specified users.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-3

SQL/MX Statements Data Manipulation Language (DML) Statements
Data Manipulation Language (DML) Statements

Use these DML statements to delete, insert, select, or update rows in one or more
tables:

For more information about DELETE, INSERT, SELECT, and UPDATE statement, see
individual entries for these statements.

Transaction Control Statements

Use these statements to specify user-defined transactions and to set attributes for the
next transaction:.

Prepared SQL Statements

REVOKE SECURITY_ADMIN
Statement on page 2-326

Revokes security administration privileges from
designated users.

SET Statement on page 2-365 Controls the action of a BEFORE trigger.

SIGNAL SQLSTATE Statement on
page 2-381

Enables a trigger execution to raise an exception that
causes both the triggered and triggering statements
to fail.

DELETE Statement on page 2-162 Deletes rows from a table or view.

INSERT Statement on page 2-252 Inserts data into tables and views.

SELECT Statement on page 2-330 Retrieves data from tables and views.

SELECT ROW COUNT Statement
on page 2-363

Retrieves the count of rows from the
SQL/MX table.

UPDATE Statement on page 2-385 Updates values in columns of a table or view.

BEGIN WORK Statement on
page 2-52

Starts a transaction.

COMMIT WORK Statement on
page 2-57

Commits changes made during a transaction and
ends the transaction.

ROLLBACK WORK Statement on
page 2-328

Undoes changes made during a transaction and
ends the transaction.

SET TRANSACTION Statement on
page 2-376

Sets attributes for the next SQL transaction—the
isolation level, access mode, size of the diagnostics
area, and whether to automatically commit database
changes.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-4

SQL/MX Statements Embedded-Only SQL/MX Statements
Use these statements to compile an SQL statement and then execute the statement
any number of times within the current session:

Embedded-Only SQL/MX Statements

For more information on SQL/MX statements that you can use only in embedded SQL
programs, see Section 3, Embedded-Only SQL/MX Statements.

Resource Control and Optimization Statements

Use these statements to control access to an SQL/MX table and its indexes and to
catalogs on remote nodes:

Control Statements

Use these statements to control the execution default options, plans, and performance
of DML statements:

EXECUTE Statement on page 2-201 Executes an SQL statement previously compiled by
the PREPARE statement.

An operation is a postfix merge if the
range of data ends at the bottom of
the partition. You can specify only
the TO NEXT PARTITION clause.
The split partition cannot be the last
partition (the rightmost partition in
the list). on page 2-279

Compiles an SQL statement for later execution with
EXECUTE.

LOCK TABLE Statement on
page 2-268

Locks the specified table (or the underlying tables of
a view) and its associated indexes for the duration of
the active transaction.

REGISTER CATALOG Statement on
page 2-315

Registers a catalog on a remote node.

UNLOCK TABLE Statement on
page 2-383

Releases locks held on the specified nonaudited
table or view.

UNREGISTER CATALOG Statement
on page 2-384

Removes an empty catalog reference from a node.

UPDATE STATISTICS Statement on
page 2-402

Updates statistics about the contents of a table and
its indexes.

CONTROL QUERY DEFAULT
Statement on page 2-60

Overrides the contents of the SYSTEM_DEFAULTS
table for the current session.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-5

SQL/MX Statements Control Statements
CONTROL QUERY SHAPE
Statement on page 2-62

Forces access plans by modifying the operator tree
for a prepared statement.

CONTROL TABLE Statement on
page 2-74

Specifies a performance-related option for DML
accesses to a table or view.

SET TABLE TIMEOUT Statement on
page 2-372

Specifies a dynamic timeout value in the run-time
environment of the current session.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-6

SQL/MX Statements Object Naming Statements
Object Naming Statements

Use these statements to set the value of the NAMETYPE attribute, which determines
whether the object naming is ANSI or NSK for the current session, and to specify
default ANSI names for the catalog and schema or Guardian physical names for the
volume and subvolume:

Alias Statements

Use the following statements to manage mappings between logical and physical
names for SQL/MP objects:

Stored Procedure Statements

Use these statements to register and invoke stored procedures in Java (SPJs):

SET CATALOG Statement on
page 2-366

Sets the default ANSI catalog for unqualified schema
names for the current session.

SET MPLOC Statement on
page 2-368

Sets the default operating system volume and
subvolume for SQL/MP physical object names for the
current session.

SET NAMETYPE Statement on
page 2-369

Sets the default NAMETYPE attribute value to ANSI
or NSK for the current session.

SET SCHEMA Statement on
page 2-370

Sets the default ANSI schema for unqualified object
names for the current session.

ALTER SEQUENCE Statement on
page 2-13

Maps an existing alias to a different SQL/MP table.

CREATE SQLMP ALIAS Statement
on page 2-104

Creates mappings from logical names to physical
names for SQL/MP database objects.

DROP SQLMP ALIAS Statement on
page 2-188

Drops mappings from logical names to physical
names for SQL/MP database objects.

CALL Statement on page 2-54 Initiates the execution of a stored procedure in Java
(SPJ) in NonStop SQL/MX.

CREATE PROCEDURE Statement
on page 2-88

Defines an existing Java method as an SPJ and
registers it in NonStop SQL/MX.

DROP PROCEDURE Statement on
page 2-182

Drops an SPJ and its stored procedure label from
NonStop SQL/MX.

GRANT EXECUTE Statement on
page 2-246

Grants access privileges for a procedure to specified
users.

REVOKE EXECUTE Statement on
page 2-323

Revokes access privileges for a procedure to
specified users.

Note. The Result Set Support for Stored Procedures in Java is available only on systems
running J06.05 and later J-series RVUs and H06.16 and later H-series RVUs. This feature is
supported by SQL/MX 2.3.2 onwards.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-7

SQL/MX Statements Trigger Statements
Trigger Statements

Use these statements to create and manipulate triggers on SQL/MX tables:

Utilities

Use these utilities to transform metadata, duplicate tables, partition management, load
indexes, purge and recover data from the database objects:

ALTER TRIGGER Statement on
page 2-48

Alters a trigger.

CREATE TRIGGER Statement on
page 2-144

Creates a trigger.

DROP TRIGGER Statement on
page 2-192

Drops a trigger.

SET Statement on page 2-365 Controls the action of a BEFORE trigger.

SIGNAL SQLSTATE Statement on
page 2-381

Enables a trigger execution to raise an exception that
causes both the triggered and triggering statements
to fail.

DOWNGRADE Utility on
page 2-175

Transforms metadata from the existing version to
a specified, lower version.

DUP Utility on page 2-194 Duplicates SQL/MX tables.

FASTCOPY Utility on page 2-226 Copies rows from one table or index into an
existing compatible table or index.

MODIFY Utility on page 2-271 Performs partition management operations and
Guardian rename operations on tables or
indexes.

POPULATE INDEX Utility on
page 2-304

Loads indexes.

PURGEDATA Utility on
page 2-307

Purges data from tables, indexes, or partitions.

RECOVER Utility on page 2-311 Determines the state of a failed utility operation
and restores recoverable objects. Also, recovers
a schema from a failed change of ownership
operation. For more information, see RECOVER
SCHEMA Operation.

UPGRADE Utility on page 2-412 Transforms metadata from the existing version to
the current schema version for the SQL/MX
Software Version (MXV).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-8

SQL/MX Statements Utilities
Privileges Required to Execute Utilities

Checking DDL Locks

Many utilities, for example, DUP, MODIFY, and POPULATE INDEX, lock both metadata
and user data during the operation. The following are three kinds of locks:

 Transactional locks on metadata and user data rows

A utility runs in multiple TMF transactions, managed by the utility itself. If the
utility fails before completion, then TMF will back out the latest of those
transactions and then release the lock.

 Non-transactional file locks on user data

Some utilities must hold shared locks on user data outside TMF transactions,
to prevent concurrent updates while the utility is reading the data. If the utility
operation fails before completion, such locks are automatically released.

 Logical DDL Locks on metadata

Most utilities require that the definition of the object being worked on remains
stable for the duration of the utility operation. To ensure this, the utility inserts a
so-called 'DDL Lock' into metadata, which prevents other DDL and utility
operations from changing the definition of the object. If the utility operation fails
before completion, the DDL Lock remains intact.

If a utility operation fails before completion, you must recover the following using the
RECOVER utility:

 Work done in TMF transactions that are internally committed by the utility.

Utility Privileges Required

DOWNGRADE Super ID.

DUP SELECT privilege on the source table.

Be the owner of the schema where the target table resides.

FASTCOPY SELECT privilege on the source table.

SELECT, INSERT, UPDATE and DELETE privilege on the target
table.

MODIFY Schema owner or object owner or super ID.

POPULATE INDEX Have ALL privileges.

PURGEDATA Have ALL privileges.

RECOVER Have the corresponding utility privileges for the utility to be
recovered.

RECOVER SCHEMA Schema owner or the security administrator.

UPGRADE Super ID.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-9

SQL/MX Statements Utilities
For example, a MODIFY TABLE utility may fail at a point where the target
partition has been created but data movement has not yet started. Running
RECOVER with the CANCEL option will then remove the target partition.
Running RECOVER with the RESUME option performs the data movement to
the created target partition.

 Removing the DDL Lock.

Using the MODIFY TABLE example, MODIFY inserts a DDL Lock for the
affected table. Running RECOVER removes the DDL Lock.

To find out whether a failed utility operation needs to be recovered, issue this query
from an MXCI prompt:

select substring(o.object_name from 1 for 40)
 as object_name, o.object_type
 from
 nonstop_sqlmx_<system name>.system_schema.catsys c,
 nonstop_sqlmx_<system name>.system_schema.schemata s,
 <cat>.definition_schema_version_<version number>.objects o,
 <cat>.definition_schema_version_<version number>.ddl_locks d
 where c.cat_name = '<cat>'
 and c.cat_uid = s.cat_uid
 and s.schema_name = '<schema>'
 and s.schema_uid = o.schema_uid
 and o.object_name = '<table name>'
 and o.object_type = 'BT'
 and d.base_object_uid = o.object_uid;

You can use this query for indexes, replacing <table name> with <index name>
and 'BT' with 'IX'.

You can use this query for sequence generators, replacing <table name> with
<sequence generator name> and 'BT' with 'SG'.

A typical output of this query is:

OBJECT_NAME OBJECT_TYPE
-- -----------

EMPLOYEES BT

--- 1 row(s) selected.
>>

In this example, EMPLOYEES is the name of the object. You need to run the
RECOVER utility.

If the query does not return rows, the failed partition operation has rolled back
completely. You do not need to perform recovery.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-10

SQL/MX Statements ALTER INDEX Statement
ALTER INDEX Statement
Considerations for ALTER INDEX
Examples of ALTER INDEX

The ALTER INDEX statement modifies an SQL/MX index by changing one or more file
attributes of the index or by renaming the index. See Database Object Names on
page 6-13.

ALTER INDEX is an SQL/MX extension.

Syntax Description of ALTER INDEX

index

is the ANSI logical name of the index to alter, of the form:

[[catalog-name.]schema-name.]index

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56 and Database
Object Names on page 6-13.

RENAME TO new-index-object-name

changes the logical name of the index within the schema.

new-index-object-name

specifies the new ANSI name of the index. The new ANSI name of the index
cannot be qualified. However, the renamed index will remain in the current
catalog and schema.

ALTER INDEX [[catalog-name.]schema-name.]index alter-action

alter-action is:
RENAME TO new-index-object-name
|ATTRIBUTE[S]attribute [,attribute]...

attribute is:
 {ALLOCATE num-extents | DEALLOCATE}
 {AUDITCOMPRESS | NO AUDITCOMPRESS}
 | {CLEARONPURGE | NO CLEARONPURGE}
 | MAXEXTENTS num-extents

Note. RENAME TO changes the redefinition timestamp of the affected index and the
associated base table. However, the remaining indexes of the table are not affected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-11

SQL/MX Statements Considerations for ALTER INDEX
ATTRIBUTE[S] attribute [,attribute]...

changes the values of file attributes for the index:

In an ATTRIBUTES clause within a PARTITION clause, you must separate
attributes with a space. In ATTRIBUTES clauses in other places, you can
separate attributes with either a space or a comma.

For more detail, see the entry for a specific attribute.

Considerations for ALTER INDEX

You cannot use ALTER INDEX to change the Guardian name of a partition. To change
the Guardian name of a partition, use the Modify utility with the rename option. For
more information, see Renaming Guardian Location of Partitions of Tables, Indexes or
Sequence Generators.

Authorization and Availability Requirements
To alter an index, you must own the schema or be the super ID or object owner.

All partitions of the index must be available when ALTER INDEX executes. The
appropriate metadata tables must also be available.

Renaming an Index

You can use the rename option to change the name of an index. The following are the
prerequisites for renaming an index:

 The new ANSI name must not already exist within the schema.

 All partitions of the index and base table must be available.

Effects on TMF

Rename

For information on effects of rename option on TMF, see Effects on TMF on page 2-40.

Effects on RDF

Rename

ALLOCATE/DEALLOCATE
on page 9-2

Controls amount of disk space allocated.

AUDITCOMPRESS on
page 9-3

Controls whether unchanged columns occur in
audit records.

CLEARONPURGE on
page 9-5

Controls disk erasure when index is dropped.

MAXEXTENTS on
page 9-7

Controls maximum disk space to be allocated.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-12

SQL/MX Statements Examples of ALTER INDEX
For information on effects of rename option on RDF, see Effects on RDF on page 2-40.

Examples of ALTER INDEX

 This example changes the maximum number of extents to 760:

ALTER INDEX xempname ATTRIBUTE MAXEXTENTS 760

 The following command renames the index, CAT.SCH.I1 to I2:

ALTER INDEX CAT.SCH.I1 RENAME TO I2;

The new ANSI name of the index, I2 is not fully qualified since the index continues
to remain in the same catalog and schema as I1. After the index is renamed, the
fully qualified name of the index is CAT.SCH.I2.

ALTER SEQUENCE Statement
Considerations for ALTER SEQUENCE

Examples of ALTER SEQUENCE

The ALTER SEQUENCE statement alters the ANSI name, INCREMENT BY value,
MAXVALUE, MINVALUE and CYCLE attributes of a sequence generator.

Altering a sequence generator attribute changes the redefinition timestamp for the
sequence generator. As a result, the runtime similarity checks fail for applications using
altered sequence generators and the applications are recompiled. To avoid this runtime
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-13

SQL/MX Statements ALTER SEQUENCE Statement
recompilation overhead, HP recommends recompiling all the applications using the
sequence generator after altering the attributes.

ALTER SEQUENCE sequence alter-actions

alter-actions is:
{ sequence-generator-options
 | sequence-generator-restart-with
 | RENAME rename-clause
}

sequence-generator-options is:
{ sequence-generator-option [sequence-generator-option
…]
}

sequence-generator-option is:
{ sequence-generator-increment-by-option
 | sequence-generator-maxvalue-option
 | sequence-generator-minvalue-option
 | sequence-generator-cycle-option
}

sequence-generator-increment-by-option is:
 INCREMENT BY sequence-generator-numeric-value

sequence-generator-maxvalue-option is:
{ MAXVALUE sequence-generator-numeric-value
 | NOMAXVALUE
 | NO MAXVALUE
}

sequence-generator-minvalue-option is:
{ MINVALUE sequence-generator-numeric-value
 | NOMINVALUE
 | NO MINVALUE
}

sequence-generator-cycle-option is:
{ CYCLE
 | NOCYCLE
 | NO CYCLE
}

sequence-generator-restart-with is:
RESTART WITH sequence-generator-numeric-value

sequence-generator-numeric-value is:
< [+|-] numeric-literal >

rename-clause is:
TO < new-sequence-name >

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-14

SQL/MX Statements Syntax Description of ALTER SEQUENCE
Syntax Description of ALTER SEQUENCE

sequence

 specifies the ANSI name of a sequence generator.

sequence-generator-increment-by-option

alters the INCREMENT BY value to the user specified value. This value must be
less than the difference between the MAXVALUE and MINVALUE for the sequence
generator, and cannot be zero.

sequence-generator-maxvalue-option

alters the MAXVALUE to the user specified value. This value must satisfy the
following conditions:

 It cannot be less than the CURRENT_VALUE and MINVALUE

 It must be greater than the START WITH value

If NOMAXVALUE or NO MAXVALUE is specified, the MAXVALUE is set to the
maximum value of the sequence generator data type.

sequence-generator-minvalue-option

alters the MINVALUE to the user specified value. This value must satisfy the
following conditions:

 It must be less than or equal to the CURRENT_VALUE and less than the
MAXVALUE

 It must be less than or equal to the START WITH value

If NOMINVALUE or NO MINVALUE is specified, the MINVALUE is set to the
minimum value of the sequence generator data type.

sequence-generator-cycle-option

alters the CYCLE attriibute to the user specified value.

If user specified value is NO CYCLE, an exception is raised for the next value
after an ascending sequence reaches the maximum value or descending
sequence reaches the minimum value.

If user specified value is CYCLE, the sequence generator loops over to generate
the minimum value after an ascending sequence reaches the maximum value. The
sequence generator loops over to generate the maximum value after a descending
sequence reaches the minimum value.

sequence-generator-restart-with

resets the CURRENT_VALUE with the user specified value.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-15

SQL/MX Statements Considerations for ALTER SEQUENCE
numeric-literal

an exact numeric literal corresponding to the sequence generator data type. It
cannot be greater than the maximum value or less than the minimum value of the
sequence generator data type.

rename-clause

alters the logical name of a sequence generator.

new-sequence-name

specifies the new ANSI name for the sequence generator. The new ANSI name
cannot be qualified. The renamed sequence generator remains in the current
catalog and schema.

Considerations for ALTER SEQUENCE

You cannot use the ALTER SEQUENCE statement to change the partition name. For
more information, see Managing a Sequence Generator on page 2-288.

Authorization Requirements

The schema owner, the Super ID or the object owner can execute the ALTER
SEQUENCE statement.

Restrictions

 You cannot alter START WITH, CACHE and ORDER attributes for a sequence
generator.

 You cannot specify the INCREMENT BY, MAXVALUE or NOMAXVALUE or NO
MAXVALUE, MINVALUE or NOMINVALUE or NO MINVALUE attributes more
than once in the statement.

 You cannot use the RESTART WITH and RENAME options with other
attributes in the statement.

Examples of ALTER SEQUENCE

 This example changes the MAXVALUE of MYSEQ sequence generator:

ALTER SEQUENCE MYSEQ MAXVALUE 1000;

 This example changes the INCREMENT BY value of MYSEQ sequence generator:

ALTER SEQUENCE MYSEQ INCREMENT BY 10;

 This example changes the sequence generator option to CYCLE:

ALTER SEQUENCE MYSEQ CYCLE;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-16

SQL/MX Statements ALTER SQLMP ALIAS Statement
 ALTER SQLMP ALIAS Statement
Considerations for ALTER SQLMP ALIAS
Examples of ALTER SQLMP ALIAS

The ALTER SQLMP ALIAS statement maps an existing alias to a different SQL/MP table.

ALTER SQLMP ALIAS is an SQL/MX extension.

Syntax Description of ALTER SQLMP ALIAS

catalog.schema.object

is the alias name of an SQL/MP table or view. catalog and schema denote
ANSI-defined catalog and schema, and object is a simple name for the table or
view. If any part of the name is an SQL/MX reserved word, you must delimit it by
enclosing it in double quotes. For example: mycat."sql".myview.

[\node.]$volume.subvol.filename

is the fully qualified Guardian physical name of an SQL/MP table or view.

In this four-part name, \node is the name of a node of a NonStop server, $volume
is the name of a disk volume, subvol is the name of a subvolume, and filename
is the name of an SQL/MP table or view. if any of the four parts of the name is an
SQL/MX reserved word, you must delimit it by enclosing it in double quotes. Such
delimited parts are not case-sensitive. For example: $myvol."join".mytab.

If you do not specify \node, the default is the Guardian node named in the
=_DEFAULTS define.

Considerations for ALTER SQLMP ALIAS

Usage Restrictions

If the specified alias does not exist or the specified Guardian file does not exist,
NonStop SQL/MX returns an error. If the ALTER SQLMP ALIAS statement specifies a
physical file name that is the same as the current alias mapping, NonStop SQL/MX
returns a warning.

Security of Alias

To alter an existing SQL/MP alias, you must own its schema or be the super ID.

ALTER SQLMP ALIAS catalog.schema.object
 [\node.]$volume.subvol.filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-17

SQL/MX Statements Examples of ALTER SQLMP ALIAS
Late Bind

If you compile an application that uses an SQL/MP alias and later you change the
SQL/MP alias to map to a different SQL/MP table, the SQL/MP table definition is no
longer compatible with the definition used at compile time. As a result, you must
manually recompile applications that use the alias. If the late bind does not find the
SQL/MP table underlying the SQL/MP alias or if the SQL/MP table was moved,
NonStop SQL/MX returns an error.

For more information, see the SQL/MX Programming Manual for C and COBOL.

Examples of ALTER SQLMP ALIAS

 This example changes the physical name of an SQL/MP table:

ALTER SQLMP ALIAS SAMDBCAT.PERSNL.EMPLOYEE
 \MYSYS.$SAMDB.PERSNL.NEWEMP
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-18

SQL/MX Statements ALTER TABLE Statement
ALTER TABLE Statement
Considerations for ALTER TABLE
Examples of ALTER TABLE

The ALTER TABLE statement modifies an SQL/MX table by:

 Adding a column to the table

 Adding or dropping a constraint on the table

 Changing one or more file attributes for the table

 Renaming the table

ALTER TABLE table alter-action

alter-action is:
 ADD [COLUMN] column-definition
 | ADD [CONSTRAINT constraint] table-constraint
 | DROP CONSTRAINT constraint [RESTRICT | CASCADE]
 | ATTRIBUTE[S] attribute [,attribute]...
 | RENAME TO new-table-object-name [CASCADE]
 | ATTRIBUTE[S] attribute [,attribute]...
 | ALTER COLUMN column_name recalibrate-option
 | ALTER COLUMN column_name SET basic-sequence-generator-
option

column-definition is:
 column-name data-type
 [DEFAULT default]
 [HEADING 'heading-string' | NO HEADING]
 [[CONSTRAINT constraint] column-constraint]...

data-type is:
 CHAR[ACTER] [(length)[CHARACTERS]]
 [CHARACTER SET char-set-name] [COLLATE DEFAULT]
 [UPSHIFT]
 | PIC[TURE] X [(length)][CHARACTER SET char-set-name]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-19

SQL/MX Statements ALTER TABLE Statement
length)
 [CHARACTER SET char-set-name] [COLLATE DEFAULT]
 [UPSHIFT]
 | VARCHAR (length) [CHARACTER SET char-set-name]
 [COLLATE DEFAULT] [UPSHIFT]
 | NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]
 | NCHAR [(length) [CHARACTER SET char-set-name]
 [COLLATE DEFAULT] [UPSHIFT]
 | NCHAR VARYING(length) [CHARACTER SET char-set-name]
 [COLLATE DEFAULT] [UPSHIFT]
 | SMALLINT [SIGNED|UNSIGNED]
precision [,scale])] [SIGNED|UNSIGNED]
 | PIC[TURE] [S]{ 9(integer) [V[9(scale)]] | V9(scale) }
 [DISPLAY [SIGN IS LEADING] | COMP]
 | FLOAT [(precision)]
| REAL
 | DOUBLE PRECISION
 | DATE
 | TIME [(time-precision)]
 | TIMESTAMP [(timestamp-precision)]
 | INTERVAL { start-field TO end-field | single-field }
 is:
 literal
 | NULL
 | CURRENT_DATE
 | CURRENT_TIME
 | CURRENT_TIMESTAMP
 | {CURRENT_USER | USER}

column-constraint is:
 UNIQUE
 | PRIMARY KEY [ASC[ENDING] | DESC[ENDING]]
 | CHECK (condition)
 | REFERENCES ref-spec

table-constraint is:
 UNIQUE (column-list)
 | PRIMARY KEY (key-column-list)
 | CHECK (condition)
 | FOREIGN KEY (column-list) REFERENCES ref-spec

column-list is:
 column-name [,column-name]...

key-column-list is:
 column-name [ASC[ENDING] | DESC[ENDING]]
 [,column-name [ASC[ENDING] | DESC[ENDING]]...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-20

SQL/MX Statements Syntax Description of ALTER TABLE
Syntax Description of ALTER TABLE

table

specifies the name of the table to alter. For more information, see Database Object
Names on page 6-13.

ADD [COLUMN] column-definition

adds a column to table.

The clauses for the column-definition are specified as:

column-name

specifies the name for the new column in the table. Column-name is an SQL
identifier. column-name must be unique among column names in the table. If
the column name is an SQL/MX reserved word, you must delimit it by

 ref-spec is:
 referenced-table [(column-list)]

[referential triggered action]

referential triggered action is:
 update rule [delete rule]
 | delete rule [update rule]

update rule is: ON UPDATE referential action

delete rule is: ON DELETE referential action
referential action is:
 RESTRICT
 | NO ACTION
 | CASCADE
 | SET NULL
 | SET DEFAULT

attribute is:
{ALLOCATE num-extents | DEALLOCATE}
 | {AUDITCOMPRESS | NO AUDITCOMPRESS}
 | {CLEARONPURGE | NO CLEARONPURGE}
 | MAXEXTENTS num-extents

recalibrate-option is:
 | RECALIBRATE
 | RECALIBRATE TO signed-numeric-literal
 | RECALIBRATE TO signed-numeric-literal NO SELECT

basic-sequence-generator-option is:
 INCREMENT BY signed-numeric-literal
 | MAXVALUE signed-numeric-literal
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-21

SQL/MX Statements Syntax Description of ALTER TABLE
enclosing it in double quotes. For example: mycat."sql".myview. See
Identifiers on page 6-56.

data-type

specifies the name and data type for the new column in the table.

data-type is the data type of the values that can be stored in column. See
Data Types on page 6-17.

DEFAULT default

specifies a default value for the column. The added column must have a
default value. You can declare the default value explicitly by using the
DEFAULT clause or you can enable null to be used as the default by omitting
both the DEFAULT and NOT NULL clauses. If you omit the DEFAULT clause
and specify NOT NULL, NonStop SQL/MX returns an error. For existing rows
of the table, the added column takes on its default value.

If you set the default to the datetime value CURRENT_DATE,
CURRENT_TIME, or CURRENT_TIMESTAMP, NonStop SQL/MX uses
January 1, 1 A.D. 12:00:00.000000 as the default date and time for the existing
rows.

For any row that is added after the column is added, if no value is specified for
the column as part of the add row operation, the column will receive a default
value based on the current timestamp at the time the row is added.

If you set the default value to USER, CURRENT_USER, or SESSION_USER,
NonStop SQL/MX uses " " (blank) as the default value for the existing rows.

For any row that is added after the column is added, if no value is specified for
the column as part of the add row operation, the column will receive the current
Guardian user ID for its value. See DEFAULT Clause on page 7-2.

HEADING 'heading-string'| NO HEADING

specifies a string heading-string of 0 to 128 characters to use as a
heading for the column if it is displayed with a SELECT statement in MXCI.
The heading-string can contain characters only from the ISO88591
character set. The default heading is column, the column name. If you specify
a heading that is identical to the column name, INVOKE and SHOWDDL do
not display that heading.

If you specify NO HEADING or HEADING ‘’, NonStop SQL/MX stores this as
HEADING ‘’, and the column name is displayed as the heading in a SELECT
statement. The behavior for HEADING ‘’ is different from that of NonStop
SQL/MP, which does not display anything for a heading in a SELECT
statement if the heading is specified as HEADING ‘’.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-22

SQL/MX Statements Syntax Description of ALTER TABLE
[CONSTRAINT constraint] column-constraint

specifies a name constraint and constraint definition for a column
constraint. See Database Object Names on page 6-13.

ADD [CONSTRAINT constraint] table-constraint

adds a constraint to the table and optionally specifies constraint as the name
for the constraint. The new constraint must be consistent with any data already
present in the table.

CONSTRAINT constraint

specifies a name for the column or table constraint. constraint must have
the same catalog and schema as table and must be unique among constraint
names in that schema. If you omit the catalog portion or the catalog and
schema portions of the name you specify in constraint, NonStop SQL/MX
expands the name by using the catalog and schema for table. See Database
Object Names on page 6-13.

If you do not specify a constraint name, NonStop SQL/MX constructs an SQL
identifier as the name for the constraint in the catalog and schema for table.
The identifier consists of the fully qualified table name concatenated with a
system-generated unique identifier. For example, a constraint on table A.B.C
might be assigned a name such as A.B.C_971..._01... . .

UNIQUE
 or
UNIQUE column-list

is a column or table constraint (respectively) that specifies that the column or
set of columns cannot contain more than one occurrence of the same value or
set of values. If you omit UNIQUE, duplicate values are allowed.

column-list cannot include more than one occurrence of the same column.
In addition, the set of columns you specify on a UNIQUE constraint cannot
match the set of columns on any other UNIQUE constraint for the table or on
the PRIMARY KEY constraint for the table. Columns you define as unique
must be specified as NOT NULL.

A UNIQUE constraint is enforced with a unique index. If there is already a
user-defined unique index on column-list, NonStop SQL/MX uses this
index; if not, the system creates a unique index.

The maximum combined length of the columns for a UNIQUE constraint is
2010 bytes for 4K blocks and 2048 bytes for 32K blocks.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-23

SQL/MX Statements Syntax Description of ALTER TABLE
PRIMARY KEY [ASC[ENDING] | DESC[ENDING]] [[NOT] DROPPABLE]
 or
PRIMARY KEY key-column-list

is a column or table constraint (respectively) that specifies a column or set of
columns as the primary key for the table. key-column-list cannot include
more than one occurrence of the same column. In addition, the set of columns
you specify on a PRIMARY KEY constraint cannot match the set of columns on
any UNIQUE constraint for the table.

ASCENDING and DESCENDING specify the direction for entries in each
column within the key. The default is ASCENDING.

The PRIMARY KEY value in each row of the table must be unique within the
table. Columns within a PRIMARY KEY cannot contain nulls. A PRIMARY KEY
defined for a set of columns implies that the column values are unique and not
null.

When a PRIMARY KEY table constraint is added by using the ALTER TABLE
statement, it is always droppable. For a PRIMARY KEY column constraint, you
cannot specify NOT DROPPABLE; if you do, NonStop SQL/MX returns an
error.

A PRIMARY KEY constraint is enforced with a unique index. If there is already
a unique index on key-column-list, NonStop SQL/MX uses this index; if
not, the system creates a unique index. Because the PRIMARY KEY constraint
uses a supporting unique index, the clustering key is not part of the constraint
definition and therefore the maximum combined length of the columns for the
PRIMARY KEY is 2010 bytes for 4K blocks and 2048 bytes for 32K blocks.

When a PRIMARY KEY constraint is created on a table, all the index columns
must have a NOT NULL clause in the CREATE TABLE statement for the table.

The value of the PRIMARY_KEY_CONSTRAINT_DROPPABLE_OPTION
attribute in the DEFAULTS Table has no affect on a PRIMARY KEY constraint
added by using the ALTER TABLE statement because in this case the
PRIMARY KEY is always droppable.

CHECK (search-condition)

is a constraint that specifies a condition that must be satisfied for each row
in the table.

NonStop SQL/MX checks the condition whenever an operation occurs that
might affect its value. The operation is allowed if the predicate in the search
condition evaluates to TRUE or null, but is prohibited if the predicate evaluates
to FALSE. When a check constraint is added, existing data is checked for
violations.

You cannot refer to the CURRENT_DATE, CURRENT_TIME, or
CURRENT_TIMESTAMP function in a CHECK constraint, and you cannot use
subqueries in a CHECK constraint.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-24

SQL/MX Statements Syntax Description of ALTER TABLE
REFERENCES ref-spec

specifies a references column constraint. The maximum combined length of
the columns for a REFERENCES constraint is 2010 bytes for 4K blocks and
2048 bytes for 32K blocks.

FOREIGN KEY (column-list) REFERENCES ref-spec

is a referential table constraint. A referential constraint for the table declares
that a column or set of columns (called a foreign key) in table can contain
only values that match those in a column or set of columns specified in the
REFERENCES clause.

The two columns or sets of columns must have the same characteristics (data
type, length, scale, precision), and there must be a UNIQUE or PRIMARY KEY
constraint on the column or set of columns specified in the REFERENCES
clause.

The foreign key is the column or set of columns specified in the FOREIGN KEY
clause, immediately following the FOREIGN KEY keywords.

A FOREIGN KEY constraint is enforced with a nonunique index. If there is
already a unique or nonunique index on key-column-list,
NonStop SQL/MX uses this index; if not, it creates a nonunique index.

ref-spec is:

referenced-table [(column-list)] [referential triggered
action]

referenced-table is the table referenced by the foreign key in a
referential constraint. referenced-table cannot be a view, and
referenced-table cannot be the same as table.

column-list specifies the column or set of columns in
referenced-table that corresponds to the foreign key in table. The
columns in the column list associated with REFERENCES must be in the
same order as the columns in the column list associated with FOREIGN
KEY. If column-list is omitted, the referenced table's PRIMARY KEY
columns are the referenced columns.

update rule specifies what referential action is taken when
column-list in referenced-table is updated. If no ON UPDATE
clause is specified, a default of ON UPDATE NO ACTION is assumed.

delete rule specifies what referential action is taken when a
row in referenced-table is deleted. If no ON DELETE clause is
specified, a default of ON DELETE NO ACTION is assumed.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-25

SQL/MX Statements Syntax Description of ALTER TABLE
referential action

RESTRICT referential action means that the referential check is
made for each row. An error is raised when the referential constraint is
violated.

ANSI SQL-99 standard: NO ACTION referential action means that
the referential check is made at the end of the SQL statement. An error is
raised when the referential constraint is violated.

NonStop SQL/MX does not support NO ACTION referential action in the
way it is specified by ANSI SQL-99. However, you can change NO
ACTION's behavior to be the same as RESTRICT by setting an
appropriate value for the Control Query Default
REF_CONSTRAINT_NO_ACTION_LIKE_RESTRICT. Options for this
attribute are:

When CASCADE is specified with the ON DELETE referential triggered
action, a row in the referencing table and its corresponding row in the
referenced-table is deleted. This maintains consistency between the
referencing and referenced tables.

When SET NULL is specified with the ON DELETE referential triggered
action, and a row from the referencing table matches the row in the
referenced-table, the referencing column(s) of the referencing row
from the referencing table is set to NULL.

When SET DEFAULT is specified with the ON DELETE referential
triggered action, and a row from the referencing table matches the row in
the referenced-table, the referencing column(s) of the referencing row
from the referencing table is set to its DEFAULT value.

When CASCADE is specified with the ON UPDATE referential triggered
action, a row in the referencing table and its corresponding row in the
referenced-table is updated.

When SET NULL is specified with the ON UPDATE referential triggered
action, and a row in the referencing table matches the row in the
referenced-table, the referencing column(s) of the referencing row
from the referencing table is set to NULL.

When SET DEFAULT is specified with the ON UPDATE referential
triggered action, and a row in the referencing table matches the row in the

OFF SQL issues an error.

SYSTEM SQL issues warning 1302, indicating that it will behave like
RESTRICT. The default is SYSTEM.

ON Makes NO ACTION behave like RESTRICT, without warnings or
errors.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-26

SQL/MX Statements Syntax Description of ALTER TABLE
referenced-table, the referencing column(s) of the referencing row
from the referencing table is set to its DEFAULT value.

A table can have an unlimited number of referential constraints, and you can
specify the same foreign key in more than one referential constraint, but you
must define each referential constraint separately.

DROP CONSTRAINT constraint [RESTRICT | CASCADE]

drops a constraint from the table. The constraint name constraint must be
specified. If you did not specify a name when you created the constraint or do not
know the constraint name, you can use SHOWDDL to display it.

A referential constraint is dependent on its referenced column list. This column list
is associated with a UNIQUE or PRIMARY KEY constraint. When a UNIQUE or
PRIMARY KEY constraint is dropped, NonStop SQL/MX checks if any referential
constraints are dependent on the constraint.

If you specify RESTRICT and referential constraints are dependent on the
constraint, you cannot drop the constraint.

If you specify CASCADE and referential constraints are dependent on the
constraint, those dependent constraints are dropped in addition to the specified
constraint being dropped.

If you drop a constraint, NonStop SQL/MX drops its dependent index if SQL/MX
originally created the same index. If the constraint uses an existing index, the index
is not dropped.

The default is RESTRICT.

CONSTRAINT constraint

specifies a name for the column or table constraint. constraint must have the
same catalog and schema as table and must be unique among constraint names
in that schema. If you omit the catalog portion or the catalog and schema portions
of the name you specify in constraint, NonStop SQL/MX expands the name by
using the catalog and schema for table. See Database Object Names on
page 6-13.

If you do not specify a constraint name, NonStop SQL/MX constructs an SQL
identifier as the name for the constraint in the catalog and schema for table.
The identifier consists of the fully qualified table name concatenated with a system-
generated unique identifier. For example, a constraint on table A.B.C might be
assigned a name such as A.B.C_971..._01... .

Note. The referential actions CASCADE, SET NULL, and SET DEFAULT are
available only on systems running J06.09 and later J-series RVUs and H06.20 and
later H-series RVUs.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-27

SQL/MX Statements Syntax Description of ALTER TABLE
UNIQUE
 or
UNIQUE (column-list)

is a column or table constraint (respectively) that specifies that the column or set of
columns cannot contain more than one occurrence of the same value or set of
values. If you omit UNIQUE, duplicate values are allowed unless the column is part
of the PRIMARY KEY.

column-list cannot include more than one occurrence of the same column. In
addition, the set of columns you specify on a UNIQUE constraint cannot match the
set of columns on any other UNIQUE constraint for the table or on the PRIMARY
KEY constraint for the table. All columns defined as unique must be specified as
NOT NULL.

A UNIQUE constraint is enforced with a unique index. If there is already a unique
index on column-list, NonStop SQL/MX uses this index; if not, the system
creates a unique index.

PRIMARY KEY [ASC[ENDING] | DESC[ENDING]] DROPPABLE]
 or
PRIMARY KEY key-column-list

is a column or table constraint (respectively) that specifies a column or set of
columns as the primary key for the table. key-column-list cannot include more
than one occurrence of the same column. In addition, the set of columns you
specify on a PRIMARY KEY constraint cannot match the set of columns on any
UNIQUE constraint for the table.

ASCENDING and DESCENDING specify the direction for entries in each column
within the key. The default is ASCENDING.

The PRIMARY KEY value in each row of the table must be unique within the table.
Columns within a PRIMARY KEY cannot contain nulls. A PRIMARY KEY defined
for a set of columns implies that the column values are unique and not null.

When a PRIMARY KEY table constraint is added by using the ALTER TABLE
statement, it is always droppable. For a PRIMARY KEY column constraint, you
cannot specify NOT DROPPABLE; if you do, NonStop SQL/MX returns an error.

A PRIMARY KEY constraint is enforced with a unique index. If there is already a
user-defined unique index on key-column-list, NonStop SQL/MX uses this
index; if not, it creates a unique index. Because the PRIMARY KEY constraint uses
a supporting unique index, the clustering key is not part of the constraint definition.
Therefore, the maximum combined length of the columns for the PRIMARY KEY is
2010 bytes for 4K blocks and 2048 bytes for 32K blocks.

When a PRIMARY KEY constraint is created on a table, all the index columns must
have a NOT NULL clause in the CREATE TABLE statement for the table.

The value of the PRIMARY_KEY_CONSTRAINT_DROPPABLE_OPTION attribute
in the DEFAULTS Table has no affect on a PRIMARY KEY constraint added by
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-28

SQL/MX Statements Syntax Description of ALTER TABLE
using the ALTER TABLE statement because in this case the PRIMARY KEY is
always droppable.

CHECK (condition)

is a constraint that specifies a condition that must be satisfied for each row in
the table.

NonStop SQL/MX checks the condition whenever an insert or update operation
occurs that might affect its value. The operation is allowed if the predicate in the
search condition evaluates to TRUE or null, but is prohibited if the predicate
evaluates to FALSE. When a check constraint is added, existing data is checked
for violations.

You cannot refer to the CURRENT_DATE, CURRENT_TIME, or
CURRENT_TIMESTAMP function in a CHECK constraint, and you cannot use
subqueries in a CHECK constraint.

See Search Condition on page 6-108.

REFERENCES ref-spec
 or
FOREIGN KEY (column-list) REFERENCES ref-spec

is a column or table constraint (respectively) that specifies a referential constraint
for the table, declaring that a column or set of columns (called a foreign key) in
table can contain only values that match those in a column or set of columns
specified in the REFERENCES clause.

The two columns or sets of columns must have the same characteristics (data
type, length, scale, precision), and there must be a UNIQUE or PRIMARY KEY
constraint on the column or set of columns specified in the REFERENCES clause.

The foreign key is the column or set of columns specified in the FOREIGN KEY
clause, immediately following the FOREIGN KEY keywords.

ref-spec is:

referenced-table [(column-list)]

referenced-table is the table referenced by the foreign key in a referential
constraint. referenced-table cannot be a view, and referenced-table
cannot be the same as table.

column-list specifies the column or set of columns in referenced-table
that corresponds to the foreign key in table. The columns in the column list
associated with REFERENCES must be in the same order as the columns in
the column list associated with FOREIGN KEY. If column-list is omitted, the
referenced table’s PRIMARY KEY columns are the referenced columns.

A table can have an unlimited number of referential constraints and you can
specify the same foreign key in more than one referential constraint, but you must
define each referential constraint separately.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-29

SQL/MX Statements Syntax Description of ALTER TABLE
Publish/Subscribe's embedded update and embedded delete statements are not
allowed on tables with referential integrity constraints.

You cannot create self-referencing foreign key constraints. When a foreign key
constraint is added to an existing table, NonStop SQL/MX verifies that the data
does not violate the constraint. If it does, a message is returned indicating the
constraint was not created.

RENAME TO new-table-object-name [CASCADE]

changes the logical name of the table within the schema.

new-table-object-name

specifies the new ANSI name of the table. The new ANSI name of the table
cannot be qualified. However, the renamed table will remain in the current
catalog and schema.

CASCADE

specifies that the system generated ANSI names of indexes and constraints
associated with the table will be renamed automatically.

Note. The CASCADE option renames the system-generated constraints and indexes
associated with the table. System-generated names have the following form:
<ANSI name prefix>_nnnnnnnnn_nnnn
where, n is a digit.
CASCADE option matches the ANSI name prefix of constraints with the table name.
The CASCADE option does not rename the constraints whose ANSI name prefix
does not match the table name. However, CASCADE option renames the system
generated index, irrespective of the name. Intermittent use of CASCADE option in
rename operations might lead to unintended results. Therefore, HP recommends that
you either use CASCADE continuously or do not use this option.

Note.

 Renaming a table changes the text of referencing views, RI constraints, and triggers to
reference the new name.

 RENAME TO changes the redefinition timestamp of the following objects:

 The affected table.

 All indexes on the table.

 All the tables referenced by the affected table.

 All the tables referencing the affected table.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-30

SQL/MX Statements Syntax Description of ALTER TABLE
ATTRIBUTE[S] attribute [,attribute]...

changes the values of file attributes for the table and its dependent indexes. You
can separate attributes with either a space or a comma. File attributes you can
specify are:

Unlike NonStop SQL/MP’s form of this statement, SQL/MX’s ALTER TABLE
statement has no PARTONLY clause. When you supply a new value for attributes,
ALTER TABLE modifies the value of the attribute on all partitions of the table. For
more detail, see the entry for a specific attribute.

basic-sequence-generator-option

INCREMENT BY signed-numeric-literal

See INCREMENT BY signed-numeric-literal in Syntax Description of
CREATE TABLE on page 2-111.

MAXVALUE signed-numeric-literal

See MAXVALUE signed-numeric-literal in Syntax Description of
CREATE TABLE on page 2-111. NO MAXVALUE is not a valid specification for
ALTER TABLE ALTER COLUMN.

recalibrate-option

recalibrates the CURRENT_VALUE of the internal Sequence Generator. This might
be necessary after a FASTCOPY, DUP or an IMPORT operation. There are three
ways to recalibrate:

 Recalibrate based on the INCREMENT BY internal sequence generator option
and the maximum value of the IDENTITY column in the base table.

 Recalibrate to a user-specified value with a SELECT to obtain the maximum
value of the IDENTITY column from the base table.

 Recalibrate to a user-specified value without performing a SELECT of the
IDENTITY column maximum value.

See Recalibrating the Sequence Generator of an IDENTITY column on page 2-38
for more details.

ALLOCATE/DEALLOCATE
on page 9-2

Controls amount of disk space allocated.

AUDITCOMPRESS on
page 9-3

Controls whether unchanged columns are included
in audit records.

CLEARONPURGE on
page 9-5

Controls disk erasure when table is dropped.

MAXEXTENTS on
page 9-7

Controls maximum disk space to be allocated.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-31

SQL/MX Statements Considerations for ALTER TABLE
Considerations for ALTER TABLE

You cannot use ALTER TABLE to change a partition’s name.

Effect of Adding a Column on View Definitions

The addition of a column to a table has no effect on existing view definitions. Implicit
column references specified by SELECT * in view definitions are replaced by explicit
column references when the definition clauses are originally evaluated.

Authorization and Availability Requirements

To alter a table, you must own the schema or be the super ID or object owner. You
must also have access to all partitions of the table itself.

ALTER TABLE works only on user-created tables. You cannot use it to modify a
metadata table even if you are the owner of the metadata tables or a SUPER user.

Adding a Constraint

To add a constraint that refers to a column in another table, you must have
REFERENCES privileges on that column.

Dropping a Constraint

To drop a constraint, you must be the schema or object owner of the table on which the
constraint has been defined or be the super ID. If you are owner of the table which the
referential constraint is referencing you can revoke the REFERENCE privilege on the
column. Revoking the REFERENCE privileges, in effect, drops the constraint. You can
revoke the REFERENCE privilege with a REVOKE command or indirectly through a
DROP TABLE … CASCADE statement.

Adding a Column

A user who has UPDATE or REFERENCES privileges on a table also has those
privileges on added columns of the table.

Renaming a Table

You can use the rename option to change the name of a table. The following are the
prerequisites for renaming a table:

 The new ANSI name must not already exist within the schema.

 The table and all of the partitions must be available. Also, all partitions of indexes
of the table must be available.

Constraints Implemented With Indexes

NonStop SQL/MX uses unique indexes to implement all UNIQUE constraints, including
PRIMARY KEY constraints. Nonunique indexes are used to implement the foreign key
portion of all referential constraints added with ALTER TABLE.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-32

SQL/MX Statements Considerations for ALTER TABLE
When you add such a constraint, NonStop SQL/MX checks if an existing index can be
used to implement the constraint and if not, automatically creates a new index (if
possible, with the same name as the constraint). It uses the same primary extent size,
secondary extent size and MAXEXTENTS values as the base table's primary partition.
The index is created on the same volume as the base table's primary partition.
NonStop SQL/MX then populates the new index.

After NonStop SQL/MX populates the index, you should perform a FUP RELOAD on
the index and all its partitions, to organize the index structure more efficiently and to
reduce index levels.

If you are creating a constraint on a large table, you might receive an error 45 (file full).
In addition, because NonStop SQL/MX executes the creation of the constraint in a
single TMF transaction, you might experience TMF limitations such as a full audit trail
file or transaction timeout.

If you create an index with the default values by mistake, you might need to re-create
the index. You can alter maxextents size after the index is created, but you cannot alter
primary and secondary extent sizes. You can use MODIFY to partition the index and
move the partitions to desired locations.

Indexes used to enforce constraints can require significant amounts of disk space, and
NonStop SQL/MX might be unable to create the supporting index when you add the
constraint. Consequently, the add constraint operation fails.

Adding CHECK and FOREIGN KEY Constraints

When a CHECK or FOREIGN KEY constraint is added to a table containing data, the
existing data is validated to ensure it conforms to the constraint. While this validation
takes place, the table is locked for read-only access. For a FOREIGN KEY constraint,
both the referencing and referenced tables are locked. This means that while SQL/MX
can perform statement compilations that use these tables or perform read operation to
these tables, you will not be able to update the data during validation.

A full-file scan that is run in a single TMF transaction could experience TMF limitations,
such as transaction timeout, if a large amount of data is to be checked.

Dropping FOREIGN KEY Constraints

To drop a table’s foreign key, you must perform SHOWDDL on the table to find the
constraint’s system identification, then use that value in the ALTER TABLE statement.
For a description of SHOWDDL, see SHOWDDL Command on page 4-83. For an
example of an ALTER TABLE statement to drop a foreign key, see Examples of ALTER
TABLE.

Note. When using a large table, you should create the supporting index before you create a
constraint. As a result, you can create the index as needed (for example, with partitions) so
that you have better control over use of disk volumes. To create the constraint, you must create
a unique or nonunique index before retrying the ALTER TABLE ADD CONSTRAINT operation.
You might also want to partition the supporting index for better performance.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-33

SQL/MX Statements Considerations for ALTER TABLE
Altering the MAXVALUE and INCREMENT BY options on
IDENTITY columns

The only options that can be altered for an IDENTITY column are:

 INCREMENT BY

 MAXVALUE

These rules apply:

 Only one IDENTITY column sequence generator option can be altered at a time.

 The INCREMENT BY option cannot be 0 (zero), less than 0 (zero), and cannot be
greater than the maximum value of the data type of the IDENTITY column.

 The INCREMENT BY or MAXVALUE options can be used only on an IDENTITY
column.

 When the INCREMENT BY option is altered, only the attributes of the internal
Sequence Generator are altered. The CURRENT_VALUE of the internal Sequence
Generator is not altered. The current value is incremented using the INCREMENT
BY value applied during previous INSERT operations. The next INSERT after the
ALTER TABLE ALTER COLUMN command obtains the CURRENT_VALUE. The
new INCREMENT BY value set by the ALTER TABLE ALTER COLUMN SET
command will then be applied, creating a new current value.

 The MAXVALUE option cannot be 0 (zero), less than 0 (zero) or greater than the
maximum value of the data type of the IDENTITY column.

 The MAXVALUE option must be greater than the CURRENT_VALUE of the internal
Sequence Generator.

 The MAXVALUE option value cannot be less than the INCREMENT BY option
value.

 A valid numeric value must be specified for the MAXVALUE option. NO
MAXVALUE is not allowed. If you use NO MAXVALUE on the ALTER TABLE
ALTER COLUMN specification, an error will be raised:

>>alter table T115T002 alter column id_key set NO MAXVALUE;

*** ERROR[1595] The MAXVALUE option for the IDENTITY column ID_KEY
must be a valid numeric value. NO MAXVALUE is not allowed.

--- SQL operation failed with errors.

 Similarity check for an INSERT query that involves a system-generated IDENTITY
column value will fail; the query must be recompiled.

Altering the MAXVALUE attribute on IDENTITY columns

When the MAXVALUE maximum is reached for the IDENTITY column, error
ERROR[8934] is raised that says the maximum has been exceeded. Subsequent
INSERTs fail with ERROR[8934], but the CURRENT_VALUE of the internal Sequence
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-34

SQL/MX Statements Considerations for ALTER TABLE
Generator is updated for every failed INSERT. If an artificially low cycle range is
created by having the MAXVALUE set to a value lower than the natural maximum
allowed for the data type, the ALTER TABLE ALTER COLUMN SET MAXVALUE
option can then be used to raise the maximum, up to the natural maximum allowed for
the data type. This allows for more available values in the cycle range for the internal
Sequence Generator. Inserts are successful until the new MAXVALUE is reached.

IDENTITY column and redefinition timestamp

When the MAXVALUE or the INCREMENT BY attribute is altered, the redefinition
timestamp is updated for the base table that contains the IDENTITY column as well as
for the SG Table associated with that IDENTITY column. The following example
illustrates this behavior:

control query default SEQUENCE_GENERATOR_CACHE '1';
--- SQL operation complete.

control query default AUTOMATIC_RECOMPILATION 'ON';
--- SQL operation complete.

control query default RECOMPILATION_WARNINGS 'ON';
--- SQL operation complete.

create table T115T009 (id_key int unsigned GENERATED BY DEFAULT AS
IDENTITY (MINVALUE 1 MAXVALUE 2)
 , b int
 , c int);
--- SQL operation complete.

prepare s1 from insert into T115T009 values (DEFAULT, 1, 1);
--- SQL command prepared.

execute s1;
--- 1 row(s) inserted.

execute s1;
--- 1 row(s) inserted.

-- Two successful executes and the third execute Must get
--"*** ERROR[8934] The MAXVALUE for the sequence generator has been
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-35

SQL/MX Statements Considerations for ALTER TABLE
exceeded."
-- Value 3 exceeded MAXVALUE 2.

execute s1;

*** ERROR[8934] The MAXVALUE for the sequence generator has been
exceeded.

--- 0 row(s) inserted.

-- Note: The value from the third execute is lost since the execute
failed.

select * from T115T009;

id_KEY B C

------------- ----------- -----------

 1 1 1

 2 1 1

--- 2 row(s) selected.

-- Recover from the 8934 error by altering the MAXVALUE attribute of
the sequence generator.

alter table T115T009 alter column id_key set maxvalue 100;
--- SQL operation complete.

-- INSERT queries involving IDENTITY column are
-- non-retryable queries similar to INSERT queries

-- involving tables with indexes. So, open to the SG Table -- is blown
away and the query is not auto-recompiled.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-36

SQL/MX Statements Considerations for ALTER TABLE
--- Retry happens on the subsequent execute that raises
--- *** ERROR[8574] An OPEN was blown away on SG_table.

execute s1;

*** ERROR[8574] An OPEN was blown away on table
CAT.S15."@@INTERNAL_SG_511312700289154_@@".

*** ERROR[8935] The sequence generator update failed, see additional
diagnostics for failure details.

--- 0 row(s) inserted.

-- The above error occurs on the access to the SG Table,
-- hence the CURRENT_VALUE in the SG Table is not updated.

select * from T115T009;

ID_KEY B C

---------- ---------- -----------

 1 1 1

 2 1 1

--- 2 row(s) selected.

-- This is a non-retriable query, hence execute command –
-- must be re-issued.
-- The query is recompiled and the following warning is
-- raised "*** WARNING[8576] Statement was recompiled"
--
execute s1;

*** WARNING[8576] Statement was recompiled.

--- 1 row(s) inserted.

-- Notice the value 3 is missing from the ID_KEY value.
-- It was lost during the
-- execute that failed with " *** ERROR[8934] The MAXVALUE
-- for the sequence generator has been exceeded."

select * from T115T009;

ID_KEY B C

------------- ----------- -----------

 1 1 1

 2 1 1

 4 1 1

--- 3 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-37

SQL/MX Statements Considerations for ALTER TABLE
Recalibrating the Sequence Generator of an IDENTITY
column

Recalibrate an IDENTITY column based on the INCREMENT BY value

This method always performs a SELECT on the base table containing the IDENTITY
column to obtain the current maximum value of the IDENTITY column. This maximum
value is incremented using the value of the INCREMENT BY internal Sequence
Generator option. It is checked with the current numbering scheme of the INCREMENT
BY option. If the newly incremented maximum value is not consistent with the
numbering scheme, the value will be increased to the next value that would be
consistent with the INCREMENT BY numbering scheme.

Rules for recalibrating based on the INCREMENT BY value

 The column to be recalibrated must exist and be an IDENTITY column in the table.

 If the table containing the IDENTITY column was newly created and has no rows
added, no calibration is necessary. The recalibration statement ends successfully,
but no update will be performed for the internal Sequence Generator current value.

 If the table containing the IDENTITY column has rows added, calibration might be
necessary. The internal Sequence Generator CURRENT_VALUE column is
recalibrated to a number larger than the maximum value of the IDENTITY column
in the base table.

 The current maximum value for the IDENTITY column is obtained by
performing a SELECT on the IDENTITY column. This maximum value is added
to the INCREMENT BY value of the internal Sequence Generator option. This
incremented value is saved in the CURRENT_VALUE of the internal Sequence
Generator table (SG Table).

 When the new CURRENT_VALUE is calculated for a RECALIBRATE command,
the new CURRENT_VALUE must not be greater than the maximum value
allowed for the data type of the IDENTITY column, or the MAXVALUE internal
Sequence Generator option value. An error is returned if the calculated new
CURRENT_VALUE exceeds these maximums and the CURRENT_VALUE of the
internal Sequence Generator table remains unmodified.

 The INCREMENT BY numbering scheme will be honored when determining
the new value for the CURRENT_VALUE of the internal Sequence Generator.
When the new current value is calculated, it will be compared to determine if it
matches the next logical number that would be consistent with the numbering
scheme for the INCREMENT BY value. If the number is not consistent, then a
number will be added to the current value to make it consistent. This
synchronizes the new CURRENT_VALUE to the INCREMENT BY numbering
scheme. For more information, see Example of ALTER TABLE ALTER
COLUMN..RECALIBRATE on page 2-45.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-38

SQL/MX Statements Considerations for ALTER TABLE
 This incremented value is saved in the CURRENT_VALUE of the internal
Sequence Generator table. This insures the internal Sequence Generator
value will then generate unique numbers for the IDENTITY column.

Recalibrate to a user-specified value with SELECT

This method always performs a SELECT on the base table containing the IDENTITY
column to obtain the current maximum value of the IDENTITY column. This maximum
value will be compared to the user-specified value. The user-specified value will not be
incremented using the INCREMENT BY internal Sequence Generator option or
adjusted to match its numbering scheme.

Rules for recalibrating to a user-specified value

 The column to be recalibrated must exist and be an IDENTITY column in the table.

 The user-specified recalibration value must be included, be a positive number, and
must not be greater than the maximum value allowed for the data type of the
IDENTITY column. In addition, the user-specified recalibration value must not be
greater than MAXVALUE option of the internal Sequence Generator.

 The current maximum value obtained by performing the SELECT is used in the
following rules:

 If the default specification type is GENERATED ALWAYS AS IDENTITY, the
user-specified recalibration value must be larger than the current maximum
value of the IDENTITY column in the base table.

 If the default specification type is GENERATED BY DEFAULT AS IDENTITY, a
number less than the current maximum value of the IDENTITY column is
allowed.

 The user-specified recalibration value must not be less than the START WITH and
MINVALUE options of the internal Sequence Generator.

 The user-specified recalibration value will not be synchronized with the
INCREMENT BY numbering scheme. The user-specified value will be considered
a pure override.

Recalibrate to a user-specified value without SELECT

This method does not perform a SELECT on the base table containing the IDENTITY
column to obtain the current maximum value of the IDENTITY column. The user-
specified value will not be incremented using the INCREMENT BY internal Sequence
Generator option or adjusted to match its numbering scheme.

Rules for recalibrating to a user-specified value without SELECT

 The column to be recalibrated must exist and be an IDENTITY column in the table.

 The user-specified recalibration value must be included, be a positive number, and
must not be greater than the maximum value allowed for the data type of the
IDENTITY column.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-39

SQL/MX Statements Considerations for ALTER TABLE
 The user-specified recalibration value must not be greater than MAXVALUE option
of the internal Sequence Generator.

 The default specification type must be GENERATED BY DEFAULT AS IDENTITY.
ERROR[1601] is raised for default specification type GENERATED ALWAYS AS
IDENTITY.

 The user-specified recalibration value must not be less than the START WITH and
MINVALUE options of the internal Sequence Generator.

 The user-specified recalibration value will not be synchronized with the
INCREMENT BY numbering scheme. The specified value will be considered a
pure override.

SQL/MX Extensions to ALTER TABLE

The SQL/MX extensions are:

 ATTRIBUTES clause
 ASCENDING and DESCENDING options on the PRIMARY KEY constraint

Considerations for Referential Integrity

For information on referential integrity constraints, see the Considerations for
Referential Integrity section in CREATE TABLE.

Effects on TMF

Rename

After ANSI rename operations are performed, TMF recovery including backout,
volume, and file recovery are fully supported. TMF online dumps remain valid after
ANSI rename. Use the new ANSI names to access these dumps, because you can no
longer use the original ANSI names after rename is performed.

Effects on RDF

Rename

You must perform corresponding rename operations on the backup system to
synchronize primary and backup systems. This ensures that the logical
correspondence between the ANSI names are maintained in the primary and backup
databases.

Effects on open blown away

Rename

ANSI rename changes the redefinition timestamp of a table. Therefore, if there is an
open blown away after an ANSI rename operation, the similarity check will pass,
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-40

SQL/MX Statements Considerations for ALTER TABLE
because it is the same physical table with a different name. The following example
illustrates this occurrence:

>>control query default RECOMPILATION_WARNINGS 'ON';

--- SQL operation complete.

>>prepare q from select * from t1;

--- SQL command prepared.

>>execute q;

<successful result>

>>alter table t1 rename to t2;

--- SQL operation complete.

>>execute q;

*** WARNING[8578] Similarity check passed.

<successful result>

>>

In this example, the first command execute q, uses the original ANSI name to
access the table t1. The second command changes the name and redefinition
timestamp of the table. The third command execute q, also uses the original ANSI
name to access the table t1. Although the rename command changes the name and
redefinition timestamp of the table, the similarity check passes because the table t1
was already open using the first command.

New attempts to access a renamed table using the original ANSI name fail, because
the original ANSI name no longer exists. The following example illustrates this
occurrence:

>>prepare q from select * from t1;

--- SQL command prepared.

>>alter table t1 rename to t2;

--- SQL operation complete.

>>execute q;

*** ERROR[1004] Object CAT.SCH.T1 does not exist or object type is
invalid for the current operation.

*** ERROR[8300] Late name resolution failed for table, view or
stored procedure CAT.SCH.T1.

--- 0 row(s) selected.

>>

In this example, the first command rename, changes the name and redefinition
timestamp of the table t1. The second command execute q, tries to access the table
t1 by the original ANSI name. An error is returned because the table t1 was renamed.
There are two ways to avoid such a failure:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-41

SQL/MX Statements Examples of ALTER TABLE
 Create a new table with the same ANSI name and layout. When an application
accesses the table, the executor determines that the redefinition timestamp is
changed but the ANSI name and layout of the table remains the same. Therefore,
the similarity check passes.

 In NonStop SQL/MX, when an application uses the “prototyping” mechanism, it can
specify the new ANSI name at runtime instead of the original ANSI name. The
redefinition timestamp of the table changes but it remains as the same physical
table with a different ANSI name. Therefore, the similarity check passes.

Examples of ALTER TABLE

 This example adds a UNIQUE table constraint:

ALTER TABLE persnl.project
 ADD CONSTRAINT projtimestamp_uc
 UNIQUE (projcode, ship_timestamp);

 This example drops a constraint:

ALTER TABLE persnl.project DROP CONSTRAINT projtimestamp_uc;

 This example adds a column with a foreign key constraint:

ALTER TABLE persnl.project
 ADD COLUMN projlead
 NUMERIC (4) UNSIGNED
 HEADING 'Project/Lead'
 CONSTRAINT projlead_fk REFERENCES persnl.employee;

 This example adds a foreign key table constraint. Note that if the foreign key is one
column, you can include the constraint with the column definition, as in the
preceding example.

ALTER TABLE persnl.project
 ADD CONSTRAINT projlead_fk
 FOREIGN KEY (projlead_fk) REFERENCES persnl.employee;

 This example changes a table to control the maximum disk space to be allocated:

ALTER TABLE persnl.employee ATTRIBUTE MAXEXTENTS 300;

 This example shows the steps to drop a foreign key. Suppose you have created
two tables, STAFF_M and PROJ_M, and have added foreign key PRI_WK to
STAFF_M:

CREATE TABLE STAFF_M
 (EMPNUM CHAR(3) NOT NULL,
 EMPNAME CHAR(20),
 GRADE DECIMAL(4),
 CITY CHAR(15),
 PRI_WK CHAR(3),
 UNIQUE (EMPNUM));

 CREATE TABLE PROJ_M
 (PNUM CHAR(3) NOT NULL,
 PNAME CHAR(20),
 PTYPE CHAR(6),
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-42

SQL/MX Statements Examples of ALTER TABLE
 BUDGET DECIMAL(9),
 CITY CHAR(15),
 MGR CHAR(3),
 UNIQUE (PNUM),
 FOREIGN KEY (MGR)
 REFERENCES STAFF_M(EMPNUM));

 ALTER TABLE STAFF_M ADD FOREIGN KEY (PRI_WK)
 REFERENCES PROJ_M (PNUM);

Suppose further that you now need to drop the foreign key. Use SHOWDDL to
obtain the key’s system identification:

>>showddl staff_m;

CREATE TABLE NIST_EMB_CAT.SUN.STAFF_M
 (
 EMPNUM CHAR(3) CHARACTER SET
ISO88591 COLLATE
 DEFAULT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , EMPNAME CHAR(20) CHARACTER SET
ISO88591 COLLATE
 DEFAULT DEFAULT NULL
 , GRADE DECIMAL(4, 0) DEFAULT NULL
 , CITY CHAR(15) CHARACTER SET
ISO88591 COLLATE
 DEFAULT DEFAULT NULL
 , PRI_WK CHAR(3) CHARACTER SET
ISO88591 COLLATE
 DEFAULT DEFAULT NULL
 , CONSTRAINT NIST_EMB_CAT.SUN.STAFF_M_452683997_9541 CHECK
 (NIST_EMB_CAT.SUN.STAFF_M.EMPNUM IS NOT NULL) NOT DROPPABLE
)
 LOCATION \DRP45.$D45101.ZSDBV6VZ.D873HP00
 NAME DRP45_D45101_ZSDBV6VZ_D873HP00
 ;
-- The following index is a system created index --
CREATE UNIQUE INDEX STAFF_M_187893997_9541 ON
NIST_EMB_CAT.SUN.STAFF_M
 (
 EMPNUM ASC
)
 LOCATION \DRP45.$D45101.ZSDBV6VZ.VTW5HP00
 NAME DRP45_D45101_ZSDBV6VZ_VTW5HP00
 ;
-- The following index is a system created index --
CREATE INDEX STAFF_M_859182618_9541 ON NIST_EMB_CAT.SUN.STAFF_M
 (
 PRI_WK ASC
)
 LOCATION \DRP45.$D45101.ZSDBV6VZ.SWBSQP00
 NAME DRP45_D45101_ZSDBV6VZ_SWBSQP00
 ;
ALTER TABLE NIST_EMB_CAT.SUN.STAFF_M
 ADD CONSTRAINT NIST_EMB_CAT.SUN.STAFF_M_187893997_9541 UNIQUE
(EMPNUM)
 DROPPABLE ;
ALTER TABLE NIST_EMB_CAT.SUN.STAFF_M
 ADD CONSTRAINT NIST_EMB_CAT.SUN.STAFF_M_859182618_9541 FOREIGN
KEY (PRI_WK)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-43

SQL/MX Statements Examples of ALTER TABLE
 REFERENCES NIST_EMB_CAT.SUN.PROJ_M(PNUM) DROPPABLE ;

--- SQL operation complete.

Now that you have the identification, you can drop the foreign key with ALTER
TABLE:

>>alter table staff_m drop constraint STAFF_M_859182618_9541;

--- SQL operation complete.

 The following command renames an existing table CAT.SCH.T1 to T2:

ALTER TABLE CAT.SCH.T1 RENAME TO T2;

The new ANSI name of the table, T2 is not fully qualified since the table continues
to remain in the same catalog and schema as T1. After the table is renamed, the
fully qualified name of the table is CAT.SCH.T2.

Examples of ALTER TABLE ALTER COLUMN

For a full example of recalibrating an IDENTITY column, see Example of ALTER
TABLE ALTER COLUMN..RECALIBRATE on page 2-45.

Create a table with the IDENTITY column

CREATE TABLE T1 (surrogate_key LARGEINT GENERATED ALWAYS AS IDENTITY
(START WITH 99 INCREMENT BY 1 MAXVALUE 100 MINVALUE 50 NO CYCLE) NOT NULL, b
INT UNSIGNED NOT NULL,
PRIMARY KEY(surrogate_key));

The third insert will fail with error -8934 as shown here:

insert into T1 values(default,1);
--- 1 row(s) inserted.

insert into T1 values(default,2);
--- 1 row(s) inserted.

>>insert into T1 values(default,3);
*** ERROR[8934] The MAXVALUE for the sequence generator has been exceeded.
--- 0 row(s) inserted.

Alter the table to allow new MAXVALUE and INCREMENT BY values:

ALTER TABLE T1 ALTER COLUMN SURROGATE_KEY SET MAXVALUE 900;
ALTER TABLE T1 ALTER COLUMN SURROGATE_KEY SET INCREMENT BY 2;
insert into T1 values(default,3);
--- 1 row(s) inserted.
select * from T1;
SURROGATE_KEY B

--------------- ----

99 1

100 2

102 3
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-44

SQL/MX Statements Examples of ALTER TABLE
Example of ALTER TABLE ALTER COLUMN..RECALIBRATE

1. This example shows how the recalibrate value is adjusted to the INCREMENT BY
numbering scheme:

CREATE TABLE T127T004 (a LARGEINT
 GENERATED BY DEFAULT AS IDENTITY
 (START WITH 9223372036854775804
 INCREMENT BY 1
 MAXVALUE 9223372036854775807
 MINVALUE 100
 NO CYCLE)
 NOT NULL NOT DROPPABLE,
 b INT UNSIGNED NOT NULL,
 c INT UNSIGNED,
 primary key(a));

--- SQL operation complete.
alter table t127t004 alter column a recalibrate;

--- SQL operation complete.

-- The CURRENT_VALUE will be 9223372036854775806 after this
-- INSERT
insert into t127t004 values(default,1,1), (default,2,2);

--- 2 row(s) inserted.
select * from t127t004;

A B C

-------------------- ---------- ----------

9223372036854775804 1 1

9223372036854775805 2 2

--- 2 row(s) selected.
alter table t127t004 alter column a set increment by 2;

--- SQL operation complete.

alter table t127t004 alter column a recalibrate;

*** ERROR[1598] The new CURRENT_VALUE, 9223372036854775805
increment by 2 plus 1 to adjust to numbering scheme, for the
IDENTITY column, A, for the table, IC.ICALT.T127T004, will be
greater than the maximum allowed, 9223372036854775807.

2. This example illustrates the behavior of Recalibrate to a User-Specified Value with
SELECT:

CREATE TABLE T004 (colA LARGEINT
 GENERATED ALWAYS AS IDENTITY
 (START WITH 700
 INCREMENT BY 2
 MAXVALUE 800
 MINVALUE 100
 NO CYCLE)
 NOT NULL NOT DROPPABLE,
 colB INT UNSIGNED NOT NULL,
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-45

SQL/MX Statements Examples of ALTER TABLE
 colC INT UNSIGNED,
 primary key(colA));

insert into T004 (colB,colC) values(1,1);
--- 1 row(s) inserted.

-- colA will have value '700';
select * from T004;

COLA COLB COLC

----------------- ---------- ----------

 700 1 1

--- 1 row(s) selected.

-- Recalibrate the internal sequence generator
-- using the user-specified value with SELECT. This
-- will succeed as it is less than the maximum value
-- and greater than the MINVALUE and START WITH values.

-- The recalibrate will reset the CURRENT_VALUE in the SG Table
-- to 710.
alter table t004 alter column colA recalibrate to 710;
--- SQL operation complete.

-- The next number generated for the IDENTITY column colA
-- will be 710, the new recalibrated CURRENT_VALUE

insert into T004 (colB, colC) values(2,2);
--- 1 row(s) inserted.

-- Notice the value 710 for colA.
select * from T004;

COLA COLB COLC

--------- -------- ----------

 700 1 1

 710 2 2

--- 2 row(s) selected.

-- The recalibrate performs a SELECT on table T004 to obtain
MAX(colA).
-- Since MAX(colA) is greater than the recalibrate value of 702,
ERROR[1599]
-- is raised.
alter table T004 alter column colA recalibrate to 702;

*** ERROR[1599] The recalibration value is less than or equal to
the current maximum value, 710, of the IDENTITY column, COLA, for
the table, CAT.SCH.T004.

--- SQL operation failed with errors.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-46

SQL/MX Statements Examples of ALTER TABLE
3. This example illustrates the behavior of “Recalibrate to a User-Specified Value NO
SELECT”:

CREATE TABLE T004 (colA LARGEINT
 GENERATED BY DEFAULT AS IDENTITY
 (START WITH 700
 INCREMENT BY 2
 MAXVALUE 800
 MINVALUE 100
 NO CYCLE)
 NOT NULL NOT DROPPABLE,
 colB INT UNSIGNED NOT NULL,
 colC INT UNSIGNED,
 primary key(colA));

insert into T004 (colB,colC) values(1,1);
--- 1 row(s) inserted.

-- colA will have value '700';
select * from T004;

COLA COLB COLC

--------- --------- ----------

 700 1 1

--- 1 row(s) selected.

-- Recalibrate the internal sequence generator
-- using the user-specified value with SELECT. This
-- will succeed as it is less than the maximum value
-- and greater than the MINVALUE and START WITH values.
-- The recalibrate will reset the CURRENT_VALUE in the SG Table
-- to 710.
alter table t004 alter column colA recalibrate to 710;
--- SQL operation complete.

-- The recalibrate does not perform a SELECT on table T004 to
obtain MAX(colA).
-- The recalibrate to value of 702 is a pure override. No error is
raised.
alter table T004 alter column colA recalibrate to 702;
--- SQL operation complete.

Notice the plus 1 that is done to calculate the new CURRRENT_VALUE; that is
because adding the INCREMENT BY 2 to 9223372036854775805 will result in an
odd number, whereas the sequence generator is defined to generate even values.
Hence the plus 1 is done to be consistent to the numbering scheme.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-47

SQL/MX Statements ALTER TRIGGER Statement
ALTER TRIGGER Statement
Considerations for ALTER TRIGGER

The ALTER TRIGGER statement is used to enable or disable triggers, individually or
by SQL/MX table.

Syntax Description of ALTER TRIGGER

trigger-name

specifies the ANSI logical name of the trigger to be altered, of the form:

[[catalog-name.]schema-name.]trigger-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

table-name

specifies the ANSI logical name of the table that this trigger is defined on, of the
form:

[[catalog-name.]schema-name.]table-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters.

Considerations for ALTER TRIGGER

ENABLE ALL enables all triggers defined on table-name.

DISABLE ALL disables all triggers defined on table-name.

Authorization and Availability Requirements

To alter a trigger, you must own its schema or be the super ID or object owner. Only
the super ID can use ALTER TRIGGER DISABLE ALL or ALTER TRIGGER ENABLE
ALL.

ALTER TRIGGER { ENABLE trigger-name |
 ENABLE ALL OF table-name |
 DISABLE trigger-name |
 DISABLE ALL OF table-name};
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-48

SQL/MX Statements ALTER VIEW Statement
ALTER VIEW Statement
This section describes the ALTER VIEW statement and examples illustrating the
statement.

Considerations for ALTER VIEW
Example of ALTER VIEW

The ALTER VIEW statement alters a view by performing the following actions:

 Renaming an object within a schema

 Modifying a view by changing one or more view file attributes

 Enabling or disabling Similarity Checks. This is supported from SQL/MX Release
3.2

name

specifies the name of the view to alter.

RENAME TO new-view-name

changes the logical name of the view.

new-view-name

specifies the new ANSI name of the view. The new ANSI name of the view
cannot be qualified; the renamed view remains in the current catalog and
schema.

ALTER VIEW name alter-action

alter-action is: {rename-action | similarity-check-action}

rename-action is:
RENAME TO new-view-name

similarity-check-action is:
[{ENABLE | DISABLE} SIMILARITY CHECK]

Note.

 Renaming a view changes the text of referencing views, RI constraints, and triggers to
refer to the new name.

 RENAME TO changes the redefinition timestamp of the affected view. However, the tables
referenced by the view are not affected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-49

SQL/MX Statements Considerations for ALTER VIEW
similarity-check-option

 ENABLE SIMILARITY CHECK

 enables Similarity Check for the view.

 DISABLE SIMILARITY CHECK

 disables Similarity Check for the view.

Considerations for ALTER VIEW

Authorization and Availability Requirements

To alter a view, you must own its schema or be the super ID or object owner.

Renaming a View

You can use the rename option to change the name of a view. The following are the
prerequisites for renaming a view:

 The view and its file label must be available.

 The new ANSI name must not already exist within the schema.

Similarity Check

 For the Similarity Check setting to become effective after issuing an ALTER VIEW
statement, you must recompile the applications using the view.

 An error is returned if an attempt is made to ENABLE SIMILARITY CHECK on a
view for which Similarity Check is already enabled or DISABLE SIMILARITY
CHECK on a view for which Similarity Check is already disabled.

Effects on TMF

Rename

For information on effects of the rename option on TMF, see Effects on TMF on
page 2-40.

Example of ALTER VIEW

 The following command renames the view, CAT.SCH.V1 to V2:

ALTER VIEW CAT.SCH.V1 RENAME TO V2;

The new view, V2 continues to remain in the same catalog and schema as V1.

 The following command enables Similarity Check on the view:

ALTER VIEW CAT.SCH.V1 ENABLE SIMILARITY CHECK;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-50

SQL/MX Statements Example of ALTER VIEW
 The following command disables Similarity Check on the view:

ALTER VIEW CAT.SCH.V1 DISABLE SIMILARITY CHECK;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-51

SQL/MX Statements BEGIN WORK Statement
BEGIN WORK Statement
The BEGIN WORK statement enables you to start a transaction explicitly—where the
transaction consists of the set of operations defined by the sequence of SQL
statements that begins immediately after BEGIN WORK and ends with the next
COMMIT or ROLLBACK statement. See Transaction Management on page 1-13.

BEGIN WORK is an SQL/MX extension.

Considerations for BEGIN WORK

Effect on Audited Tables

A user-defined transaction groups together a set of operations on audited tables so
that changes made by the operations can be committed (with the COMMIT statement)
or rolled back (with the ROLLBACK statement) as a unit. That is, the sequence of SQL
statements that make up the transaction either completely executes or has no effect.

Effect on Nonaudited Tables

Transactions do not protect nonaudited tables. The BEGIN WORK statement has no
effect on nonaudited tables.

MXCI Examples of BEGIN WORK

 Group three separate statements—two INSERT statements and an UPDATE
statement—that update the database within a single transaction:

--- This statement initiates a transaction.
BEGIN WORK;
--- SQL operation complete.

INSERT INTO sales.orders VALUES (125, DATE '1998-03-23',
 DATE '1998-03-30', 75, 7654);
--- 1 row(s) inserted.

INSERT INTO sales.odetail VALUES (125, 4102, 25000, 2);
--- 1 row(s) inserted.

UPDATE invent.partloc SET qty_on_hand = qty_on_hand - 2
 WHERE partnum = 4102 AND loc_code = 'G45';
--- 1 row(s) updated.

--- This statement ends a transaction.
COMMIT WORK;
--- SQL operation complete.

BEGIN WORK
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-52

SQL/MX Statements C Examples of BEGIN WORK
C Examples of BEGIN WORK

 Begin a transaction, execute an UPDATE statement, and test SQLSTATE. If the
UPDATE is successful, the database changes are committed. Otherwise, the
database changes are rolled back:

...
CHAR SQLSTATE_OK[6] = "00000";
EXEC SQL BEGIN DECLARE SECTION;
 CHAR SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL BEGIN WORK; /* Start a transaction. */
...
EXEC SQL UPDATE ... ; /* Change the database. */
...
if (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 EXEC SQL COMMIT WORK; /* Commit the changes. */
else
 EXEC SQL ROLLBACK WORK; /* Roll back the changes. */

COBOL Examples of BEGIN WORK

 Begin a transaction, execute an UPDATE statement, and test SQLSTATE. If the
UPDATE is successful, the database changes are committed. Otherwise, the
database changes are rolled back:

 ...
 01 SQLSTATE-OK PIC X(5) VALUE "00000".
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
* Start a transaction.
 EXEC SQL BEGIN WORK END-EXEC.
 ...
* Change the database.
 EXEC SQL UPDATE ... END-EXEC.
 ...
* Commit or roll back the changes.
 IF SQLSTATE = SQLSTATE-OK
 EXEC SQL COMMIT WORK END-EXEC.
 ELSE
 EXEC SQL ROLLBACK WORK END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-53

SQL/MX Statements CALL Statement
CALL Statement
Considerations for CALL
Examples of CALL

The CALL statement invokes a stored procedure in Java (SPJ) in NonStop SQL/MX.
To develop, deploy, and manage SPJs in SQL/MX, see the SQL/MX Guide to Stored
Procedures in Java.

procedure-ref

specifies an ANSI logical name of the form:

[[catalog-name.]schema-name.]procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

If you do not fully qualify the procedure name, NonStop SQL/MX qualifies it
according to the current settings of CATALOG and SCHEMA. If you set the
NAMETYPE attribute to NSK instead of ANSI and you do not fully qualify the
procedure name, NonStop SQL/MX returns an error. For more information on the
CATALOG, SCHEMA, and NAMETYPE attributes, see the System Defaults Table
on page 10-37.

argument-list

accepts arguments for IN, INOUT, or OUT parameters. The arguments consist of
SQL expressions, including host variables or dynamic parameters, separated by
commas:

SQL-expression[{, SQL-expression}...]

Each expression must evaluate to a value of one of these data types:

 Character value
 Date-time value
 Numeric value

Interval value expressions are disallowed in SPJs. For more information, see
Input Parameter Arguments on page 2-55 and Output Parameter Arguments
on page 2-55.

CALL procedure-ref ([argument-list])

procedure-ref is:
[[catalog-name.]schema-name.]procedure-name

argument-list is:
SQL-expression[{, SQL-expression}...]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-54

SQL/MX Statements Considerations for CALL
Considerations for CALL

Usage Restrictions

You can use the CALL statement only as a stand-alone SQL statement in applications
or interfaces that call NonStop SQL/MX. You cannot use the CALL statement inside a
compound statement, or with rowsets. Starting with SQL/MX Release 3.2, stored
procedures can be called from triggers.

Required Privileges

To execute the CALL statement, you must have EXECUTE privilege on the procedure.
For more information, see the GRANT EXECUTE Statement on page 2-246.

Input Parameter Arguments

You pass data to an SPJ by using IN or INOUT parameters. For an IN parameter
argument, use one of these SQL expressions:

 Literal
 SQL function (including CASE and CAST expressions)
 Arithmetic or concatenation operation
 Scalar subquery
 Host variable (for example, :hostvar)
 Dynamic parameter (for example, ? or ?param)

For more information, see Expressions on page 6-41.

For an INOUT parameter argument, you can use only a host variable or dynamic
parameter.

Output Parameter Arguments

An SPJ returns values in OUT and INOUT parameters. Output parameter arguments
must be either host variables in a static CALL statement (for example, :hostvar) or
dynamic parameters in a dynamic CALL statement (for example, ? or ?param). Each
calling application defines the semantics of the OUT and INOUT parameters in its
environment. For more information, see the SQL/MX Guide to Stored Procedures in
Java.

Data Conversion of Parameter Arguments

NonStop SQL/MX performs an implicit data conversion when the data type of a
parameter argument is compatible with but does not match the formal data type of the
stored procedure. For stored procedure input values, the conversion is from the actual
argument value to the formal parameter type. For stored procedure output values, the
conversion is from the actual output value, which has the data type of the formal
parameter, to the declared type of the host variable or dynamic parameter.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-55

SQL/MX Statements Examples of CALL
Null Input and Output

You can pass a null value as input to or output from an SPJ, provided that the
corresponding Java data type of the parameter supports nulls. If a null is input or
output for a parameter that does not support nulls, NonStop SQL/MX returns an error.
For more information on handling null input and output, see the SQL/MX Guide to
Stored Procedures in Java.

Transaction Semantics

The CALL statement automatically initiates a transaction if there is no active
transaction. However, the failure of a CALL statement does not always automatically
abort the transaction. For more information, see the SQL/MX Guide to Stored
Procedures in Java.

Examples of CALL

 In MXCI, invoke an SPJ named MONTHLYORDERS, which has one IN parameter
represented by a literal and one OUT parameter represented by a dynamic
parameter ?:

CALL samdbcat.sales.monthlyorders(3,?);

 From an embedded SQL program in C, invoke an SPJ named
MONTHLYORDERS, which has an OUT parameter represented by a host variable:

EXEC SQL CALL samdbcat.sales.monthlyorders(3,:orders);

For more examples, see the SQL/MX Guide to Stored Procedures in Java.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-56

SQL/MX Statements COMMIT WORK Statement

Em
COMMIT WORK Statement
Considerations for COMMIT WORK
MXCI Examples of COMMIT WORK
C Examples of COMMIT WORK
COBOL Examples of COMMIT WORK

The COMMIT WORK statement commits any changes to audited objects made during
the current transaction, releases all locks on audited objects held by the transaction,
and ends the transaction. See Transaction Management on page 1-13.

WORK is an optional keyword that has no effect.

COMMIT WORK has no effect outside of an active transaction.

COMMIT WORK closes all open cursors in the application, because cursors do not
span transaction boundaries. You cannot fetch with a cursor after a transaction ends
without reopening the cursor.

Considerations for COMMIT WORK

Begin and End a Transaction

BEGIN WORK starts a transaction. COMMIT WORK or ROLLBACK WORK ends a
transaction. Committing a transaction without verifying the successful completion of
DML statements within the transaction boundary can create inconsistent data.
Therefore, you must verify the successful completion of the DML statement within the
transaction boundary.

Effect of Constraints

When COMMIT WORK is executed, all active constraints are checked, and if any
constraint is not satisfied, changes made to the database by the current transaction are
canceled—that is, work done by the current transaction is rolled back. If all constraints
are satisfied, all changes made by the current transaction become permanent.

MXCI Examples of COMMIT WORK

 Suppose that your application adds information to the inventory. You have received
24 terminals from a new supplier and want to add the supplier and update the
quantity on hand. The part number for the terminals is 5100, and the supplier is
assigned supplier number 17. The cost of each terminal is $800.

COMMIT [WORK]

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-57

SQL/MX Statements C Examples of COMMIT WORK
The transaction must add the order for terminals to PARTSUPP, add the supplier to
the SUPPLIER table, and update QTY_ON_HAND in PARTLOC. After the INSERT
and UPDATE statements execute successfully, you commit the transaction, as
shown, within MXCI:

-- This statement initiates a transaction.
BEGIN WORK;
--- SQL operation complete.

-- This statement inserts a new entry into PARTSUPP.
INSERT INTO invent.partsupp
VALUES (5100, 17, 800.00, 24);
--- 1 row(s) inserted.

-- This statement inserts a new entry into SUPPLIER.
INSERT INTO invent.supplier
VALUES (17, 'Super Peripherals','751 Sanborn Way',
 'Santa Rosa', 'California', '95405');
--- 1 row(s) inserted.

-- This statement updates the quantity in PARTLOC.
UPDATE invent.partloc
SET qty_on_hand = qty_on_hand + 24
WHERE partnum = 5100 AND loc_code = 'G43';
--- 1 row(s) updated.

-- This statement ends a transaction.
COMMIT WORK;
--- SQL operation complete.

C Examples of COMMIT WORK

 Begin a transaction, execute an UPDATE statement, and test SQLSTATE. If the
UPDATE is successful, the database changes are committed. Otherwise, the
database changes are rolled back.

...
CHAR SQLSTATE_OK[6] = "00000";
EXEC SQL BEGIN DECLARE SECTION;
 CHAR SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL BEGIN WORK; /* Start a transaction. */
...
EXEC SQL UPDATE ... ; /* Change the database. */
...
if (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 EXEC SQL COMMIT WORK; /* Commit the changes. */
else
 EXEC SQL ROLLBACK WORK; /* Roll back the changes. */
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-58

SQL/MX Statements COBOL Examples of COMMIT WORK
COBOL Examples of COMMIT WORK

 Begin a transaction, execute an UPDATE statement, and test SQLSTATE. If the
UPDATE is successful, the database changes are committed. Otherwise, the
database changes are rolled back.

 ...
 01 SQLSTATE-OK PIC X(5) VALUE "00000".
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
* Start a transaction.
 EXEC SQL BEGIN WORK END-EXEC.
 ...
* Change the database.
 EXEC SQL UPDATE ... END-EXEC.
 ...
* Commit or roll back the changes.
 IF SQLSTATE = SQLSTATE-OK
 EXEC SQL COMMIT WORK END-EXEC.
 ELSE
 EXEC SQL ROLLBACK WORK END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-59

SQL/MX Statements CONTROL QUERY DEFAULT Statement
CONTROL QUERY DEFAULT Statement
Considerations for CONTROL QUERY DEFAULT
Examples of CONTROL QUERY DEFAULT

The CONTROL QUERY DEFAULT statement changes the system-level default
settings for the current process. Execution of this statement does not change the
contents of the SYSTEM_DEFAULTS table. See System Defaults Table on
page 10-37.

CONTROL QUERY DEFAULT is an SQL/MX extension.

attribute

is a character string that represents an SQL/MX attribute name and corresponds to
the ATTRIBUTE column of the SYSTEM_DEFAULTS table. For descriptions of
these attributes, see Default Attributes on page 10-39.

attr-value

is a character string that specifies an SQL/MX attribute value and corresponds to
the ATTR_VALUE column of the SYSTEM_DEFAULTS table. You must specify it
as a quoted string—even if the value is a number.

RESET

specifies that the attribute that you set by using a CONTROL QUERY DEFAULT
statement in the current session is to be reset to the value or values in effect at the
start of the current session.

*

specifies all attributes are to be reset.

Considerations for CONTROL QUERY DEFAULT

Scope of CONTROL QUERY DEFAULT

The result of the execution of a CONTROL QUERY DEFAULT statement stays in effect
until the current process terminates or until the execution of another statement for the
same attribute overrides it. For a detailed list of the precedence of default settings,
see System Defaults Table on page 10-37.

CONTROL QUERY DEFAULT control-default-option

control-default-option is:
 attribute {'attr-value' | RESET}
 | * RESET
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-60

SQL/MX Statements Examples of CONTROL QUERY DEFAULT
Relationship to CONTROL TABLE

Use the CONTROL QUERY DEFAULT statement to override system-level default
settings for various attributes for all tables in the current process. Use the CONTROL
TABLE statement to override system-level default settings for the TABLELOCK,
TIMEOUT, and SIMILARITY_CHECK attributes per table or for all tables in the current
process. For example, the statement CONTROL QUERY DEFAULT TIMEOUT '3000'
has the same effect as the statement CONTROL TABLE * TIMEOUT '3000'. See
CONTROL TABLE Statement on page 2-74.

The CONTROL TABLE statement has precedence over the CONTROL QUERY
DEFAULT statement. For a detailed list of the precedence of default settings, see
System Defaults Table on page 10-37.

Examples of CONTROL QUERY DEFAULT

 Change the ISOLATION_LEVEL attribute for the current process:

CONTROL QUERY DEFAULT ISOLATION_LEVEL 'READ UNCOMMITTED';

 Change the static TIMEOUT attribute for the current process:

CONTROL QUERY DEFAULT TIMEOUT '3000';

The value 3000 is in hundredths of seconds, which is equivalent to 30 seconds.

 Reset the TIMEOUT attribute to its initial value in the current process:

CONTROL QUERY DEFAULT TIMEOUT RESET;

 Specify which volumes to use for scratch disks and which volume is preferred:

CONTROL QUERY DEFAULT SCRATCH_DISKS
 '$data01, $data02, \tstnode.$scr';

CONTROL QUERY DEFAULT SCRATCH_DISKS_PREFERRED '$data02';
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-61

SQL/MX Statements CONTROL QUERY SHAPE Statement
CONTROL QUERY SHAPE Statement
Considerations for CONTROL QUERY SHAPE
Examples of CONTROL QUERY SHAPE

The CONTROL QUERY SHAPE statement forces access plans. You can generate the
result of the EXPLAIN function for a prepared DML statement, and then modify the
operator tree for the statement’s access plan, by using CONTROL QUERY SHAPE.
Both the EXPLAIN function and the CONTROL QUERY SHAPE statement use similar
identifiers for the nodes of an operator tree.

CONTROL QUERY SHAPE is an SQL/MX extension:

CONTROL QUERY SHAPE [query-shape-options] shape

query-shape-options is:

 {IMPLICIT { SORT | EXCHANGE | EXCHANGE_AND_SORT }}

shape is:
 {CUT | ANYTHING | OFF}
 | TUPLE
 | join-shape(shape,shape [,{TYPE1 | TYPE2}]
 [,num-of-esps]) | INDEXJOIN
 | exchange-shape(shape [,num-of-esps])
 | {SCAN | FILE_SCAN | INDEX_SCAN} [(scan-option,...)]
 | UNION(shape,shape)
 | MultiUnion(shape,[shape])
 | GROUPBY(shape)
 | SORT_GROUPBY(shape)
 | HASH_GROUPBY(shape)
 | SHORTCUT_GROUPBY(shape)
 | EXPR(shape)
 | SORT(shape)
 | MATERIALIZE(shape)
 | [{PACK | UNPACK }] (shape)

join-shape is:
 JOIN
 | NESTED_JOIN
 | MERGE_JOIN
 | HASH_JOIN
 | HYBRID_HASH_JOIN
 | ORDERED_HASH_JOIN

exchange-shape is:
 EXCHANGE
 | PARTITION_ACCESS
 | SPLIT_TOP_PA
 | ESP_EXCHANGE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-62

SQL/MX Statements CONTROL QUERY SHAPE Statement
query-shape-options IMPLICIT
 { SORT | EXCHANGE | EXCHANGE_AND_SORT }

makes SORT, EXCHANGE, or ENFORCER nodes in CONTROL QUERY SHAPE
optional.

IMPLICIT SORT

indicates that the optimizer can add sort nodes at any location between the
nodes forced in the shape statements. The shape statement can still contain
additional sort nodes, and the compiler will enforce such nodes. Note that
WITHOUT SORT does not mean that the statement or the generated plans are
free of sort nodes.

IMPLICIT EXCHANGE

indicates that the optimizer can add exchange nodes at any location between
the nodes forced in the shape statements. The shape statement can still
contain additional exchange nodes, and the compiler will enforce such nodes.
Note that WITHOUT EXCHANGE does not mean that the statement or the
generated plans are free of exchange nodes.

IMPLICIT EXCHANGE_AND_SORT

indicates that the optimizer can add enforcer nodes (exchanges or sorts) at
any location between the nodes forced in the shape statements. The shape

scan-option is:
 TABLE table
 | PATH {access-path | ANY}
 | BLOCKS_PER_ACCESS value
 | MDAM mdam-option,...
 | MDAM_COLUMNS mdam-columns-option,...

mdam-option is:
 OFF
 | SYSTEM
 | FORCED

mdam-columns-option is:
 n
 | SYSTEM
 | ALL
 | (density,...)
 | SYSTEM (density,...)
 | ALL (density,...)

density is:
 SPARSE
 | DENSE
 | SYSTEM
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-63

SQL/MX Statements CONTROL QUERY SHAPE Statement
statement can still contain additional enforcer nodes, and the compiler will
enforce such nodes. Note that WITHOUT ENFORCERS does not mean that
the statement or the generated plans are free of enforcer nodes.

shape

specifies the operator tree for an access plan for the next query to be executed
within the current session. shape defines this operator tree recursively by using a
LISP-like expression to represent the nodes of the tree.

The identifiers for the nodes specified by shape:

CUT
ANYTHING
OFF

Replaces a node in operator tree. CUT (or ANYTHING or
OFF) represents the point (node) at which you want to cut off
the remaining part of the operator tree.

TUPLE Replaces a single VALUES node in operator tree.

UNION Replaces a UNION node in operator tree.

MultiUnion MultiUnion is the first n-ary operator that is supported in a
Control Query Shape (CQS). MultiUnion is applicable only
for the UNION ALL operator and not for the ANSI UNION
operator.

You can specify a shape for MultiUnion children in one of
the following ways:

1. Allow a single wild card shape for all the children. All
children are assumed to look alike.

2. Allow multiple wild card shape for children. A group of
children conform to one set of shape, the rest to
another.

3. Specify a shape for each MultiUnion child completely.

If the third alternative is implemented—that is if a MultiUnion
has N children, all the N children must be specified in the
shape. The children must not be excluded. Any attempt to
match a MultiUnion with different arity will result in a
violation of the shape specification. However, the generic
wild-card operator cut can be used as a replacement for
any of the children of the MultiUnion. For example:

MultiUnion(cut,
Nested_Join(cut,cut),cut);

GROUPBY Replaces a GROUP BY or AGGREGATE (set) operation
node in operator tree.

SORT_GROUPBY Replaces a SORT GROUP BY or AGGREGATE (set)
operation node in operator tree.

HASH_GROUPBY(cut)
or HG (cut)

Replaces a HASH GROUP BY node in operator tree.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-64

SQL/MX Statements CONTROL QUERY SHAPE Statement
SHORTCUT_GROUPBY Replaces an AGGREGATE (set) operation node in operator
tree.

EXPR Replaces a map value IDs node in operator tree.

SORT Replaces a SORT node in operator tree.

EXCHANGE Replaces any of three nodes—PARTITION ACCESS, SPLIT
TOP / PARTITION ACCESS, and REPARTITION—in
operator tree.

PARTITION_ACCESS Replaces a PARTITION ACCESS node in operator tree.

SPLIT_TOP_PA Replaces a SPLIT TOP / PARTITION ACCESS node pair in
operator tree.

ESP_EXCHANGE Replaces an ESP_EXCHANGE node in operator tree.

MATERIALIZE Replaces a materialized temporary table node in operator
tree.

PACK Optionally replaces a PACK node in operator tree. This
node relates to rowsets.

UNPACK Optionally replaces an UNPACK node in operator tree. This
node relates to rowsets.

SCAN Replaces a SCAN node in operator tree.

FILE_SCAN Replaces a SCAN node in operator tree.

INDEX_SCAN Replaces a SCAN node in operator tree.

JOIN Replaces a JOIN node in operator tree.

NESTED_JOIN Replaces a NESTED_JOIN in operator tree.

MERGE_JOIN Replaces a MERGE_JOIN in operator tree.

HASH_JOIN (cut,cut) or
HJ (cut,cut)

Replaces a HYBRID_HASH_JOIN or
ORDERED_HASH_JOIN in operator tree.

HYBRID_HASH_JOIN
 (cut,cut) or HHJ (cut,cut)

Replaces a HYBRID_HASH_JOIN in operator tree.

ORDERED_HASH_JOIN
 (cut,cut) or OHJ
(cut,cut)

Replaces an ORDERED_HASH_JOIN in operator tree.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-65

SQL/MX Statements CONTROL QUERY SHAPE Statement
join-shape (shape,shape [,{TYPE1 | TYPE2}]
 [,num-of-esps]) | INDEXJOIN

specifies the join type and the number of ESPs that you can use with JOIN,
NESTED_JOIN, MERGE_JOIN, HASH_JOIN, HYBRID_HASH_JOIN, or
ORDERED_HASH_JOIN as follows:

TYPE1

specifies a parallel join with matching partitions.

TYPE2

specifies a join with parallel access to the inner table.

num-of-esps

specifies the number of ESPs

INDEXJOIN

specifies that the optimizer should use the index and base table to create a
scan, if possible.

{SCAN | FILE_SCAN | INDEX_SCAN} [(scan-option,...)]

specifies the options that you can use with SCAN, FILE_SCAN, or INDEX_SCAN,
as follows:

TABLE table

specifies a table or correlation name. table is a character string literal—for
example, 't1'.

Note. Regarding the ORDERED_HASH_JOIN and HYBRID_HASH_JOIN join shapes,
when ORDERED_HASH_JOIN is set, the optimizer forces the hash table (the inner/right
table in the join) into memory, so the order of the left/outer table is preserved. However, if
the inner table is very large (millions of rows), NonStop SQL/MX can run out of read-only
memory, so NonStop virtual memory would be used (flush pages in and out of disk, and so
on.) This virtual memory is slower than the HYBRID_HASH_JOIN mechanism. If you want
to guarantee the order of the left/outer table, you can use ORDERED_HASH_JOIN.
Consider the potential performance implication (depends on size of the right table, size of
memory, workload, and so on). You might want to explicitly use HYBRID_HASH_JOIN to
avoid the performance issue. However, if you specify HASH_JOIN (cut,cut), the optimizer
will present a plan with either HYBRID_HASH_JOIN or ORDERED_HASH_JOIN as
shown in the SHOWSHAPE of the resulting plan.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-66

SQL/MX Statements CONTROL QUERY SHAPE Statement
PATH {access-path | ANY}

access-path specifies an index name or the table name table. It is a
character string literal—for example, 'ix1' or 't1'. Use this option to force
the scan to be on that particular index or base table. The specified
access-path must cover all of the predicates defined on the table columns
for a plan to be generated.

access-path for an MP index can contain only the last part of the filename.
For example:

control query shape partition_access(scan(path
'INAME',forward, blocks_per_access 1 , mdam off));

ANY forces the scan to be on any available access path—an index or the base
table. In this case, the optimizer chooses the access path on the basis of cost.

If you do not use the PATH option, the default is ANY—except if the
MultiDimensional Access Method (MDAM) is forced, which changes the default
to the base table.

BLOCKS_PER_ACCESS value

specifies for the HP NonStop Data Access Manager (DAM) how many blocks
DAM can read ahead. DAM limits the number of read-ahead blocks to 14 at a
time. Use this token to control the read ahead in a mixed workload
environment to minimize its effect on other transactions. A setting of 1 (one)
prevents read ahead.

MDAM mdam-option,...

specifies MDAM options:

OFF

disables the MDAM option for this scan.

SYSTEM

specifies that the system determines whether to use MDAM on the basis of
cost.

FORCED

forces the use of MDAM for the scan. Using any MDAM_COLUMNS option
implies this option.

MDAM_COLUMNS mdam-columns-option,...

specifies these MDAM_COLUMNS options:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-67

SQL/MX Statements CONTROL QUERY SHAPE Statement
n

specifies n key columns to be used by MDAM. For example, if MDAM is
using key columns specified by an index defined on a table, n specifies
that the first n columns listed in the index are used. The enumeration
algorithm for each column is determined by the system.

This option is the same as ALL if n exceeds the total number of columns
that MDAM can use.

SYSTEM

specifies that the system determines the number of key columns to be
used by MDAM on the basis of cost. The enumeration algorithm for each
column is determined by the system.

ALL

specifies that MDAM use all key columns. The enumeration algorithm for
each column is determined by the system.

(density,...)

specifies a list of enumeration algorithms. The density list forces which
algorithms MDAM uses for a set of key columns. If there are n algorithms
in the list, MDAM uses the first n key columns. If n exceeds the total
number of key columns, MDAM uses only the algorithms for the number of
available columns.

density is defined as:

SPARSE

specifies the use of the sparse algorithm for the column.

DENSE

specifies the use of the adaptive dense algorithm for the column.

SYSTEM

specifies that the system determines the enumeration algorithm for the
column on the basis of cost.

SYSTEM (density,...)

forces an enumeration algorithm to be used by MDAM for each key column
as determined by the density list. The system determines enumeration
algorithms for columns beyond those specified by the density list.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-68

SQL/MX Statements Considerations for CONTROL QUERY SHAPE
ALL (density,...)

forces an enumeration algorithm to be used by MDAM for each key column
as determined by the density list. All of the remaining columns are used
by MDAM, and their enumeration algorithms are determined by the
system.

For more information, see the SQL/MX Query Guide.

Considerations for CONTROL QUERY SHAPE

Scope of CONTROL QUERY SHAPE

The result of the execution of a CONTROL QUERY SHAPE statement stays in effect
until the end of the current MXCI session or until the execution of another CONTROL
QUERY SHAPE statement overrides it.

If you do not execute CONTROL QUERY SHAPE OFF immediately after the execution
of the query with the forced plan, the next query might not fit the forced plan in effect
and will return an optimizer error and not compile. The error returned by NonStop
SQL/MX has the form:

*** ERROR[2105] This query could not be compiled because of
incompatible Control Query Shape (CQS) specifications.
Inspect the CQS in effect.

*** ERROR[8822] The statement was not prepared.

The result of the execution of a CONTROL QUERY SHAPE statement does not affect
the execution of CONTROL statements, the LOCK and UNLOCK statements, and
transaction statements.

Examples of CONTROL QUERY SHAPE

 Switch OFF the forced plan for the current MXCI session:

CONTROL QUERY SHAPE OFF;

 Use CUT to shape a partial operator tree:

CONTROL QUERY SHAPE JOIN (CUT,UNION(CUT,SCAN));

 This example shapes the EXPLAIN operator tree by using the CONTROL QUERY
SHAPE statement. Suppose that you have this query:

SELECT * FROM employee, dept
 WHERE employee.deptnum = dept.deptnum
 AND employee.last_name = 'SMITH';

Employee/Number First Name Last Name Dept/Num ...
--------------- ------------ -------------- -------- ...
 89 PETER SMITH 3300 ...

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-69

SQL/MX Statements Examples of CONTROL QUERY SHAPE
By using the SET SHOWSHAPE command, you can inspect the default plan
generated by the optimizer:

SET SHOWSHAPE ON;

SELECT * FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.DEPTNUM = DEPT.DEPTNUM
 AND EMPLOYEE.LAST_NAME = 'SMITH';

control query shape merge_join(sort(
partition_access(scan('EMPLOYEE', forward,
blocks_per_access 1, mdam off))),
partition_access(scan('DEPT', forward,
blocks_per_access 3, mdam off)));

Instead of using the default MERGE_JOIN and SORT for this query, you can
shape the EXPLAIN operator tree by using this NESTED_JOIN replacement:

CONTROL QUERY SHAPE
 NESTED_JOIN (PARTITION_ACCESS(SCAN),
 PARTITION_ACCESS(SCAN('DEPT')));

SET SHOWSHAPE ON;

SELECT * FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.DEPTNUM = DEPT.DEPTNUM
 AND EMPLOYEE.LAST_NAME = 'SMITH';

control query shape nested_join(
partition_access(scan('EMPLOYEE', forward,
blocks_per_access 1, mdam off)),
partition_access(scan('DEPT', forward,
blocks_per_access 1 , mdam off)));

Employee/Number First Name Last Name Dept/Num ...
--------------- ------------ -------------- -------- ...
 89 PETER SMITH 3300 ...

--- 1 row(s) selected.

The second CONTROL QUERY SHAPE statement is displayed by the SET
SHOWSHAPE ON statement. Notice that, because you specified DEPT, you do not
have to specify EMPLOYEE. The system uses the other table in the join as the
default table name.

 Suppose that you have a table T1 consisting of columns A, B, C, D, E, and F with a
primary key defined as columns A and B. Suppose further that an index IT1 is
defined as columns C, D, E, and F of table T1. These examples illustrate some of
the scan options you can specify for table T1:

 Scan table T1. You want the system to choose whether to use an index or
base table, in addition to the other scan options.

SCAN (TABLE 'T1')
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-70

SQL/MX Statements Examples of CONTROL QUERY SHAPE
or

SCAN (TABLE 'T1', PATH ANY)

 Scan table T1 using the base table. You want the system to choose whether to
use MDAM.

SCAN (TABLE 'T1', PATH 'T1')

 Scan table T1 using the index IT1. You want the system to choose whether to
use MDAM.

SCAN (TABLE 'T1', PATH 'IT1')

 Scan table T1 using the index IT1. You want to disable MDAM.

SCAN (TABLE 'T1', PATH 'IT1', MDAM OFF)

 Scan table T1 using MDAM on index IT1. You want the system to choose the
number of MDAM key columns and the enumeration algorithm for each
column.

SCAN (TABLE 'T1', PATH 'IT1', MDAM FORCED)

 Scan table T1 using MDAM on columns C, D, and E of index IT1. You want the
system to choose the enumeration algorithm for each column.

SCAN (TABLE 'T1', PATH 'IT1', MDAM FORCED,MDAM_COLUMNS 3)

or

SCAN (TABLE 'T1', PATH 'IT1', MDAM_COLUMNS 3)

 Scan table T1 using MDAM on columns C, D, and E of index IT1. The
enumeration algorithms for columns C and E are adaptive dense and sparse
respectively. You want the system to choose the enumeration algorithm for
column D.

SCAN (TABLE 'T1', PATH 'IT1',
 MDAM_COLUMNS (DENSE,SYSTEM,SPARSE))

 Suppose that you are trying to refine a shape. You want to push a GROUPBY
operator down over a hybrid hash join between two tables, A and B. Until the
shape is final, you are not concerned with sorts for a possible SORT GROUPBY or
a final ordering, or about EXCHANGE nodes. You might add those nodes back
after you have finalized the shape:

CONTROL QUERY SHAPE WITHOUT ENFORCERS
hybrid_hash_join(groupby(scan('A')), scan('B'));

optimizer/opt.cpp
optimizer/opt.h
optimizer/OptPhysRelExpr.cpp
optimizer/PhyProp.cpp
optimizer/RelControl.h
optimizer/RelExpr.cpp
parser/ParKeyWords.cpp
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-71

SQL/MX Statements Examples of CONTROL QUERY SHAPE
parser/SqlParser.y
regress/compGeneral/EXPECTED018
regress/compGeneral/TEST018

 This example shows how a scan can be forced to use an index:

>>prepare xx from
+>select * from part where p_partkey = (select
max(ps_partkey) from partsupp);

--- SQL command prepared.
>>explain options 'f' xx;

LC RC OP OPERATOR OPT DESCRIPTION CARD
-- -- -- ------------- --- ----------- ----------
7 . 8 root 1.00E+000
4 6 7 nested_join 1.00E+000
5 . 6 partition_access 1.00E+000
. . 5 file_scan_unique fr PART (s) 1.00E+000
3 . 4 partition_access 1.00E+000
2 . 3 shortcut_scalar_aggr 1.00E+000
1 . 2 firstn 1.00E+000
. . 1 index_scan PSX2 (s) 1.00E+002
--- SQL operation complete.

Force the scan to go through the index, which could be more efficient:

>>control query shape
nested_join(shortcut_groupby(split_top_pa(scan(path
'TPCDF.SF100f.PSX2'),
+>group , 72)), nested_join(exchange(scan(path
'TPCDF.SF100F.PX1')),
+>exchange(scan(path 'TPCDF.SF100F.PART')), INDEXJOIN));

--- SQL operation complete.

Prepare the statement using the forced scan:

>>prepare xx from
+>select * from part where p_partkey = (select
max(ps_partkey) from partsupp);

--- SQL command prepared.
>>explain options 'f' xx;

LC RC OP OPERATOR OPT DESCRIPTION CARD
-- -- -- ------------- --- ----------- ----------
13 . 14 root 1.00E+000
5 12 13 nested_join 1.00E+000
8 11 12 nested_join 1.00E+000
10 . 11 split_top 1:72(logph) 1.00E+000
9 . 10 partition_access 1.00E+000
. . 9 file_scan_unique fr PART (s) 1.00E+000
7 . 8 split_top 1:72(logph) 6.66E+006
6 . 7 partition_access 6.66E+006
. . 6 index_scan fr PX1 (s) 6.66E+006
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-72

SQL/MX Statements Examples of CONTROL QUERY SHAPE
4 . 5 shortcut_scalar_aggr 1.00E+000
3 . 4 firstn 1.00E+000
2 . 3 split_top 1:72(logph) 8.00E+007
1 . 2 partition_access 8.00E+007
. . 1 index_scan fr PSX2 (s) 8.00E+007

--- SQL operation complete.
>>log;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-73

SQL/MX Statements CONTROL TABLE Statement
CONTROL TABLE Statement
Considerations for CONTROL TABLE
Examples of CONTROL TABLE

The CONTROL TABLE statement specifies a performance-related option for DML
accesses to a table or view. This statement can also be used as an embedded SQL
compiler directive.

CONTROL TABLE is an SQL/MX extension.

table

is the name of the table or view to which the control option applies. You must
specify the name with the same qualification as the name that appears in
subsequent references to which the control option applies. For example, if you
specify a fully qualified table name, the fully qualified name must appear in
subsequent references.

*

specifies that the control option applies to all tables subsequently referenced in the
current process. A CONTROL TABLE table statement overrides the effect of a
CONTROL TABLE * statement for the specified table or view.

MDAM {'ENABLE'|'ON'|'OFF'}

specifies whether to use MDAM for subsequently compiled DML statements that
access the index. table refers to the index for which you wish to force MDAM. If
you use the table name instead of the index name, NonStop SQL/MX uses the
table clustering key and no other keys are forced for MDAM.

ENABLE

directs NonStop SQL/MX to determine whether to use MDAM for the specified
index. The default is ENABLE.

ON

directs NonStop SQL/MX to use MDAM.

CONTROL TABLE {table | *} control-table-option

control-table-option is:
 MDAM {'ENABLE'|'ON'|'OFF'}
 | PRIORITY 'priority-value'
 | IF_LOCKED {'RETURN'|'WAIT'}
 | TABLELOCK {'ENABLE'|'ON'|'OFF'}
 | TIMEOUT 'timeout-value'
 | SIMILARITY_CHECK {'ON'|'OFF'}
 | RESET
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-74

SQL/MX Statements CONTROL TABLE Statement
OFF

directs NonStop SQL/MX not to use MDAM.

PRIORITY 'priority-value'

specifies the priority for subsequent file system requests to the Data Access
Manager (DAM). DAM uses the priority to ensure efficient performance within a
mixed workload environment. Short-duration OLTP-type requests should specify a
higher priority than any concurrent long-duration query requests.

'priority-value'

specifies the priority, an integer value from 1 to 9. The default priority is 3. You
can use the highest possible value (9), but using this value can interfere with
SQL/MX system-level activity.

IF_LOCKED {'RETURN'|'WAIT'}

specifies the result if you attempt to access data with the READ COMMITTED or
SERIALIZABLE access and the data is locked by another user.

RETURN

returns file system error 73.

WAIT

directs NonStop SQL/MX to wait for the other user to release the lock, until the
timeout period elapses. The default is WAIT.

TABLELOCK {'ENABLE'|'ON'|'OFF'}

specifies whether to use table locks for subsequently compiled DML statements
that access the table or view.

ENABLE

directs NonStop SQL/MX to determine whether to use table locks for the
specified table or view. The default is ENABLE.

ON

directs NonStop SQL/MX to use table locks.

OFF

directs NonStop SQL/MX to not use table locks.

TIMEOUT 'timeout-value'

specifies the time in hundredths of seconds allowed to complete file system
requests from DML operations. If the time elapses before the file system can grant
a request to lock data, the DML statement fails, and NonStop SQL/MX returns an
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-75

SQL/MX Statements CONTROL TABLE Statement
error. This option is for static operations only. For dynamic operations, see SET
TABLE TIMEOUT Statement on page 2-372.

'timeout-value'

specifies the time in hundredths of seconds. The range of values is from -1 to
2147483519, expressed in hundredths of seconds. The value -1 directs
NonStop SQL/MX not to time out. The value 0 directs NonStop SQL/MX not to
wait for a table lock. If the lock cannot be acquired, NonStop SQL/MX
immediately returns an error.

SIMILARITY_CHECK {'ON'|'OFF'}

specifies whether to perform similarity checks for a new and previous table to avoid
statement recompilation or always recompile at run time, depending on the
outcome of various factors. This option applies only to tables (not views).

ON

directs NonStop SQL/MX to perform similarity checks at run time to determine
whether the new table is similar to the previous table. If the tables are similar,
NonStop SQL/MX uses the new table without statement recompilation.
Otherwise, the SQL statement is recompiled with the new table name. The
default is ON.

OFF

directs NonStop SQL/MX to recompile an SQL statement at run time,
depending on the outcome of late name resolution, timestamp comparison, or
table redefinition.

In MXCI, you can change a table in a prepared statement by using DEFINE
commands. See ADD DEFINE Command on page 4-4 and ALTER DEFINE
Command on page 4-6.

For more information about similarity checks, see the SQL/MX Programming
Manual for C and COBOL.

RESET

cancels all previously set control options for the specified table or view, and
NonStop SQL/MX uses only the default control values.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-76

SQL/MX Statements Considerations for CONTROL TABLE
Considerations for CONTROL TABLE

Scope of CONTROL TABLE

The result of the execution of a CONTROL TABLE statement stays in effect until the
current process terminates or until the execution of another CONTROL TABLE
statement for the same control-table-option overrides it. For a detailed list of
the precedence of default settings, see System Defaults Table on page 10-37.

A CONTROL TABLE table statement overrides the effect of a CONTROL TABLE *
statement for the specified table or view.

Relationship to CONTROL QUERY DEFAULT

Use the CONTROL TABLE statement to override system-level default settings for the
TABLELOCK, TIMEOUT, and SIMILARITY_CHECK attributes per table or for all tables
in the current process. Use the CONTROL QUERY DEFAULT statement to override
system-level default settings for these attributes and other attributes for all tables in the
current process. For example, the statement CONTROL TABLE * TIMEOUT '3000'
has the same effect as the statement CONTROL QUERY DEFAULT TIMEOUT
'3000'. See CONTROL QUERY DEFAULT Statement on page 2-60.

The CONTROL TABLE statement has precedence over the CONTROL QUERY
DEFAULT statement. For a detailed list of the precedence of default settings, see
System Defaults Table on page 10-37.

Examples of CONTROL TABLE

 Turn off MDAM for the JOB table:

CONTROL TABLE PERSNL.JOB MDAM 'OFF';

If you want to enable or turn on MDAM for subsequent queries, you must specify
the table name in the same way; for example, PERSNL.JOB.

 Set the length of the timeout for the current process to 30 seconds. To do so,
change the static TIMEOUT attribute for the current process for all referenced
tables and views. This setting overrides any system-level default settings for the
TIMEOUT attribute.

CONTROL TABLE * TIMEOUT '3000';

The value 3000 is in hundredths of seconds, which is equivalent to 30 seconds.

 Cancel all previously set control options and use only the system-defined default
setting:

CONTROL TABLE * RESET;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-77

SQL/MX Statements CREATE CATALOG Statement
CREATE CATALOG Statement
Considerations for CREATE CATALOG
Examples of CREATE CATALOG

The CREATE CATALOG statement creates a new SQL/MX catalog. See Catalogs on
page 6-3.

CREATE CATALOG is an SQL/MX extension.

Syntax Description of CREATE CATALOG

catalog

is an SQL identifier that specifies the name of the new catalog. catalog must be
unique among catalog names on the node.

LOCATION [\node.]$volume

specifies the location of the metadata tables for the catalog.

node

is the name of the local node.

volume

is the name of an audited, non-SMF DAM volume on the specified node (or the
Guardian volume named in the =_DEFAULTS define if no volume is specified).

If you do not specify a LOCATION clause and your system does not have a
value for the DDL_DEFAULT_LOCATIONS default (either in your environment
or at the system level) and your environment does not have a =_DEFAULTS
define value, the CREATE statement will fail with an error.

Considerations for CREATE CATALOG

Reserved Catalogs

Catalog names beginning with NONSTOP_SQLMX_ are reserved for system
metadata. You are not allowed to create (or to drop) catalogs with these reserved
names.

Authorization and Availability Requirements

The users who are granted the privilege using GRANT CREATE CATALOG can create
a catalog. If such users are not specified, any user can execute this statement.

CREATE CATALOG catalog [LOCATION [\node.]$volume]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-78

SQL/MX Statements Examples of CREATE CATALOG
Examples of CREATE CATALOG

 This example creates a catalog:

CREATE CATALOG samdbcat;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-79

SQL/MX Statements CREATE INDEX Statement
CREATE INDEX Statement
Considerations for CREATE INDEX
Examples of CREATE INDEX

The CREATE INDEX statement creates an SQL/MX index based on one or more
columns of a table. See Database Object Names on page 6-13.

CREATE INDEX is an SQL/MX extension.

CREATE [UNIQUE] INDEX index ON table
 (column-name [ASC[ENDING] | DESC[ENDING]]
 [,column-name [ASC[ENDING] | DESC[ENDING]]]...)
 [populate-option]
 [file-option]...

populate-option is: POPULATE | NO POPULATE

file-option is:
 LOCATION [\node.]$volume[.subvolume.file-name]
 [NAME partition-name]
 | partn-file-option
 | ATTRIBUTE[S] attribute [,attribute]...

partn-file-option is:
 {[RANGE] PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 [(ADD range-partn-defn [,ADD range-partn-defn]...)]

 | HASH PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 [(ADD partn-defn [,ADD partn-defn]...)]}

range-partn-defn is:
 FIRST KEY {col-value | (col-value [,col-value]...)}
 partn-defn

partn-defn is:
 LOCATION [\node.]$volume[.subvolume.file-name]
 [EXTENT ext-size | (pri-ext-size [,sec-ext-size])]
 [MAXEXTENTS num-extents]
 [NAME partition-name]

attribute is:
 ALLOCATE num-extents
 | {AUDITCOMPRESS | NO AUDITCOMPRESS}
 | BLOCKSIZE number-bytes
 | {CLEARONPURGE | NO CLEARONPURGE}
 | EXTENT ext-size | (pri-ext-size [,sec-ext-size])
 | MAXEXTENTS num-extents
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-80

SQL/MX Statements Syntax Description of CREATE INDEX
Syntax Description of CREATE INDEX

UNIQUE

specifies that the values (including NULL values) in the column or set of columns
that make up the index field cannot contain more than one occurrence of the same
value or set of values. For indexes with multiple columns, the values of the
columns as a group determines uniqueness, not the values of the individual
columns. If you omit UNIQUE, duplicate values are allowed. The columns you
specify for the index need not be declared NOT NULL (note that this is unlike
CREATE TABLE and ALTER TABLE, which do require all columns of a specified
unique constraint to be NOT NULL).

index

is an SQL identifier that specifies the simple name for the new index. You cannot
qualify index with its catalog and schema names. Indexes have their own
namespace within a schema, so an index name might be the same as a table or
constraint name. However, no two indexes in a schema can have the same name.

table

is the name of the table for which to create the index. See Database Object Names
on page 6-13.

column-name [ASC[ENDING] | DESC[ENDING]]
 [,column-name [ASC[ENDING] | DESC[ENDING]]]...

specifies the columns in table to include in the index. The order of the columns in
the index need not correspond to the order of the columns in the table.

ASCENDING or DESCENDING specifies the storage and retrieval order for rows
in the index. The default is ASCENDING.

Rows are ordered by values in the first column specified for the index. If multiple
index rows share the same value for the first column, the values in the second
column are used to order the rows, and so forth. If duplicate index rows occur in a
nonunique index, their order is based on the sequence specified for the columns of
the key of the underlying table. For ordering (but not for other purposes), nulls are
greater than other values.

populate-option

NO POPULATE

specifies that the index is not to be populated when it is created. The index's
partition(s) are created, but no data is written to the index, and it is marked
“offline”. You can drop an offline index with the DROP INDEX statement. The
DROP TABLE statement also drops offline indexes of the specified table. DML
statements have no effect on offline indexes. If an index is created with the
intention of using it for a constraint, it must be populated before creating the
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-81

SQL/MX Statements Syntax Description of CREATE INDEX
constraint. You can populate an offline index and remove its offline designation
by using the POPULATE INDEX utility.

POPULATE

Specifies that the index is to be created and populated. If you omit the
populate-option, the default is POPULATE

LOCATION [\node.]$volume[.subvolume.file-name]
 [NAME partition-name]

specifies a node and volume for the primary partition of the index.

node

is the name of a node on the Expand network.

For Guardian files representing a table or index partition or a view label, node
can be any node from which the object's catalog is visible.

volume

is the name of an audited, non-SMF DAM volume on the specified node (or the
Guardian volume named in the =_DEFAULTS define if no volume is specified).

If you do not specify a LOCATION clause and your system does not have a
value for the DDL_DEFAULT_LOCATIONS default (either in your environment
or at the system level) and your environment does not have a =_DEFAULTS
value, the CREATE statement will fail with an error.

subvolume

is the designated schema subvolume for the schema in which the index is
being created.

Follow these guidelines when using SQL/MX subvolume names:

 The name must begin with the letters ZSD, followed by a letter, not a digit
(for example, ZSDa, not ZSD2).

 The name must be exactly eight characters.

file-name

is an optional Guardian file name. file-name names must be 8 characters in
length and must end with the digits “00” (zero zero).

Any Guardian file name you specify must match the designated schema
subvolume name for the schema in which the object is being created.
Otherwise, NonStop SQL/MX returns an error.

partition-name

is an SQL identifier for a partition.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-82

SQL/MX Statements Syntax Description of CREATE INDEX
partn-file-option is:

{[RANGE] PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 [(ADD range-partn-defn [,ADD range-partn-defn]...)]

defines secondary partitions for a range partitioned table. See Partitions on
page 6-83 for details about partitions.

BY (partitioning-column [,partitioning-column]...)

specifies the partitioning columns. The default is the default partitioning key
created by the STORE BY clause. Partitioning character columns must derive
from the ISO88591 character set. Partitioning columns cannot be floating-point
data columns.

| HASH PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 [(ADD partn-defn [,ADD partn-defn]...)]}

defines secondary partitions for a hash partitioned table. See Partitions on
page 6-83 for details about partitions.

BY (partitioning-column [,partitioning-column]...)

specifies the columns that make up the partitioning key. If you do not specify
this clause, the partitioning key is the same as the clustering key of the table.
Partitioning columns cannot be floating-point data columns.

ADD range-partn-defn

defines a single secondary partition and includes the FIRST KEY and a
partn-defn.

range-partn-defn is:

FIRST KEY {col-value | (col-value [,col-value]...)} partn-defn

specifies the beginning of the range for a range partitioned table. The
FIRST KEY clause specifies the lowest values in the partition for columns
stored in ascending order and the highest values in the partition for
columns stored in descending order. These column values are referred to
as the partitioning key.

col-value is a literal that specifies the first value allowed in the
associated partition for that column of the partitioning key. If there are more
storage key columns than col-value items, the first key value for each
remaining key column is the lowest or highest value for the data type of the
column (the lowest value for an ascending column and the highest value
for a descending column). col-value must contain characters only from
the ISO88591 character set.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-83

SQL/MX Statements Syntax Description of CREATE INDEX
If the index has a system-generated SYSKEY, its column list cannot consist
only of column SYSKEY. The SYSKEY must be the last column of the
column list, and you cannot specify a FIRST KEY value for the SYSKEY
column. This limitation does not apply to a user-created SYSKEY column.

ADD partn-defn

defines a single secondary hash partition and includes the LOCATION of the
partition.

partn-defn is:

LOCATION [\node.]$volume[.subvolume.file-name]
[EXTENT ext-size | (pri-ext-size [,sec-ext-size])]
[MAXEXTENTS num-extents]
 [NAME partition-name]

specifies a volume and optionally the node, subvolume, and filename for
the partition.

node

is the name of a node on the Expand network. For Guardian files
representing a table or index partition, a view label, or a stored procedure
node can be any node from which the object's catalog is visible.

volume

is the name of an audited, non-SMF DAM volume on the specified node (or
the Guardian volume named in the =_DEFAULTS define if none is
specified). If you do not specify a LOCATION clause, NonStop SQL/MX
uses the default volume named in the =_DEFAULTS define.

If you do not specify a LOCATION clause and your system does not have a
value for the DDL_DEFAULT_LOCATIONS default (either in your
environment or at the system level) and your environment does not have a
=_DEFAULTS value, the CREATE statement will fail with an error.

You can locate more than one partition of an index on a single disk volume.

subvolume

is the designated schema subvolume for the schema in which the index is
being created. Follow these guidelines when using SQL/MX subvolume
names:

 The name must begin with the letters ZSD, followed by a letter, not a
digit (for example, ZSDa, not ZSD2).

 The name must be exactly eight characters.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-84

SQL/MX Statements Considerations for CREATE INDEX
file-name

is an optional Guardian file name. file-name names must be 8
characters in length and must end with the digits “00” (zero zero).

Any Guardian file name you specify must match the designated schema
subvolume name for the schema in which the object is being created.
Otherwise, NonStop SQL/MX returns an error.

partition-name

is an SQL identifier for a partition.

partn-file-option is an SQL/MX extension.

See PARTITION Clause on page 7-6.

ATTRIBUTE[S] attribute [,attribute]...

specifies file attributes for the key-sequenced file that holds the index. In an
ATTRIBUTES clause that is within a PARTITION clause, you must separate
attributes with a space. In ATTRIBUTES clauses in other places, you can
separate attributes with either a space or a comma. File attributes you can
specify are:

Attributes marked with an asterisk (*) default to the same value as the
corresponding attribute in the underlying table. For more detail, see the entry for a
specific attribute.

Considerations for CREATE INDEX

If you are creating an index on a large SQL/MX table that is already populated, you
should use the NO POPULATE option, and then run the POPULATE INDEX utility to
load the index. Because CREATE INDEX executes in a single TMF transaction, it
could experience TMF limitations such as a transaction timeout if a large amount of

ALLOCATE/DEALLOCATE
on page 9-2

Controls amount of disk space allocated.

AUDITCOMPRESS on
page 9-3

Controls whether unchanged columns are included
in audit records.

BLOCKSIZE on page 9-4 Sets size of data blocks.

CLEARONPURGE on
page 9-5 *

Controls disk erasure when index is dropped.

EXTENT on page 9-6 Controls size of extents that are allocated on disk.

MAXEXTENTS on
page 9-7

Controls key compression in DP2 index blocks.

MAXEXTENTS on
page 9-7

Controls maximum disk space to be allocated.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-85

SQL/MX Statements Examples of CREATE INDEX
data is to be moved. For more information about creating and populating indexes, see
the SQL/MX Installation and Management Guide.

After you perform POPULATE INDEX, you should perform a FUP RELOAD on the
index and all its partitions, to organize the index structure more efficiently and to
reduce index levels.

If the MAXEXTENT value that you specified is too small, when you run the POPULATE
INDEX utility it automatically increases the value to the largest possible size. When
POPULATE INDEX completes it adjusts the MAXEXTENTS value to the value you
specified, if it is greater than the number of extents that needed to be allocated. If the
number of extents that needed to be allocated is greater than the value you specified,
POPULATE INDEX adjusts the value for MAXEXTENTS to a value equal to the
number of extents that it allocated, plus 50. This is similar to NonStop SQL/MP’s
behavior.

Authorization and Availability Requirements

To create an SQL/MX index, you must own the schema for the underlying table or be
the super ID or object owner for the underlying table, and have access to all partitions
of the underlying table.

CREATE INDEX locks out INSERT, DELETE, and UPDATE operations on the table
being indexed. If other processes have rows in the table locked when the operation
begins, CREATE INDEX waits until its lock request is granted or timeout occurs.

An index always has the same security as the table it indexes, so users authorized to
access the table can also access the index. You cannot access an index directly.

Limits on Indexes

For nonunique indexes, the sum of the lengths of the columns in the index plus the
sum of the length of the clustering key of the underlying table cannot exceed 2010
bytes for 4K blocks and 2048 bytes for 32K blocks. For unique indexes, the sum of the
lengths of the columns in the index cannot exceed 2010 bytes for 4K blocks and 2048
bytes for 32K blocks.

There is no restriction on the number of indexes per table.

There is no restriction on the number of partitions an index supports.

Examples of CREATE INDEX

 This example creates an index on two columns of a table:

CREATE INDEX xempname
 ON persnl.employee (last_name, first_name);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-86

SQL/MX Statements Examples of CREATE INDEX
 This example creates and partitions a unique index (one that could be used to
support a UNIQUE, PRIMARY KEY, or referential constraint) on a table:

CREATE UNIQUE INDEX XEMP
ON PERSNL.EMPLOYEE (LAST_NAME, EMPNUM)
LOCATION $data1
ATTRIBUTE NO AUDITCOMPRESS
PARTITION (ADD FIRST KEY 'E' LOCATION $data1,
 ADD FIRST KEY 'J' LOCATION $data2,
 ADD FIRST KEY 'O' LOCATION $data2,
 ADD FIRST KEY 'T' LOCATION $data3);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-87

SQL/MX Statements CREATE PROCEDURE Statement
CREATE PROCEDURE Statement
Considerations for CREATE PROCEDURE
Examples of CREATE PROCEDURE

The CREATE PROCEDURE statement registers an existing Java method as a stored
procedure in Java (SPJ) within NonStop SQL/MX. To develop, deploy, and manage
SPJs in SQL/MX, see the SQL/MX Guide to Stored Procedures in Java.

CREATE PROCEDURE procedure-ref([sql-parameter-list])
EXTERNAL NAME 'java-method-name [([java-signature])]'
EXTERNAL PATH 'class-or-JAR-file-path'
LANGUAGE JAVA
PARAMETER STYLE JAVA
[LOCATION procedure-label]
[CONTAINS SQL | MODIFIES SQL DATA | READS SQL DATA
| NO SQL]
[DYNAMIC RESULT SETS max-result-sets]
[NOT DETERMINISTIC | DETERMINISTIC]
[ISOLATE | NO ISOLATE]

procedure-ref is:
[[catalog-name.]schema-name.]procedure-name

sql-parameter-list is:
sql-parameter[{, sql-parameter}...]

sql-parameter is:
[parameter-mode] [sql-identifier] sql-datatype

parameter-mode is:
IN

| OUT
| INOUT

java-method-name is:
[package-name.]class-name.method-name

java-signature is:
java-datatype[{, java-datatype}...]

procedure-label is:
[\node.]$volume[.subvolume.filename]

Note. Delimited variables in this syntax diagram are case-sensitive. Case-sensitive variables
include java-method-name, java-signature, class-or-JAR-file-path, and delimited parts of the
procedure-name. The remaining syntax is not case-sensitive.

The max-result-set can have a value in the range 0–255 from J06.05 and later J-series
RVUs and H06.16 and later H-series RVUs.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-88

SQL/MX Statements CREATE PROCEDURE Statement
procedure-ref([sql-parameter[{, sql-parameter}...]])

specifies the name of the SPJ and SQL parameters that correspond to the
signature of the SPJ method.

procedure-ref

specifies an ANSI logical name of the form:

[[catalog-name.]schema-name.]procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

The procedure-name must be unique among the names of tables, views,
SQL/MP aliases, sequence generators, and procedures within its schema.
NonStop SQL/MX does not support the overloading of procedure names. That
is, you cannot register the same procedure name more than once with different
underlying SPJ methods.

You cannot prefix the procedure name with the name of a user metadata
(UMD) table. For example, you cannot create a procedure named
HISTOGRAMS_MYPROC. These names are reserved for user metadata.

If you do not fully qualify the procedure name, NonStop SQL/MX qualifies it
according to the current settings of CATALOG and SCHEMA. If you set the
NAMETYPE attribute to NSK instead of ANSI and you do not fully qualify the
procedure name, NonStop SQL/MX returns an error. For more information on
the CATALOG, SCHEMA, and NAMETYPE attributes, see the System Defaults
Table on page 10-37.

sql-parameter

specifies an SQL parameter that corresponds to the signature of the SPJ
method:

[parameter-mode] [sql-identifier] sql-datatype

parameter-mode

specifies the mode IN, OUT, or INOUT of a parameter. The default is IN.

IN

specifies a parameter that passes data to an SPJ.

INOUT

specifies a parameter that passes data to and accepts data from an
SPJ.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-89

SQL/MX Statements CREATE PROCEDURE Statement
OUT

specifies a parameter that accepts data from an SPJ.

sql-identifier

specifies an SQL identifier that describes the parameter. For more
information, see Identifiers on page 6-56.

sql-datatype

specifies an SQL data type that corresponds to the Java parameter of the
SPJ method. sql-datatype can be:

SQL/MX Data Type Maps to Java Data Type...

CHAR[ACTER]*
CHAR[ACTER] VARYING *
VARCHAR*
PIC[TURE] X *
NCHAR
NCHAR VARYING
NATIONAL CHAR[ACTER]
NATIONAL CHAR[ACTER]

VARYING

java.lang.String

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

NUMERIC **
DEC[IMAL]**
PIC[TURE] S9

java.math.BigDecimal

SMALLINT** short

INT[EGER]** INT (or java.lang.Integer if
specified)***

LARGEINT long (or java.lang.Long if
specified)***

FLOAT double (or java.lang.Double
if specified)***

REAL float (or java.lang.Float if
specified)***

DOUBLE PRECISION double (or java.lang.Double
if specified)***

* The character set for character string data types can be ISO88591 or UCS2.
** Numeric data types can be only SIGNED, which is the default in NonStop SQL/MX.
*** By default, the SQL/MX data type maps to a Java primitive data type. The SQL/MX
data type maps to a Java wrapper class only if you specify the wrapper class in the
Java signature of the EXTERNAL NAME clause.

Ext

Ext
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-90

SQL/MX Statements CREATE PROCEDURE Statement
For more information, see Data Types on page 6-17.

EXTERNAL NAME 'java-method-name [java-signature]'

java-method-name

specifies the case-sensitive name of the SPJ method of the form:

[package-name.]class-name.method-name

The Java method must exist in a Java class file, class-name.class, in the
OSS directory, or the JAR file path specified by the EXTERNAL PATH clause.
The Java method must be defined as public and static and have a return
type of void. For guidelines on how to write an SPJ method, see the SQL/MX
Guide to Stored Procedures in Java.

If the class file that contains the SPJ method is part of a package, you must
also specify the package name. If you do not specify the package name, the
CREATE PROCEDURE statement fails to register the SPJ.

java-signature

specifies the signature of the SPJ method and consists of:

([java-datatype[{, java-datatype}...]])

The Java signature is necessary only if you want to specify a Java wrapper
class (for example, java.lang.Integer) instead of a Java primitive data
type (for example, INT). An SQL/MX data type maps to a Java primitive data
type by default.

The Java signature is case-sensitive and must be placed within parentheses,
such as (java.lang.Integer, java.lang.Integer). The signature
must specify each of the parameter data types in the order they appear in the
Java method definition within the class file. Each Java data type that
corresponds to an OUT or INOUT parameter must be followed by empty
square brackets ([]), such as java.lang.Integer[].

java-datatype

specifies a mappable Java data type. For the mapping of the Java data
types to SQL/MX data types, see sql-datatype on page 2-90.

EXTERNAL PATH 'class-file-path'

specifies a case-sensitive string identifying the OSS directory or the JAR file path
where the Java class file that contains the SPJ method resides.

This icon indicates an SQL data type that is an SQL/MX extension to
the ANSI standard. All other SQL data types in this table conform to
the ANSI standard.

Ext
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-91

SQL/MX Statements CREATE PROCEDURE Statement
Specify package names in the EXTERNAL NAME clause, not the EXTERNAL
PATH clause.

LANGUAGE JAVA

specifies that the external user-defined routine is written in the Java language.

PARAMETER STYLE JAVA

specifies that the run-time conventions for arguments passed to the external
user-defined routine are those of the Java language.

LOCATION procedure-label

specifies a Guardian physical name and location for the stored procedure label.
For more information on the procedure label, see the SQL/MX Guide to Stored
Procedures in Java.

[\node.]$volume[.subvolume.filename]

node

is the name of a node on the Expand network. The node can be any node
where the catalog of the SPJ is visible.

volume

If you do not specify a LOCATION clause and your system does not have a
value for the DDL_DEFAULT_LOCATIONS default (either in your environment
or at the system level) and environment does not have a =_DEFAULTS value,
the CREATE statement fails with an error.

subvolume

is the designated schema subvolume for the schema in which the SPJ is being
created. Follow these guidelines when using SQL/MX subvolume names:

 The name must begin with the letters ZSD, followed by a letter, not a digit.
 The name must be exactly eight characters long.

Any Guardian file name you specify must match the designated schema
subvolume name for the schema in which the SPJ is being created. Otherwise,
NonStop SQL/MX returns an error.

filename

is an optional Guardian file name. The name must be eight characters long in
length and must end with the digits “00” (zero zero).

NO SQL

specifies that the SPJ cannot perform SQL operations.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-92

SQL/MX Statements Considerations for CREATE PROCEDURE
CONTAINS SQL | MODIFIES SQL DATA | READS SQL DATA

specifies that the SPJ can perform SQL operations. Currently, all the options allow
an SPJ to read and modify SQL data. If you do not specify an SQL access mode,
the default is CONTAINS SQL.

DYNAMIC RESULT SETS max-result-sets

specifies the maximum number of result sets that the SPJ can return. If you specify
this clause, you must set the value in the range 0 through 255.

NOT DETERMINISTIC | DETERMINISTIC

specifies whether the SPJ always returns the same values for OUT and INOUT
parameters for a given set of argument values (DETERMINISTIC) or does not
return the same values (NOT DETERMINISTIC, the default option). For a
deterministic SPJ, the database server reserves the right to cache the results of a
CALL statement and reuse them during subsequent calls, optimizing the CALL
statement. NonStop SQL/MX allows both options but always treats the SPJ as
nondeterministic.

ISOLATE | NO ISOLATE

specifies that the SPJ executes either in the environment of the database server
(NO ISOLATE) or in an isolated environment (ISOLATE, the default option).
NonStop SQL/MX allows both options but always executes the SPJ in the SQL/MX
UDR server process (ISOLATE).

Considerations for CREATE PROCEDURE

Authorization and Availability Requirements

To issue a CREATE PROCEDURE statement, you must be the owner of the schema,
or be the super ID, and have read access to the Java class file or JAR file that contains
the SPJ method.

Examples of CREATE PROCEDURE

 This CREATE PROCEDURE statement registers the SPJ named LOWERPRICE,
which does not accept any arguments:

SET CATALOG samdbcat;
SET SCHEMA sales;

CREATE PROCEDURE lowerprice()
EXTERNAL NAME 'Sales.lowerPrice()'
EXTERNAL PATH '/usr/mydir/myclasses'
LANGUAGE JAVA
PARAMETER STYLE JAVA;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-93

SQL/MX Statements Examples of CREATE PROCEDURE
The statement verifies the existence of the SPJ method, lowerprice, in the
/usr/mydir/myclasses/Sales.class.

Because the procedure name is not qualified by a catalog and schema, NonStop
SQL/MX qualifies it according to the current settings of CATALOG and SCHEMA,
which are SAMDBCAT and SALES in this case. To call this SPJ, use this
statement:

CALL lowerprice();

 This CREATE PROCEDURE statement registers the SPJ named TOTALPRICE,
which accepts three input parameters and returns a numeric value, the total price,
to an INOUT parameter:

CREATE PROCEDURE samdbcat.sales.totalprice(IN NUMERIC (18),
IN VARCHAR (10),

INOUT price NUMERIC (18,2))
EXTERNAL NAME 'pkg.subpkg.Sales.totalPrice'
EXTERNAL PATH '/usr/mydir/myJar.jar'
LANGUAGE JAVA
PARAMETER STYLE JAVA;

To call this SPJ in MXCI, use these statements:

SET PARAM ?p 10.00;

CALL samdbcat.sales.totalprice(23, 'standard', ?p);

PRICE

 253.96

 This CREATE PROCEDURE statement registers the SPJ named
MONTHLYORDERS, which accepts an integer value for the month and returns the
number of orders:

CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT,
OUT number INT)

EXTERNAL NAME
'Sales.numMonthlyOrders (INT, java.lang.Integer[])'

EXTERNAL PATH '/usr/mydir/myclasses'
LANGUAGE JAVA
PARAMETER STYLE JAVA;

Because the OUT parameter is supposed to map to the Java wrapper class,
java.lang.Integer, you must specify the Java signature in the EXTERNAL
NAME clause. To call this SPJ, use this statement:

CALL samdbcat.sales.monthlyorders(3, ?);

NUMBER

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-94

SQL/MX Statements Examples of CREATE PROCEDURE
 4

 This CREATE PROCEDURE statement registers the SPJ named
SALES.ORDER_SUMMARY and returns two result sets.

CREATE PROCEDURE SAMDBCAT.SALES.ORDER_SUMMARY
 (

 IN ON_OR_AFTER_DATE VARCHAR(20) CHARACTER SET ISO88591
 , OUT NUM_ORDERS LARGEINT
)

 DYNAMIC RESULT SETS 2
 READS SQL DATA LANGUAGE JAVA PARAMETER STYLE JAVA
 EXTERNAL NAME 'SPJMethods.orderSummary'
 EXTERNAL PATH '/usr/mydir/myclasses';

 This CREATE PROCEDURE statement registers the SPJ named
SALES.PART_DATA and returns four result sets.

CREATE PROCEDURE SAMDBCAT.SALES.PART_DATA
 (
 IN PARTNUM NUMERIC(4)
 , OUT PARTDESC CHAR(18)
 , OUT PRICE NUMERIC(8,2)
 , OUT QTY_AVAIL NUMERIC(5)
)
 DYNAMIC RESULT SETS 4
 READS SQL DATA LANGUAGE JAVA PARAMETER STYLE JAVA
 EXTERNAL NAME 'SPJMethods.partData'
 EXTERNAL PATH '/usr/mydir/myclasses';

For more examples, see the SQL/MX Guide to Stored Procedures in Java.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-95

SQL/MX Statements CREATE SCHEMA Statement
CREATE SCHEMA Statement
Considerations for CREATE SCHEMA
Examples of CREATE SCHEMA

CREATE SCHEMA creates an SQL/MX schema.

CREATE SCHEMA with the optional location clause is an SQL/MX extension.

Syntax Description of CREATE SCHEMA

schema

is a schema name for the new schema. A simple schema name is an SQL
identifier. A schema name can also be of the form
catalog-name.schema-name.

AUTHORIZATION auth-id

specifies the owner of the schema. The default is the current authorization ID. The
auth-id must be the current authorization ID unless the current authorization ID
is a SUPER user. A SUPER user can specify any currently valid authorization ID
as the owner of the schema.

Enter an auth-id as a simple name, for example, "sql.user1". Because of
the “.” , you must enclose the user name in double quotes, the same as for a
delimited identifier.

You cannot specify PUBLIC as the auth-id, because a schema can have only
one owner.

CREATE SCHEMA schema-clause [schema-element
 [, schema-element] ...]]

schema-clause is:
 schema
 | schema AUTHORIZATION auth-id
 | schema AUTHORIZATION auth-id location-clause
 | schema location-clause

location-clause is:
 LOCATION subvolume [reuse-clause]

reuse-clause is:
 REPEAT USE ALLOWED

schema-element is:
 table-definition
 | view-definition
 | grant-statement
 | index-definition
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-96

SQL/MX Statements Syntax Description of CREATE SCHEMA
LOCATION subvolume

optionally specifies the designated subvolume name for the schema. Ordinarily,
NonStop SQL/MX generates a subvolume name for the schema. However, in some
instances, you might need to specify the subvolume, such as when creating an
RDF backup database. In this case, the subvolume name for each backup schema
must match the subvolume name for the corresponding schema in the primary
database, and you must use the REPEAT USE ALLOWED clause for the
statement to succeed.

In either case, the schema subvolume is written to the
SCHEMATA.SCHEMA_SUBVOLUME column in the SQL/MX system schema. The
schema subvolume is used as the subvolume for the locations of all objects
created within that schema.

If the optional subvolume name is omitted, NonStop SQL/MX generates a
subvolume name for the schema.

Follow these guidelines when using SQL/MX subvolume names:

 The name must begin with the letters ZSD, followed by a letter, not a digit (for
example, ZSDa, not ZSD2).

 The name must be exactly eight characters long.
 All Guardian files representing data in a particular schema must have the same

subvolume name regardless of the volume on which they reside. This
subvolume name must match the subvolume name indicated in the system
schema column SCHEMATA.SCHEMA_SUBVOLUME.

 For RDF database creation, if you explicitly specify the subvolume that is
already in use by the primary database, use the REPEAT USE ALLOWED
clause to avoid receiving an error when executing the statement.

Valid SQL/MX subvolume names are:

ZSDBMM3K
ZSDADMM8

REPEAT USE ALLOWED

indicates that NonStop SQL/MX should allow subvolume names to be reused. If
the subvolume name is in use, the schema will be created anyway and you will
receive a warning.

If you omit this clause, the subvolume name you enter must not be in use by any
other schema. If the subvolume name has been used for another schema, you will
receive an error.

schema-element

specifies the objects to be defined in the schema being created. The element in the
statement must be in the same schema as the schema you are creating. Schema
elements must appear in sequence—a schema element that depends on another
schema element must be listed after that schema element.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-97

SQL/MX Statements Considerations for CREATE SCHEMA
table-definition

is a CREATE TABLE statement.

view-definition

is a CREATE VIEW statement.

grant-statement

is a GRANT statement.

index-definition

is a CREATE INDEX statement. index-definition cannot be the only
schema-element.

Considerations for CREATE SCHEMA

Duplicate Schema Subvolume

One use of the schema subvolume is to identify all Guardian files in a schema for use
with Guardian-based commands for TMF, RDF or other subsystems. Unless you use
the REPEAT USE ALLOWED clause, NonStop SQL/MX prevents you from specifying
a subvolume name that is already in use by another schema. If you use this clause you
will receive a warning and the operation succeeds. This action is recommended only
when creating an RDF backup database.

If you do reuse a schema subvolume, a Guardian wild card of the form
\system.$*.subvolume.* will specify physical files from all schemas using this
subvolume name. This might affect your future ability to refer only to objects in specific
schemas when issuing commands to TMF or RDF.

Reserved Schema Names

Schema names that begin with DEFINITION_SCHEMA_VERSION_ are reserved (in
all catalogs) for system metadata. You cannot create schemas with these names in
user catalogs.

These names are not reserved (you can create schemas with these names in user
catalogs): SYSTEM_SCHEMA, SYSTEM_DEFAULTS_SCHEMA, MXCS_SCHEMA,
SYSTEM_SECURITY_SCHEMA, SYSTEM_SQLJ_SCHEMA.

Schemas named SYSTEM_SCHEMA, SYSTEM_DEFAULTS_SCHEMA,
MXCS_SCHEMA, SYSTEM_SECURITY_SCHEMA, and SYSTEM_SQLJ_SCHEMA in
the system catalog are reserved for metadata. You cannot drop them or create objects
in them.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-98

SQL/MX Statements Examples of CREATE SCHEMA
Authorization and Availability Requirements

A catalog owner and the users who are granted the privilege by using GRANT
CREATE SCHEMA can create a schema. If such users are not specified, any user can
execute this statement.

Examples of CREATE SCHEMA

 This example creates a schema:

CREATE SCHEMA mycat.myschema;

 This example creates a schema with pubs.jsmith as the owner, located on
subvolume ZSDABCDE:

CREATE SCHEMA sch2 AUTHORIZATION “pubs.jsmith” LOCATION
ZSDABCDE;

 This example creates a schema located on subvolume ZSDSCHEM:

CREATE SCHEMA myschema LOCATION ZSDSCHEM;

 This example intentionally creates a schema located on subvolume ZSDSCHE2
when that subvolume is already in use by another schema:

CREATE SCHEMA myschema LOCATION ZSDSCHE2 REPEAT USE ALLOWED;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-99

SQL/MX Statements CREATE SEQUENCE Statement
CREATE SEQUENCE Statement
Considerations for CREATE SEQUENCE
Examples of CREATE SEQUENCE

The CREATE SEQUENCE statement creates a sequence generator in the specified
schema. The CREATE SEQUENCE statement must specify a name, but specifying the
attributes such as LOCATION, START WITH, MAXVALUE, MINVALUE, INCREMENT
BY, and CYCLE is optional.

Note. Each attribute can be specified at most once in the CREATE SEQUENCE statement. A
warning is returned if you specify the ORDER and CACHE attributes.

CREATE SEQUENCE sequence [sequence-generator-options
 [sequence-generator-options] ...] [sequence-file-option]

sequence-generator-options are:
{ sequence-generator-data-type-option }
 | { sequence-generator-start-with-option }
 | { sequence-generator-increment-by-option }
 | { sequence-generator-maxvalue-option }
 | { sequence-generator-minvalue-option }
 | { sequence-generator-cycle-option }
 | { sequence-generator-cache-option }
 | { sequence-generator-order-option }

sequence-generator-data-type-option is:
{ NUMERIC [(sg-precision [, 0])]
 [SIGNED | UNSIGNED]
 | SMALLINT [SIGNED | UNSIGNED]
 | INT[EGER] [SIGNED | UNSIGNED]
 | LARGEINT [SIGNED]
}

sg-precision is: { 1,2,3,...,28 }

sequence-generator-start-with-option is:
{ START WITH sequence-generator-numeric-value }

sequence-generator-increment-by-option is:
{ INCREMENT BY sequence-generator-numeric-value }

sequence-generator-maxvalue-option is:
{ MAXVALUE sequence-generator-numeric-value
 | NOMAXVALUE
 | NO MAXVALUE
}

sequence-generator-minvalue-option is:
{ MINVALUE sequence-generator-numeric-value
 | NOMINVALUE
 | NO MINVALUE
}

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-100

SQL/MX Statements CREATE SEQUENCE Statement
Syntax Description of CREATE SEQUENCE

sequence

specifies the ANSI name of the sequence generator.

sequence-generator-data-type-option

specifies the sequence generator data type. Specifying the data type is optional.
The supported data types are:

 Signed or Unsigned SMALLINT

 Signed or Unsigned INTEGER

 Signed LARGEINT, which is the default data type

 Signed or Unsigned NUMERIC with maximum precision of 28

sequence-generator-start-with-option

specifies the first sequence number.

By default, the minimum value of the sequence generator data type is considered
as the start value for an ascending sequence and the maximum value is
considered as the start value for a descending sequence.

The start value must be less than or equal to MAXVALUE, and greater than or
equal to MINVALUE.

sequence-generator-increment-by-option

specifies the increment value to be added to the CURRENT_VALUE to obtain the
next value in the sequence. Default is 1 (one). This value cannot be 0 (zero).
Sequences can be either ascending or descending. An ascending sequence is
associated with a positive increment and a descending sequence is associated
with a negative increment.

sequence-generator-cycle-option is:
{ CYCLE | NOCYCLE | NO CYCLE}

sequence-generator-cache-option is:
{ CACHE sequence-generator-numeric-value | NOCACHE }

sequence-generator-order-option is: { ORDER | NOORDER }

sequence-generator-numeric-value is: < numeric-literal >

sequence-file-option is:
LOCATION [\node.]$volume[.subvolume.file-name]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-101

SQL/MX Statements CREATE SEQUENCE Statement
sequence-generator-maxvalue-option

specifies the MAXVALUE for the sequence generator. The default is the maximum
value of the sequence generator data type.

If NO MAXVALUE or NOMAXVALUE is specified, MAXVALUE is the maximum
value of the sequence generator data type.

This value must be greater than MINVALUE and must be greater than or equal to
START WITH value.

sequence-generator-minvalue-option

specifies the MINVALUE for the sequence generator. The default is the minimum
value of the sequence generator data type.

If NO MINVALUE or NOMINVALUE is specified, MINVALUE is the minimum value
of the sequence generator data type.

This value must be less than MAXVALUE and must be less than or equal to
START WITH value.

sequence-generator-cycle-option

specifies the behavior of the sequence generator after reaching either the
maximum or minimum value. The default is NO CYCLE.

If NO CYCLE is specified, an exception is raised if a new value is requested from
the sequence generator after:

 an ascending sequence reaches the maximum value

 a descending sequence reaches the minimum value

If CYCLE is specified, the sequence generator loops over to:

 generate the minimum value after an ascending sequence reaches the
maximum value

 generate the maximum value after a descending sequence reaches the
minimum value

sequence-generator-cache-option

supported syntactically.

sequence-generator-order-option

supported syntactically.

sequence-file-option

specifies the location.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-102

SQL/MX Statements Considerations for CREATE SEQUENCE
Considerations for CREATE SEQUENCE

Authorization Requirements

To create a sequence generator, you must own its schema or be the Super ID.

Restrictions

 The CACHE and ORDER attributes are only supported syntactically. A warning
is returned if you use them in the CREATE SEQUENCE statement.

 You cannot specify the INCREMENT BY, MAXVALUE or NOMAXVALUE or
NO MAXVALUE, MINVALUE or NOMINVALUE or NO MINVALUE, CYCLE or
NO CYCLE or NOCYCLE attributes more than once in the statement.

Reserved Names

The user metadata table names are reserved. You cannot create a sequence
generator with these reserved names. For example, you cannot create a sequence
generator named HISTOGRAMS.

Examples of CREATE SEQUENCE

 This example creates a sequence generator with default attribute values:

CREATE SEQUENCE CAT.SCH.MYSEQ LARGEINT

 This example creates a sequence generator specifying values for MINVALUE,
MAXVALUE and INCREMENT BY attributes:

CREATE SEQUENCE CAT.SCH.MYSEQ LARGEINT

START WITH 100

INCREMENT BY 1

MINVALUE 100

MAXVALUE 1000000 ;

 This example creates a sequence generator in the specified Guardian location:

CREATE SEQUENCE SEQ2 LOCATION $DATA04;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-103

SQL/MX Statements CREATE SQLMP ALIAS Statement
CREATE SQLMP ALIAS Statement
Considerations for CREATE SQLMP ALIAS
Examples of CREATE SQLMP ALIAS

The CREATE SQLMP ALIAS statement defines mappings from an ANSI name to the
physical name of an SQL/MP table or view.

CREATE SQLMP ALIAS is an SQL/MX extension.

catalog.schema.object

is the alias name of an SQL/MP table or view. catalog and schema denote
ANSI-defined catalog and schema, and object is a simple name for the table or
view. If any of the three parts of the name is an SQL/MX reserved word, you must
delimit it by enclosing it in double quotes. For example: mycat."sql".myview.

See Catalogs on page 6-3, and Identifiers on page 6-56.

[\node.]$volume.subvol.filename

is the fully qualified Guardian physical name of a table, view, or partition.

In this four-part name, node is the name of a node of a NonStop server, $volume
is the name of a disk volume, subvol is the name of a subvolume, and filename
is the name of an existing SQL/MP table or view. node is not required to be the
local node. if any of the four parts of the name is an SQL/MX reserved word, you
must delimit it by enclosing it in double quotes. Such delimited parts are not case-
sensitive. For example: $myvol."join".mytab.

If you do not specify \node, the default is the Guardian node named in the
=_DEFAULTS define. The value for the physical name is upshifted when the row is
inserted into the SQLMX metadata table.

If the underlying file does not exist or is not an SQL/MP table or view, NonStop
SQL/MX returns an error.

The object part of the name cannot have the name of a UMD table as a prefix.
For example, it cannot be HISTOGRAMS_MYALIAS.

CREATE SQLMP ALIAS catalog.schema.object
 [\node.]$volume.subvol.filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-104

SQL/MX Statements Considerations for CREATE SQLMP ALIAS
Considerations for CREATE SQLMP ALIAS

Reserved Alias Names

Alias names prefixed by the name of a UMD table are reserved. You cannot create
aliases with such names. For example, you cannot create an alias named
HISTOGRAMS_MYALIAS.

Usage Restrictions

If the catalog and schema do not exist, NonStop SQL/MX returns an error.

If the specified alias name already exists, NonStop SQL/MX returns an error.

You can map the same SQL/MP table or view to multiple different ANSI names in the
same catalog and schema and in different catalogs and schemas. For example, you
can create these four mappings for a single SQL/MP table or view:

cat1.sch1.obj1
cat1.sch1.obj2
cat2.sch1.obj2
cat2.sch2.obj2

In SQL/MX releases earlier than SQL/MX Release 2.x, if you re-mapped a table
without dropping the SQLMP alias, NonStop SQL/MX would issue an error. In SQL/MX
Releases 2.x you can map multiple ANSI names to one SQL/MP object, and access
the same MP object using different alias names.

Only these DDL statements allow the use of an SQL/MP alias name: CREATE SQLMP
ALIAS, DROP SQLMP ALIAS, ALTER SQLMP ALIAS, and UPDATE STATISTICS.

Moving and dropping of the underlying SQL/MP object does not result in altering or
dropping the associated SQLMP aliases. See Considerations for DROP SQLMP
ALIAS for details.

Managing Changes to SQLMP Aliases When SQL/MP Files Change

The alias information described in NonStop SQL/MX might become incorrect or
orphaned. It becomes incorrect if the SQL/MP file name associated with the SQLMP
ALIAS is moved to a different location. It becomes orphaned if the SQL/MP file name
associated with the SQLMP ALIAS is removed. SQL/MP objects might be moved to
different locations when users issue partition management commands with the
SQL/MP ALTER statement or when they recover files to a different location by using
TMF RECOVERY. SQL/MP files can be removed when users drop the table or view
with an SQL/MP ALTER statement. You must alter the SQLMP ALIAS (if objects are
moved) or drop the SQLMP ALIAS (if objects are dropped). See ALTER SEQUENCE
Statement on page 2-13 and DROP SQLMP ALIAS Statement on page 2-188 for
details.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-105

SQL/MX Statements Examples of CREATE SQLMP ALIAS

Em
Late Bind

If you compile an application that uses an SQL/MP alias and later you change the
SQL/MP alias to map to a different SQL/MP table, the SQL/MP table definition is no
longer compatible with the definition used at compile time. As a result, you must
manually recompile applications that use the alias. If the late bind does not find the
SQL/MP table underlying the SQL/MP alias or if the SQL/MP table was moved,
NonStop SQL/MX returns an error.

For more information, see the SQL/MX Programming Manual for C and COBOL.

Embedding the Statement in an SQL Program

If you embed a CREATE SQLMP ALIAS statement in a static SQL program,
subsequent references in the same program to the SQL/MP alias cause compilation
errors because the alias does not reside in the OBJECTS table. To avoid these errors,
create logical name mappings separately before compiling static SQL programs that
refer to the SQL/MP alias. Compilation errors do not occur when you create and refer
to SQL/MP aliases in a dynamic SQL program. For more information on embedding
SQL in programs, see the SQL/MX Programming Manual for C and COBOL.

Partitioned Tables

Use the CREATE SQLMP ALIAS statement to create logical mappings for different
partitions of a table. That is, two partitions of the same table can be referenced with
different ANSI names. However, HP recommends that you map an alias to the primary
partition for accessing the entire partitioned table.

Aliases can be visible to a remote node through a REGISTER CATALOG statement

Authorization and Availability Requirements

To create, alter, or drop aliases, you must be the owner of the schema or be the super
ID.

Examples of CREATE SQLMP ALIAS

 Suppose that you have created an SQL/MP table by using this SQL/MP CREATE
TABLE statement:

CREATE TABLE $myvol.mysubvol.mytable
 (num NUMERIC (4) UNSIGNED NOT NULL
 ,name VARCHAR (20)
 ,PRIMARY KEY (num));

This statement creates a mapping in the metadata table:

CREATE SQLMP ALIAS mycatalog.myschema.mytable
 $myvol.mysubvol.mytable;

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-106

SQL/MX Statements CREATE TABLE Statement
CREATE TABLE Statement
Considerations for CREATE TABLE
Examples of CREATE TABLE

The CREATE TABLE statement creates an SQL/MX table. See Database Object
Names on page 6-13.

 CREATE TABLE table
 { (table-element [,table-element]...) | like-spec }
 [file-option]...

table-element is:
 column-definition
 | [CONSTRAINT constraint-name] table-constraint

column-definition is:
 column data-type
 [DEFAULT default | NO DEFAULT | identity-column-
specification]
 [HEADING 'heading-string' | NO HEADING]
 [[CONSTRAINT constraint-name] column-constraint]...

data-type is:
 CHAR[ACTER] [(length [CHARACTERS])]
 [CHARACTER SET char-set-name] [COLLATE DEFAULT]
 [UPSHIFT]
 | PIC[TURE] X [(length)] [CHARACTER SET char-set-name]
 [COLLATE DEFAULT] [DISPLAY] [UPSHIFT]
 | CHAR[ACTER] VARYING (length)
 [CHARACTER SET char-set-name]
 [COLLATE DEFAULT] [UPSHIFT]
 | VARCHAR (length) [CHARACTER SET char-set-name]
 [COLLATE DEFAULT] [UPSHIFT]
 | PIC[TURE] [S]{ 9(integer) [V[9(scale)]] | V9(scale) }
 [DISPLAY [SIGN IS LEADING] | COMP]
 | NCHAR [(length) [COLLATE DEFAULT] [UPSHIFT]
 | NCHAR VARYING(length) [COLLATE DEFAULT] [UPSHIFT]
 | NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]
 | SMALLINT [SIGNED|UNSIGNED]
 | INT[EGER] [SIGNED|UNSIGNED]
 | LARGEINT
 | DEC[IMAL] [(precision [,scale])] [SIGNED|UNSIGNED]
 | FLOAT [(precision)]
 | REAL
 | DOUBLE PRECISION
 | DATE
 | TIME [(time-precision)]
 | TIMESTAMP [(timestamp-precision)]
 | INTERVAL { start-field TO end-field | single-field }

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-107

SQL/MX Statements CREATE TABLE Statement
default is:
 literal
 | NULL
 | CURRENT_DATE
 | CURRENT_TIME
 | CURRENT_TIMESTAMP
 | {CURRENT_USER | USER}

identity-column-specification is:
 identity-type [(internal-sequence-generator-options)]
[sg-location]

identity-type is:
 GENERATED BY DEFAULT AS IDENTITY
 | GENERATED ALWAYS AS IDENTITY

internal-sequence-generator-options is:
 internal-sequence-generator-option ...

internal-sequence-generator-option is:
 internal-sequence-generator-start-with-option
 | basic-internal-sequence-generator-option

internal-sequence-generator-start-with-option is:
 START WITH signed-numeric-literal

basic-internal-sequence-generator-option is:
 internal-sequence-generator-increment-by-option
 | internal-sequence-generator-maxvalue-option
 | internal-sequence-generator-minvalue-option
 | internal-sequence-generator-cycle-option

internal-sequence-generator-increment-by-option is:
 INCREMENT BY signed-numeric-literal

internal-sequence-generator-maxvalue-option is:
 MAXVALUE signed-numeric-literal
 | NO MAXVALUE

internal-sequence-generator-minvalue-option is:
 MINVALUE signed-numeric-literal
 | NO MINVALUE

internal-sequence-generator-cycle-option is:
 NO CYCLE

sg-location is:
 LOCATION [\node.]$volume[.subvolume.file-name]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-108

SQL/MX Statements CREATE TABLE Statement
column-constraint is:
 NOT NULL [[NOT] DROPPABLE]
 | UNIQUE
 | PRIMARY KEY [ASC[ENDING] | DESC[ENDING]]
 [[NOT] DROPPABLE]
 | CHECK (condition)
 | REFERENCES ref-spec
 ref-spec is:
 referenced-table [(column-list)]
 [referential triggered action]

referential triggered action is:
 update rule [delete rule]
 | delete rule [update rule]

update rule is: ON UPDATE referential action

delete rule is: ON DELETE referential action

referential action is: RESTRICT
 | NO ACTION
 | CASCADE
 | SET NULL
 | SET DEFAULT

column-list is:
 column-name [,column-name]...

table-constraint is:
 UNIQUE (column-list)
 | PRIMARY KEY (key-column-list) [[NOT] DROPPABLE]
 | CHECK (condition)
 | FOREIGN KEY (column-list) REFERENCES ref-spec

key-column-list is:
 column-name [ASC[ENDING] | DESC[ENDING]]
 [,column-name [ASC[ENDING] | DESC[ENDING]]]...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-109

SQL/MX Statements CREATE TABLE Statement
file-option is:
 STORE BY store-option
 | LOCATION [\node.]$volume[.subvolume.file-name]
 [NAME partition-name]
 | partn-file-option
 | ATTRIBUTE[S] attribute [,attribute]...

store-option is:
 PRIMARY KEY
 | (key-column-list)

partn-file-option is:
 { [RANGE] PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 [(ADD range-partn-defn [,ADD range-partn-defn]...)]

 | HASH PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 [(ADD partn-defn [,ADD partn-defn]...)]}

range-partn-defn is:
 FIRST KEY {col-value | (col-value [,col-value]...)}
 partn-defn

partn-defn is:
 LOCATION [\node.]$volume[.subvolume.file-name]
 [EXTENT ext-size | (pri-ext-size [,sec-ext-size])]
 [MAXEXTENTS num-extents]
 [NAME partition-name]

attribute is:
 ALLOCATE num-extents
 | {AUDITCOMPRESS | NO AUDITCOMPRESS}
 | BLOCKSIZE number-bytes
 | {CLEARONPURGE | NO CLEARONPURGE}
 | EXTENT ext-size | (pri-ext-size [,sec-ext-size])
 | MAXEXTENTS num-extents

like-spec is:
 LIKE source-table [include-option]...

include-option is:
 WITH CONSTRAINTS
 | WITH HEADINGS
 | WITH PARTITIONS

include-option is:
 WITH CONSTRAINTS | WITH PARTITIONS
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-110

SQL/MX Statements Syntax Description of CREATE TABLE
Syntax Description of CREATE TABLE

table

is the ANSI logical name for the new table and must be unique among names of
tables, views, SQL/MP aliases, and procedures within its schema. You cannot
specify a Guardian physical name although you can specify it with the LOCATION
clause.

column data-type

specifies the name and data type for a column in the table. At least one column
definition is required in a CREATE TABLE statement.

column is an SQL identifier. column must be unique among column names in the
table. If the name is an SQL/MX reserved word, you must delimit it by enclosing it
in double quotes. Such delimited parts are case-sensitive. For example: "join".

column cannot be SYSKEY if the clustering key contains SYSKEY.

data-type is the data type of the values that can be stored in column. A default
value must be of the same type as the column, including the character set for a
character column. See Data Types on page 6-17.

DEFAULT default | NO DEFAULT

specifies a default value for the column or specifies that the column does not have
a default value. See DEFAULT Clause on page 7-2.

identity-column-specification

specifies that the column is an IDENTITY column indicating that the system can
generate values for it using the internal Sequence Generator options. Nonstop
SQL/MX will generate unique values for this column by default. See IDENTITY
Column and internal Sequence Generators on page 2-129 and Generating Values
for an IDENTITY Column on page 2-132.

GENERATED BY DEFAULT AS IDENTITY | GENERATED ALWAYS AS
IDENTITY

 GENERATED BY DEFAULT AS IDENTITY

creates an IDENTITY column. This type accepts both system-generated values
and user-supplied values for the IDENTITY column. The system generates a
value for the IDENTITY column if the user does not provide one. The system
does not guarantee unique values for the IDENTITY column if the user
supplies a value for the IDENTITY column. The internal Sequence Generator is
created when an IDENTITY column is specified.

 GENERATED ALWAYS AS IDENTITY

creates an IDENTITY column. This type accepts only system-generated
values. A user-supplied value is not allowed. The system guarantees unique
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-111

SQL/MX Statements Syntax Description of CREATE TABLE
values for the IDENTITY column. The internal Sequence Generator is created
when an IDENTITY column is specified.

START WITH signed-numeric-literal

start value of the cycle range for the IDENTITY column. The default is the
value provided in MINVALUE option of the internal Sequence Generator. If the
MINVALUE is omitted or NO MINVALUE is specified, the default is 0 (zero).

INCREMENT BY signed-numeric-literal

increments the CURRENT_VALUE by signed-numeric-literal to obtain
the next value in the sequence. See SG Table on page 2-130. Default is 1
(one). The INCREMENT BY value cannot be greater than the maximum value
of the data type of the IDENTITY column.

MAXVALUE signed-numeric-literal | NO MAXVALUE

the non-negative value of the data type of the IDENTITY column that specifies
the maximum value of the cycle range. It cannot be greater than the maximum
value of the data type of the IDENTITY column. It must be greater than the
INCREMENT BY value. If NO MAXVALUE is specified or this option is omitted,
the maximum value is the maximum value of the data type of the IDENTITY
column.

MINVALUE signed-numeric-literal | NO MINVALUE

A non-negative value that specifies the minimum value of the cycle range. If
NO MINVALUE is specified or if this option is omitted, the minimum value is the
minimum value of the data type of the IDENTITY column.

NO CYCLE

means that when the MAXVALUE maximum is reached for the IDENTITY
column, an error is raised that indicates the maximum has been exceeded.
Values will not be restarted. If an artificially low cycle range was created by
setting the MAXVALUE value lower than the natural maximum allowed for the
data type, you can use the ALTER TABLE ALTER COLUMN SET MAXVALUE
option to raise the maximum value up to the natural maximum allowed for the
data type. Raising the MAXVALUE allows more available values in the cycle
range for the internal Sequence Generator. Inserts will be successful until the
new MAXVALUE is reached. For more information, see the Syntax Description
of ALTER TABLE on page 2-21.

sg-location

specifies a volume and optionally the node, subvolume, and filename for the SG
Table. See SG Table on page 2-130.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-112

SQL/MX Statements Syntax Description of CREATE TABLE
HEADING 'heading-string'| NO HEADING

specifies a string heading-string of 0 to 128 characters to use as a heading for
the column if it is displayed with a SELECT statement in MXCI. The heading can
contain characters only from the ISO88591 character set. The default heading is
the column name. If you specify a heading that is identical to the column name,
INVOKE and SHOWDDL do not display that heading.

If you specify NO HEADING or HEADING ‘’, NonStop SQL/MX stores this as
HEADING ‘’, and the column name is displayed as the heading in a SELECT
statement. The behavior for HEADING ‘’ is different from that of NonStop SQL/MP,
which does not display anything for a heading in a SELECT statement if the
heading is specified as HEADING ‘’.

CONSTRAINT constraint

specifies a name for the column or table constraint. constraint must have the
same catalog and schema as table and must be unique among constraint names
in its schema. If you omit the catalog portion or the catalog and schema portions of
the name you specify in constraint, NonStop SQL/MX expands the constraint
name by using the catalog and schema for table. See Database Object Names
on page 6-13.

If you do not specify a constraint name, NonStop SQL/MX constructs an SQL
identifier as the name for the constraint in the catalog and schema for table.The
identifier consists of the fully qualified table name concatenated with a system-
generated unique identifier. For example, a constraint on table A.B.C might be
assigned a name such as A.B.C_123..._01... . Use the SHOWDDL statement to
display this generated constraint name. See SHOWDDL Command on page 4-83.

NOT NULL [[NOT] DROPPABLE]

is a column constraint that specifies that the column cannot contain nulls. If you
omit NOT NULL, nulls are allowed in the column. If you specify both NOT NULL
and NO DEFAULT, each row inserted in the table must include a value for the
column. See MXCI Parameters on page 6-77 and Null on page 6-80.

DROPPABLE specifies that you can drop the NOT NULL constraint by using
ALTER TABLE at some later time. Dropping NOT NULL requires that you know the
name of the constraint, either by using the CONSTRAINT constraint clause
when the table is created or by using SHOWDDL to display the constraint name.

NOT DROPPABLE specifies that the NOT NULL constraint is permanent. Less
space is required to store a column if the column has a permanent NOT NULL
constraint, and updates and inserts are faster.

If the NOT NULL constraint does not include the [NOT] DROPPABLE clause, the
value of the NOT_NULL_CONSTRAINT_DROPPABLE_OPTION attribute in the
SYSTEM_DEFAULTS table is the default value for [NOT] DROPPABLE. If that
attribute does not exist in the SYSTEM_DEFAULTS table, DROPPABLE is used.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-113

SQL/MX Statements Syntax Description of CREATE TABLE
Use the SHOWDDL statement to display the default that was used. See System
Defaults Table on page 10-37.

UNIQUE
 or
UNIQUE (column-list)

is a column or table constraint (respectively) that specifies that the column or set of
columns cannot contain more than one occurrence of the same value or set of
values. If you omit UNIQUE, duplicate values are allowed.

column-list cannot include more than one occurrence of the same column. In
addition, the set of columns you specify on a UNIQUE constraint cannot match the
set of columns on any other UNIQUE constraint for the table or on the PRIMARY
KEY constraint for the table. All columns defined as unique must be specified as
NOT NULL.

The maximum combined length of the columns depends on the block size of the
index that supports the constraint. For 4K blocks, the maximum length is 2010
bytes and for 32K blocks, it is 2048 bytes.

PRIMARY KEY [ASC[ENDING] | DESC[ENDING]] [[NOT] DROPPABLE]
 or
PRIMARY KEY (key-column-list) [[NOT] DROPPABLE]

is a column or table constraint (respectively) that specifies a column or set of
columns as the primary key for the table. key-column-list cannot include more
than one occurrence of the same column. In addition, the set of columns you
specify on a PRIMARY KEY constraint cannot match the set of columns on any
UNIQUE constraint for the table.

ASCENDING and DESCENDING specify the direction for entries in one column
within the key. The default is ASCENDING.

The PRIMARY KEY value in each row of the table must be unique within the table.
Columns within a PRIMARY KEY cannot contain nulls. A PRIMARY KEY defined
for a set of columns implies that the column values are unique and not null. You
can specify PRIMARY KEY only once on any CREATE TABLE statement.

DROPPABLE specifies that you can drop the PRIMARY KEY constraint with an
ALTER TABLE statement at some later time. NOT DROPPABLE specifies that the
PRIMARY KEY constraint is permanent. A PRIMARY KEY constraint is
implemented more efficiently if the constraint is permanent. A SYSKEY is not
generated for a table that has a NOT DROPPABLE PRIMARY KEY.

For a NOT DROPPABLE PRIMARY KEY, the maximum combined length of the
columns depends on the block size of the table. For a DROPPABLE PRIMARY
KEY, the maximum combined length of the columns depends on the block size of
the supporting index. For both a DROPPABLE and NOT DROPPABLE PRIMARY
KEYs, the maximum length is 2010 bytes for 4K blocks and 2048 bytes for 32K
blocks.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-114

SQL/MX Statements Syntax Description of CREATE TABLE
For a PRIMARY, CLUSTERING, or UNIQUE key, the maximum number of key
columns is 1024.

When a UNIQUE or PRIMARY KEY constraint is created on a table, all the
constraint columns must have a NOT NULL clause in the CREATE TABLE
statement.

If the PRIMARY KEY constraint does not include the [NOT] DROPPABLE clause
and the STORE BY PRIMARY KEY clause does not appear in the table definition,
the value of the PRIMARY_KEY_CONSTRAINT_DROPPABLE_OPTION attribute
in the SYSTEM_DEFAULTS table is the default value. If that attribute does not
exist in the SYSTEM_DEFAULTS table, NOT DROPPABLE is used. Use the
SHOWDDL statement to display the default that was used. If the STORE BY
PRIMARY KEY clause appears in the table definition, the PRIMARY KEY
constraint is NOT DROPPABLE regardless of the value of the attribute.

If the PRIMARY KEY constraint does not include the [NOT] DROPPABLE clause
and the STORE BY PRIMARY KEY clause appears in the table definition, and you
make your PRIMARY KEY droppable, NonStop SQL/MX reports an error.

When possible, NonStop SQL/MX uses the primary key as the clustering key of the
table in order to avoid creating a separate, unique index to implement the primary
key constraint.

NonStop SQL/MX cannot implement the primary key as the clustering key if any of
the following are true:

 You enter an explicit STORE BY clause, specifying a different set of columns
than those specified for the primary key.

 You do not specify a PRIMARY KEY constraint within the CREATE TABLE
statement.

 The PRIMARY KEY defined in the CREATE TABLE statement is droppable.

In any of these cases, NonStop SQL/MX implements the PRIMARY KEY as a
separate unique index.

If an explicit STORE BY clause is used, NonStop SQL/MX does not allow the
primary key constraint to have the NOT DROPPABLE clause. A PRIMARY KEY
which is implemented by a separate unique index is always droppable.

Table 2-1 lists the maximum key size with respect to the block size.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-115

SQL/MX Statements Syntax Description of CREATE TABLE
CHECK (condition)

is a constraint that specifies a condition that must be satisfied for each row in the
table. See Search Condition on page 6-108.

NonStop SQL/MX checks the condition whenever an operation occurs that might
affect its value. The operation is allowed if the predicate in the condition evaluates
to TRUE or null but prohibited if the predicate evaluates to FALSE.

You cannot refer to the CURRENT_DATE, CURRENT_TIME, or
CURRENT_TIMESTAMP function in a CHECK constraint, and you cannot use
subqueries in a CHECK constraint. CHECK constraints cannot contain
non-ISO88591 string literals.

REFERENCES ref-spec

specifies a references column constraint. The maximum combined length of the
columns for a REFERENCES constraint depends on the block size of the
supporting index. For 4K blocks, the maximum length is 2010 bytes and for 32K
blocks, it is 2048 bytes.

FOREIGN KEY (column-list) REFERENCES ref-spec

is a column or table constraint (respectively) that specifies a referential constraint
for the table, declaring that a column or set of columns (called a foreign key) in
table can contain only values that match those in a column or set of columns in
the table specified in the REFERENCES clause.

The two columns or sets of columns must have the same characteristics (data
type, length, scale, precision), and there must be a UNIQUE or PRIMARY KEY
constraint on the column or set of columns specified in the REFERENCES clause.

Without the FOREIGN KEY clause, the foreign key in table is the column being
defined; with the FOREIGN KEY clause, the foreign key is the column or set of
columns specified in the FOREIGN KEY clause.

ref-spec is:

Table 2-1. Maximum Key Sizes Available

DP2 block
size

Max key size
without triggers

Max key size available
with triggers Max # of key columns

4096 2010 1994 1024

32768 2048 2032 1024

The actual limit for primary keys, indexes, and clustering keys depends on the key specification, and will be at
most the maximum key size limit.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-116

SQL/MX Statements Syntax Description of CREATE TABLE
referenced-table [(column-list)] [referential triggered
action]

referenced-table is the table referenced by the foreign key in a
referential constraint. referenced-table cannot be a view.
referenced-table cannot be the same as table.

column-list specifies the column or set of columns in
referenced-table that corresponds to the foreign key in table. The
columns in the column list associated with REFERENCES must be in the
same order as the columns in the column list associated with FOREIGN
KEY. If column-list is omitted, the referenced table's PRIMARY KEY
columns are the referenced columns.

update rule specifies what referential action is taken when
column-list in referenced-table is updated. If no ON UPDATE
clause is specified, a default of ON UPDATE NO ACTION is assumed.

delete rule specifies what referential action is taken when a
row in referenced-table is deleted. If no ON DELETE clause is
specified, a default of ON DELETE NO ACTION is assumed.

referential action

RESTRICT referential action means that the referential check is
made for each row. An error is raised when the referential constraint is
violated.

ANSI SQL-99 standard: NO ACTION referential action means that
the referential check is made at the end of the SQL statement. An error is
raised when the referential constraint is violated.

NonStop SQL/MX does not support NO ACTION referential action in the
way it is specified by ANSI SQL-99. However, you can change NO
ACTION's behavior to be the same as RESTRICT by setting an
appropriate value for the Control Query Default
REF_CONSTRAINT_NO_ACTION_LIKE_RESTRICT. Options for this
attribute are:

When CASCADE is specified with the ON DELETE referential triggered
action, a row in the referencing table and its corresponding row in the
referenced-table is deleted. This maintains consistency between the
referencing and referenced tables.

OFF SQL issues an error.

SYSTEM SQL issues warning 1302, indicating that it will behave like
RESTRICT. This is the default value.

ON Makes NO ACTION behave like RESTRICT, without warnings or
errors.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-117

SQL/MX Statements Syntax Description of CREATE TABLE
When SET NULL is specified with the ON DELETE referential triggered
action, and a row from the referencing table matches the row in the
referenced-table, the referencing column(s) of the referencing row
from the referencing table is set to NULL.

When SET DEFAULT is specified with the ON DELETE referential
triggered action, and a row from the referencing table matches the row in
the referenced-table, the referencing column(s) of the referencing row
from the referencing table is set to its DEFAULT value.

When CASCADE is specified with the ON UPDATE referential triggered
action, a row in the referencing table and its corresponding row in the
referenced-table is updated.

When SET NULL is specified with the ON UPDATE referential triggered
action, and a row in the referencing table matches the row in the
referenced-table, the referencing column(s) of the referencing row
from the referencing table is set to NULL.

When SET DEFAULT is specified with the ON UPDATE referential
triggered action, and a row in the referencing table matches the row in the
referenced-table, the referencing column(s) of the referencing row
from the referencing table is set to its DEFAULT value.

referenced-table is the table referenced by the foreign key in a referential
constraint. referenced-table cannot be a view. referenced-table
cannot be the same as table.

column-list specifies the column or set of columns in referenced-table
that corresponds to the foreign key in table. The columns in the column list
associated with REFERENCES must be in the same order as the columns in
the column list associated with FOREIGN KEY. If column-list is omitted, the
referenced table’s PRIMARY KEY columns are the referenced columns.

A table can have an unlimited number of referential constraints, and you can
specify the same foreign key in more than one referential constraint, but you must
define each referential constraint separately. You cannot create self-referencing
foreign key constraints.

Publish/Subscribe's embedded update and embedded delete statements are not
allowed on tables with referential integrity constraints:

STORE BY store-option

specifies a set of columns on which to base the clustering key. The clustering key
determines the order of rows within the physical file that holds the table. The
storage order has an effect on how you can partition the object.

Note. The referential actions CASCADE, SET NULL, and SET DEFAULT are
available only on systems running J06.09 and later J-series RVUs and H06.20 and
later H-series RVUs.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-118

SQL/MX Statements Syntax Description of CREATE TABLE
store-option is defined as:

PRIMARY KEY

bases the clustering key on the primary key columns. This store option
requires that the primary key is NOT DROPPABLE. If the primary key is
defined as DROPPABLE, NonStop SQL/MX returns an error.

key-column-list

bases the clustering key on the columns in the key-column-list. The key
columns in key-column-list must be specified as NOT NULL NOT
DROPPABLE. It cannot have a combined length more than 2002 bytes for 4K
blocks and 2040 bytes for 32K blocks.

The default is PRIMARY KEY if you specified a PRIMARY KEY clause that has the
NOT DROPPABLE constraint in the CREATE TABLE statement.

If you omit the STORE BY clause and you do not specify a PRIMARY KEY that
has the NOT DROPPABLE constraint, the storage order is determined only by the
SYSKEY. You cannot partition a table stored only by SYSKEY. See SYSKEYs on
page 6-63.

LOCATION [\node.]$volume[.subvolume.file-name]
 [NAME partition-name]

specifies a physical location for the primary partition of the table.

node

is the name of a node on the Expand network.

For Guardian files representing a table or index partition or a view label, node
can be any node from which the object's catalog is visible.

volume

is the name of an audited, non-SMF DAM volume on the specified node (or the
Guardian volume named in the =_DEFAULTS define if none is specified).

If you do not specify a LOCATION clause and your system does not have a
value for the DDL_DEFAULT_LOCATIONS default (either in your environment
or at the system level) and your environment does not have a =_DEFAULTS
value, the CREATE statement will fail with an error.

subvolume

must be the name of the schema subvolume for the schema in which the table
is being created.

Follow these guidelines when using SQL/MX subvolume names:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-119

SQL/MX Statements Syntax Description of CREATE TABLE
 The name must begin with the letters ZSD, followed by a letter, not a digit
(for example, ZSDa, not ZSD2).

 The name must be exactly eight characters long.
 The subvolume name you specify must match the designated schema

subvolume name for the schema in which the object is being created.
Otherwise, NonStop SQL/MX returns an error.

file-name

is a Guardian file name. file-name must be eight characters in length and
must end with the digits 00 (zero zero).

partition-name

is an SQL identifier for a partition.

partn-file-option is:

{[RANGE] PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 [(ADD range-partn-defn [,ADD range-partn-defn]...)]

defines secondary partitions for a range partitioned table.

BY (partitioning-column [,partitioning-column]...)

specifies the partitioning columns. The default is the default partitioning key
created by the STORE BY clause. Partitioning character columns must derive
from the ISO88591 character set. Partitioning columns cannot be floating-point
data columns.

| HASH PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 [(ADD partn-defn [,ADD partn-defn]...)]}

defines secondary partitions for a hash partitioned table.

BY (partitioning-column [,partitioning-column]...)

specifies the columns that make up the partitioning key. If you do not specify
this clause, the partitioning key is the same as the clustering key of the table.
Partitioning columns cannot be floating-point data columns.

ADD range-partn-defn

defines a single secondary partition and includes the FIRST KEY and a
partn-defn.

range-partn-defn is:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-120

SQL/MX Statements Syntax Description of CREATE TABLE
FIRST KEY {col-value | (col-value [,col-value]...)}
 partn-defn

specifies the beginning of the range for a range partitioned table. The
FIRST KEY clause specifies the lowest values in the partition for columns
stored in ascending order and the highest values in the partition for
columns stored in descending order. These column values are referred to
as the partitioning key.

col-value is a literal that specifies the first value allowed in the
associated partition for that column of the partitioning key. If there are more
storage key columns than col-value items, the first key value for each
remaining key column is the lowest or highest value for the data type of the
column (the lowest value for an ascending column and the highest value
for a descending column). col-value must contain characters only from
the ISO88591 character set.

If the table has a system-generated SYSKEY, its column list cannot consist
only of column SYSKEY. The SYSKEY must be the last column of the
column list, and you cannot specify a FIRST KEY value for the SYSKEY
column. This limitation does not apply to a user-created SYSKEY column.

ADD partn-defn

defines a single secondary partition and includes the LOCATION of the
partition.

partn-defn is:

LOCATION [\node.]$volume[.subvolume.file-name]
[EXTENT ext-size | (pri-ext-size [,sec-ext-size])]
[MAXEXTENTS num-extents]
 [NAME partition-name]

specifies a volume and optionally the node, subvolume, and filename for
the partition.

node

is the name of a node on the Expand network. For Guardian files
representing a table or index partition or a view label, node can be any
node from which the object's catalog is visible.

volume

is the name of an audited, non-SMF DAM volume on the specified node (or
the Guardian volume named in the =_DEFAULTS define if none is
specified). If you do not specify a LOCATION clause, NonStop SQL/MX
uses the default volume named in the =_DEFAULTS define.

If you do not specify a LOCATION clause and your system does not have a
value for the DDL_DEFAULT_LOCATIONS default (either in your
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-121

SQL/MX Statements Syntax Description of CREATE TABLE
environment or at the system level) and your environment does not have a
=_DEFAULTS value, the CREATE statement will fail with an error.

You can locate more than one partition of a table on a single disk volume.

subvolume

is the name of the schema subvolume for the schema in which the table is
being created.

Follow these guidelines when using SQL/MX subvolume names:

 The name must begin with the letters ZSD, followed by a letter, not a
digit (for example, ZSDa, not ZSD2).

 The name must be exactly eight characters long.
 The subvolume name you specify must match the designated schema

subvolume name for the schema in which the object is being created.
Otherwise, NonStop SQL/MX returns an error.

file-name

is a Guardian file name. file-name names must be eight characters long
and must end with the digits “00” (zero zero).

partition-name

is an SQL identifier for a partition.

partn-file-option is an SQL/MX extension.

See PARTITION Clause on page 7-6.

ATTRIBUTE[S] attribute [,attribute]...

specifies attributes of the physical file that holds the table. In an ATTRIBUTES
clause that is within a PARTITION clause, you must separate attributes with a
space. In ATTRIBUTES clauses in other places, you can separate attributes
with either a space or a comma. You can specify these file attributes:

ALLOCATE/DEALLOCATE
on page 9-2

Controls amount of disk space allocated.

AUDITCOMPRESS on
page 9-3

Controls whether unchanged columns are included
in audit records.

BLOCKSIZE on page 9-4 Sets size of data blocks.

CLEARONPURGE on
page 9-5

Controls disk erasure when table is dropped.

EXTENT on page 9-6 Controls size of extents that are allocated on disk.

MAXEXTENTS on
page 9-7

Controls maximum disk space to be allocated.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-122

SQL/MX Statements Syntax Description of CREATE TABLE
If you use the LIKE specification and you do not specify ATTRIBUTE[S]
attribute [,attribute]..., NonStop SQL/MX uses the attributes
associated with the source-table.

For more information, see the entry for a specific attribute.

LIKE source-table [include-option]...

directs NonStop SQL/MX to create a table like the existing table, source-table,
omitting constraints (with the exception of the NOT NULL and NOT DROPPABLE
PRIMARY KEY constraints), headings, and partitions unless include-option
clauses are specified. The source-table must be the ANSI name of an SQL/MX
format table (you cannot specify an SQL/MP table).

ATTRIBUTE[S] attribute [,attribute]... and the STORE BY
store-option are copied from the source-table if they are not explicitly
specified as file options following the LIKE specification.

The include-option clauses are specified as:

WITH CONSTRAINTS

directs NonStop SQL/MX to use constraints from source-table. Constraint
names for table are randomly generated unique names. NonStop SQL/MX
does not include FOREIGN KEY table constraints or REFERENCES column
constraints.

This table show the results of specifying or not specifying WITH
CONSTRAINTS on primary key constraints:

When you perform a CREATE TABLE LIKE, whether or not you include the
WITH CONSTRAINTS clause, the target table will have all the NOT NULL
DROPPABLE column constraints that exist for the source table, plus all the
NOT NULL NOT DROPPABLE column constraints that exist for the source
table. They will have different constraint names.

WITH
CONSTRAINTS
clause?

Source table
has...

Target table will have...

No DROPPABLE
primary key
constraint

No primary key constraint.

Yes DROPPABLE
primary key
constraint

The same DROPPABLE primary key constraint
with a different name.

With or without NOT
DROPPABLE
primary key
constraint

The same NOT DROPPABLE primary key
constraint with a different name.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-123

SQL/MX Statements Considerations for CREATE TABLE
WITH HEADINGS

directs NonStop SQL/MX to use column headings from source-table.

WITH PARTITIONS

directs NonStop SQL/MX to use partition definitions from source-table.
Each new table partition resides on the same volume as its original source-
table counterpart. The new table partitions do not inherit partition names from
the original table. Instead, NonStop SQL/MX generates new names based on
the physical file location.

If you specify the LIKE clause and the PARTITION file-option, you cannot
specify WITH PARTITIONS. If you specify the LIKE clause and the STORE BY
store-option, you cannot specify WITH PARTITIONS. If the
source-table has a partitioned index for a constraint, an index is created for
the constraint on the target table, with attributes that differ from the attributes of
the source table’s index.

Considerations for CREATE TABLE

Reserved Table Names

Table names prefixed by the name of a UMD table are reserved. You cannot create
tables with such names. For example, you cannot create a table named
HISTOGRAMS_MYCOPY.

Partitions

If there is a possibility that you might need to partition a table in the future, you should
create it with at least one partition. This avoids recompilation if you add more partitions
later.

The LIKE specification

The CREATE TABLE LIKE statement does not create views, owner information, or
privileges for the new table based on the source table. Privileges associated with a
new table created by using the LIKE specification are defined as if the new table is
created explicitly by the current user.

The existing behavior of CREATE TABLE LIKE is retained. CREATE TABLE LIKE does
not create the RI constraint for the target table.

If the source table has any unique or droppable primary key constraints, NonStop
SQL/MX creates indexes for them on the target table. Other indexes on the source
table are not created on the target table.

The LIKE specification ignores triggers.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-124

SQL/MX Statements Considerations for CREATE TABLE
CREATE TABLE LIKE with an IDENTITY column is supported. For a table with an
IDENTITY column, the target table inherits the IDENTITY property of a column along
with the corresponding sequence generating attributes from the source table.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-125

SQL/MX Statements Considerations for CREATE TABLE
Storage Order and the LIKE Specification

The STORE BY clause determines the storage order of the records in the new table:

Audited and Nonaudited Tables

NonStop SQL/MX does not support nonaudited SQL/MX tables, but scenarios exist
that require nonaudited tables. For example, suppose that you want updates to occur
even if the operation is rolled back for logging purposes. In this case, you should use
NonStop SQL/MP to create a nonaudited SQL/MP table.

Authorization and Availability Requirements

To create a table, you must own its schema or be the super ID.

To create a constraint on the table that refers to a column in another table, you must
have REFERENCES privileges on that column and access to the table that contains
the column. If the constraint refers to the other table in a query expression, you must
also have SELECT privileges on the other table.

Reduced Space Requirements for NOT DROPPABLE
Constraints

Using the NOT DROPPABLE option on a NOT NULL constraint reduces the space
required for the table. A column that allows nulls—or that might allow nulls at some
later time—uses two extra bytes in each row to store the null indicator. If you specify
that the NOT NULL constraint is NOT DROPPABLE, NonStop SQL/MX creates the
table without these extra bytes.

Using the NOT DROPPABLE option on a PRIMARY KEY or using STORE BY
PRIMARY KEY reduces the space required for the table and eliminates the need to
create an index for accessing the table by primary key.

Constraints Implemented With Indexes

NonStop SQL/MX uses indexes to implement all UNIQUE constraints, the foreign key
portion of all referential constraints, and any PRIMARY KEY constraints that are not
enforced by the clustering key. Necessary indexes are automatically created when you
create a table with these constraints. If you add a constraint to an existing table,
NonStop SQL/MX checks if an existing index can be used to implement the constraint,
creating a new index (if possible, with the same name as the constraint) if needed.

STORE BY PRIMARY KEY The new table is ordered by the primary key of
the source table.

STORE BY key-column-list The new table is ordered by the new
key-column-list.

No STORE BY clause The new table is ordered by the storage key of
the source table.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-126

SQL/MX Statements Considerations for CREATE TABLE
For small tables, you need not be concerned about the details of this mechanism. For
large tables, however, the indexes used to enforce constraints can require significant
amounts of disk space. You might prefer to create and partition constraint-supporting
indexes directly so that you can control the use of disk space or so that you can specify
indexes that provide more effective access paths for your application than those
created by default to support constraints.

To create constraint-supporting indexes directly, use CREATE TABLE to create the
table without index-implemented constraints, use CREATE INDEX to create
appropriate indexes, and then use ALTER TABLE ... ADD CONSTRAINT to add
constraints to the table.

Limits for Tables

The maximum size of a row depends on the block size as described in Table 2-2.

If the table has a SYSKEY, the SYSKEY column requires 8 bytes. The number of bytes
required to store a column depends on the data type of that column. If the column is
nullable, NonStop SQL/MX uses an additional 2 bytes for the NULL indicator. Each
variable-length character column uses an additional 8 bytes for the column length.
There can be a maximum of 2100 columns in a row.

Tables and Triggers

The primary key length for a table with triggers cannot exceed 2032 bytes. A table that
does not have triggers can have a primary key of 2048 bytes. For information about
this limit, see Triggers and Primary Keys on page 2-150.

Creating Partitions Automatically

NonStop SQL/MX uses Partition Overlay Specification (POS) so that MXCI, MXCS,
JDBC T4, and JDBC T2 users can automatically create hash-partitioned tables with the
CREATE TABLE statement. NonStop SQL/MX does not support automatic creation of
range-partitioned tables.

Applications can control whether POS is enabled, the number of partitions, and the
physical location of the partitions.

The following CONTROL QUERY DEFAULT attributes determine the physical location
and the number of partitions:

 POS_LOCATIONS

 POS_NUM_OF_PARTNS

Table 2-2. Maximum Row Sizes Available

DP2 block size Max row size available to users Max # of Columns

4096 4036 2100

32768 32708 2100
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-127

SQL/MX Statements Considerations for CREATE TABLE
The POS_RAISE_ERROR attribute controls how errors are displayed. For values and
syntax of these attributes, see Partition Management on page 10-63.

To enable POS, set the POS_NUM_OF_PARTNS attribute to a value greater than 1.

To activate POS, ensure that the following conditions are true:

 The POS feature is enabled during execution of a CREATE TABLE statement.

 The application that issues the CREATE TABLE DDL statement is an MXCS/JDBC
session or an MXCI session.

 The CREATE TABLE statement does not specify an add location using the
partitioning syntax.

 The CREATE TABLE statement specifies either the PRIMARY KEY or the STORE
BY clause.

If you specify the LOCATION clause for the primary partition, the partition resides on
the volume specified in that clause and not in the location specified in
POS_LOCATIONS. If the LOCATION clause is not specified, the primary partition
location will be picked at random among those specified in POS_LOCATIONS. It will
not be the first location specified in POS_LOCATIONS.

If you do not specify the LOCATION clause and if you set POS_LOCATIONS, the
primary partition resides on the first volume specified in POS_LOCATIONS. The other
partitions reside on the volumes you specify in POS_LOCATIONS in a round-robin
fashion.

If the LOCATION clause is not specified in the CREATE TABLE statement and the
POS_LOCATIONS CQD is empty, NonStop SQL/MX randomly selects the location(s)
from the full set of audited volumes.

These examples show how partitions are created automatically using combinations of
attribute values:

1. Specify POS_NUM_OF_PARTNS as 3 and list three locations in
POS_LOCATIONS: $VOL1, $VOL2, and $VOL3.

NonStop SQL/MX will place the primary partition on $VOL1, the second partition
on $VOL2, and the third partition on $VOL3.

2. Specify POS_NUM_OF_PARTNS as 5 and list three locations in
POS_LOCATIONS: $VOL1, $VOL2, and $VOL3.

NonStop SQL/MX will place the primary partition on $VOL1, the second partition
on $VOL2, the third partition on $VOL3, the fourth on $VOL1, and the fifth on
$VOL2.

3. Specify POS_NUM_OF_PARTITIONS as 4, and list three locations in
POS_LOCATIONS: $VOL1, $VOL2, and $VOL3. In addition, include a LOCATION
clause in the CREATE statement that specifies $DATA1.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-128

SQL/MX Statements Considerations for CREATE TABLE
NonStop SQL/MX will place the primary partition on $DATA1, the second partition
on $VOL1, the third partition on $VOL2, and the fourth partition on $VOL3.

Creating a Table Without STORE BY Clause or Primary Key

NonStop SQL/MX bases table partitioning on clustering key columns, specified by the
STORE BY clause or, if there is no STORE BY clause, the primary key columns. If you
do not specify the STORE BY or PRIMARY KEY columns on a table, NonStop
SQL/MX cannot partition the table. If you attempt to use POS with such a table, you
will not receive an error. POS creates a nonpartitioned table in the same way that
NonStop SQL/MX creates a nonpartitioned table without the LOCATION clause as part
of the CREATE TABLE statement. The location of this table is not based on
POS_LOCATIONS or automatic disk location.

Partitioning Columns

Use the PARTITION BY clause to decouple the partitioning key from the clustering key.
Without the PARTITION BY clause, the partitioning columns of the table are same as
the clustering key columns. POS can be used to create partitions automatically for
tables with decoupled keys.

IDENTITY Column and internal Sequence Generators

An IDENTITY column is a numeric column in a table for which the system generates
unique values using an internal Sequence Generator.

ANSI SQL Standard 2003 suggests two ways of generating unique numeric values:

1. Internal Sequence Generator: An internal Sequence Generator is implicitly created
when an IDENTITY column is defined and is associated only with that IDENTITY
column.

2. External Sequence Generator: An external sequence generator is explicitly created
using the CREATE SEQUENCE statement. The external sequence generator is a
schema level database object that the application uses to generate values for a
numeric column. The values generated by the external sequence generator are
unique for that sequence generator and can be used to create unique values
across a set of tables in a schema.

Sequence generators contain the following attributes called SG Attributes:

 a data type

 a minimum value

 a maximum value

 a start value

 an increment

 a cycle option

See CREATE TABLE Statement on page 2-107 for more information.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-129

SQL/MX Statements Considerations for CREATE TABLE
SG Table

When an IDENTITY column is defined, a sequence generator table (SG Table) is
created. The SG Table contains a column, CURRENT_VALUE. The CURRENT_VALUE
represents the next available value for the IDENTITY column. Each SG Table contains
only one row, with a primary key value of zero. The name space and object type for the
table has a value SG.

* Indicates primary key

Use the sg-location clause during CREATE TABLE to specify a location for the SG
Table. If you do not specify a location, the system default location is used. Since an SG
Table has base table characteristics, it includes an entry in the metadata OBJECTS,
ACCESS_PATHS, COLS, and PARTITIONS tables, etc.

The SG Table is updated upon a request to obtain the next value from the sequence
generator. The CURRENT_VALUE from the SG Table is selected and returned as the
next value. Then, the CURRENT_VALUE is updated with CURRENT_VALUE plus
INCREMENT BY value specified in SG Attributes.

A new independent transaction different from the user transaction is started and
committed for the SG Table select and update operations. A separate ESP process
houses the operator that starts and commits this new transaction. To reduce the impact
from this overhead, see Sequence Generator Cache on page 2-134.

Considerations for an IDENTITY column

 If you define the IDENTITY column as GENERATED BY DEFAULT AS IDENTITY,
values for the IDENTITY column are generated by default. If you specify a value
for the IDENTITY column, NonStop SQL/MX uses that value and does not
generate a unique value for that row.

 An IDENTITY column can be the primary key or part of the primary key.

 An IDENTITY column can be the partitioning key or part of the partitioning key.

 An IDENTITY column can be the clustering key or part of the clustering key.

 An IDENTITY column can be defined on a HASH or a RANGE partitioned table.

 An IDENTITY column can be part of an INDEX.

Table 2-3. SG Table for IDENTITY COLUMN

Column Number Column Name Data Type Description

*1 ZERO_PKCOL LARGEINT Primary key with
value zero

 2 CURRENT_VALUE LARGEINT Contains the current
value of the IDEN-
TITY column
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-130

SQL/MX Statements Considerations for CREATE TABLE
 An IDENTITY column can be part of CHECK and RI constraints.

 You can alter the MAXVALUE and INCREMENT BY sequence generator options of
an IDENTITY column using the ALTER TABLE ALTER COLUMN statement. See
Altering the MAXVALUE and INCREMENT BY options on IDENTITY columns on
page 2-34.

 INSERT...SELECT operations on tables with an IDENTITY column is supported.

 CREATE TABLE LIKE on a source table with an IDENTITY column is supported.
The target table will inherit the source table column and sequence generator
attributes.

 When a table with an IDENTITY column is dropped, the internal Sequence
Generator is dropped. Metadata entries for the internal Sequence Generator are
cleared and the SG Table associated with the IDENTITY column is dropped. See
SG Table on page 2-130.

Restrictions for an IDENTITY Column

 At most one IDENTITY column can be specified in a table.

 The IDENTITY column cannot have a NOT NULL NOT DROPPABLE constraint. If
not specified, the system will add the constraint.

 An IDENTITY column definition supports the following data types only: LARGEINT,
unsigned INTEGER, and unsigned SMALLINT data types.

 The NO CYCLE option is the only cycle option supported.

 Only ascending IDENTITY values are supported. IDENTITY values are called
ascending if the increment value is a non-negative value.

 These options can be specified one time only for each table:

 START WITH

 INCREMENT BY

 MAXVALUE | NO MAXVALUE

 MINVALUE | NO MINVALUE

 NO CYCLE

 The START WITH value must be less than or equal to the MAXVALUE and greater
than or equal to the MINVALUE. If the START WITH option is not specified, the
start value is the MINIMUM value.

 The INCREMENT BY option cannot be 0 (zero), less than 0 (zero), and cannot be
greater than the maximum value of the data type of the IDENTITY column.

 If the MAXVALUE option is not specified, or if NO MAXVALUE is specified, the
maximum value is the maximum value of the data type of the IDENTITY column.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-131

SQL/MX Statements Considerations for CREATE TABLE
The MAXVALUE option value must be greater than the value of the MINVALUE
and a valid numeric value for the IDENTITY column data type.

 If the MINVALUE option is not specified, or if NO MINVALUE is specified, then the
minimum value is the minimum value of the data type of the IDENTITY column. In
the case of the IDENTITY column being of data type LARGEINT, the minimum
default value will be zero, not -9223372036854775808.

 Mixed DML and DDL operations performed under the same user transaction are
not supported for an INSERT operation that contains an IDENTITY column. TMF
Error 73 can occur because the DDL and DML operations share the same user
transaction on a table lock on the SG Table.

 For a table with only one column, which is an IDENTITY column, the tuple list of an
INSERT statement cannot consist of only DEFAULT values. You must specify the
input values, otherwise error 3431 will be raised. For example, this statement
issues error 3431:

INSERT INTO t1 VALUES (DEFAULT), (DEFAULT);

 You cannot add an IDENTITY column by using the ALTER TABLE statement.

 Expressions involving the keyword DEFAULT are not allowed as IDENTITY column
values. You must specify the keyword DEFAULT or supply a valid value. Error 3411
will be raised if an expression is specified for an IDENTITY column value. For
example, this statement raises error 3411 indicating that an expression,
DEFAULT+15 is used as a value for IDENTITY column, assuming that the first
column is an IDENTITY column.

INSERT INTO t1 VALUES (DEFAULT+15, 45);

 UPDATE operations on IDENTITY columns defined as GENERATED ALWAYS AS
IDENTITY are not allowed.

 For IDENTITY columns defined as type LARGEINT, the maximum value is
9223372036854775806, one less than the LARGEINT maximum.

 For an IDENTITY column, the tuple list cannot have mixed user and DEFAULT
values specified. You must specify values for all tuples in the tuple list or specify
DEFAULT for all tuples in the tuple list. For example, error 3414 is raised in the
following case, assuming that the first column in the table t_id_s is an IDENTITY
column. Notice that the third row contains a user specified value of '50' for the
IDENTITY column and the other rows specify DEFAULT.

INSERT INTO t_id_s values (DEFAULT,’1’,1),
 (DEFAULT,’2’,2),
 (50,’3’,3),
 (DEFAULT,’4’,4)
 (DEFAULT,’5’,5);

Generating Values for an IDENTITY Column

You can use IDENTITY columns to automatically generate unique values. The
generated values are unique across all partitions of the table for the IDENTITY column.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-132

SQL/MX Statements Considerations for CREATE TABLE
You can declare IDENTITY columns in the CREATE TABLE statement. IDENTITY
columns can be used as surrogate keys. They can also be used to uniquely identify
records with the same key.

Difference Between GENERATED ALWAYS AS IDENTITY and GENERATED BY
DEFAULT AS IDENTITY

You can use GENERATED BY DEFAULT AS IDENTITY to allow both user-supplied
and system-generated column values for the IDENTITY column. The GENERATED
ALWAYS AS IDENTITY option provides system-generated unique values only. It does
not allow user-supplied IDENTITY column values.

Generating the System-Generated Value for an IDENTITY Column

NonStop SQL/MX generates the next value for an IDENTITY column in these ways:

 You can specify DEFAULT as a value for the IDENTITY column in the INSERT
statement, provided it is not the only column.

For example: INSERT INTO tbl1 (DEFAULT, 10); assuming the first column
is defined as an IDENTITY column.

 An INSERT statement specifying the columns to be inserted, but leaving out the
IDENTITY column.

For example: INSERT INTO tbl1(b) values (10); assuming that tbl1 has
an IDENTITY column and the IDENTITY column has been omitted from the
column list.

Generating Unique Values for an IDENTITY Column

The sequence generator feature provides a method for generating unique values for an
IDENTITY column. NonStop SQL/MX guarantees to generate unique values if the
IDENTITY column is defined as GENERATED ALWAYS AS IDENTITY with the NO
CYCLE option.

Available Values for an IDENTITY Column

The IDENTITY column can be defined as signed LARGEINT, unsigned
INTEGER,and unsigned SMALLINT. Each data type has a natural maximum value.
The settings chosen for START WITH, MINVALUE, MAXVALUE, and INCREMENT BY
create a valid range of available numbers before a maximum is reached. The settings
MAXVALUE and INCREMENT BY can be altered using ALTER TABLE ALTER
COLUMN to change an artificially low range specified during the CREATE TABLE
process. For more information, see Altering the MAXVALUE and INCREMENT BY
options on IDENTITY columns on page 2-34.

Duplicate Values for an IDENTITY Column

Duplicates can be generated for an IDENTITY column if the IDENTITY column is
defined as GENERATED BY DEFAULT AS IDENTITY and you specify a duplicate
value for the column.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-133

SQL/MX Statements Considerations for CREATE TABLE
Sequence Generator Cache

The next values of the sequence generator can be cached in the operator that assigns
the generated value to the IDENTITY column. Caching ability is provided to reduce the
bottleneck at the SG table. The bottleneck can occur from many concurrent users
getting the next value from the sequence generator table. For large insert operations,
caching also reduces the overhead incurred from selecting and updating the sequence
generator table while obtaining the next values.

The sequence generator cache is not a global cache; it resides in the instance that
assigns the value for the IDENTITY column. The instance can either be a process
(ESP or MASTER) within the same statement or from another application inserting
values into the same table.

 There are two types of sequence generator cache:

1. User-Defined cache: User-Defined cache value is specified by setting the Control
Query Default (CQD) SEQUENCE_GENERATOR_CACHE at compile time. If this value
is greater than its default of 0, then this is a pure override. Each cache size
obtained will be for the SEQUENCE_GENERATOR_CACHE size and does not change.

2. Adaptive Cache: The cache value dynamically changes at runtime based on the
load of the query. The following three CQD settings are used to manipulate the
cache value dynamically at runtime. The computation starts with the
SEQUENCE_GENERATOR_CACHE_INITIAL value, then multiplies it with the
SEQUENCE_GENERATOR_CACHE_INCREMENT and compares it to the
SEQUENCE_GENERATOR_CACHE_MAXIMUM. The adaptive cache is the default.

Example: assume the following settings:

SEQUENCE_GENERATOR_CACHE_INITIAL of “2”
SEQUENCE_GENERATOR_CACHE_INCREMENT of “10”
SEQUENCE_GENERATOR_CACHE_MAXIMUM of “20000”

SEQUENCE_GENERATOR_CACHE_INITIAL provides the initial value of “2”. A
cache of “2” is obtained. When the cache is exhausted, “2” is multiplied by the
SEQUENCE_GENERATOR_CACHE_INCREMENT of “10”, supplying a new cache of
“20” numbers. When the “20” values are exhausted, the current cache value of
“20” is multiplied by SEQUENCE_GENERATOR_CACHE_INCREMENT “10”, supplying
“20 X 10” = “200” new cache values. This dynamic calculation continues
incrementing the numbers from “2” to “20” to “200” to “2000” to “20000”. “20000” is
the SEQUENCE_GENERATOR_CACHE_MAXIMUM, so no further multiplication occurs.
The maximum is used from that point on to determine the cache size.

The default values for these CQDs are:

SEQUENCE_GENERATOR_CACHE_INITIAL default of “1”
SEQUENCE_GENERATOR_CACHE_INCREMENT default of “10”
SEQUENCE_GENERATOR_CACHE_MAXIMUM default of “10000”

Also, the SQL/MX Optimizer sets the SEQUENCE_GENERATOR_CACHE_INITIAL
value based on the cardinality estimate of the number of rows and number of ESPs
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-134

SQL/MX Statements Considerations for CREATE TABLE
for the instance that assigns the generated value to the IDENTITY column value.
SEQUENCE_GENERATOR_CACHE_INITIAL is equal to the cardinality estimate of
the row divided by the number of ESPs.

The SQL/MX Optimizer setting can be overridden by setting non-default values for
CQDs SEQUENCE_GENERATOR_CACHE_INITIAL and
SEQUENCE_GENERATOR_CACHE_MAXIMUM. In other words, the default settings for
these CQDs cause the optimizer to use the cardinality estimate and number of
ESPs to set the SEQUENCE_GENERATOR_CACHE_INITIAL value.

It is highly recommended to use the User-Defined cache to gain familiarity with the
IDENTITY column feature and then adapt the Adaptive Cache based on application
needs. The CQD values for the Adaptive Cache must be carefully chosen by weighing
the performance implications and the scalability requirements of the application.

Gaps in IDENTITY column values

The INSERT query plan that generates IDENTITY column values has the capability to
cache next values depending on the number of rows in the INSERT statement.
Caching ability is provided to reduce the bottleneck at the SG Table for parallel
INSERT operations. Caching also reduces the overhead of fetching and updating the
CURRENT_VALUE in the SG Table.

Gaps can occur in the sequence of the IDENTITY column values if the unused values
in cache are lost. Unused cache values will be lost under the following scenarios:

 When an error occurs during an INSERT and transaction rollback occurs

 The process (ESP or MASTER Executor) housing the cache shuts down either as
a result of query completion or from process failure

 System failures such as CPU halts

 If the internal transaction updating the SG Table was committed, but the INSERT
with the user transaction fails.

It is recommended that the user choose a cache value that meets the performance
needs of their application while minimizing the potential for large gaps in the sequence.

Gaps in sequence generator values

There can be gaps in sequence numbers acquired by a session if two sessions
concurrently increment the same sequence. This is because sequence numbers are
generated by different sessions and one session cannot get the sequence number
generated by another session. After a sequence value is generated by a session, that
session can continue to access the value even when the sequence is incremented or
decremented by other sessions.

Note. Adaptive-Cache is enabled only when the CQD value for
SEQUENCE_GENERATOR_CACHE is 0 (zero).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-135

SQL/MX Statements Considerations for CREATE TABLE
The gaps can also be generated because of caching next values as explained in Gaps
in IDENTITY column values.

SQL/MX Extensions to CREATE TABLE

This statement is supported for compliance with ANSI SQL:1999 Entry Level. SQL/MX
extensions to the CREATE TABLE statement are [NOT] DROPPABLE, ASCENDING,
DESCENDING, STORE BY, LOCATION, PARTITION, ATTRIBUTE, and LIKE clauses.

Considerations for Referential Integrity

Circular Dependency

The following situations cause circular dependency when adding a Referential Integrity
(RI)/Trigger:

 A situation where the UPDATE/DELETE/INSERT operations on the table being
modified invoke RI(s)/trigger(s), thereby re-invoking the same RI/trigger with the
same operation as the RI/trigger invoked earlier. This is an example of a circular
dependency situation, which does not allow you to create this RI/trigger.
Exception: If the circular dependency path consists of only triggers, the situation is
not considered circular dependency for the reasons of backward compatibility.

 A situation where a few tables are interconnected by RIs, such that the referencing
columns of one RI are the same as the referenced columns of another RI. This is
another example of a circular dependency situation, which does not allow you to
create this RI.

Conflicting and Duplicate Constraints

A referential integrity constraint that is created with new RI actions can conflict or be a
duplicate of the already existing columns.

Conflicting Constraints

 The two constraints in a table conflict if the referenced table is the same and the
referencing columns overlap or

 The two constraints of a table conflict if the referenced table and the referencing
columns are the same and are in the same order, but the RI actions are different.

Duplicate Constraints

The two constraints of a table are said to be duplicate if the referenced table and the
referencing columns are in the same order and the RI actions are the same.

If the existing RI actions for both the update and delete rule are NO
ACTION/RESTRICT, and if the newly added RI constraint also has RI actions NO
ACTION/RESTRICT for both the update and delete rule, they are not said to be
duplicate or conflicting. This is to support backward compatibility.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-136

SQL/MX Statements Examples of CREATE TABLE
Utilities

The utilities Backup/Restore, MXExportDDL/MXImportDDL, and NSM web support the
newly added RI actions CASCADE/SET NULL/SET DEFAULT in addition to NO
ACTION and RESTRICT.

The utilities DUP and PurgeData retain their existing behavior. The DUP utility does not
support the RI constraints duplication and Purgedata does not allow you to purge data
from a referred table.

Usage and Performance

The RI actions CASCADE, SET NULL, and SET DEFAULT enable you to maintain
data integrity between tables. Performing RI actions is resource-intensive because
indexes and multiple tables are involved, which can result in a significant drop in
performance of queries when a large dataset is involved. Therefore, it is important that
you consider the performance implication while defining RI relationships.

Examples of CREATE TABLE

 This example creates a table stored by primary key. The clustering key is the
primary key.

CREATE TABLE SALES.ODETAIL
 (ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 unit_price NUMERIC (8,2) NO DEFAULT NOT NULL,
 qty_ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY (ordernum, partnum) NOT DROPPABLE)
 STORE BY PRIMARY KEY;

 This example creates a table stored by the key column list. The clustering key is
ordernum, partnum, SYSKEY.

CREATE TABLE SALES.ODETAIL
 (ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 unit_price NUMERIC (8,2) NO DEFAULT NOT NULL,
 qty_ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL)
 STORE BY (ordernum, partnum);

 This example creates a table stored by the SYSKEY. The clustering key is the
SYSKEY, type LARGEINT.

CREATE TABLE SALES.ODETAIL
 (ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 unit_price NUMERIC (8,2) NO DEFAULT NOT NULL,
 qty_ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL)
 ;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-137

SQL/MX Statements Examples of CREATE TABLE
 This example creates a table like the JOB table with the same constraints:

CREATE TABLE SAMDBCAT.PERSNL.JOB_CORPORATE
 LIKE SAMDBCAT.PERSNL.JOB WITH CONSTRAINTS;

 This example creates table tab1 with partitions named partition1 and
partition2. It then creates table tab2 like tab1 with partitions. tab2’s
partitions have different names than the partitions on tab1.

 Create tab1:

>>Create table tab1
(a INT not null PRIMARY KEY, b INT)
range partition by (a)
(add first key 2 location $HIJO NAME partition1 ,
 add first key 512 location $CHINA NAME partition2)
attribute
extent (1024, 1024),
maxextents 16;

--- SQL operation complete.

 Create tab2:

>>create table tab2 like tab1 with partitions;

--- SQL operation complete.

 Perform SHOWDDL to display tab1’s properties:

>>showddl tab1;

CREATE TABLE J1.SCH1.TAB1
 (
 A INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , B INT DEFAULT NULL
 , CONSTRAINT J1.SCH1.TAB1_264669593_1268 PRIMARY KEY
 (A ASC) NOT DROPPABLE
 , CONSTRAINT J1.SCH1.TAB1_535649593_1268 CHECK
 (J1.SCH1.TAB1.A IS NOT NULL)
 NOT DROPPABLE
)
 LOCATION \CARNAG.$SARA.ZSDCL87P.DMP33T00
 NAME CARNAG_SARA_ZSDCL87P_DMP33T00
 ATTRIBUTES EXTENT (1024, 1024), MAXEXTENTS 16
 PARTITION
 (
 ADD FIRST KEY (2)
 LOCATION \CARNAG.$HIJO.ZSDCL87P.GHV33T00
 NAME PARTITION1
 EXTENT (1024, 1024) MAXEXTENTS 16
 , ADD FIRST KEY (512)
 LOCATION \CARNAG.$CHINA.ZSDCL87P.ZN133T00
 NAME PARTITION2
 EXTENT (1024, 1024) MAXEXTENTS 16
)
 STORE BY (A ASC)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-138

SQL/MX Statements Examples of CREATE TABLE
 ;

--- SQL operation complete.

 Perform SHOWDDL to display tab2’s properties. Note that the partitions are
now named CARNAG_HIJO_ZSDCL87P_PT245W00 and
CARNAG_CHINA_ZSDCL87P_S1645W00:

>>showddl tab2;

CREATE TABLE J1.SCH1.TAB2
 (
 A INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , B INT DEFAULT NULL
 , CONSTRAINT J1.SCH1.TAB2_378461764_1268 PRIMARY KEY
 (A ASC) NOT DROPPABLE
 , CONSTRAINT J1.SCH1.TAB2_753441764_1268 CHECK
 (J1.SCH1.TAB2.A IS NOT NULL)
 NOT DROPPABLE
)
 LOCATION \CARNAG.$SARA.ZSDCL87P.H5V45W00
 NAME CARNAG_SARA_ZSDCL87P_H5V45W00
 ATTRIBUTES EXTENT (1024, 1024), MAXEXTENTS 16
 PARTITION
 (
 ADD FIRST KEY (2)
 LOCATION \CARNAG.$HIJO.ZSDCL87P.PT245W00
 NAME CARNAG_HIJO_ZSDCL87P_PT245W00
 EXTENT (1024, 1024) MAXEXTENTS 16
 , ADD FIRST KEY (512)
 LOCATION \CARNAG.$CHINA.ZSDCL87P.S1645W00
 NAME CARNAG_CHINA_ZSDCL87P_S1645W00
 EXTENT (1024, 1024) MAXEXTENTS 16
)
 STORE BY (A ASC)
 ;

--- SQL operation complete.
>>

 This example creates table mytable with hash partitions.

create table mytable
 (col1 TIMESTAMP default current_timestamp not null
 , col2 INT not null
 , col3 VARCHAR (30)
 , col4 SMALLINT not null
 , PRIMARY KEY (col4, col1))
location $VOL1
hash partition by (col4)
 (add location $VOL2
 , add location $VOL3
 , add location $VOL4)
attribute
extent (1024, 1024),
maxextents 16
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-139

SQL/MX Statements Examples of CREATE TABLE
;

create unique index mytable_idx1 on mytable(col2, col1)
LOCATION $vol1
hash partition by (col2)
 (add location $VOL2
 , add location $VOL3
 , add location $VOL4
 , add location $VOL5)
;

 This example creates a table stored by primary key. These defaults are in effect:
POS_LOCATIONS is set to $VOL1, $VOL2, $VOL3 and POS_NUM_OF_PARTNS is
set to 3.

CREATE TABLE SALES.ODETAIL
 (ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 unit_price NUMERIC (8,2) NO DEFAULT NOT NULL,
 qty_ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY (ordernum, partnum) NOT DROPPABLE)
 STORE BY PRIMARY KEY;

NonStop SQL/MX will place the primary partition on $VOL1, the second partition
on $VOL2, and the third partition on $VOL3.

 This example creates a table stored by primary key. These defaults are in effect:
POS_LOCATIONS is set to $VOL1, $VOL2, $VOL3 and POS_NUM_OF_PARTNS is
set to 5.

CREATE TABLE SALES.ODETAIL
 (ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 unit_price NUMERIC (8,2) NO DEFAULT NOT NULL,
 qty_ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY (ordernum, partnum) NOT DROPPABLE)
 STORE BY PRIMARY KEY;

NonStop SQL/MX will place the primary partition on $VOL1, the second partition
on $VOL2, the third partition on $VOL3, the fourth on $VOL1, and the fifth on
$VOL2.

 This example creates a table stored by primary key. This statement includes a
LOCATION clause. These defaults are in effect: POS_LOCATIONS is set to $VOL1,
$VOL2, $VOL3 and POS_NUM_OF_PARTNS is set to 4.

CREATE TABLE SALES.ODETAIL
 (ordernum NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 partnum NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 unit_price NUMERIC (8,2) NO DEFAULT NOT NULL,
 qty_ordered NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY (ordernum, partnum) NOT DROPPABLE)
 LOCATION \NODE3.$DATA1
 STORE BY PRIMARY KEY;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-140

SQL/MX Statements Examples of CREATE TABLE
NonStop SQL/MX will place the primary partition on $DATA1, the second partition
on $VOL1, the third partition on $VOL2, and the fourth partition on $VOL3.

IDENTITY column examples

 This example shows how to create an IDENTITY column for a simple table. In this
example, the column surrogate_key is defined as the IDENTITY column and is
the primary key of the table t_id_S.

CREATE TABLE t_id_S (surrogate_key LARGEINT GENERATED BY
DEFAULT AS IDENTITY NOT NULL,
 name CHAR (5) NOT NULL,
 primary key(surrogate_key)
)
 HASH PARTITION BY(surrogate_key);

 This example shows the IDENTITY column id_key as part of the clustering key
(STORE BY clause):

CREATE TABLE t_id (id_key LARGEINT GENERATED BY
 DEFAULT AS IDENTITY NOT NULL,
 name CHAR (256) NOT NULL,
 order_number INT UNSIGNED NOT NULL
)
 STORE BY (id_key, order_number);

 This example shows the IDENTITY column id_key as the partitioning key:

CREATE TABLE t_id (id_key LARGEINT GENERATED BY
 DEFAULT AS IDENTITY NOT NULL,
 name CHAR (256) NOT NULL,
 order_number INT UNSIGNED NOT NULL
)
 STORE BY (id_key, order_number)
 HASH PARTITION BY(id_key);

 This example shows that the values for the IDENTITY column Id_col will always
be generated by the system. MINVALUE, MAXVALUE, and NO CYCLE will take
default values because they are not specified:

CREATE TABLE tbl1 (
 Id_col INTEGER UNSIGNED GENERATED ALWAYS AS IDENTITY
 (
 START WITH 1
 INCREMENT BY 2) NOT NULL,
 Col2 INTEGER NOT NULL, PRIMARY KEY(Id_col)
);
INSERT INTO tbl1 values (DEFAULT, 10), (DEFAULT, 20), (DEFAULT,
30);

will result in the following rows inserted into table tbl1; (1,10), (3,20), (5,30).

INSERT INTO tbl1 values (15, 10);

Note. In SQL/MX, the partitioning key must be a subset of the clustering key. In the case
of a table with a single column clustering key, the partitioning key must be the same as the
clustering key.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-141

SQL/MX Statements Examples of CREATE TABLE
will result in a error 3428 indicating that you cannot specify a value for the
IDENTITY column defined as GENERATED ALWAYS.

*** ERROR[3428] IDENTITY column ID_COL defined as GENERATED ALWAYS
cannot accept values specified by the user.

 This example fails with an error indicating that the start value must be less than the
MAXVALUE and greater than the MINVALUE:

CREATE TABLE tbl1 (
 Id_col INTEGER UNSIGNED GENERATED BY DEFAULT AS IDENTITY
 (START WITH 100 INCREMENT BY 2 MAXVALUE 10 MINVALUE 50)
 NOT NULL,
 Col2 INTEGER NOT NULL, PRIMARY KEY(Id_col)
);

*** ERROR[1570] The MAXVALUE for the sequence generator must be
greater than the MINVALUE for IDENTITY column ID_COL.

 In this example, none of the sequence generator options are specified; the default
values for all options are used:

start value: 0 (zero)
increment: 1
min value: 0 (zero)
max value: 4294967295
NO CYCLE

CREATE TABLE tbl1 (
 Id_col INTEGER UNSIGNED GENERATED BY DEFAULT AS IDENTITY NOT
NULL,
 Col2 INTEGER NOT NULL, PRIMARY KEY(Id_col)
);

 showddl tbl1;

 CREATE TABLE CAT.SCH.TBL1
 (ID_COL INT UNSIGNED GENERATED BY DEFAULT AS IDENTITY (START
WITH 0 INCREMENT BY 1 MAXVALUE 4294967295 MINVALUE 0 NO CYCLE)
 LOCATION \DMR15.$SYSTEM.ZSDWDPR4.WPBXMX00
 -- NOT NULL NOT DROPPABLE
 , COL2 INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , CONSTRAINT CAT.SCH.TBL1_697159451_3816 PRIMARY KEY (ID_COL
ASC) NOT DROPPABLE
 , CONSTRAINT CAT.SCH.TBL1_232649451_3816 CHECK
(CAT.SCH.TBL1.ID_COL IS NOT NULL AND CAT.SCH.TBL1.COL2 IS NOT
NULL) NOT DROPPABLE
)
 LOCATION \DMR15.$SYSTEM.ZSDWDPR4.S5RXMX00
 NAME DMR15_SYSTEM_ZSDWDPR4_S5RXMX00
 ATTRIBUTES BLOCKSIZE 4096
 STORE BY (ID_COL ASC)
 ;

 This example shows that the IDENTITY column options can be specified in any
order:

CREATE TABLE tbl1 (
 Id_col INTEGER UNSIGNED GENERATED BY DEFAULT AS IDENTITY
 (START WITH 100 MAXVALUE 1000 INCREMENT BY 2 MINVALUE 50)
 NOT NULL,
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-142

SQL/MX Statements Examples of CREATE TABLE
 Col2 INTEGER NOT NULL, PRIMARY KEY(Id_col)
);

 This example fails with an error stating that a table can have only one IDENTITY
column.

CREATE TABLE T (id_key LARGEINT GENERATED BY DEFAULT AS IDENTITY
NOT NULL PRIMARY KEY,
 name CHAR (256) NOT NULL,
 order_number LARGEINT GENERATED BY DEFAULT AS IDENTITY NOT
NULL)
 HASH PARTITION BY(id_key);

*** ERROR[1511] There can only be one IDENTITY column for a table.

 In this example, an IDENTITY column is defined on a range partitioned table:

CREATE TABLE tab1(a LARGEINT GENERATED ALWAYS AS IDENTITY
 (START WITH 51 INCREMENT BY 2 MAXVALUE 55 MINVALUE 50 NO CYCLE)
NOT NULL,
 b INT UNSIGNED NOT NULL,
 c INT NOT NULL,
 d INT NOT NULL,
 e INT NOT NULL,
PRIMARY KEY(a, B, C))
 LOCATION $data10
PARTITION BY(a,B,C)(
 ADD FIRST KEY (60, 0, 1)
 LOCATION $data12
 , ADD FIRST KEY (70, 0, 1)
 LOCATION $data13
 , ADD FIRST KEY (65, 0, 1)
 LOCATION $data14
);

 This example shows how to specify the location for the SG Table using the
LOCATION clause:

CREATE TABLE tab1(a LARGEINT GENERATED ALWAYS AS IDENTITY
 (START WITH 51 INCREMENT BY 2 MAXVALUE 55 MINVALUE 50 NO CYCLE)
 LOCATION $data14,
b INT UNSIGNED NOT NULL,
c INT NOT NULL);
showddl tab1;

CREATE TABLE CAT.SCH.TAB1
 (A LARGEINT GENERATED ALWAYS AS IDENTITY
 (START WITH 51 INCREMENT BY 2 MAXVALUE 55 MINVALUE 50 NO
CYCLE)
 LOCATION \DMR15.$DATA14.ZSDWDPR4.GQ4QB600
 -- NOT NULL NOT DROPPABLE
 ,B INT UNSIGNED NO DEFAULT
 -- NOT NULL NOT DROPPABLE
 ,C INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , CONSTRAINT CAT.SCH.TAB1_156576774_5816 CHECK
(CAT.SCH.TAB1.A IS NOT NULL
 AND CAT.SCH.TAB1.B IS NOT NULL AND CAT.SCH.TAB1.C IS NOT
NULL) NOT DROPPABLE
)
 LOCATION \DMR15.$SYSTEM.ZSDWDPR4.DDBRB600
 NAME DMR15_SYSTEM_ZSDWDPR4_DDBRB600
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-143

SQL/MX Statements CREATE TRIGGER Statement
 ATTRIBUTES BLOCKSIZE 4096
 NO PARTITION
 ;

--- SQL operation complete.

CREATE TRIGGER Statement
Considerations for CREATE TRIGGER
Examples of CREATE TRIGGER

The CREATE TRIGGER statement is used to create triggers on SQL/MX tables. A
trigger is a mechanism that causes the database system to perform certain actions
automatically in response to specified events.

CREATE TRIGGER trigger-name
{BEFORE | AFTER}
 {INSERT | DELETE | UPDATE [OF (columns)]}
 ON table-name
 [REFERENCING old-new-alias-list]
 [FOR EACH {ROW | STATEMENT}]
 [WHEN (search-condition)]
 triggered-SQL-statement;
columns is:
 column-name, columns | column-name

old-new-alias-list is:
 old-new-alias, old-new-alias-list | old-new-alias

old-new-alias is:
 OLD [AS] correlation-name |
 NEW [AS] correlation-name |
 OLD [AS] table-alias
 NEW [AS] table-alias

triggered-SQL-statement is:
 searched-update-statement |
 searched-delete-statement |
 call-statement |
 insert-statement |
 signal-statement |
 set-new-statement

signal-statement is:
 SIGNAL SQLSTATE quoted-sqlstate (quoted-string-expr);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-144

SQL/MX Statements Syntax Description of CREATE TRIGGER
Syntax Description of CREATE TRIGGER

trigger-name

specifies the ANSI logical name of the trigger to be added, of the form:

[[catalog-name.]schema-name.]trigger-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

column-name

specifies the ANSI logical name of the column to be inserted, deleted, or updated
when the trigger is activated, of the form:

[[catalog-name.]schema-name.]column-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters.

table-name

specifies the ANSI logical name of the table this trigger is defined on, of the form:

[[catalog-name.]schema-name.]table-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. Triggers can be defined only on SQL/MX tables.

FOR EACH { ROW | STATEMENT }

specifies whether the trigger is based on a row or a statement. If you do not specify
this clause, the default is ROW for a BEFORE trigger and STATEMENT for an
AFTER trigger.

old-new-alias

is the list of correlation names or table aliases used by a trigger.

correlation-name

is the name of the old or new row acted upon by the trigger.

table-alias

is the name of the old or new table acted upon by the trigger.

search-condition

is the condition that, when true, activates this trigger. Starting with SQL/MX
Release 3.2, AFTER Triggers support subqueries in the search-condition.
Simple subqueries with joins and GROUP BY are supported.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-145

SQL/MX Statements Considerations for CREATE TRIGGER
triggered-SQL-statement

is the SQL statement to be performed when this trigger is activated.

searched-update-statement

is an update statement to be performed when the AFTER trigger is activated.

searched-delete-statement

is a delete statement to be performed when the AFTER trigger is activated.

call-statement

is a CALL statement to be performed when the AFTER trigger is activated.
This support is available from SQL/MX Release 3.2.

insert-statement

is an insert statement to be performed when the AFTER trigger is activated.

signal-statement

is a statement to be sent to the SIGNAL statement.

set-new-statement

is an assignment statement that can be used as a BEFORE trigger action to
assign values to transition variables representing columns in the subject table
modified by the triggering action.

quoted-sqlstate

is the five-digit SQLSTATE to be passed to SIGNAL. Use the GET DIAGNOSTICS
command to retrieve quoted-string-expr (as message-text) and
quoted-sqlstate.

quoted-string-expr

is a string expression.

Considerations for CREATE TRIGGER

Triggers support up to 16 levels of recursion. Triggers have their own namespace.

SHOWDDL for a table displays the DDL CREATE text for all triggers defined on that
table. The LIKE option of CREATE TABLE ignores triggers.

Triggers and Utilities

 The DUP utility does not duplicate triggers.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-146

SQL/MX Statements Considerations for CREATE TRIGGER
 By default, using the IMPORT utility to import data to a table causes trigger actions
to be performed. If trigger actions are not required, use the -d option with the
IMPORT utility, which allows triggers to be disabled for the duration of the
operation.

 Most of MODIFY’s partition management operations ignore triggers. However, the
REUSE form of MODIFY might return errors on a table with DELETE triggers.

 Use PURGEDATA to purge the data of a table that is referenced by a trigger or that
is the subject of a trigger. PURGEDATA supports an option that indicates whether
DELETE triggers on the table are ignored. If they are not ignored and a DELETE
trigger exists, PURGEDATA fails.

 BACKUP/RESTORE operations on tables ignore triggers.

 The mxexportddl utility handles triggers correctly.

 VERIFY operations ignore triggers.

Authorization and Availability Requirements

To create a trigger, you must own the schema where the trigger is defined and the
schema where the subject table of the schema resides and you must have
REFERENCES privileges on the columns used on the referenced table. Otherwise,
you must be the super ID.

Trigger Types

You can create a trigger as a BEFORE or AFTER trigger. When a triggering statement
occurs, the following is the order of execution:

1. BEFORE triggered statements
2. Triggering statement
3. Referential actions
4. AFTER triggered statements

Execution of a statement is considered to be complete only when all cascaded triggers
are complete. When multiple triggers are activated by the same event (that is, a conflict
set), the next trigger from the original conflict set is considered only after the execution
of cascaded triggers of a specific trigger is complete (depth-first execution). Within a
conflict set, the order of execution is by timestamp of creation of the corresponding
trigger. Older triggers are executed first.

Statement triggers and row triggers can participate in the same conflict set and can
cascade each other. Therefore, they can appear intertwined.

Triggers use transition tables or transition variables to access old and new states of the
table or row. Statement triggers use transition tables. Row triggers use transition
variables. The following table summarizes the transition variables that different trigger
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-147

SQL/MX Statements Considerations for CREATE TRIGGER
types can use. “new row” refers to the transition variable and “new table” refers to the
transition table:

BEFORE Triggers

BEFORE triggers are used for one of these purposes:

 To generate an appropriate signal when an insert, update, or delete operation
is applied and a certain condition is satisfied (using the SIGNAL statement as
an action).

 To format input data before inserting or updating the subject table that caused
the trigger to be activated (using the SET statement as an action).

BEFORE-type trigger operations are exercised as tentative executions. The triggering
statement is executed but assigns values to the NEW ROW transition variables rather
than to the subject table. That table appears not to be affected by the tentative
execution. When it is accessed by the trigger action, it shows values in place before
the action of the trigger. Because BEFORE-triggers can only be row triggers, they use
transition variables to access old and new states of the row.

Before-type triggers do not modify tables. However, by using a SET statement, they
can assign new values only to the NEW ROW transition variables. As a result, a
BEFORE-type trigger can override the effect of the original triggering statement.

The unique features of BEFORE-type triggers are:

 The triggering statement executes only after the trigger is executed.

 Only row granularity is allowed.

 Only the NEW ROW transition variable can be modified.

 BEFORE-type triggers cannot be cascading.

One of the key differences between BEFORE- and AFTER-type triggers is their
relationship to constraints. A BEFORE-type trigger can prevent the violation of a
constraint, whereas an AFTER-type trigger cannot, because it is executed after the

Triggering Event and
Activation Time

Row Trigger Can Use: Statement Trigger Can Use:

BEFORE INSERT new row Invalid

BEFORE UPDATE old row, new row Invalid

BEFORE DELETE old row Invalid

AFTER INSERT new row new table

AFTER UPDATE old row, new row old table, new table

AFTER DELETE old row old table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-148

SQL/MX Statements Considerations for CREATE TRIGGER
constraints are checked. BEFORE-type triggers are used to condition input data, while
AFTER-type triggers encode actual application logic.

Restrictions on Triggers

 The trigger feature does not allow the use of:

 Publish/Subscribe's embedded update and embedded delete statements as
triggering actions or events.

 INSERTs, UPDATEs, and DELETEs found in compound statements delimited
by BEGIN … END as triggering events.

 Compound statements delimited by BEGIN … END as part of a triggered
action.

 Positioned deletes and updates as triggered statements.

 Do not use triggers on SQL/MX user metadata (UMD) tables, system metadata,
and NonStop MXCS metadata tables.

 You cannot define triggers on SQL/MP objects. SQL/MP objects cannot be
referenced in a trigger.

 Triggers are not allowed on SQL/MP aliases.

 All types of subqueries are not supported in search-condition for AFTER
triggers:

 Nested subqueries, queries containing UNION construct and compound
statements are not allowed.

 The transition table cannot be referenced in the WHEN clause of an AFTER
trigger statement.

 INSERT, DELETE, and UPDATE queries are not allowed in the WHEN clause
of an AFTER trigger statement.

Recompilation and Triggers

User applications that change (INSERT, UPDATE, or DELETE) information in a table
are automatically recompiled when a trigger with a matching event is added or
dropped. User applications that use a SELECT on the subject table do not require
recompilation. User applications do not require an SQL compilation when a trigger is
changed from DISABLED to ENABLED, or from ENABLED to DISABLED, using the
ALTER TRIGGER statement. User applications require SQL recompilations only when
triggers are added or dropped. No source code changes or language compilations are
required.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-149

SQL/MX Statements Considerations for CREATE TRIGGER
Triggers and Primary Keys

Suppose you create this table:

CREATE TABLE t1(c1 varchar(2040) NOT NULL,
 c2 INT,
 c3 INT,
 c4 CHAR(3),
 c5 CHAR(3),
 PRIMARY KEY (c1)
);
 CREATE TABLE t2 (c1 CHAR(3), c2 CHAR(3));

When you try to create a trigger on this table using these commands, you receive
errors:

CREATE TRIGGER trg1
 AFTER INSERT ON t1
 REFERENCING NEW AS newrow
 FOR EACH ROW
 WHEN (newrow.c2 > newrow.c3)
 INSERT INTO t2 VALUES (newrow.c4, newrow.c5);
*** ERROR[1085] The calculated key length is greater than
2048 bytes.

*** ERROR[11041] Temporary table could not be created! Check
default partitions.

Trigger temporary table is a table associated with the subject table of the trigger and is
used to store intermediate results during trigger execution. In the example, error is
returned because of the way trigger temporary tables are created. The temporary table
is created with two more columns than its corresponding subject table. The combined
length of the additional columns is 16 bytes. The two added columns, along with the
subject table’s primary key, form the primary key of the temporary table. This primary
key is too long.

If you update the length of column c1 of table t1 from varchar (2040) to a varchar of
2032 or less bytes (for example, varchar (2000)), the CREATE TRIGGER statement
completes successfully.

Rowsets

SQL/MX rowsets are allowed in UPDATE and DELETE statements that are trigger
events.

UPDATE and DELETE statements that use rowset arrays perform multiple executions
of UPDATE or DELETE statements. UPDATE and DELETE statement triggers behave
as a sequence of statement triggers that are triggered once for each value in the array
of values in the rowset.

Note. If you want to create triggers on a table, its primary key length cannot exceed 2032
bytes. A table that does not include triggers can have a primary key of 2048 bytes.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-150

SQL/MX Statements Examples of CREATE TRIGGER
This behavior is different from a row trigger because each value in the rowset might
match multiple rows in the subject table. Therefore, multiple rows might be affected
(updated or deleted) before the action of the trigger is executed.

Contrast this behavior with row triggers where the trigger action is executed once for
each affected row.

For INSERT statement that use rowsets, an INSERT statement trigger is triggered
once for the entire rowset.

Examples of CREATE TRIGGER

Before and After Triggers

Suppose that you have a database to record patients’ vital signs and drugs prescribed
for them. The database consists of these tables:

 vital_signs, which records vital signs at each visit

 prescription, which records prescriptions written for each patient

 generic_drugs, which lists generic drug equivalents for brand-name drugs

The prescription table is created like this:

CREATE TABLE prescription
(id INTEGER NOT NULL
 NOT DROPPABLE,
 pat_id INTEGER NOT NULL,
 issuing_phys_id INTEGER NOT NULL,
 date_prescribed DATE DEFAULT NULL,
 drug VARCHAR(80) DEFAULT NULL,
 record_id INTEGER NOT NULL,
 dosage VARCHAR(30) NOT NULL,
 frequency VARCHAR(30) DEFAULT NULL,
 refills_remaining INTEGER DEFAULT NULL,
 instructions VARCHAR(255) DEFAULT NULL,
 primary key (id))
STORE BY PRIMARY KEY
ATTRIBUTES EXTENT (1024,1024) MAXEXTENTS 700
LOCATION $D00001.ZSDDEMO1.PRSCR000;

You can create a BEFORE trigger on prescription so that when a prescription is
entered, if the prescribed drug is found in generic_drugs, a generic drug is
substituted for the brand-name drug, and the instructions for the drugs are updated:

CREATE TRIGGER alternate_drug
 BEFORE INSERT ON prescription
 REFERENCING NEW AS newdrug
 FOR EACH ROW
 WHEN (upshift(newdrug.drug) IN
 (SELECT upshift(generic_drugs.drug) FROM generic_drugs))
 SET newdrug.drug = (SELECT
 upshift(generic_drugs.alternate_drug)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-151

SQL/MX Statements Examples of CREATE TRIGGER
 FROM generic_drugs
 WHERE upshift(newdrug.drug) =
 upshift(generic_drugs.drug))
 ,newdrug.instructions = newdrug.instructions ||
 ' Prescribed drug changes to alternative drug.';

You can create an AFTER trigger on vital_signs so that when that table is updated,
NonStop SQL/MX checks the patient’s weight and height. Based on their values, this
trigger might add a record to prescription to create a new prescription for a
weight-loss drug with instructions that indicate that this is a free sample:

CREATE TRIGGER free_sample
 AFTER INSERT ON vital_signs
 REFERENCING NEW AS sample
 FOR EACH ROW
 WHEN (sample.weight > 299 and sample.height < 69)
 INSERT INTO prescription
 (id, pat_id, issuing_phys_id, record_id, date_prescribed,
drug, dosage,
 frequency, refills_remaining, instructions)
 VALUES
 ((SELECT sequence + 1 from prescription_seq),
 (SELECT pat_id FROM record WHERE sample.id =
record.vital_id),
 (SELECT phys_id FROM record WHERE sample.id =
record.vital_id),
 (SELECT record.id FROM record WHERE sample.id =
record.vital_id),
 CURRENT_DATE, 'POUND OFF', '200 mg', '1 pill 1 hour before
each meal', 0, 'Free sample no refills'
);

 This example

Rowsets and Triggers

Suppose that you have a table with this rowset definition:

Rowset[10] short ArrayA;

This embedded DML statement inserts ten rows into table tab1.

EXEC SQL insert into cat.sch.tab1 values (:ArrayA);

If trigger trg1 is defined as an insert statement trigger on tab1,and trg2 is defined
as an insert row trigger on tab1, when the DML statement is executed, the two
triggers are fired. The action of trg1 executes once for the entire statement, while
trg2 executes ten times, once for each element in the rowset.

Stored Procedures and Triggers

Starting with SQL/MX Release 3.2, the trigger statements support stored procedures.
The considerations are:

 IN type of procedure parameters are supported.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-152

SQL/MX Statements Examples of CREATE TRIGGER
 SPJ with resultset is not supported.

 AFTER triggers are supported.

 You must ensure that there is no recursion between SPJ and trigger tables as it
can cause undefined behavior.

The following example creates a trigger that executes an stored procedure, named
LOWERPRICE defined on page 2-93, when the QTY_ON_HAND column of the
PARTLOC table is updated and exceeds 500 parts. For definition of tables, see
Appendix D, Sample Database.

CREATE TRIGGER sales.setsalesprice
AFTER UPDATE OF qty_on_hand
ON invent.partloc
FOR EACH STATEMENT
REFERENCING NEW as newqty
WHEN (SUM(newqty.qty_on_hand) > 500)
CALL sales.lowerprice();
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-153

SQL/MX Statements CREATE VIEW Statement
CREATE VIEW Statement
Considerations for CREATE VIEW
Examples of CREATE VIEW

The CREATE VIEW statement creates an SQL/MX view. See Views on page 6-115.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-154

SQL/MX Statements CREATE VIEW Statement

CREATE VIEW view
 [(column-name [heading] [,column-name [heading]]...)]
 [{ENABLE | DISABLE} SIMILARITY CHECK]
 [LOCATION [\node.]$volume[.subvolume.filename]]
 AS query-expr
 [WITH [CASCADED] CHECK OPTION]

heading is:
 HEADING 'heading-string' | NO HEADING

query-expr is:
 non-join-query-expr | joined-table

non-join-query-expr is:
 non-join-query-primary | query-expr UNION [ALL] query-term

query-term is:
 non-join-query-primary | joined-table

non-join-query-primary is:
 simple-table | (non-join-query-expr)

joined-table is:
 table-ref [NATURAL] [join-type] JOIN table-ref [join-spec]

join-type is:
 INNER | LEFT [OUTER] | RIGHT [OUTER]

join-spec is:
 ON condition

simple-table is:
 VALUES (row-value-const) [,(row-value-const)]...
 | TABLE table
 | SELECT [ALL | DISTINCT] select-list
 FROM table-ref [,table-ref]...
 [WHERE search-condition]
 [SAMPLE sampling-method]
 [TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]]...
 [SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 [GROUP BY {colname | colnum} [,{colname |
colnum}]...]
 [HAVING search-condition]

row-value-const is:
 row-subquery | expression [,expression]...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-155

SQL/MX Statements Syntax Description of CREATE VIEW
Syntax Description of CREATE VIEW

view

specifies the ANSI logical name for the view of the form:

[[catalog-name.]schema-name.]view

where each part of the name is a valid SQL identifier with a maximum of 128
characters. view must be unique among table, view, SQL/MP alias, and procedure
names in the schema. For more information, see Identifiers on page 6-56.

(column-name [heading] [,column-name [heading]]...)

specifies names for the columns of the view and, optionally, headings for the
columns. Column names in the list must match one-for-one with columns in the
table specified by query-expr.

If you omit this clause, columns in the view have the same names as the
corresponding columns in query-expr. You must specify this clause if any two
columns in the table specified by query-expr have the same name or if any
column of that table does not have a name. For example, in the query expression
“SELECT MAX(salary), AVG(salary) AS average_salary FROM employee” the first
column does not have a name.

column-name

specifies the name for a column in the view. column-name is an SQL
identifier. column-name must be unique among column names in the view
and cannot be a reserved word. It can contain a reserved word if it is delimited.

If you do not specify this clause, columns in the view have the same names as
the columns in the select list of query-expr.

No two columns of the view can have the same name; if a view refers to more
than one table and the select list refers to columns from different tables with
the same name, you must specify new names for columns that would
otherwise have duplicate names.

HEADING 'heading-string' | NO HEADING

specifies a string heading-string of 0 to 128 characters to use as a
heading for the column if it is displayed by using a SELECT statement in MXCI.
The heading-string can contain characters only from the ISO88591
character set. The default heading is the column name. If you specify a
heading that is identical to the column name, INVOKE and SHOWDDL do not
display that heading.

If you specify NO HEADING or HEADING ‘’, NonStop SQL/MX stores this as
HEADING ‘’, and the column name is displayed as the heading in a SELECT
statement. The behavior for HEADING ‘’ is different from that of NonStop
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-156

SQL/MX Statements Syntax Description of CREATE VIEW
SQL/MP, which does not display anything for a heading in a SELECT
statement if the heading is specified as HEADING ‘’.

The HEADING clause is an SQL/MX extension.

ENABLE SIMILARITY CHECK

enables Similarity Check for the view.

DISABLE SIMILARITY CHECK

disables Similarity Check for the view.

LOCATION [\node.]$volume[.subvolume.filename]

specifies a node and volume for the label of the view.

node

is the name of a node on the Expand network.

For Guardian files representing a table or index partition or a view label, node
can be any node from which the object's catalog is visible.

volume

is the name of an audited, non-SMF DAM volume on the specified node (or the
Guardian volume named in the =_DEFAULTS define if none is specified).

If you do not specify a LOCATION clause and your system does not have a
value for the DDL_DEFAULT_LOCATIONS default (either in your environment
or at the system level) and your environment does not have a =_DEFAULTS
value, the CREATE statement will fail with an error.

subvolume

is the designated schema subvolume for the schema in which the index is
being created.

Follow these guidelines when using SQL/MX subvolume names:

 The name must begin with the letters ZSD, followed by a letter, not a digit
(for example, ZSDa, not ZSD2).

 The name must be exactly eight characters long.

file-name

is an optional Guardian file name. file-name names must be eight
characters long and must end with the digits “00” (zero zero).

When you specify the subvolume, the file-name must be specified with it.
The subvolume and file-name are optional.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-157

SQL/MX Statements Considerations for CREATE VIEW
Any Guardian file name you specify must match the designated schema
subvolume name for the schema in which the object is being created.
Otherwise, NonStop SQL/MX returns an error.

AS query-expr

specifies the columns for the view and sets the selection criteria that determines
the rows that make up the view. This query-expr cannot contain non-ISO88591
string literals. For the syntax description of query-expr, see SELECT Statement
on page 2-330.

WITH [CASCADED] CHECK OPTION

specifies that no row can be inserted or updated in the database through the view
unless the row satisfies the view definition—that is, the search condition in the
WHERE clause of the query expression must evaluate to TRUE for any row that is
inserted or updated.

If you omit this option, a newly inserted row or an updated row need not satisfy the
view definition, which means that such a row can be inserted or updated in the
table but does not appear in the view. This check is performed each time a row is
inserted or updated.

WITH CHECK OPTION does not affect the query expression; rows must always
satisfy the view definition. CASCADED is an optional keyword; WITH CHECK
OPTION has the same effect.

Considerations for CREATE VIEW

You cannot create an SQL/MX view that references an SQL/MP table or an SQL/MP
alias.

VIEW SIMILARITY CHECK

Starting with SQL/MX Release 3.2, the CREATE VIEW statement provides optional
syntax to enable or disable Similarity Check for a view. By specifying ENABLE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-158

SQL/MX Statements Considerations for CREATE VIEW
SIMILARITY CHECK, you can enable Similarity Check for a view. Similarly, by
specifying DISABLE SIMILARITY CHECK, you can disable Similarity Check for a view.

Restrictions for Similarity Check

 Nested views and views with a VALUES clause are not supported.

 View Similarity Check is not supported for SQL/MP views.

Reserved View Names

View names prefixed by the name of a UMD table are reserved. You cannot create
views with such names. For example, you cannot create a view named
HISTOGRAMS_MYVIEW.

Effect of Adding a Column on View Definitions

The addition of a column to a table has no effect on any existing view definitions or
conditions included in constraint definitions. Any implicit column references specified
by SELECT * in view or constraint definitions are replaced by explicit column
references when the definition clauses are originally evaluated.

Authorization and Availability Requirements

To create a view, you must own the schema and have SELECT privileges for the
objects underlying the view.

When you create a view on a single table, the owner of the view is automatically given
all privileges WITH GRANT OPTION on the view. However, when you create a view
that spans multiple tables, the owner of the view is given only SELECT privileges
WITH GRANT OPTION. If you try to grant privileges to another user on the view other
than SELECT you will receive a warning that you lack the grant option on that privilege.

Updatable and Non-Updatable Views

Single table views can be updatable. Multi-table views cannot be updatable.

Note. The CQD, DDL_VIEW_SIMILARITY_CHECK controls the Similarity Checks for views at
the system level. The ENABLE or DISABLE SIMILARITY CHECK clauses in the CREATE
VIEW and ALTER VIEW statements take precedence over the CQD setting. The default setting
for this CQD is ENABLE.

The following lists the CQD settings and behavior:

 ENABLE/SYSTEM - If the view definition permits, Similarity Check is enabled,
else Similarity Check is disabled.

 ON - If the view definition permits, Similarity Check is enabled, otherwise the view
is not created or altered, and an error is returned.

 DISABLE/OFF - Similarity Check is disabled.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-159

SQL/MX Statements Examples of CREATE VIEW
To define an updatable view, a query expression must also meet these requirements:

 It cannot contain a JOIN, UNION, or EXCEPT clause.

 It cannot contain a GROUP BY or HAVING clause.

 It cannot directly contain the keyword DISTINCT.

 The FROM clause must refer to exactly one table or one updatable view.

 It cannot contain a WHERE clause that contains a subquery.

 The select list cannot include expressions or functions or duplicate column names.

An updatable view is insertable if the column list does not include a SYSKEY from the
underlying base table.

Examples of CREATE VIEW

 This example creates a view on a single table without a view column list:

CREATE VIEW SALES.MYVIEW1 AS
 SELECT ordernum, qty_ordered FROM SALES.ODETAIL;

 This example creates a view with a column list:

CREATE VIEW SALES.MYVIEW2
 (v_ordernum, t_partnum) AS
 SELECT v.ordernum, t.partnum
 FROM SALES.MYVIEW1 v, SALES.ODETAIL t;

 This example creates a view WITH CHECK OPTION:

CREATE VIEW SALES.MYVIEW3
 (ordernum HEADING 'Number of Order') AS
 SELECT ordernum FROM SALES.ODETAIL
 WHERE partnum < 1000 WITH CHECK OPTION;

 This example creates a view from two tables by using an INNER JOIN:

CREATE VIEW MYVIEW4
 (v_ordernum, v_partnum) AS
 SELECT od.ordernum, p.partnum
 FROM SALES.ODETAIL OD INNER JOIN SALES.PARTS P
 ON od.partnum = p.partnum;

 This example enables Similarity Check for a view:

CREATE VIEW MYVIEW5
 (v_ordernum, v_partnum) ENABLE SIMILARITY CHECK AS
 SELECT od.ordernum, p.partnum
 FROM SALES.ODETAIL OD INNER JOIN SALES.PARTS P
 ON od.partnum = p.partnum;

 This example disables Similarity Check for a view:

CREATE VIEW MYVIEW5
 (v_ordernum, v_partnum) DISABLE SIMILARITY CHECK AS
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-160

SQL/MX Statements Examples of CREATE VIEW
 SELECT od.ordernum, p.partnum
 FROM SALES.ODETAIL OD INNER JOIN SALES.PARTS P
 ON od.partnum = p.partnum;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-161

SQL/MX Statements DELETE Statement

Em
DELETE Statement
Considerations for DELETE
MXCI Examples of DELETE
C Examples of DELETE
COBOL Examples of DELETE
Publish/Subscribe Examples of DELETE

The DELETE statement is a DML statement that deletes a row or rows from a table or
an updatable view. Deleting rows from a view deletes the rows from the table on which
the view is based. DELETE does not remove a table or view, even if you delete the last
row in the table or view.

Starting with SQL/MX Release 3.2, self-referencing deletes are supported. With this
support, you can select the rows for delete from the target table in a subquery.

The three forms of the DELETE statement are:

 Searched DELETE— Delete rows (the selection of which depends on a search
condition)

 Positioned DELETE— Delete a single row that is determined by the cursor
position.

 MULTI COMMIT DELETE (MCD)— Delete a large number of records in a series of
smaller independent transactions.

For the searched DELETE form, if there is no WHERE clause, all rows are deleted
from the table or view.

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-162

SQL/MX Statements DELETE Statement

Pu

Em

Pu

Em

Pu

Em

C/C

E

Use the positioned form of DELETE only in embedded SQL programs. Use the
searched form in MXCI or embedded SQL programs.

ROWSET FOR INPUT SIZE rowset-size-in

Allowed only if you specify rowset-search-condition in the WHERE clause.
rowset-size-in restricts the size of the input rowset to the specified size. If
rowset-size-in is different from the allocated size for the rowset,
NonStop SQL/MX uses the smaller of the two sizes and ignores the remaining
entries in the larger rowset.

rowset-size-in must be an integer literal (exact numeric literal, dynamic
parameter, or a host variable) whose type is unsigned short, signed short,
unsigned long, or signed long in C and their corresponding equivalents in COBOL.

Searched DELETE is:

[ROWSET FOR INPUT SIZE rowset-size-in]

DELETE [multi-commit-option] FROM table

| STREAM (table) [AFTER LAST ROW]

 [SET ON ROLLBACK set-roll-clause [,set-roll-clause]...]

[WHERE search-condition | rowset-search-condition]

 [[FOR] access-option ACCESS]

set-roll-clause is:
 column-name = expression |

access-option is:
 READ COMMITTED
 | SERIALIZABLE
 | REPEATABLE READ
 | SKIP CONFLICT

Positioned DELETE is:

DELETE FROM table

 WHERE CURRENT OF {cursor-name | ext-cursor-name}

MULTI COMMIT DELETE is:

multi-commit-option is:
 WITH MULTI COMMIT [granularity]

granularity is:
 EVERY num ROWS

b/Sub

bed

b/Sub

bed

b/Sub

bed

OBOL

mbed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-163

SQL/MX Statements DELETE Statement

Pu

Pu
If you do not specify rowset-size-in, NonStop SQL/MX uses the allocated
rowset size specified in the SQL Declare Section of the embedded SQL
program.

table

names the user table or view from which to delete rows. table must be either a
base table or an updatable view. To refer to a table or view, use one of these name
types:

 Guardian physical name
 ANSI logical name
 DEFINE name

See Database Object Names on page 6-13.

The file organization of the table or base table must be key-sequenced. You cannot
use DELETE to delete rows from an SQL/MP entry-sequenced table.

STREAM (table)

deletes a continuous data stream from the specified table. You cannot specify
STREAM access for the DELETE statement if it is not embedded as a table
reference in a SELECT statement. See SELECT Statement on page 2-330.

[AFTER LAST ROW]

causes the stream to skip all existing rows in the table and delete only rows
that are published after the stream’s cursor is opened.

SET ON ROLLBACK set-roll-clause [,set-roll-clause]...

causes one or more columns to be updated when the execution of the DELETE
statement causes its containing transaction to be rolled back.

set-roll-clause

sets the specified column to a particular value. For each set-roll-clause,
the value of the specified target column-name is replaced by the value of the
update source expression. The data type of each target column must be
compatible with the data type of its source value.

column-name

names a column in table to update. You cannot qualify or repeat a
column name. You cannot update the value of a column that is part of the
primary key.

expression

is an SQL value expression that specifies a value for the column. The
expression cannot contain an aggregate function defined on a column.
The data type of expression must be compatible with the data type of

b/Sub

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-164

SQL/MX Statements DELETE Statement

E

column-name. A scalar subquery in expression cannot refer to the
table being updated.

If expression refers to columns being updated, NonStop SQL/MX uses
the original values to evaluate the expression and determine the new
value.

See Expressions on page 6-41.

WHERE search-condition

specifies a search condition that selects rows to delete. Within the search
condition, any columns being compared are columns in the table or view being
deleted from. See Search Condition on page 6-108.

If you do not specify a search condition, all rows in the table or view are deleted.
You can also delete all the rows from a table or a partition of a table by using the
PURGEDATA utility.

WHERE rowset-search-condition

specifies an array of search conditions that selects rows to delete. The search
conditions are applied successively and rows selected by each condition are
deleted before the next search condition is applied. See Rowset Search Condition
on page 6-110.

[FOR] access-option ACCESS

specifies the access option required for data used in the evaluation of the search
condition. See Data Consistency and Access Options on page 1-8.

READ COMMITTED

specifies that any data used in the evaluation of the search condition must
come from committed rows.

SERIALIZABLE | REPEATABLE READ

specifies that the DELETE statement and any concurrent process (accessing
the same data) execute as if the statement and the other process had run
serially rather than concurrently.

SKIP CONFLICT

enables transactions to skip rows locked in a conflicting mode by another
transaction. The rows under consideration are the result of evaluating the
search condition for the DELETE statement. SKIP CONFLICT cannot be used
in a SET TRANSACTION statement.

The default access option is the isolation level of the containing transaction, which
is determined according to the rules specified in Isolation Level on page 10-56.

mbed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-165

SQL/MX Statements Considerations for DELETE

C/C

WHERE CURRENT OF {cursor-name | ext-cursor-name}

specifies the name of a cursor (or extended cursor) positioned at the row to delete.
If you specify cursor-name for an audited table or view, the DELETE must
execute within a transaction that also includes the FETCH for the row. For more
information about cursor names and extended cursor names, see DECLARE
CURSOR Declaration on page 3-22 and ALLOCATE CURSOR Statement on
page 3-3.

For more information on searched and positioned DELETE statements in
embedded SQL programs, see the SQL/MX Programming Manual for C and
COBOL.

EVERY num ROWS

specifies the number of rows to be deleted for each independent transaction for a
multi commit delete operation. num must be an unsigned integer greater than
zero. The default value for num is 500.

Considerations for DELETE

In a searched DELETE, rows are deleted in sequence. If an error occurs and you are
not using DP2’s Savepoint feature, NonStop SQL/MX returns an error message and
stops deleting from the table. NonStop SQL/MX automatically rolls back the transaction
to undo the deleted data from the audited table.

If the default INSERT_VSBB is set to USER, NonStop SQL/MX does not use
statement atomicity. Unless you are deleting only a few records, you should not disable
INSERT_VSBB to use statement atomicity, because performance is affected. Perform
UPDATE STATISTICS on the tables so that row estimates are correct.

To see what rollback mode NonStop SQL/MX is choosing, you can prepare the query,
and then use the EXPLAIN statement:

explain options 'f' my_query;

Token “x” means that the transaction will be rolled back. Token “s” means that
NonStop SQL/MX will choose DP2 savepoints. See EXPLAIN Statement on
page 2-208 for details. For details about these defaults, see INSERT_VSBB on
page 10-75 and UPD_SAVEPOINT_ON_ERROR on page 10-78.

Multi Commit Delete

DELETE operations can be long running on a very large data set (the number of rows
affected in a single table in a single transaction). This causes the locks to escalate to
file locks resulting in a loss of concurrency.

The multi commit delete feature executes these DELETE statements in multiple
statements. Each of these multiple statements is executed in a separate transaction,
thus avoiding lock escalation. These multiple transactions are independent
transactions from TMF. Therefore, any point-in-time recovery by TMF is done

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-166

SQL/MX Statements Multi Commit Delete
individually for each of these multiple transactions and not for the multi commit delete
as a whole.

Note. The multi-commit-option must only be used for large tables. Using this option on small
tables incurs unnecessary overhead from starting and committing multiple transactions.

This option is best used to delete unwanted data (for example, records older than 90 days)
from the database. Using this option for any other purpose can have point-in-time recovery
ramifications since these multiple transactions are independent transactions from TMF.

Considerations

 On successful completion, the multi commit delete statement reports the total
number of rows deleted from all partitions of the table. If there is a failure, it reports
the total number of rows deleted to the point of the failure from all partitions along
with the diagnostic information.

 Every multi commit delete statement is treated as a new statement. If there is a
failure, you can fix the error and reissue the statement. The operation scans the
processed rows again.

 Multi commit delete works only when the AUTOCOMMIT mode is ON. It does not
work inside an explicit transaction (started with a BEGIN WORK).

Restrictions

The multi commit delete feature has the following restrictions:

 It does not support views.

 It does not support stream access.

 It cannot be part of an embedded DELETE statement.

 A host variable cannot be used to specify the granularity of each child transaction.

 A host variable cannot be used in the WHERE clause of a multi commit delete
statement.

 It does not support Java applications using the JDBC T2 driver.

 The following restrictions which apply to an embedded DELETE are also
applicable to a multi commit delete:

 An embedded DELETE cannot have a rowset search condition in the predicate
of the DELETE statement; SQL error 3426 is returned.

 An embedded DELETE cannot have a subquery in the predicate of the
DELETE statement; SQL error 4139 is returned.

 An embedded DELETE on a table, which is the subject table of a trigger,
returns SQL error 11045.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-167

SQL/MX Statements Multi Commit Delete

Em
Authorization Requirements

DELETE requires authority to read and write to the table or view being deleted from
and authority to read tables or views specified in subqueries used in the search
condition.

Transaction Initiation and Termination

The DELETE statement automatically initiates a transaction if there is no active
transaction and if the statement references an audited table. Otherwise, you can
explicitly initiate a transaction with the BEGIN WORK statement. When a transaction is
started, the SQL statements execute within that transaction until a COMMIT or
ROLLBACK is encountered or an error occurs.

Isolation Levels of Transactions and Access Options of
Statements

The isolation level of an SQL transaction defines the degree to which the operations on
data within that transaction are affected by operations of concurrent transactions.
When you specify access options for the DML statements within a transaction, you
override the isolation level of the containing transaction. Each statement then executes
with its individual access option.

You can explicitly set the isolation level of a transaction with the SET TRANSACTION
statement. See SET TRANSACTION Statement on page 2-376.

The default isolation level of a transaction is determined according to the rules
specified in Isolation Level on page 10-56.

When you specify any statement level attribute, all attributes are used from the
statement specification and they override session level attributes.

When you specify one or more SET TRANSACTION attributes at the statement level,
all the other SET TRANSACTION settings revert to their default values for that
statement instead of the current session-level attribute values. For example, if you
specify the 'in share mode' option with a SQL Statement, the statement level options
will be applied. Thus, all attributes are chosen at the statement level, including the
isolation level.

Therefore, if any attributes are specified for a given statement, all other SET
TRANSACTION session-level settings that do not have the default value should also
be specified.

It is important to note that the SET TRANSACTION statement might cause a dynamic
recompilation of the DML statements within the next transaction. Dynamic
recompilation occurs if NonStop SQL/MX detects a change in the transaction mode at
run time compared with the transaction mode at the time of static SQL compilation. To

Note. NonStop SQL/MX accepts SQL/MP keywords as synonyms for READ UNCOMMITTED,
STABLE, and SERIALIZABLE.

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-168

SQL/MX Statements MXCI Examples of DELETE

Pu

Pu
avoid dynamic recompilation because of a change in the transaction mode, consider
specifying access options for individual DML statements instead of using SET
TRANSACTION.

Audited and Nonaudited Tables

SQL/MX tables can only be audited. You can run NonStop SQL/MX against nonaudited
SQL/MP tables.

The TMF product works only on audited tables, so a transaction does not protect
operations on nonaudited tables. Nonaudited tables follow a different locking and error
handling model than audited tables. Certain situations, such as DML error occurrences
or utility operations with DML operations, can lead to inconsistent data within a
nonaudited table or between a nonaudited table and its indices.

To avoid problems, do not run DDL or utility operations concurrently with DML
operations on nonaudited tables. When you try to delete data in a nonaudited table
with an index, NonStop SQL/MX returns an error.

SET ON ROLLBACK Considerations

The SET ON ROLLBACK expression is evaluated when each row is processed during
execution of the DELETE statement. The results of the evaluation are applied when
and if the transaction is rolled back. This has two important implications:

 If the SET ON ROLLBACK expression generates an error (for example, a divide by
zero or overflow error), the error is returned to the application when the DELETE
operation executes, regardless of whether the operation is rolled back.

 If a DELETE operation is applied to a set of rows and an error is generated while
executing the DELETE operation, and the transaction is rolled back, the actions of
the SET ON ROLLBACK clause apply only to the rows that were processed by the
DELETE operation before the error was generated.

SET ON ROLLBACK Restrictions

The table must be audited. The columns used in the SET ON ROLLBACK clause:

 Must be declared as NOT NULL.
 Cannot be part of a referential integrity constraint or be part of a secondary index.
 Cannot use the VARCHAR data type.
 Cannot be used in the primary key, clustering key, or partitioning key.

MXCI Examples of DELETE

 Remove all rows from the JOB table:

DELETE FROM persnl.job;

--- 10 row(s) deleted.

b/Sub

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-169

SQL/MX Statements MXCI Examples of DELETE
 Remove the row for TIM WALKER from the EMPLOYEE table:

DELETE FROM persnl.employee
WHERE first_name = 'TIM' AND last_name = 'WALKER';

--- 1 row(s) deleted.

 Remove from the table ORDERS any orders placed with sales representative 220
by any customer except customer number 1234:

DELETE FROM sales.orders
WHERE salesrep = 220 AND custnum <> 1234;

--- 2 row(s) deleted.

 Remove from the table PARTSUPP all suppliers who charge more than $1,600.00
for items that have part numbers in the range 6400 to 6700:

DELETE FROM invent.partsupp
WHERE partnum BETWEEN 6400 AND 6700
 AND partcost > 300.00 SERIALIZABLE ACCESS;

--- 3 row(s) deleted.

This DELETE uses SERIALIZABLE access, which provides maximum consistency
but reduces concurrency. Therefore, you should run this statement at a time when
few users need concurrent access to the database.

 Remove all suppliers not in Texas from the table PARTSUPP:

DELETE FROM invent.partsupp
WHERE suppnum IN
 (SELECT suppnum FROM samdbcat.invent.supplier
 WHERE state <> 'TEXAS');

--- 41 row(s) deleted.

This statement achieves the same result:

DELETE FROM invent.partsupp
WHERE suppnum NOT IN
 (SELECT suppnum FROM samdbcat.invent.supplier
 WHERE state = 'TEXAS');

--- 41 row(s) deleted.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-170

SQL/MX Statements MXCI Examples of DELETE

drop table test1;

create table test1(col1 int not null , col2 char(3),primary
key(col1));

insert into test1 values (1, '100'), (2, '200');

--- 2 row(s) inserted.

prepare s1 from delete from test1 where col1 = (select col1
from test1 where col1 > 1);
--- SQL command prepared.

>>explain s1;

----- PLAN SUMMARY

MODULE_NAME DYNAMICALLY COMPILED
STATEMENT_NAME S1
PLAN_ID 212204692463357465
ROWS_OUT 1
EST_TOTAL_COST 0.03
STATEMENT delete from test1
 where col1 = (select col1 from

test1 where col1>
 1);

----- NODE LISTING
ROOT ====================================== SEQ_NO 11
ONLY CHILD 10
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0
EST_TOTAL_COST 0.03
DESCRIPTION
 max_card_est 1
 fragment_id 0
 parent_frag (none)
 fragment_type master
 statement_index 0
 olt_optimization not used
 affinity_value 1,309,464,585
 est_memory_per_cpu 56
 upd_action_on_error savepoint
 xn_autoabort_interval -1
 plan_version 3,200
 self_referencing_update forced_sort
 MXCI_PROCESS ON
 SHOWCONTROL_UNEXTERNALI OFF
 BLOCK_TO_PREVENT_HALLOW ON
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-171

SQL/MX Statements C Examples of DELETE
 select_list execution_count

>>execute s1;

--- 1 row(s) deleted.

>>select * from test1;

COL1 COL2

----------- ----

 1 100

--- 1 row(s) selected.

C Examples of DELETE

 Remove the row for JOHN WALKER from the EMPLOYEE table:

EXEC SQL DELETE FROM PERSNL.EMPLOYEE
 WHERE FIRST_NAME = 'JOHN' AND LAST_NAME = 'WALKER'
 SERIALIZABLE ACCESS;

 Use a cursor and delete some of the returned rows during processing:

...
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT EMPNUM, DEPTNUM, JOBCODE, SALARY
 FROM PERSNL.EMPLOYEE
 FOR SERIALIZABLE ACCESS
 FOR UPDATE;
...
EXEC SQL OPEN emp_cursor;
...
EXEC SQL FETCH emp_cursor
 INTO :hv_empnum, :hv_deptnum, :hv_jobcode, :hv_salary;
... /* Process fetched row. */
if (hv_jobcode == 1234)
 EXEC SQL DELETE FROM PERSNL.EMPLOYEE
 WHERE CURRENT OF emp_cursor;

COBOL Examples of DELETE

 Remove the row for JOHN WALKER from the EMPLOYEE table:

EXEC SQL DELETE FROM PERSNL.EMPLOYEE
 WHERE FIRST_NAME = 'JOHN' AND LAST_NAME = 'WALKER'
 SERIALIZABLE ACCESS
END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-172

SQL/MX Statements Publish/Subscribe Examples of DELETE
 Use a cursor and delete some of the returned rows during processing:

...
EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT EMPNUM, DEPTNUM, JOBCODE, SALARY
 FOR UPDATE ACCESS
 FROM PERSNL.EMPLOYEE
 FOR SERIALIZABLE ACCESS
 FOR UPDATE
END-EXEC.
...
EXEC SQL OPEN emp_cursor END-EXEC.
...
EXEC SQL FETCH emp_cursor
 INTO :hv-empnum, :hv-deptnum,
 :hv-jobcode, :hv-salary
END-EXEC.
 ...

* Process fetched row.

IF hv-jobcode = 1234
 EXEC SQL DELETE FROM PERSNL.EMPLOYEE
 WHERE CURRENT OF emp_cursor
 END-EXEC.
END-IF.
...

Publish/Subscribe Examples of DELETE

Suppose that these SQL/MP tables and index (and the metadata mappings) have been
created:

CREATE TABLE $db.dbtab.tab1 (a INT NOT NULL, b INT, c INT);
CREATE TABLE $db.dbtab.tab2 (a INT, b INT, c INT);
CREATE INDEX $db.dbtab.itab1 ON tab1(b, c);

CREATE SQLMP ALIAS cat.sch.tab1 $db.dbtab.tab1;
CREATE SQLMP ALIAS cat.sch.tab2 $db.dbtab.tab2;

 This example shows the SET ON ROLLBACK clause. The SET ON ROLLBACK
column must be declared as NOT NULL; it cannot be part of a secondary index.

SET NAMETYPE ANSI;
SET SCHEMA cat.sch;

DELETE FROM tab1
SET ON ROLLBACK a = a + 1;

 This example shows the SET ON ROLLBACK clause in an embedded delete of a
SELECT statement:

SELECT * FROM
 (DELETE FROM tab1 SET ON ROLLBACK a = a + 1) tab1;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-173

SQL/MX Statements Publish/Subscribe Examples of DELETE
 This example shows SKIP CONFLICT ACCESS used with an embedded delete
statement accessing a table as a stream:

SELECT a FROM (DELETE FROM STREAM(tab1)
WHERE a = 1 FOR SKIP CONFLICT ACCESS) as tab1;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-174

SQL/MX Statements DOWNGRADE Utility
DOWNGRADE Utility
Considerations for DOWNGRADE
Example of DOWNGRADE

DOWNGRADE is a syntax-based utility that you can run from MXCI. DOWNGRADE
transforms metadata from the existing version to a specified lower version. The
REPORTONLY option allows you to test if the operation can be executed without
actually performing the operation.

Starting with SQL/MX Release 3.2, the DOWNGRADE utility can downgrade all
metadata in a named catalog, and optionally in all catalogs related to the specified
catalog.

catalog

specifies the ANSI name of the catalog, whose metadata is to be downgraded.
There is no default for catalog.

version

is a valid SQL/MX version number which specifies the target version of the
command. version must be lower than the actual schema version for all
schemas affected by the command.

RESTRICT

restricts the downgrade to only the metadata in the named catalog.

CASCADE

extends the downgrade to the transitive closure of catalogs that are related to the
specified catalog. The default is RESTRICT.

DOWNGRADE ALL METADATA TO VERSION version
 [output-spec]

DOWNGRADE ALL METADATA IN CATALOG catalog TO VERSION version
 [RESTRICT | CASCADE]
 [output-spec]

output-spec is:
 [log-to-spec] [REPORTONLY]

log-to-spec is:
 { [LOG TO] OUTFILE oss-file [CLEAR] | LOG TO HOMETERM }
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-175

SQL/MX Statements Considerations for DOWNGRADE
oss-file

an OSS file name.

Considerations for DOWNGRADE

Modes of Operation for DOWNGRADE

There are two modes of operation for the DOWNGRADE utility:

 ALL METADATA

This mode of operation downgrades all metadata that is visible on the system,
including the metadata in the system catalog.

 ALL METADATA IN CATALOG catalog

This mode of operation downgrades all metadata in the named catalog. If the
CASCADE option is specified, it also downgrades metadata in all catalogs that are
related to the named catalog. This mode of operation is available from SQL/MX
Release 3.2.

Command Output for DOWNGRADE

The DOWNGRADE utility supports the following command output options:

 REPORTONLY

If the REPORTONLY option is specified, only the initial error checking is performed;
the DOWNGRADE operation is not performed. If the LOG TO option is also
specified, the list of affected schemas is written to the output file.

 LOG TO

If the LOG TO option is specified, the command writes a log of its progress to either
the specified oss-file or to the home terminal. If the CLEAR option is used and if
oss-file is an existing disk file, oss-file is cleared before logging begins.
Otherwise, the output is appended to the existing contents of oss-file. The
following is the format of the first line of log output:

The format enables you to recognize a log file easily. A command is rejected if it
specifies an existing non-empty oss-file that is not a log file.

Log file messages correspond to the EMS event messages. Regardless of the LOG
TO option, the DOWNGRADE utility will generate EMS events to the $0 primary
collector that documents the progress of the command. For information about EMS
event messages, see the SQL/MX Messages Manual.

Note. The DOWNGRADE utility is available only on systems running J06.11 and later J-series
RVUs and H06.22 and later H-series RVUs.

************** Time: <time> Process: <process> Log opened **************
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-176

SQL/MX Statements Considerations for DOWNGRADE
Error Conditions

The following are examples of the error conditions that might occur while executing the
DOWNGRADE utility:

 An affected schema has a schema version that is lower than the target version

 No schemas are affected by the operation

 An object in an affected schema has an object feature version (OFV) that is higher
than the target version

 The target version is not a valid schema version

 The RESTRICT option is specified or no option is specified, and one or more
related catalogs exist

 All the following conditions are met :

 One or more user schemas are participating in a downgrade to version 1200

 The system schema version is higher than 1200

 The system schema is not involved in the downgrade

 Concurrent DOWNGRADE operations are not supported

Recovery of a Failed DOWNGRADE Utility

The RECOVER command allows for recovery of a failed DOWNGRADE command.

catalog

specifies the ANSI name of the catalog that is specified in the original
DOWNGRADE command.

RESUME

enables you to continue the processing of the original command, starting at the
point of interruption.

CANCEL

enables you to revert the changes made by the original command, thereby
returning the database to its original state. The default value is CANCEL.

RECOVER ALL METADATA
 [RESUME | CANCEL]
 [output-spec]

RECOVER ALL METADATA IN CATALOG catalog
 [RESUME | CANCEL]
 [output-spec]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-177

SQL/MX Statements Example of DOWNGRADE
output-spec

corresponds to the output-spec for DOWNGRADE.

The RECOVER command must use the same mode of operation as the original
DOWNGRADE command:

 If the original DOWNGRADE uses the ALL METADATA mode of operation, then
the RECOVER must also use the ALL METADATA mode of operation.

 If the original DOWNGRADE uses the ALL METADATA IN CATALOG catalog
mode of operation then the RECOVER must also use the ALL METADATA IN
CATALOG catalog mode of operation, and must specify the same catalog name.

In a distributed environment, the RECOVER command must be issued from the same
system where the original DOWNGRADE command was run.

Error Conditions

The following are the error conditions that might occur while executing the RECOVER
command:

 An involved node has an incompatible version (because the version of the node
was changed between the time of the original operation and the time of recover)

 No corresponding UPGRADE or DOWNGRADE operation is recorded

 The original command is still active

Example of DOWNGRADE

This example transforms all metadata to version 1200:

DOWNGRADE ALL METADATA TO VERSION 1200;

The following is an excerpt from the output file.

Note. The RECOVER command does not need CASCADE option as it automatically recovers
the metadata for those catalogs that are affected by the original DOWNGRADE command.

*************** Time: <time> Process: <process> Log opened

The DOWNGRADE ALL METADATA TO VERSION 1200 has started
Schema CAT.SCH will be downgraded from version 3000 to version 1200
 ...
Creating version 1200 definition schema for catalog CAT
Downgrading version 3000 metadata to version 1200 for affected schemas in
catalog CAT
Set schema version to 1200 for CAT.SCH
Updating file labels for affected schemas in catalog CAT
Remove CAT.DEFINITION_SCHEMA_VERSION_3000
Schema CAT.SCH has been downgraded from version 3000 to version 1200
 ...
The DOWNGRADE ALL METADATA TO VERSION 1200 has completed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-178

SQL/MX Statements Example of DOWNGRADE
Note. The date-time-processid prefix of each line and the output for schemas in the system
catalog are not displayed in the output file.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-179

SQL/MX Statements DROP CATALOG Statement
DROP CATALOG Statement
Considerations for DROP CATALOG
Examples of DROP CATALOG

The DROP CATALOG statement deletes an empty SQL/MX catalog. See Catalogs on
page 6-3.

DROP CATALOG is an SQL/MX extension.

Syntax Description of DROP CATALOG

catalog

is the name of the catalog to drop.

Considerations for DROP CATALOG

Drop all schemas from the catalog before you can use the DROP CATALOG
statement. This statement automatically removes the SQL/MX metadata associated
with the catalog.

Reserved Catalogs

Catalog names beginning with NONSTOP_SQLMX_ are reserved for system
metadata. You are not allowed to drop the system metadata catalog.

Authorization and Availability Requirements

Only a catalog owner and super ID can drop a catalog. All metadata tables for the
catalog must be accessible at the time DROP CATALOG executes. No user can drop a
nonempty catalog, even if the catalog contains only empty schemas.

Examples of DROP CATALOG

 This example drops an empty catalog:

DROP CATALOG mycatalog;

DROP CATALOG catalog
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-180

SQL/MX Statements DROP INDEX Statement
DROP INDEX Statement
Considerations for DROP INDEX
Examples of DROP INDEX

The DROP INDEX statement deletes an SQL/MX index. See Database Object Names
on page 6-13.

DROP INDEX is an SQL/MX extension.

Syntax Description of DROP INDEX

index

is the ANSI logical name of the index to drop, of the form:

[[catalog-name.]schema-name.]index

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

If you specify RESTRICT and the index is being used by to validate a constraint,
the index is not dropped.

If you specify CASCADE and the index is being used to validate a constraint, the
constraint and the index are dropped.

The default is RESTRICT.

Considerations for DROP INDEX

Authorization and Availability Requirements

To drop an index, you must own the schema that contains the index or be the super ID
or object owner, and have access to all partitions of the index and the underlying table.

Indexes That Support Constraints

NonStop SQL/MX uses indexes to implement some constraints. You cannot use DROP
INDEX to drop an index that implements a constraint unless you use the CASCADE
option. Use CASCADE to drop all constraints that use the index, including those that
indirectly use it (that is, any referential constraints that rely on a primary key or unique
constraint that uses the index are also dropped). Alternately, if you use the DROP
CONSTRAINT option in an ALTER TABLE statement, NonStop SQL/MX will drop
indexes that it created to implement that constraint.

DROP INDEX index [RESTRICT | CASCADE]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-181

SQL/MX Statements Examples of DROP INDEX
Examples of DROP INDEX

 This example drops an index:

DROP INDEX myindex;

DROP PROCEDURE Statement
Considerations for DROP PROCEDURE
Example of DROP PROCEDURE

The DROP PROCEDURE removes a stored procedure in Java (SPJ) from
NonStop SQL/MX. To develop, deploy, and manage SPJs in SQL/MX, see the SQL/MX
Guide to Stored Procedures in Java.

procedure-ref

specifies an ANSI logical name of the form:

[[catalog-name.]schema-name.]procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

If you do not fully qualify the procedure name, NonStop SQL/MX qualifies it
according to the current settings of CATALOG and SCHEMA. If you set the
NAMETYPE attribute to NSK instead of ANSI and you do not fully qualify the
procedure name, NonStop SQL/MX returns an error. For more information on the
CATALOG, SCHEMA, and NAMETYPE attributes, see the System Defaults Table
on page 10-37.

You cannot specify SQL parameters along with the procedure name. Each
procedure name represents a unique SPJ in the database because
NonStop SQL/MX does not support the overloading of procedure names.

RESTRICT

If you specify RESTRICT and the procedure is used in a trigger, the procedure is
not dropped. The default is RESTRICT.

CASCADE

If you specify CASCADE and the procedure is used in a trigger, both the trigger
and the procedure are dropped.

DROP PROCEDURE procedure-ref [RESTRICT|CASCADE]

procedure-ref is:
[[catalog-name.]schema-name.]procedure-name
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-182

SQL/MX Statements Considerations for DROP PROCEDURE
Considerations for DROP PROCEDURE

Authorization and Availability Requirements

To issue a DROP PROCEDURE statement, you must own the SPJ or be the super ID
or schema owner.

Example of DROP PROCEDURE

 Drop an SPJ named ADJUSTSALARY from NonStop SQL/MX:

DROP PROCEDURE samdbcat.persnl.adjustsalary;

DROP SCHEMA Statement
Considerations for DROP SCHEMA
Examples of DROP SCHEMA

The DROP SCHEMA statement deletes an SQL/MX schema and optionally deletes all
objects within that schema. See Pseudocolumns on page 6-105.

Syntax Description of DROP SCHEMA

schema

is the name of the schema to drop.

If you specify RESTRICT, an error is reported if the specified schema is not empty.

If you specify CASCADE, all objects in the specified schema in addition to the
schema itself, are dropped. The default is RESTRICT.

Considerations for DROP SCHEMA

Reserved Schemas

Schema names that start with DEFINITION_SCHEMA_VERSION_ are reserved for
system metadata in all catalogs.

Schemas that start with NONSTOP_SQLMX_ are reserved for system metadata.
These schema names are not reserved when used in a user-created catalog. Schemas
named MXCS_SCHEMA in all catalogs are reserved for use by MXCS.

You cannot drop any of these reserved schemas or the objects contained in them.

DROP SCHEMA schema [CASCADE | RESTRICT]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-183

SQL/MX Statements Considerations for DROP SCHEMA
Authorization and Availability Requirements

To drop a schema, you must own the schema or be the super ID. You must have
remote passwords for any nodes to which the schema’s catalog has been registered.
All the objects under the schema need not be owned by the schema owner to perform
the DROP SCHEMA CASCADE operation.

Transaction Limits on DROP SCHEMA

If the schema is fairly large and contains many objects, DROP SCHEMA with the
CASCADE option might fail with file system error 35, “Unable to obtain an I/O process
control block, or the transaction or open lock unit limit has been reached.” In this case,
too many locks were requested. When this occurs, you need to update
MaxLocksPerTCB to 10000 or more.

In the Guardian environment, update through the SCF facility:

SCF

1-> info $<volume>,detail
STORAGE - Detailed Information Magnetic DISK
\<node>.$<volume> Common Disk Configuration Information:
*BackupCpu............................. 3
*HighPin............................... ON
*PrimaryCpu............................ 2
*Program...............................$SYSTEM.SYSTEM.TSYSDP2
*StartState............................ STARTED

Disk Type Specific Information:
*AuditTrailBuffer/SQLMXBuffer (MB)..... 0
*AutoRevive............................ OFF
*AutoSelect............................ n/a
*AutoStart............................. ON
*CBPoolLen............................. 1000

*FSTCaching............................ OFF
*FullCheckpoints....................... ENABLED
*HaltOnError........................... 1
*LKIDLongPoolLen....................... 8
*LKTableSpaceLen....................... 15
*MaxLocksPerOCB........................ 5000
*MaxLocksPerTCB........................ 5000
*NonAuditedInsert...................... OFF
More text? ([Y],N) n

2-> alter $volume,maxlockspertcb 10000
3-> info $volume,detail
STORAGE - Detailed Information Magnetic DISK \node.$volume
 Common Disk Configuration Information:
*BackupCpu............................. 3
*HighPin............................... ON
*PrimaryCpu............................ 2
*Program...............................$SYSTEM.SYSTEM.TSYSDP2
*StartState............................ STARTED
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-184

SQL/MX Statements Examples of DROP SCHEMA

Disk Type Specific Information:
*AuditTrailBuffer/SQLMXBuffer (MB)..... 0
*AutoRevive............................ OFF
*AutoSelect............................ n/a
*AutoStart............................. ON
*CBPoolLen............................. 1000
*FSTCaching............................ OFF
*FullCheckpoints....................... ENABLED
*HaltOnError........................... 1
*LKIDLongPoolLen....................... 8
*LKTableSpaceLen....................... 15
*MaxLocksPerOCB........................ 5000
*MaxLocksPerTCB........................ 10000
*NonAuditedInsert...................... OFF
More text? ([Y],N) n

Examples of DROP SCHEMA

 This example drops an empty schema:

DROP SCHEMA sales RESTRICT;

DROP SEQUENCE Statement
Considerations for DROP SEQUENCE

Examples of DROP SEQUENCE

The DROP SEQUENCE statement drops a sequence generator from the current
schema. The operation removes all the USAGE privileges granted for the sequence
generator.

Syntax Description of DROP SEQUENCE

sequence

specifies the ANSI name of the sequence generator.

Considerations for DROP SEQUENCE

Authorization Requirements

The schema owner, Super ID or the object owner can execute a DROP
SEQUENCE statement.

DROP SEQUENCE sequence
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-185

SQL/MX Statements Examples of DROP SEQUENCE
Restrictions

The ANSI CASCADE option is not supported for sequence generators.

Recovery

Starting with SQL/MX Release 3.2.1, the SAVE_DROPPED_TABLE_DDL CQD
supports sequence generators. If you set this CQD to ON before executing a DROP
SEQUENCE statement, the DDL of the sequence generator is stored in an OSS file.
The DDL text is saved only for sequence generators that are explicitly dropped using a
DROP SEQUENCE statement and not for sequence generators implicitly dropped
using a DROP SCHEMA ... CASCADE operation.

Examples of DROP SEQUENCE

This example drops a sequence generator:

DROP SEQUENCE myseq;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-186

SQL/MX Statements DROP SQL Statement
DROP SQL Statement
Considerations for DROP SQL
Examples of DROP SQL

The DROP SQL statement puts NonStop SQL/MX in an uninitialized state. It drops a
system catalog that has no user-created catalogs.

DROP SQL is an SQL/MX extension.

Considerations for DROP SQL

After you run the DROP SQL statement, you must run the InstallSqlmx script again to
re-enable the use of SQL on the system. See the SQL/MX Installation and
Management Guide for a description of this script.

Before executing DROP SQL, you must uninitialize NonStop MXCS. See the SQL/MX
Connectivity Service Manual for details on this procedure.

Authorization and Availability Requirements

Only a SUPER user can execute this command. See Ownership on page 6-12. You
must drop all user catalogs before performing the DROP SQL statement.

Examples of DROP SQL

 This example drops SQL on the system:

DROP SQL;

DROP SQL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-187

SQL/MX Statements DROP SQLMP ALIAS Statement
DROP SQLMP ALIAS Statement
Considerations for DROP SQLMP ALIAS
Examples of DROP SQLMP ALIAS

The DROP SQLMP ALIAS statement is used to drop mappings from ANSI names to
physical names of SQL/MP tables or views.

DROP SQLMP ALIAS is an SQL/MX extension.

catalog.schema.object

is the alias name of an SQL/MP table or view. catalog and schema denote
ANSI-defined catalog and schema, and object is a simple name for the table or
view. If any of the three parts of the name is an SQL/MX reserved word, you must
delimit it by enclosing it in double quotes. For example: mycat.”sql”.myview.

See Catalogs on page 6-3 and Pseudocolumns on page 6-105.

Considerations for DROP SQLMP ALIAS

Usage Restrictions

If no alias exists for a given logical name, NonStop SQL/MX returns an error.

Any applications that attempt to use the dropped mapping will get an error because the
specific alias no longer exists.

The DROP SQLMP ALIAS statement does not cause the underlying SQL/MP object to
be dropped. Similarly, dropping an underlying SQL/MP object does not cause any
SQLMP aliases to be dropped. Those aliases remain unchanged and orphaned.

Authorization and Availability Requirements

To drop an alias, you must be the owner of the schema in which the alias resides or be
the super ID.

Examples of DROP SQLMP ALIAS

 Suppose that you have created an SQL/MP table by using this SQL/MP CREATE
TABLE statement:

CREATE TABLE $myvol.mysubvol.mytable
 (num NUMERIC (4) UNSIGNED NOT NULL
 ,name VARCHAR (20)
 ,PRIMARY KEY (num));

DROP SQLMP ALIAS catalog.schema.object
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-188

SQL/MX Statements Examples of DROP SQLMP ALIAS
This statement creates a mapping in the system metadata table:

CREATE SQLMP ALIAS mycatalog.myschema.mytable
 $myvol.mysubvol.mytable;

This statement drops the mapping in the system metadata table:

DROP SQLMP ALIAS mycatalog.myschema.mytable;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-189

SQL/MX Statements DROP TABLE Statement
DROP TABLE Statement
Considerations for DROP TABLE
Examples of DROP TABLE

The DROP TABLE statement deletes an SQL/MX table and any indexes, constraints,
and inactive locks on the table. See Database Object Names on page 6-13.

Syntax Description of DROP TABLE

table

is the name of the table to delete. If the table has an active DDL lock, neither the
table nor any of its dependent objects are dropped. If you specify RESTRICT and
table is referenced by a view, a trigger, or a referential constraint of another table,
or if the table has an active DDL lock, the specified table cannot be dropped. If you
specify CASCADE, the table and all of its views, triggers, referential constraints,
and inactive DDL locks are dropped.

A table that has an active DDL lock (one for which the process that created it still
exists) cannot be dropped even if you specify CASCADE. An active DDL lock is
released when the utility locking the file completes.

The default is RESTRICT.

Considerations for DROP TABLE

Restrictions

You can drop a table with partitions, but you cannot drop individual partitions within a
table with the DROP TABLE statement. However, you can drop these partitions by
using the MODIFY utility. See MODIFY Utility on page 2-271.

You cannot drop an SQL/MP table by using its SQL/MP alias name.

Authorization and Availability Requirements

To drop a table, you must own the schema which contains the table or be the super ID
or object owner. The associated objects can be dropped using the CASCADE option.

Recovery

When a table is dropped, NonStop SQL/MX automatically saves the DDL needed to re-
create the table in an OSS file. If you do not want to save this text, set the
SAVE_DROPPED_TABLE_DDL control query to "OFF".

DROP TABLE table [RESTRICT | CASCADE]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-190

SQL/MX Statements Examples of DROP TABLE
The DDL is saved so that you can later retrieve it if you need to re-create the dropped
table for any reason. If the table needs to be recovered with TMF or re-created for use
in an RDF backup database, full Guardian file names are preserved and can be used
to create identical file names.

Grant and revoke privileges are saved as part of the DDL text.

DDL text is saved only for user base tables that are explicitly dropped with a DROP
TABLE statement. DDL text is not saved for tables that are implicitly dropped as a
result of DROP SCHEMA CASCADE or DROP TRIGGER statements (that is, dropping
the trigger temporary tables).

For details on this control query default, see Table Management on page 10-81.

Examples of DROP TABLE

 This example drops a table:

DROP TABLE mycat.mysch.mytable RESTRICT;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-191

SQL/MX Statements DROP TRIGGER Statement
DROP TRIGGER Statement
Considerations for DROP TRIGGER
Examples of DROP TRIGGER

The DROP TRIGGER statement is used to drop a trigger on an SQL/MX table.

Syntax Description of DROP TRIGGER

trigger-name

specifies the ANSI logical name of the trigger to be dropped, of the form:

[[catalog-name.]schema-name.]trigger-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

Considerations for DROP TRIGGER

Authorization and Availability Requirements

To drop a trigger, you must own its schema or be the super ID or object owner.

Examples of DROP TRIGGER

 This example drops a trigger:

DROP TRIGGER my-trigger;

DROP TRIGGER trigger-name;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-192

SQL/MX Statements DROP VIEW Statement
DROP VIEW Statement
Considerations for DROP VIEW
Examples of DROP VIEW

The DROP VIEW statement deletes an SQL/MX view. See Views on page 6-115.

Syntax Description of DROP VIEW

view

is the name of the view to drop. If you specify RESTRICT, you cannot drop the
specified view if it is referenced in the query expression of any other view or in the
search condition of another object's constraint. If you specify CASCADE, any such
dependent objects are dropped. The default is RESTRICT.

Considerations for DROP VIEW

Authorization and Availability Requirements

To drop a view, you must own the schema that contains the view or be the super ID or
object owner.

Examples of DROP VIEW

 This example drops a view:

DROP VIEW mycat.mysch.myview RESTRICT;

DROP VIEW view [CASCADE | RESTRICT]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-193

SQL/MX Statements DUP Utility
DUP Utility
Considerations for DUP
Examples of DUP

DUP is a syntax-based utility that can be executed through MXCI. The DUP utility
creates a copy of an SQL/MX table and optionally its indexes and constraints.

DUP source-target-list [mapping][,dup-option
 [, dup-option]...]

source-target-list is:
 { source-table TO target-table }

source-table is:
 [[catalog].schema.]object

target-table is:
 [{catalog | *}.{schema | *}.]object

mapping is:
 { LOCATION (volume-map [, volume-map] ...) }

volume-map is:
 [PART] [\node.]volume TO [\node.] $volume

dup-option is:
 { TARGET { NEW | PURGE }
 | INDEX[ES] [{ [ON] | OFF | [ON] (index-list)}]
 | CONSTRAINT[S] [{[ON] (constraint-list) | OFF | ON}]
 | OUTFILE oss-file [CLEAR] }

index-list is:
 index-map [, index-map] ...

index-map is:
 source-index TO target-index [mapping]

constraint-list is:
 constraint-map [, constraint-map] ...

constraint-map is:
 source-constraint TO target-constraint

source-index is: object
target-index is: object

source-constraint is: object
target-constraint is: object
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-194

SQL/MX Statements Syntax Description of DUP
Syntax Description of DUP

source-target-list

specifies the source-table and target-table names.

source-table

specifies the ANSI name for the table to be copied. The form of the name is
catalog-name.schema-name.table-name, where each part is an SQL
identifier. If you do not specify the catalog and schema parts of the source-
table, DUP uses the default catalog and schema values for that session.

target-table

specifies the name of the target table. An asterisk (*) in the catalog or schema
part of the target object name indicates copying the corresponding position of
the source object name. If you do not specify a catalog and schema, DUP uses
the corresponding catalog and schema of the source table, similar to the
asterisk (*) option.

The name of the target object must be different from the name of the source
object.

An error is returned if the source catalog, source schema, source object, target
catalog, or target schema does not exist or if the target table is the same as the
source table. DUP does not support duplication of views.

mapping

specifies which volumes DUP uses for the target partitions of tables and their
dependent indexes. If you do not specify the mapping option, target partitions are
mapped to the same volumes as the source partition’s counterpart.

dup-option

specifies the different DUP options available for the operation, including:

TARGET {NEW | PURGE}

TARGET is an optional clause that specifies the action if the target-table
already exists. NEW specifies that a new target table be created. If the target
table already exists, an error is returned. PURGE specifies that the target table,
if it exists, should be dropped and a new target table created. If the target table
does not exist, a new target table is created. The default is NEW.

Caution. If you choose the PURGE option, DUP first drops the target table. If an error occurs
further along in the DUP operation, you cannot recover the original target table. You should
back up the target table before you begin your DUP operation.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-195

SQL/MX Statements Syntax Description of DUP
INDEX[ES] [{ON [(index-list)] | OFF }]

is an optional clause that specifies how dependent indexes are copied.
INDEX[ES] is the same as INDEX[ES] ON. Unpopulated indexes are not
duplicated.

ON [(index-list)]

duplicates all user-created and system-generated indexes. If the source
and target tables reside in the same catalog and schema, you must specify
index-list to identify the new index names. The default is ON.

System generated indexes are copied only if the CONSTRAINTS option is
ON.

index-list

is a list of index-maps. This option duplicates only a subset of the
indexes available on the source table. If you specify this option, only
those indexes that are described in the index-list are duplicated. If
an index that exists on the source table does not have corresponding
item in the index-list, DUP does not duplicate the index.

index-map

You cannot define names for system-generated indexes. If you do not
specify index-map, names are generated for all indexes.

You can specify a mapping clause for each pair in index-list. If
you do not specify a mapping clause as part of index-map, the
mapping clause for the base table is used. If you do not specify a
mapping clause, the source partition volume is used for target
partitions. If you specify a nonexistent index name in the index map,
DUP returns an error.

Mapping can be at the table level or the index level. If you specify
mapping at the table level, DUP uses that mapping. If the index does
not have a corresponding volume mapping, DUP uses the same
volume as the source index to create the target index partitions.

OFF

does not duplicate indexes. Constraints that requires an index are not
duplicated, including unique constraints and non clustering primary key
constraints. Referential integrity constraints are never duplicated. If
CONSTRAINTS is also OFF, the DUP operation proceeds.

CONSTRAINT[S] [{[ON] (constraint-list) | OFF | ON}]

is an optional clause that specifies whether to copy DROPPABLE constraints
not null, primary key, and check. If you do not specify this clause, the default is
CONSTRAINTS ON. UNIQUE constraints are treated as DROPPABLE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-196

SQL/MX Statements Syntax Description of DUP
constraints and are duplicated if you specify CONSTRAINTS ON. NOT
DROPPABLE constraints are always duplicated.

ON

duplicates all DROPPABLE unique, not null, primary key, and check
constraints. The default is ON.

If the source table has unique or droppable primary key constraints, the
INDEX option must be set to ON, otherwise DUP returns an error.

constraint-list

is a list of constraint-maps.

constraint-map

specifies the target constraint name. If you do not specify
constraint-map, DUP uses a generated name based on the target
table name for each constraint.

source-constraint

is the constraint to be duplicated, including unique, not null, primary key,
and check constraints.

target-constraint

is the constraint that is formed after the DUP operation. If you specify
constraint-map, target-constraint is required.

OFF

does not copy constraints. If indexes is ON, only user-created indexes
are copied.

log-clause

specifies logging functionality to the DUP function and starts logging to a disk
file. While logging is in progress, the DUP commands that are entered are
executed and written to the disk file. The output of the DUP command is also
written to the disk file.

OUTFILE oss-file [CLEAR]

specifies that the output go to a disk file. oss-file is the path name of
the file to which DUP writes commands and command output. CLEAR
clears the oss-file before logging begins. If CLEAR is omitted,
OUTFILE appends the new log to existing data in oss-file.

oss-file cannot contain the “,” (comma) character or the “;” (semicolon)
character.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-197

SQL/MX Statements Considerations for DUP
Considerations for DUP

 Referential integrity constraints and triggers are ignored.

 The source table can exist on a remote node and be referenced by the current
DUP operation if the remote node is visible to the local node. The target table can
also exist in a catalog and schema that reside on a visible remote node.

 DUP does not check disk space before running the request. You must confirm that
enough disk space is available before running the DUP request.

 DUP displays errors if the source table or target table and its dependent indexes
cannot be accessed, or if the load fails in response to a resource or file system
problem.

You must run the RECOVER utility to clean up a failed DUP operation. If the DUP
operation fails after all of the data is successfully copied to the target objects,
specify RECOVER with the RESUME option to complete the DUP operation. If the
DUP operation fails before the data is successfully copied, specify RECOVER with
the CANCEL option to roll back the DUP operation. This status can be found by
reading the DDL_LOCKS definition schema table in the source table’s catalog. If
you run the RECOVER operation with the incorrect option, RECOVER displays an
error message so you can rerun it with the correct option. For details, see
Checking DDL Locks on page 2-9.

No restart facility is available to handle partially copied data.

 During the DUP operation, the target table is marked as corrupt to prevent other
processes from viewing the data until the operation completes successfully.

 All utility operations have the potential to run for hours, especially those that
involve a great deal of data movement. To manage systems effectively, you
need to know how far the operation has proceeded and how much longer it
needs to run. Utilities provide progress reports that indicate what step is in
progress. Utility operations periodically place progress reports in the metadata
tables through the DDL lock mechanism. You can examine the metadata to get
the latest information. These reports are referred to as the operation's
progress. The DUP operation has the option to log these progress reports to
an OSS text file. DDL locks

Many utility operations run in multiple TMF transactions. As a result, conflicting
operations that change metadata and label information affecting the outcome
of the utility are executed concurrently.

To serialize these utility operations, NonStop SQL/MX has the concept of a
DDL lock. This is a lock that prevents database structure changes from
occurring while a utility request is executing. A utility request informs SQL that
it is running, perform commands in as many transactions as necessary, then
informs SQL that the operation has completed. While the utility request is
running, no conflicting DDL or utility operation can occur. That is, you can
make no database structural change that would affect the utility.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-198

SQL/MX Statements Considerations for DUP
DDL lock information is persistent across transaction boundaries. If the utility
operation fails unexpectedly such as a process failure, you must run the
RECOVER utility to remove the lock and clean up the operation. When you run
the RECOVER utility, DDL lock information is retrieved and the correct clean
up operation is performed. If you run the RECOVER operation with the
incorrect option, RECOVER displays an error message so you can rerun it with
the correct option.

While the operation is proceeding, you can select state information from
metadata tables to determine the utility progress. If the operation terminates
unexpectedly, you can also select this information to determine where the
operation failed.

 DUP records operation progress steps in the DDL_LOCKS metadata table. You
can query this table to determine the DUP operation’s progress:

 An error is returned if a user transaction exists.

 An error is returned if a DUP operation is attempted on an SQL/MX metadata table
(histogram, system defaults, or MXCS tables).

 DUP does not support RI constraints duplication.

 For a source table that contains an IDENTITY column, the DUP utility duplicates
the source table IDENTITY column attributes and the corresponding SG Attributes
onto the target table. DUP copies the data of the source table onto the target table.
DUP also copies the source SG Table CURRENT_VALUE onto the target SG Table
CURRENT_VALUE.

DUP
Operation
Step Step Progress Status

Step 1 DDL lock has been created.

Step 2 Target table has been created.

Step 3 Source table is open.

Step 4 All source objects are open.

Step 5 Target table is open.

Step 6 All target objects are open.

Step 7 All table partitions are copied.

Step 8 All index partitions are copied.

Step 9 All objects for catalog.schema.table have been copied.*

Step 10 Target object is now available (corrupt attribute is turned off, audit attribute
is turned on).

Step 11 DDL lock is removed.
* Any process, CPU, or system failure that occurs before this point causes the operation to be rolled back.
Any failure after this point can be resumed.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-199

SQL/MX Statements Examples of DUP
Examples of DUP

 This example copies the partitions of the source table (using a different catalog and
schema) to the same locations:

DUP mycat.myschema.mytable1 TO mycat1.myschema1.*;

 This example copies the partitions of the source table on $data1 and $data2 to
the partitions of the target table on $data2 and $data3 respectively. If there is no
PART clause for a specific volume and source partitions exist on that volume, the
target partitions are created on the same volume as the source partitions.

DUP mycat.myschema1.mytable TO *.myschema2.*
LOCATION (PART $data1 TO $data2, PART $data2 TO $data3);

 This example copies the partitions of the source table to the same locations. The
target table, if it exists, is dropped, and a new one is created.

DUP mycat1.myschema.mytable TO mycat2.*.*,TARGET PURGE;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-200

SQL/MX Statements EXECUTE Statement

C/C

M

C/C

MC/C
EXECUTE Statement
Considerations for EXECUTE
MXCI Examples of EXECUTE
C Examples of EXECUTE
COBOL Examples of EXECUTE

The EXECUTE statement executes an SQL statement previously compiled by a
PREPARE statement. You can use EXECUTE in an MXCI session or in an embedded
SQL program.

Input data can be supplied either by using host variables or through an SQL descriptor
area in an embedded SQL program. Similarly, you can place output data either directly
into host variables or into an SQL descriptor area. For more information, see the
SQL/MX Programming Manual for C and COBOL.

statement-name

is the name of a prepared SQL statement—that is, the statement name used in the
PREPARE statement. statement-name is an SQL identifier. See Identifiers on
page 6-56.

The statement name is not case-sensitive in MXCI.

The statement name is case-sensitive in embedded SQL—for example, the
statement named findemp is not equivalent to the statement named FINDEMP.

EXECUTE statement-name
 [USING param-value [,param-value]...]

EXECUTE statement-name
 [USING {argument-list | descriptor-spec}]
 [INTO {argument-list | descriptor-spec}]

statement-name is:
 statement-name | ext-statement-name

argument-list is:
 variable-spec [,variable-spec]...

descriptor-spec is:
 SQL DESCRIPTOR descriptor-name

ext-statement-name is:
 [GLOBAL | LOCAL] value-specification

variable-spec is:
 :variable-name [[INDICATOR] :indicator-name]

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

OBOL

XCI

OBOL

XCIOBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-201

SQL/MX Statements EXECUTE Statement

M

M

C/C

C/C

C/C
The module that contains EXECUTE must also contain a PREPARE statement for
statement-name.

USING param-value [,param-value]...

specifies values for the unnamed parameters in the prepared statement. The data
type of a parameter value must be compatible with the data type of the associated
parameter. Parameter values are substituted for unnamed parameters in the
prepared statement by position—the i-th value in the USING clause is the value for
the i-th unnamed parameter in the statement.

If there are more values in the value list than there are unnamed parameters in the
PREPARE statement, NonStop SQL/MX ignores the extra values; if there are fewer
unnamed values in the value list, NonStop SQL/MX returns an error.

The values for any named parameters in the prepared statement must be
previously specified with SET PARAM commands.

param-value

is a numeric or character literal that specifies the value for the parameter. The
param-value can also be the NULL keyword. You must enter it in uppercase
letters. If param-value is a character literal and the target column is character,
you do not have to enclose it in single quotation marks. Its data type is determined
from the data type of the column to which the literal is assigned.

ext-statement-name

is a value-specification—a host variable with a character data type. When
EXECUTE executes, the content of the value specification must identify a
statement previously prepared within the scope of EXECUTE.

GLOBAL | LOCAL

specifies the scope of the prepared statement. The default is LOCAL. A GLOBAL
prepared statement can be executed within the SQL session. A LOCAL prepared
statement can be executed only within the module or compilation unit in which it
was prepared.

A prepared SQL statement must be currently available whose name is the value of
ext-statement-name and whose scope is the same scope as specified in the
EXECUTE statement.

{USING | INTO} variable-spec [,variable-spec]...

identifies the host variables for the parameters of SQL-statement-name.

Before EXECUTE with USING executes, the application must store information for
each input parameter of the prepared statement in the appropriate host variable.

XCI

XCI

OBOL

OBOL

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-202

SQL/MX Statements EXECUTE Statement

C/C
When EXECUTE with INTO executes, NonStop SQL/MX stores information into
the host variables (and optionally their indicator variables) that correspond to
columns specified in the select list for the prepared statement.

:variable-name [[INDICATOR] :indicator-name]

is a variable specification—a host variable with optionally an indicator variable.
A variable name begins with a colon (:).

The data type of an indicator variable is exact numeric with a scale of 0. If the
data returned in the host variable is null, the indicator parameter is set to a
value less than zero. If character data returned is truncated, the indicator
parameter is set to the length of the string in the database.

{USING | INTO} SQL DESCRIPTOR descriptor-name

identifies the SQL descriptor area for the parameters of SQL-statement-name.
An SQL descriptor area must be currently allocated whose name is the value of
descriptor-name and whose scope is the same scope specified in the
EXECUTE statement.

Before EXECUTE with USING executes, the application must store information for
each input parameter of the prepared statement in the descriptor area. Each
parameter has an item descriptor.

When EXECUTE with INTO executes, NonStop SQL/MX stores information into
the descriptor area about each column specified in the select list for the prepared
statement. Each column has an item descriptor.

descriptor-name

is a value-specification—a character literal or host variable with
character data type. When EXECUTE executes, the content of the value
specification (if a host variable) gives the name of the descriptor area.

See An operation is a postfix merge if the range of data ends at the bottom of the
partition. You can specify only the TO NEXT PARTITION clause. The split partition
cannot be the last partition (the rightmost partition in the list). on page 2-279, SET
PARAM Command on page 4-63, and MXCI Parameters on page 6-77.

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-203

SQL/MX Statements Considerations for EXECUTE

M

C/C
Considerations for EXECUTE

Scope of EXECUTE

A statement must be compiled by PREPARE before you EXECUTE it, but after it is
compiled, you can execute the statement multiple times without recompiling it.

The statement must have been compiled during the same MXCI session as its
execution.

The statement must have been prepared during the same compilation unit as its
execution.

MXCI Examples of EXECUTE

 Use PREPARE to compile a statement once, and then execute the statement
multiple times with different parameter values. This example uses the SET PARAM
command to set the parameter values in the prepared statement.

PREPARE FINDEMP FROM
 SELECT * FROM persnl.employee
 WHERE salary > ?SALARY AND jobcode = ?JOBCODE;
--- SQL command prepared.

SET PARAM ?SALARY 40000.00;
SET PARAM ?JOBCODE 450;
EXECUTE FINDEMP;

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ ---------- ---------- ------- ------- --------
 232 THOMAS SPINNER 4000 450 45000.00
--- 1 row(s) selected.

SET PARAM ?SALARY 20000.00;
SET PARAM ?JOBCODE 300;
EXECUTE FINDEMP;

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ ---------- ---------- ------- ------- --------
 75 TIM WALKER 3000 300 32000.00
 89 PETER SMITH 3300 300 37000.40
 ...
--- 13 row(s) selected.

 Use EXECUTE USING for both parameter values, which are unnamed in the
prepared statement:

PREPARE FINDEMP FROM
 SELECT * FROM persnl.employee
 WHERE salary > ? AND jobcode = ?;

EXECUTE FINDEMP USING 40000.00,450;
EXECUTE FINDEMP USING 20000.00,300;

XCI

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-204

SQL/MX Statements C Examples of EXECUTE
 Use EXECUTE USING for one parameter value, which is unnamed in the prepared
statement:

PREPARE FINDEMP FROM
 SELECT * FROM persnl.employee
 WHERE salary > ?SALARY AND jobcode = ?;

SET PARAM ?SALARY 40000.00;
EXECUTE FINDEMP USING 450;

SET PARAM ?SALARY 20000.00;
EXECUTE FINDEMP USING 300;

C Examples of EXECUTE

 Prepare and execute an UPDATE statement with dynamic input parameters:

...
strcpy(stmt_buffer,"UPDATE SALES.CUSTOMER"
 " SET CREDIT = ?"
 " WHERE CUSTNUM = CAST(? AS NUMERIC(4) UNSIGNED)")
...
EXEC SQL PREPARE upd_cust FROM :stmt_buffer;
...
/* Input values for parameters into host variables */
scanf("%s",in_credit);
scanf("%ld",&in_custnum);
...
EXEC SQL EXECUTE upd_cust USING :in_credit, :in_custnum;
...

 Prepare a statement, allocate input and output descriptor areas, describe the input
and output descriptor areas, and execute the statement by using the descriptor
areas:

...
strcpy(stmt_buffer,"SELECT * FROM EMPLOYEE"
 " WHERE EMPNUM = CAST(? AS NUMERIC(4) unsigned)");
...
EXEC SQL PREPARE S1 FROM :stmt_buffer;
...
desc_max = 1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_args' WITH MAX :desc_max;
desc_max = 6;
EXEC SQL ALLOCATE DESCRIPTOR 'out_cols' WITH MAX :desc_max;
...
EXEC SQL DESCRIBE INPUT S1 USING SQL DESCRIPTOR 'in_args';
EXEC SQL DESCRIBE OUTPUT S1 USING SQL DESCRIPTOR 'out_cols';
...
EXEC SQL EXECUTE S1 USING SQL DESCRIPTOR 'in_args'
 INTO SQL DESCRIPTOR 'out_cols';
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-205

SQL/MX Statements COBOL Examples of EXECUTE
 This example uses extended statement names:

...
strcpy(stmt,"ins_cust1");
EXEC SQL PREPARE :stmt FROM :stmt_buffer;
EXEC SQL EXECUTE :stmt;
...
strcpy(stmt,"ins_cust2");
EXEC SQL PREPARE :stmt FROM :stmt_buffer;
EXEC SQL EXECUTE :stmt;

COBOL Examples of EXECUTE

 Prepare and execute an UPDATE statement with dynamic input parameters:

 ...
 MOVE "UPDATE SALES.CUSTOMER SET CREDIT = ?
 & " WHERE CUSTNUM = CAST(? AS NUMERIC(4) UNSIGNED)"
 TO stmt-buffer.
 ...
 EXEC SQL PREPARE upd_cust FROM :stmt-buffer END-EXEC.
 ...
* Input values for parameters into host variables
 ACCEPT in-credit.
 ...
 ACCEPT in-custnum.
 ...
 EXEC SQL EXECUTE upd_cust
 USING :in-credit, :in-custnum
 END-EXEC.
 ...

 Prepare a statement, allocate input and output descriptor areas, describe the input
and output descriptor areas, and execute the statement by using the content of the
descriptor areas:

...
MOVE "SELECT * FROM EMPLOYEE"
 & " WHERE EMPNUM = CAST(? AS NUMERIC(4) UNSIGNED)"
TO stmt-buffer.
...
EXEC SQL PREPARE S1 FROM :stmt-buffer END-EXEC.
...
MOVE 1 TO desc-max.
EXEC SQL ALLOCATE DESCRIPTOR 'in_args'
 WITH MAX :desc-max END-EXEC.
MOVE 6 TO desc-max.
EXEC SQL ALLOCATE DESCRIPTOR 'out_cols'
 WITH MAX :desc-max END-EXEC.
...
EXEC SQL DESCRIBE INPUT S1
 USING SQL DESCRIPTOR 'in_args'
END-EXEC.
EXEC SQL DESCRIBE OUTPUT S1
 USING SQL DESCRIPTOR 'out_cols'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-206

SQL/MX Statements COBOL Examples of EXECUTE
END-EXEC.
...
EXEC SQL EXECUTE USING SQL DESCRIPTOR 'in_args'
 INTO SQL DESCRIPTOR 'out_cols'
END-EXEC.
...

 This example uses extended statement names:

...
MOVE "ins_cust1" TO stmt.
EXEC SQL PREPARE :stmt FROM :stmt-buffer END-EXEC.
EXEC SQL EXECUTE :stmt END-EXEC.
...
MOVE "ins_cust2" TO stmt.
EXEC SQL PREPARE :stmt FROM :stmt-buffer END-EXEC.
EXEC SQL EXECUTE :stmt END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-207

SQL/MX Statements EXPLAIN Statement
EXPLAIN Statement
Considerations for EXPLAIN

Examples of EXPLAIN

The EXPLAIN statement generates and displays the result of the EXPLAIN function,
describing an access plan for a SELECT, INSERT, DELETE, UPDATE, or CALL
statement. It displays the query execution plans in a readable format. It can
display plans from modules created by the SQL/MX compiler.

The EXPLAIN statement can also be used from JDBC or ODBC application like any
other SQL/MX Statement.

For a description of the result table of the EXPLAIN function, see EXPLAIN Function
on page 8-66.

You can use the EXPLAIN statement within an MXCI, JDBC, or ODBC session.

f

formatted.

n

normal user (default setting).

e

expert user.

m

machine readable format.

query-text

is a DML statement such as SELECT * FROM T3.

prepared-stmt-name

is an SQL identifier containing the name of a statement already prepared in this
session. An SQL identifier is not case sensitive unless it is double-quoted. It must
be double-quoted if it contains blanks, lower case letters, or special characters;
normally they are not required. It must start with a letter.

module-name

is the name of a file where a static compile stores the information. It is specified
within single quotes.

EXPLAIN [options {'f' | 'n' | 'e' | 'm'}] {query-text |
prepared-stmt-name | 'stmt-name' from 'module-name'}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-208

SQL/MX Statements Considerations for EXPLAIN
stmt-name

is the statement pattern that includes name or %, or S%, and so on with single
quotes.

The syntax for the EXPLAIN statement supports four output options. Table 2-4
summarizes the options.

For more information about the operators in the query execution plan, see the SQL/MX
Query Guide.

Considerations for EXPLAIN

Case Considerations

In most cases, words in the commands can be in uppercase or lowercase. The letter
following the OPTIONS keyword must be within single quotes and in lowercase.

Number Considerations

Costs are given in a generic unit of effort. They show relative costs of an operation.

When numbers are displayed as 0.01 for OPTIONS 'n' (or 0.0001 for OPTIONS
'e'), the numbers have likely been rounded up. However, if the numbers are zero, the
display shows “0”.

When trailing decimal digits are zero, they are dropped. For example, 6.4200 will be
displayed as 6.42 and 5.0 will be displayed as 5, without a decimal point.

Table 2-4. EXPLAIN Statement Options

Syntax Option Type Purpose

OPTIONS 'f' Formatted Provides the basic information contained in the query
execution plan. This information is formatted for
readability and limited to 79 characters (one line) per
operator.

OPTIONS 'n' Normal user Provides the most important information contained in
the query execution plan. This information is formatted
for readability and is the default output format.

OPTIONS 'e' Expert user Provides all the information contained in the query
execution plan. This information is formatted for user
readability.

OPTIONS 'm' Machine
readable

Provides all the information contained in the query
execution plan. This information is formatted for
machine readability (easy to parse with software
tools).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-209

SQL/MX Statements Considerations for EXPLAIN
Machine-readable [OPTIONS 'm'] Considerations

The machine-readable option provides an output in the format that can be read only by
machines but is suitable for programs.Table 2-5 lists the fields of the OPTIONS 'm'
output.

Table 2-5. Fields of OPTIONS 'm' Output

Column name Data Type Description

MODULE NAME CHAR (60) Reserved for future use.

STATEMENT NAME CHAR (60) Statement name; truncated on the right if
longer than 60 characters.

PLAN_ID INT Unique system-generated plan ID
automatically assigned by SQL; generated at
compile time.

SEQ_NUM CHAR (30) Sequence number of the current operator in
the operator tree; indicates the sequence in
which the operator tree is generated.

OPERATOR CHAR (30) Current operator type.

LEFT_CHILD_SEQ_NUM INT Sequence number for the first child operator of
the current operator; displays NULL if the
operator has no child operators.

RIGHT_CHILD_SEQ_NUM INT Sequence number for the second child
operator of the current operator; displays
NULL if the operator does not have a second
child.

TNAME CHAR (60) For operators in a scan group, the full name of
base table is truncated on the right if it is too
long for the column. If the correlation name
differs from the table name put the correlation
name first and then table name in
parentheses.

CARDINALITY REAL Estimated number of rows that are returned by
the current operator.

OPERATOR_COST REAL Estimated cost associated with the current
operator to execute the operator.

TOTAL_COST REAL Estimated cost associated with the current
operator to execute the operator, including the
cost of all subtrees in the operator tree.

DETAIL_COST VARCHAR
(200)

Cost vector of five items, which are described
in detail in Table 2-6, Cost Factors of
DETAIL_COST column.

DESCRIPTION VARCHAR
(3000)

Additional information about the operator. For
more information about the DESCRIPTION of
all operators, see the SQL/MX Query Guide.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-210

SQL/MX Statements Examples of EXPLAIN
Table 2-6 lists the cost factors of the DETAIL_COST column:

Examples of EXPLAIN

Consider a table ‘part’ with a unique index px1. Run the following commands:

Create table part (
 p_partkey INT not null not droppable,
 p_name VARCHAR(55) not null not droppable,
 p_mfgr CHAR(25) not null not droppable,
 p_brand CHAR(10) not null not droppable,
 p_type VARCHAR(25) not null not droppable,
 p_size INT not null not droppable,
 p_container CHAR(10) not null not droppable,
 p_retailprice NUMERIC(12,2) not null not droppable,
 p_comment VARCHAR(23) not null not droppable,
PRIMARY KEY (p_partkey) not droppable);

Create unique index px1 on part
(
 p_type
 , p_size
 , p_mfgr
 , p_brand
 , p_container
 , p_partkey
);

Run the following commands to create a table ‘partsupp’ and indexes psx1 and psx2:

Create table partsupp (
 ps_partkey INT not null not droppable,

Table 2-6. Cost Factors of DETAIL_COST column

Cost Factor Description

CPU_TIME An estimate of the number of seconds of processor time it might take
to execute the instructions for this operator. A value of 1.0 is 1
second.

IO_TIME An estimate of the number of seconds of I/O time (seeks plus data
transfer) to perform the I/O for this operator.

MSG_TIME An estimate of the number of seconds it takes for the messaging for
this operator. The estimate includes the time for the number of local
and remote messages and the amount of data sent.

IDLETIME An estimate of the number of seconds to wait before an event. The
estimate includes the amount of time to open a table or start an
Executor Server Process (ESP) process.

PROBES The number of times the operator will be executed. Usually, the value
is 1, but it can be greater when you have, for example, an inner scan
of a nested-loop join.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-211

SQL/MX Statements Examples of EXPLAIN
 ps_suppkey INT not null not droppable,
 ps_availqty INT not null not droppable,
 ps_supplycost NUMERIC(12,2) not null not droppable,
 ps_comment VARCHAR(199) not null not droppable,
PRIMARY KEY (ps_partkey,ps_suppkey) not droppable);

Create index psx1 on partsupp
(
 ps_suppkey
 , ps_supplycost
 , ps_availqty
);

Create index psx2 on partsupp
(
 ps_partkey
 , ps_suppkey
 , ps_supplycost
 , ps_availqty
);

To use the EXPLAIN statement with a prepared statement, prepare the query, and then
use the EXPLAIN statement:

prepare xx from
select * from part where p_partkey = (select max(ps_partkey)
from partsupp);

 Use OPTIONS 'f':

>>explain options 'f' xx;

The following output is displayed:

 Use OPTIONS 'e':

>>explain options 'e' xx;

LC RC OP OPERATOR OPT DESCRIPTION CARD
---- ---- ---- -------------------- -------- ---------------- ---------
7 . 8 root 1.00E+000
4 6 7 nested_join 1.00E+000
5 . 6 partition_access 1.00E+000
. . 5 file_scan_unique fr PART (s) 1.00E+000
3 . 4 partition_access 1.00E+000
2 . 3 shortcut_scalar_aggr 1.00E+000
1 . 2 firstn 1.00E+000
. . 1 index_scan PSX2 (s) 1.00E+002
--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-212

SQL/MX Statements Examples of EXPLAIN
The following output is displayed:

-- PLAN
SUMMARY
MODULE_NAME DYNAMICALLY COMPILED
STATEMENT_NAME XX
PLAN_ID 212122794829778687
ROWS_OUT 1
EST_TOTAL_COST 0.2332
STATEMENT select *
 from part
 where p_partkey = (select max(ps_partkey) from
 partsupp);

-- NODE
LISTING
ROOT ====================================== SEQ_NO 8 ONLY CHILD 7
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.196
EST_TOTAL_COST 0.2332
 cpu_cost 0.0016
 io_cost 0.0372
 msg_cost 0
 idle_cost 0.196
 probes 1
DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 statement_index 0
 xn_access_mode read_only
 plan_version 2,400
 SCHEMA CAT.SCH
 select_list CAT.SCH.PART.P_PARTKEY, CAT.SCH.PART.P_NAME,
 CAT.SCH.PART.P_MFGR, CAT.SCH.PART.P_BRAND,
 CAT.SCH.PART.P_TYPE, CAT.SCH.PART.P_SIZE,
 CAT.SCH.PART.P_CONTAINER,
 CAT.SCH.PART.P_RETAILPRICE,
 CAT.SCH.PART.P_COMMENT
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-213

SQL/MX Statements Examples of EXPLAIN
NESTED_JOIN =============================== SEQ_NO 7 CHILDREN 4, 6
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.0001
EST_TOTAL_COST 0.0372
 cpu_cost 0.0016
 io_cost 0.0372
 msg_cost 0
 idle_cost 0
 probes 1
DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner
 join_method nested

PARTITION_ACCESS ========================== SEQ_NO 6 ONLY CHILD 5
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.0008
EST_TOTAL_COST 0.0206
 cpu_cost 0.0008
 io_cost 0.0206
 msg_cost 0
 idle_cost 0
 probes 1
DESCRIPTION
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 buffer_size 31,000
 record_length 177
 space_usage 13:8:8:36
 eid_space_computation on

FILE_SCAN_UNIQUE ========================== SEQ_NO 5 NO CHILDREN
TABLE_NAME CAT.SCH.PART
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.0206
EST_TOTAL_COST 0.0206
 cpu_cost 0.0001
 io_cost 0.0206
 msg_cost 0
 idle_cost 0
 probes 1
DESCRIPTION
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type unique access of table CAT.SCH.PART
 object_type CAT.SCH.PART
 key_type simple
 lock_mode not specified, defaulted to lock cursor
 access_mode not specified, defaulted to read committed
 columns_retrieved 9
 fast_replydata_move used
 key_columns P_PARTKEY
 key (P_PARTKEY = max(CAT.SCH.PSX2.PS_PARTKEY))
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-214

SQL/MX Statements Examples of EXPLAIN
PARTITION_ACCESS ========================== SEQ_NO 4 ONLY CHILD 3
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.0008
EST_TOTAL_COST 0.0165
 cpu_cost 0.0008
 io_cost 0.0165
 msg_cost 0
 idle_cost 0
 probes 1
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 buffer_size 31,000
 record_length 8
 space_usage 12:8:8:32
 eid_space_computation on

SHORTCUT_SCALAR_AGGR ====================== SEQ_NO 3 ONLY CHILD 2
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.0001
EST_TOTAL_COST 0.0165
 cpu_cost 0.0001
 io_cost 0.0165
 msg_cost 0
 idle_cost 0
 probes 1
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 aggregates max(CAT.SCH.PSX2.PS_PARTKEY)

FIRSTN ==================================== SEQ_NO 2 ONLY CHILD 1
REQUESTS_IN (not found)
ROWS_OUT 1
EST_OPER_COST 0
EST_TOTAL_COST 0
 OPERATOR_COST 0
 ROLLUP_COST 0
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-215

SQL/MX Statements Examples of EXPLAIN
 Use OPTIONS 'n':

>>explain options 'n' xx;

INDEX_SCAN ================================ SEQ_NO 1 NO CHILDREN
TABLE_NAME CAT.SCH.PARTSUPP
REQUESTS_IN 1
ROWS_OUT 100
EST_OPER_COST 0.0206
EST_TOTAL_COST 0.0206
 cpu_cost 0.0001
 io_cost 0.0206
 msg_cost 0
 idle_cost 0
 probes 1
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type full scan of index
CAT.SCH.PSX2(CAT.SCH.PARTSUPP)
 scan_direction reverse
 object_type CAT.SCH.PARTSUPP
 key_type simple
 lock_mode not specified, defaulted to lock cursor
 access_mode not specified, defaulted to read committed
 columns_retrieved 6
 key_columns CAT.SCH.PSX2.PS_PARTKEY,
CAT.SCH.PSX2.PS_SUPPKEY,
 CAT.SCH.PSX2.PS_SUPPLYCOST,
 CAT.SCH.PSX2.PS_AVAILQTY,
CAT.SCH.PSX2.PS_PARTKEY,
 CAT.SCH.PSX2.PS_SUPPKEY
 begin_key (CAT.SCH.PSX2.PS_PARTKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPLYCOST = <max>),
 (CAT.SCH.PSX2.PS_AVAILQTY = <max>),
 (CAT.SCH.PSX2.PS_PARTKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <max>)
 end_key (CAT.SCH.PSX2.PS_PARTKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPLYCOST = <min>),
 (CAT.SCH.PSX2.PS_AVAILQTY = <min>),
 (CAT.SCH.PSX2.PS_PARTKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <min>)

--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-216

SQL/MX Statements Examples of EXPLAIN
The following output is displayed:

-- PLAN
SUMMARY
MODULE_NAME DYNAMICALLY COMPILED
STATEMENT_NAME XX
PLAN_ID 212122794829778687
ROWS_OUT 1
EST_TOTAL_COST 0.23
STATEMENT select *
 from part
 where p_partkey = (select max(ps_partkey) from
 partsupp);

-- NODE
LISTING
ROOT ====================================== SEQ_NO 8 ONLY CHILD 7
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.2
EST_TOTAL_COST 0.23
DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 statement_index 0
 xn_access_mode read_only
 plan_version 2,400
 SCHEMA CAT.SCH
 select_list CAT.SCH.PART.P_PARTKEY, CAT.SCH.PART.P_NAME,
 CAT.SCH.PART.P_MFGR, CAT.SCH.PART.P_BRAND,
 CAT.SCH.PART.P_TYPE, CAT.SCH.PART.P_SIZE,
 CAT.SCH.PART.P_CONTAINER,
 CAT.SCH.PART.P_RETAILPRICE,
 CAT.SCH.PART.P_COMMENT

NESTED_JOIN =============================== SEQ_NO 7 CHILDREN 4, 6
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.01
EST_TOTAL_COST 0.04
DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner
 join_method nested

PARTITION_ACCESS ========================== SEQ_NO 6 ONLY CHILD 5
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.01
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 buffer_size 31,000
 record_length 177
 space_usage 13:8:8:36
 eid_space_computation on
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-217

SQL/MX Statements Examples of EXPLAIN
FILE_SCAN_UNIQUE ========================== SEQ_NO 5 NO CHILDREN
TABLE_NAME CAT.SCH.PART
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.02
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type unique access of table CAT.SCH.PART
 object_type CAT.SCH.PART
 key_type simple
 lock_mode not specified, defaulted to lock cursor
 access_mode not specified, defaulted to read committed
 columns_retrieved 9
 fast_replydata_move used
 key_columns P_PARTKEY
 key (P_PARTKEY = max(CAT.SCH.PSX2.PS_PARTKEY))

PARTITION_ACCESS ========================== SEQ_NO 4 ONLY CHILD 3
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.01
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 buffer_size 31,000
 record_length 8
 space_usage 12:8:8:32
 eid_space_computation on

SHORTCUT_SCALAR_AGGR ====================== SEQ_NO 3 ONLY CHILD 2
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.01
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 aggregates max(CAT.SCH.PSX2.PS_PARTKEY)

FIRSTN ==================================== SEQ_NO 2 ONLY CHILD 1
REQUESTS_IN (not found)
ROWS_OUT 1
EST_OPER_COST 0
EST_TOTAL_COST 0
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-218

SQL/MX Statements Examples of EXPLAIN
 Use OPTIONS 'm':

>>explain options 'm' xx;

INDEX_SCAN ================================ SEQ_NO 1 NO CHILDREN
TABLE_NAME CAT.SCH.PARTSUPP
REQUESTS_IN 1
ROWS_OUT 100
EST_OPER_COST 0.02
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type full scan of index
CAT.SCH.PSX2(CAT.SCH.PARTSUPP)
 scan_direction reverse
 object_type CAT.SCH.PARTSUPP
 key_type simple
 lock_mode not specified, defaulted to lock cursor
 access_mode not specified, defaulted to read committed
 columns_retrieved 6
 key_columns CAT.SCH.PSX2.PS_PARTKEY,
CAT.SCH.PSX2.PS_SUPPKEY,
 CAT.SCH.PSX2.PS_SUPPLYCOST,
 CAT.SCH.PSX2.PS_AVAILQTY,
CAT.SCH.PSX2.PS_PARTKEY,
 CAT.SCH.PSX2.PS_SUPPKEY
 begin_key (CAT.SCH.PSX2.PS_PARTKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPLYCOST = <max>),
 (CAT.SCH.PSX2.PS_AVAILQTY = <max>),
 (CAT.SCH.PSX2.PS_PARTKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <max>)
 end_key (CAT.SCH.PSX2.PS_PARTKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPLYCOST = <min>),
 (CAT.SCH.PSX2.PS_AVAILQTY = <min>),
 (CAT.SCH.PSX2.PS_PARTKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <min>)

--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-219

SQL/MX Statements Examples of EXPLAIN
The following output is displayed:

MODULE_NAME
STATEMENT_NAME PLAN_ID
SEQ_NUM OPERATOR LEFT_CHILD_SEQ_NUM
RIGHT_CHILD_SEQ_NUM TNAME
CARDINALITY OPERATOR_COST TOTAL_COST DETAIL_COST
DESCRIPTION
-- ------------
-- -------------------- --
--------- ------------------------------ ------------------ -----------
-------- -- --
------------- --------------- --------------- -------------------------
--
--
--------------------------- -------------------

? XX
212122794829778687 1 INDEX_SCAN ?
? CAT.SCH.PARTSUPP
1.0000000E+002 2.0646531E-002 2.0646531E-002 CPU_TIME: 5.56943e-005
IO_TIME: 0.0206465 MSG_TIME: 0 IDLETIME: 0 PROBES: 1
fragment_id: 2 parent_frag: 0 fragment_type: dp2 olt_optimization: not
used olt_opt_lean: not used scan_type: full scan of index
CAT.SCH.PSX2(CAT.SCH.PARTSUPP) scan_direction: reverse object_type:
CAT.SCH.PARTSUPP key_type: simple lock_mode: not specified, defaulted to
lock cursor access_mode: not specified, defaulted to read committed
columns_retrieved: 6 key_columns: CAT.SCH.PSX2.PS_PARTKEY,
CAT.SCH.PSX2.PS_SUPPKEY, CAT.SCH.PSX2.PS_SUPPLYCOST,
CAT.SCH.PSX2.PS_AVAILQTY, CAT.SCH.PSX2.PS_PARTKEY, CAT.SCH.PSX2.PS_SUPPKEY
begin_key: (CAT.SCH.PSX2.PS_PARTKEY = <max>), (CAT.SCH.PSX2.PS_SUPPKEY =
<max>), (CAT.SCH.PSX2.PS_SUPPLYCOST = <max>), (CAT.SCH.PSX2.PS_AVAILQTY =
<max>), (CAT.SCH.PSX2.PS_PARTKEY = <max>), (CAT.SCH.PSX2.PS_SUPPKEY =
<max>) end_key: (CAT.SCH.PSX2.PS_PARTKEY = <min>),
(CAT.SCH.PSX2.PS_SUPPKEY = <min>), (CAT.SCH.PSX2.PS_SUPPLYCOST = <min>),
(CAT.SCH.PSX2.PS_AVAILQTY = <min>), (CAT.SCH.PSX2.PS_PARTKEY = <min>),
(CAT.SCH.PSX2.PS_SUPPKEY = <min>)
? XX
212122794829778687 2 FIRSTN 1
?
1.0000000E+000 0.0000000E+000 0.0000000E+000 OPERATOR_COST: 0
ROLLUP_COST: 0
fragment_id: 2 parent_frag: 0 fragment_type: dp2
? XX
212122794829778687 3 SHORTCUT_SCALAR_AGGR 2
?
1.0000000E+000 3.3796350E-006 1.6517225E-002 CPU_TIME: 4.79351e-005
IO_TIME: 0.0165172 MSG_TIME: 0 IDLETIME: 0 PROBES: 1
fragment_id: 2 parent_frag: 0 fragment_type: dp2 aggregates:
max(CAT.SCH.PSX2.PS_PARTKEY)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-220

SQL/MX Statements Examples of EXPLAIN
? XX
212122794829778687 4 PARTITION_ACCESS 3
?
1.0000000E+000 7.5787946E-004 1.6517225E-002 CPU_TIME: 0.000805815
IO_TIME: 0.0165172 MSG_TIME: 0 IDLETIME: 0 PROBES: 1
fragment_id: 2 parent_frag: 0 fragment_type: dp2 buffer_size: 31000
record_length: 8 space_usage: 12:8:8:32 eid_space_computation: on
? XX
212122794829778687 5 FILE_SCAN_UNIQUE ?
? CAT.SCH.PART
1.0000000E+000 2.0646531E-002 2.0646531E-002 CPU_TIME: 3.18424e-005
IO_TIME: 0.0206465 MSG_TIME: 0 IDLETIME: 0 PROBES: 1
fragment_id: 3 parent_frag: 0 fragment_type: dp2 olt_optimization: not
used olt_opt_lean: not used scan_type: unique access of table CAT.SCH.PART
object_type: CAT.SCH.PART key_type: simple lock_mode: not specified,
defaulted to lock cursor access_mode: not specified, defaulted to read
committed columns_retrieved: 9 fast_replydata_move: used key_columns:
P_PARTKEY key: (P_PARTKEY = max(CAT.SCH.PSX2.PS_PARTKEY))
? XX
212122794829778687 6 PARTITION_ACCESS 5
?
1.0000000E+000 7.6004536E-004 2.0646531E-002 CPU_TIME: 0.000791888
IO_TIME: 0.0206465 MSG_TIME: 0 IDLETIME: 0 PROBES: 1
fragment_id: 3 parent_frag: 0 fragment_type: dp2 buffer_size: 31000
record_length: 177 space_usage: 13:8:8:36 eid_space_computation: on
? XX
212122794829778687 7 NESTED_JOIN 4
6
1.0000000E+000 4.1742293E-007 3.7163756E-002 CPU_TIME: 0.00159812
IO_TIME: 0.0371638 MSG_TIME: 0 IDLETIME: 0 PROBES: 1
fragment_id: 0 parent_frag: (none) fragment_type: master join_type: inner
join_method: nested
? XX
212122794829778687 8 ROOT 7
?
1.0000000E+000 1.9600035E-001 2.3316375E-001 CPU_TIME: 0.00159847
IO_TIME: 0.0371638 MSG_TIME: 0 IDLETIME: 0.196 PROBES: 1
fragment_id: 0 parent_frag: (none) fragment_type: master statement_index:
0 statement: select * from part where p_partkey = (select max(ps_partkey)
from partsupp); xn_access_mode: read_only plan_version: 2400 SCHEMA:
CAT.SCH select_list: CAT.SCH.PART.P_PARTKEY, CAT.SCH.PART.P_NAME,
CAT.SCH.PART.P_MFGR, CAT.SCH.PART.P_BRAND, CAT.SCH.PART.P_TYPE,
CAT.SCH.PART.P_SIZE, CAT.SCH.PART.P_CONTAINER, CAT.SCH.PART.P_RETAILPRICE,
CAT.SCH.PART.P_COMMENT

--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-221

SQL/MX Statements Examples of EXPLAIN
 Use the EXPLAIN statement without the output options:

>>explain xx;

The following output is displayed:

-- PLAN
SUMMARY
MODULE_NAME DYNAMICALLY COMPILED
STATEMENT_NAME XX
PLAN_ID 212122794829778687
ROWS_OUT 1
EST_TOTAL_COST 0.23
STATEMENT select *
 from part
 where p_partkey = (select max(ps_partkey) from
 partsupp);

-- NODE
LISTING
ROOT ====================================== SEQ_NO 8 ONLY CHILD 7
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.2
EST_TOTAL_COST 0.23
DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 statement_index 0
 xn_access_mode read_only
 plan_version 2,400
 SCHEMA CAT.SCH
 select_list CAT.SCH.PART.P_PARTKEY, CAT.SCH.PART.P_NAME,
 CAT.SCH.PART.P_MFGR, CAT.SCH.PART.P_BRAND,
 CAT.SCH.PART.P_TYPE, CAT.SCH.PART.P_SIZE,
 CAT.SCH.PART.P_CONTAINER,
 CAT.SCH.PART.P_RETAILPRICE,
CAT.SCH.PART.P_COMMENT

NESTED_JOIN =============================== SEQ_NO 7 CHILDREN 4, 6
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.01
EST_TOTAL_COST 0.04
DESCRIPTION
 fragment_id 0
 parent_frag (none)
 fragment_type master
 join_type inner
 join_method nested

PARTITION_ACCESS ========================== SEQ_NO 6 ONLY CHILD 5
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.01
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 buffer_size 31,000
 record_length 177
 space_usage 13:8:8:36
 eid_space_computation on
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-222

SQL/MX Statements Examples of EXPLAIN
FILE_SCAN_UNIQUE ========================== SEQ_NO 5 NO CHILDREN
TABLE_NAME CAT.SCH.PART
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.02
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 3
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type unique access of table CAT.SCH.PART
 object_type CAT.SCH.PART
 key_type simple
 lock_mode not specified, defaulted to lock cursor
 access_mode not specified, defaulted to read committed
 columns_retrieved 9
 fast_replydata_move used
 key_columns P_PARTKEY
 key (P_PARTKEY = max(CAT.SCH.PSX2.PS_PARTKEY))

PARTITION_ACCESS ========================== SEQ_NO 4 ONLY CHILD 3
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.01
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 buffer_size 31,000
 record_length 8
 space_usage 12:8:8:32
 eid_space_computation on

SHORTCUT_SCALAR_AGGR ====================== SEQ_NO 3 ONLY CHILD 2
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0.01
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 aggregates max(CAT.SCH.PSX2.PS_PARTKEY)

FIRSTN ==================================== SEQ_NO 2 ONLY CHILD 1
REQUESTS_IN (not found)
ROWS_OUT 1
EST_OPER_COST 0
EST_TOTAL_COST 0
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-223

SQL/MX Statements Examples of EXPLAIN
INDEX_SCAN ================================ SEQ_NO 1 NO CHILDREN
TABLE_NAME CAT.SCH.PARTSUPP
REQUESTS_IN 1
ROWS_OUT 100
EST_OPER_COST 0.02
EST_TOTAL_COST 0.02
DESCRIPTION
 fragment_id 2
 parent_frag 0
 fragment_type dp2
 olt_optimization not used
 olt_opt_lean not used
 scan_type full scan of index
CAT.SCH.PSX2(CAT.SCH.PARTSUPP)
 scan_direction reverse
 object_type CAT.SCH.PARTSUPP
 key_type simple
 lock_mode not specified, defaulted to lock cursor
 access_mode not specified, defaulted to read committed
 columns_retrieved 6
 key_columns CAT.SCH.PSX2.PS_PARTKEY,
CAT.SCH.PSX2.PS_SUPPKEY,
 CAT.SCH.PSX2.PS_SUPPLYCOST,
 CAT.SCH.PSX2.PS_AVAILQTY,
CAT.SCH.PSX2.PS_PARTKEY,
 CAT.SCH.PSX2.PS_SUPPKEY
 begin_key (CAT.SCH.PSX2.PS_PARTKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPLYCOST = <max>),
 (CAT.SCH.PSX2.PS_AVAILQTY = <max>),
 (CAT.SCH.PSX2.PS_PARTKEY = <max>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <max>)
 end_key (CAT.SCH.PSX2.PS_PARTKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPLYCOST = <min>),
 (CAT.SCH.PSX2.PS_AVAILQTY = <min>),
 (CAT.SCH.PSX2.PS_PARTKEY = <min>),
 (CAT.SCH.PSX2.PS_SUPPKEY = <min>)

--- SQL operation complete.
>>
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-224

SQL/MX Statements Examples of EXPLAIN
 This is an example of insert…select with an IDENTITY column:

create table tab1(a largeint generated always as identity, b
int);

--- SQL operation complete.

prepare xx from insert into tab1 values(DEFAULT, 1);

--- SQL command prepared.

explain options 'f' xx;

LC RC OP OPERATOR OPT DESCRIPTION CARD

---- ---- ---- -------------------- -------- --------------- ---------

9 . 10 root r 1.00E+000

6 8 9 tuple_flow 1.00E+000

7 . 8 partition_access 1.00E+000

. . 7 insert TAB1 1.00E+000

1 5 6 nextvaluefor 1.00E+000

4 . 5 esp_access 1.00E+000

3 . 4 sequencegenerator 1.00E+000

2 . 3 partition_access 1.00E+002

. . 2 subset_update "@@INTERNAL_SG_19505 1.00E+002

. . 1 values 1.00E+000

--- SQL operation complete.

>>
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-225

SQL/MX Statements FASTCOPY Utility
FASTCOPY Utility
Considerations for FASTCOPY
Examples of FASTCOPY

FASTCOPY is a syntax-based utility that can be executed through MXCI and from a
program using dynamic SQL. The RECOVER support is available for the FASTCOPY
utility. FASTCOPY is not available as an embedded SQL. For more information about
the FASTCOPY utility, see the SQL/MX Installation and Management Guide.

The two forms of FASTCOPY utility are:

 FASTCOPY TABLE Command

 FASTCOPY INDEX Command

FASTCOPY TABLE Command

The FASTCOPY TABLE command copies all the rows from one table to the existing
equivalent table.

source-table

is the ANSI name of the table where rows are copied from.

target-table

is the ANSI name of the table that is being copied into. The target table must exist
prior to the operation and must be equivalent with the source table. The existing
rows in the target table will be removed before the copying begins.

Note. The FASTCOPY utility is available only on systems running J06.08 and later J-series

RVUs and H06.19 and later H-series RVUs.

FASTCOPY TABLE source-table [TO] target-table
[index-clause]

index-clause is
 INDEXES { EXPLICIT | IMPLICIT }
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-226

SQL/MX Statements FASTCOPY INDEX Command
index-clause

specifies how FASTCOPY TABLE will treat indexes. The index-clause has
these values:

The default is INDEXES IMPLICIT.

FASTCOPY INDEX Command

The FASTCOPY INDEX command copies all rows from one index to the existing
equivalent index.

source-index

is the ANSI name of the index that is being copied from.

target-index

is the ANSI name of the index that is being copied into. The target index must exist
prior to the operation.

Considerations for FASTCOPY

 The FASTCOPY TABLE command copies column values by the column order—the
first source table column is copied to the first target table column, the second
source table column is copied to the second target table column, and so forth.

 The FASTCOPY command preserves the SYSKEY column values from the source
table. The copy-by-column-order strategy applies to SYSKEY columns as well.

 As part of initialization, the FASTCOPY TABLE command removes the existing
rows from the target table and all its indexes.

 If the fastcopy operation is incomplete because of any reason, use the RECOVER
utility before reattempting a FASTCOPY command on the same table.

 For a table with an IDENTITY column at the source, the target, or both, the
FASTCOPY utility copies the source base table data to the target base table,
according to existing FASTCOPY logic for base tables. In addition, FASTCOPY

EXPLICIT Indexes on the target table will be explicitly copied. For each
matching pair of source and target indexes, the FASTCOPY
INDEX Command can be used to explicitly perform the copy
concurrently with the copy of the table, if required. Each
target index must have a matching source index.

IMPLICIT All indexes on the target table are maintained automatically
as a part of the FASTCOPY utility.

FASTCOPY INDEX source-index [TO] target-index
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-227

SQL/MX Statements Considerations for FASTCOPY
updates the CURRENT_VALUE in the target SG Table to match the copied base
table data, according to the rules described in Table 2-7.

Table 2-7. Rules for copying SG Table data

Target column Source column Expected behavior

IDENTITY ALWAYS NO IDENTITY COLUMN FASTCOPY issues an
error. If the target col-
umn has IDENTITY
ALWAYS, the source
column must also have
IDENTITY ALWAYS for
the DEFAULT specifica-
tion type.

IDENTITY ALWAYS NO IDENTITY COLUMN FASTCOPY issues an
error. If the target col-
umn has IDENTITY
ALWAYS, the source
column must also have
IDENTITY ALWAYS for
the DEFAULT specifica-
ion type.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-228

SQL/MX Statements Considerations for FASTCOPY
IDENTITY BY DEFAULT IDENTITY BY DEFAULT FASTCOPY uncondi-
tionally copies the base
table data. FASTCOPY
copies the
CURRENT_VALUE of the
SG TABLE only if the
SG Attributes and posi-
tion of the IDENTITY
column in the source
and target table match.
Otherwise, the
CURRENT_VALUE of the
target SG TABLE will not
be updated. To set the
CURRENT_VALUE of the
target SG TABLE, the
user can do ALTER
TABLE ALTER COL-
UMN RECALIBRATE.

IDENTITY BY DEFAULT IDENTITY ALWAYS FASTCOPY uncondi-
tionally copies the base
table data. FASTCOPY
copies the
CURRENT_VALUE of the
SG_TABLE only if the
SG Attributes and posi-
tion of the IDENTITY
column in the source-
and target table match.
Otherwise, the
CURRENT_VALUE of the
target SG Table will not
be updated. To set the
CURRENT_VALUE of the
target SG Table, the
user can do ALTER
TABLE ALTER COL-
UMN RECALIBRATE.

IDENTITY column IDENTITY

 BY DEFAULT

 ALWAYS

FASTCOPY uncondi-
tionally copies the base
table data. Target SG
Table does not exist
since the target table
does not contain an
IDENTITY column.

Table 2-7. Rules for copying SG Table data
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-229

SQL/MX Statements Considerations for FASTCOPY
Equivalence Requirements

 The target table and the source table must be sufficiently equivalent so that the
following command can be executed successfully:

insert into <target table> (*) select * from <source table>;

The two tables must have the same number of columns, and the columns with the
same ordinal position must have compatible data types. Also, either both tables
must have a SYSKEY column or none of the tables may have a SYSKEY column.

If the target table has indexes that are online, the clustering key for the target table
must be equivalent to the clustering key for the source table. The following details
must be identical between the clustering keys:

 number of columns

 ordinal position of each clustering key column within its table

Matching Indexes

 If the target table has indexes that are online, the FASTCOPY TABLE command
determines the source and target indexes that match, if any. A target index
matches a source index if their index specifications are equivalent. That is, if all of
the following conditions are satisfied:

 the index key for the target index must be equivalent to the index key for the
source index—the following details must be identical between the index keys:

 number of columns

 ordinal position of each index key column within its table

 the source index is not offline

Each target index that is not offline must have a matching source index. The
FASTCOPY utility does not consider target indexes that are offline.

If the INDEXES EXPLICIT option is set, you must specify the matching source and
target indexes on the related FASTCOPY INDEX Command.

 If the INDEXES IMPLICIT option is set, the system will select a matching
source index for each involved target index.

Availability of Source and Target Tables

 While executing the FASTCOPY TABLE command, the source table and its
definition are available in read-only mode. That is, you will not be able to perform
the following operations on the source table:

 insert, update, and delete DML operations

 DDL operations on the source table or its indexes
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-230

SQL/MX Statements Considerations for FASTCOPY
 utility operations that modify the data or definition of the source table or its
indexes

Data in the target table are not available while executing the FASTCOPY TABLE or
FASTCOPY INDEX command. Data in the target table can be accessed only after
the FASTCOPY operation completes successfully. The definition of the target
table(DDL) are available for read-only operations.

Recovery

 The RECOVER INDEX command can be used only when explicit copying of index
rows is involved. That is, recovery of a failed FASTCOPY TABLE...INDEXES
IMPLICIT must use the RECOVER TABLE command.

 When the CANCEL option is set, the entire fastcopy operation is canceled.
RECOVER...CANCEL applies to entire fastcopy operation. It restores the source
and target tables to the original state with an exception that the purge on the target
table cannot be rolled back. If you perform RECOVER…CANCEL on an actively
running FASTCOPY command, it will return an error 20212.

 When the RESUME option is set, it affects only that target object which is
mentioned in the RECOVER command. The target object will be set to its initial
state and then the corresponding FASTCOPY command will be implicitly executed.

DDL Locks

To support the fastcopy operation, the following types of DDL_LOCKS metadata rows
are used:

 DDL_LOCKS for source objects

For source objects, the DDL_LOCKS row displays an operation value Fastcopy
Source (FS). The status indicates how indexes are treated. The status values are
listed below:

For source objects, only DDL_LOCKS rows for tables have an associated TEXT
row that points to the target table. Also, for source tables there are additional TEXT
rows (with object_sub_id 19) that contain information about all source table
partitions.

Value Description

0 INDEXES IMPLICIT is specified to FASTCOPY TABLE.

1 INDEXES EXPLICIT is specified to FASTCOPY TABLE or
the originating command is FASTCOPY INDEX.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-231

SQL/MX Statements Considerations for FASTCOPY
 DDL_LOCKS for target objects

For target objects, the DDL_LOCKS row displays an operation value Fastcopy
Target (FT). The status indicates the actual progress of the FASTCOPY of that
particular target object. The status values are listed below:

For target objects, DDL_LOCKS rows for indexes might not initially have an
associated TEXT row, when INDEXES EXPLICIT is used. The TEXT row will be
created as part of FASTCOPY INDEX.

Value Description

1 A fastcopy operation is started. Audit is turned off and all
target partitions (table and indexes) are marked "corrupt". A
target object with this DDL lock state is ready for a
continuation FASTCOPY command.

2 The object is ready for copy. The actual row copying is
about to start for the target object. A target object with this
DDL lock state or any subsequent state is processed by a
FASTCOPY command, and therefore, is not processed by
another FASTCOPY command.

3 Copy is in progress. Actual row copying is ongoing. The
target object is not marked "corrupt" when the object is in
this state.

4 Copy is completed. The target object is marked "corrupt".

5 The operation is completed. This is an intermediate state,
which indicates that all involved objects (table, indexes) are
successfully copied and the entire fastcopy operation is
about to complete.

6 Cancel the operation after copy. The fastcopy operation is
canceled. However, the FASTCOPY command copies rows
for the affected object. This state signals the FASTCOPY
command that the operation is canceled.

7 Cancel is in progress. The fastcopy operation is canceled.

8 Cancel is completed. This is an intermediate state. It
indicates that the fastcopy operation is canceled for all
involved objects (table, indexes).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-232

SQL/MX Statements Examples of FASTCOPY
Examples of FASTCOPY

 Consider a source table ST with indexes SI1 and SI2 and the target table TT with
index TI1. Run the following command:

FASTCOPY TABLE ST TO TT INDEXES IMPLICIT;

The command copies all the rows from the source table to the target table and
automatically maintains index TI1 as part of that copying.

When you specify the index-clause as EXPLICIT:

FASTCOPY TABLE ST TO TT INDEXES EXPLICIT;

The command copies all the rows from the source table to the target table. An
explicit FASTCOPY of source index SI1 to target index TI1 is required to complete
the fastcopy operation. Because the source index SI2 has no equivalent target
index, it does not participate in the fastcopy operation.

You can also start the explicit fastcopy operation with the FASTCOPY INDEX
command (not necessarily with the FASTCOPY TABLE command) followed by the
required number of additional FASTCOPY INDEX commands and one FASTCOPY
TABLE...INDEXES EXPLICIT command, in any order.

To copy all the rows from source index SI1 to target index TI1, run the following
command:

FASTCOPY INDEX SI1 to TI1;

The base table TT can be accessed only after completing the fastcopy operation
(copying of indexes SI1 to TI1). If you try to access the table without completing
the fastcopy operation (by copying the index explicitly), it returns the following
error:

ERROR[8580] No partitions of table could be accessed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-233

SQL/MX Statements GET ALL SECURITY_ADMINS Statement
GET ALL SECURITY_ADMINS Statement
Considerations for GET ALL SECURITY_ADMINS
Examples of GET ALL SECURITY_ADMINS

The GET ALL SECURITY_ADMINS statement lists the users in the Security
Administrators Group.

GET ALL SECURITY_ADMINS is an SQL/MX extension.

Considerations for GET ALL SECURITY_ADMINS

Authorization Requirements

Any Guardian user may execute the GET ALL SECURITY_ADMINS statement.

Metadata Version Requirements

The GET ALL SECURITY_ADMINS statement requires system metadata version 3100
or greater. If the statement is executed with lower versions of the system metadata, a
SQL error is generated indicating that the SYSTEM_SECURITY_SCHEMA does not
exist.

Invalid Security Administrator User IDs

If a user ID that does not exist in the system USERID file is encountered while
processing the GET ALL SECURITY_ADMINS statement, it will be mapped to its
numeric representation. This situation can occur if an existing user ID is designated as
a security administrator and then later removed from the system USERID file without
revoking the security administrator designation.

Examples of GET ALL SECURITY_ADMINS

 The following example lists the security administrators:

GET ALL SECURITY_ADMINS
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-234

SQL/MX Statements Examples of GET ALL SECURITY_ADMINS
GET ALL SECURITY_ADMINS;

Security Administrators

=======================

SECADMIN.USER1

SECADMIN.USER2

--- SQL operation complete.

 The following example lists the security administrators when one of the security
administrators is no longer in the system USERID file:

GET ALL SECURITY_ADMINS;

Security Administrators

=======================

SECADMIN.USER1

4,85

--- SQL operation complete.

 The following example lists the security administrators when the security
administrators group is empty:

GET ALL SECURITY_ADMINS;

--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-235

SQL/MX Statements GIVE CATALOG Statement
GIVE CATALOG Statement
Considerations for GIVE CATALOG
Example of GIVE CATALOG

The GIVE CATALOG statement transfers the ownership of catalog from one Guardian
user to another.

catalog

is an SQL identifier that specifies the name of a catalog.

authid

specifies an authorization ID to whom the ownership is transferred. Authorization
IDs identify users during the processing of SQL statements. The authorization ID
must be a valid Guardian user name, enclosed in double quotes. A Guardian user
number (for example, “255,255”) is not allowed. authid is not case-sensitive.

Considerations for GIVE CATALOG

Object Feature Version of the objects under the catalog is not changed as part of this
operation.

Authorization and Availability Requirements

The GIVE CATALOG operation can be performed by a catalog owner or security
administrator or the Super ID (if Super ID is part of the Security Administrator’s group
or if no Security Administrator’s group exists). The ownership of a catalog cannot be
transferred to PUBLIC. The ownership of a catalog cannot be transferred to any
member of the Security Administrator’s group unless the GRANTOR is the owner of
the catalog. The Catalog ownership change does not invalidate the existing opens on
the objects in the schemas residing in the catalog. After successful completion of the
GIVE CATALOG operation, only the new owner can drop a catalog.

Example of GIVE CATALOG

 This example transfers the catalog ownership to “SQL.USER1”.

>>give catalog usercat to "sql.user1";
--- SQL operation complete.

GIVE CATALOG catalog TO authid
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-236

SQL/MX Statements GIVE Object Statement
GIVE Object Statement
Considerations for GIVE Object
Examples of GIVE Object

The GIVE object statement transfers the ownership of the object from one Guardian
user to another.

object-type

specifies the type of the object whose ownership will be changed. The object type
can be one of the following:
{TABLE | TRIGGER | VIEW | PROCEDURE | SEQUENCE}

object

specifies the name of the object whose ownership will be changed. The object
name can either be fully qualified or partially qualified. If the name is not fully
qualified, the object name is resolved based on default catalog and schema
names.

authid

specifies an authorization ID to whom the ownership is transferred. Authorization
IDs identify users during the processing of SQL statements. The authorization ID
must be a valid Guardian user name, enclosed in double quotes. A Guardian user
number (for example, “255,255”) is not allowed. authid is not case-sensitive.

Considerations for GIVE Object

The GIVE TABLE operation will change the ownership of associated indexes, trigger
temporary table and constraints to the new owner.

The GIVE VIEW operation will not change the ownership of underlying tables.

Object Feature Version (OFV) of the object is increased to 3100, if the schema owner
and object owner are different after the completion of the operation. However, after
completion of the operation, if the schema owner and the object owner happen to be
the same again, then the OFV is recomputed and set.

Authorization and Availability Requirements

The GIVE operation on a Table, View, Procedure, Trigger and Sequence Generator
can be performed by schema owner or object owner or security administrator or the
Super ID (if Super ID is part of the Security Administrator’s group or if no Security
Administrator’s group exists). The ownership of an object cannot be transferred to
PUBLIC. The ownership of an object cannot be transferred to any member of the
Security Administrator’s group, unless the GRANTOR is the object owner or the

GIVE object-type object TO authid
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-237

SQL/MX Statements Examples of GIVE Object
schema owner. After successful completion of this operation, all the existing opens of
the target object are invalidated. In case of VIEW ownership change, the existing
opens on the underlying tables are also invalidated.

Examples of GIVE Object

 This example transfers the table ownership to “SQL.USER2”.

>>give table usertable to "sql.user2";
--- SQL operation complete.

 This example transfers view ownership to “SQL.USER5”.

>>give view userview to "sql.user5";
--- SQL operation complete.

 This example transfers procedure ownership to “SQL.USER3”.

>>give procedure userroutine to "sql.user3";
--- SQL operation complete.

 This example transfers trigger ownership to “SQL.USER1”:

>>give trigger usertrigger to "sql.user1";
--- SQL operation complete.

 This example transfers sequence generator ownership to “SQL.USER1”:

>>give sequence myseq to "sql.user1";
--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-238

SQL/MX Statements GIVE SCHEMA Operation
GIVE SCHEMA Operation
Considerations for GIVE SCHEMA
Examples of GIVE SCHEMA

The GIVE SCHEMA operation transfers the ownership of the schema and optionally,
those objects in the schema owned by the schema owner from one user to another.

schema

specifies the schema on which the GIVE operation is performed.

authid

specifies an authorization ID to whom the ownership is transferred. Authorization
IDs identify users during the processing of SQL statements. The authorization ID
must be a valid Guardian user name, enclosed in double quotes. A Guardian user
number (for example, “255,255”) is not allowed. authid is not case-sensitive.

CASCADE

specifies whether the ownership changes are cascaded to the objects owned by
the schema owner within the schema.

Considerations for GIVE SCHEMA

The ownership of user metadata tables in the schema is transferred to the new owner
irrespective of the CASCADE option.

If the schema owner and object owner are different after the completion of the
operation, the Object Feature Version (OFV) of the objects within the schema is at
least 3100. However, if after completion of the operation, the schema owner and object
owner are the same again, then the OFV is recomputed and set.

Authorization and Availability Requirements

The GIVE SCHEMA operation can be performed by the schema owner or security
administrator or a Super ID (if Super ID is part of the Security Administrator’s group or
if no Security Administrator’s group exists). After successful completion of this
operation, all the existing opens on the underlying objects are invalidated.

The ownership of a schema cannot be transferred to PUBLIC. The ownership of a
schema cannot be transferred to any member of the Security Administrator’s group,
unless the GRANTOR is the owner of the schema. The ownership of a schema cannot
be transferred by any member of Security Administrator’s group to themselves. If
Super ID is not part of Security Administrator’s Group, it can transfer ownership of
schema to itself.

GIVE SCHEMA schema TO authid [CASCADE]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-239

SQL/MX Statements Examples of GIVE SCHEMA
Examples of GIVE SCHEMA

 This example transfers the schema ownership to “SQL.USER5”:

>>give schema userschema1 to "sql.user5";
--- SQL operation complete.

 This example transfers the schema and the objects within the schema ownership
to “SQL.USER5” :

>>give schema userschema1 to "sql.user5" cascade;
--- SQL operation complete.

DDL Locks

During GIVE SCHEMA operation, DDL lock is held to prevent any other concurrent
DDL or utility operation being performed on the schema. The lock is released on
successful completion of the GIVE SCHEMA operation.

If the GIVE SCHEMA operation fails unexpectedly, you must run the RECOVER
SCHEMA operation on that schema to recover from the failed GIVE SCHEMA
operation. After successful recovery, the DDL lock will be released.

GRANT Statement
Considerations for GRANT
Examples of GRANT

The GRANT statement grants access privileges for an SQL/MX table, view, sequence
generator, or stored procedure to specified users. For more information, see GRANT
EXECUTE Statement on page 2-246 .

GRANT {privilege [,privilege]... | ALL [PRIVILEGES]}
 ON [TABLE | SEQUENCE] object
 TO {grantee [,grantee]...}
 [WITH GRANT OPTION]
 [BY authid-grantor]

grantee is:
authid | PUBLIC

privilege is:
 SELECT
 | DELETE
 | INSERT
 | UPDATE [(column [,column]...)]
 | REFERENCES [(column [,column]...)]
 | USAGE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-240

SQL/MX Statements Syntax Description of GRANT
Syntax Description of GRANT

privilege [,privilege]... | ALL [PRIVILEGES]

specifies the privileges to grant. You can specify each of these privileges for a table
or a view. See also the GRANT EXECUTE Statement on page 2-246.

(column [,column]...)

names the columns of the object to which the UPDATE or REFERENCES
privileges apply. If you specify UPDATE or REFERENCES without column
names, the privileges apply to all columns of the table or view.

ON [TABLE | SEQUENCE] object

specifies a table, view, sequence generator or stored procedure on which to grant
privileges. When the object is a stored procedure, the only privileges you can
specify are ALL PRIVILEGES or EXECUTE. See GRANT EXECUTE Statement on
page 2-246.

TO {authid [,authid]... | PUBLIC}

specifies one or more users to whom you grant privileges.

authid specifies an authorization ID to whom you grant privileges. Authorization
IDs identify users during the processing of SQL statements. The authorization ID
must be a valid Guardian user name, enclosed in double quotes. A Guardian user
number (for example, “255,255”) is not allowed. authid is not case-sensitive.

SQL:1999 specifies two special authorization IDs: PUBLIC and SYSTEM.

 PUBLIC specifies all present and future authorization IDs.

SELECT Can use SELECT statement.

DELETE Can use DELETE statement.

INSERT Can use INSERT statement.

UPDATE Can use UPDATE statement.

REFERENCES Can create constraints that reference the object.

USAGE Can use the pseudocolumns, CURRVAL and NEXTVAL to
access sequence generator values.

ALL PRIVILEGES Can have all privileges that apply to the object type.
When ALL is specified, the object can be a table, view,
sequence generator, or stored procedure. When the object
is a stored procedure and ALL is specified, only EXECUTE
permission is applied. When the object is a sequence gen-
erator and ALL is specified, only USAGE privilege is
applied.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-241

SQL/MX Statements Syntax Description of GRANT
 SYSTEM specifies the implicit grantor of privileges to the creators of objects.

You cannot specify SYSTEM as an authid in a GRANT statement.

WITH GRANT OPTION

specifies that users of the authorization IDs to whom privileges are granted have
the right to grant the same privileges to other authorization IDs.

BY authid-grantor

specifies the authorization ID authid-grantor on whose behalf the grant
operation is performed. Only the Super ID can use the BY clause unless the
Security Administrators Group is not empty and the Super ID has not been
designated as a Security Administrator in which case the Super ID is denied the
use of this feature. The effect of using the BY clause is the same as if the authid-
grantor were to issue the GRANT directly (without using the BY clause).
authid-grantor cannot be SYSTEM. If the Security Administrator's Group is
empty, then authid-grantor must be a valid authorization ID and hold the
privilege(s) being granted WITH GRANT OPTION. However, if the Super ID is
designated as a Security Administrator, it will have Super GRANT BY capabilities in
which authid-grantor may be any valid authorization ID.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-242

SQL/MX Statements Considerations for GRANT
Considerations for GRANT

Authorization Requirements

Unless you are a Security Administrator or the Super ID, to grant a privilege on an
object, you must have both that privilege and the right to grant that privilege. That is,
the privilege must have been issued to you WITH GRANT OPTION and not revoked. If
you lack authority to grant one or more of the specific privileges, the system returns a
warning (and does perform the grant of any of the specified privileges that you do have
authority to grant). If you have none of the specified privileges WITH GRANT OPTION,
the system returns an error.

If you are a Security Administrator, then you are exempt from the above restriction and
may grant a privilege without having the privilege. However, such grants may not be
made to PUBLIC or a Security Administrator or using WITH GRANT OPTION.
Security Administrators may hold a derived WGO privilege, in which case they may
grant that privilege like any other user (including to PUBLIC and using WITH GRANT
OPTION). This latter type of grant is included in the hierarchy of owner-derived grants.

If you are the Super ID, then your grant privileges depend on the Security
Administrator's Group. If the Security Administrator's Group is empty, then you may
grant any privilege on any object. Such grants behave like a GRANT BY authid-
grantor where the authid-grantor is the object owner.

If the Super ID is designated as a Security Administrator, then the Super ID has the
same privileges as any other Security Administrator plus the ability to execute GRANT
BY authid-grantor. If BY authid-grantor is omitted, then the implied grantor is
the Super ID instead of the object owner.

If the Security Administrator's Group is not empty and the Super ID is not designated
as a Security Administrator, the Super ID will have the same restrictions as any
ordinary user with respect to the GRANT statement.

To grant the USAGE privilege on a sequence generator, you must have the USAGE
privilege and the right to grant this privilege. The owner, or creator of the sequence
generator, Security Administrator and the Super ID automatically have USAGE and
WITH GRANT OPTION privileges on a sequence generator. All other users must be
granted both the USAGE and WITH GRANT OPTION privileges to grant USAGE
privilege to other users. If an unauthorized user attempts to grant the USAGE privilege,
an error is returned. If the Super ID issues a GRANT USAGE statement using the BY
authid-grantor clause, the authid-grantor must have the right to grant the
USAGE privilege.

Security Considerations

NonStop SQL/MX translates each authorization ID you specify into a 32-bit integer
value, and then stores the number in the system metadata tables. The stored
identification number, not the characters of the authorization ID, is used to identify the
user who holds privileges on the specified objects.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-243

SQL/MX Statements Examples of GRANT
Privileges on Views

Granting a privilege on a view does not grant that privilege to the corresponding
column of the underlying table.

Privileges on Stored Procedures

You can also manage security on a stored procedure by using the GRANT EXECUTE
and REVOKE EXECUTE statements. See GRANT EXECUTE Statement on
page 2-246 and REVOKE EXECUTE Statement on page 2-323.

Examples of GRANT

 This example grants SELECT and DELETE privileges on a table, in addition to the
privilege of granting SELECT and DELETE privileges to others:

GRANT SELECT, DELETE ON TABLE sales.odetail
 TO "sql.user1", "sql.user2" WITH GRANT OPTION;

 This example grants UPDATE privileges on the named columns to PUBLIC:

GRANT UPDATE (start_date, ship_timestamp)
 ON TABLE persnl.project TO PUBLIC;

 In this example, the super ID grants SELECT and DELETE privileges on a table on
behalf of sql.user1:

GRANT SELECT, DELETE ON TABLE sales.odetail
 TO "sql.user3" BY "sql.user1";

 This example gives USAGE privilege on a sequence generator to sql.user2:

GRANT USAGE ON myseq to "sql.user2";

 This example gives USAGE privilege on a sequence generator to multiple users
WITH GRANT OPTION:

GRANT USAGE ON myseq to "sql.user3","sql.user5" WITH GRANT
OPTION;

GRANT CREATE CATALOG Statement
Considerations for GRANT CREATE CATALOG
Examples for GRANT CREATE CATALOG

The GRANT CREATE CATALOG grants privileges to create a catalog for specified
users.

GRANT CREATE CATALOG TO {"grantee" [,"grantee"]...}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-244

SQL/MX Statements Considerations for GRANT CREATE CATALOG
{"grantee" [,"grantee"]...}

are the recipients of the GRANT privileges.

Considerations for GRANT CREATE CATALOG

Only authorized users are allowed to create catalog after the successful completion of
the first GRANT CREATE CATALOG statement.

Authorization and Availability Requirements

A security administrator or the Super ID (if Super ID is part of the Security
Administrator’s group or if no Security Administrator’s group exists) can grant the
privilege to create a catalog.

 CREATE CATALOG privilege cannot be granted to PUBLIC.

 CREATE CATALOG privilege cannot be granted to any member of the Security
Administrator’s group.

Examples for GRANT CREATE CATALOG

 This example grants users, “SQL.USER1”, “SQL.USER2”, and “SQL.USER3” with
the privilege to create a catalog:

GRANT CREATE CATALOG TO "SQL.USER1";
GRANT CREATE CATALOG TO "SQL.USER2", "SQL.USER3";

GRANT CREATE SCHEMA Statement
Considerations for GRANT CREATE SCHEMA
Example for GRANT CREATE SCHEMA

The GRANT CREATE SCHEMA grants privileges to create a schema on a specified
catalog to specified users.

{"grantee" [,"grantee"]...}

are the recipients of the GRANT privileges.

catalog

is the name of the catalog, under which the recipients of the GRANT CREATE
SCHEMA privilege can create the schema.

GRANT CREATE SCHEMA ON catalog TO {"grantee" [,"grantee"]...}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-245

SQL/MX Statements Considerations for GRANT CREATE SCHEMA
Considerations for GRANT CREATE SCHEMA

Only authorized users are allowed to create schema after the successful completion of
the first GRANT CREATE SCHEMA statement in the target catalog.

Authorization and Availability Requirements

A security administrator or catalog owner or the Super ID (if Super ID is part of the
Security Administrator’s group or if no Security Administrator’s group exists) can grant
the privilege to create a schema.

 CREATE SCHEMA privilege cannot be granted to PUBLIC.

 CREATE SCHEMA privilege cannot be granted to any member of the Security
Administrator’s group unless the GRANTOR is the owner of the catalog.

Example for GRANT CREATE SCHEMA

 This example grants the users, “SQL.USER1” and “SQL.USER2” with the privilege
to create a schema within the catalog:

GRANT CREATE SCHEMA ON CAT TO "SQL.USER1", "SQL.USER2";

GRANT EXECUTE Statement
Considerations for GRANT EXECUTE
Examples of GRANT EXECUTE

The GRANT EXECUTE statement grants privileges for calling a stored procedure in
Java (SPJ) to one or more specified users.

EXECUTE

specifies the privilege of calling the stored procedure.

GRANT EXECUTE
 ON [PROCEDURE] procedure-ref
 TO {grantee [,grantee]...}
 [WITH GRANT OPTION]
 [BY authid-grantor]

procedure-ref is:
[[catalog-name.]schema-name.]procedure-name

grantee is:
authid | PUBLIC
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-246

SQL/MX Statements Considerations for GRANT EXECUTE
ON [PROCEDURE] procedure-ref

specifies the ANSI logical name of a stored procedure on which to grant EXECUTE
privilege, of the form:

[[catalog-name.]schema-name.]procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

TO {authid [,authid]... | PUBLIC}

specifies one or more users to whom you grant EXECUTE privilege.

authid specifies an authorization ID to whom you grant the EXECUTE privilege.
Authorization IDs identify users during the processing of SQL statements. The
authorization ID must be a valid Guardian user name, enclosed in double quotes.
A Guardian user number (for example, “255,255”) is disallowed. authid is not
case-sensitive.

SQL:1999 specifies two special authorization IDs: PUBLIC and SYSTEM.

 PUBLIC specifies all present and future authorization IDs.

 SYSTEM specifies the implicit grantor of privileges to the creators of stored
procedures.

You cannot specify SYSTEM as an authid in a GRANT EXECUTE statement.

WITH GRANT OPTION

specifies that users of the authorization IDs to whom the EXECUTE privilege is
granted have the right to grant EXECUTE privilege to other authorization IDs.

BY authid-grantor

specifies the authorization ID authid-grantor on whose behalf the grant
operation is performed. Only the super ID can use the BY clause. If another user
attempts to do so, the system returns an error. The effect of using the BY clause is
the same as if the authid-grantor were to issue the GRANT EXECUTE
statement directly (without using the BY clause).

authid-grantor must be a valid authorization ID and cannot be SYSTEM.

Considerations for GRANT EXECUTE

Authorization and Availability Requirements

To grant EXECUTE privilege on a stored procedure, you must have both that privilege
and the right to grant that privilege. The owner, or creator, of the stored procedure and
the super ID automatically have EXECUTE and WITH GRANT OPTION privileges on a
stored procedure. All other users must be granted both EXECUTE and WITH GRANT
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-247

SQL/MX Statements Examples of GRANT EXECUTE
OPTION privileges to grant other users the EXECUTE privilege. If you lack authority to
grant the EXECUTE privilege, the system returns an error.

If the super ID issues a GRANT EXECUTE statement using the BY authid-grantor
clause, the authid-grantor must have the right to grant the EXECUTE privilege.

Security Considerations

NonStop SQL/MX translates each authorization ID you specify into a 32-bit integer
value and then stores the number in the system metadata tables. The stored
identification number, not the characters of the authorization ID, is used to identify the
user who holds privileges on the specified objects.

Examples of GRANT EXECUTE

 Suppose that the super ID on behalf of the owner of the SPJ, 'SYSMGT.ANDY',
grants EXECUTE and WITH GRANT OPTION privileges on ADJUSTSALARY to
two other users, 'SYSMGT.BEN' and 'SYSMGT.JASON':

GRANT EXECUTE
ON PROCEDURE samdbcat.persnl.adjustsalary
TO 'SYSMGT.BEN', 'SYSMGT.JASON'
WITH GRANT OPTION
BY 'SYSMGT.ANDY';

The users, 'SYSMGT.BEN' and 'SYSMGT.JASON,' can then issue EXECUTE
and WITH GRANT OPTION privileges to other users on the system. They can also
execute CALL statements.

 The user 'SYSMGT.BEN' grants EXECUTE and WITH GRANT OPTION privileges
on spj1 to user 'HR.BETTY':

GRANT EXECUTE
ON PROCEDURE samdbcat.persnl.spj1
TO 'HR.BETTY'
WITH GRANT OPTION;

 The user 'HR.BETTY' grants EXECUTE privilege on spj1 to some users in the
HR group:

GRANT EXECUTE
ON PROCEDURE samdbcat.persnl.spj1
TO 'HR.MIKE', 'HR.JOE', 'HR.HILDE';

 The owner of spj2 grants EXECUTE privilege on that SPJ to all users of the
system:

GRANT EXECUTE
ON samdbcat.persnl.spj2
TO PUBLIC;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-248

SQL/MX Statements GRANT SECURITY_ADMIN Statement
GRANT SECURITY_ADMIN Statement
Considerations for GRANT SECURITY_ADMIN
Examples of GRANT SECURITY_ADMIN

The GRANT SECURITY_ADMIN statement designates a specified user as a security
administrator.

authid

specifies the authorization ID whom you are designating a Security Administrator.
Authorization IDs identify users during the processing of SQL statements. The
authorization ID must be a valid Guardian user name, enclosed in double quotes.
A Guardian user number (for example, “255,255”) is not allowed. authid is not
case-sensitive.

Considerations for GRANT SECURITY_ADMIN

Authorization Requirements

If the Security Administrator's Group is empty, only the Super ID may execute the
GRANT SECURITY_ADMIN statement. Otherwise, only a Security Administrator may
execute this statement.

Security Considerations

NonStop SQL/MX translates each authorization ID you specify into a 32-bit integer
value and then stores the number in the system metadata tables. The stored
identification number, not the characters of the authorization ID, is used to identify a
Security Administrator. For this reason, care must be exercised when reusing vacated
Guardian user IDs. HP recommends utilizing a dedicated Guardian user group for
Security Administrators.

To prevent a Security Administrator from creating a user for themselves and granting
any privilege to that user, HP strongly recommends that the function of creating users
be restricted to users outside the Security Administrator's Group.

Since object owners may continue to grant privileges in the presence of Security
Administrators and owner-derived grants exist distinctly from those made by Security
Administrators, HP recommends that object ownership reside with an entity such as a
DBA who would be expected to refrain from making owner-derived grants. HP also
recommends periodic auditing of object privileges to detect and correct unauthorized
grants.

GRANT SECURITY_ADMIN to authid
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-249

SQL/MX Statements Examples of GRANT SECURITY_ADMIN
Metadata Version Requirements

The GRANT SECURITY_ADMIN statement requires system metadata version 3100 or
greater. If the statement is executed with lower versions of the system metadata, a
SQL error 25223 is generated.

Examples of GRANT SECURITY_ADMIN

 The following example designates the Super ID as a Security Administrator:

GRANT SECURITY_ADMIN TO "SUPER.SUPER";

 The following example designates the user, SECADMIN.USER1, as a Security
Administrator:

GRANT SECURITY_ADMIN TO "SECADMIN.USER1";
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-250

SQL/MX Statements INITIALIZE SQL Statement
INITIALIZE SQL Statement
Considerations for INITIALIZE SQL
Examples of INITIALIZE SQL

The INITIALIZE SQL statement prepares a node to run NonStop SQL/MX.

INITIALIZE SQL is an SQL/MX extension.

The INITIALIZE SQL statement creates the SQL/MX user metadata (UMD) tables and
system metadata (SMD) tables in the system volume configured during installation.

If the volume is not audited, INITIALIZE SQL cannot execute. You cannot perform any
database requests until SQL is initialized. If SQL is already initialized, INITIALIZE SQL
returns an error.

Considerations for INITIALIZE SQL

INITIALIZE SQL is normally performed automatically by the script that installs
NonStop SQL/MX. You will probably never manually perform an INITIALIZE SQL
statement but it is described here for reference.

Authorization and Availability Requirements

The super ID becomes the owner of the SQL/MX user metadata (UMD) tables and
system metadata (SMD) tables. The PUBLIC user has GRANT PUBLIC SELECT
access on all of these tables.

Examples of INITIALIZE SQL

 This example initializes SQL on the local node:

INITIALIZE SQL;

INITIALIZE SQL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-251

SQL/MX Statements INSERT Statement

M

INSERT Statement
Considerations for INSERT
MXCI Examples of INSERT
C Examples of INSERT
COBOL Examples of INSERT

The INSERT statement is a DML statement that inserts rows in a table or view.

[ROWSET FOR INPUT SIZE rowset-size-in]

INSERT INTO table [(target-col-list)] insert-source

target-col-list is:
 colname [,colname]...

insert-source is:
 query-expr [order-by-clause] | DEFAULT VALUES

query-expr is:
 non-join-query-expr | joined-table

non-join-query-expr is:
 non-join-query-primary | query-expr UNION [ALL] query-term

query-term is:
 non-join-query-primary | joined-table

non-join-query-primary is:
 simple-table | (non-join-query-expr)

joined-table is:
 table-ref [NATURAL] [join-type] JOIN table-ref [join-spec]
 |table-ref CROSS JOIN table-ref

table-ref is:
 table [[AS] corr [(col-expr-list)]]
 | view [[AS] corr [(col-expr-list)]]
 | (query-expr) [AS] corr [(col-expr-list)]
 | joined-table

join-type is:
 INNER | LEFT [OUTER] | RIGHT [OUTER]

join-spec is:
 ON search-condition | rowset-search-condition

XCI
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-252

SQL/MX Statements INSERT Statement

M

ROWSET FOR INPUT SIZE rowset-size-in

rowset-size-in restricts the size of the input rowset to the specified size, which
must be less than or equal to the allocated size for the rowset. rowset-size-in
must be an integer literal (exact numeric literal, dynamic parameter, or a host
variable) whose type is unsigned short, signed short, unsigned long, or signed long
in C and their corresponding equivalents in COBOL. If you do not specify
rowset-size-in, NonStop SQL/MX uses the allocated rowset size specified in
the SQL Declare Section of the embedded SQL program.

table

names the user table or view in which to insert rows. table must be either a base
table or an updatable view. To refer to a table or view, use one of these name
types:

 Guardian physical name
 ANSI logical name
 DEFINE name

simple-table is:
 VALUES (row-value-const) [,(row-value-const)]...
 | VALUES (rowset-value-const)
 | TABLE table
 | SELECT [ALL | DISTINCT] select-list
 FROM table-ref [,table-ref]...
 | FROM ROWSET [rowset-size]
 (:array-name [,:array-name]...)
 [WHERE search-condition | rowset-search-condition]
 [SAMPLE sampling-method]
 [TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]]...
 [SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 [GROUP BY {colname | colnum} [,{colname |
colnum}]...]
 [HAVING search-condition | rowset-search-condition]]
 [[FOR] access-option ACCESS]
 [IN {SHARE | EXCLUSIVE} MODE]

rowset-value-const is:
 {rowset-expr |expr | NULL | DEFAULT}
 [,{rowset-expr |expr | NULL | DEFAULT}]...

access-option is:
 READ COMMITTED
 | SERIALIZABLE
 | REPEATABLE READ

order-by-clause is:
 ORDER BY {colname | colnum} [ASC[ENDING] | DESC[ENDING]]
 [,{colname | colnum} [ASC[ENDING] | DESC[ENDING]]]...

XCI
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-253

SQL/MX Statements INSERT Statement
See Database Object Names on page 6-13.

(target-col-list)

names the columns target-col-list in the table or view in which to insert
values. The data type of each target column must be compatible with the data type
of its corresponding source value. Within the list, each target column must have the
same position as its associated source value, whose position is determined by the
columns in the table derived from the evaluation of the query expression
(query-expr).

If you do not specify all of the columns in table in the target-col-list,
column default values are inserted into the columns that do not appear in the list.
See Column Default Settings on page 6-8.

If you do not specify target-col-list, row values from the source table are
inserted into all columns in table (with the exception of a SYSKEY column). The
order of the column values in the source table must be the same order as that of
the columns specified in the CREATE TABLE for table. (This order is the same
as that of the columns listed in the result table of SELECT * FROM table.)

insert-source

specifies the rows of values insert-source to be inserted into all columns of
table or, optionally, into specified columns of table.

query-expr

specifies the query expression that generates the source table consisting of
rows of values to be inserted into the columns named in target-col-list, if
specified, or into all the columns of table by default. If there are no rows
returned in insert-source, no rows are inserted into table. If
query-expr is not a VALUES clause, the insert-source cannot reference
either table or any view based on table, or any base table or view on which
table is based.

The number of columns in the column list (or by default the number of columns
in table) must be equal to the number of columns in the source table derived
from the evaluation of the query expression. Further, the data type of each
column in the column list (or by default each column in table) must be
compatible with the data type of its corresponding column in the source table.

A single value within a VALUES clause can be a value expression, NULL, or
DEFAULT. If you specify DEFAULT within a VALUES clause, the value inserted
is the DEFAULT value defined for the target column. A value expression can
also include DEFAULT as an operand; the value inserted is the expression
evaluated with the DEFAULT value. For example, DEFAULT + 50 can be an
expression in a row value constructor.

The use of DEFAULT in a value expression is an SQL/MX extension.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-254

SQL/MX Statements INSERT Statement

E

M

If you attempt to insert NULL into a column that is defined as NOT NULL or
DEFAULT into a column that is defined with NO DEFAULT, NonStop SQL/MX
returns an error.

For the description of value expressions, see Expressions on page 6-41. For
the description of query-expr, see SELECT Statement on page 2-330.

rowset-value-const

There must be at least one rowset expression in the rowset value constructor.
See the SQL/MX Programming Manual for C and COBOL for a discussion of
semantics when rowsets of different length or rowsets and scalars are used in
a rowset value constructor.

FROM ROWSET rowset-size

restricts the size of the rowset-derived table to the specified size, which must
be less than or equal to the allocated size for the rowset. The size, if specified,
immediately follows the ROWSET keyword. The size is an unsigned integer or
a host variable whose value is an unsigned integer. If you do not specify the
size, NonStop SQL/MX uses the allocated rowset size specified in the SQL
Declare Section.

:array-name [,:array-name]...

specifies a set of host variable arrays. Each array-name can be used like a
column in the rowset-derived table. Each array-name can be any valid host
language identifier with a data type that corresponds to an SQL data type.
Precede each array-name with a colon (:) within an SQL statement.

For more information on rowsets and host variable arrays, see the SQL/MX
Programming Manual for C and COBOL.

ORDER BY {colname | colnum [ASC[ENDING] | DESC[ENDING]]
 [,{colname | colnum} [ASC[ENDING] | DESC[ENDING]]]...

determines the order of the rows in the source table derived from the
evaluation of query-expr and therefore the order of insertion into table.
The query expression is evaluated and the source table ordered before
inserting any rows into the target table. Note that this option has no effect when
inserting into a table with a key-sequenced physical organization.

colname

is the name colname of a column in a table or view that is referenced by
the query expression and optionally qualified by a table, view, or correlation
name; for example, CUSTOMER.CITY. If a column has been aliased to
another name you must use the alias name.

mbed

XCI
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-255

SQL/MX Statements INSERT Statement
colnum

specifies a column by its position colnum in the select list of the query
expression. Use colnum to refer to unnamed columns, such as columns in
the derived table of a query expression other than a table or view.

ASC | DESC

specifies the sort order. The default is ASC. For ordering the source table
on a column that can contain null, nulls are considered equal to one
another but greater than non-nulls.

DEFAULT VALUES

specifies a query expression of the form VALUES (DEFAULT, ...). The value of
each DEFAULT is the default value defined in the column descriptor of
colname, which is contained in the table descriptor of table. Each default
value is inserted into its column to form a new row.

If you specify DEFAULT VALUES, you cannot specify a column list. You can
use DEFAULT VALUES only when all columns in table have default values.

[FOR] access-option ACCESS

specifies the access option required for data accessed and returned in the source
table derived from the evaluation of a query expression that is a SELECT
statement. See Data Consistency and Access Options on page 1-8.

READ COMMITTED

specifies that any data accessed and returned in the source table derived from
the evaluation of the query expression must be from committed rows.

SERIALIZABLE | REPEATABLE READ

specifies that the INSERT statement and any concurrent process (accessing
the same data) execute as if the statement and the other process had run
serially rather than concurrently.

The default access option is the isolation level of the containing transaction, which
is determined according to the rules specified in Isolation Level on page 10-56.

IN {SHARE | EXCLUSIVE} MODE

specifies that either SHARE or EXCLUSIVE locks be used when accessing data
specified by a SELECT statement or by a table reference in the FROM clause
derived from the evaluation of a query expression that is a SELECT statement; and
when accessing the index, if any, through which the table accesses occur.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-256

SQL/MX Statements Considerations for INSERT
Considerations for INSERT

Starting with SQL/MX Release 3.2, self-referencing inserts are supported. With this
support, you can select the rows to be inserted from the target table in a subquery.

Statement atomicity means that a statement will either complete or be rolled back,
without having to rollback a business transaction that contains multiple statements.
SQL/MX will try to undo any changes to the database as a result of an insert in case a
row cannot be inserted, typically because of a constraint violation such as a duplicate
row.

There are some conditions where such an undo operation will cause an active
transaction to be rolled back instead of just the statemement. The following are some
examples where the active transaction will be rolled back:

 Parallel inserts performed by ESPs

 VSBB inserts (either explicitly enforced by the CQD INSERT_VSBB set to ON or
when chosen by the optimizer)

 CQD UPD_ABORT_ON_ERROR is set to ON to force transactions to be aborted.
This CQD is supported to preserve the behavior of older releases

 The underlying table has referential integrity constraints or triggers defined

For more information, see Transaction Management on page 1-13.

Use the EXPLAIN statement to check whether transactions will be rolled back or if
statement atomicity will be used. For more information, see EXPLAIN Statement on
page 2-208.

Authorization Requirements

INSERT requires authority to read and write to the table or view receiving the data and
authority to read tables or views specified in the query expression (or any of its
subqueries) in the INSERT statement.

Transaction Initiation and Termination

The INSERT statement will automatically initiate a transaction only if TRANSACTION
AUTOBEGIN is set to ON. If a separate BEGIN WORK was issued, the INSERT
statement operates under that transaction.

The INSERT statement will commit the transaction if TRANSACTION AUTOCOMMIT
is set to ON. If AUTOCOMMIT is set to OFF, you must explicitly commit the
transaction.

If a table is not audited, transactions do not apply.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-257

SQL/MX Statements Considerations for INSERT

Em

Em

C/C
Isolation Levels of Transactions and Access Options of
Statements

The isolation level of an SQL/MX transaction defines the degree to which the
operations on data within that transaction are affected by operations of concurrent
transactions. When you specify access options for the DML statements within a
transaction, you override the isolation level of the containing transaction. Each
statement then executes with its individual access option.

You can explicitly set the isolation level of a transaction with the SET TRANSACTION
statement. See SET TRANSACTION Statement on page 2-376. The default isolation
level of a transaction is determined according to the rules specified in Isolation Level
on page 10-56.

It is important to note that the SET TRANSACTION statement might cause a dynamic
recompilation of the DML statements within the next transaction. Dynamic
recompilation occurs if NonStop SQL/MX detects a change in the transaction mode at
run time compared with the transaction mode at the time of static SQL compilation. To
avoid dynamic recompilation because of a change in the transaction mode, consider
specifying access options for individual DML statements instead of using SET
TRANSACTION.

Use of a VALUES Clause for the Source Query Expression

If the query expression consists of the VALUES keyword followed by rows of values,
each row consists of a list of value expressions or a row subquery (a subquery that
returns a single row of column values). A value in a row can also be a scalar subquery
(a subquery that returns a single row consisting of a single column value).

Within a VALUES clause, the operands of a value expression can be numeric, string,
datetime, or interval values; however, an operand cannot reference a column (except
in the case of a scalar or row subquery returning a value or values in its result table).

Inserting From Host Variables

To insert a row from host variables, an application program moves the new values to a
sequence of host variables, and then executes an INSERT statement to transfer the
row of values from the host variables to the table or view.

In this situation, the query expression that defines the insert source is specified as:

VALUES (variable-spec [,variable-spec]...)

Each variable specification has the form:

:variable-name [[INDICATOR] :indicator-name]

Note. NonStop SQL/MX accepts SQL/MP keywords as synonyms for READ UNCOMMITTED,
STABLE, and SERIALIZABLE.

bed

bed

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-258

SQL/MX Statements Considerations for INSERT
The variable specification is a declared host variable with an optional indicator variable.
To insert null into a database, set the indicator variable to a value less than zero.

For more information, see the SQL/MX Programming Manual for C and COBOL.

Requirements for Inserted Rows

Each row to be inserted must satisfy the constraints of the table or underlying base
table of the view. A table constraint is satisfied if the check condition is not false—it is
either true or has an unknown value.

Using Compatible Data Types

To insert a row, you must provide a value for each column in the table that has no
default value. The data types of the values in each row to be inserted must be
compatible with the data types of the corresponding target columns.

Inserting Character Values

Any character string data type is compatible with all other character string data types
that have the same character set. For fixed length, an inserted value shorter than the
column length is padded on the right with single-byte ASCII blanks (HEX 20). If the
value is longer than the column length, string truncation of nonblank trailing characters
returns an error, and the truncated string is not inserted.

For variable length, a shorter inserted value is not padded. As is the case for fixed
length, if the value is longer than the column length, string truncation of nonblank
trailing characters returns an error, and the truncated string is not inserted.

Inserting Numeric Values

Any numeric data type is compatible with all other numeric data types. If you insert a
value into a numeric column that is not large enough, an overflow error occurs. If a
value has more digits to the right of the decimal point than specified by the scale for
the column definition, the value is truncated.

Inserting Interval Values

A value of INTERVAL data type is compatible with another value of INTERVAL data
type only if the two data types are either both year-month or both day-time intervals.

Inserting Date and Time Values

DATE, TIME, and TIMESTAMP are the three SQL/MX datetime data types. A value
with a datetime data type is compatible with another value with a datetime data type
only if the values have the same datetime fields.

Inserting Nulls

In addition to inserting values with specific data types, you might want to insert nulls.
To insert null, use the keyword NULL.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-259

SQL/MX Statements Considerations for self-referencing inserts
Audited and Nonaudited Tables

SQL/MX tables must be audited. You can run NonStop SQL/MX against nonaudited
SQL/MP tables.

The TMF product works only on audited tables, so a transaction does not protect
operations on nonaudited tables. Nonaudited tables follow a different locking and error
handling model than audited tables. Certain situations such as DML error occurrences
or utility operations with DML operations can lead to inconsistent data within a
nonaudited table or between a nonaudited table and its indices.

To avoid problems, do not run DDL or utility operations concurrently with DML
operations on nonaudited tables. When you try to delete data in a nonaudited table
with an index, NonStop SQL/MX returns an error.

Considerations for self-referencing inserts

 The Halloween problem occurs when rows are updated using an index that
contains a column being updated. As the column is updated, the current index
entry is deleted, creating a possibility that a new index could be inserted ahead of
the current entry. Similarly, when a self-referencing insert uses the primary key or
an index to select rows from a table that are inserted into the same table, the newly
inserted rows may also qualify the selection criteria and thus the insert statement
may create an infinite loop. When this happens, the rows appear repeatedly.

SQL/MX Release 3.2 overcomes the Halloween problem using the following
methods:

 Blocking Plan Operator Method - A blocking operator is introduced in the
query plan to ensure that all the selected rows are read from the target
table before inserting new rows. Self-referencing UPDATE, DELETE
statements and UPDATE statements on primary key unique index columns
use this method.

 DP2 Locks Method (DP2 Locks) - DP2 ensures that newly added rows
are skipped for the scan. By default, the DP2 Locks Method is used to
overcome the Halloween problem.

The optimizer chooses the Blocking Plan Operator Method over the DP2
Locks Method when the following criteria are met:

 Estimated number of rows to be inserted (input cardinality) is greater
than the lock escalation limit per partition

 SERIALIZABLE ACCESS for the insert-source

 READ UNCOMMITTED ACCESS for the insert-source

 CQD BLOCK_TO_PREVENT_HALLOWEEN is ON

 TABLELOCK is set to ON on the target table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-260

SQL/MX Statements Considerations for self-referencing inserts
 AUTOCOMMIT must be ON for the optimizer to choose the DP2 Locks Method,
otherwise an SQL error 8107 is returned. AUTOCOMMIT is OFF for embedded
SQL programs written in C, C++ or COBOL and the DP2 Locks Method cannot be
used. For self-referencing INSERT statements from embedded SQL programs,
SQL error 8107 is returned. To overcome this problem, ensure the optimizer
chooses the Blocking Plan Operator Method by setting the CQD
BLOCK_TO_PREVENT_HALLOWEEN to ON.

 Multiple SQL statements in a transaction are processed differently. If the first
statement does not use self-referencing updates and locks the table, the
subsequent statements cannot use self-referencing updates as they require row
locks. With the default DP2 Locks Method, DP2 returns SQL error 1192 indicating
a failed INSERT operation and no rows are inserted. You can overcome this
problem by setting the CQD BLOCK_TO_PREVENT_HALLOWEEN to ON.

Note: The optimizer chooses either the DP2 Locks or the Blocking Plan Operator Method
based on this CQD setting.

When the CQD is ON, the optimizer chooses the Blocking Plan Operator Method, and when
this CQD is OFF, the optimizer chooses the DP2 Locks Method. When the CQD is set to
RESET, the CQD value is reset to OFF. The default is OFF.

CONTROL QUERY DEFAULT BLOCK_TO_PREVENT_HALLOWEEN
{ON|OFF|RESET}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-261

SQL/MX Statements MXCI Examples of INSERT
MXCI Examples of INSERT

 Insert a row into the CUSTOMER table and supply the value 'A2' for the CREDIT
column:

INSERT INTO sales.customer
 VALUES (4777, 'ZYROTECHNIKS', '11211 40TH ST.',
 'BURLINGTON', 'MASS.', '01803', 'A2');

--- 1 row(s) inserted.

Notice that the column name list is not specified for this INSERT statement. This
operation works because the number of values listed in the VALUES clause is
equal to the number of columns in the CUSTOMER table, and the listed values
appear in the same order as the columns specified in the CREATE TABLE
statement for the CUSTOMER table.

By issuing this SELECT statement, this specific order is displayed:

SELECT * FROM sales.customer
 WHERE custnum = 4777;

CUSTNUM CUSTNAME STREET ... POSTCODE CREDIT
------- ------------- -------------- -------- ------
 4777 ZYROTECHNIKS 11211 4OTH ST. ... 01803 A2

--- 1 row(s) selected.

 Insert a row into the CUSTOMER table:

INSERT INTO sales.customer
 (custnum, custname, street, city, state, postcode)
 VALUES (1120, 'EXPERT MAILERS', '5769 N. 25TH PLACE',
 'PHOENIX', 'ARIZONA', '85016');

--- 1 row(s) inserted.

Unlike the previous example, this INSERT does not include a value for the
CREDIT column, which has a default value. As a result, this INSERT must include
the column name list.

This SELECT statement shows the default value 'C1' for CREDIT:

SELECT * FROM sales.customer
 WHERE custnum = 1120;

CUSTNUM CUSTNAME STREET ... POSTCODE CREDIT
------- -------------- -------------- -------- ------
 1120 EXPERT MAILERS 5769 N. 25TH. ... 85016 C1

--- 1 row(s) selected.

 Insert multiple rows into the JOB table by using only one INSERT statement:

INSERT INTO persnl.job
 VALUES (100,'MANAGER'),
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-262

SQL/MX Statements MXCI Examples of INSERT
 (200,'PRODUCTION SUPV'),
 (250,'ASSEMBLER'),
 (300,'SALESREP'),
 (400,'SYSTEM ANALYST'),
 (420,'ENGINEER'),
 (450,'PROGRAMMER'),
 (500,'ACCOUNTANT'),
 (600,'ADMINISTRATOR'),
 (900,'SECRETARY');

--- 10 row(s) inserted.

 The PROJECT table consists of five columns using the data types NUMERIC,
VARCHAR, DATE, TIMESTAMP, and INTERVAL. Insert values by using these
types:

INSERT INTO persnl.project
 VALUES (1000, 'SALT LAKE CITY', DATE '1996-10-02',
 TIMESTAMP '1996-12-21:08:15:00.00', INTERVAL '30' DAY);

--- 1 row(s) inserted.

 Suppose that CUSTLIST is a view of all columns of the CUSTOMER table except
the credit rating. Insert information from the SUPPLIER table into the CUSTOMER
table through the CUSTLIST view, and then update the credit rating:

INSERT INTO sales.custlist
 (SELECT * FROM invent.supplier
 WHERE suppnum = 10);

UPDATE sales.customer
 SET credit = 'A4'
 WHERE custnum = 10;

You could use this sequence in the following situation. Suppose that one of your
suppliers has become a customer. If you use the same number for both the
customer and supplier numbers, you can select the information from the
SUPPLIER table for the new customer and insert it into the CUSTOMER table
through the CUSTLIST view (as shown in the example).

This operation works because the columns of the SUPPLIER table contain values
that correspond to the columns of the CUSTLIST view. Further, the credit rating
column in the CUSTOMER table is specified with a default value. If you want a
credit rating that is different from the default, you must update this column in the
row of new customer data.

 This self-referencing INSERT statement uses the DP2 Locks Method. Look for the
flag self_referencing_update in the explain output:

drop table test1;
create table test1(col1 int not null , col2 char(3),primary
key(col1));
insert into test1 values (1, '100'), (2, '200');
--- 2 row(s) inserted.
prepare s1 from insert into test1 select col1 + 10, col2 from
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-263

SQL/MX Statements MXCI Examples of INSERT
test1 where col1 <= 3;
explain s1;

----- PLAN SUMMARY
MODULE_NAME DYNAMICALLY COMPILED
STATEMENT_NAME S1
PLAN_ID 212204691857830064
ROWS_OUT 33
EST_TOTAL_COST 0.03
STATEMENT insert into test1
 select col1 + 10, col2
 from test1
 where col1 <= 3;

----- NODE LISTING

ROOT ====================================== SEQ_NO 6
ONLY CHILD 5
REQUESTS_IN 1
ROWS_OUT 33
EST_OPER_COST 0
EST_TOTAL_COST 0.03
DESCRIPTION
 max_card_est 33
 fragment_id 0
 parent_frag (none)
 fragment_type master
 statement_index 0
 olt_optimization not used
 affinity_value 304,391,840
 upd_action_on_error savepoint
 xn_autoabort_interval -1
 plan_version 3,200
 self_referencing_update dp2_locks
 MXCI_PROCESS ON
 SHOWCONTROL_UNEXTERNALI OFF
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-264

SQL/MX Statements MXCI Examples of INSERT
 select_list %(10)
........

>>execute s1;
--- 2 row(s) inserted.
>>select * from test1;

COL1 COL2

----------- ----

 1 100

 2 200

 11 100

 12 200

--- 4 row(s) selected.

control query default BLOCK_TO_PREVENT_HALLOWEEN 'ON';

>>control query default BLOCK_TO_PREVENT_HALLOWEEN 'ON';

--- SQL operation complete.

 This self-referencing INSERT statement uses the Blocking Plan Operator Method.
Look for the flag self_referencing_update and forced_sort in the explain
output. The forced sort causes the plan to block until all records are processed:

>>fc pre

>>prepare s1 from insert into test1 select col1 + 10, col2
from test1 where col1 <= 3;

..
--- SQL command prepared.

>>fc exp
>>explain s1;
..

----- PLAN SUMMARY

MODULE_NAME DYNAMICALLY COMPILED
STATEMENT_NAME S1
PLAN_ID 212204692084904912
ROWS_OUT 33
EST_TOTAL_COST 0.04
STATEMENT insert into test1
 select col1 + 10, col2
 from test1
 where col1 <= 3;

----- NODE LISTING

ROOT ====================================== SEQ_NO 7
ONLY CHILD 6
REQUESTS_IN 1
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-265

SQL/MX Statements MXCI Examples of INSERT
ROWS_OUT 33
EST_OPER_COST 0
EST_TOTAL_COST 0.04
DESCRIPTION
 max_card_est 33
 fragment_id 0
 parent_frag (none)
 fragment_type master
 statement_index 0
 olt_optimization not used
 affinity_value 1,687,913,920
 upd_action_on_error savepoint
 xn_autoabort_interval -1
 plan_version 3,200
 self_referencing_update forced_sort
 MXCI_PROCESS ON
 SHOWCONTROL_UNEXTERNALI OFF

 BLOCK_TO_PREVENT_HALLOW ON
 select_list %(10)

>>execute s1;

--- 2 row(s) inserted.

>>select * from test1;

COL1 COL2

----------- ----

 1 100

 2 200

 11 100

 12 200

--- 4 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-266

SQL/MX Statements C Examples of INSERT
C Examples of INSERT

 Execute an INSERT statement:

...
EXEC SQL INSERT INTO SALES.CUSTOMER
 (CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE)
 VALUES (1120, 'EXPERT MAILERS', '5769 N.25TH PLACE',
 'PHOENIX', 'ARIZONA', '85016');
...

 Use host variables to insert values with an INSERT statement:

...
EXEC SQL INSERT INTO SALES.CUSTOMER
 (CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE)
 VALUES (:hv_custnum, :hv_custname, :hv_street,
 :hv_city, :hv_state, :hv_postcode);
...

 Execute an INSERT statement that includes an ORDER BY on a column that is
used in an expression. The correlation name, MLT1, is the column that NonStop
SQL/MX uses for the ORDER BY:

INSERT INTO temp1
(SELECT (UDEC1_NUNIQ - 1) as MLT1 FROM
 $SQL04.SQLDPOPS.B2PWL34)
 ORDER BY MLT1;

COBOL Examples of INSERT

 Execute an INSERT statement:

...
EXEC SQL INSERT INTO SALES.CUSTOMER
 (CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE)
 VALUES (1120, 'EXPERT MAILERS', '5769 N.25TH PLACE',
 'PHOENIX', 'ARIZONA', '85016')
END-EXEC.
...

 Use host variables to insert values with an INSERT statement:

...
EXEC SQL INSERT INTO SALES.CUSTOMER
 (CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE)
 VALUES (:hv-custnum, :hv-custname, :hv-street,
 :hv-city, :hv-state, :hv-postcode)
END-EXEC.
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-267

SQL/MX Statements LOCK TABLE Statement
LOCK TABLE Statement
Considerations for LOCK TABLE
Examples of LOCK TABLE

The LOCK TABLE statement locks a table (or the underlying tables of a view) and its
indexes, limiting other access to the table and its indexes while your process executes
DML statements. See Database Integrity and Locking on page 1-11.

LOCK TABLE is an SQL/MX extension.

table

is the name of the table or view to be locked. See Database Object Names on
page 6-13.

IN {SHARE | EXCLUSIVE} MODE

specifies the locking mode:

If you request a SHARE lock on a table locked with an EXCLUSIVE lock by
another user, your request waits until the EXCLUSIVE lock is released.

If you request an EXCLUSIVE lock on a table and any part of the table is locked by
another user, your request waits until the lock is released, or until your lock request
times out and an error message is returned.

Considerations for LOCK TABLE

Authorization Requirements

To lock a table, you must have authority to read the table. To lock a view, you must
have authority to read the view but not necessarily the tables underlying the view.

Modifying Default Locking

A SELECT statement automatically acquires SHARE locks unless you specify
EXCLUSIVE in the IN clause of the SELECT statement. The DELETE, INSERT, and
UPDATE statements automatically acquire EXCLUSIVE locks.

LOCK TABLE table IN {SHARE | EXCLUSIVE} MODE

SHARE Other processes can read, but not delete, insert, or update the table or
view.

EXCLUSIVE Other processes can read with READ UNCOMMITTED access, but
cannot read with READ COMMITTED or SERIALIZABLE access, and
cannot delete, insert, or update the table or view.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-268

SQL/MX Statements Examples of LOCK TABLE
You can use LOCK TABLE with the EXCLUSIVE option to force the use of
EXCLUSIVE locks for a subsequent SELECT; however, keep in mind that LOCK
TABLE locks the entire table.

Unlocking Locked Tables

Audited tables do not need to be explicitly unlocked. An audited table can be locked
only within a transaction and is automatically unlocked when the transaction ends.

You can unlock nonaudited tables by using UNLOCK TABLE. However, locked tables
are unlocked automatically when you issue COMMIT WORK or ROLLBACK WORK to
end a user-defined transaction or when your MXCI session ends. Only SQL/MP tables
can be nonaudited.

Effect of AUTOCOMMIT Option

At the start of an MXCI session, the AUTOCOMMIT option is ON by default. When this
option is ON, NonStop SQL/MX automatically commits any changes, or rolls back any
changes, made to the database at the end of statement execution. When you issue a
LOCK TABLE statement in MXCI without turning off AUTOCOMMIT, NonStop SQL/MX
locks the table temporarily, and then commits the transaction at the end of the LOCK
TABLE statement and releases the locks. If you use LOCK TABLE in MXCI, turn off
AUTOCOMMIT by using the SET TRANSACTION statement. See SET
TRANSACTION Statement on page 2-376.

Partitions and Indexes

LOCK TABLE attempts to lock all partitions and indexes of any table it locks. If a
partition or index is not available or if the lock request times out, LOCK TABLE displays
a warning and continues to request locks on other partitions and indexes.

Examples of LOCK TABLE

 Lock an audited table with an EXCLUSIVE lock (at a time when few users need
access to the database) to perform a series of updates:

BEGIN WORK;

LOCK TABLE persnl.employee
 IN EXCLUSIVE MODE;

UPDATE persnl.employee
 SET salary = salary * 1.05
 WHERE jobcode <> 100;

COMMIT WORK;

COMMIT WORK automatically unlocks the table when it ends the transaction.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-269

SQL/MX Statements Examples of LOCK TABLE
 Delete all rows of the JOB table that have a job code that is not assigned to any
employee:

BEGIN WORK;
--- SQL operation complete.

LOCK TABLE persnl.job
 IN EXCLUSIVE MODE;
--- SQL operation complete.

LOCK TABLE persnl.employee
 IN SHARE MODE;
--- SQL operation complete.

DELETE FROM persnl.job
WHERE jobcode NOT IN
 (SELECT DISTINCT jobcode
 FROM persnl.employee);
--- 1 row(s) deleted.

COMMIT WORK;
--- SQL operation complete.

UNLOCK TABLE persnl.job;
--- SQL operation complete.

In this example, suppose that the JOB table is nonaudited and you want locks held
for several transactions. Because the EMPLOYEE table is audited and you are
locking it, you define a transaction. At the end of the transaction, the EMPLOYEE
table lock is released by the system. You must use the UNLOCK TABLE command
to release the lock on the JOB table because the table is nonaudited.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-270

SQL/MX Statements MODIFY Utility
MODIFY Utility
Considerations for MODIFY
Examples of MODIFY

MODIFY is a syntax-based utility that can be executed through MXCI that enables
database administrators to perform partition operations on range and hash partitions of
SQL/MX tables and indexes. Depending on the type of operation you are performing,
MODIFY can be run as an online or offline operation. See Considerations for MODIFY
on page 2-290 for details about limitations on online operations.

The forms of the MODIFY statement are:

 Reuse an Existing Partition of a Range Partitioned Table
 Manage Partitions of Range Partitioned Tables and Indexes
 Manage Partitions of Hash Partitioned Tables and Indexes
 Manage System-Clustered Tables
 Managing a Sequence Generator
 Renaming Guardian Location of Partitions of Tables, Indexes or Sequence

Generators

Reuse an Existing Partition of a Range Partitioned Table

Use MODIFY to reuse an existing range partition of a table by setting the FIRST KEY
values of the partition to new values. You can optionally remove existing data in the
partition to be reused. No data can exist in the new key range. Only offline operations
are supported.

[[catalog.]schema.]table

specifies the name of the table. If you do not specify the schema and catalog name
parts, MODIFY uses the current default catalog and schema of your MXCI session.

The REUSE form of MODIFY is:

MODIFY TABLE [[catalog.]schema.]table
 REUSE [PARTITION] WHERE partition-identification
 WITH [KEY=] key-value
 [[NO] PURGEDATA]

partition-identification is:
 LOCATION [\node.]$volume[.subvolume.file-name]
 | NAME partition-name
 | [KEY=] {FIRST | LAST} PARTITION
 | [KEY=] key-value

key-value is:
VALUE (column-value [,column-value]...)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-271

SQL/MX Statements Reuse an Existing Partition of a Range Partitioned
Table
partition-identification

describes the partition.

LOCATION [\node.]$volume[.subvolume.file-name]
| NAME partition-name
| [KEY=] {FIRST | LAST} PARTITION
| [KEY=] key-value

is a location for a partition or a name for a partition or the partitioning key (the
FIRST KEY) value (key-value) of a partition, to be modified.

If the partition is the primary partition, you can also specify the partition using the
FIRST PARTITION phrase. If the partition is the last partition in the list of partitions
of the table or index, you can use the LAST PARTITION phrase. You can use
either phrase to specify a partition if it is the only partition of the object.

 [\node.]$volume
| [\node.]$volume.subvolume.file-name

is the physical location of a partition. If you do not specify the file name, a
volume can be used only once for a given table or index.

\node can be either the local node or a remote node. If you do not specify
\node, the default is the Guardian system named in your =_DEFAULTS define.

partition-name

is a SQL identifier for a partition.

key-value

is the key value of a partition to be modified.

VALUE (column-value [,column-value]...)

is the boundary values for the partition to be modified. You can identify a
partition by its partitioning key value key-value. You can omit the values of
the suffix columns in the FIRST KEY value provided that the specified column
values can adequately identify the partition. If you omit a column-value,
MODIFY uses either the low value or the high value of the corresponding
partitioning key column, depending on whether the column stores data in
ascending or descending order.

WITH [KEY=] key-value

assigns the new partitioning key value key-value to the specified partition. If
you omit the values of the suffix columns, MODIFY uses the default value,
either the low or high value of the corresponding partitioning key column,
depending on whether the column contains data in ascending or descending
order. You can omit the column values only on the right of the list.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-272

SQL/MX Statements Reuse an Existing Partition of a Range Partitioned
Table
[[NO] PURGEDATA]

specifies whether the existing data in the specified partition is removed. If the
partition contains data and you do not explicitly specify the PURGEDATA option,
MODIFY returns an error. The default is NO PURGEDATA.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-273

SQL/MX Statements Manage Partitions of Range Partitioned Tables and
Indexes
Manage Partitions of Range Partitioned Tables and Indexes

Use MODIFY to manage range partitions of SQL/MX tables and indexes. You
must manage tables and indexes separately regardless of their relationship.
Both offline and online operations are supported. See Considerations for
MODIFY on page 2-290 for details about limitations on online operations.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-274

SQL/MX Statements Manage Partitions of Range Partitioned Tables and
Indexes
The form of MODIFY for range partitioned tables and indexes is:

MODIFY { TABLE | INDEX } [[catalog.]schema.] object
 { drop | add | move }

drop is:
 DROP [PARTITION] WHERE partition-identification

add is:
 ADD [PARTITION] WHERE add-move-boundary-range
 [TO] LOCATION new-partition
 [NAME new-partition-name]
 [partition-size]
 [RECLAIM | NO RECLAIM]
 [with-shared-access]

move is one of:
 MOVE [PARTITION] [WHERE partition-identification]
 [TO] LOCATION new-partition
 [NAME new-partition-name]
 [partition-size]
 [RECLAIM | NO RECLAIM]
 [with-shared-access]

 MOVE [PARTITION]
 WHERE {add-move-boundary-range | partition-identification}
 [TO] {PREVIOUS | NEXT} PARTITION
 [RECLAIM | NO RECLAIM]
 [with-shared-access]

partition-identification is:
 LOCATION [\node.]$volume[.subvolume.file-name]
 | NAME partition-name
 | [KEY=] {FIRST | LAST} PARTITION
 | [KEY=] key-value

add-move-boundary-range is:
 [KEY=] FIRST KEY UPTO [KEY=] key-value
 | [KEY=] key-value [THRU [KEY=] LAST KEY]

key-value is:
 VALUE (column-value [,column-value]...)

partition-size is:
 partition-extent-size [MAXEXTENTS num-extents]

partition-extent-size is:
 EXTENT { pri-ext-size }
 { (pri-ext-size, sec-ext-size) }

with-shared-access is:
 WITH SHARED ACCESS [commit-options]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-275

SQL/MX Statements Manage Partitions of Range Partitioned Tables and
Indexes
[[catalog.]schema.]object

is the name of the range partitioned object. If you do not specify the schema and
catalog name, NonStop SQL/MX uses the default catalog and schema of your
MXCI session. object is a table or an index, depending on the TABLE or INDEX
keyword.

DROP [PARTITION] WHERE partition-identification

is a request to drop a range partition. The specified partition must be empty.

partition-identification

describes the partition.

LOCATION [\node.]$volume[.subvolume.file-name]
| [KEY=] {FIRST | LAST} PARTITION
| [KEY=] key-value

is a location for a partition or the partitioning key (the FIRST KEY) value
key-value of a partition to be moved or dropped.

When you drop a partition, its key range is merged into the previous partition
unless the first partition is dropped. If you drop the first partition, its key range is
merged into the next partition.

 [\node.]$volume
| [\node.]$volume.subvolume.file-name

is the physical location of a partition. If you do not specify the file name, only
one partition can exist for the given data source.

\node can be either the local node or a remote node. If you do not specify
\node, the default is the Guardian system named in your =_DEFAULTS define.

commit-options is:
 { COMMIT [WORK] [{ WHEN READY } | { AFTER time } | {
BEFORE time }] [on-error] }

on-error is:
 { ONCOMMITERROR
 { COMMIT [WORK] [{ WHEN READY } | { AFTER time } | {
BEFORE time }]}
 | { ROLLBACK [WORK] }
 }
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-276

SQL/MX Statements Manage Partitions of Range Partitioned Tables and
Indexes
ADD [PARTITION] WHERE add-move-boundary-range
 [TO] LOCATION new-partition
 [NAME new-partition-name]
 [partition-size]

specifies a request to split a range of data in an existing partition (either the
beginning part or the last part) and then move it to a new partition. Data can exist
in the range being added.

An operation is a prefix split if the range of data begins from the top of the existing
partition. An operation is a postfix split if the range ends at the bottom of the
partition.

add-move-boundary-range

is the boundary range.

 [KEY=] FIRST KEY UPTO [KEY=] key-value
| [KEY=] key-value [THRU [KEY=] LAST KEY]

specifies the partitioning range add-move-boundary-range of a partition to
be split and then added to a new partition.

You can specify the partitioning range of a new partition to be added by
splitting off the beginning or end of an existing partition with the FIRST KEY
(start key value) up to, but not including, a key value key-value in the current
partition, or by a key value key-value in the current partition through the
LAST KEY (end key value). THRU [KEY=] LAST KEY is optional.

When you specify key-value, you can omit the values of the suffix columns
provided that the specified column values can adequately identify the partition.
If you omit column-value, MODIFY uses the default value, either the low or
high value of the corresponding partitioning key column, depending on whether
the column contains data in ascending or descending order.

[TO] LOCATION new-partition

specifies the location of the new partition.

new-partition

specifies a disk volume or a Guardian file for the new partition. If you use disk
volume syntax, MODIFY generates the file suffix name part. The specified new
partition can be on the local system or a remote system.

new-partition-name

is a SQL identifier for a partition.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-277

SQL/MX Statements Manage Partitions of Range Partitioned Tables and
Indexes
MOVE [PARTITION] [WHERE partition-identification]
 [TO] LOCATION new-partition
 [NAME new-partition-name]
 [partition-size]

is a request to move an existing partition to a new location.
partition-identification is optional only if the table or index has only one
partition.

MOVE [PARTITION] WHERE
 {partition-identification | add-move-boundary-range}
 [TO] {PREVIOUS | NEXT} PARTITION

is a request to merge part or all of an existing partition to an adjacent existing
partition. You can specify an entire partition using the
partition-identification clause.

partition-identification

describes the partition.

 LOCATION [\node.]$volume[.subvolume.file-name]
| NAME partition-name
| [KEY=] {FIRST | LAST} PARTITION
| [KEY=] key-value

is a location for a partition, or the partitioning key (the FIRST KEY) value
(key-value) of a partition, to be modified.

If the partition is the primary partition, you can also specify the partition using
the FIRST PARTITION phrase. If the partition is the rightmost partition in the
list of partitions of the table, you can use the LAST PARTITION phrase. You
can use either phrase to specify a partition if it is the only partition of the object.

 [\node.]$volume
| [\node.]$volume.subvolume.file-name

is the physical location of a partition. If you do not specify the file name, only
one partition can exist for the given data source.

\node can be either the local node or a remote node. If you do not specify
\node, the default is the Guardian system named in your =_DEFAULTS define.

You can use the add-move-boundary-range clause to specify a range of
data in a partition (either the beginning part or the last part) to be split and then
merged into an adjacent and existing partition.

An operation is a prefix merge if the range of data begins from the top of the
existing partition. For a prefix merge operation, you can specify only the TO
PREVIOUS PARTITION clause. The split partition cannot be the primary
partition.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-278

SQL/MX Statements Manage Partitions of Range Partitioned Tables and
Indexes
An operation is a postfix merge if the range of data ends at the bottom of the
partition. You can specify only the TO NEXT PARTITION clause. The split
partition cannot be the last partition (the rightmost partition in the list).

partition-size

is the size of the new partition.

partition-extent-size [MAXEXTENTS max-extents]

is the size of the new partition. You can specify the sizes of the primary and
secondary extents and the maximum number of extents. If you do not
specify MAXEXTENTS, MODIFY uses the value of the source partition.

partition-extent-size

is the extent size of the new partition.

EXTENT { ext-size }
 { (pri-ext-size, sec-ext-size) }

ext-size is an unsigned integer value. You can specify it as the size for
both primary and secondary extents of the new partition. You can specify
the size of the primary extent and secondary extents separately. If you do
not specify EXTENT, MODIFY uses the extent size values of the source
partition.

See EXTENT on page 8-6 and MAXEXTENTS on page 8-7.

WITH SHARED ACCESS [commit-options]

specifies that the operation is an online operation. If you do not specify
commit-options, the default is COMMIT WHEN READY ONCOMMITERROR
ROLLBACK WORK.

COMMIT [WORK] [WHEN READY] [on-error]
 [{ AFTER time }]
 [{ BEFORE time }]

time

is the time at which the commit phase should occur. The on-error clause
specifies what will happen if the Commit Phase fails with a retryable error. If the
time has already passed, MODIFY returns an error.

time is a quoted string datetime literal.

WHEN READY Commit phase should occur at the earliest possible time.

AFTER time Commit phase should occur after time.

BEFORE time Commit phase should occur before time.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-279

SQL/MX Statements Manage Partitions of Range Partitioned Tables and
Indexes
ROLLBACK [WORK]

specifies that the operation should be terminated. The effect is the same as issuing
a separate RECOVER command with the CANCEL option. ROLLBACK WORK
might only be specified in the last <on-error> clause.

ONCOMMITERROR commit-options

specifies what action SQL/MX should take if a retryable error occurs during
Commit Phase. Retryable errors include file in use, lock request timeouts, resource
unavailability, and BEFORE or AFTER time window misses.

A nonretryable error always causes SQL/MX to cancel changes to the database
and terminate the operation, no matter what you specify in the
ONCOMMITERROR option.

ONCOMMITERROR is recursive because it appears within a COMMIT option and
specifies another COMMIT option. You can specify up to three COMMIT options on
a single statement; specifying four or more causes an error.

RECLAIM | NO RECLAIM

specifies whether SQL/MX should automatically start ORSERV processes to
reclaim unused freespace in affected partitions (RECLAIM) or whether the user
must manually perform FUP RELOAD operations (NO RECLAIM). Partitions that
contain unused freespace have the UNRECLAIMEDSPACE (F) flag set in the file
label. Until the freespace is reclaimed, the flag remains set and any new MODIFY,
DUP, or BACKUP operation you attempt to perform on the object will fail with error
20290 (operation still in progress). DML operations can be performed on the
object, but all other operations will fail. If omitted, the default for range partitioned
objects is RECLAIM. The option will be ignored in situations where MODIFY does
not need to reclaim freespace.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-280

SQL/MX Statements Manage Partitions of Hash Partitioned Tables and
Indexes
Manage Partitions of Hash Partitioned Tables and Indexes

Use MODIFY to manage hash partitions of SQL/MX tables and indexes. You can drop
only the last partition. You must manage tables and indexes separately regardless of
whether they are related.

The form of MODIFY for hash partitioned tables and indexes is:

MODIFY {TABLE | INDEX} [[catalog.]schema.]object
 {drop | move | add}

drop is:
DROP [PARTITION] WHERE partition-identification
[RECLAIM | NO RECLAIM]
 [with-shared-access]

move is:
MOVE [PARTITION] [WHERE partition-identification]
[TO] LOCATION new-partition
[NAME new-partition-name]
[partition-size]
[RECLAIM | NO RECLAIM]
 [with-shared-access]

add is:
ADD [PARTITION] [TO] LOCATION new-partition
[NAME new-partition-name]
[partition-size]
[RECLAIM | NO RECLAIM]
 [with-shared-access]

partition-identification is:

 LOCATION [\node.]$volume[.subvolume.file-name]
 | NAME partition-name
 | {FIRST | LAST} PARTITION
 | [KEY=] VALUE(partition-number)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-281

SQL/MX Statements Manage Partitions of Hash Partitioned Tables and
Indexes
[[catalog.]schema.]object

is the name of the object. If you do not specify the schema and catalog name,
MODIFY uses the current default schema and catalog of your MXCI session.
object is a table or an index, depending on the TABLE or INDEX keyword.

DROP [PARTITION] WHERE partition-identification

drops a hash partition. The specified partition must be the last partition (the
rightmost partition in the partition array).

partition-identification

describes the partition.

LOCATION [\node.]$volume[.subvolume.file-name]
| NAME partition-name
| [KEY=] {FIRST | LAST} PARTITION
| [KEY=] VALUE(partition-number)

is the location for a partition, or the partitioning key (the FIRST KEY) value
(key-value) of a partition, to be dropped.

If you use the LOCATION clause, you must identify the last partition of the
table or index.

If you use partition-number, it must an unsigned integer and range
from 0 to n-1, where n is the number of partitions. VALUE(0) represents the
first partition, VALUE(1) represents the partition adjacent to the first
partition, and so on. VALUE(n-1) represents the last partition.

new-partition is:

 LOCATION [\node.]$volume[.subvolume.file-name]

<with-shared-access> is:
 WITH SHARED ACCESS [commit-options]

commit-options is:
 { COMMIT [WORK] [{ WHEN READY } | { AFTER time } | {
BEFORE time }] [on-error] }

on-error is:
 { ONCOMMITERROR
 { COMMIT [WORK] [{ WHEN READY } | { AFTER time } | {
BEFORE time }]}
 | { ROLLBACK [WORK] }
 }
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-282

SQL/MX Statements Manage Partitions of Hash Partitioned Tables and
Indexes
 When you drop a hash partition, data from that partition is redistributed to
 the remaining partitions.

[\node.]$volume
| [\node.]$volume.subvolume.file-name

is the physical location of a partition. If you do not specify the file name,
only one partition can exist for the given data source.

\node can be either the local node or a remote node. If you do not specify
\node, the default is the Guardian system named in your =_DEFAULTS
define.

 MOVE [PARTITION] [WHERE partition-identification]
 [TO] LOCATION new-partition
 [NAME new-partition-name]
 [partition-size]

Moves an existing hash partition to a new location. You can define the size of the
new partition using the optional partition-size clause. Otherwise, the values
of the primary partition apply. partition-identification is optional only
when the object has only one partition.

partition-identification

describes the partition.

 LOCATION [\node.]$volume[.subvolume.file-name]
| NAME partition-name
| [KEY=] {FIRST | LAST} PARTITION
| [KEY=] VALUE(partition-number)

is the location for a partition, or the partitioning key (the FIRST KEY) value
(key-value) of a partition, to be moved.

If you use partition-number, it must range from 0 to n-1, where n is the
number of partitions. VALUE(0) represents the first partition, VALUE(1)
represents the partition adjacent to the first partition, and so on. VALUE(n-
1) represents the last partition.

 [\node.]$volume
| [\node.]$volume.file-name

is the physical location of a partition. If you do not specify the file name,
only one partition can exist for the given data source.

\node can be either the local node or a remote node. If you do not specify
\node, the default is the Guardian system named in your =_DEFAULTS
define.

[TO] LOCATION new-partition

specifies the location of the new partition.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-283

SQL/MX Statements Manage Partitions of Hash Partitioned Tables and
Indexes
new-partition

is a disk volume or a Guardian file for the new partition. If you use disk
volume syntax, MODIFY generates the file suffix name part. The specified
new partition can be on the local system or a remote system.

new-partition-name

is an SQL identifier for the new partition.

partition-size

is the size of the new partition.

partition-extent-size [MAXEXTENTS num-extents]

is the size of the new partition. You can specify the sizes of the primary and
secondary extents and the maximum number of extents. If you do not
specify MAXEXTENTS, MODIFY checks all partitions and uses the value
of the source partition.

partition-extent-size

is the extent size of the new partition.

EXTENT { ext-size }
 { (pri-ext-size, sec-ext-size) }

ext-size is an unsigned integer value. You can specify it as the size for
both primary and secondary extents of the new partition. You can specify
the size of the primary extent and secondary extents separately. If you do
not specify EXTENT, MODIFY uses the extent size value of the source
partition.

See EXTENT on page 9-6 and MAXEXTENTS on page 9-7.

ADD [PARTITION]
 [TO] LOCATION new-partition [partition-size]

 adds a hash partition to the table or index.

[TO] LOCATION new-partition

specifies the location of the new partition.

new-partition

is a disk volume or a Guardian file for the new partition. If you use disk volume
syntax, MODIFY generates the file suffix name part. The specified new
partition can be on the local system or a remote system.

The new partition becomes the last partition of the table or index.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-284

SQL/MX Statements Manage Partitions of Hash Partitioned Tables and
Indexes
new-partition-name

is an SQL identifier for the new partition.

partition-size

is the size of the new partition.

partition-extent-size [MAXEXTENTS num-extents]

is the size of the new partition. You can specify the sizes of the primary and
secondary extents and the maximum number of extents. If you do not specify
MAXEXTENTS, MODIFY uses the largest maxextents size possible using the
combination of primary, secondary and max extent values.

partition-extent-size

is the extent size of the new partition

EXTENT { ext-size }
 { (pri-ext-size, sec-ext-size) }

ext-size is an unsigned integer value. You can specify it as the size for both
primary and secondary extents of the new partition. You can specify the size of
the primary extent and secondary extents separately. If you do not specify
EXTENT, MODIFY uses the largest extent size possible using the combination
of primary, secondary and max extent values.

See EXTENT on page 9-6 and MAXEXTENTS on page 9-7.

When you add a hash partition, a subset of data from existing partitions is
redistributed to the new partition.

WITH SHARED ACCESS [commit-options]

specifies that the operation is an online operation. If commit-options is
omitted, the effect is the same as specifying COMMIT WHEN READY
TIMEOUT DEFAULT ONCOMMITERROR ROLLBACK WORK.

COMMIT [WORK] [WHEN READY] [on-error]

 [{ AFTER time }]

 [{ BEFORE time }]

specifies the time at which the Commit Phase should occur. COMMIT WHEN
READY specifies that the Commit Phase should occur at the earliest possible
time. COMMIT AFTER time specifies that the Commit Phase should occur
after the given time. COMMIT BEFORE <time> specifies that the Commit
Phase should occur before the given <time>. The on-error clause specifies
what should happen if the Commit Phase fails with a retryable error. If omitted,
the effect is the same as specifying TIMEOUT DEFAULT ONCOMMITERROR
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-285

SQL/MX Statements Manage System-Clustered Tables
ROLLBACK WORK. time is a Datetime value. Example of time: '2005-02-
16 14:00:00'

ROLLBACK [WORK]

specifies that the operation should be terminated. The effect is the same as
issuing a separate RECOVER command with the CANCEL option. ROLLBACK
WORK may only be specified in the last on-error clause.

ONCOMMITERROR commit-options

specifies what action SQL/MX should take if a retryable error occurs during
Commit Phase. Retryable errors include file in use, lock request timeouts,
resource unavailability, and BEFORE/AFTER time window misses.

A nonretryable error always causes SQL/MX to cancel changes to the
database and terminate the operation, no matter what you specify in the
ONCOMMITERROR option.

ONCOMMITERROR is recursive because it appears within a COMMIT option
and specifies another COMMIT option. You can specify up to three COMMIT
options on a single statement; specifying four or more causes an error.

RECLAIM | NO RECLAIM

specifies whether SQL/MX should automatically start ORSERV processes
to reclaim unused freespace in affected partitions (RECLAIM) or whether
the user must manually perform FUP RELOAD operations (NO RECLAIM).
Partitions which contain unused freespace have the
UNRECLAIMEDSPACE (F) flag set in the file label. Until the freespace is
reclaimed the flag remains set and any new MODIFY, DUP, or BACKUP
operation you attempt to perform on the object will fail with error 20290
(operation still in progress). DML operations can be performed on the
object, but all other operations will fail. If omitted, the default for hash
partitioned objects is NO RECLAIM. The option will be ignored in situations
where MODIFY does not need to reclaim freespace.

Manage System-Clustered Tables

A system-clustered table has no primary key and no STORE BY clause. Its primary
key defaults to the SYSKEY.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-286

SQL/MX Statements Manage System-Clustered Tables
You can use MODIFY to move the existing partition of a system-clustered object to a
new location. Note that a system-clustered table can have only a single partition. Only
offline partition operations are supported.

[[catalog.]schema.]table

is the name of the system-clustered table. If you do not specify the schema and
catalog name, NonStop SQL/MX uses the current default catalog and schema of
your MXCI session.

[\node.]$volume[.subvolume.file-name]

is a disk volume or a Guardian file for the new partition. If you use disk volume
syntax, MODIFY generates the file name. \node can be either the local node or a
remote node. If you do not specify \node, the default is the Guardian system
named in your =_DEFAULTS define.

partition-size

is the size of the new partition.

partition-extent-size [MAXEXTENTS num-extents]

is the size of the new partition. You can specify the sizes of the primary extent and
secondary extents of the partition, and you can specify the maximum number of
extents the partition can have. If you do not specify MAXEXTENTS, MODIFY uses
the value of the primary partition.

partition-extent-size

is the extent size of the new partition

EXTENT { ext-size }
 { (pri-ext-size, sec-ext-size) }

ext-size is an unsigned integer value. You can specify it as the size for both
primary and secondary extents of the new partition. You can specify the size of the

The form of MODIFY for system-clustered objects is:

MODIFY TABLE [[catalog.]schema.]table

MOVE [PARTITION]
 [TO]

{ new-location [new-name] [partition-size] | new-name}

new-location is:
LOCATION [\node.]$volume[.subvolume.file-name]

new-name is:
NAME partition-name
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-287

SQL/MX Statements Managing a Sequence Generator
primary extent and that of secondary extents separately. If you do not specify
EXTENT, MODIFY uses the extent size values of the largest partition.

See EXTENT on page 9-6 and MAXEXTENTS on page 9-7.

Managing a Sequence Generator

You can use MODIFY to move the existing partition of a sequence generator to a new
location. A sequence generator can have only a single partition. Only offline partition
operations are supported.

[[catalog.]schema.]sequence

specifies the ANSI name of the sequence generator. If you do not specify the
schema and the catalog name, SQL/MX uses the current catalog and schema.

[\node.]$volume[.sub-volume.file-name]

specifies the disk volume or a Guardian file for the new location of the sequence
generator. If you use the disk volume syntax, MODIFY generates a file name. The
node can either be the local or a remote node. If you do not specify a node, the
default is the Guardian system named in your =_DEFAULTS define.

The MODIFY form for sequence generator is:

MODIFY SEQUENCE [[catalog.]schema.]sequence
MOVE [PARTITION] [TO] new-location

new-location is:
LOCATION [\node.]$volume[.sub-volume.file-name]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-288

SQL/MX Statements Renaming Guardian Location of Partitions of Tables,
Indexes or Sequence Generators
Renaming Guardian Location of Partitions of Tables, Indexes or
Sequence Generators

You can use MODIFY to rename the Guardian filename part at one or more locations
of an existing table, index or a sequence generator. However, you cannot rename the
system, volume, or subvolume part of the Guardian location.

[[catalog.]schema.]object

is the ANSI name of the object. The object can either be a table, index or
sequence generator depending on the keyword TABLE, INDEX or SEQUENCE. If
you do not specify the schema and the catalog name, the default catalog and
schema names are used.

rename-spec

specifies how source files will be renamed to the corresponding target files. The
operation uses rename-spec to rename one or more source files to the
corresponding target file names.

The MODIFY form to rename the Guardian location of partitions of a table, or
index:

MODIFY { TABLE | INDEX | SEQUENCE } [[catalog.]schema.]object
RENAME [WHERE] LOCATION

{ rename-spec | (rename-spec [, rename-spec] ...) }
[OUTFILE oss-file [CLEAR]]

rename-spec is:
{ simple-rename-spec
| pattern-map-spec }

simple-rename-spec is: location TO file-name-part

pattern-map-spec is: pattern MAP NAMES TO target-map }

location is:
The Guardian file name of a source location to rename.

file-name-part is:
 The Guardian file name part to rename the source location
to.

pattern is:
 Standard Guardian file name pattern.

target-map is:
 an 8-character specification of how matching source file
names will be renamed. It consists of letters, digits, and
(?) characters.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-289

SQL/MX Statements Considerations for MODIFY
location

specifies the Guardian file name of an individual location to be renamed. If not fully
qualified Guardian defaults apply.

file-name-part

is the Guardian file name part of the renamed location.

Pattern

is a standard Guardian file name pattern which is specified to select those
partitions from the table that need to be renamed. If the Guardian file name pattern
is not fully qualified, the Guardian defaults apply.

target-map

is used to construct Guardian file name parts for the target location names. Each
target map position corresponds to the same position in the source file name.
Letters and digits will appear unchanged in the target file name. However, question
mark characters (?) will be substituted with the characters at the same position in
the source file name. A mapping specification has eight characters, each of which
can be:

 A digit in the range 0 through 9 or a letter in the range A through Z. The target
file name will contain these digits or letters in the same position as mentioned
in the target-map.

A question mark (?), the target file name will contain the characters from the
source file name at the corresponding positions as (?) in the target-map.

For more details, see examples of MODIFY.

oss-file

is the OSS path name of a log file that records the outcome of the operation. This
is an optional file.

Considerations for MODIFY

 You can run MODIFY as either an offline or online operation. You can perform
online operations while the partition is being used by another application. You can
perform offline operations only on partitions that are not being used by other

Note. An error in target mapping can produce file names that already exist or a pattern that
does not select any partitions.

Note. If the log file already exists, the output is appended to the existing content. If the CLEAR
option is used, the output overwrites the existing content.

Note. RENAME changes the redefinition timestamp of the affected table or index.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-290

SQL/MX Statements Considerations for MODIFY
applications or that are being used with READ access. WRITE access is
prohibited.

 Most of MODIFY partition management operations ignore triggers. However, the
REUSE form of MODIFY returns an error if you use the PURGEDATA option on a
table with DELETE triggers and if there is data in the partition:

*** ERROR[20294] The partition cannot be reused because the
partition contains data and the table has an enabled DELETE
trigger.

 If the MODIFY operation fails, use the RECOVER utility to undo or resume the
failed partition operation. For details, see Checking DDL Locks on page 2-9.

 MODIFY records the status of the operation in the DDL_LOCKS metadata table.
You can query this table to determine the progress of MODIFY operation.

Online Partition Management

MODIFY supports online partition management for range partitioned tables and
indexes where the partitioning key is a prefix of the clustering key. Other processes
can read and write the object while it is being repartitioned, except during a short
period at the end when file labels and metadata are updated.

Online partition management is not supported for the following object types:

 System-clustered tables

 Range partitioned tables and indexes where the partitioning key is not a prefix of
the clustering key

 Sequence generators

Offline Partition Management for Range Partitions

MODIFY supports these offline partition management operations for range partitions:

Status Description

 1 The DDL Lock row is created.

 2 The target partition is created.

 3 Data is copied.

 4 Copying of data is in progress.

 5 Partition is marked as offline.

 6 Partition is purgedata’ed and marked corrupt.

 7 ORSERV is about to be started for MODIFY.

 8 ORSERV is started for MODIFY.

 9 ORSERV is about to be started for RECOVER

 10 ORSERV is started for RECOVER.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-291

SQL/MX Statements Considerations for MODIFY
 Adding a new empty partition.

 Dropping an existing empty partition.

 Moving an existing partition to a new location.

 Splitting an existing partition and then moving the first or last part of the data to a
new partition.

 Splitting an existing partition and then merging the first or last part of the data to an
existing adjacent partition.

 Merging two adjacent partitions into one.

 Reusing an existing partition by setting the FIRST KEY values of the partition to
new values. You can optionally remove existing data in the partition to be reused.

Offline Partition Management for Hash Partitions

MODIFY supports these offline partition management operations for hash partitions:

 Adding a new hash partition and rebalancing data (that is, redistributing existing
data to all partitions, including the new partition)

 Dropping an existing hash partition and rebalancing data

 Moving an existing hash partition to a new location

Offline Partition Management for System-Clustered
Partitions

MODIFY supports moving an entire system-clustered partition to a new location.

Offline Partition Management for Sequence Generators

MODIFY supports moving a sequence generator to a new location.

Renaming Guardian Locations of Partitions of Tables,
Indexes or Sequence Generators

You can use the rename option to rename Guardian locations of partitions of a table,
index or a sequence generator. The following are the prerequisites for a successful
rename:

 The table, index, or sequence generator and all the partitions must be available.

 All specified locations must belong to the table, index or sequence generator. If the
pattern form of rename-spec is used, the pattern must match at least one of the
partitions of the table, index or sequence generator.

 The target Guardian locations must not exist.

 For all partitions of the target object, file labels must be available.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-292

SQL/MX Statements Considerations for MODIFY
 For a Guardian rename of an index, file labels for all partitions of base table of the
index must be available.

MODIFY and Indexes

If there are no indexes on a table, the reuse form of MODIFY purges data from the
partition. If there are existing indexes, MODIFY performs a DELETE operation to
remove the index data, which can take some time to complete.

MODIFY and TMF

Many partition management requests require movement of massive amounts of data.
Because these operations might take longer than the set TMF time limit whose default
is two hours, operations involving data movement are performed in multiple
transactions.

Specifying the Number of Rows per Transaction

To specify the number of rows to be copied in a transaction, use the CONTROL
QUERY DEFAULT statement or insert an entry to the SYSTEM_DEFAULTS table. For
offline partition operations, use the PM_OFFLINE_TRANSACTION_GRANULARITY
attribute. For online partition operations, use the
PM_ONLINE_TRANSACTION_GRANULARITY attribute.

The setting in the SYSTEM_DEFAULTS table applies to all partition operations in the
current node unless you override it by using a CONTROL QUERY DEFAULT
statement. You can issue the statement from MXCI, and the setting from this statement
applies only to subsequent requests within the same MXCI.

If the attribute neither appears in the SYSTEM_DEFAULTS table nor is specified using
a CONTROL QUERY DEFAULT statement, MODIFY uses the value 5000 for offline
partition operations and 400 for online partition operations.

Default Value for Offline Partition Operations

For offline partition operations, MODIFY locks entire source and target partitions, so
DP2 lock escalation is not an issue. In general, MODIFY runs more efficiently when
you specify a larger value. You should choose this value with care. If it is too large, the
transaction might abort because of the two-hour TMF time limit or the size of the audit
trails. You also need to take the row size into consideration when choosing the number
of rows because the product of the row size and num-of-rows gives the amount of
data to be copied in each transaction.

You can temporarily increase the TMF time limit and the size of the audit trail to allow
the operations to complete with a larger num-of-rows. However, increasing TMF
limits degrades system performance and increases disk space usage for the audit trail.

Default Value for Online Partition Operations
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-293

SQL/MX Statements Considerations for MODIFY
For online partition operations, avoid choosing a value greater than 500, because DP2
escalates locking from selected rows to the entire partition if the partition has more
than 511 row and file locks.

Concurrency and Timeout Considerations

When you use MODIFY, avoid long-running concurrent transactions on the same
object. Concurrency issues arise in two phases: during the data movement phase and
during the commit phase.

During the data movement phase, if MODIFY is writing to an existing partition,
MODIFY obtains row locks on data as it is written. If a concurrent application is also
writing to the same partition, contention can occur. Either MODIFY or the application
might experience timeouts if they each seek to access a row the other has locked. This
situation is especially true if the application holds so many locks that DP2 attempts to
escalate to a file lock or if the application transaction is long-running. If MODIFY times
out, the command is terminated.

During the commit phase, MODIFY attempts to obtain exclusive locks on all partitions
to update file labels. Again, if concurrent applications hold locks for long durations,
MODIFY times out in its attempt, and the MODIFY command fails.

Rename

The Guardian rename operation affects the file labels and the metadata. TMF recovery
is limited after the rename operation is performed. Rename of a location invalidates
TMF online dumps of that location (data fork and RFork). File recovery cannot cross a
rename operation.

TMF backout and volume recovery are both fully supported after the rename
operations are performed.

MODIFY and RDF

Rename

RDF does not replicate the file label changes occurred due to Guardian rename
operations on the SQL/MX objects. You must perform corresponding rename
operations on the backup system to synchronize primary and backup systems. You
must ensure that consistency is maintained between the primary and backup
environments when Guardian rename operation is performed.

Note. To retain recoverability, HP recommends making new TMF online dumps, immediately
after a Guardian rename operation is performed.

Note. You must stop the RDF updaters to perform Guardian rename on the backup system.
After the rename operation is complete, restart the RDF updaters.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-294

SQL/MX Statements Considerations for MODIFY
MODIFY and Redefinition Timestamp

The Guardian rename operation changes the redefinition timestamp of the object but it
is the same physical object with a different Guardian name. Therefore, after Guardian
rename operation is performed, the similarity check will pass. The following example
illustrates this occurrence:

>>prepare q from select * from t1;

--- SQL command prepared.

>>modify table t1

+>rename location <existing location> to <new file name
part>;

--- SQL operation complete.

>>execute q;

*** WARNING[8578] Similarity check passed.

<successful result>

>>

In the example, although execute q uses the original name to access the renamed
table t1, the similarity check passes because table t1 remains the same physical table.
The Guardian rename of a base table changes the redefinition timestamp of the table
but not indexes. However, the Guardian rename of an index changes the redefinition
timestamp of the index, but not the base table and other indexes on that table.

MODIFY and Table Reloading

Some of MODIFY’s options start a FUP RELOAD process that runs in the background.
Until this process completes, you cannot do DDL or utility operations on the file. You
can monitor the reload process’s progress with this command:

FUP STATUS physical-file-name

If FUP STATUS returns a RELOAD COMPLETED message and the physical file is not
being opened by another process, you can start the next MODIFY operation. Note that
the ORSERV process started by the reload operation might still open the physical file a
bit longer (about five minutes) even though FUP STATUS already returns the RELOAD
COMPLETED message.

You can find the Guardian (physical) file name by using the SHOWLABEL command.
For example:

SHOWLABEL CAT.SCH.T1, DETAIL;

For details on this command, see SHOWLABEL Command on page 4-99.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-295

SQL/MX Statements Examples of MODIFY
Correcting File Name Problems with MODIFY

When you create a table or index with precise file names, a file might already exist with
the same name as one of the partitions to be created. Typically, the solution is to move
the partition that already exists. Use MODIFY TABLE...MOVE PARTITION to specify a
new Guardian file name for the partition to be moved. This file can exist on the same
volume as the original or on a different volume.

For example, suppose that you need to recover this table:

CREATE TABLE T13B (....)
location $data2.ZSDXQGN5.P0000000
....
(add location $DATA2.ZSDXQGN5.P0010000,
add location $DATA2.ZSDXQGN5.P0020000,
add location $DATA2.ZSDXQGN5.P0030000);

Suppose that, however unlikely, a file with the name $DATA2.ZSDXQGN5.P0020000
already exists as a partition of another table, say T13x. Use MODIFY to move this
partition of T13x:

MODIFY TABLE CAT.SCH.T13x MOVE PARTITION WHERE LOCATION
$DATA2.ZSDXQGN5.P0020000 TO LOCATION $DATA.ZSDXQGN5.P002A000;

Following this operation, you can properly perform the original CREATE TABLE
statement with the indicated file names. You can also use this technique to correct
other individual file name problems, such as errors in naming individual partitions in
previous commands.

Examples of MODIFY

 Move all records of an existing range partition to a new location:

MODIFY TABLE tab1 MOVE PARTITION
 WHERE LOCATION $data02
 TO LOCATION $data03;

 Move records of an existing range partition, whose key is equal to 10000 to the last
key, to a new location:

MODIFY TABLE tab1 MOVE PARTITION
 WHERE KEY = VALUE (10000) THRU KEY = LAST KEY
 TO LOCATION $data02
 EXTENT (512, 512) MAXEXTENTS 256;
 TO LOCATION $data03
 EXTENT (1024, 1024) MAXEXTENTS 256;

 Move the second partition of a hash partitioned table to a new location:

MODIFY TABLE tab1 MOVE PARTITION
 WHERE KEY = VALUE (2)
 TO LOCATION $DATA02;

 Move a partition of a hash partitioned table from $data02 to $data03:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-296

SQL/MX Statements Examples of MODIFY
MODIFY TABLE tab1 MOVE PARTITION
 WHERE LOCATION $data02
 TO LOCATION $data03
 EXTENT (1024, 1024) MAXEXTENTS 256;

 Modify table with an online operation

MODIFY TABLE MODT408A05 ADD PARTITION
 WHERE KEY= first key upto key= value (30000)
 TO LOCATION $data04
 WITH SHARED ACCESS
 COMMIT BEFORE '2007-04-05 16:25:40'
 ONCOMMITERROR COMMIT WORK AFTER '2007-04-05 25:19:00';

 The following example shows a simple rename of a single Guardian location of a
table. Consider a Table T1 with location as $DATA01.ZSDABCDE.SPARTN00.

MODIFY TABLE CAT.SCH.T1 RENAME WHERE LOCATION
$DATA01.ZSDABCDE.SPARTN00 TO TPARTN00;

The location SPARTN00 is renamed to TPARTN00.The volume and subvolume are
not renamed.

 Following example shows rename of a set of specified locations of a table

MODIFY TABLE CAT.SCH.T2
 RENAME LOCATION
 ($DATA01.ZSDABCDE.ABCDEF00 TO FEDCBA00
 , $DATA02.ZSDABCDE.GHIJKL00 TO LKJIHG00);

The keyword WHERE is optional.

 The following example shows the rename of all locations of a table matching a
pattern. Consider a table T1 with locations $DATA01.ZSDABCDE.SPARTX00 and
$DATA02.ZSDABCDE.SPARTY00.

MODIFY TABLE CAT.SCH.T1
 RENAME WHERE LOCATION $*.ZSDABCDE.S* MAP NAMES TO
T???????;

Both locations match the pattern and therefore, are renamed. The resulting
locations contains the letter ‘T’ in the leftmost position, and the letters in the
remaining positions are same as the original location. Therefore, locations will be
renamed $DATA01.ZSDABCDE.TPARTX00 and
$DATA02.ZSDABCDE.TPARTY00.

 Renaming a set of specified locations of an index

MODIFY INDEX CAT.SCH.IDX2
 RENAME LOCATION
 ($DATA01.ZSDABCDE.ABCDEF00 TO FEDCBA00
 , $DATA02.ZSDABCDE.GHIJKL00 TO LKJIHG00);

 Renaming all locations matching a pattern of a filename of an index

MODIFY INDEX CAT.SCH.MYIX
 RENAME WHERE LOCATION $DATA*.ZSDXYZZY.S* TO T?????00;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-297

SQL/MX Statements Examples of MODIFY
In the example, the mapping specification T?????00 indicates that the initial
character of the target file name must be 'T', regardless of the character in the
source file name. The subsequent five characters will be copied from the
corresponding positions in the source file name and the last two will be 00.

 This example moves the partition of a sequence generator:

MODIFY SEQUENCE seq1 MOVE PARTITION TO LOCATION $data02;

 This example renames the Guardian location of a sequence generator:

MODIFY SEQUENCE seq1 RENAME WHERE LOCATION $DATA06.ZSD
GQJL7.GGLP9700 to NEWLOC00;

 This example uses a pattern to rename the Guardian location of a sequence
generator:

MODIFY SEQUENCE seq1 RENAME WHERE LOCATION $*.*.* MAP NAMES
TO NW????00;

 Renaming a single Guardian location of an index

MODIFY INDEX CAT.SCH.IDX1
RENAME WHERE LOCATION
$DATA01.ZSDABCDE.SPARTN00 TO TPARTN00;

Note that the keyword WHERE is optional.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-298

SQL/MX Statements PREPARE Statement

C/C

M

M

C/C

M

C/C
PREPARE Statement
Considerations for PREPARE
MXCI Examples of PREPARE
C Examples of PREPARE
COBOL Examples of PREPARE

The PREPARE statement compiles a dynamic SQL statement for later execution with
the EXECUTE statement. You can use PREPARE in an MXCI session or in an
embedded SQL program.

The application must supply a name to be associated with the prepared statement.

You can also use PREPARE to check the syntax of a statement without executing the
statement in MXCI.

statement-name

is an SQL identifier that specifies a name to be used for the prepared statement.
See Identifiers on page 6-56. If you specify the name of an existing prepared
statement, the new statement overwrites the previous one.

In MXCI, the statement name is not case-sensitive unless you delimit it within
double quotes.

In embedded SQL, the statement name is case-sensitive. For example, the
statement named findemp is not equivalent to the statement named FINDEMP.

statement

specifies the SQL statement to prepare.

ext-statement-name

is a value-specification—a host variable with character data type (for
example, :stmt). When PREPARE executes, the content of the value
specification identifies the statement that can be executed at a later time with
EXECUTE. If the statement name corresponds to the name of a previously
prepared statement, the new prepared statement overwrites the previous one.

PREPARE statement-name FROM statement

PREPARE statement-name FROM SQL-statement-variable

SQL-statement-name is:
 statement-name | ext-statement-name

ext-statement-name is:
 [GLOBAL | LOCAL] value-specification

OBOL

XCI

XCI

OBOL

XCI

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-299

SQL/MX Statements Considerations for PREPARE

C/C

C/C

M

C/C

C/C
GLOBAL | LOCAL

specifies the scope of the prepared statement. The default is LOCAL. A GLOBAL
prepared statement can be executed within the SQL session. A LOCAL prepared
statement can be executed only within the module or compilation unit in which it
was prepared.

SQL-statement-variable

is a value-specification—a host variable with character data type that
specifies the SQL statement to prepare (for example, :stmt_buffer).

Considerations for PREPARE

You cannot PREPARE a compound statement.

Availability of a Prepared Statement

If a PREPARE statement fails, any subsequent attempt to execute the named
statement fails.

Only the MXCI session that executes the PREPARE can execute the associated
prepared statement. The prepared statement is available for execution until the MXCI
session terminates or until it executes another PREPARE statement that uses the
same statement name (either successfully or unsuccessfully).

A statement must be compiled by PREPARE before you can EXECUTE it, but after it is
compiled, you can EXECUTE the statement multiple times without recompiling it. In
particular, you can execute a prepared statement multiple times with different
parameter values. See MXCI Examples of EXECUTE on page 2-204.

Dynamic Parameters

A preparable statement can include any number of dynamic parameter markers (or
specifications). The syntax for a dynamic parameter marker is a question mark (?). The
data types of these markers are inferred from the context of the SQL statement.

Identifying Statements

Each SQL/MX statement embedded in a program or compiled with PREPARE has a
statement name that is an SQL identifier. If you compile a dynamic SQL statement with
PREPARE, you can specify a name for the SQL statement in the PREPARE statement.
For example:

EXEC SQL PREPARE ins_cust FROM :stmt_buffer;

where ins_cust is the name of the SQL statement.

To name a static SQL statement explicitly, precede the statement with a comment. For
more information, see C/C++ and COBOL comments in the SQL/MX Programming
Manual for C and COBOL.

OBOL

OBOL

XCI

OBOL

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-300

SQL/MX Statements MXCI Examples of PREPARE

C/C
If you do not specify a name for a static SQL statement, the SQL 3GL preprocessor
assigns the statement a name of the form SQLMX_DEFAULT_STATEMENT_n, where
n is an integer incremented by the preprocessor.

Statement Names

You cannot have more than one statement allocated with the same name within the
same scope. For example, this sequence from a C program is not valid:

strcpy(stmt1,"STMT1");
EXEC SQL PREPARE :stmt1 FROM :stmt_buffer1;
...
strcpy(stmt2,"STMT1");
EXEC SQL PREPARE :stmt2 FROM :stmt_buffer2;

The second PREPARE fails because STMT1 has already been prepared.

MXCI Examples of PREPARE

 Prepare a SELECT statement, naming it FINDEMP, and then execute FINDEMP:

PREPARE FINDEMP FROM
 SELECT * FROM persnl.employee
 WHERE salary > 40000.00 AND jobcode = 450;
--- SQL command prepared.

EXECUTE findemp;

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ ---------- ---------- ------- ------- --------
 232 THOMAS SPINNER 4000 450 45000.00

--- 1 row(s) selected.

 Prepare a SELECT statement, naming it EMPCOM, and then enter the DISPLAY
STATISTICS command to display the preparation statistics:

PREPARE EMPCOM FROM
 SELECT first_name, last_name, deptnum
 FROM persnl.employee
 WHERE deptnum <> 1500
 AND salary <= (SELECT AVG (salary)
 FROM persnl.employee
 WHERE deptnum = 1500);
--- SQL command prepared.

DISPLAY STATISTICS;

Start Time 2000/04/24 15:09:39.439
End Time 2000/04/24 15:09:46.946
Elapsed Time 00:00:07.507
Compile Time 00:00:07.507
Execution Time 00:00:00.000

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-301

SQL/MX Statements C Examples of PREPARE
C Examples of PREPARE

 Prepare and execute an INSERT statement:

...
strcpy(stmt_buffer,"INSERT INTO SALES.CUSTOMER"
 " (CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE)"
 " VALUES (1120, 'EXPERT MAILERS', '5769 N.25TH PLACE',"
 " 'PHOENIX', 'ARIZONA', '85016')");
...
EXEC SQL PREPARE ins_cust FROM :stmt_buffer;
...
EXEC SQL EXECUTE ins_cust;
...

 Prepare and execute an UPDATE statement with dynamic input parameters:

...
strcpy(stmt_buffer,"UPDATE SALES.CUSTOMER SET CREDIT = ?"
 " WHERE CUSTNUM = CAST(? AS NUMERIC(4) UNSIGNED)");
...
EXEC SQL PREPARE upd_cust FROM :stmt_buffer;
...
/* Input values for parameters into host variables */
scanf("%s",in_credit);
scanf("%ld",&in_custnum);
...
EXEC SQL EXECUTE upd_cust USING :in_credit, :in_custnum;
...

 This example uses extended statement names:

...
strcpy(stmt,"ins_cust1");
EXEC SQL PREPARE :stmt FROM :stmt_buffer;
EXEC SQL EXECUTE :stmt;
...
strcpy(stmt,"ins_cust2");
EXEC SQL PREPARE :stmt FROM :stmt_buffer;
EXEC SQL EXECUTE :stmt;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-302

SQL/MX Statements COBOL Examples of PREPARE
COBOL Examples of PREPARE

 Prepare and execute an INSERT statement:

 ...
 MOVE "INSERT INTO SALES.CUSTOMER
- " (CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE)
- " VALUES (1120, 'EXPERT MAILERS', '5769 N.25TH PLACE',
- " 'PHOENIX', 'ARIZONA', '85016')"
 TO stmt-buffer.
 ...
 EXEC SQL PREPARE ins_cust FROM :stmt-buffer END-EXEC.
 ...
 EXEC SQL EXECUTE ins_cust END-EXEC.
 ...

 Prepare and execute an UPDATE statement with dynamic input parameters:

 ...
 MOVE "UPDATE SALES.CUSTOMER SET CREDIT = ? "
 & " WHERE CUSTNUM = CAST(? AS NUMERIC(4) UNSIGNED)")"
 TO stmt-buffer.
 ...
 EXEC SQL PREPARE upd_cust FROM :stmt-buffer END-EXEC.
 ...
* Input values for parameters into host variables
 ACCEPT in-credit.
 ACCEPT in-custnum.
 ...
 EXEC SQL EXECUTE upd_cust
 USING :in-credit, :in-custnum
 END-EXEC.
 ...

 This example uses extended statement names:

 ...
 MOVE "ins_cust1" TO stmt.
 EXEC SQL PREPARE :stmt FROM :stmt-buffer END-EXEC.
 EXEC SQL EXECUTE :stmt END-EXEC.
 ...
 MOVE "ins_cust2" TO stmt.
 EXEC SQL PREPARE :stmt FROM :stmt-buffer END-EXEC.
 EXEC SQL EXECUTE :stmt END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-303

SQL/MX Statements POPULATE INDEX Utility
POPULATE INDEX Utility
Considerations for POPULATE INDEX
Examples of POPULATE INDEX

POPULATE INDEX records the status in the DDL_LOCKS metadata table. You can
query this table to determine the progress of POPULATE INDEX operation.POPULATE
INDEX is a syntax-based utility that can be executed through MXCI. The POPULATE
INDEX utility loads SQL/MX indexes.

Syntax Description of POPULATE INDEX

index-name

is an SQL identifier that specifies the simple name for the index. You cannot qualify
index-name with its schema name. Indexes have their own namespace within a
schema, so an index name might be the same as a table or constraint name.
However, no two indexes in a schema can have the same name.

table-name

is the name of the table-name for which to populate the index. See Database
Object Names on page 6-13.

WITH SHARED ACCESS

specifies that the operation is an online operation. If commit-options is omitted,
the effect is the same as specifying COMMIT WHEN READY ONCOMMITERROR
ROLLBACK WORK.

POPULATE INDEX index-name ON table-name [option]

index-name ::= name

table-name ::= [[catalog.]schema.]name

option ::= with-shared-access

with-shared-access ::= WITH SHARED ACCESS [commit-options]

commit-options ::=

 {COMMIT [WORK] [WHEN READY] [on-error] }
 { [{ AFTER time }] }
 { [{ BEFORE time }] }
 {ROLLBACK [WORK] }

on-error::= [ONCOMMITERROR commit-options]

time::= yyyy-mm-dd hr:min:sec[.precision]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-304

SQL/MX Statements Considerations for POPULATE INDEX
COMMIT [WORK] [WHEN READY] [on-error]

 [{ AFTER time }]

 [{ BEFORE time }]

specifies the time at which the Commit Phase should occur. COMMIT WHEN
READY specifies that the Commit Phase should occur at the earliest possible time.
COMMIT AFTER time specifies that the Commit Phase should occur after the
given time. COMMIT BEFORE time specifies that the Commit Phase should
occur before the given time. The on-error clause specifies what should happen
if the Commit Phase fails with a retryable error. If omitted, the effect is the same
as specifying ONCOMMITERROR ROLLBACK WORK. The time is a Datetime
value.

ROLLBACK WORK

specifies that the operation should be terminated. ROLLBACK WORK is specified
in an on-error clause.

ONCOMMITERROR commit-options

specifies what action SQL should take if a retryable error occurs during the commit
phase. Retryable errors include file in use, lock request time-outs, resource
unavailability, and missing a BEFORE or AFTER time window.

A non-retryable error always causes SQL to cancel changes to the database and
terminates the operation, no matter what you specify in the ONCOMMITERROR
option. ONCOMMITERROR is recursive because it appears within a COMMIT
option and specifies another COMMIT option. You can specify up to three COMMIT
options on a single statement. If you do not specify the ONCOMMITERROR
clause, the effect is the same as specifying ONCOMMITERROR ROLLBACK
WORK.

Considerations for POPULATE INDEX

 When POPULATE INDEX is being executed with shared access, the base table is
accessible for read write DML operations during that time period, except during the
commit phase at the end.

 When POPULATE INDEX is being executed without shared access base table is
available for READ DML operations only till populate index completes.

 During an online POPULATE INDEX utility request, you can control when to
commit the transaction by giving a specific time. Specify an AFTER clause or a
BEFORE clause to control when to make the index available.

 Retryable errors are errors that occur during any phase of the execution of an
online POPULATE INDEX. Retryable errors include file in use, lock request time-
outs, resource unavailability, and missing a BEFORE or AFTER time window.
Some errors are retried automatically. Errors detected during the COMMIT phase
are retried based on the ONCOMMITERROR clause. Errors detected during the
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-305

SQL/MX Statements Examples of POPULATE INDEX
initial and the data movement phases are retried individually and may include retry
counts.

 Errors can occur if the source base table or target index cannot be accessed, or if
the load fails due to some resource problem or problem in the file system.

 POPULATE INDEX does not work with SQL/MP alias names.

 POPULATE INDEX need sufficient memory to copy the table and to create the
index respectively.

 POPULATE INDEX records the status in the DDL_LOCKS metadata table. You can
query this table to determine the progress of POPULATE INDEX operation.

Examples of POPULATE INDEX

 This example loads the specified index from the specified table:

POPULATE INDEX myindex ON mycat.myschema.mytable;

 This example loads the specified index from the specified table, which uses the
default catalog and schema:

POPULATE INDEX index2 ON table2;

 This is an example for online operation which loads the specified index from the
specified table, and uses the default catalog and schema:

POPULATE INDEX index2 ON table2 with-shared-access;

 COMMIT BEFORE '2007-04-05 16:25:40'

 ONCOMMITERROR COMMIT WORK AFTER '2007-04-05 25:19:00';

Status Description

 1 The DDL Lock row is created.

 3 File Labels of index are updated.

 4 Load of index has started.

 5 Load of index has completed.

 7 Index is online. POPULATE INDEX operation has completed.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-306

SQL/MX Statements PURGEDATA Utility
PURGEDATA Utility
Considerations for PURGEDATA
Examples of PURGEDATA

PURGEDATA is a syntax-based utility that can be executed through MXCI. The
PURGEDATA utility deletes all data from an SQL/MX table and its related indexes or
from specified partitions of a table that has no indexes.

Syntax Description of PURGEDATA

table-name

is the name of the table from which the data is to be deleted. You can specify
delimited and regular identifiers. If you do not specify the catalog and schema parts
of the table-name, the default catalog and schema values for that session are
applied. PURGEDATA returns errors if the catalog name does not exist, if the
schema name is invalid, if the table name does not exist, or if the object name
specifies an invalid object such as a view or an SQL/MP alias.

list-of-partitions

is the optional clause that specifies a subset of partitions to purge. If you do not
specify this clause, PURGEDATA purges data from all partitions and dependent
indexes. If you specify this clause, PURGEDATA purges data from the partitions in

PURGEDATA table-name [list-of-partitions] [IGNORE_TRIGGER]

table-name is:
 [[catalog.]schema.]name

list-of-partitions is:
 [PARTITION] WHERE partition-map

partition-map is:
 {guardian-name | first-key }

guardian-name is:
 LOCATION [\node].$volume[.subvolume.file]

first-key is:
 {[KEY=] partition-id
 |[KEY=] partition-id UPTO [KEY=] partition-id
 |[KEY=] partition-id THRU [KEY=] partition-id }

partition-id is:
 {{FIRST | LAST} PARTITION
 | key-value }

key-value is:
 VALUE (column-value [, column-value] ...)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-307

SQL/MX Statements Syntax Description of PURGEDATA
this list. PURGEDATA returns errors if the specified partitions do not exist, if
dependent indexes exist on the table, and if the source object does not exist.

partition-map

describes a partition or range of partitions:

guardian-name

specifies the partially or fully qualified Guardian name that identifies the
partition. If you specify only the volume, all partitions on the volume that
belong to the object are affected. If you do not specify \node, only the
local system is assumed. PURGEDATA returns an error if
guardian-name is not valid.

\node can refer to a remote system that must be visible to the current
(local) system.

first-key

identifies the partition by its first key value. Within the current object, every
partition is assigned a unique first key value. You can use this value later to
identify the partition. An error is returned if the first key value cannot be
found. first-key must match an existing key value for PURGEDATA
requests. Partition management operations can use different values for
boundary operations.

FIRST

specifies the first partition. For range-partitioned objects, the first
partition contains low or high values, depending on the ASC/DESC
attribute. For hash-partitioned objects, the first partition is zero (0).

LAST

specifies the last partition. For range-partitioned objects, the last
partition is the last value where its first key is greater than other first
keys. For hash-partitioned objects, the last partition is the maximum
number of partitions available minus one (1).

key-value

specifies the first key value used when the partition was created. You
can specify a range of partitions.

IGNORE_TRIGGER

specifies that PURGEDATA should ignore DELETE triggers on the table. If they are
not ignored and a DELETE trigger exists, PURGEDATA fails.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-308

SQL/MX Statements Considerations for PURGEDATA
Considerations for PURGEDATA

 An error is returned if you specify a list-of-partitions for a hash-partitioned
table. For hash-partitioned objects, data must be purged from the entire table.

 Errors are returned if table-name cannot be accessed or if a resource or file
system problem causes the delete to fail.

 If PURGEDATA fails in response to a process, CPU, or system error, you must run
the RECOVER utility to recover the operation. If the PURGEDATA operation
cannot be canceled, RECOVER returns an error. See Checking DDL Locks on
page 2-9 for details.

 PURGEDATA records operation progress steps in the DDL_LOCKS metadata
table. Users can query this table to determine the PURGEDATA operation’s
progress:

 PURGEDATA returns an error if a user transaction exists.

 PURGEDATA returns an error if you attempt a PURGEDATA operation on an
SQL/MX metadata table (histogram, system defaults, or MXCS metadata tables).

 PURGEDATA returns an error if a DELETE trigger is defined on table-name,
unless the IGNORE_TRIGGER option is used.

 PURGEDATA returns an error if table-name is being referenced by one or more
referential integrity constraints, unless all the referencing tables are empty.

PURGEDATA sets the corrupt bit while processing. If PURGEDATA fails before it
completes, the table and its dependent indexes will still be corrupt and you must
run RECOVER with the RESUME option to complete the operation and remove the
data. File system error 59 is returned if you try to access a table whose corrupt bit
is set.

PURGEDATA
Operation
Step Step Progress Status

Step 1 DDL lock has been created.

Step 2 PURGEDATA has passed verification tests.

Step 3 Affected partitions have been marked corrupt.

Step 4 Partition $volume.zsdnnnnn.nnnnnn00 has been purged.*

Step 5 PURGEDATA operation has deleted data from all requested partitions.

Step 6 Affected partitions are now available.

Step 7 DDL lock has been removed.
* After this step, when any partition has been purged, a rollback using the RECOVER utility is not possible.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-309

SQL/MX Statements Examples of PURGEDATA
Examples of PURGEDATA

 This example purges the data in the specified table. If the table has indexes, their
data is also purged.

PURGEDATA mycat.myschema.mytable;

 This example purges the data in the specified partition, which has a Guardian
name:

PURGEDATA mycat.myschema.mytable
WHERE LOCATION $DATA1.ZSDA09TO.QZ780000;

 This example purges data from all partitions of the table:

PURGEDATA mycat.myschema.mytable
WHERE KEY = FIRST PARTITION THRU LAST PARTITION;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-310

SQL/MX Statements RECOVER Utility
RECOVER Utility
Considerations for RECOVER
Examples of RECOVER

RECOVER is a syntax-based utility that can be executed through MXCI. The
RECOVER utility determines the state of a failed utility operation and executes its
recovery procedure. RECOVER completes the failed utility operation by rolling back
the entire operation or by completing the operation. In most cases, RECOVER rolls
back the utility operation by making the state the same as it was before the operation
started.

Syntax Description of RECOVER

object

is the name of the table or index that needs to be recovered. It must be the same
object that you were attempting to update with the command that failed. You can
specify delimited or regular identifiers. If you do not specify the catalog or schema
parts of object-name, RECOVER uses the default catalog and schema values
for that session. RECOVER returns errors if the catalog name is invalid, if the
schema name is invalid, if the table name is invalid, or if object-name does not
need to be recovered.

ddl-lock

is the fully qualified name of the DDL_LOCKS object that was created by the utility
operation that failed. ddl-lock is optional because there is only one lock allowed
on a object at a time. RECOVER can determine the ddl-lock name from the
object.

opt

directs how RECOVER should proceed with the operation.

RECOVER [INCOMPLETE SQLDDL OPERATION ON] object [ddl-lock] [opt]

object is:
 { TABLE | INDEX } object-name

object-name is:
 [[catalog.]schema.]name

ddl-lock is:
 WITH DDL_LOCKS ddl-lockname

ddl-lockname is:
 catalog.schema.name

opt is:
 { CANCEL | RESUME }
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-311

SQL/MX Statements Considerations for RECOVER
CANCEL

If you specify CANCEL, RECOVER attempts to undo the effects of the failed
utility operation. Otherwise, recovery fails. The default is CANCEL.

RESUME

If you specify RESUME, RECOVER attempts to carry the failed utility operation
to its completion. Otherwise, the recovery fails.

Considerations for RECOVER

 object must be the same object that you were attempting to update with the
command that failed. Suppose that you have a table, cat.sch.t that has an index
cat.sch.i. You performed a POPULATE INDEX command for that index but it failed.
Consider these RECOVER operations:

>>recover table cat.sch.t;

*** ERROR[20209] Nothing remains to be recovered on
CAT.SCH.T.

--- SQL operation failed with errors.
>>recover index cat.sch.i;

--- SQL operation complete.
>>

 At the completion of a RECOVER operation, the original failed operation should
either be completed as specified (RESUME) or completely rolled back (CANCEL).

 Different utilities can be canceled or resumed depending on their failure status.

 See the description of the individual utility operation to determine when and if
CANCEL or RESUME should be specified.

Examples of RECOVER

 This example recovers and by default cancels the incomplete SQL DDL operation
on the specified table:

RECOVER TABLE mycat.myschema.mytable;

 This example explicitly instructs RECOVER to cancel the failed utility operation:

RECOVER TABLE mycat.myschema.mytable CANCEL;

RECOVER SCHEMA Operation
Considerations for RECOVER SCHEMA
Examples of RECOVER SCHEMA
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-312

SQL/MX Statements Considerations for RECOVER SCHEMA
The RECOVER SCHEMA operation is used to revert the changes made by a failed
change ownership operation or to carry it through to completion.

schema

specifies the name of the schema on which the failed change ownership operation will
be recovered.

[CANCEL]

The RECOVER SCHEMA operation attempts to undo the effects of the failed change
ownership operation. The default option is CANCEL.

[RESUME]

The RECOVER SCHEMA operation attempts to carry the failed change ownership
operation through to completion.

Considerations for RECOVER SCHEMA

Authorization and Availability Requirements

The RECOVER SCHEMA operation can be performed by the original schema owner,
by a security administrator, or by the Super ID (if Super ID is part of the Security
Administrator’s group or if no Security Administrator’s group exists). After successful
completion of this operation, existing opens on the underlying objects are invalidated.

DDL Locks

The RECOVER SCHEMA operation checks for DDL locks acquired with the GIVE
SCHEMA operation on a particular schema. If no DDL lock is found, RECOVER
SCHEMA fails. If a DDL lock is found, the RECOVER SCHEMA undoes or completes
the failed GIVE SCHEMA operation and releases the lock.

Examples of RECOVER SCHEMA

 This example identifies the schema affected by a failed change ownership
operation and instructs RECOVER SCHEMA to cancel the failed change
ownership operation:

>>recover schema userschema2 cancel;
--- SQL operation complete.

OR

RECOVER SCHEMA schema [CANCEL|RESUME]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-313

SQL/MX Statements Examples of RECOVER SCHEMA
>>recover schema userschema2;
--- SQL operation complete.

 This example identifies the schema affected by a failed change ownership
operation and instructs RECOVER SCHEMA to resume the failed change
ownership operation:

>>recover schema userschema2 resume;
--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-314

SQL/MX Statements REGISTER CATALOG Statement
REGISTER CATALOG Statement
The REGISTER CATALOG statement registers an SQL/MX catalog on a remote node.
A catalog is not visible to a remote node until you register it.

catalog

is the ANSI name of the target catalog. It must be visible on the local node. No
catalog with the same name can exist on the target node. You cannot register the
system catalog.

\node.$volume

is the remote node on which the catalog will be registered.

RESTRICT

specifies that only the named catalog is registered. If that catalog is related to other
catalogs, an error occurs.

RESTRICT is the default.

CASCADE

specifies that the named catalog, and any catalogs that are directly or indirectly
related to it, will be registered.

Considerations for REGISTER CATALOG

REGISTER CATALOG creates an empty catalog reference on the target node and
updates automatic catalog references. If a catalog reference already exists on the
target node with a different volume name and no definition schemas exist on that node
for that catalog, NonStop SQL/MX changes the volume name to volume.

Authorization and Availability Requirements

To register a catalog, you must be the user who created the catalog or be the super ID.

A transaction can be user-initiated or system-initiated. If no transaction exists,
NonStop SQL/MX automatically starts one.

Examples of REGISTER CATALOG

 This command registers a catalog on another node:

REGISTER CATALOG mycat ON \nodex.$data47;

REGISTER CATALOG catalog ON \node.$volume [RESTRICT |
 CASCADE]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-315

SQL/MX Statements Examples of REGISTER CATALOG
 Suppose that you create a view that references two tables in different catalogs:

CREATE VIEW view_catalog.view_schema.MYVIEW4
 (v_ordernum, v_partnum) AS
 SELECT od.ordernum, p.partnum
 FROM SALES.SALES_SCHEMA.ODETAIL OD
 INNER JOIN CUST.CUST_SCHEMA.ORDERS P
 ON od.partnum = p.partnum;

If you issue either of these commands:

REGISTER CATALOG SALES ON \nodex.$data47;
REGISTER CATALOG SALES ON \nodex.$data47 RESTRICT;

NonStop SQL/MX returns an error because catalog SALES is related to catalog
CUST by this view, and view_catalog is related to both. The command defaults to
the RESTRICT option.

If you issue this command:

REGISTER CATALOG SALES ON \nodex.$data47 CASCADE;

NonStop SQL/MX registers all three catalogs, SALES, CUST, and view_catalog, on
\nodex because they are related to each other by this view.

 Suppose that you create two views that are indirectly related to each other:

CREATE VIEW cat1.sch.v AS
 SELECT * FROM cat2.sch.t;

CREATE VIEW cat2.sch.v AS
 SELECT * FROM cat3.sch.t;

In this example, cat1 and cat3 are each directly related to cat2, and each is
indirectly related to the other. You must register all three catalogs (or one of them
withe the CASCADE option) so that their tables will be visible on another node.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-316

SQL/MX Statements REVOKE Statement
REVOKE Statement
Considerations for REVOKE
Examples of REVOKE

The REVOKE statement revokes access privileges for an SQL/MX table, view,
sequence generator, or stored procedure from specified users. For more information,
see REVOKE EXECUTE Statement on page 2-323.

Syntax Description of REVOKE

GRANT OPTION FOR

specifies that the WITH GRANT OPTION for the privilege must be revoked. The
privilege itself is not revoked.

privilege [,privilege]... | ALL [PRIVILEGES]

specifies the privileges to revoke, as follows. You can specify each of these
privileges for a table or view. For a stored procedure, ALL PRIVILEGES revokes
only the EXECUTE privilege. For a sequence generator, ALL PRIVILEGES
revokes only the USAGE privilege. See also REVOKE EXECUTE Statement on
page 2-323.

REVOKE [GRANT OPTION FOR]
 {privilege [,privilege]... | ALL [PRIVILEGES]}
 ON [TABLE | SEQUENCE] object
 FROM {grantee [,grantee]...} [drop-behavior]
 [BY authid-grantor]

grantee is:
authid | PUBLIC

privilege is:
 SELECT
 | DELETE
 | INSERT
 | UPDATE [(column [,column]...)]
 | REFERENCES [(column [,column]...)]
 | USAGE

drop-behavior is:

CASCADE | RESTRICT

SELECT Can use SELECT statement.

DELETE Can use DELETE statement.

INSERT Can use INSERT statement.

UPDATE Can use UPDATE statement.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-317

SQL/MX Statements Syntax Description of REVOKE
(column [,column]...)

names the columns of the object to which the UPDATE or REFERENCES
privilege applies. If you specify UPDATE or REFERENCES without column
names, the privileges apply to all columns of the table or view.

ON [TABLE | SEQUENCE] object

specifies a table, sequence generator or view on which to revoke privileges. When
the object is a stored procedure, the only privilege that you can specify is ALL
PRIVILEGES. See REVOKE EXECUTE Statement on page 2-323 to revoke
privileges for stored procedures.

FROM {authid [,authid]... | PUBLIC}

specifies one or more users from whom you revoke privileges.

authid specifies an authorization ID from whom you revoke privileges.
Authorization IDs identify users during the processing of SQL statements. The
authorization ID must be a valid Guardian user name (for example, sql.user1) or
Guardian user number(for example, 255,255). authid is not case-sensitive.

SQL:1999 specifies two special authorization IDs: PUBLIC and SYSTEM.

 PUBLIC specifies all present and future authorization IDs.

 SYSTEM specifies the implicit grantor of privileges to the creators of objects.

You cannot specify SYSTEM as an authid in a REVOKE statement.

drop-behavior

If you specify RESTRICT, the REVOKE operation fails if there are privilege
descriptors or objects that would no longer be valid after the specified
privileges are removed.

If you specify CASCADE, any such dependent privilege descriptors and
objects are removed as part of the REVOKE operation.

The default is RESTRICT.

BY authid-grantor

specifies the authorization ID authid-grantor on whose behalf the revoke
operation is performed. Only the Super ID or a Security Administrator can use the
BY clause unless the Security Administrators Group is not empty and the Super ID
has not been designated as a Security Administrator in which case the Super ID is

REFERENCES Can create constraints that reference the object.

USAGE Can use the pseudocolumns, CURRVAL and NEXTVAL to
access the sequence generator values.

ALL PRIVILEGES Can have all privileges that apply to the object type.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-318

SQL/MX Statements Considerations for REVOKE
denied the use of this feature. The effect of using the BY clause is the same as if
the authid-grantor were to issue the REVOKE directly (without using the BY
clause). authid-grantor cannot be SYSTEM. If the Security Administrator's
Group is empty, then authid-grantor must be a valid authorization ID and hold
the privilege(s) being granted WITH GRANT OPTION. However, Security
Administrators have Super REVOKE BY capabilities in which authid-grantor
may be any valid authorization ID that previously granted the privileges on the
target object.

Considerations for REVOKE

Authorization Requirements

Unless you are a Security Administrator or the Super ID, you can revoke only those
privileges that you have previously granted to the user.

If you are a Security Administrator, then you are exempt from the above restriction. In
addition, successfully revoking a privilege will revoke all instances of that privilege
granted by any Security Administrators. It will not affect any owner-derived grants of
that privilege (that is the owner-derived hierarchy of grants is not affected). However,
Security Administrators can revoke owner-derived grants using REVOKE BY authid-
grantor. Since Security Administrators may be the target of an owner-derived grant,
they may hold any privilege derived WGO, in which case they may revoke that
privilege like any ordinary user.

If you are the Super ID, then your revoke privileges depend on the Security
Administrator's Group. If the Security Administrator's Group is empty, then you may
revoke any privilege on any object. Such revokes behave like a REVOKE BY authid-
grantor where the authid-grantor is the object owner.

If the Super ID is designated as a Security Administrator, then the Super ID has the
same REVOKE privileges as any other Security Administrator. However, in this case, if
BY authid-grantor is omitted, then the implied grantor is the Super ID instead of
the object owner and successfully revoking a privilege will revoke all instances of that
privilege granted by any Security Administrators (that is the Super ID behaves like any
other Security Administrator ID). It will not affect any owner-derived grants of that
privilege (that is the owner-derived hierarchy of grants is not affected).

If the Security Administrator's Group is not empty and the Super ID is not designated
as a Security Administrator, the Super ID will have the same restrictions as any
ordinary user with respect to the REVOKE statement.

If one or more of the privileges being revoked does not exist, the system returns a
warning.

You can revoke the USAGE privilege on a sequence generator only if you have
previously granted it to the user. To revoke privileges for a sequence generator by
using the CASCADE option, you must own the sequence generator or be the Super ID
or Security Administrator. If the Super ID has issued a REVOKE USAGE using the BY
authid-grantor clause, the authid-grantor must have previously granted the
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-319

SQL/MX Statements Examples of REVOKE
USAGE privilege to the specified authorization IDs. You cannot revoke privileges from
a user of the system if you have granted privileges to PUBLIC.

Examples of REVOKE

 This example revokes one user’s SELECT privileges on a table:

REVOKE SELECT ON TABLE persnl.employee
 FROM "sql.user1" RESTRICT;

 This example revokes the privileges of granting SELECT and DELETE privileges
on a table from two users:

REVOKE GRANT OPTION FOR SELECT, DELETE
 ON TABLE sales.odetail FROM "sql.user1", "sql.user2";

 This example revokes UPDATE privileges on two columns of a table:

REVOKE UPDATE (start_date, ship_timestamp)
 ON TABLE persnl.project FROM PUBLIC RESTRICT;

 In this example the super ID revokes SELECT and DELETE privileges on a table
on behalf of sql.user1:

REVOKE SELECT, DELETE ON TABLE sales.odetail
 FROM "sql.user3" BY "sql.user1";

 This example revokes USAGE privilege on a sequence generator from
sql.user2:

REVOKE ALL ON SEQUENCE myseq FROM "sql.user2";

REVOKE CREATE CATALOG Statement
Considerations for REVOKE CREATE CATALOG
Examples for REVOKE CREATE CATALOG

The REVOKE CREATE CATALOG revokes the privilege to create a catalog from
specified users.

{"grantee" [,"grantee"]...}

are Guardian users from whom the catalog creation privilege will be revoked.

Considerations for REVOKE CREATE CATALOG

When CREATE CATALOG privilege is revoked from the last authorized user, any user
can create a catalog.

REVOKE CREATE CATALOG FROM {"grantee" [,"grantee"]...}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-320

SQL/MX Statements Examples for REVOKE CREATE CATALOG
Authorization and Availability Requirements

A security administrator or the Super ID (if Super ID is part of the Security
Administrator’s group or if no Security Administrator’s group exists) can revoke the
privilege to create a catalog granted to specified users.

CREATE CATALOG privilege cannot be revoked from PUBLIC.

Examples for REVOKE CREATE CATALOG

 This example revokes the privilege to create a catalog from users, “SQL.USER1”,
“SQL.USER2”, and “SQL.USER3”:

REVOKE CREATE CATALOG FROM "SQL.USER1";
REVOKE CREATE CATALOG FROM "SQL.USER2","SQL.USER3";

REVOKE CREATE SCHEMA Statement
Considerations for REVOKE CREATE SCHEMA
Example for REVOKE CREATE SCHEMA

The REVOKE CREATE SCHEMA revokes the privilege to create a schema in a
catalog from specified users.

catalog

is the name of the catalog in which the schema creation privilege will be revoked.

{"grantee" [,"grantee"]...}

are Guardian users from whom the schema creation privilege on the catalog will
be revoked.

Considerations for REVOKE CREATE SCHEMA

When CREATE SCHEMA privilege is revoked from the last authorized user, any user
can create a schema in the target catalog.

Authorization and Availability Requirements

A security administrator or catalog owner or the Super ID (if Super ID is part of the
Security Administrator’s group or if no Security Administrator’s group exists) can
revoke the privilege granted to specified users from creating a schema within the
catalog.

CREATE SCHEMA privilege cannot be revoked from PUBLIC.

REVOKE CREATE SCHEMA ON catalog FROM {"grantee"
[,"grantee"]...}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-321

SQL/MX Statements Example for REVOKE CREATE SCHEMA
Example for REVOKE CREATE SCHEMA

 This example revokes the privilege to create a schema from users, “SQL.USER1”
and “SQL.USER2”:

REVOKE CREATE SCHEMA ON CAT FROM "SQL.USER1", "SQL.USER2";
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-322

SQL/MX Statements REVOKE EXECUTE Statement
REVOKE EXECUTE Statement
Considerations for REVOKE EXECUTE
Examples of REVOKE EXECUTE

The REVOKE EXECUTE statement removes privileges for calling a stored procedure
in Java (SPJ) from one or more specified users.

GRANT OPTION FOR

specifies that the WITH GRANT OPTION for the EXECUTE privilege is to be
revoked. The EXECUTE privilege itself is not revoked.

EXECUTE

specifies the privilege of calling the specified stored procedure.

ON [PROCEDURE] procedure-ref

specifies the ANSI logical name of a stored procedure on which to revoke
privileges, of the form:

[[catalog-name.]schema-name.]procedure-name

where each part of the name is a valid SQL identifier with a maximum of 128
characters. For more information, see Identifiers on page 6-56.

FROM {authid [,authid]... | PUBLIC}

specifies one or more users from whom you revoke privileges.

authid specifies an authorization ID from whom you revoke privileges.
Authorization IDs identify users during the processing of SQL statements. The
authorization ID must be a valid Guardian user name, enclosed in double quotes.
A Guardian user number (for example, “255,255”) is not allowed. authid is not
case-sensitive.

SQL:1999 specifies two special authorization IDs: PUBLIC and SYSTEM.

 PUBLIC specifies all present and future authorization IDs.

REVOKE [GRANT OPTION FOR]
EXECUTE
ON [PROCEDURE] procedure-ref
FROM {grantee [,grantee]...} [RESTRICT | CASCADE]
[BY authid-grantor]

procedure-ref is:
[[catalog-name.]schema-name.]procedure-name

grantee is:
authid | PUBLIC
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-323

SQL/MX Statements Considerations for REVOKE EXECUTE
 SYSTEM specifies the implicit grantor of privileges to the creators of stored
procedures.

You cannot specify SYSTEM as an authid in a REVOKE EXECUTE statement.

If you specify RESTRICT, the REVOKE operation fails if there are privilege
descriptors that would no longer be valid after the EXECUTE privilege is removed.

If you specify CASCADE, any such dependent privilege descriptors are removed
as part of the REVOKE EXECUTE operation. The default is RESTRICT.

BY authid-grantor

specifies the authorization ID authid-grantor on whose behalf the revoke
operation is performed. The EXECUTE privilege being revoked must have been
previously granted by authid-grantor. Only the super ID can use the BY
clause. If another user attempts to do so, the system returns an error. The effect of
using the BY clause is the same as if the authid-grantor were to issue the
REVOKE EXECUTE statement directly (without using the BY clause).

authid-grantor must be a valid authorization ID and cannot be SYSTEM.

Considerations for REVOKE EXECUTE

Authorization and Availability Requirements

You can revoke EXECUTE privilege only if you have previously granted it to the user. If
the privilege does not exist, the system returns a warning.

To revoke privileges by using the CASCADE option, you must own the stored
procedure or be the super ID.

If the super ID has issued a REVOKE EXECUTE using the BY authid-grantor
clause, the authid-grantor must have previously granted the EXECUTE privilege
to the specified authorization IDs.

You cannot revoke privileges from a user of the system if you have granted privileges
to PUBLIC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-324

SQL/MX Statements Examples of REVOKE EXECUTE
Examples of REVOKE EXECUTE

 To revoke the WITH GRANT OPTION privilege on ADJUSTSALARY from user
'HR.BETTY,' the super ID issues this REVOKE EXECUTE statement:

REVOKE GRANT OPTION FOR EXECUTE
ON PROCEDURE samdbcat.persnl.adjustsalary
FROM 'HR.BETTY'
BY 'SYSMGT.BEN';

The user 'HR.BETTY' no longer has the WITH GRANT OPTION privilege but still
has EXECUTE privilege on ADJUSTSALARY.

 To revoke the EXECUTE privilege on ADJUSTSALARY from user 'HR.BETTY,'
the super ID issues this REVOKE EXECUTE statement with the CASCADE option:

REVOKE EXECUTE
ON PROCEDURE samdbcat.persnl.adjustsalary
FROM 'HR.BETTY' CASCADE
BY 'SYSMGT.BEN';

 This REVOKE EXECUTE statement issued by the super ID fails because a
dependent privilege exists for the users of the HR group to whom the user
'HR.BETTY' granted the EXECUTE privilege on ADJUSTSALARY:

REVOKE EXECUTE
ON PROCEDURE samdbcat.persnl.adjustsalary
FROM 'HR.BETTY'
BY 'SYSMGT.BEN';

*** ERROR[1014] Privileges were not revoked. Dependent
privilege descriptors still exist.
--- SQL operation failed with errors.

 This REVOKE EXECUTE statement issued by the super ID does not fail because
no dependent privileges exist for the HR group, which had only EXECUTE
privilege on ADJUSTSALARY:

REVOKE EXECUTE
ON PROCEDURE samdbcat.persnl.adjustsalary
FROM 'HR.MIKE', 'HR.JOE', 'HR.HILDE' RESTRICT
BY 'HR.BETTY';
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-325

SQL/MX Statements REVOKE SECURITY_ADMIN Statement
REVOKE SECURITY_ADMIN Statement
Considerations for REVOKE SECURITY_ADMIN
Examples of REVOKE SECURITY_ADMIN

The REVOKE SECURITY_ADMIN statement removes the Security Administrator
designation from a specified user.

authid

specifies the authorization ID from whom you are removing the Security
Administrator designation. Authorization IDs identify users during the processing of
SQL statements. The authorization ID must be a valid Guardian user name,
enclosed in double quotes.

userid

specifies the authorization ID from whom you are removing the Security
Administrator designation. The userid is any legal Guardian userid (group,user)
enclosed in double quotes (for example, “255,255”). The userid is not required to
be in the system USERID file. The userid option provides a means of revoking the
Security Administrator designation from a user that has been deleted from the
USERID file.

Considerations for REVOKE SECURITY_ADMIN

Authorization Requirements

If the Security Administrator's Group is empty, only the Super ID may execute the
REVOKE SECURITY_ADMIN statement. Otherwise, only a Security Administrator may
execute this statement.

Metadata Version Requirements

The REVOKE SECURITY_ADMIN statement requires system metadata version 3100
or greater. If the statement is executed with lower versions of the system metadata, a
SQL error 25223 is generated.

Examples of REVOKE SECURITY_ADMIN

 The following example removes the Security Administrator designation from the
user, SECADMIN.USER1:

REVOKE SECURITY_ADMIN from "grantee"
grantee is:
 authid | userid
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-326

SQL/MX Statements Examples of REVOKE SECURITY_ADMIN
REVOKE SECURITY_ADMIN FROM "SECADMIN.USER1";

 The following example removes the Security Administrator designation from the
Super ID specified as a userid:

REVOKE SECURITY_ADMIN FROM "255,255";
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-327

SQL/MX Statements ROLLBACK WORK Statement

Em
ROLLBACK WORK Statement
Considerations for ROLLBACK WORK
MXCI Examples of ROLLBACK WORK
C Examples of ROLLBACK WORK
COBOL Examples of ROLLBACK WORK

The ROLLBACK WORK statement undoes all database modifications to audited
objects made during the current transaction, releases all locks on audited objects held
by the transaction, and ends the transaction. See Transaction Management on
page 1-13.

WORK is an optional keyword that has no effect.

ROLLBACK WORK has no effect if there is no active transaction.

ROLLBACK WORK closes all open cursors in the application, because cursors do not
span transaction boundaries. You cannot fetch with a cursor after a transaction ends
without reopening it.

Considerations for ROLLBACK WORK

Begin and End a Transaction

BEGIN WORK starts a transaction. COMMIT WORK or ROLLBACK WORK ends a
transaction.

MXCI Examples of ROLLBACK WORK

 Suppose that you add an order for two parts numbered 4130 to the ORDERS and
ODETAIL tables. When you update the PARTLOC table to decrement the quantity
available, you discover there is no such part number in the given location.

Use ROLLBACK WORK to terminate the transaction without committing the
database changes:

BEGIN WORK;

INSERT INTO sales.orders
 VALUES (124, DATE '1996-04-10',
 DATE '1996-06-10', 75, 7654);

INSERT INTO sales.odetail
 VALUES (124, 4130, 25000, 2);

UPDATE invent.partloc
 SET qty_on_hand = qty_on_hand - 2
 WHERE partnum = 4130 AND loc_code = 'K43';

ROLLBACK [WORK]

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-328

SQL/MX Statements C Examples of ROLLBACK WORK
ROLLBACK WORK;

ROLLBACK WORK cancels the inserts that occurred during the transaction and
releases the locks held on ORDERS and ODETAIL.

C Examples of ROLLBACK WORK

 Start a transaction, execute an UPDATE statement, and test SQLSTATE. If the
UPDATE is successful, the database changes are committed. Otherwise, the
database changes are rolled back.

...
CHAR SQLSTATE_OK[6] = "00000";
EXEC SQL BEGIN DECLARE SECTION;
 CHAR SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL BEGIN WORK; /* Start a transaction. */
...
EXEC SQL UPDATE ... ; /* Change the database. */
...
if (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 EXEC SQL COMMIT WORK; /* Commit the changes. */
else
 EXEC SQL ROLLBACK WORK; /* Roll back the changes. */

COBOL Examples of ROLLBACK WORK

 Start a transaction, execute an UPDATE statement, and test SQLSTATE. If the
UPDATE is successful, the database changes are committed. Otherwise, the
database changes are rolled back.

...
01 SQLSTATE_OK PIC X(5) VALUE "00000".
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 SQLSTATE PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL BEGIN WORK END-EXEC.
 ...
 EXEC SQL UPDATE ... END-EXEC.
 ...
 IF SQLSTATE = SQLSTATE_OK
 EXEC SQL COMMIT WORK END-EXEC.
 ELSE
 EXEC SQL ROLLBACK WORK END-EXEC.
 END-IF.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-329

SQL/MX Statements SELECT Statement

Em

E

Em

E

E

SELECT Statement
Considerations for SELECT
Considerations for Select List
Considerations for SEQUENCE BY
Considerations for GROUP BY
Considerations for ORDER BY
Considerations for UNION
MXCI Examples of SELECT
C Examples of SELECT
COBOL Examples of SELECT
Publish/Subscribe Examples of SELECT

The SELECT statement is a DML statement that retrieves values from tables, views,
derived tables determined by the evaluation of query expressions, or joined tables.

The SELECT INTO statement is used to retrieve a single row of values from tables,
views, joined tables, or derived tables determined by the evaluation of query
expressions. It assigns the retrieved row of values to host variables. Use the INTO
version of SELECT only in embedded SQL programs.

[ROWSET FOR size-and-index]

size-and-index is:
| INPUT SIZE rowset-size-in
| OUTPUT SIZE rowset-size-out
| KEY BY row-id
| INPUT SIZE rowset-size-in, OUTPUT SIZE rowset-size-out
| INPUT SIZE rowset-size-in, KEY BY row-id
| OUTPUT SIZE rowset-size-out, KEY BY row-id
| INPUT SIZE rowset-size-in, OUTPUT SIZE rowset-size-out,
 KEY BY row-id

SELECT [[ANY N] | [FIRST N]] [ALL | DISTINCT] select-list

 INTO variable-spec [,variable-spec]...

 FROM table-ref [,table-ref]...
 [WHERE search-condition | rowset-search-condition]
 [SAMPLE sampling-method]
 [TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]]...
 [SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 [GROUP BY {colname | colnum} [,{colname | colnum}]...]
 [HAVING search-condition | rowset-search-condition]
 [ORDER BY {colname | colnum} [ASC[ENDING] | DESC[ENDING]]
 [,{colname | colnum} [ASC[ENDING] | DESC[ENDING]]]...]
 [[FOR] access-option ACCESS]
 [IN {SHARE | EXCLUSIVE} MODE]
 [UNION [ALL] select-stmt]

bed

mbed

bed

mbed

mbed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-330

SQL/MX Statements SELECT Statement

Pu

Pu

Pu
select-list is:
 * | select-sublist [,select-sublist]...

select-sublist is:
 corr.* | [corr.] single-col [[AS]name] |
 [col-expr [[AS]name]

table-ref is:
 table [[AS] corr [(col-expr-list)]]

 | STREAM (table) [[AS] corr [(col-expr-list)]]
[AFTER LAST ROW]

 | view [[AS] corr [(col-expr-list)]]

 | STREAM (view) [[AS] corr [(col-expr-list)]]
[AFTER LAST ROW]

 | (query-expr) [AS] corr [(col-expr-list)]

 | (delete-statement [RETURN select-list])
 [AS] corr [(col-expr-list)]
 | (update-statement [RETURN select-list])
 [AS] corr [(col-expr-list)]

 | joined-table

access-option is:
 READ UNCOMMITTED
 | READ COMMITTED
 | SERIALIZABLE
 | REPEATABLE READ
 | SKIP CONFLICT
 | STABLE

query-expr is:
 non-join-query-expr | joined-table

non-join-query-expr is:
 non-join-query-primary | query-expr UNION [ALL] query-term

query-term is:
 non-join-query-primary | joined-table

non-join-query-primary is:
 simple-table | (non-join-query-expr)

joined-table is:
 table-ref [NATURAL] [join-type] JOIN table-ref [join-spec]
 |table-ref CROSS JOIN table-ref

join-type is:
 INNER | LEFT [OUTER] | RIGHT [OUTER]

b/Sub

b/Sub

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-331

SQL/MX Statements SELECT Statement

E

Emb
join-spec is:
 ON search-condition | rowset-search-condition

simple-table is:
 VALUES (row-value-const) [,(row-value-const)]...
 | TABLE table
 | SELECT [ALL | DISTINCT] select-list
 FROM table-ref [,table-ref]...
 | FROM ROWSET [rowset-size]
 (:array-name [,:array-name]...)
 [WHERE search-condition | rowset-search-condition]
 [SAMPLE sampling-method]
 [TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]]...
 [SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 [GROUP BY {colname | colnum} [,{colname |
colnum}]...]
 [HAVING search-condition | rowset-search-condition]]
 [[FOR] access-option ACCESS]
 [IN {SHARE | EXCLUSIVE} MODE]

row-value-const is:
 row-subquery
 | {expression | NULL} [,{expression | NULL}]...

sampling-method is:
 RANDOM percent-size
 | FIRST rows-size
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 | PERIODIC rows-size EVERY number-rows ROWS
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]

percent-size is:
 percent-result PERCENT [ROWS
 | {CLUSTERS OF number-blocks BLOCKS}]
 | BALANCE WHEN condition
 THEN percent-result PERCENT [ROWS]
 [WHEN condition THEN percent-result PERCENT [ROWS]]...
 [ELSE percent-result PERCENT [ROWS]] END

rows-size is:
 number-rows ROWS
 | BALANCE WHEN condition THEN number-rows ROWS
 [WHEN condition THEN number-rows ROWS]...
 [ELSE number-rows ROWS] END

transpose-set is:
 transpose-item-list AS transpose-col-list

transpose-item-list is:
 expression-list |(expression-list)[,(expression-list)]...

mbed

ed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-332

SQL/MX Statements SELECT Statement

Em
 ROWSET FOR size-and-index

Allowed only if you use rowsets in the SELECT statement. INPUT SIZE
rowset-size-in and KEY BY row-id are allowed only if you specify
rowset-search-condition in the where clause. OUTPUT SIZE
rowset-size-out is allowed only with SELECT … INTO statements where
variable-spec consists of rowset type host variables.

INPUT SIZE rowset-size-in

restricts the size of the input rowset to the specified size, which must be less than
or equal to the allocated size for the rowset. The size is an integer literal (exact
numeric literal), a dynamic parameter, or a host variable whose type is either
unsigned short, signed short, unsigned long, or signed long in C and their
corresponding equivalents in COBOL. If you do not specify the size, NonStop
SQL/MX uses the allocated rowset size specified in the SQL Declare Section of the
embedded SQL program.

OUTPUT SIZE rowset-size-out

restricts the size of the output rowset to the specified size which must be less than
or equal to the allocated size for the rowset. The size is an integer literal (exact
numeric literal) or a host variable whose type is signed long in C and its
corresponding equivalent in COBOL. If you do not specify the size, NonStop
SQL/MX uses the allocated rowset size specified in the SQL Declare Section of the
embedded SQL program. This option is not supported in a cursor declaration.
OUTPUT SIZE is supported only with SELECT ... INTO statements.

KEY BY row-id

is a zero-based index that identifies each row in the result set of a SELECT or
FETCH statement with the particular search-condition in the WHERE clause
that caused the row to be part of the result set. For example, if the row-id value
for a certain row in the result set is 0 (zero), this row matches the search-
condition in the first element of the host variable arrays (array index 0 in C,
array index 1 in COBOL) in the WHERE clause.

For more information about rowsets, see the SQL/MX Programming Manual for C
and COBOL

expression-list is:
 expression [,expression]...

transpose-col-list is:
 colname | (colname-list)

colname-list is:
 colname [,colname]..

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-333

SQL/MX Statements SELECT Statement

Em
[ANY N] | [FIRST N]

specifies whether to select ANY of the first N rows or the FIRST N sorted rows.
You must enclose ANY N or FIRST N in square brackets. [FIRST N] is different
from [ANY N] only if you use ORDER BY on any of the columns in the select list
to sort the result table of the SELECT statement. N is an unsigned numeric literal
with no scale. If N is greater than the number of rows in the table, all rows are
returned. [ANY N] and [FIRST N] are allowed in nested SELECT statements
and on either side of a UNION operation.

ALL | DISTINCT

specifies whether to retrieve all rows whose columns are specified by the
select-list (ALL) or only rows that are not duplicates (DISTINCT). Nulls are
considered equal for the purpose of removing duplicates. The default is ALL.

select-list

specifies the columns or column expressions to select from the table references in
the FROM clause.

*

specifies all columns in a table, view, joined table, or derived table determined
by the evaluation of a query expression, as specified in the FROM clause.

corr.*

specifies all columns of specific table references by using the correlation name
corr of the table references, as specified in the FROM clause. See
Correlation Names on page 6-11.

corr.

specifies one column of specific table references by using the correlation name
corr of the table reference, as specified in the FROM clause.

single-col [[AS] name]

specifies a column.

col-expr [[AS]name]

specifies a derived column determined by the evaluation of an SQL value
expression in the list. By using the AS clause, you can associate a derived
column col-expr with a name.

See the discussion of limitations in Considerations for Select List on page 2-350.

INTO variable-spec [,variable-spec]...

specifies host variables in which to return the values in the result row of the
SELECT statement. The number of items in select-list must be equal to the

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-334

SQL/MX Statements SELECT Statement

C/C

C/C
number of specified host variables, and the data type of each source value must
be compatible with the data type of its target host variable. The first value in the
result row is assigned to the first host variable, the second value to the second
variable, and so on.

You can specify rowset host variables in variable-spec. If you specify one
rowset host variable, all specified host variables in the INTO list must be rowsets.
Multiple rows can be returned when rowsets are used. If the number of rows
returned is less than the length of the rowset, no error is displayed. However, if the
number of rows returned exceeds the length of the rowset or the specified rowset-
size-out, NonStop SQL/MX displays an error.

Use the INTO clause only for operations that are not union operations and return
no more than one row. If the SELECT statement returns more than one row, use
rowset host variables in the INTO list, or use a cursor.

:variable-name [[INDICATOR] :indicator-name]

is a variable specification—a host variable with, optionally, an indicator
variable. A variable name begins with a colon (:). The values in the result row
of the SELECT statement are returned in these host variables.

The data type of an indicator variable is exact numeric with a scale of 0. If the
data returned in the host variable is null, the indicator parameter is set to a
value less than zero. If character data returned is truncated, the indicator
parameter is set to the length of the string in the database.

See single-row SELECT statements in the SQL/MX Programming Manual for C
and COBOL.

FROM table-ref [,table-ref]...

specifies a list of tables, views, derived tables, or joined tables that determine the
contents of an intermediate result table from which NonStop SQL/MX returns the
columns you specify in select-list. To refer to a table or view, use one of these
name types:

 Guardian physical name
 ANSI logical name
 DEFINE name

See Database Object Names on page 6-13.

If you specify only one table-ref, the intermediate result table consists of rows
derived from that table reference. If you specify more than one table-ref, the
intermediate result table is the cross-product of result tables derived from the
individual table references.

OBOL

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-335

SQL/MX Statements SELECT Statement

Pu

Pu

Pu

Pu

Pu
 table [[AS] corr [(col-expr-list)]]
| STREAM (table) [[AS] corr [(col-expr-list)]]

[AFTER LAST ROW]
| view [[AS] corr [(col-expr-list)]]
| STREAM (view) [[AS] corr [(col-expr-list)]]

[AFTER LAST ROW]
| (query-expr) [AS] corr [(col-expr-list)]
| (delete-statement [RETURN select-list])
 [AS] corr [(col-expr-list)]
| (update-statement [RETURN select-list])
 [AS] corr [(col-expr-list)]
| joined-table

specifies a table-ref as either a single table, view, derived table determined
by the evaluation of a query expression, a joined table, a streaming table or
view, or an embedded update or delete statement.

You can specify this optional clause for a table or view. This clause is required
for a derived table:

[AS] corr [(col-expr-list)]

specifies a correlation name corr for the preceding table reference
table-ref in the FROM clause. See Correlation Names on page 6-11.

col-expr [[AS]name] [,col-expr [[AS]name]]...

specifies the items in col-expr-list, a list of derived columns.

For the specification of a query expression, see the syntax diagram for
query-expr on page 2-330.

STREAM (table) [[AS] corr [(col-expr-list)]]

returns a continuous data stream from a table. A cursor opened on a
continuous data stream never returns an end-of-data condition but blocks
(waits) and resumes execution when new rows become available.

[[AS] corr [(col-expr-list)]]

specifies an optional correlation name corr and an optional column list
for the preceding table reference in the FROM clause.

[AFTER LAST ROW]

causes the stream to skip all existing rows in the table and return only rows
that are published after the stream’s cursor is opened.

STREAM (view) [[AS] corr [(col-expr-list)]]

returns a continuous data stream from a view.

b/Sub

b/Sub

b/Sub

b/Sub

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-336

SQL/MX Statements SELECT Statement

Pu

Pu
[AFTER LAST ROW]

causes the stream to skip all existing rows in the view and return only rows
that are published after the stream’s cursor is opened.

(delete-statement [RETURN select-list])
 [AS] corr [(col-expr-list)]

enables an application to read and delete rows with a single operation. For the
syntax of delete-statement, see the DELETE Statement on page 2-162.

RETURN select-list

specifies the columns or column expressions returned from the deleted
row. The items in the select-list can be either of these forms:

[OLD.]*

specifies the row from the OLD table exposed by the embedded
DELETE. The OLD table refers to column values before the delete
operation. NEW is not allowed.

An implicit OLD.* return list is assumed for an embedded delete
operation that does not specify a RETURN list.

col-expr [[AS]name]

specifies a derived column determined by the evaluation of an SQL
value expression in the list. Any column referred to in a value
expression is from the row in the OLD table exposed by the embedded
DELETE. The OLD table refers to column values before the delete
operation.

By using the AS clause, you can associate a derived column
col-expr with a name name.

[AS] corr [(col-expr-list)]

specifies an optional correlation name corr and an optional column list
for the preceding items in the select list RETURN select-list.

(update-statement [RETURN select-list])
 [AS] corr [(col-expr-list)]

enables an application to read and update rows with a single operation. For the
syntax of update-statement, see the UPDATE Statement on page 2-385.

RETURN select-list

specifies the columns or column expressions returned from the updated
row. The items in the select-list can be either of these forms:

b/Sub

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-337

SQL/MX Statements SELECT Statement
[OLD.| NEW.]*

specifies the row from the OLD or NEW table exposed by the
embedded UPDATE. The OLD table refers to column values before the
update operation; the NEW table refers to column values after the
update operation. If a column has not been updated, the NEW value is
equivalent to the OLD value.

An implicit NEW.* return list is assumed for an embedded update
operation that does not specify a RETURN list.

col-expr [[AS]name]

specifies a derived column determined by the evaluation of an SQL
value expression in the list. Any column referred to in a value
expression can be specified as from the row in the OLD table exposed
by the embedded UPDATE or can be specified as being from the row
in the NEW table exposed by the embedded UPDATE.

For example: RETURN old.empno,old.salary,new.salary,
(new.salary - old.salary).

By using the AS clause, you can associate a derived column
col-expr with a name name.

[AS] corr [(col-expr-list)]

specifies an optional correlation name corr and an optional column list
for the preceding items in the select list RETURN select-list.

For example:

RETURN old.empno,old.salary,new.salary,
 (new.salary - old.salary)
AS emp (empno, oldsalary, newsalary, increase).

table-ref [NATURAL] [join-type] JOIN table-ref [join-spec]

join-type is:
 CROSS |INNER | LEFT [OUTER] | RIGHT [OUTER]

is a joined table. You specify the join-type by using the CROSS, INNER,
OUTER, LEFT, and RIGHT keywords. If you omit the optional OUTER keyword
and use LEFT or RIGHT in a join, NonStop SQL/MX assumes the join is an
outer join.

If you specify a CROSS join as the join-type, you cannot specify a
NATURAL join or a join-spec.

If you specify an INNER, LEFT, or RIGHT join as the join-type and you do
not specify a NATURAL join, you must use an ON clause as the join-spec,
as follows:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-338

SQL/MX Statements SELECT Statement

Em
ON search-condition

specifies a search-condition for the join. Each column reference in
search-condition must be a column that exists in either of the two
result tables derived from the table references to the left and right of the
JOIN keyword. A join of two rows in the result tables occurs if the condition
is satisfied for those rows.

ON rowset-search-condition

specifies a rowset-search-condition for the join. The array of search
conditions are evaluated successively, and for each condition a join of two
rows in the result tables occurs if the condition is satisfied for those rows.
Each column reference in rowset-search-condition must be a
column that exists in either of the two result tables derived from the table
references to the left and right of the JOIN keyword.

The type of join and the join specification if used determine which rows are
joined from the two table references, as follows:

table-ref CROSS JOIN table-ref

joins each row of the left table-ref with each row of the right
table-ref.

table-ref NATURAL JOIN table-ref

joins rows only where the values of all columns that have the same name
in both tables match. This option is equivalent to NATURAL INNER.

table-ref NATURAL LEFT JOIN table-ref

joins rows where the values of all columns that have the same name in
both tables match, plus rows from the left table-ref that do not meet this
condition.

table-ref NATURAL RIGHT JOIN table-ref

joins rows where the values of all columns that have the same name in
both tables match, plus rows from the right table-ref that do not meet
this condition.

table-ref JOIN table-ref ON

joins only rows that satisfy the condition in the ON clause. This option is
equivalent to INNER JOIN ... ON.

table-ref LEFT JOIN table-ref ON

joins rows that satisfy the condition in the ON clause, plus rows from the
left table-ref that do not satisfy the condition.

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-339

SQL/MX Statements SELECT Statement

Embe
table-ref RIGHT JOIN table-ref ON

joins rows that satisfy the condition in the ON clause, plus rows from the
right table-ref that do not satisfy the condition.

The three ways a simple-table can be specified are:

 VALUES (row-value-const) [,(row-value-const)]...
| TABLE table
| SELECT [ALL | DISTINCT] select-list
 FROM table-ref [,table-ref]...
 | FROM ROWSET [rowset-size]
 (:array-name [,:array-name]...)
 [WHERE search-condition | rowset-search-condition]
 [SAMPLE sampling-method]
 [TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]]...
 [SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 [GROUP BY {colname | colnum} [,{colname | colnum}]...]
 [HAVING search-condition | rowset-search-condition]
 [[FOR] access-option ACCESS]
 [IN {SHARE | EXCLUSIVE} MODE]

A simple-table can be a table value constructor. It starts with the VALUES
keyword followed by a sequence of row value constructors, each of which is
enclosed in parentheses. A row-value-const is a list of expressions (or
NULL) or a row subquery (a subquery that returns a single row of column
values). An operand of an expression cannot reference a column (except when
the operand is a scalar subquery returning a single column value in its result
table).

The use of NULL as a row-value-const element is an SQL/MX extension.

A simple-table can be specified by using the TABLE keyword followed by a
table name, which is equivalent to the query specification SELECT * FROM
table.

A simple-table can be a query specification—that is, a SELECT statement
consisting of SELECT ... FROM ... with optionally the WHERE, SAMPLE,
TRANSPOSE, SEQUENCE BY, GROUP BY, and HAVING clauses. This form
of a simple table is typically used in an INSERT, CREATE VIEW, or DECLARE
CURSOR statement.

FROM ROWSET rowset-size

restricts the size of the rowset-derived table to the specified size, which must
be less than or equal to the allocated size for the rowset. The size, if specified,
immediately follows the ROWSET keyword. The size is an unsigned integer or
a host variable whose value is an unsigned integer. If you do not specify the
size, NonStop SQL/MX uses the allocated rowset size specified in the SQL
Declare Section.

d

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-340

SQL/MX Statements SELECT Statement

Em
:array-name [,:array-name]...

specifies a set of host variable arrays. Each array-name can be used like a
column in the rowset-derived table. Each array-name can be any valid host
language identifier with a data type that corresponds to an SQL data type.
Precede each array-name with a colon (:) within an SQL statement.

For more information on rowsets and host variable arrays, see the SQL/MX
Programming Manual for C and COBOL.

WHERE search-condition

specifies a search-condition for selecting rows. See Search Condition on
page 6-108. The WHERE clause cannot contain an aggregate (set) function.

The search-condition is applied to each row of the result table derived from
the table reference in the FROM clause or, in the case of multiple table references,
the cross-product of result tables derived from the individual table references.

Each column you specify in search-condition is typically a column in this
intermediate result table. In the case of nested subqueries used to provide
comparison values, the column can also be an outer reference. See Subquery on
page 6-112.

To comply with ANSI standards, NonStop SQL/MX does not move aggregate
predicates from the WHERE clause to a HAVING clause and does not move
non-aggregate predicates from the HAVING clause to the WHERE clause, as
NonStop SQL/MP does.

WHERE rowset-search-condition

specifies a rowset-search-condition for selecting rows. See Rowset Search
Condition on page 6-110. The WHERE clause cannot contain an aggregate (set)
function. The individual search conditions in rowset-search-condition are
applied successively to the result table derived from the table reference in the
FROM clause or, in the case of multiple table references, the cross-product of
result tables derived from the individual table references. A row that matches any
one of the individual search conditions is selected. If a row matches multiple
search conditions, it is selected only once.

Each column you specify in rowset-search-condition is typically a column in this
intermediate result table. In the case of nested subqueries used to provide
comparison values, the column can also be an outer reference. See Subquery on
page 6-112.

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-341

SQL/MX Statements SELECT Statement
SAMPLE sampling-method

specifies the sampling method used to select a subset of the intermediate result
table of a SELECT statement. Each of the methods uses a sampling size. The
three sampling methods—random, first, and periodic—are specified as:

RANDOM percent-size

directs NonStop SQL/MX to choose rows randomly (each row having an
unbiased probability of being chosen) without replacement from the result
table. The sampling size is determined by using a percent of the result table.

FIRST rows-size [SORT BY colname [,colname]...]

directs NonStop SQL/MX to choose the first rows-size rows from the sorted
result table. The sampling size is determined by using the specified number of
rows.

PERIODIC rows-size EVERY number-rows ROWS
 [SORT BY colname [,colname]...]

directs NonStop SQL/MX to choose the first rows from each block (period) of
contiguous sorted rows. The sampling size is determined by using the
specified number of rows chosen from each block.

SAMPLE is an SQL/MX extension. See SET CATALOG Statement on page 2-366.

TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]

specifies the transpose-sets and an optional key clause within a TRANSPOSE
clause. You can use multiple TRANSPOSE clauses in a SELECT statement.

transpose-item-list AS transpose-col-list

specifies a transpose-set. You can use multiple transpose sets within a
TRANSPOSE clause. The TRANSPOSE clause generates, for each row of the
source table derived from the table reference or references in the FROM
clause, a row for each item in each transpose-item-list of all the
transpose sets.

The result table of a TRANSPOSE clause has all the columns of the source
table plus a value column or columns, as specified in each
transpose-col-list of all the transpose sets, and an optional key column
key-colname.

KEY BY key-colname

optionally specifies an optional key column key-colname. It identifies which
expression the value in the transpose column list corresponds to by its position
in the transpose-item-list. key-colname is an SQL identifier. The data
type is exact numeric, and the value is NOT NULL.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-342

SQL/MX Statements SELECT Statement
TRANSPOSE is an SQL/MX extension. See TRANSPOSE Clause on page 7-26.

SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...

specifies the order in which to sort the rows of the intermediate result table for
calculating sequence functions. You must include a SEQUENCE BY clause if you
include a sequence function in select-list. Otherwise, NonStop SQL/MX
returns an error. Further, you cannot include a SEQUENCE BY clause if there is no
sequence function in select-list.

colname

names a column in select-list or a column in a table reference in the
FROM clause of the SELECT statement. colname is optionally qualified by a
table, view, or correlation name; for example, CUSTOMER.CITY.

ASC | DESC

specifies the sort order. The default is ASC. When NonStop SQL/MX orders an
intermediate result table on a column that can contain null, nulls are
considered equal to one another but greater than all other non-null values.

GROUP BY [col-expr] {colname | colnum} [,{colname | colnum}]...]

specifies grouping columns colname [,colname]... that define a set of groups
for the result table of the SELECT statement. These columns must appear in the
list of columns in the table references in the FROM clause of the SELECT
statement.

If you include a GROUP BY clause, the columns you refer to in the select-list
must be either grouping columns or arguments of an aggregate (or set) function.

The grouping columns define a set of groups in which each group consists of rows
with identical values in the specified columns. The column names can be qualified
by a table or view name or a correlation name; for example, CUSTOMER.CITY.

For example, if you specify AGE, the result table contains one group of rows with
AGE equal to 40 and one group of rows with AGE equal to 50. If you specify AGE
and then JOB, the result table contains one group for each age and, within each
age group, subgroups for each job code.

You can specify GROUP BY using ordinals to refer to the relative position within
the SELECT list. For example, GROUP BY 3, 2, 1.

For grouping purposes, all nulls are considered equal to one another. The result
table of a GROUP BY clause can have only one null group.

See Considerations for GROUP BY on page 2-351.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-343

SQL/MX Statements SELECT Statement

Em
HAVING search-condition

specifies a search-condition to apply to each group of the grouped table
resulting from the preceding GROUP BY clause in the SELECT statement. The
GROUP BY clause, if one exists, must precede the HAVING clause in the SELECT
statement.

To comply with ANSI standards, NonStop SQL/MX does not move aggregate
predicates from the WHERE clause to a HAVING clause and does not move
non-aggregate predicates from the HAVING clause to the WHERE clause, as
NonStop SQL/MP does.

If there is no GROUP BY clause, the search-condition is applied to the entire
table (which consists of one group) resulting from the WHERE clause (or the
FROM clause if there is no WHERE clause).

In search-condition, you can specify any column as the argument of an
aggregate (or set) function; for example, AVG (SALARY). An aggregate function is
applied to each group in the grouped table.

A column that is not an argument of an aggregate function must be a grouping
column. When you refer to a grouping column, you are referring to a single value
because each row in the group contains the same value in the grouping column.

See Search Condition on page 6-108.

HAVING rowset-search-condition

specifies a rowset search condition to apply to each group of the grouped table
resulting from the preceding GROUP BY clause in the SELECT statement. The
individual search conditions in the rowset-search-condition array are
successively applied to each group. The GROUP BY clause, if one exists, must
precede the HAVING clause in the SELECT statement. If there is no GROUP BY
clause, rowset-search-condition is applied to the entire table (which
consists of one group) resulting from the WHERE clause (or the FROM clause if
there is no WHERE clause).

You can specify any column as the argument of an aggregate (or set) function; for
example, AVG (SALARY). An aggregate function is applied to each group in the
grouped table. A column that is not an argument of an aggregate function must be
a grouping column. When you refer to a grouping column, you are referring to a
single value because each row in the group contains the same value in the
grouping column.

See Rowset Search Condition on page 6-110.

[FOR] access-option ACCESS

specifies the access-option when accessing data specified by the SELECT
statement or by a table reference in the FROM clause derived from the evaluation
of a query expression that is a SELECT statement. See Data Consistency and
Access Options on page 1-8.

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-344

SQL/MX Statements SELECT Statement
READ UNCOMMITTED

specifies that any data accessed need not be from committed rows. You can
specify the SQL/MP extension BROWSE instead of READ UNCOMMITTED.

READ COMMITTED

specifies that any data accessed must be from committed rows.

SERIALIZABLE | REPEATABLE READ

specifies that the SELECT statement and any concurrent process (accessing
the same data) execute as if the statement and the other process had run
serially rather than concurrently.

SKIP CONFLICT

enables transactions to skip rows locked in a conflicting mode by another
transaction. SKIP CONFLICT cannot be used in a SET TRANSACTION
statement.

STABLE

specifies that the row being accessed is locked while it is processed, but
concurrent use of the database is allowed.

The default access option is the isolation level of the containing transaction, which
is determined according to the rules specified in Isolation Level on page 10-56.

IN {SHARE | EXCLUSIVE} MODE

specifies that either SHARE or EXCLUSIVE locks be used when accessing data
specified by a SELECT statement or by a table reference in the FROM clause
derived from the evaluation of a query expression that is a SELECT statement, and
when accessing the index, if any, through which the table accesses occur.

UNION [ALL] select-stmt

specifies a set UNION operation between the result table of a SELECT statement
and the result table of another SELECT statement.

The result of the UNION operation is a table that consists of rows belonging to
either of the two contributing tables. If you specify UNION ALL, the table contains
all the rows retrieved by each SELECT statement. Otherwise, duplicate rows are
removed.

The select lists in the two SELECT statements of a UNION operation must have
the same number of columns, and columns in corresponding positions within the
lists must have compatible data types. The select lists must not be preceded by
[ANY N] or [FIRST N].

The number of columns in the result table of the UNION operation is the same as
the number of columns in each select list. The column names in the result table of
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-345

SQL/MX Statements Considerations for SELECT

Em
the UNION are the same as the corresponding names in the select list of the left
SELECT statement. A column resulting from the UNION of expressions or
constants has the name (EXPR).

See Considerations for UNION on page 2-351.

ORDER BY {colname | colnum} [ASC[ENDING] | DESC[ENDING]]
 [,{colname | colnum} [ASC[ENDING] | DESC[ENDING]]]...

specifies the order in which to sort the rows of the final result table.

colname

names a column in select-list or a column in a table reference in the
FROM clause of the SELECT statement. colname is optionally qualified by a
table, view, or correlation name; for example, CUSTOMER.CITY. If a column
has been aliased to another name you must use the alias name.

colnum

specifies a column by its position in select-list. Use colnum to refer to
unnamed columns, such as derived columns.

ASC | DESC

specifies the sort order. The default is ASC. For ordering a result table on a
column that can contain null, nulls are considered equal to one another but
greater than all other non-null values.

See Considerations for ORDER BY on page 2-351.

Considerations for SELECT

Multiple Row and Single Row SELECT Statements

Use a multiple row SELECT statement (without the INTO clause) within a CREATE
VIEW statement to specify views. You can also use it to query a database within MXCI.
In embedded SQL, a multiple row SELECT statement can also be a cursor
specification—a special case of a query expression. For more information, see the
SQL/MX Programming Manual for C and COBOL. See syntax for query-expr on
page 2-331.

In embedded SQL, if rowset host variables are not used, you use a single row SELECT
statement (with the INTO clause) to retrieve only one row. If the SELECT statement
(with the INTO clause) retrieves more than one row, and rowsets are not used,
NonStop SQL/MX raises an error. If rowset host variables are used in the INTO clause
multiple rows can be retrieved with a multiple row SELECT statement.

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-346

SQL/MX Statements Considerations for SELECT
Authorization Requirements

SELECT requires authority to read all views and tables referred to in the statement,
including the underlying tables of views referred to in the statement.

Transactions

Queries on audited tables must be performed within a transaction unless the SELECT
statement uses READ UNCOMMITTED access.

Locking Modes

When specifying the locking mode for a SELECT statement:

 Use SHARE mode when the process reads data but does not modify it. Specifying
READ COMMITTED access and SHARE mode ensures a higher level of
concurrency.

 Use EXCLUSIVE mode when the process reads data and then modifies it with
DELETE or UPDATE. Requesting EXCLUSIVE locks on the SELECT prevents
other processes from acquiring SHARE locks on the accessed rows between the
time of the SELECT and the time of the subsequent DELETE or UPDATE. Such
locks by other processes would prevent the process from escalating its own
SHARE locks to the EXCLUSIVE locks required for a DELETE or UPDATE
operation, causing the process to wait or timeout.

 Do not specify the IN clause for READ UNCOMMITTED access. If you omit the IN
clause for other access options, SQL uses SHARE until an attempt is made to
modify the data, and then escalates the lock to EXCLUSIVE.

Locking modes are relevant only to SELECT operations that use a cursor. In a
standalone SELECT statement, locks are maintained only for the duration of the
SELECT.

Use of Views With SELECT

When a view is referenced in a SELECT statement, the specification that defines the
view is combined with the statement. The combination can cause the SELECT
statement to be invalid. If you receive an error message that indicates a problem but
the SELECT statement seems to be valid, check the view definition.

For example, suppose that the view named AVESAL includes column A defined as
AVG (X). The SELECT statement that contains MAX (A) in its select list is invalid
because the select list actually contains MAX (AVG (X)), and an aggregate function
cannot have an argument that includes another aggregate function.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-347

SQL/MX Statements Considerations for SELECT

Pu
Join Limits

Object Names in SELECT

You can use fully qualified Guardian names only in the FROM clause of a SELECT
statement.

AS and ORDER BY Conflicts

When you use the AS verb to rename a column in a SELECT statement, and the
ORDER BY clause uses the original column name, the query will fail. If a column has
been aliased to another name you must use the alias name. This type of query is not
supported by the ANSI standard.

Stream Access Restrictions

 SELECT statements can access only one table with stream access except for
unions that allow both SELECT statements to use stream access. However, you
must use UNION ALL when using stream access with unions.

 Streams assume parallel access to data; that is, if a table is partitioned and you
attempt to access it as a stream, parallel access to partitions is required. If you try
to access a stream when the default ATTEMPT_ASYNCHRONOUS_ACCESS is
set to OFF, NonStop SQL/MX returns an error. See
ATTEMPT_ASYNCHRONOUS_ ACCESS on page 10-66

 You cannot join two streams.

 Aggregate functions are not supported on streams, and therefore no GROUP BY
or HAVING clauses are valid on streams.

 Sort operations are not supported on streams. Therefore, you cannot use
DISTINCT, UNION DISTINCT, or ORDER BY unless supported by an index. You
can use a secondary index for accessing an ordered stream only if the columns in
the index definition include all the columns of the base table accessed as a stream
that are referenced in its WHERE clause.

 A query expression that serves as a data source for an INSERT statement cannot
specify stream access.

 A delete or update statement that is not embedded as a table reference cannot
specify stream access. For example, the statement DELETE FROM
STREAM(tab1) is not valid.

 If your application must handle a fast rate of publishing into the stream, or
publishes rows in very large transactions, it must be able to handle stream

Note. HP recommends that you limit the number of tables in a join to a maximum of 64, which
includes base tables of views referenced in joins. Queries with joins that involve a larger
number of tables are not guaranteed to compile.

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-348

SQL/MX Statements Considerations for SELECT

Pu

Pu
overflows. See the run-time limits on streams in the SQL/MX Queuing and
Publish/Subscribe Services for details.

 You cannot use streams with nonaudited tables.

 Stream access within compound statements is not supported.

Joining the Results of an Embedded Delete or Update

SQL/MX Release 2.x enables you to join another table with the results of an embedded
delete or embedded update. For more information, see SQL/MX Queuing and
Publish/Subscribe Services.

Restrictions on Embedded Deletes and Updates

These restrictions apply to embedded deletes and updates:

 You cannot use an embedded delete or update with a union statement—not even
UNION ALL.

 When you use an embedded delete or update with a join, the join predicate must
use the other table’s primary key.

 You cannot join an embedded delete or update with a stream.

 You cannot join an embedded delete or update with another embedded delete or
update.

 The table referenced by an embedded delete or update cannot be referenced
again in the same statement.

 Rowsets cannot be used as the selection predicate for an embedded delete or
update.

 An embedded deletes or update cannot be used with a compound statement.

 You cannot use an embedded delete or update with aggregates (for example,
GROUP BY, HAVING, or DISTINCT).

 You cannot sort an embedded delete or update. Therefore, you cannot use
DISTINCT or ORDER BY unless they are supported by an index. You can use a
secondary index to access an ordered embedded delete or update only if the
columns in the index definition include all the columns of the base table accessed
as an embedded delete or update that are referenced in the WHERE clause.

DISTINCT Aggregate Functions

An aggregate function can accept an argument specified as DISTINCT, which
eliminates duplicate values before the aggregate function is applied. Only one
DISTINCT aggregate function is allowed at each level of a SELECT statement. Multiple
DISTINCT aggregates are allowed if they are on the same column, but are not

b/Sub

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-349

SQL/MX Statements Considerations for Select List

C/C
permitted on different columns. Exceptions to this rule are SQL/MX extensions for
which DISTINCT is unnecessary and include:

 MIN and MAX functions

 Aggregate functions with unique columns or expressions, such as primary keys or
UNIQUE constraints

These aggregate functions do not contribute to the count of DISTINCT aggregate
functions in the query, thus permitting you to specify them more than once or in
addition to another DISTINCT aggregate function in a query.

Considerations for Select List

 If a column in a select list has datetime or interval data type, you must use the
CAST function to convert the column to a character string in an embedded SQL
program. You must also specify the length of the target host variable (or the length
– 1 in the case of a C program) as part of the CAST conversion.

 The * and corr.* forms of a select-list specification are convenient for use
in MXCI. However, such specifications make the order of columns in the SELECT
result table dependent on the order of columns in the current definition of the
referenced tables or views.

 A col-expr is a single column name or a derived column. A derived column is an
SQL value expression; its operands can be numeric, string, datetime, or interval
literals, columns, functions (including aggregate functions) defined on columns,
scalar subqueries, CASE expressions, or CAST expressions. Any single columns
named in col-expr must be from tables or views specified in the FROM clause.
For a list of aggregate functions, see Aggregate (Set) Functions on page 8-1.

 If col-expr is a single column name, that column of the SELECT result table is a
named column. All other columns are unnamed columns in the result table (and
have the (EXPR) heading) unless you use the AS clause to specify a name for a
derived column.

 You can specify SYSKEY as an item in the select-list. A SYSKEY is a primary
key defined by NonStop SQL/MX rather than by the user; it is the first column in a
table, and its data type depends on the organization of the table’s underlying file:
key-sequenced or entry-sequenced. (NonStop SQL/MX supports only key-
sequenced tables.) If you want to select the SYSKEY column from more than one
result table, you must qualify SYSKEY; for example, EMPLOYEE.SYSKEY.

Considerations for SEQUENCE BY

If you include both SEQUENCE BY and GROUP BY clauses in the same SELECT
statement, the values of the sequence functions must be computed first and then
become input for the aggregate functions in the statement. For more information, see
SEQUENCE BY Clause on page 7-19.

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-350

SQL/MX Statements Considerations for GROUP BY
Considerations for GROUP BY

 If you include a GROUP BY clause, the columns you refer to in the select-list
must be either grouping columns or arguments of an aggregate (or set) function.
For example, if AGE is not a grouping column, you can refer to AGE only as the
argument of a function, such as AVG (AGE).

 If you do not include a GROUP BY clause but you specify an aggregate function in
the select-list, all rows of the result table form the one and only group. The
result of AVG, for example, is a single value for the entire table.

 The GROUP BY clause must precede a HAVING clause.

 If the value of col-expr is a numeric constant, it refers to the position of the
select list item and is treated as the current GROUP BY using the ordinal feature.

 You can specify GROUP BY using ordinals to refer to the relative position within
the SELECT list. For example, GROUP BY 3, 2, 1.

Considerations for ORDER BY

When you specify an ORDER BY clause and its ordering columns, consider this:

 If you specify DISTINCT, the ordering column must be in select-list.

 If you specify a GROUP BY clause, the ordering column must also be a grouping
column.

 If an ORDER BY clause applies to a union of SELECT statements, the ordering
column must be explicitly referenced, and not within an aggregate function or an
expression, in the select-list of the leftmost SELECT statement.

 SQL does not guarantee a specific or consistent order of rows unless you specify
an ORDER BY clause. ORDER BY can reduce performance, however, so use it
only if you require a specific order.

Considerations for UNION

Suppose that the contributing SELECT statements are named SELECT1 and
SELECT2, the contributing tables resulting from the SELECT statements are named
TABLE1 and TABLE2, and the table resulting from the UNION operation is named
RESULT.

Characteristics of the UNION Columns

For columns in TABLE1 and TABLE2 that contribute to the RESULT table:

 If both columns contain character strings, the corresponding column in RESULT
contains a character string whose length is equal to the greater of the two
contributing columns.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-351

SQL/MX Statements Considerations for UNION
 If both columns contain variable-length character strings, RESULT contains a
variable-length character string whose length is equal to the greater of the two
contributing columns.

 If any one of the operands is a character string constant, the corresponding column
in the RESULT table contains a variable-length character string whose length is
equal to the greater of the two contributing operands/columns.

 If both columns are of exact numeric data types, RESULT contains an exact
numeric value whose precision and scale are equal to the greater of the two
contributing columns.

 If both columns are of approximate numeric data types, RESULT contains an
approximate numeric value whose precision is equal to the greater of the two
contributing columns.

 If both columns are of datetime data type (DATE, TIME, or TIMESTAMP), the
corresponding column in RESULT has the same data type.

 If both columns are INTERVAL data type and both columns are either year-month
or day-time, RESULT contains an INTERVAL value whose range of fields is the
most significant start field to the least significant end field of the INTERVAL fields in
the contributing columns. (The year-month fields are YEAR and MONTH. The
day-time fields are DAY, HOUR, MINUTE, and SECOND.)

For example, suppose that the column in TABLE1 has the data type INTERVAL
HOUR TO MINUTE, and the column in TABLE2 has the data type INTERVAL DAY
TO HOUR. The data type of the column resulting from the union operation is
INTERVAL DAY TO MINUTE.

 If both columns are described with NOT NULL, the corresponding column of
RESULT cannot be null. Otherwise, the column can be null.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-352

SQL/MX Statements Considerations for UNION
ORDER BY Clause and the UNION Operator

In a query containing a UNION operator, the ORDER BY clause defines an ordering on
the result of the UNION. In this case, the SELECT statement cannot have an individual
ORDER BY clause.

You can specify an ORDER BY clause only as the last clause following the final
SELECT statement (SELECT2 in this example). The ORDER BY clause in RESULT
specifies the ordinal position of the sort column either by using an integer or by using
the column name from the select list of SELECT1.

This SELECT statement shows correct use of the ORDER BY clause:

SELECT A FROM T1 UNION SELECT B FROM T2 ORDER BY A

This SELECT statement is incorrect because the ORDER BY clause does not follow
the final SELECT statement:

SELECT A FROM T1 ORDER BY A UNION SELECT B FROM T2

This SELECT statement is also incorrect:

SELECT A FROM T1 UNION (SELECT B FROM T2 ORDER BY A)

Because the subquery (SELECT B FROM T2...) is processed first, the ORDER BY
clause does not follow the final SELECT.

GROUP BY Clause, HAVING Clause, and the UNION
Operator

In a query containing a UNION operator, the GROUP BY or HAVING clause is
associated with the SELECT statement it is a part of (unlike the ORDER BY clause,
which can be associated with the result of a UNION operation). The groups are visible
in the result table of the particular SELECT statement. The GROUP BY and HAVING
clauses cannot be used to form groups in the result of a UNION operation.

UNION ALL and Associativity

The UNION ALL operation is left associative, meaning that these two queries return
the same result:

(SELECT * FROM TABLE1 UNION ALL
 SELECT * FROM TABLE2) UNION ALL SELECT * FROM TABLE3;

SELECT * FROM TABLE1 UNION ALL
 (SELECT * FROM TABLE2 UNION ALL SELECT * FROM TABLE3);

If both the UNION ALL and UNION operators are present in the query, the order of
evaluation is always from left to right. A parenthesized union of SELECT statements is
evaluated first, from left to right, followed by the remaining union of SELECT
statements.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-353

SQL/MX Statements Considerations for UNION
Access Modes and the UNION Operator

In a query containing the UNION operator, if you specify an access option for the
second operand before the ORDER BY clause (or if the UNION has no ORDER BY
clause) and you do not specify an option for the first operand, the first operand inherits
the session’s transaction isolation level setting. If this setting is different from the one
you specified for the second operand, NonStop SQL/MX issues a warning. For
example:

SELECT common.isma_no FROM sdcommon common
 WHERE common.sec_status='L'
UNION
SELECT main.isma_no FROM sdmain main
 WHERE main.iss_eligible='Y'
 FOR READ UNCOMMITTED ACCESS
ORDER BY 1 ASCENDING;

This statement will receive a warning:

*** WARNING[3192] Union operands sdcommon common and sdmain
main have different transaction access/lock modes.

If you want the access you specified for the second operand to apply to both SELECT
items in this type of query, use one of these strategies:

 Specify the desired access mode for each SELECT:

SELECT common.isma_no FROM sdcommon common
 WHERE common.sec_status='L'
 FOR READ UNCOMMITTED ACCESS
UNION
SELECT main.isma_no FROM sdmain main
 WHERE main.iss_eligible='Y'
 FOR READ UNCOMMITTED ACCESS
ORDER BY 1 ASCENDING;

 Use a table subquery to enclose the UNION, and apply the access mode to the
main query. This statement receives a warning because NonStop SQL/MX treats
the access mode on the second SELECT as applicable only to that second
SELECT:

SELECT a
 from t046a where b=1
 UNION
 SELECT b from t046b where a=2
 for browse access;

This statement uses a table subquery to apply the access mode to both queries:

SELECT c from
(SELECT a from t046a where b=1
 UNION
 SELECT b from t046b where a=2) as t(c)
 for browse access;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-354

SQL/MX Statements MXCI Examples of SELECT
 Specify the access mode after the ORDER BY clause:

SELECT common.isma_no
 from sdcommon common
 where common.sec_status='L'
UNION
SELECT main.isma_no
 from sdmain main
 where main.iss_eligible='Y'
ORDER BY 1 ascending for browse access;

For more about the effect of UNION on SELECT statements, including its effect on
performance, see the SQL/MX Query Guide.

MXCI Examples of SELECT

 Retrieve information from the EMPLOYEE table for employees with a job code
greater than 500 and who are in departments with numbers less than or equal to
3000, displaying the results in ascending order by job code:

SELECT jobcode, deptnum, first_name, last_name, salary
FROM persnl.employee
WHERE jobcode > 500 AND deptnum <= 3000
ORDER BY jobcode
READ UNCOMMITTED ACCESS;

JOBCODE DEPTNUM FIRST_NAME LAST_NAME SALARY
------- ------- --------------- ----------- ----------
 600 1500 JONATHAN MITCHELL 32000.00
 600 1500 JIMMY SCHNEIDER 26000.00
 900 2500 MIRIAM KING 18000.00
 900 1000 SUE CRAMER 19000.00
 . . .

In this example, because of READ UNCOMMITTED access, the query does not
wait for other concurrent processes to commit rows.

 Display selected rows grouped by job code in ascending order:

SELECT jobcode, AVG(salary)
FROM persnl.employee
WHERE jobcode > 500 AND deptnum <= 3000
GROUP BY jobcode
ORDER BY jobcode;

JOBCODE EXPR
------- ----------------------
 600 29000.00
 900 25100.00

--- 2 row(s) selected.

This select list contains only grouping columns and aggregate functions. Each row
of the output summarizes the selected data within one group.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-355

SQL/MX Statements MXCI Examples of SELECT
 Select data from more than one table by specifying the table names in the FROM
clause and specifying the condition for selecting rows of the result in the WHERE
clause:

SELECT jobdesc, first_name, last_name, salary
FROM persnl.employee E, persnl.job J
WHERE E.jobcode = J.jobcode AND
 E.jobcode IN (900, 300, 420);

JOBDESC FIRST_NAME LAST_NAME SALARY
------------ ------------ --------------- -----------
SALESREP TIM WALKER 32000.00
SALESREP HERBERT KARAJAN 29000.00
...
ENGINEER MARK FOLEY 33000.00
ENGINEER MARIA JOSEF 18000.10
...
SECRETARY BILL WINN 32000.00
SECRETARY DINAH CLARK 37000.00
...

--- 27 row(s) selected.

This type of condition is sometimes referred to as a join predicate. The query first
joins the EMPLOYEE and JOB tables by combining each row of the EMPLOYEE
table with each row of the JOB table; the intermediate result is the Cartesian
product of the two tables.

This join predicate specifies that any row (in the intermediate result) with equal job
codes is included in the result table. The WHERE condition further specifies that
the job code must be 900, 300, or 420. All other rows are eliminated.

The four logical steps that determine the intermediate and final results of the
previous query are:

1. Join the tables.

2. Drop rows with unequal job codes.

EMPLOYEE Table JOB Table

EMPNUM ... JOBCODE ... SALARY JOBCODE JOBDESC

EMPLOYEE Table JOB Table

EMPNUM ... JOBCODE ... SALARY JOBCODE JOBDESC

1 100 175500 100 MANAGER

.

75 300 32000 300 SALESREP

.

178 900 28000 900 SECRETARY

.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-356

SQL/MX Statements MXCI Examples of SELECT
3. Drop rows with job codes not equal to 900, 300, or 420.

4. Process the select list, leaving only four columns.

The final result is shown in the output:

JOBDESC FIRST_NAME LAST_NAME SALARY
------------ ------------ --------------- -----------
SALESREP TIM WALKER 32000.00
...
SECRETARY JOHN CHOU 28000.00
...

 Select from three tables, group the rows by job code and (within job code) by
department number, and order the groups by the maximum salary of each group:

SELECT E.jobcode, E.deptnum, MIN (salary), MAX (salary)
FROM persnl.employee E,
 persnl.dept D, persnl.job J
WHERE E.deptnum = D.deptnum AND E.jobcode = J.jobcode
 AND E.jobcode IN (900, 300, 420)
GROUP BY E.jobcode, E.deptnum
ORDER BY 4;

207 420 33000 420 ENGINEER

.

568 300 39500 300 SALESREP

EMPLOYEE Table JOB Table

EMPNUM ... JOBCODE ... SALARY JOBCODE JOBDESC

75 300 32000 300 SALESREP

.

178 900 28000 900 SECRETARY

.

207 420 33000 420 ENGINEER

.

568 300 39500 300 SALESREP

JOBDESC FIRST_NAME LAST_NAME SALARY

SALESREP TIM WALKER 32000

.

SECRETARY JOHN CHOU 28000

.

ENGINEER MARK FOLEY 33000

.

SALESREP JESSICA CRINER 39500

EMPLOYEE Table JOB Table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-357

SQL/MX Statements MXCI Examples of SELECT
JOBCODE DEPTNUM (EXPR) (EXPR)
------- ------- ----------- -----------
 900 1500 17000.00 17000.00
 900 2500 18000.00 18000.00
 ...
 300 3000 19000.00 32000.00
 900 2000 32000.00 32000.00
 ...
 300 3200 22000.00 33000.10
 420 4000 18000.10 36000.00
 ...

--- 16 row(s) selected.

Only job codes 300, 420, and 900 are selected. The minimum and maximum
salary for the same job in each department are computed, and the rows are
ordered by maximum salary.

 Select from two tables that have been joined by using an INNER JOIN on matching
part numbers:

SELECT OD.*, P.*
FROM sales.odetail OD INNER JOIN sales.parts P
ON OD.partnum = P.partnum;

Order/Num Part/Num Unit/Price Qty/Ord Part/Num
Part Description PRICE Qty/Avail
---------- -------- ------------ ---------- --------
------------------ ------------ -----------
 400410 212 2450.00 12 212
PCSILVER, 20 MB 2500.00 3525

 500450 212 2500.00 8 212
PCSILVER, 20 MB 2500.00 3525

 100210 244 3500.00 3 244
PCGOLD, 30 MB 3000.00 4426

 800660 244 3000.00 6 244
PCGOLD, 30 MB 3000.00 4426

...

--- 72 row(s) selected.

 Select from three tables and display them in employee number order. Two tables
are joined by using a LEFT JOIN on matching department numbers, then an
additional table is joined on matching jobcodes:

SELECT empnum, first_name, last_name, deptname, location,
jobdesc
 FROM employee e LEFT JOIN dept d ON e.deptnum = d.deptnum
 LEFT JOIN job j ON e.jobcode = j.jobcode
 ORDER BY empnum;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-358

SQL/MX Statements MXCI Examples of SELECT
 Suppose that the JOB_CORPORATE table has been created from the JOB table
by using the CREATE LIKE statement. Form the union of these two tables:

SELECT * FROM job UNION SELECT * FROM job_corporate;

JOBCODE JOBDESC
------- ------------------
 100 MANAGER
 200 PRODUCTION SUPV
 250 ASSEMBLER
 300 SALESREP
 400 SYSTEM ANALYST
 420 ENGINEER
 450 PROGRAMMER
 500 ACCOUNTANT
 600 ADMINISTRATOR
 900 SECRETARY
 100 CORP MANAGER
 300 CORP SALESREP
 400 CORP SYSTEM ANALYS
 500 CORP ACCOUNTANT
 600 CORP ADMINISTRATOR
 900 CORP SECRETARY

--- 16 row(s) selected.

 Present two ways to select the same data submitted by customers from California.

The first way:

SELECT OD.ordernum, SUM (qty_ordered * price)
FROM sales.parts P, sales.odetail OD
WHERE OD.partnum = P.partnum AND OD.ordernum IN
 (SELECT O.ordernum
 FROM sales.orders O, sales.customer C
 WHERE O.custnum = C.custnum AND state = 'CALIFORNIA')
GROUP BY OD.ordernum;

ORDERNUM (EXPR)
---------- ---------------------
 200490 1030.00
 300350 71025.00
 300380 28560.00
--- 3 row(s) selected.

The second way:

SELECT OD.ordernum, SUM (qty_ordered * price)
FROM sales.parts P, sales.odetail OD
WHERE OD.partnum = P.partnum AND OD.ordernum IN
 (SELECT O.ordernum
 FROM sales.orders O
 WHERE custnum IN
 (SELECT custnum
 FROM sales.customer
 WHERE state = 'CALIFORNIA'))
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-359

SQL/MX Statements C Examples of SELECT
GROUP BY OD.ordernum;

ORDERNUM (EXPR)
---------- ---------------------
 200490 1030.00
 300350 71025.00
 300380 28560.00
--- 3 row(s) selected.

The price for the total quantity ordered is computed for each order number.

 Show employees, their salaries, and the percentage of the total payroll that their
salaries represent. Note the subquery as part of the expression in the select list:

SELECT empnum, first_name, last_name, salary,
CAST(salary * 100 / (SELECT SUM(salary) FROM persnl.employee)
 AS NUMERIC(4,2))
FROM persnl.employee
ORDER BY salary, empnum;

Employee/Number First Name Last Name
salary (EXPR)
--------------- --------------- --------------------
----------- -------
 209 SUSAN CHAPMAN
17000.00 .61
 235 MIRIAM KING
18000.00 .65
 224 MARIA JOSEF
18000.10 .65
...
 23 JERRY HOWARD
137000.10 4.94
 32 THOMAS RUDLOFF
138000.40 4.98
 1 ROGER GREEN
175500.00 6.33
...

--- 62 row(s) selected.

C Examples of SELECT

 Use a single-row SELECT statement:

EXEC SQL
 SELECT LAST_NAME, FIRST_NAME INTO :hv_lname, :hv_fname
 FROM EMPLOYEE WHERE EMPNUM = 1234;

 Use an indicator variable:

EXEC SQL BEGIN DECLARE SECTION;
...
short ihv_salary; /* Indicator variable */
float hv_salary;
EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-360

SQL/MX Statements COBOL Examples of SELECT
...
EXEC SQL
 SELECT SALARY INTO :hv_salary INDICATOR :ihv_salary
 FROM EMPLOYEE WHERE EMPNUM = 1234;
...

COBOL Examples of SELECT

 Use a single-row SELECT statement:

EXEC SQL
 SELECT LAST_NAME, FIRST_NAME INTO :hv-lname, :hv-fname
 FROM EMPLOYEE WHERE EMPNUM = 1234
END-EXEC.

 This example uses an indicator variable:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
01 ihv-salary PIC S9(4) comp.
01 hv-salary PIC 9(6)V9(2) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL
 SELECT SALARY INTO :hv-salary INDICATOR :ihv-salary
 FROM EMPLOYEE WHERE EMPNUM = 1234
 END-EXEC.
 ...

Publish/Subscribe Examples of SELECT

Suppose that these SQL/MP tables and index (and the metadata mappings) have been
created:

CREATE TABLE $db.dbtab.tab1 (a INT, b INT, c INT);
CREATE TABLE $db.dbtab.tab2 (a INT, b INT, c INT);
CREATE INDEX $db.dbtab.itab1 ON tab1(b, c);

CREATE SQLMP ALIAS cat.sch.tab1 $db.dbtab.tab1;
CREATE SQLMP ALIAS cat.sch.tab2 $db.dbtab.tab2;

 These examples show stream access, ordering the access by using an ORDER
BY clause, and selecting entries by using a WHERE clause:

SET NAMETYPE ANSI;
SET SCHEMA cat.sch;

SELECT * FROM STREAM(tab1);
SELECT * FROM STREAM(tab1)
WHERE b = 1;

SELECT b, c FROM STREAM(tab1)
ORDER BY b;

SELECT b, c FROM STREAM(tab1)
WHERE c > 1 ORDER BY b;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-361

SQL/MX Statements Publish/Subscribe Examples of SELECT
For more information, see ordered streams in SQL/MX Queuing and
Publish/Subscribe Services.

 These examples show join operations with a base table and a stream:

SELECT *
FROM tab1, (SELECT * FROM STREAM(tab2)) AS tab2
WHERE tab1.a = tab2.a;
SELECT * FROM STREAM(tab1), tab2
WHERE tab1.a = tab2.a;

The two preceding queries yield identical results.

 This example shows union operations with streams:

SELECT * FROM STREAM(tab1)
UNION ALL
SELECT * FROM STREAM(tab2);

 These examples show the embedded delete statement as a table reference:

SELECT * FROM (DELETE FROM tab1) AS tab1;
SELECT * FROM (DELETE FROM tab1) AS tab1
ORDER BY b;
SELECT * FROM (DELETE FROM tab1) AS tab1
WHERE b = 1;
SELECT * FROM (DELETE FROM tab1) AS tab1
WHERE c > 1 ORDER BY b;

 This example shows a return list in an embedded delete:

SELECT * FROM (DELETE FROM tab1 WHERE a > 1
 RETURN OLD.*) AS tab1;

 This example shows a return list in an embedded update:

SELECT * FROM
 (UPDATE tab1 SET a = a + 1
 WHERE a > 1 RETURN OLD.a, NEW.a)
 AS tab1(old_a, new_a);

 This example shows the SKIP CONFLICT access:

SELECT * FROM tab1 FOR SKIP CONFLICT ACCESS;

SELECT * FROM tab1, tab2
WHERE tab1.a = tab2.a
FOR SKIP CONFLICT ACCESS;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-362

SQL/MX Statements SELECT ROW COUNT Statement
SELECT ROW COUNT Statement
Considerations for SELECT ROW COUNT
Limitations of SELECT ROW COUNT
Example of SELECT ROW COUNT

The SELECT ROW COUNT statement is used to retrieve the count of rows from an
SQL/MX table.

The SELECT ROW COUNT () query is sent to each disk process where a partition of
the table resides and the count of rows is computed as a parallel SQL operation.
Because the operation uses a stored count maintained for each partition of a table, the
SELECT ROW COUNT statement is an efficient way to obtain a row count.

table

specifies the name of the table for which you want to determine the number of
rows.

Considerations for SELECT ROW COUNT

 The SELECT ROW COUNT statement can be issued from any interface where an
existing SELECT statement is allowed.

 Other clauses, such as, WHERE, ORDER by, and GROUP by, are not allowed with
this SELECT statement.

 table must be an SQL/MX base table.

 SQL/MP tables are not supported.

 When you use the EXPLAIN statement with a SELECT ROW COUNT statement,
the result displays the count operator as disk_label_stats.

 The count is returned as if the target table is accessed in READ UNCOMMITTED
mode. This means that an inaccurate row count could be returned because of
transactions that have not yet committed.

Limitations of SELECT ROW COUNT

The SELECT ROW COUNT statement fails with an error 8022 (Stored row count is
invalid) under any of the following conditions:

 The target table was created with an SQL version earlier than R3.0.

 The target table was created with an SQL DUP operation.

 The target table was created with a BACKUP RESTORE operation.

SELECT ROW COUNT FROM table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-363

SQL/MX Statements Example of SELECT ROW COUNT
 Records have been added, deleted, or moved from one or more partitions of the
target table by a MODIFY operation (in this case, only the affected partitions are
marked with an invalid row count).

If partitions of a table are marked with an invalid row count, the row count can be reset
by deleting all the rows from the affected partition(s) using either a DELETE or
PURGEDATA statement.

Example of SELECT ROW COUNT

 This example selects the row count from the persnl.employee table:

SELECT ROW COUNT FROM persnl.employee;

(EXPR)

 11487

Note. An invalid row count on one or more partitions only affects the ability of the SELECT
ROW COUNT statement to return a valid count. An invalid row count does not affect any other
SQL/MX operations and can be safely ignored. In such cases, a SELECT statement with
COUNT(*) can be used instead of returning a row count.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-364

SQL/MX Statements SET Statement
SET Statement
Considerations for SET Statement

The SET statement is used with BEFORE triggers to assign values to variables
representing columns in the SQL/MX table to be modified by the triggering action.

correlation-name

is the name of the new row that correlates to the row to be modified.

column-name

is the name of the new column that correlates to the column to be modified.

value-expression

is any valid SQL expression.

Considerations for SET Statement

The SET statement can appear only as an action of a BEFORE trigger. The left side of
the assignment can specify only a column in the correlation name of the new row. The
right side of the assignment can be any valid SQL expression (in particular, it can
include subqueries).

In a BEFORE-type trigger action, any column can be updated by SET, including
primary and clustering key columns.

SET correlation-name.column-name = value-expression;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-365

SQL/MX Statements SET CATALOG Statement

Em

M

Em

Em
SET CATALOG Statement
Considerations for SET CATALOG
MXCI Examples of SET CATALOG
C Example of SET CATALOG
COBOL Example of SET CATALOG

The SET CATALOG statement sets the default logical catalog for unqualified schema
names for the current SQL session.

The SET CATALOG statement sets the default catalog for unqualified schema names
in all dynamic statements within the control flow scope of an embedded SQL program
for the current SQL session.

default-catalog-name

specifies the name of the catalog. See Catalogs on page 6-3.

default-catalog-name is an SQL identifier. For example, you can use
MYCATALOG or mycatalog or a delimited identifier "my catalog". See
Identifiers on page 6-56.

default-catalog-name is a value specification—a string literal or an SQL
identifier—that specifies the catalog name. Enclose a string literal in single
quotation marks ('); for example, 'mycatalog', where mycatalog is the name
you choose. See Character String Literals on page 6-64.

Considerations for SET CATALOG

Scope of SET CATALOG

The default catalog you specify with SET CATALOG remains in effect until the end of
the session or until you execute another SET CATALOG statement (or an equivalent
SET SCHEMA statement).

If no SET CATALOG statement is in effect, NonStop SQL/MX determines the default
catalog. For more information, see Object Naming on page 10-60.

Use SET CATALOG to set a new default catalog for dynamic SQL statements. Use
DECLARE CATALOG to set a new default catalog for static SQL statements. See
DECLARE CATALOG Declaration on page 3-21. For more information, see the
SQL/MX Programming Manual for C and COBOL.

MXCI Examples of SET CATALOG

 Set the default catalog name:

SET CATALOG mycatalog;

SET CATALOG default-catalog-name

bed

XCI

bed

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-366

SQL/MX Statements C Example of SET CATALOG
C Example of SET CATALOG

 Set the default catalog name with an SQL string literal:

EXEC SQL SET CATALOG 'mycatalog';

 Set the default catalog name with an SQL identifier:

EXEC SQL SET CATALOG mycatalog;

COBOL Example of SET CATALOG

 Set the default catalog name with an SQL string literal:

EXEC SQL SET CATALOG 'mycatalog' END-EXEC.

 Set the default catalog name with an SQL identifier:

EXEC SQL SET CATALOG mycatalog END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-367

SQL/MX Statements SET MPLOC Statement

Em

Em
SET MPLOC Statement
Considerations for SET MPLOC
Examples of SET MPLOC

The SET MPLOC statement sets the default NonStop operating system volume and
subvolume for physical object names for the current SQL session.

The SET MPLOC statement sets the default volume and subvolume for physical object
names in all dynamic statements within the control flow scope of an embedded SQL
program for the current SQL session.

SET MPLOC is an SQL/MX extension.

[\node.]$volume.subvolume

is the fully qualified Guardian physical name of a subvolume. If you do not specify
\node, the default is the Guardian node named in the =_DEFAULTS define.

Considerations for SET MPLOC

Scope of SET MPLOC

The default volume and subvolume you specify with SET MPLOC remains in effect
until the end of the session or until you execute another SET MPLOC statement.

If no SET MPLOC statement is in effect, NonStop SQL/MX determines the default
physical location. For more information, see Object Naming on page 10-60.

Use SET MPLOC to set the default volume and subvolume for dynamic SQL
statements. Use DECLARE MPLOC to set the default volume and subvolume for static
SQL statements. See DECLARE MPLOC Declaration on page 3-29. For more
information, see the SQL/MX Programming Manual for C and COBOL.

Examples of SET MPLOC

 Set the default volume and subvolume without setting the system:

SET MPLOC $myvol.mysubvol;

 Set the default system, volume, and subvolume:

SET MPLOC \aztec.$data06.part;

If you then set the default volume and subvolume:

SET MPLOC $data08.sales;

the system will default to the system you previously set.

SET MPLOC [\node.]$volume.subvolume

bed

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-368

SQL/MX Statements SET NAMETYPE Statement

Em

Em
SET NAMETYPE Statement
Considerations for SET NAMETYPE
Examples of SET NAMETYPE

The SET NAMETYPE statement sets the NAMETYPE attribute value for the current
SQL session.

The SET NAMETYPE statement sets the NAMETYPE attribute for all dynamic
statements within the control flow scope of an embedded SQL program for the current
SQL session.

SET NAMETYPE is an SQL/MX extension.

ANSI | NSK

specifies whether the system assumes logical names (ANSI) or physical Guardian
names (NSK) are used to reference SQL/MP database objects in SQL statements.

Considerations for SET NAMETYPE

Scope of SET NAMETYPE

The NAMETYPE attribute value you specify with SET NAMETYPE remains in effect
until the end of the session or until you execute another SET NAMETYPE statement.

If no SET NAMETYPE statement is in effect, NonStop SQL/MX determines the default
NAMETYPE attribute value. For more information, see Object Naming on page 10-60.

Use SET NAMETYPE to set the NAMETYPE attribute for dynamic SQL statements.
Use DECLARE NAMETYPE to set the NAMETYPE attribute for static SQL statements.
See DECLARE NAMETYPE Declaration on page 3-32. For more information, see the
SQL/MX Programming Manual for C and COBOL.

Examples of SET NAMETYPE

 Set the NAMETYPE attribute value to NSK:

SET NAMETYPE NSK;

SET NAMETYPE {ANSI | NSK}

bed

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-369

SQL/MX Statements SET SCHEMA Statement

Em

M

Em

Em
SET SCHEMA Statement
Considerations for SET SCHEMA
MXCI Examples of SET SCHEMA
C Example of SET SCHEMA
COBOL Example of SET SCHEMA

The SET SCHEMA statement sets the default logical schema (and optionally the
catalog) for unqualified object names for the current SQL session.

The SET SCHEMA statement sets the default schema (and optionally the catalog) for
unqualified object names in all dynamic statements within the control flow scope of an
embedded SQL program for the current SQL session.

default-schema-name

specifies the name of the schema and optionally the catalog. See Pseudocolumns
on page 6-105.

default-schema-name is an SQL identifier. For example, you can use
MYSCHEMA or myschema or a delimited identifier "my schema". You can also
specify both the catalog and schema as follows: MYCATALOG.MYSCHEMA. See
Identifiers on page 6-56.

default-schema-name is a value specification—a string literal or an SQL
identifier—that specifies the default schema (and optionally the catalog). Enclose a
string literal in single quotation marks ('); for example, 'sales' for a default
schema or 'samdbcat.sales' for both a default catalog and schema. See
Character String Literals on page 6-64.

Considerations for SET SCHEMA

Scope of SET SCHEMA

The default schema you specify with SET SCHEMA remains in effect until the end of
the session or until you execute another SET SCHEMA statement.

If no SET SCHEMA statement is in effect, NonStop SQL/MX determines the default
schema. For more information, see Object Naming on page 10-60.

Use SET SCHEMA to set a new default schema for dynamic SQL statements. Use
DECLARE SCHEMA to set a new default schema for static SQL statements. See
DECLARE SCHEMA Declaration on page 3-33. For more information, see the SQL/MX
Programming Manual for C and COBOL.

SET SCHEMA default-schema-name

bed

XCI

bed

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-370

SQL/MX Statements MXCI Examples of SET SCHEMA
MXCI Examples of SET SCHEMA

 Set the default schema name:

SET SCHEMA myschema;

 Set the default catalog and schema name by specifying both:

SET SCHEMA mycatalog.myschema;

C Example of SET SCHEMA

 Set the default catalog and schema with an SQL string literal:

EXEC SQL SET SCHEMA 'prodcat.persnl';

 Set the default catalog and schema with an SQL identifier:

EXEC SQL SET SCHEMA prodcat.persnl;

COBOL Example of SET SCHEMA

 Set the default schema with an SQL string literal:

EXEC SQL SET SCHEMA 'prodcat.persnl' END-EXEC.

 Set the default schema with an SQL identifier:

EXEC SQL SET SCHEMA prodcat.persnl END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-371

SQL/MX Statements SET TABLE TIMEOUT Statement

Em
SET TABLE TIMEOUT Statement
Considerations for SET TABLE TIMEOUT
MXCI Examples of SET TABLE TIMEOUT
C Examples of SET TABLE TIMEOUT

The SET TABLE TIMEOUT statement sets a dynamic timeout value for a lock timeout
or a stream timeout in the environment of the current session. The dynamic timeout
value overrides the compiled static timeout value in the execution of subsequent DML
statements.

You can use SET TABLE TIMEOUT from MXCI or in embedded SQL programs.

SET TABLE TIMEOUT is an SQL/MX extension.

TABLE { * | table }

specifies the name of the table. The table must exist in the user catalog before this
statement is executed.

table can be any of:

 Guardian physical name of the form
[\node.][[$vol.]subvol.]filename

 Three-part logical name of the form [[catalog.]schema.]table

 DEFINE name such as =CUSTOMER

 Host variable (If you use a host variable, you do not need to provide a
PROTOTYPE clause.)

An asterisk (*) specifies all tables accessed in the current session. This option
clears all previous dynamic timeout settings for specific tables in the current
session.

If the table or DEFINE does not exist during explicit SQL/MX compilation, SET
TABLE TIMEOUT returns an error. You must recompile the program if it has a
missing table or DEFINE. For more information, see the SQL/MX Programming
Manual for C and COBOL.

To set the lock timeout

SET TABLE { * | table } TIMEOUT { value | RESET }

To set the stream timeout

SET TABLE * STREAM TIMEOUT { value | RESET }

Note. The table option is supported only for the lock timeout option. For the stream
timeout option, you must use the asterisk (*) option.

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-372

SQL/MX Statements SET TABLE TIMEOUT Statement

Em

M

TIMEOUT value

specifies that value is for a lock timeout. If value elapses before a DML
statement can acquire a lock on a table, the statement fails, and NonStop SQL/MX
returns file-system error 73 (disk file or record is locked).

The value overrides any compiled values, such as those previously set by a
CONTROL TABLE statement with the TIMEOUT option.

STREAM TIMEOUT value

specifies that value is for a stream timeout. A query that tries to access an empty
stream waits until value elapses before NonStop SQL/MX returns:

*** ERROR[8006] The stream timed out, but the cursor is still
open.

The value overrides any compiled values, such as those previously set by a
CONTROL QUERY DEFAULT statement with the STREAM_TIMEOUT option.

value

specifies the timeout value in hundredths of seconds.

Specify value as a:

 Numeric value (for example, 3000)

 String with single quotation marks (for example, '-1')

 Host variable in an embedded SQL statement

 Parameter

The range is between -1 and 2147483519, expressed in hundredths of seconds.
The value -1 represents an infinite timeout and directs NonStop SQL/MX not to
time out.

A value of zero (0) directs NonStop SQL/MX not to wait. If a table lock cannot be
acquired or if a stream is empty, NonStop SQL/MX immediately times out.

RESET

removes the dynamic timeout value (if set) for the specified table, resetting the
timeout value to the static values set during explicit SQL/MX compilations. The
RESET option with an asterisk resets the dynamic timeout value (lock or stream
timeout, as specified) for all tables. The RESET option for a specific table does not
override a dynamic timeout value that was set for all tables. (See MXCI Examples
of SET TABLE TIMEOUT on page 2-374.)

Note. Because of overhead processing by NonStop SQL/MX after a timeout occurs on a
locked table, the actual time is usually a few seconds longer than value.

bed

XCI
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-373

SQL/MX Statements Considerations for SET TABLE TIMEOUT

Em

Em

Em
Considerations for SET TABLE TIMEOUT

 The SET TABLE TIMEOUT statement does not perform any security checks on a
table.

 A CONTROL statement is a directive that affects the compilation of subsequent
DML statements but produces no executable code. A SET TABLE TIMEOUT
statement, however, produces executable code and has no effect on the
compilation of other statements.

 The SET TABLE TIMEOUT statement does not change the SQL/MX compilation
defaults or CONTROL statement settings. A DML statement explicitly compiled
after the execution of a SET TABLE TIMEOUT statement internally contains the
static CONTROL statement timeout values, which are overridden by SET TABLE
TIMEOUT.

 The SET TABLE TIMEOUT statement affects the run-time environment of an
embedded SQL program. The explicit SQL/MX compilation defaults or CONTROL
settings are not changed. DML statements compiled either before or after the
execution of SET TABLE TIMEOUT still contain the same static timeout values in
their code.

 The timeout values set by executing a SET TABLE TIMEOUT statement override
the CONTROL directives that are in effect at the execution of subsequent DML
statements. Therefore, you do not have to recompile a DML statement to change
its timeout settings. The SET TABLE TIMEOUT statement also has a RESET
option that clears previously set dynamic values, making the static values effective
again.

 The timeout values set by a SET TABLE TIMEOUT statement are checked only
when a DML statement is executed or when an SQL cursor is opened. Therefore,
the statement has no effect on a cursor that is already open.

MXCI Examples of SET TABLE TIMEOUT

 Set the lock timeout value for all the tables to 30 seconds for the current session:

SET TABLE * TIMEOUT 3000;

 Set the lock timeout value for the CUSTOMER table to one minute:

SET TABLE customer TIMEOUT '6000';
SELECT custnum, custname FROM customer;

 Reset the timeout value for the CUSTOMER table to 30 seconds (set earlier for all
tables):

SET TABLE customer TIMEOUT RESET;

 This statement has no effect; the PARTS table still uses the lock timeout value of
30 seconds (set earlier for all tables):

SET TABLE parts TIMEOUT RESET;

bed

bed

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-374

SQL/MX Statements C Examples of SET TABLE TIMEOUT
 Reset all the lock timeout settings. All tables will use the static lock timeout value
specified by the system or by the CONTROL statement:

SET TABLE * TIMEOUT RESET;

C Examples of SET TABLE TIMEOUT

 Set the lock timeout value for all the tables to 30 seconds:

EXEC SQL SET TABLE * TIMEOUT 3000;

 Set the lock timeout value for the CUSTOMER table to 1 minute:

EXEC SQL SET TABLE CUSTOMER TIMEOUT '6000';
SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv_custnum, :hv_custname,
 :hv_street, :hv_city, :hv_state, :hv_postcode
 FROM CUSTOMER
 WHERE CUSTNUM = :hv_custnum;

 This SET TABLE TIMEOUT statement has no effect because the cursor is already
open:

EXEC SQL DECLARE mycursor CURSOR
 FOR SELECT custname FROM customer;
EXEC SQL OPEN mycursor;
EXEC SQL SET TABLE customer TIMEOUT '-1';
EXEC SQL FETCH mycursor INTO :customer_name;

 Reset the timeout value for the CUSTOMER table to 30 seconds (set earlier for all
tables):

EXEC SQL SET TABLE CUSTOMER TIMEOUT RESET;

 This SET TABLE statement has no effect; the PARTS table still uses the lock
timeout value of 30 seconds (set earlier for all tables):

EXEC SQL SET TABLE PARTS TIMEOUT RESET;

 Reset all the lock timeout settings. All tables will use the static lock timeout values
set during explicit SQL/MX compilation:

EXEC SQL SET TABLE * TIMEOUT RESET;

 Set all streams to use a timeout of two minutes, and then reset the stream timeout
to its original compile-time value:

EXEC SQL SET TABLE * STREAM TIMEOUT 12000;
EXEC SQL SELECT col1, col2 FROM STREAM(myqueue);

...
EXEC SQL SET TABLE * STREAM TIMEOUT RESET;

 Use a host variable to set a timeout value entered by a user:

/* Input timeout value into a host variable */
scanf("%ld",&hv_timeout);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-375

SQL/MX Statements SET TRANSACTION Statement

C/C

C/C
/* Set timeout value for ORDERS table from host variable */
EXEC SQL SET TABLE orders TIMEOUT hv_timeout;

SET TRANSACTION Statement
Considerations for SET TRANSACTION
MXCI Examples of SET TRANSACTION
C Examples of SET TRANSACTION
COBOL Examples of SET TRANSACTION

The SET TRANSACTION statement is used to set attributes for the next transaction
(and only the next transaction). The attributes are the isolation level, access mode,
size of the diagnostics area, and whether to automatically commit changes made to the
database. The isolation level and the access mode affect the degree of concurrency
available for transactions.

SET TRANSACTION transaction-mode [,transaction-mode]...

transaction-mode is:
 isolation-level
 | access-mode

 | diagnostics-size

 | autocommit-option

 | autobegin-option

isolation-level is:
 ISOLATION LEVEL access-option

access-option is:
 READ UNCOMMITTED
 | READ COMMITTED
 | SERIALIZABLE
 | REPEATABLE READ

access-mode is:
 READ ONLY | READ WRITE

diagnostics-size is:
 DIAGNOSTICS SIZE number-of-conditions

autocommit-option is:
 AUTOCOMMIT {ON | OFF}

autobegin-option is:
 AUTOBEGIN {ON | OFF}

OBOL

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-376

SQL/MX Statements SET TRANSACTION Statement

C/C
transaction mode

is an option that can be set in a SET TRANSACTION statement. You cannot
specify any of the options—isolation level, access mode, size of the diagnostics
area, or autocommit—more than once within one SET TRANSACTION statement.
You cannot use the AUTOCOMMIT option in combination with any other option.

isolation-level

specifies the level of data consistency defined for the transaction and the
degree of concurrency the transaction has with other transactions that use the
same data. The default isolation level of a transaction is determined according
to the rules specified in Isolation Level on page 10-56.

access-mode

specifies the type of data access that the transaction requires, depending on
whether changes are made to the database by the transaction.

If the isolation-level is READ UNCOMMITTED, you cannot specify
READ WRITE. The default access-mode is READ ONLY, and you can specify
only READ ONLY explicitly.

If the isolation-level is not READ UNCOMMITTED, you can specify
either READ WRITE or READ ONLY explicitly. The default access-mode is
READ WRITE.

See Transaction Access Modes on page 1-23.

diagnostics-size

specifies the size of the diagnostics area (as an estimate of the number of
expected conditions) used to return SQL query completion and exception
condition information.

number-of-conditions is an exact numeric literal with zero scale. If the
diagnostics-size is not set, it defaults to a system-defined value.

autocommit-option

specifies whether NonStop SQL/MX commits automatically or rolls back if an
error occurs at the end of statement execution. This option applies to any
statement for which the system initiates a transaction.

If this option is set to ON, NonStop SQL/MX automatically commits any
changes or rolls back any changes made to the database at the end of
statement execution. AUTOCOMMIT is ON by default at the start of an MXCI
session or for embedded SQL in Java programs.

If this option is set to OFF, the current transaction remains active until the end
of the MXCI session unless you explicitly COMMIT or ROLLBACK the
transaction. AUTOCOMMIT is OFF by default for embedded SQL in C or
COBOL programs.

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-377

SQL/MX Statements Considerations for SET TRANSACTION

Em

C/C
If you exit a program without executing COMMIT or without setting
AUTOCOMMIT ON, any uncommitted changes are automatically rolled
back.

AUTOCOMMIT is an SQL/MX extension and cannot be used in combination
with any other option.

autobegin-option

specifies that NonStop SQL/MX can start implicit transactions when the
statement runs.

If this option is set to ON, NonStop SQL/MX automatically starts a transaction
whenever a statement that requires a transaction is run.

If this option is set to OFF, the transaction does not start automatically. You
must explicitly start a transaction before running the statement. When a
statement that requires a transaction is run, and there is no available
transaction, Nonstop SQL/MX returns error 8877.

Considerations for SET TRANSACTION

Implicit Transactions

Most DML statements are transaction-initiating—the system automatically initiates a
transaction when the statement begins executing.

The exceptions (statements that are not transaction-initiating) are:

 COMMIT, FETCH, ROLLBACK, and SET TRANSACTION

 DML statements operating on nonaudited tables

 DML statements executing under READ UNCOMMITTED access on audited tables

 The embedded-only SQL statements and declarations GET DIAGNOSTICS,
BEGIN DECLARE SECTION, END DECLARE SECTION, and WHENEVER

 EXECUTE or EXECUTE IMMEDIATE, which are transaction-initiating only if the
associated statement is transaction-initiating

Note. AUTOBEGIN is set to ON when a transaction is not available.

Note.

 AUTOBEGIN is a NonStop SQL/MX extension.

 AUTOBEGIN cannot be used in combination with any other option.

 AUTOBEGIN works only with embedded programs, namely, JDBC programs that
use T2 driver and MXCI.

 AUTOBEGIN does not work with ODBC driver and JDBC T4 driver.

bed

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-378

SQL/MX Statements Considerations for SET TRANSACTION

Em
 Cursor declarations (both static and dynamic)

 DECLARE CATALOG and DECLARE SCHEMA

In MXCI, the EXECUTE statement is transaction-initiating only if the statement that it
executes is transaction-initiating.

Explicit Transactions

You can issue an explicit BEGIN WORK even if the autocommit option is on. The
autocommit option is temporarily disabled until you explicitly issue COMMIT or
ROLLBACK.

Degree of Concurrency

The SET TRANSACTION statement has an effect on the degree of concurrency
available to the transaction. Concurrent processes take place within the same interval
of time and share resources. The degree of concurrency available—that is, whether a
process that requests access to data already being accessed is given access or placed
in a wait queue—is affected by:

 The transaction access mode (READ ONLY or READ WRITE)

 The transaction isolation level (READ UNCOMMITTED, READ COMMITTED,
SERIALIZABLE, or REPEATABLE READ)

Effect on Utilities

The SET TRANSACTION statement has no effect on the utility statements DUP,
IMPORT, MODIFY TABLE, and PURGEDATA. The SET TRANSACTION statement
does set attributes for transactions for UPDATE STATISTICS.

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-379

SQL/MX Statements MXCI Examples of SET TRANSACTION
MXCI Examples of SET TRANSACTION

 Set the isolation level of a transaction that performs deletes, inserts, and updates:

SET TRANSACTION
 ISOLATION LEVEL SERIALIZABLE;
--- SQL operation complete.

BEGIN WORK;
--- SQL operation complete.

DELETE FROM persnl.employee
 WHERE empnum = 23;
--- 1 row(s) deleted.

INSERT INTO persnl.employee
 (empnum, first_name, last_name, deptnum, salary)
 VALUES (50, 'JERRY','HOWARD', 1000, 137000.00);
--- 1 row(s) inserted.

UPDATE persnl.dept
 SET manager = 50
 WHERE deptnum = 1000;
--- 1 row(s) updated.

COMMIT WORK;
--- SQL operation complete.

This transaction uses SERIALIZABLE access (which provides maximum
consistency but reduces concurrency). Therefore, you should execute it at a time
when few users need concurrent access to the database. Locks acquired for
SERIALIZABLE access are held until the changes made by these DELETE,
INSERT, and UPDATE statements are committed.

C Examples of SET TRANSACTION

 Set the access option and isolation level for the next transaction within the
program:

EXEC SQL SET TRANSACTION
 READ ONLY,
 ISOLATION LEVEL READ UNCOMMITTED;

COBOL Examples of SET TRANSACTION

 Set the access option and isolation level for the next transaction within the
program:

EXEC SQL SET TRANSACTION
 READ ONLY,
 ISOLATION LEVEL READ UNCOMMITTED
END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-380

SQL/MX Statements SIGNAL SQLSTATE Statement
SIGNAL SQLSTATE Statement
The SIGNAL statement is used with triggers. It allows a trigger execution to raise an
exception that causes both the triggered and triggering statements to fail.

The SIGNAL statement sends an SQLSTATE and error text.

quoted_sqlstate

is the five-digit SQLSTATE to be passed to SIGNAL.

quoted_string_expr

is a string expression.

Considerations for SIGNAL SQLSTATE

You can use the GET DIAGNOSTICS command to retrieve quoted_string_expr
(as message_text) and quoted_sqlstate.

SIGNAL SQLSTATE quoted_sqlstate (quoted_string_expr);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-381

SQL/MX Statements TABLE Statement
TABLE Statement
Considerations for TABLE
Examples of TABLE

The TABLE statement is equivalent to the query specification SELECT * FROM
table.

table

names the user table or view.

Considerations for TABLE

Relationship to SELECT Statement

The result of the TABLE statement is one form of a simple-table, which is part of
the definition of a table reference within a SELECT statement. See SELECT Statement
on page 2-330.

Examples of TABLE

 This TABLE statement returns the same result as SELECT * FROM JOB:

TABLE JOB;

Job/Code Job Description
-------- ------------------
 100 MANAGER
 200 PRODUCTION SUPV
 250 ASSEMBLER
 300 SALESREP
 400 SYSTEM ANALYST
 420 ENGINEER
 450 PROGRAMMER
 500 ACCOUNTANT
 600 ADMINISTRATOR
 900 SECRETARY

--- 10 row(s) selected.

TABLE table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-382

SQL/MX Statements UNLOCK TABLE Statement
UNLOCK TABLE Statement
Considerations for UNLOCK TABLE
Examples of UNLOCK TABLE

The UNLOCK TABLE statement releases locks owned by MXCI on a nonaudited
SQL/MP table or on underlying nonaudited SQL/MP tables of a view. UNLOCK TABLE
does not affect audited tables. Ending a transaction unlocks an audited table.

UNLOCK TABLE is an SQL/MX extension.

table

is the name of the table or view to unlock. See Database Object Names on
page 6-13.

Considerations for UNLOCK TABLE

Authorization Requirements

To unlock a table, you must have authority to read the table. To unlock a view, you
must have authority to read the view but not necessarily the tables underlying the view.

Examples of UNLOCK TABLE

 Lock and unlock a nonaudited table within an MXCI session:

LOCK TABLE persnl.job
 IN EXCLUSIVE MODE;
--- SQL operation complete.

DELETE FROM persnl.job
WHERE jobcode NOT IN
 (SELECT DISTINCT jobcode
 FROM persnl.employee);
--- 1 row(s) deleted.

UNLOCK TABLE persnl.job;
--- SQL operation complete.

UNLOCK TABLE table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-383

SQL/MX Statements UNREGISTER CATALOG Statement
UNREGISTER CATALOG Statement
The UNREGISTER CATALOG statement removes an empty SQL/MX catalog
reference from a node.

catalog

is the ANSI name of the target catalog. It must be visible on the local node.

\node

is the name of the target node, local or remote.

RESTRICT

specifies that only the reference for the named catalog will be removed. If that
catalog is related to other catalogs, an error occurs.

RESTRICT is the default.

CASCADE

specifies that the references for the named catalog, and any catalogs that are
directly or indirectly related to it, will be removed.

Considerations for UNREGISTER CATALOG

A catalog that is unregistered is no longer visible on the target node. The
UNREGISTER CATALOG statement updates automatic catalog references to reflect
that.

 A catalog cannot be unregistered if any of the following is true:

 An object in the catalog is present on the target node, or depends on objects that
are present on the target node.

 Definition schema tables for the catalog exist on the target node.

Authorization and Availability Requirements

To remove the catalog reference, you must be the user who created the catalog or be
the super ID.

Example of UNREGISTER CATALOG

>> UNREGISTER CATALOG mycat FROM \nodex;

UNREGISTER CATALOG catalog FROM \node [RESTRICT | CASCADE]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-384

SQL/MX Statements UPDATE Statement

Em

E

Pu

Pu

Em

Pu

Em
UPDATE Statement
Considerations for UPDATE
MXCI Examples of UPDATE
C Examples of UPDATE
COBOL Examples of UPDATE
Publish/Subscribe Examples of DELETE

The UPDATE statement is a DML statement that updates data in a row or rows in a
table or updatable view. Updating rows in a view updates the rows in the table on
which the view is based.

Starting with SQL/MX Release 3.2, self-referencing updates are supported. With this
support, you can select the rows to update from the target table in a subquery.

Starting with SQL/MX release 3.2, you can update the primary key columns.

The two forms of the UPDATE statement are:

 Searched UPDATE—Updates rows whose selection depends on a search
condition

 Positioned UPDATE—Updates a single row determined by the cursor position.

For the searched UPDATE form, if there is no WHERE clause, all rows are updated in
the table or view.

Use the positioned form of UPDATE only in embedded SQL programs. Use the
searched form in MXCI or embedded SQL programs.

Searched UPDATE is:

[ROWSET FOR INPUT SIZE rowset-size-in]

UPDATE table

| STREAM (table) [AFTER LAST ROW]

 SET set-clause [,set-clause]...

 [SET ON ROLLBACK set-roll-clause [,set-roll-clause]...]

 [WHERE search-condition | rowset-search-condition]
 [[FOR] access-option ACCESS]

 set-roll-clause is:
 column-name = expression | rowset-expression

access-option is:
 READ COMMITTED
 | SERIALIZABLE
 | REPEATABLE READ
 | SKIP CONFLICT

bed

mbed

b/Sub

b/Sub

bed

b/Sub

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-385

SQL/MX Statements UPDATE Statement

Em

C/C

Em

Pu
ROWSET FOR INPUT SIZE rowset-size-in

Allowed only if you specify rowset-search-condition in the WHERE clause.
rowset-size-in restricts the size of the input rowset to the specified size. If
rowset-size-in is different from the allocated size for the rowset, NonStop
SQL/MX uses the smaller of the two sizes and ignores the remaining entries in the
larger rowset.

rowset-size-in must be an integer literal (exact numeric literal, dynamic
parameter, or a host variable) whose type is unsigned short, signed short,
unsigned long, or signed long in C and their corresponding equivalents in COBOL.
If you do not specify rowset-size-in, NonStop SQL/MX uses the allocated
rowset size specified in the SQL Declare Section of the embedded SQL
program.

table

names the user table or view to update. table must be either a base table or an
updatable view. To refer to a table or view, use one of these name types:

 Guardian physical name
 ANSI logical name
 DEFINE name

See Database Object Names on page 6-13.

STREAM (table)

updates a continuous data stream from the specified table. You cannot specify
STREAM access for the UPDATE statement if it is not embedded as a table
reference in a SELECT statement. See SELECT Statement on page 2-330.

[AFTER LAST ROW]

causes the stream to skip all existing rows in the table and update only rows
that are published after the stream’s cursor is opened.

set-clause

associates a value with a specific column in the table being updated. For each
set-clause, the value of the specified target column-name is replaced by the

Positioned UPDATE is:

UPDATE table
 SET set-clause [,set-clause]...

 WHERE CURRENT OF {cursor-name | ext-cursor-name}

set-clause is:
 column-name = {expression |rowset-expression | NULL}

bed

OBOL

bed

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-386

SQL/MX Statements UPDATE Statement

E

E

value of the update source expression (or NULL). The data type of each target
column must be compatible with the data type of its source value.

If you include a rowset search condition in the WHERE clause, you can use a
rowset expression in set-clause, but it is not required. If the rowset sizes are
different in the SET and WHERE clause, the smaller of the two sizes is used, and
the remaining entries in the larger rowset are ignored. The rows selected by the
nth condition in the rowset search condition are updated by the nth expression in
the rowset expression in set-clause. See Rowset Search Condition on
page 6-110.

column-name

names a column in table to update. You cannot qualify or repeat a column
name. You cannot update the value of a column that is part of the primary key.

expression

is an SQL value expression that specifies a value for the column. The
expression cannot contain an aggregate function defined on a column. The
data type of expression must be compatible with the data type of
column-name. A scalar subquery in expression cannot refer to the table
being updated.

If expression refers to columns being updated, NonStop SQL/MX uses the
original values to evaluate the expression and determine the new value.

See Expressions on page 6-41.

rowset-expression

is an array of SQL value expressions that specifies values for the column. A
rowset-expression can appear in the SET clause only when a
rowset-search-condition is present in the WHERE clause. When you
use a rowset-search-condition, there are two alternatives for the
set-clause expression:

 Scalar host variables only. In this case, all rows in the result table are
updated with identical values, obtained by evaluating the scalar
expression.

 Some array host variables. In this case, if the size of the array does not
match the size of arrays used in the WHERE clause search-
condition., the smaller value is used. All rows returned as a result of the
first element in the search-condition array are updated using the value
obtained by evaluating the first element in the set-clause array. All rows
in the result table returned as a result of the second element in the
search-condition array are updated using the second element in the
set-clause array, and so on.

For details on using host variables and rowsets, see the SQL/MX Programming
Manual for C and COBOL.

mbed

mbed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-387

SQL/MX Statements UPDATE Statement

Pu

E

NULL

can also specify the value of the update source.

SET ON ROLLBACK set-roll-clause [,set-roll-clause]...

causes one or more columns to be updated when the execution of the UPDATE
statement causes its containing transaction to be rolled back.

set-roll-clause

sets the specified column to a particular value. For each set-roll-clause,
the value of the specified target column-name is replaced by the value of the
update source expression. The data type of each target column must be
compatible with the data type of its source value.

If you include a rowset search condition in the WHERE clause, you can use a
rowset expression in set-roll-clause, but it is not required. If the rowset
sizes are different in the SET and WHERE clause, the smaller of the two sizes
is used, and the remaining entries in the larger rowset are ignored. The rows
selected by the nth condition in the rowset search condition are updated by the
nth expression in the rowset expression in set-roll-clause.

column-name

names a column in table to update. You cannot qualify or repeat a
column name.

expression

is an SQL value expression that specifies a value for the column.
expression cannot contain an aggregate function defined on a column.
The data type of expression must be compatible with the data type of
column-name. A scalar subquery in expression cannot refer to the
table being updated.

If expression refers to columns being updated, NonStop SQL/MX uses
the original values to evaluate the expression and determine the new
value.

See Expressions on page 6-41.

rowset-expression

is an array of SQL value expressions that specifies values for the column.
A rowset-expression can appear in the SET ON ROLLBACK clause
only when a rowset-search-condition is present in the WHERE
clause.

The rows returned by the nth element in the rowset-search-condition are
updated by using the nth element in the rowset-expression. The rules

b/Sub

mbed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-388

SQL/MX Statements UPDATE Statement

E

described above for expression apply to each array element in the rowset-
expression.

For details on using host variables and rowsets, see the SQL/MX
Programming Manual for C and COBOL.

WHERE search-condition

specifies a search-condition that selects rows to update. Within the
search-condition, columns being compared are also being updated in the
table or view. See Search Condition on page 6-108.

If you do not specify a search-condition, all rows in the table or view are
updated.

Do not use an UPDATE statement with a WHERE clause that contains a SELECT
for the same table. Reading from and inserting into, updating in, or deleting from
the same table generates an error. Use a positioned (WHERE CURRENT OF)
UPDATE instead.

WHERE rowset-search-condition

specifies an array of search conditions that selects rows to delete. The search
conditions are applied successively and rows selected by each condition are
updated before the next search condition is applied. Therefore, a single row can be
updated multiple times. You can use a rowset expression in the set clause only if a
rowset search condition is present. See Rowset Search Condition on
page 6-110.

[FOR] access-option ACCESS

specifies the access-option required for data used in the evaluation of a search
condition. See Data Consistency and Access Options on page 1-8.

READ COMMITTED

specifies that any data used in the evaluation of the search condition must be
from committed rows.

SERIALIZABLE | REPEATABLE READ

specifies that the UPDATE statement and any concurrent process (accessing
the same data) execute as if the statement and the other process had run
serially rather than concurrently.

SKIP CONFLICT

enables transactions to skip rows locked in a conflicting mode by another
transaction. The rows under consideration are the result of evaluating the
search condition for the UPDATE statement. SKIP CONFLICT cannot be used
in a SET TRANSACTION statement.

mbed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-389

SQL/MX Statements Considerations for UPDATE

C/C
The default access option is the isolation level of the containing transaction, which
is determined according to the rules specified in Isolation Level on page 10-56.

WHERE CURRENT OF {cursor-name | ext-cursor-name}

specifies the name of a cursor (or extended cursor) positioned at the row to
update. If you specify cursor-name for an audited table or view, the UPDATE
must execute within a transaction that also includes the FETCH for the row. Each
column to be updated must appear in the FOR UPDATE clause of the cursor
declaration.

For more information on searched and positioned UPDATE statements in embedded
SQL programs, see the SQL/MX Programming Manual for C and COBOL.

Considerations for UPDATE

In a searched UPDATE, rows are updated in sequence.

Statement atomicity means that a statement will either complete or be rolled back,
without having to rollback a business transaction that contains multiple statements.
SQL/MX will try to undo any changes to the database as a result of an update in case
a row cannot be updated.

There are some conditions where such an undo operation will cause an active
transaction to be rolled back instead of just the statemement. The following are some
examples where the active transaction will be rolled back:

 Parallel inserts performed by ESPs

 VSBB inserts (either explicitly enforced by the CQD INSERT_VSBB set to ON or
when chosen by the optimizer)

 CQD UPD_ABORT_ON_ERROR is set to ON to force transactions to be aborted.
This CQD is supported to preserve the behavior of older releases.

 The underlying table has referential integrity constraints or triggers defined

For details, see Transaction Management on page 1-13.

Use the EXPLAIN statement to check whether transactions will be rolled back or if

statement atomicity will be used. For details, see EXPLAIN Statement on
page 2-208.

Authorization Requirements

UPDATE requires authority to read and write to the table or view being updated and
authority to read any table or view specified in subqueries used in the search condition.
A column of a view can be updated if its underlying column in the base table can be
updated.

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-390

SQL/MX Statements Considerations for UPDATE

Em

Em
Transaction Initiation and Termination

The UPDATE statement will automatically initiate a transaction only if TRANSACTION
AUTOBEGIN is set to ON. If a separate BEGIN WORK was issued, the UPDATE
statement operates under that transaction.

The UPDATE statement will commit the transaction if TRANSACTION AUTOCOMMIT
is set to ON. If AUTOCOMMIT is OFF, you must explicitly commit the transaction.

If a table is not audited, transactions do not apply.

Positioned UPDATE With AUTOCOMMIT

If you are using the positioned form of UPDATE, check that AUTOCOMMIT is set to
OFF before you open a cursor. Otherwise, NonStop SQL/MX commits the transaction
after each UPDATE statement and closes the cursor. Consequently, you might get
rows fetched by your cursor that are part of different transactions.

Isolation Levels of Transactions and Access Options of
Statements

The isolation level of an SQL/MX transaction defines the degree to which the
operations on data within that transaction are affected by operations of concurrent
transactions. When you specify access options for the DML statements within a
transaction, you override the isolation level of the containing transaction. Each
statement then executes with its individual access option.

You can explicitly set the isolation level of a transaction with the SET TRANSACTION
statement. See SET TRANSACTION Statement on page 2-376. The default isolation
level of a transaction is determined according to the rules specified in Isolation Level
on page 10-56.

It is important to note that the SET TRANSACTION statement might cause a dynamic
recompilation of the DML statements within the next transaction. Dynamic
recompilation occurs if NonStop SQL/MX detects a change in the transaction mode at
run time compared with the transaction mode at the time of static SQL compilation. To
avoid dynamic recompilation because of a change in the transaction mode, consider
specifying access options for individual DML statements instead of using SET
TRANSACTION.

Conflicting Updates in Concurrent Applications

If you are using the READ COMMITTED isolation level within a transaction, your
application can read different committed values for the same data at different times.
Further, two concurrent applications can update (possibly in error) the same column in
the same row.

Note. NonStop SQL/MX accepts SQL/MP keywords as synonyms for READ UNCOMMITTED,
STABLE, and SERIALIZABLE.

bed

bed
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-391

SQL/MX Statements Considerations for UPDATE
In general, to avoid conflicting updates on a row, use the SERIALIZABLE isolation
level. However, note that when you use SERIALIZABLE, you are limiting concurrent
data access.

Requirements for Data in Row

Each row to be updated must satisfy the constraints of the table or underlying base
table of the view. No column updates can occur unless all of these constraints are
satisfied. (A table constraint is satisfied if the check condition is not false—that is, it is
either true or has an unknown value.)

In addition, a candidate row from a view created with the WITH CHECK OPTION must
satisfy the view selection criteria. The selection criteria are specified in the WHERE
clause of the AS query-expression clause in the CREATE VIEW statement.

Reporting of Updates

When an UPDATE completes successfully, NonStop SQL/MX reports the number of
times rows were updated during the operation.

Under certain conditions, updating a table with indexes can cause NonStop SQL/MX to
update the same row more than once, causing the number of reported updates to be
higher than the actual number of changed rows. However, both the data in the table
and the number of reported updates are correct. This behavior occurs when all of
these conditions are true:

 The optimizer chooses an alternate index as the access path.

 The index columns specified in WHERE search-condition are not changed by
the update.

 Another column within the same index is updated to a higher value (if that column
is stored in ascending order), or a lower value (if that column is stored in
descending order).

When these conditions occur, the order of the index entries ensures that
NonStop SQL/MX will encounter the same row (satisfying the same search-
condition) at a later time during the processing of the table. The row is then
updated again by using the same value or values.

For example, suppose that the index of MYTABLE consists of columns A and B, and
the UPDATE statement is specified:

UPDATE MYTABLE
SET B = 20
WHERE A > 10;

If the contents of columns A and B are 11 and 12 respectively before the UPDATE,
after the UPDATE NonStop SQL/MX will encounter the same row indexed by the
values 11 and 20.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-392

SQL/MX Statements Considerations for UPDATE

Pu

Pu
Updating Character Values

For a fixed-length character column, an update value shorter than the column length is
padded with single-byte ASCII blanks (HEX20) to fill the column. If the update value is
longer than the column length, string truncation of nonblank trailing characters returns
an error, and the column is not updated.

For a variable-length character column, an update value is not padded; its length is the
length of the value specified. As is the case for fixed length, if the update value is
longer than the column length, string truncation of nonblank trailing characters returns
an error, and the column is not updated.

In an SQL/MP entry-sequenced table, a value that updates a variable-length character
column must be the same length as the value it replaces.

Audited and Nonaudited Tables

SQL/MX tables must be audited. You can run NonStop SQL/MX against nonaudited
SQL/MP tables.

The Transaction Management Facility (TMF) product works only on audited tables, so
a transaction does not protect operations on nonaudited tables. Nonaudited tables
follow a different locking and error handling model than audited tables. Certain
situations such as DML error occurrences or utility operations with DML operations can
lead to inconsistent data within a nonaudited table or between a nonaudited table and
its indices.

To avoid problems, do not run DDL or utility operations concurrently with DML
operations on nonaudited tables. When you try to delete data in a nonaudited table
with an index, NonStop SQL/MX returns an error.

SET ON ROLLBACK Considerations

The SET ON ROLLBACK expression is evaluated when each row is processed during
execution of the UPDATE statement. The results of the evaluation are applied when
and if the transaction is rolled back. This has two important implications:

 If the SET ON ROLLBACK expression generates an error (for example, a divide by
zero or overflow error), the error is returned to the application when the UPDATE
operation executes, regardless of whether the operation is rolled back.

 If an UPDATE operation is applied to a set of rows and an error is generated while
executing the UPDATE operation, and the transaction is rolled back, the actions of
the SET ON ROLLBACK clause apply only to the rows that were processed by the
UPDATE operation before the error was generated.

SET ON ROLLBACK Restrictions

The table must be audited. The columns used in the SET ON ROLLBACK clause:

 Must be declared as NOT NULL.

b/Sub

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-393

SQL/MX Statements Considerations for UPDATE
 Cannot be part of a referential integrity constraint or be part of a secondary index.
 Cannot use the VARCHAR data type.
 Cannot be used in the primary key, clustering key, or partitioning key.

Embedded SELECT UPDATE Behavior

When you use a SELECT UPDATE statement to perform a searched UPDATE in an
embedded statement, and more than one row satisfies the selection criteria, UPDATE
may give unexpected results.

Suppose you have a table with two rows:

>>select * from =TAB1;

K1 K2 V3
---- ---- --

0001 AAAA
0001 BBBB

If you perform this statement:

 EXEC SQL
 SELECT *
 INTO :hv_k1
 , :hv_k2
 , :hv_v3
 FROM
 (UPDATE =TAB1
 SET v3 = 'ABCD'
 WHERE k1 ='0001'
 SKIP CONFLICT ACCESS
)
 AS PIPO
 READ UNCOMMITTED ACCESS
 ;

Both rows would satisfy the selection criteria, so both rows could be updated. However,
in this case it would be impossible to return the result, because NonStop SQL/MX can
only return the values for one row from a statement like this.

Although NonStop SQL/MX cannot successfully update all rows and return the
requested results, it does not return an error. Instead, only one row is updated, and the
results for this single updated row are returned in the set of host variables.

If you execute the same SELECT UPDATE statement in MXCI NonStop SQL/MX
returns these results:

>>select * from
+>(update =TAB1
+>set v3 = 'DCBA'
+>WHERE k1 ='0001'
+>SKIP CONFLICT ACCESS)
+>AS PIPO
+>READ UNCOMMITTED ACCESS
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-394

SQL/MX Statements Considerations for UPDATE
+>;

K1 K2 V3
---- ---- --

0001 AAAA DCBA
0001 BBBB DCBA

--- 2 row(s) selected.
>>

NonStop SQL/MX updates both rows.

Primary key restrictions

UPDATES of primary key columns have the following restrictions:

 Cursor updates on primary key columns are not supported, SQL error 4118 is
returned.

 Embedded UPDATES on primary key columns are not supported, SQL error 4198
is returned.

 SET ON ROLLBACK is not supported when:

 A primary key column is updated, SQL error 4199 is returned. The following
example returns SQL error 4199:

 >>create table t063t1 (a int not null, b int not null, c

 >>int not null, primary key(a));

 --- SQL operation complete.

 >>insert into t063t1 values (1,1,1), (2,2,2), (3,3,3),

 >>(4,4,4), (5,5,5);

 --- 5 row(s) inserted.

 >>update t063t1 set a = a+1 SET ON ROLLBACK c = 5;

 *** ERROR[4199] The SET ON ROLLBACK clause cannot be

 specified when clustering key columns are specified in the

 SET clause of an UPDATE statement.

 *** ERROR[8822] The statement was not prepared.

 There is a primary key in the set-roll-clause, SQL error 4177 is
returned. The following example returns SQL error 4177:

 >>update t063t1 set a = a+1 SET ON ROLLBACK a = 5;

 *** ERROR[4177] Update of Index Key column A is not permitted on

 rollback.

 *** ERROR[8822] The statement was not prepared.

 If a BEFORE trigger is defined on the primary key(s), SQL error 4033 is returned.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-395

SQL/MX Statements MXCI Examples of UPDATE
 Referential actions SET DEFAULT, SET NULL or SET CASCADE for ON UPDATE
or ON DELETE rules are not supported, SQL error 4386 is returned.

For more information on the errors, see the SQL/MX Messages Manual.

MXCI Examples of UPDATE

 Update a single row of the ORDERS table that contains information about order
number 200300 and change the delivery date:

UPDATE sales.orders
SET deliv_date = DATE '1998-05-02'
WHERE ordernum = 200300;

 Update several rows of the CUSTOMER table:

UPDATE sales.customer
SET credit = 'A1'
WHERE custnum IN (21, 3333, 324);

 Update all rows of the CUSTOMER table to the default credit 'C1':

UPDATE sales.customer
SET credit = 'C1';

 Update the salary of each employee working for all departments located in
Chicago:

UPDATE persnl.employee
SET salary = salary * 1.1
WHERE deptnum IN
 (SELECT deptnum FROM persnl.dept
 WHERE location = 'CHICAGO');

The subquery is evaluated for each row of the DEPT table and returns department
numbers for departments located in Chicago.

 Suppose that you want to change the employee number of a manager of a
department. Because EMPNUM is a primary key of the EMPLOYEE table, you
must delete the employee's record and insert a record with the new number.

You must also update the DEPT table to change the MANAGER column to the
employee's new number. To ensure all your changes take place (or that none of
them do), perform the operation as a transaction:

SET TRANSACTION
 ISOLATION LEVEL SERIALIZABLE;
--- SQL operation complete.

BEGIN WORK;
--- SQL operation complete.

DELETE FROM persnl.employee
 WHERE empnum = 23;
--- 1 row(s) deleted.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-396

SQL/MX Statements MXCI Examples of UPDATE
INSERT INTO persnl.employee
 (empnum, first_name, last_name, deptnum, salary)
 VALUES (50, 'JERRY','HOWARD', 1000, 137000.00);
--- 1 row(s) inserted.

UPDATE persnl.dept
 SET manager = 50
 WHERE deptnum = 1000;
--- 1 row(s) updated.

COMMIT WORK;
--- SQL operation complete.

This transaction uses SERIALIZABLE access, which provides maximum data
consistency.

drop table test1;

create table test1(col1 int not null , col2 char(3),primary
key(col1));

insert into test1 values (1, '100'), (2, '200');

--- 2 row(s) inserted.

prepare s1 from update test1 set col2 = '500' where col1 =
(select col1 from test1 where col1 > 1);

>>explain s1;

----- PLAN SUMMARY
MODULE_NAME DYNAMICALLY COMPILED
STATEMENT_NAME S1
PLAN_ID 212204692377308695
ROWS_OUT 1
EST_TOTAL_COST 0.03
STATEMENT update test1
 set col2 = '500'
 where col1 = (select col1 from
test1 where col1 >
 1);

----- NODE LISTING
ROOT ====================================== SEQ_NO 11
ONLY CHILD 10
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0
EST_TOTAL_COST 0.03
DESCRIPTION
 max_card_est 1
 fragment_id 0
 parent_frag (none)
 fragment_type master
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-397

SQL/MX Statements MXCI Examples of UPDATE
 statement_index 0
 olt_optimization not used
 affinity_value 1,932,384,263
 est_memory_per_cpu 56
 upd_action_on_error savepoint
 xn_autoabort_interval -1
 plan_version 3,200
 self_referencing_update forced_sort
 MXCI_PROCESS ON
 SHOWCONTROL_UNEXTERNALI OFF
 BLOCK_TO_PREVENT_HALLOW ON
 select_list %('500'), execution_count
..

>> execute s1;

--- 1 row(s) updated.
>>select * from test1;
COL1 COL2

----------- ----

 1 100

 2 500

--- 2 row(s) selected.

drop table test1;

create table test1(col1 int not null , col2 char(3),primary
key(col1));
insert into test1 values (1, '100'), (2, '200');
--- 2 row(s) inserted.

prepare s1 from update test1 set col1 = 300 where col1 =
(select col1 from test1 where col1 > 1);
--- SQL command prepared.

>>explain s1;

----- PLAN SUMMARY

MODULE_NAME DYNAMICALLY COMPILED
STATEMENT_NAME S1
PLAN_ID 212204692566543846
ROWS_OUT 1
EST_TOTAL_COST 0.06
STATEMENT update test1
 set col1 = 300
 where col1 = (select col1 from
test1 where col1 >
 1);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-398

SQL/MX Statements MXCI Examples of UPDATE

----- NODE LISTING

ROOT ====================================== SEQ_NO 15
ONLY CHILD 14
REQUESTS_IN 1
ROWS_OUT 1
EST_OPER_COST 0
EST_TOTAL_COST 0.06
DESCRIPTION
 max_card_est 1
 fragment_id 0
 parent_frag (none)
 fragment_type master
 statement_index 0
 olt_optimization not used
 affinity_value 1,206,279,158
 est_memory_per_cpu 57
 upd_action_on_error savepoint
 xn_autoabort_interval -1
 plan_version 3,200
 self_referencing_update forced_sort
 MXCI_PROCESS ON
 SHOWCONTROL_UNEXTERNALI OFF
 BLOCK_TO_PREVENT_HALLOW ON
 select_list %(300), %(300), execution_count

>>execute s1;

--- 1 row(s) updated.

>>select * from test1;

COL1 COL2

----------- ----

 1 100

 300 200

--- 2 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-399

SQL/MX Statements C Examples of UPDATE
C Examples of UPDATE

 Reset the credit rating to the default value for all of the customers in the
CUSTOMER table:

EXEC SQL UPDATE CUSTOMER SET CREDIT = DEFAULT;

 Use a loop to fetch and update by using a cursor:

...
CHAR SQLSTATE_OK[6]="00000"; /* variable declarations */
EXEC SQL BEGIN DECLARE SECTION;
 CHAR SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL FETCH cursor1 INTO SQL DESCRIPTOR 'out_sqlda';

while (strcmp(SQLSTATE, SQLSTATE_OK) == 0) {
 ... /* retrieve and test values in descriptor area */
 EXEC SQL UPDATE CUSTOMER SET CREDIT = :new_default
 WHERE CURRENT OF cursor1;
 EXEC SQL FETCH cursor1 INTO SQL DESCRIPTOR 'out_sqlda';
}
...

COBOL Examples of UPDATE

 Reset the credit rating to the default value for all of the customers in the
CUSTOMER table:

EXEC SQL UPDATE CUSTOMER SET CREDIT = DEFAULT END-EXEC.

 Use a loop to fetch and update by using a cursor:

 01 SQLSTATE-OK PIC X(5) VALUE "00000".
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL FETCH cursor1
 INTO SQL DESCRIPTOR 'out_sqlda'
 END-EXEC.
 ...
 PERFORM UNTIL SQLSTATE NOT = SQLSTATE-OK
* Retrieve and test values in the descriptor area
 ...
 EXEC SQL UPDATE CUSTOMER SET CREDIT = :new-default
 WHERE CURRENT OF cursor1
 END-EXEC.
 EXEC SQL FETCH cursor1
 INTO SQL DESCRIPTOR 'out_sqlda'
 END-EXEC.
 END-PERFORM.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-400

SQL/MX Statements Publish/Subscribe Examples of UPDATE
Publish/Subscribe Examples of UPDATE

Suppose that these SQL/MP tables and index (and the metadata mappings) have been
created:

CREATE TABLE $db.dbtab.tab1 (a INT NOT NULL, b INT, c INT);
CREATE TABLE $db.dbtab.tab2 (a INT, b INT, c INT);
CREATE INDEX $db.dbtab.itab1 ON tab1(b, c);

CREATE SQLMP ALIAS cat.sch.tab1 $db.dbtab.tab1;
CREATE SQLMP ALIAS cat.sch.tab2 $db.dbtab.tab2;

 This example shows the SET ON ROLLBACK clause:

SET SCHEMA cat.sch;

UPDATE tab1
SET b = b + 1
SET ON ROLLBACK a = a + 1
WHERE b < 10;

 This example shows the SKIP CONFLICT access:

UPDATE tab1 SET a = a + 1
FOR SKIP CONFLICT ACCESS;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-401

SQL/MX Statements UPDATE STATISTICS Statement
UPDATE STATISTICS Statement
Considerations for UPDATE STATISTICS
Examples of UPDATE STATISTICS

The UPDATE STATISTICS statement updates the histogram statistics for one or more
groups of columns within a table. These statistics are used to devise optimized access
plans.

In addition to histogram statistics, UPDATE STATISTICS generates physical statistics
(index level, non-empty block count, and EOF) for partitions of SQL/MX tables.

UPDATE STATISTICS is an SQL/MX extension.

table

names the table for which statistics are to be updated. To refer to a table, use one
of these name types:

 Guardian physical name
 ANSI logical name

UPDATE STATISTICS FOR TABLE table [CLEAR | on-clause]

on-clause is:
 ON column-group-list CLEAR
 | ON column-group-list [histogram-option]...

column-group-list is:
 column-list [,column-list]...
 | EVERY COLUMN [,column-list]...
 | EVERY KEY [,column-list]...

column-list for a single-column group is:
 column-name | (column-name)
 | column-name TO column-name
 | (column-name) TO (column-name)

column-list for a multicolumn group is:
 (column-name, column-name [,column-name]...)

histogram-option is:
 GENERATE n INTERVALS
 | SAMPLE [sample-option] [SET ROWCOUNT c][sample-table-
clause]

sample-option is:
 [r ROWS]
 | RANDOM percent PERCENT [CLUSTERS OF blocks BLOCKS]
 | PERIODIC size ROWS EVERY period ROWS

sample-table-clause is:
USING SAMPLE TABLE {WITH PARTITIONS | sample-table-name}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-402

SQL/MX Statements UPDATE STATISTICS Statement
 DEFINE name

See Database Object Names on page 6-13.

CLEAR

deletes some or all histograms for the table table. Use this option when new
applications no longer use certain histogram statistics.

If you do not specify column-group-list, all histograms for table are deleted.

If you specify column-group-list, only columns in the group list are deleted.

ON column-group-list

specifies one or more groups of columns, column-group-list, for which to
generate histogram statistics with the option of clearing the histogram statistics.
You must use the ON clause to generate statistics stored in histogram tables. If
you omit it, physical statistics are generated for SQL/MX tables, and NonStop
SQL/MX returns a warning message. See Using Statistics on page 2-406.

 column-list
| EVERY COLUMN [, column-list]
| EVERY KEY [, column-list]

specifies the ways in which column-group-list can be defined. The
column list represents both a single-column group and a multicolumn group.

Single-column group:

 column-name | (column-name)
 | column-name TO column-name
 | (column-name) TO (column-name)

are the ways you can specify individual columns or a group of individual
columns.

To generate statistics for individual columns, list each column. You have
the option of listing each single column name within or without
parentheses.

Multicolumn group:

(column-name, column-name [,column-name]...)

specifies a multicolumn group.

To generate multicolumn statistics, group a set of columns within
parentheses, as shown. You cannot specify the name of a column more
than once in the same group of columns.

One histogram is generated for each unique column group. Duplicate groups
are ignored and processing continues. When you run UPDATE STATISTICS
again for the same user table, the new data for that table replaces the data
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-403

SQL/MX Statements UPDATE STATISTICS Statement
previously generated and stored in the table’s histogram tables. Histograms of
column groups not specified in the ON clause remain unchanged in histogram
tables.

For more information about specifying columns, see Generating and Clearing
Statistics for Columns on page 2-407.

EVERY COLUMN

The EVERY COLUMN keyword indicates that histogram statistics are to be
generated for each individual column of table and any multicolumns that
make up the primary key and indexes. For example, table has columns A, B,
C, D defined, where A, B, C compose the primary key. In this case, the ON
EVERY COLUMN option generates a single column histogram for columns A,
B, C, D, and two multicolumn histograms of (A, B, C) and (A, B).

The EVERY COLUMN option does what EVERY KEY does, with additional
statistics on the individual columns.

EVERY KEY

The EVERY KEY keyword indicates that histogram statistics are to be
generated for columns that make up the primary key and indexes. For
example, table has columns A, B, C, D defined. If the primary key comprises
columns A, B, statistics are generated for (A, B), A and B. If the primary key
comprises columns A, B, C, statistics are generated for (A,B,C), (A,B), A, B, C.
If the primary key comprises columns A, B, C, D, statistics are generated for
(A, B, C, D), (A, B, C), (A, B), and A, B, C, D.

histogram-option

GENERATE n INTERVALS

is an optional clause that specifies histograms are to be generated with
approximately n number of intervals. The actual number of generated
intervals might be more or less than the number n. Depending on the
table’s size and data distribution, each histogram should contain n
intervals. NonStop SQL/MX attempts to distribute the rows evenly given
the number of intervals.

The number n of intervals must be an integer between 1 and 10000
(1 < n < 10000). The interval number that you set is used for all column
groups.

If you do not specify the number of intervals, a system default value is
automatically provided based on the table size and other factors. It is
recommended that you allow the system to determine the optimal number
of intervals.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-404

SQL/MX Statements UPDATE STATISTICS Statement
SAMPLE [sample-option] [SET ROWCOUNT c][sample-table-
clause]

is an optional clause that specifies that sampling is to be used to gather a
subset of the data from the table. UPDATE STATISTICS uses a temporary
table to store the sample results and generates histograms. See Histogram
Table Properties on page 10-86 for details.

If you specify the SAMPLE clause without additional options, a row sample
is used to read 2 percent of the rows in the table, with a maximum of 2
million rows. If you specify the ROWCOUNT option, NonStop SQL/MX reads
2 percent of c, with a maximum of 2 million rows.

If you do not specify the SAMPLE clause, table has fewer rows than
specified, or the sample size is greater than the system limit. NonStop
SQL/MX reads all rows from table.

See SAMPLE Clause on page 7-9.

sample-option

[r ROWS]

A row sample is used to read r rows from the table. The value r must be
an integer that is greater than or equal to zero (r > 0).

If you specify the ROWCOUNT clause, r must be less than or equal to c (r <
c). The percentage is determined by the equation r/c * 100.

RANDOM percent PERCENT [CLUSTERS OF blocks BLOCKS]

directs NonStop SQL/MX to choose rows randomly from the table. The
value percent must be a value between zero and 100 (0 < percent <
100). In addition, only the first four digits to the right of the decimal point
are significant. For example, value 0.00001 is considered to be 0.0000,
Value 1.23456 is considered to be 1.2345.

CLUSTERS OF blocks BLOCKS

specifies the number of blocks that compose the cluster. The value
block must be an integer that is greater than or equal to zero
(blocks > 0).

PERIODIC size ROWS EVERY period ROWS

directs NonStop SQL/MX to choose the first size number of rows from
each period of rows. The value size must be an integer that is greater
than zero and less than or equal to the value period. (0 < size <
period). The size of the period is defined by the number of rows specified
for period. The value period must be an integer that is greater than
zero (period > 0).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-405

SQL/MX Statements Considerations for UPDATE STATISTICS
SET ROWCOUNT c

is an optional clause that specifies the number of rows in the table. The value c
must be an integer that is greater than or equal to zero (c > 0).

If the ROWCOUNT clause in not specified, NonStop SQL/MX determines the
number of rows in the table either by estimation or SELECT COUNT(*).

See SAMPLE Clause on page 7-9.

sample-table-clause

USING SAMPLE TABLE WITH PARTITIONS

directs SQL/MX to partition the temporary table. The temporary table is
partitioned the same way as the base table on which the UPDATE
STATISTICS command is run.

USING SAMPLE TABLE sample-table-name

directs SQL/MX to use the table specified by sample-table-name as the
temporary table.

Considerations for UPDATE STATISTICS

Physical Statistics

Physical statistics (index level, nonempty block count, and EOF) are generated for
UPDATE STATISTICS statements unless you use the CLEAR option.

Using Statistics

Use UPDATE STATISTICS to collect and save statistics on columns. The SQL
compiler uses histogram statistics to determine the selectivity of predicates, indexes,
and tables. Because selectivity directly influences the cost of access plans, regular
collection of statistics increases the likelihood that NonStop SQL/MX will choose
efficient access plans.

When a user table is changed, either by changing its data significantly or its definition,
re-execute the UPDATE STATISTICS statement for the table.

Authorization and Locking

To run the UPDATE STATISTICS statement against SQL/MX tables, you must have the
authority to read the user table for which statistics are generated. To run the UPDATE
STATISTICS statement against SQL/MP tables, you must own the two histogram

Note. The sample-table-clause is supported only for SQL/MX tables. It cannot be
used with SQL/MP tables.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-406

SQL/MX Statements Considerations for UPDATE STATISTICS
tables, or be the super ID, and have the authority to read the user table for which
statistics are generated.

Because the histogram tables are registered in the schema (for SQL/MX tables) or
catalog (for SQL/MP) of the primary partition of table, you must have the authority to
read and write to this schema or catalog. Then, when the two histogram tables are
created, you become the owner of the tables. See User Metadata Tables (UMD):
Histogram Tables on page 10-85.

UPDATE STATISTICS momentarily locks the definition of the user table in the catalog
during the operation but not the user table itself. The UPDATE STATISTICS statement
uses READ UNCOMMITTED for the user table.

Transactions

Do not start a transaction before executing UPDATE STATISTICS because UPDATE
STATISTICS runs under that transaction. The TMF auto abort time could be exceeded
during the processing.

If you do not start a transaction for UPDATE STATISTICS, NonStop SQL/MX runs
multiple transactions, breaking down the long transaction.

If the SQL/MP metadata files are locked, UPDATE STATISTICS tries three times to
access them before reporting an error. Usually, metadata files are locked for short
periods, and timeout errors do not occur. If the lock is held for a longer time, multiple
retry attempts help to complete concurrent operations with minimum timeout
interruption.

Generating and Clearing Statistics for Columns

To generate statistics for particular columns, name each column, or name the first and
last columns of a sequence of columns in the table. For example, suppose that a table
has consecutive columns CITY, STATE, ZIP. This list gives a few examples of possible
options you can specify:

The TO specification is useful when a table has many columns, and you want
histograms on a subset of columns. Do not confuse (CITY) TO (ZIP) with (CITY,
STATE, ZIP), which refers to a multicolumn histogram.

Single-Column Group Single-Column Group
Within Parentheses

Multicolumn Group

ON CITY, STATE, ZIP ON (CITY),(STATE),(ZIP) ON (CITY, STATE) or
ON (CITY,STATE,ZIP)

ON CITY TO ZIP ON (CITY) TO (ZIP)

ON ZIP TO CITY ON (ZIP) TO (CITY)

ON CITY, STATE TO ZIP ON (CITY), (STATE) TO (ZIP)

ON CITY TO STATE, ZIP ON (CITY) TO (STATE), (ZIP)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-407

SQL/MX Statements Considerations for UPDATE STATISTICS
You can clear statistics in any combination of columns you specify, not necessarily with
the column-group-list you used to create statistics. However, those statistics will
remain until you clear them. For examples of SELECT statements to report on
statistics, see Examples of Histogram Tables on page 10-92

Column Lists and Access Plans

Generate statistics for columns most often used in data access plans for a table—that
is, the primary key, indexes defined on the table, and any other columns frequently
referenced in predicates in WHERE or GROUP BY clauses of queries issued on the
table. Use the EVERY COLUMN option to:

 generate histograms for every individual column or multicolumns that make up the
primary key and indexes

 enable the optimizer to choose a better plan.

The EVERY KEY option generates histograms that make up the primary key and
indexes.

If you often perform a GROUP BY over specific columns in a table, use multicolumn
lists in the UPDATE STATISTICS statement (consisting of the columns in the GROUP
BY clause) to generate histogram statistics that enable the optimizer to choose a better
plan. Similarly, when a query joins two tables by two or more columns, multicolumn
lists (consisting of the columns being joined) help the optimizer choose a better plan.

Sample Option

When you use the SAMPLE option, the UPDATE STATISTICS statement estimates the
unique entry counts for each column for each histogram interval. The estimated unique
entry counts tend to be more accurate for those columns that have fewer unique
entries than the sampled number of rows. However, for columns that have been
defined with the UNIQUE constraint, the unique entry count is always equal to the row
count, regardless of the sample size. For more information about the unique entry
count, see SAMPLE Clause on page 7-9.

If you specify the ROWCOUNT clause, use a value for c equal to the number of rows
in the table. If you use a value that is less than or greater than the number of rows,
results will not be accurate.

Sampling of Large Tables

Use the SAMPLE clause to reduce the run time for updating statistics of large tables:

 For tables with more than 2 million rows, use:

UPDATE STATISTICS FOR TABLE big_table ON EVERY COLUMN
 SAMPLE SET ROWCOUNT rowcount_big_table;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-408

SQL/MX Statements Considerations for UPDATE STATISTICS
You can also specify groups of columns. This command uses the system default
for sample size, which is 2 percent of the total number of rows in the table or 2
million rows, whichever is less.

 If big_table is highly skewed on certain columns (that is, a column has a large
variance in the percentage of individual unique values), specify the sample size to
be greater than the system default.

Suppose that big_table has 50 million rows and you want to sample 10 percent
of the rows. Use the command:

UPDATE STATISTICS FOR TABLE big_table ON EVERY COLUMN
 SAMPLE RANDOM 10 PERCENT;

You can also specify groups of columns.

Temporary Tables

Use the HIST_SCRATCH_VOL control query default to set the physical volume for
UPDATE STATISTIC’s temporary tables.

If you do not set this value, NonStop SQL/MX uses the default volume specified by the
_DEFAULTS define and the current node for SQL/MX tables. If not specified, NonStop
SQL/MX uses the volume of the table’s primary partition for SQL/MP tables. The
volume must be in the same node as the location of the catalog of the primary partition.

See the description of HIST_SCRATCH_VOL on page 10-55.

Using Sample Table with Partitions

While updating the statistics for SQL/MX tables, you can partition the temporary tables
used by the UPDATE STATISTICS command. Use the USING SAMPLE TABLE WITH
PARTITIONS clause to create a partitioned temporary table. When this clause is used,
the temporary table is partitioned the same way as the base table for which the
statistics are updated.

You can also create your own temporary table and specify it for the UPDATE
STATISTICS command by using the USING SAMPLE TABLE sample-table-name
clause. You can use this option to create a temporary table that has a different
partitioning scheme from the default one. This includes:

 changing the number and nature of the partitions

 changing the key ranges

 controlling the disk layout

The table represented by sample-table-name must be a SQL/MX table. It must
have the same column attributes as the base table—the columns must match in
number, order, and data type. The table should not have any indexes, triggers, or
constraints and it must be empty.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-409

SQL/MX Statements Examples of UPDATE STATISTICS
When you specify a sample-table-name, you must have ALL privileges on the
temporary table and must own its schema or be the super ID.

For more information on partitioned temporary tables, see the SQL/MX Query Guide.

When a SAMPLE clause is specified, the UPDATE STATISTICS command executes a
SELECT statement with a corresponding SAMPLE clause and inserts the records into
the temporary table. The sampling operation can be performed by either the SQL/MX
Executor or the DP2. You can control this operation by using the
ALLOW_DP2_ROW_SAMPLING default attribute. For more information on this
attribute, see Default Attributes on page 10-39.

Managing SQL/MP Histograms

Before you drop an SQL/MP table, perform UPDATE STATISTICS with the CLEAR
option. Otherwise, orphan histograms for that table are left on the system. However, if
you drop an SQL/MP table before performing this step, use UPDATE STATISTICS with
the CLEAR option to remove orphan tables:

1. Create a dummy table in the catalog where the primary partition of the table you
dropped resided:

CREATE TABLE trash (a INT);

2. Run UPDATE STATISTICS with the CLEAR option:

UPDATE STATISTICS FOR TABLE trash CLEAR;

The CLEAR option directs NonStop SQL/MX to remove histograms for table
trash, and any orphaned histograms.

3. Drop the dummy table:

DROP TABLE trash;

Histograms for SQL/MX tables are automatically deleted when the table is dropped.

Examples of UPDATE STATISTICS

For examples of histogram data, see Examples of Histogram Tables on page 10-92.

 This example generates four histograms for the columns jobcode, empnum,
deptnum, and (empnum, deptnum) for the table EMPLOYEE. Depending on the
table’s size and data distribution, each histogram should contain 10 intervals.

UPDATE STATISTICS FOR TABLE employee
ON (jobcode),(empnum, deptnum)
GENERATE 10 INTERVALS;

--- SQL operation complete.

Note. The USING SAMPLE TABLE clause is not supported with SQL/MP tables.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-410

SQL/MX Statements Examples of UPDATE STATISTICS
 This example generates histogram statistics using the ON EVERY COLUMN
option for the table DEPT. This statement performs a full scan, and the
NonStop SQL/MX determines the default number of intervals.

UPDATE STATISTICS FOR TABLE dept
ON EVERY COLUMN;

--- SQL operation complete.

 This example generates statistics for a sample from table MAILINGS. The sample
size is 7.3529 percent, and the number of rows in the table is 272,000.

UPDATE STATISTICS FOR TABLE mailings
ON EVERY COLUMN
SAMPLE RANDOM 7.3529 PERCENT CLUSTERS OF 1 BLOCKS
SET ROWCOUNT 272000;

 Suppose that a construction company has an ADDRESS table of potential sites
and a DEMOLITION_SITES table that contains some of the columns of the
ADDRESS table. The primary key is ZIP. Join these two tables on two of the
columns in common:

SELECT COUNT(AD.number), AD.street,
 AD.city, AD.zip, AD.state

FROM address AD, demolition_sites DS
WHERE AD.zip = DS.zip AND AD.type = DS.type
GROUP BY AD.street, AD.city, AD.zip, AD.state;

To generate statistics specific to this query, enter these statements:

UPDATE STATISTICS FOR TABLE address
ON (street), (city), (state), (zip, type);

UPDATE STATISTICS FOR TABLE demolition_sites
ON (zip, type);

 This example removes all histograms for table DEMOLITION_SITES:

UPDATE STATISTICS FOR TABLE demolition_sites CLEAR;

 This example selectively removes histograms for column STREET in table
ADDRESS:

UPDATE STATISTICS FOR TABLE address ON street CLEAR;

 This example generates statistics for a sample from table MAILINGS. The sample
size is 7.3529 percent and the number of rows in the table is 272,000. The records
that are selected by sampling are stored in a temporary table, which is partitioned
the same way as MAILINGS. The data in the temporary table is then used to
generate the statistics.

UPDATE STATISITCS FOR TABLE MAILINGS
 ON EVERY COLUMN
 SAMPLE RANDOM 7.3529 PERCENT CLUSTERS OF 1 BLOCKS
 SET ROWCOUNT 272000
 USING SAMPLE TABLE WITH PARTITIONS;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-411

SQL/MX Statements UPGRADE Utility
 This example generates statistics for a sample from table MAILINGS. The sample
size is 7.3529 percent and the number of rows in the table is 272,000. The records
that are selected by sampling are stored in a temporary table,
MY_SAMPLE_TABLE, which is specified by the user. The data in the temporary
table is then used to generate the statistics.

UPDATE STATISITCS FOR TABLE MAILINGS
 ON EVERY COLUMN
 SAMPLE RANDOM 7.3529 PERCENT CLUSTERS OF 1 BLOCKS
 SET ROWCOUNT 272000
 USING SAMPLE TABLE MY_SAMPLE_TABLE;

For additional examples, see the SQL/MX Query Guide.

UPGRADE Utility
Considerations for UPGRADE
Example of UPGRADE

UPGRADE is a syntax-based utility command that can be executed from MXCI.
UPGRADE transforms metadata from the existing version to the current schema
version for the SQL/MX Software Version (MXV). The REPORTONLY option allows you
to test if the operation can be executed without actually performing the operation.

catalog

specifies the ANSI name of the catalog in which metadata is to be upgraded. There
is no default for catalog.

RESTRICT

restricts the upgrade to metadata in the named catalog only.

CASCADE

extends the upgrade to the transitive closure of catalogs that are related to the
specified catalog. If no option is specified, the default is CASCADE.

UPGRADE ALL METADATA
 [output-spec]

UPGRADE ALL METADATA IN CATALOG catalog
 [RESTRICT | CASCADE]
 [output-spec]

output-spec is:
 [log-to-spec] [REPORTONLY]

log-to-spec is:
 { [LOG TO] OUTFILE oss-file [CLEAR] | LOG TO HOMETERM }
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-412

SQL/MX Statements Considerations for UPGRADE
output-spec

corresponds to the output options.

Considerations for UPGRADE

Modes of Operation for UPGRADE

The following are two modes of operation for the UPGRADE utility:

 ALL METADATA

This mode of operation upgrades all metadata that is visible on the system,
including the metadata in the system catalog.

 ALL METADATA IN CATALOG catalog

This mode of operation upgrades all the metadata in the named catalog. If the
CASCADE option is specified, it affects the metadata in the catalogs that are related
to the named catalog. This mode of operation is available in SQL/MX Release
3.2 and later releases.

Command Output for UPGRADE

The UPGRADE utility supports the following command output options:

 REPORTONLY

If the REPORTONLY option is specified, only the initial error checking is performed
and no upgrading takes place. If the LOG TO option is also specified, the list of
affected schemas to be upgraded is written to the output file.

 LOG TO

If the LOG TO option is specified, the command writes a log of its progress to either
the specified oss-file or to the home terminal. If the CLEAR option is used and if
oss-file is an existing disk file, oss-file is cleared before logging begins.
Otherwise, the output is appended to the existing contents of oss-file. The
following is the format of the first line of log output:

The format enables you to recognize a log file easily. A command is rejected if it
specifies an existing non-empty oss-file that is not a log file.

Log file messages correspond to the EMS event messages. Regardless of the LOG TO
option, the UPGRADE utility will generate EMS events to the $0 primary collector that
documents the progress of the command. For information about error messages, see
the SQL/MX Messages Manual.

Note. The UPGRADE utility is available only on systems running J06.11 and later J-series
RVUs and H06.22 and later H-series RVUs.

************** Time: <time> Process: <process> Log opened **************
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-413

SQL/MX Statements Considerations for UPGRADE
Error Conditions

The following are examples of the error conditions that might occur while executing the
UPGRADE utility:

 An affected schema has a schema version that is higher than the target version.

 No schemas are affected by the operation.

 The RESTRICT option is specified or no option is specified, and one or more
related catalogs exist.

 All of the following conditions are met:

 The system catalog participates in the operation

 Version 1200 schemas which do not participate in the operation exist on the
system

 Concurrent UPGRADE operations are not supported.

Recovery of a Failed UPGRADE Utility

The RECOVER command is extended to allow recovery of a failed UPGRADE
command. Starting with SQL/MX 3.2, the UPGRADE utility also allows recovery of an
UPGRADE of metadata in an individual catalog.

catalog

specifies the ANSI name of the catalog that was specified in the original
UPGRADE command.

RESUME

enables you to continue with the processing of the original command, starting at
the point of interruption.

CANCEL

enables you to revert the changes made by the original command, thereby
returning the database to its original state. The default value is CANCEL.

output-spec

is the same as for the UPGRADE operation.

RECOVER ALL METADATA
 [RESUME | CANCEL]
 [output-spec]

RECOVER ALL METADATA IN CATALOG catalog
 [RESUME | CANCEL]
 [output-spec]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-414

SQL/MX Statements Example of UPGRADE
The RECOVER command must use the same mode of operation as the original
UPGRADE command:

 If the original UPGRADE used the ALL METADATA mode of operation, then the
RECOVER must also use the ALL METADATA mode of operation.

 If the original UPGRADE used the ALL METADATA IN CATALOG catalog mode of
operation, then the RECOVER must also use the ALL METADATA IN CATALOG
catalog mode of operation, and must specify the same catalog name.

In a distributed environment, the RECOVER command must be issued from the same
system where the original UPGRADE command was executed.

Error Conditions

The following are examples of the error conditions that might occur while executing the
RECOVER command:

 An involved node has an incompatible version (because the version of the node
was modified between the time of the original operation and the time of recovery)

 No corresponding UPGRADE or DOWNGRADE operation is recorded

 The original command is still active

Example of UPGRADE

This example transforms all the metadata to the /usr/dbadmin/upgradeLog file:

UPGRADE ALL METADATA LOG TO OUTFILE /usr/dbadmin/upgradeLog
CLEAR;

Note. The RECOVER command does not need CASCADE option as it automatically recovers
the metadata for those catalogs that were affected by the original UPGRADE command.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-415

SQL/MX Statements Example of UPGRADE
The following is an excerpt from the output file.

*************** Time: <time> Process: <process> Log opened

The UPGRADE ALL METADATA has started
 ...
Schema XCAT.ASCH will be upgraded from version 1200 to version 3000
Schema YCAT.ASCH will be upgraded from version 1200 to version 3000
Schema YCAT.ZSCH will be upgraded from version 1200 to version 3000
Schema ZCAT.SCH1 will be upgraded from version 1200 to version 3000
Schema ZCAT.SCH2 will be upgraded from version 1200 to version 3000
 ...
Creating version 3000 definition schema for catalog XCAT
Upgrading version 1200 metadata to version 3000 for affected schemas in
catalog XCAT
Set schema version to 3000 for XCAT.ASCH
Remove XCAT.DEFINITION_SCHEMA_VERSION_1200
Schema XCAT.ASCH has been upgraded from version 1200 to version 3000.
Creating version 3000 definition schema for catalog YCAT
 ...
Set schema version to 3000 for ZCAT.SCH1
Set schema version to 3000 for ZCAT.SCH2
Schema ZCAT.SCH1 has been upgraded from version 1200 to version 3000.
Schema ZCAT.SCH2 has been upgraded from version 1200 to version 3000.
Remove ZCAT.DEFINITION_SCHEMA_VERSION_1200
The UPGRADE ALL METADATA has completed

Note. The date-time-processid prefix of each line and the output for schemas in the system
catalog are not displayed in the output file. Also, source definition schemas are removed as
part of the operation.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-416

SQL/MX Statements VALUES Statement
VALUES Statement
Considerations for VALUES
Examples of VALUES

The VALUES statement starts with the VALUES keyword followed by a sequence of
row value constructors, each of which is enclosed in parentheses. It displays the
results of the evaluation of the expressions and the results of row subqueries within the
row value constructors.

row-value-constructor

specifies a list of expressions (or NULL) or a row subquery (a subquery that
returns a single row of column values). An operand of an expression cannot
reference a column (except when the operand is a scalar subquery returning a
single column value in its result table).

The use of NULL as an element of a row-value-constructor is an SQL/MX
extension.

The results of the evaluation of the expressions and the results of the row
subqueries in the row value constructors must have compatible data types.

Considerations for VALUES

Relationship to SELECT Statement

The result of the VALUES statement is one form of a simple-table, which is part of
the definition of a table reference within a SELECT statement. See SELECT Statement
on page 2-330.

Examples of VALUES

 This VALUES statement displays the results of the expressions in the list:

VALUES (1,2,3);

(EXPR) (EXPR) (EXPR)
------ ------ ------
 1 2 3

--- 1 row(s) selected.

VALUES (row-value-constructor) [,(row-value-constructor)]...

row-value-constructor is:
 row-subquery
 | {expression | NULL} [,{expression | NULL}]...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-417

SQL/MX Statements Examples of VALUES
 This VALUES statement displays the results of the expressions and the row
subquery in the lists:

VALUES ('a','b',UPSHIFT('c')),
 ((SELECT jobdesc FROM job WHERE jobcode=300),'d',NULL);

(EXPR) (EXPR) (EXPR)
------------------ ------ ------
a b C
SALESREP d ?

--- 2 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
2-418

C/C

C/C

C/C

C/C

C/C

C/C

C/C

C/C
3
Embedded-Only SQL/MX Statements

This section describes the syntax and semantics of NonStop SQL/MX statements that
you can embed only in programs written in C, C++, COBOL, or Java.

In NonStop SQL/MX Release 2.x, mixing embedded SQL calls to NonStop SQL/MP
and NonStop SQL/MX from the same application process is not supported.

You cannot run these statements, or specific forms of these statements, in MXCI:

ALLOCATE CURSOR Statement on
page 3-3

Allocates an SQL cursor.

ALLOCATE DESCRIPTOR Statement on
page 3-6

Allocates an input or output SQL descriptor area
(SQLDA).

BEGIN DECLARE SECTION Declaration
on page 3-9

Designates the beginning of a Declare Section
for host variable declarations.

CLOSE Statement on page 3-11 Closes a cursor.

Compound (BEGIN...END) Statement on
page 3-14

Groups embedded SQL statements together into
a single data access request to reduce the
number of times the client has to wait for the
server.

DEALLOCATE DESCRIPTOR Statement
on page 3-16

Deallocates an SQLDA.

DEALLOCATE PREPARE Statement on
page 3-18

Deallocates a prepared statement and returns
the system resources used by the statement;
permits reuse of the statement name.

DECLARE CATALOG Declaration on
page 3-21

Sets default catalog for unqualified schema
names in static SQL statements within a
compilation unit.

DECLARE CURSOR Declaration on
page 3-22

Specifies a static cursor in a host program and
associates the name of the cursor with a query
expression that specifies the rows to be
retrieved by using the cursor. Also specifies a
dynamic cursor.

DECLARE MPLOC Declaration on
page 3-29

Sets a default NonStop operating system
volume and subvolume for unqualified physical
object names in static SQL statements within a
compilation unit.

DECLARE NAMETYPE Declaration on
page 3-32

Sets default NAMETYPE attribute value to ANSI
or NSK for static statements within a compilation
unit.

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-1

Embedded-Only SQL/MX Statements

C/C

C/C

C/C

C/C

C/C

C/C

C/C

C/C

C/C

C/C

C/C

C/C
For more information on how to embed SQL/MX statements in C or COBOL programs,
see the SQL/MX Programming Manual for C and COBOL.

DECLARE SCHEMA Declaration on
page 3-33

Sets default schema for unqualified object
names in static SQL statements within a
compilation unit.

DESCRIBE Statement on page 3-34 Uses an SQLDA to return descriptions of output
variables (usually SELECT columns) and input
parameters for a prepared statement.

END DECLARE SECTION Declaration on
page 3-37

Designates the end of a Declare Section.

EXEC SQL Directive on page 3-38 Begins an embedded SQL statement or
declaration.

EXECUTE IMMEDIATE Statement on
page 3-39

Prepares (compiles) and executes a dynamic
SQL statement.

FETCH Statement on page 3-40 Retrieves a row using a cursor.

GET DESCRIPTOR Statement on
page 3-46

Retrieves information from an SQLDA.

GET DIAGNOSTICS Statement on
page 3-55

Returns diagnostic information about the most
recently executed SQL statement.

IF Statement on page 3-61 Compound statement that provides conditional
execution based on the truth value of a
conditional expression.

INVOKE Directive on page 3-64 Generates a structure description of a table or
view.

MODULE Directive on page 3-70 Specifies the name of an embedded SQL
module for the preprocessor.

OPEN Statement on page 3-72 Opens a cursor.

SET (Assignment) Statement on
page 3-76

Assigns a value to a host variable so that
subsequent statements in the containing
compound statement can reference and use the
value of that host variable.

SET DESCRIPTOR Statement on
page 3-78

Modifies information in an SQLDA.

WHENEVER Declaration on page 3-86 Unloads the module files.

WHENEVER Declaration on page 3-86 Generates code that checks SQL statement
execution for errors and the end no-data
condition and specifies an action to take.

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-2

Embedded-Only SQL/MX Statements ALLOCATE CURSOR Statement

C/C

Pu

Pu
ALLOCATE CURSOR Statement
Considerations for ALLOCATE CURSOR
C Examples of ALLOCATE CURSOR
COBOL Examples of ALLOCATE CURSOR

The ALLOCATE CURSOR statement is a dynamic SQL statement used to define an
extended cursor based on a statement already prepared for the cursor specification. It
allows applications to dynamically create an unlimited number of cursors.

Use ALLOCATE CURSOR only in embedded SQL programs in C or COBOL.

ext-cursor-name

is a value-specification—a host variable with character data type. When
ALLOCATE CURSOR executes, the content of the host variable gives the name of
the cursor. The maximum length of a cursor name is 128 characters.

WITH HOLD | WITHOUT HOLD

specifies whether an application keeps cursors open (WITH) across transaction
boundaries. The default is WITHOUT HOLD. You can use the WITH HOLD clause
only with Publish/Subscribe.

GLOBAL | LOCAL

specifies scope. The default setting is LOCAL. The scope of a GLOBAL cursor or
statement name is the SQL session. The scope of a LOCAL cursor or statement
name is the module or compilation unit in which ALLOCATE CURSOR appears.

ext-statement-name

is a value-specification—a host variable with character data type. When
ALLOCATE CURSOR executes, the content of the host variable must identify a
statement previously prepared within the scope of ALLOCATE CURSOR. The
prepared statement must be a cursor specification.

When host variables are used for the ext-cursor-name and the ext-
statement-name in the DECLARE CURSOR statement, the ALLOCATE

ALLOCATE ext-cursor-name
CURSOR [WITH HOLD | WITHOUT HOLD]

 FOR ext-statement-name

ext-cursor-name is:
 [GLOBAL | LOCAL] value-specification

ext-statement-name is:
 [GLOBAL | LOCAL] value-specification

OBOL

b/Sub

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-3

Embedded-Only SQL/MX Statements Considerations for ALLOCATE CURSOR

Pu
CURSOR statement is functionally equivalent to the DECLARE CURSOR
statement.

Considerations for ALLOCATE CURSOR

Cursor Names

You cannot have more than one cursor allocated with the same name within the same
scope. For example, this sequence from a C program is not valid:

strcpy(extcur1,"CURSOR1");
EXEC SQL ALLOCATE :extcur1 CURSOR FOR :stmt;
strcpy(extcur2,"CURSOR1");
EXEC SQL ALLOCATE :extcur2 CURSOR FOR :stmt;

The second ALLOCATE CURSOR fails because CURSOR1 has already been
allocated.

Using Extended Dynamic Cursors

The name of an extended dynamic cursor is not known until run time. Therefore, you
can allocate new cursors as you need them.

However, you must have prepared a cursor specification and stored the name of the
prepared cursor specification in a host variable before ALLOCATE CURSOR executes.

WITH HOLD

You can use holdable cursors only for SELECT statements that use the
Publish/Subscribe stream access mode or an embedded UPDATE or embedded
DELETE.

C Examples of ALLOCATE CURSOR

This example uses extended cursor and statement names in the PREPARE and
ALLOCATE CURSOR statements:

...
scanf("%s", in_curspec);
...
EXEC SQL PREPARE :curspec FROM :in_curspec;
...
EXEC SQL ALLOCATE :extcur CURSOR FOR :curspec;
...

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-4

Embedded-Only SQL/MX Statements COBOL Examples of ALLOCATE CURSOR
COBOL Examples of ALLOCATE CURSOR

This example uses extended cursor and statement names in the PREPARE and
ALLOCATE CURSOR statements:

...
ACCEPT in-curspec.
...
EXEC SQL PREPARE :curspec FROM :in-curspec END-EXEC.
...
EXEC SQL ALLOCATE :extcur CURSOR FOR :curspec END-EXEC.
...

Publish/Subscribe Examples of ALLOCATE CURSOR

This example uses the WITH HOLD clause with ALLOCATE CURSOR:

...
EXEC SQL
 ALLOCATE :ext_hold_stmthold CURSOR WITH HOLD FOR
 :szHoldableStatementName;

EXEC SQL BEGIN WORK;
EXEC SQL OPEN :ext_hold_stmthold;
for(;;) {

EXEC SQL FETCH :ext_hold_stmthold INTO :hv;
EXEC SQL COMMIT;
EXEC SQL BEGIN WORK;

}

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-5

Embedded-Only SQL/MX Statements ALLOCATE DESCRIPTOR Statement

C/C
ALLOCATE DESCRIPTOR Statement
Considerations for ALLOCATE DESCRIPTOR
C Examples of ALLOCATE DESCRIPTOR
COBOL Examples of ALLOCATE DESCRIPTOR

The ALLOCATE DESCRIPTOR statement allocates a named SQL descriptor area
used for storing information necessary for the execution of dynamic SQL statements.

Use ALLOCATE DESCRIPTOR only in embedded SQL programs in C or COBOL.

descriptor-name

is a value-specification—a character literal or host variable with character
data type. When ALLOCATE DESCRIPTOR executes, the content of the host
variable (if used) gives the name of the descriptor area.

GLOBAL | LOCAL

specifies the scope of the allocated descriptor area. The default setting is LOCAL.
A GLOBAL descriptor area is available to the SQL session. A LOCAL descriptor
area is available only to the module or compilation unit in which it was allocated.

WITH MAX occurrences

specifies the maximum number of items in the descriptor area. occurrences
must be a host variable. The specified area must be large enough to store
information for as many parameters as you are using in your dynamic SQL
statements. The data type of occurrences must be exact numeric with scale 0
and a value of 1 or greater.

Considerations for ALLOCATE DESCRIPTOR

You should code the ALLOCATE DESCRIPTOR statement before the PREPARE
statement for the input descriptor. For example:

EXEC SQL ALLOCATE DESCRIPTOR 'in_desc' WITH MAX :desc_max;

printf("SQLCODE after allocate descriptor - 1 is %d\n",
 SQLCODE);

strncpy(insert_buf, " ", sizeof(insert_buf));

strcpy(insert_buf, "insert into a5tab1 (select * from
 a5tab0 where double1 between ? and double2/2);");

ALLOCATE DESCRIPTOR descriptor-name WITH MAX occurrences

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-6

Embedded-Only SQL/MX Statements C Examples of ALLOCATE DESCRIPTOR
hvdouble1 = 1.0E-76;

EXEC SQL PREPARE insert_q FROM :insert_buf;
 printf("SQLCODE after prepare insert_q - 1 is %d\n",
SQLCODE);

Exec SQL execute insert_q using :hvdouble1;
 printf("SQLCODE after insert - 3 is %d \n", SQLCODE);

Defining Values in the Descriptor Area

All values in all items of the descriptor area are initially undefined. To define values,
use a DESCRIBE statement or explicitly set values with a SET DESCRIPTOR
statement.

Descriptor Names

You cannot have more than one descriptor allocated with the same name at the same
time within the same scope. For example, this sequence from a C program is not valid:

strcpy(descname1,"SQLDA1");
desc_max1 = 2;
EXEC SQL ALLOCATE DESCRIPTOR :descname1 WITH MAX :desc_max1;
strcpy(descname2,"SQLDA1");
desc_max2 = 3;
EXEC SQL ALLOCATE DESCRIPTOR :descname2 WITH MAX :desc_max2;

The second ALLOCATE DESCRIPTOR fails because SQLDA1 has already been
allocated.

C Examples of ALLOCATE DESCRIPTOR

 This example uses an SQL string literal as the descriptor name:

desc_max = 1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc_max;

 This example uses a host variable as the descriptor name:

...
EXEC SQL BEGIN DECLARE SECTION;
VARCHAR desc_name[20];
long desc_max;
...
EXEC SQL END DECLARE SECTION;
...
strcpy(desc_name, "in_sqlda");
desc_max = 1;
EXEC SQL ALLOCATE DESCRIPTOR :desc_name WITH MAX :desc_max;
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-7

Embedded-Only SQL/MX Statements COBOL Examples of ALLOCATE DESCRIPTOR
COBOL Examples of ALLOCATE DESCRIPTOR

 This example uses an SQL string literal as the descriptor name:

MOVE 1 TO desc-max.
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda'
 WITH MAX :desc-max
END-EXEC.

 This example uses a host variable as the descriptor name:

...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 desc-name PIC X(20).
01 desc-max S9(9) comp.
...
 EXEC SQL END DECLARE SECTION END-EXEC.
...
MOVE "in_sqlda" TO desc-name.
MOVE 1 TO desc-max.
EXEC SQL ALLOCATE DESCRIPTOR :desc-name
 WITH MAX :desc-max
END-EXEC.
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-8

Embedded-Only SQL/MX Statements BEGIN DECLARE SECTION Declaration

C/C
BEGIN DECLARE SECTION Declaration
BEGIN DECLARE SECTION is a preprocessor directive that begins SQL declarations
in a host program. SQL declarations are used to define host variables to be used in
SQL/MX statements—for example, to transfer data to and from a database.

Use BEGIN DECLARE SECTION only in embedded SQL programs in C or COBOL.

See END DECLARE SECTION Declaration on page 3-37.

C Examples of BEGIN DECLARE SECTION

 This example shows a declaration section:

EXEC SQL BEGIN DECLARE SECTION;
 SHORT length;
 CHAR data[10];
EXEC SQL END DECLARE SECTION;

 This example shows a declaration section that uses an INVOKE directive to
declare a structure template of a table:

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE SALES.PARTS;
EXEC SQL END DECLARE SECTION;

C++ Examples of BEGIN DECLARE SECTION

 This example shows a declaration section within a class. Member functions using
these host variables must be defined within the visible scope of the class.

class jobsql {
// Class member host variables
EXEC SQL BEGIN DECLARE SECTION;
 short length;
 VARCHAR data[19];
EXEC SQL END DECLARE SECTION;
public:
...
 }
}; // End of jobsql class definition

BEGIN DECLARE SECTION

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-9

Embedded-Only SQL/MX Statements COBOL Examples of BEGIN DECLARE SECTION
COBOL Examples of BEGIN DECLARE SECTION

 This example shows a declaration section:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 length pic 9(4)comp.
01 data pic x(10).
 EXEC SQL END DECLARE SECTION END-EXEC.

 This example shows a declaration section that uses an INVOKE directive to
declare a record description of a table:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 EXEC SQL INVOKE SALES.PARTS END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-10

Embedded-Only SQL/MX Statements CLOSE Statement

C/C
CLOSE Statement
Considerations for CLOSE
C Examples of CLOSE
COBOL Examples of CLOSE

The CLOSE statement closes a cursor in a host program and releases the result table
established by the OPEN statement for the cursor. The COMMIT WORK statement or
ROLLBACK WORK statement also closes all open cursors in a host program and
releases all result tables.

In dynamic SQL, the cursor name is provided at execution time. Otherwise, there is no
difference in the static and dynamic forms of CLOSE.

Use CLOSE only in embedded SQL programs in C or COBOL.

cursor-name

is an SQL identifier—the name of an open cursor. See Identifiers on page 6-56.

GLOBAL | LOCAL

specifies scope. The default setting is LOCAL. The scope of a GLOBAL cursor is
the SQL session. The scope of a LOCAL cursor is the module or compilation unit
in which CLOSE appears.

ext-cursor-name

is a value-specification—a character literal or a host variable with character
data type. When CLOSE executes, the content of the value specification (if a host
variable) gives the name of the cursor.

Considerations for CLOSE

Scope of CLOSE

The module or compilation unit that contains the CLOSE statement also has a
DECLARE CURSOR statement that uses the same cursor name. The cursor name in
the CLOSE statement is associated with the cursor specification in this DECLARE
CURSOR.

CLOSE {cursor-name | ext-cursor-name}

ext-cursor-name is:
 [GLOBAL | LOCAL] value-specification

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-11

Embedded-Only SQL/MX Statements C Examples of CLOSE
Reusing a Cursor

After CLOSE executes, the result table for the cursor (the output that results from the
execution of the SELECT that specifies the cursor) no longer exists. To use the same
cursor again, you must reopen it with an OPEN statement.

Effect on Locks

Closing a cursor does not affect locks. Locks on audited tables are released when the
containing transaction completes or aborts; locks on nonaudited tables must be
released with UNLOCK TABLE.

Using Extended Dynamic Cursors

The name of an extended dynamic cursor is not known until run time. When CLOSE
executes, the name must identify an open cursor within the same scope.

C Examples of CLOSE

 Declare and open a cursor, fetch a row of retrieved data, and then close the cursor.
Note that in an actual program you would include processing the data in the host
variables hostvar1, hostvar2, and hostvar3, and looping back to fetch the
next row provided by the cursor.

...
EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3 FROM SALES.PARTS
 WHERE COL1 >= :hostvar1
 ORDER BY COL1
 READ UNCOMMITTED ACCESS;
... /* Initialize value of hostvar1 */
EXEC SQL OPEN cursor1;
...
EXEC SQL FETCH cursor1 INTO :hostvar1, :hostvar2, :hostvar3;
...
EXEC SQL CLOSE cursor1;

 This example uses extended cursor and statement names in the PREPARE,
ALLOCATE CURSOR, OPEN, and CLOSE statements.

...
scanf("%s", in_curspec);
...
EXEC SQL PREPARE :curspec FROM :in_curspec;
...
EXEC SQL ALLOCATE :extcur CURSOR FOR :curspec;
...
EXEC SQL OPEN :extcur;
/* Process using the extended dynamic cursor. */
...

EXEC SQL CLOSE :extcur;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-12

Embedded-Only SQL/MX Statements COBOL Examples of CLOSE
COBOL Examples of CLOSE

 Declare and open a cursor, fetch a row of retrieved data, then close the cursor.
Note that in an actual program you would include processing the data in the host
variables hostvar1, hostvar2, and hostvar3, and looping back to fetch the
next row provided by the cursor.

 ...
 EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3 FROM SALES.PARTS
 WHERE COL1 >= :hostvar1
 ORDER BY COL1
 READ UNCOMMITTED ACCESS END-EXEC.
* Initialize value of hostvar1
 ...
 EXEC SQL OPEN cursor1 END-EXEC.
 ...
 EXEC SQL FETCH cursor1
 INTO :hostvar1, :hostvar2, :hostvar3 END-EXEC.
 ...
 EXEC SQL CLOSE cursor1 END-EXEC.

 This example uses extended cursor and statement names in the PREPARE,
ALLOCATE CURSOR, OPEN, and CLOSE statements.

 ...
 ACCEPT in-curspec.
 ...
 EXEC SQL PREPARE :curspec FROM :in-curspec END-EXEC.
 ...
 EXEC SQL ALLOCATE :extcur CURSOR FOR :curspec END-EXEC.
 ...
 EXEC SQL OPEN :extcur END-EXEC.
* Process using the extended dynamic cursor.
 ...
 EXEC SQL CLOSE :extcur END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-13

Embedded-Only SQL/MX Statements Compound (BEGIN...END) Statement

C/C
Compound (BEGIN...END) Statement
Considerations for Compound Statement
C Examples of Compound Statement

A compound statement is an embedded SQL statement that groups other embedded
SQL statements together.

A compound statement is an SQL/MX extension that you use only in embedded SQL
programs in C or COBOL.

SQL-statement;[SQL-statement;]...

is the SQL statement list between the BEGIN and END keywords. The SQL
statements inside a compound statement are executed in sequential order.
Therefore, the result of executing a compound statement is exactly the same result
as executing the contained statements one at a time in sequential order.

The SQL statements inside a compound statement are atomic. Therefore, if the
execution of any statement within the BEGIN and END keywords encounters an
error, NonStop SQL/MX automatically rolls back all of the statements.

Considerations for Compound Statement

SQL Statements in the List

You can use most SQL statements inside a compound statement; however, you cannot
use transaction statements (BEGIN WORK, COMMIT WORK, ROLLBACK WORK,
and SET TRANSACTION), UPDATE STATISTICS, and CONTROL statements.

You can use SELECT INTO to retrieve only one row, but cursors are not allowed in
compound statements. You can also use rowsets within compound statements to
retrieve multiple rows from database tables.

Executing Compound Statements in a DAM Process

To improve performance, use the CONTROL QUERY DEFAULT
OPTS_PUSH_DOWN_DAM option to force NonStop SQL/MX to consider executing
compound statements in a NonStop Data Access Manager (DAM) process. Some
compound statements, however, should not be executed in a DAM process because
they can cause inconsistent data or return the wrong results. For more information
about using this option, see the SQL/MX Query Guide.

BEGIN
 SQL-statement;[SQL-statement;]...
END;

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-14

Embedded-Only SQL/MX Statements C Examples of Compound Statement
SELECT Statements Within Compound Statements

Every SELECT statement within a BEGIN…END statement should return at least one
row. If a SELECT statement within a BEGIN..END statement does not return at least
one row, further execution of the compound statement stops and NonStop SQL/MX
issues a warning or an error. A warning is displayed if no updates occurred before the
SELECT statement that did not return a row. In this case NonStop SQL/MX does not
roll back the transaction. An error is displayed if updates occurred before the SELECT
statement that did not return a row. Since updates occurred as part of this compound
statement NonStop SQL/MX rolls back the transaction. In both the cases the behavior
is atomic because none of the statements are executed.

C Examples of Compound Statement

 These INSERT and SELECT statements inside the BEGIN and END keywords
execute sequentially:

...
EXEC SQL WHENEVER SQLERROR GOTO end_compound;

EXEC SQL
 BEGIN
 INSERT INTO SALES.ORDERS
 (ORDERNUM, ORDER_DATE, DELIV_DATE, SALESREP, CUSTNUM)
 VALUES (:hv_ordernum, :hv_orderdate, :hv_delivdate,
 :hv_salesrep, :hv_custnum);

 SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv_custnum, :hv_custname,
 :hv_street, :hv_city, :hv_state, :hv_postcode
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :hv_custnum;
 END;

end_compound:
 ... /* Process the error */
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-15

Embedded-Only SQL/MX Statements DEALLOCATE DESCRIPTOR Statement

C/C
DEALLOCATE DESCRIPTOR Statement
C Examples of DEALLOCATE DESCRIPTOR
COBOL Examples of DEALLOCATE DESCRIPTOR

The DEALLOCATE DESCRIPTOR statement deallocates an SQL descriptor area used
for storing information necessary for the execution of dynamic SQL statements. The
descriptor area was previously allocated with the ALLOCATE DESCRIPTOR
statement.

Use DEALLOCATE DESCRIPTOR only in embedded SQL programs in C or COBOL.

descriptor-name

is a value-specification—a character literal or host variable with character
data type. When DEALLOCATE DESCRIPTOR executes, the content of the host
variable (if used) gives the name of the descriptor area.

GLOBAL | LOCAL

specifies the scope of the allocated descriptor area. The default setting is LOCAL.
A GLOBAL descriptor area is available to the SQL session. A LOCAL descriptor
area is available only to the module or compilation unit in which it was allocated.

An SQL descriptor area must be currently allocated whose name is the value of
descriptor-name and whose scope is the same scope as specified in the
DEALLOCATE DESCRIPTOR statement for the area.

DEALLOCATE DESCRIPTOR descriptor-name

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-16

Embedded-Only SQL/MX Statements C Examples of DEALLOCATE DESCRIPTOR
C Examples of DEALLOCATE DESCRIPTOR

 This example uses an SQL string literal as the descriptor name:

EXEC SQL DEALLOCATE DESCRIPTOR 'in_sqlda';

 This example uses a host variable as the descriptor name:

...
EXEC SQL BEGIN DECLARE SECTION;
CHAR desc_name[20];
LONG desc_max;
...
EXEC SQL END DECLARE SECTION;
...
strcpy(desc_name, "in_sqlda");
...
desc_max = 10;
EXEC SQL ALLOCATE DESCRIPTOR :desc_name WITH MAX :desc_max;
...
EXEC SQL DEALLOCATE DESCRIPTOR :desc_name;

COBOL Examples of DEALLOCATE DESCRIPTOR

 This example uses an SQL string literal as the descriptor name:

EXEC SQL DEALLOCATE DESCRIPTOR 'in_sqlda' END-EXEC.

 This example uses a host variable as the descriptor name:

...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 desc-name PIC X(20).
01 desc-max PIC S9(9) comp.
...
EXEC SQL END DECLARE SECTION END-EXEC.
...
MOVE "in_sqlda" TO desc-name.
...
MOVE 10 TO desc-max.
EXEC SQL ALLOCATE DESCRIPTOR :desc-name
 WITH MAX :desc-max END-EXEC.
...
EXEC SQL DEALLOCATE DESCRIPTOR :desc-name END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-17

Embedded-Only SQL/MX Statements DEALLOCATE PREPARE Statement

C/C
DEALLOCATE PREPARE Statement
Considerations for DEALLOCATE PREPARE
C Examples of DEALLOCATE PREPARE
COBOL Examples of DEALLOCATE PREPARE

The DEALLOCATE PREPARE statement deallocates a prepared SQL statement in a
host program. It releases resources held by the prepared statement and allows you to
reuse the name of the statement.

Use DEALLOCATE PREPARE only in embedded SQL programs in C or COBOL.

statement-name

is an SQL identifier—the name of a prepared statement to deallocate. The module
that contains the DEALLOCATE PREPARE statement must also contain a
PREPARE statement for statement-name. See Identifiers on page 6-56.

ext-statement-name

is a value-specification—a host variable with character data type. When
DEALLOCATE PREPARE executes, the content of the value-specification
must identify a statement previously prepared within the scope of DEALLOCATE
PREPARE. The prepared statement must be a cursor specification.

GLOBAL | LOCAL

specifies the scope of the prepared statement. The default setting is LOCAL. A
GLOBAL prepared statement can be executed within the SQL session. A LOCAL
prepared statement can be executed only within the module or compilation unit in
which it was prepared.

A prepared SQL statement must be currently available whose name is the value of
ext-statement-name and whose scope is the same scope as specified in the
DEALLOCATE PREPARE statement.

DEALLOCATE PREPARE SQL-statement-name

SQL-statement-name is:
 statement-name | ext-statement-name

ext-statement-name is:
 [GLOBAL | LOCAL] value-specification

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-18

Embedded-Only SQL/MX Statements Considerations for DEALLOCATE PREPARE
Considerations for DEALLOCATE PREPARE

Cursor Specification

When you deallocate a prepared statement, any cursor associated with that statement
is canceled.

C Examples of DEALLOCATE PREPARE

 Prepare, execute, and deallocate an UPDATE statement with dynamic input
parameters:

...
strcpy(stmt_buffer,"UPDATE SALES.CUSTOMER"
 " SET CREDIT = ?"
 " WHERE CUSTNUM = CAST(? AS NUMERIC(4) UNSIGNED)")
...
EXEC SQL PREPARE upd_cust FROM :stmt_buffer;
...
/* Input values for parameters into host variables */
scanf("%s",in_credit);
...
scanf("%ld",&in_custnum);
...
EXEC SQL EXECUTE upd_cust USING :in_credit, :in_custnum;
...
EXEC SQL DEALLOCATE PREPARE upd_cust;

 This example uses extended statement names:

...
strcpy(stmt,"ins_cust1");
EXEC SQL PREPARE :stmt FROM :stmt_buffer;
EXEC SQL EXECUTE :stmt;
EXEC SQL DEALLOCATE PREPARE :stmt;
...
strcpy(stmt,"ins_cust2");
EXEC SQL PREPARE :stmt FROM :stmt_buffer;
EXEC SQL EXECUTE :stmt;
EXEC SQL DEALLOCATE PREPARE :stmt;
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-19

Embedded-Only SQL/MX Statements COBOL Examples of DEALLOCATE PREPARE
COBOL Examples of DEALLOCATE PREPARE

 Prepare, execute, and deallocate an UPDATE statement with dynamic input
parameters:

 ...
 MOVE "UPDATE SALES.CUSTOMER SET CREDIT = ?"
 & " WHERE CUSTNUM = CAST(? AS NUMERIC(4) UNSIGNED)"
 & x"00" TO stmt-buffer.
 ...
 EXEC SQL PREPARE upd_cust FROM :stmt-buffer END-EXEC.
 ...
* Input values for parameters into host variables
 ACCEPT in-credit.
 ...
 ACCEPT in-custnum.
 ...
 EXEC SQL EXECUTE upd_cust
 USING :in-credit, :in-custnum
 END-EXEC.
 ...
 EXEC SQL DEALLOCATE PREPARE upd_cust END-EXEC.

 This example uses extended statement names:

...
MOVE "ins_cust1" TO stmt.
EXEC SQL PREPARE :stmt FROM :stmt-buffer END-EXEC.
EXEC SQL EXECUTE :stmt END-EXEC.
EXEC SQL DEALLOCATE PREPARE :stmt END-EXEC.
...
MOVE "ins_cust2" TO stmt.
EXEC SQL PREPARE :stmt FROM :stmt-buffer END-EXEC.
EXEC SQL EXECUTE :stmt END-EXEC.
EXEC SQL DEALLOCATE PREPARE :stmt END-EXEC.
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-20

Embedded-Only SQL/MX Statements DECLARE CATALOG Declaration
DECLARE CATALOG Declaration
The DECLARE CATALOG declaration is a compiler directive that sets the default
catalog for unqualified schema names in static SQL statements that follow the
declaration within a compilation unit. The DECLARE SCHEMA declaration sets the
default schema name. See DECLARE SCHEMA Declaration on page 3-33.

DECLARE CATALOG is an SQL/MX extension that you use only in embedded SQL
programs.

default-catalog

is a character string literal that specifies a catalog name. A string literal is enclosed
in single quotation marks. 'mycatalog' is the form, where mycatalog is the
name you choose.

Considerations for DECLARE CATALOG

Scope of DECLARE CATALOG

You can specify more than one DECLARE CATALOG directive in an embedded SQL
program. Each directive replaces the preceding directive and stays in effect until it is
replaced by another directive or until the end of the program’s compilation unit is
reached.

If no DECLARE CATALOG directive is in effect when the SQL/MX compiler encounters
an unqualified schema name, the compiler uses the catalog as determined by
NonStop SQL/MX. For more information, see Object Naming on page 10-60 and the
SQL/MX Programming Manual for C and COBOL.

C Examples of DECLARE CATALOG

 Set the default catalog:

EXEC SQL DECLARE CATALOG 'SAMDBCAT';

COBOL Examples of DECLARE CATALOG

 Set the default catalog:

EXEC SQL DECLARE CATALOG 'SAMDBCAT' END-EXEC.

DECLARE CATALOG default-catalog
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-21

Embedded-Only SQL/MX Statements DECLARE CURSOR Declaration

C/C

Pu
DECLARE CURSOR Declaration
Considerations for DECLARE CURSOR
C Examples of DECLARE CURSOR
COBOL Examples of DECLARE CURSOR
Publish/Subscribe Examples of DECLARE CURSOR

The DECLARE CURSOR declaration or statement specifies a cursor in a host
program. It associates the name of the cursor with a query expression that specifies
the rows to be retrieved. The program uses the cursor to fetch rows from the result
table of the query expression one row at a time.

There are two forms of DECLARE CURSOR—static and dynamic. A static cursor is
associated with an actual query expression—for example, a SELECT statement—and
a dynamic cursor is associated with a statement name. The static form of DECLARE
CURSOR is a declaration, and the dynamic form is an executable statement.

Use DECLARE CURSOR only in embedded SQL programs in C or COBOL.

DECLARE {cursor-name | ext-cursor-name}
 CURSOR [WITH HOLD | WITHOUT HOLD]
 FOR {cursor-specification
 |ext-statement-name
 |rowset-clause }

cursor-specification is:
 query-expression [order-by-clause] [updatability-clause]

order-by-clause is:
 ORDER BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...

updatability-clause is:
 FOR {READ ONLY | UPDATE [OF colname [,colname]...]}

ext-cursor-name is:
 [GLOBAL | LOCAL] value-specification

ext-statement-name is:
 value-specification

rowset-clause is:
 ROWSET FOR [INPUT SIZE rowset-size-in]
 [KEY BY index-identifier]
 [INPUT SIZE rowset-size-in,
 KEY BY index-identifier]
 sql-statement SQL terminator

OBOL

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-22

Embedded-Only SQL/MX Statements DECLARE CURSOR Declaration

Pu
See SELECT Statement on page 2-330 for the syntax of query-expression.

cursor-name

is an SQL identifier—the name of the cursor being declared. The name is unique
within the containing module or compilation unit. The maximum length of a cursor
name is 128 characters. See Identifiers on page 6-56.

WITH HOLD | WITHOUT HOLD

specifies whether (WITH) or not (WITHOUT) an application keeps cursors open
across transaction boundaries. The default is WITHOUT HOLD. You can use the
WITH HOLD clause only with Publish/Subscribe.

cursor-specification

is a query expression, an SQL identifier that names a prepared query expression,
or in the case of a dynamic cursor, a host variable containing a query expression. It
is optionally followed by an ORDER BY clause and a FOR READ ONLY or FOR
UPDATE OF clause. See Identifiers on page 6-56.

ORDER BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]

specifies the order in which the rows of the query result are presented to the
application program. The column name must be the name of a column that is
in the select list of query-expression.

If the select list in the cursor specification includes an expression (it is not a
column name), you must use the AS clause to give a name to the expression.
For detailed information, see SELECT Statement on page 2-330.

FOR {READ ONLY | UPDATE [OF colname [,colname]...]}

specifies whether the cursor is FOR READ ONLY (read-only cursors) or FOR
UPDATE OF (updatable cursors). If no column list is specified for an updatable
cursor, the column list includes every column of the result table generated from
the query expression.

Database modifications—both UPDATE and DELETE operations—are not
allowed through read-only cursors. If a column list is specified for an updatable
cursor, the columns named in an UPDATE operation must be included in the
column list.

ext-cursor-name

is a value specification—a character literal or host variable with character data
type. When DECLARE CURSOR executes, the content of the host variable (if
used) gives the name of the cursor.

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-23

Embedded-Only SQL/MX Statements Considerations for DECLARE CURSOR
GLOBAL | LOCAL

specifies the scope of the value specification for an ext-cursor-name. The
default is LOCAL. The scope of a GLOBAL cursor is the SQL session. The
scope of a LOCAL cursor is the module or compilation unit in which DECLARE
CURSOR appears.

ext-statement-name

is a value specification—a character literal or host variable with character data
type.

The ext-cursor-name and the ext-statement-name must both be named in
the same way—either both as character literals or both as host variables. When
host variables are used, the DECLARE CURSOR statement is functionally
equivalent to the ALLOCATE CURSOR statement.

rowset-size-in

restricts the size of the input rowset to the specified size, which must be less than
or equal to the allocated size for the rowset. The size is an integer literal (exact
numeric literal) or a host variable whose type is either unsigned short, signed short,
unsigned long, or signed long in C and their corresponding equivalents in COBOL.
By default, if the size is not specified, NonStop SQL/MX uses the allocated rowset
size specified in the SQL Declare Section of the embedded SQL program.

index-identifier

is a zero-based index that identifies each row in the matching columns of a
SELECT or FETCH statement with the particular search-condition in the WHERE
clause that caused the row to be part of the result set. For example, if the row-id
value for a certain row in the matching columns is 0 (zero), this row matches the
search-condition in the first element of the host variable arrays (array index 0 in C,
array index 1 in COBOL) in the WHERE clause.

SQL-statement

is any embedded DML statement that uses rowsets directly.

Considerations for DECLARE CURSOR

When DECLARE CURSOR executes, the content of the host variable (if used) must
identify a statement previously prepared within the scope of DECLARE CURSOR. The
prepared statement must be a cursor specification.

Default for Updatability

You can use updatable cursors only if the query expression involves a single table and
simple scan and does not include joins, unions, aggregates, and so on. Suppose that
the query expression meets these criteria for updatability:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-24

Embedded-Only SQL/MX Statements C Examples of DECLARE CURSOR

Pu
 If the READONLY_CURSOR attribute is set to TRUE (the default setting), you
must declare cursors with the FOR UPDATE clause for the named columns or all
columns to be updatable. (This READONLY_CURSOR setting improves cursor
performance.)

 If the READONLY_CURSOR attribute is set to FALSE and you omit the FOR
READ ONLY clause, all columns except primary key columns are automatically
updatable; that is, you do not need to specify the FOR UPDATE clause.

 SQL/MX does not lock the row in the EXCLUSIVE or SHARE mode during a
FETCH operation. However, it locks the rows while executing the UPDATE or
DELETE statement. Therefore, to prevent the DELETE or UPDATE or DROP
statement from parallel processes, specify exclusive lock mode for the SELECT
statement while declaring the updatable cursor.

For information on locking modes, see Considerations for SELECT on page 2-346.

For more information on the READONLY_CURSOR attribute, see Row Maintenance
on page 10-75.

Order of Cursor Operations

In static SQL, a cursor declaration must compile before other statements that reference
the cursor. In dynamic SQL, a cursor declaration must execute before other statements
that reference the cursor.

Declaring Host Variables

The host variables occurring in the cursor specification must be declared within the
scope of the associated OPEN statement. Otherwise, an error occurs during
preprocessing.

WITH HOLD

You can use holdable cursors only for SELECT statements that use the
Publish/Subscribe stream access mode or an embedded UPDATE or embedded
DELETE.

C Examples of DECLARE CURSOR

 This SQL statement defines a static read-only cursor:

EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3, COL4 FROM SALES.PARTS
 WHERE COL2 >= :hostvar2
 READ UNCOMMITTED ACCESS
 ORDER BY COL2;

b/Sub
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-25

Embedded-Only SQL/MX Statements COBOL Examples of DECLARE CURSOR
 This SQL statement defines a static updatable cursor. The FOR UPDATE clause
lists the columns to be updated:

EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3, COL4 FROM SALES.PARTS
 WHERE COL2 >= :hostvar2
 READ COMMITTED ACCESS
 FOR UPDATE OF COL2, COL3, COL4;

 This SQL statement defines a dynamic updatable cursor:

EXEC SQL BEGIN DECLARE SECTION;
 CHAR query[50];
 ...
EXEC SQL END DECLARE SECTION;

...
strcpy(query,"SELECT COL1, COL2, COL3, COL4"
 " FROM SALES.PARTS");
...
EXEC SQL PREPARE curspec FROM :query;
...
EXEC SQL DECLARE getparts CURSOR FOR curspec;

COBOL Examples of DECLARE CURSOR

 This SQL statement defines a static read-only cursor:

EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3, COL4 FROM SALES.PARTS
 WHERE COL2 >= :hostvar2
 READ UNCOMMITTED ACCESS
 ORDER BY COL2
END-EXEC.

 This SQL statement defines a static updatable cursor. The FOR UPDATE clause
lists the columns to be updated:

EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3, COL4 FROM SALES.PARTS
 WHERE COL2 >= :hostvar2
 READ COMMITTED ACCESS
 FOR UPDATE OF COL2, COL3, COL4
END-EXEC.

 This SQL statement defines a dynamic updatable cursor:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 query pic x(50).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 MOVE "SELECT COL1, COL2, COL3, COL4 FROM SALES.PARTS"
 TO query.
 ...
 EXEC SQL PREPARE curspec FROM :query END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-26

Embedded-Only SQL/MX Statements COBOL Examples of DECLARE CURSOR
 ...
 EXEC SQL DECLARE getparts CURSOR FOR curspec END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-27

Embedded-Only SQL/MX Statements Publish/Subscribe Examples of DECLARE CURSOR
Publish/Subscribe Examples of DECLARE CURSOR

Suppose that these SQL/MP tables and index (and the metadata mappings) have been
created:

CREATE TABLE $db.dbtab.tab1 (a INT, b INT, c INT);
CREATE TABLE $db.dbtab.tab2 (a INT, b INT, c INT);
CREATE INDEX $db.dbtab.itab1 ON tab1(b, c);

CREATE SQLMP ALIAS cat.sch.tab1 $db.dbtab.tab1;
CREATE SQLMP ALIAS cat.sch.tab2 $db.dbtab.tab2;

 This example shows a holdable cursor:

DECLARE SCHEMA cat.sch;

EXEC SQL
 DECLARE holdable_cursor CURSOR WITH HOLD FOR
 SELECT * FROM (DELETE FROM STREAM(tab1)) tab1;

EXEC SQL BEGIN WORK;
EXEC SQL OPEN holdable_cursor;
for(;;) {
 EXEC SQL FETCH holdable_cursor INTO :hv;
 EXEC SQL COMMIT;
 EXEC SQL BEGIN WORK;
}

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-28

Embedded-Only SQL/MX Statements DECLARE MPLOC Declaration

C/C
DECLARE MPLOC Declaration
Considerations for DECLARE MPLOC
C Examples of DECLARE MPLOC
COBOL Examples of DECLARE MPLOC

The DECLARE MPLOC declaration is a compiler directive that sets the default volume
and subvolume for unqualified Guardian physical object names in static SQL
statements that follow the declaration within a compilation unit.

DECLARE MPLOC is used by the preprocessor when the INVOKE directive is not fully
qualified. It is also used in embedded programs to access SQL/MP tables in static
SQL statements. Otherwise, you must use CREATE SQLMP ALIAS to map an
SQL/MP table to an ANSI name.

You must precede DECLARE MPLOC statements with the DECLARE NAMETYPE
‘NSK’ statement. Otherwise, the program defaults to ANSI type and DECLARE
MPLOC is ignored.

DECLARE MPLOC is an SQL/MX extension that you use only in embedded SQL
programs.

default-mploc

is a character string literal that specifies the Guardian physical name of a
subvolume. A string literal is enclosed in single quotation marks.

The form is: '[\node.]$volume.subvolume'

If you do not specify \node, the default is the Guardian system named in your
=_DEFAULTS define. By using the \node name, you can have multiple database
access over the network during processing.

DECLARE MPLOC default-mploc

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-29

Embedded-Only SQL/MX Statements Considerations for DECLARE MPLOC

C/C
Considerations for DECLARE MPLOC

Preprocessor and INVOKE Directive

The way you specify DECLARE MPLOC affects whether the preprocessor preserves
or overrides the INVOKE directive:

Scope of DECLARE MPLOC

You can specify more than one DECLARE MPLOC directive in an embedded SQL
program. Each directive replaces the preceding directive and stays in effect until it is
replaced by another directive or until the end of the program’s compilation unit is
reached.

If no DECLARE MPLOC directive is in effect when the SQL/MX compiler encounters
an unqualified Guardian physical name, the compiler uses the volume and subvolume
as determined by NonStop SQL/MX. For more information, see Object Naming on
page 10-60 and the SQL/MX Programming Manual for C and COBOL.

C Examples of DECLARE MPLOC

 Set the default volume and subvolume:

EXEC SQL DECLARE MPLOC '$MYVOL.MYSUBVOL';

DECLARE MPLOC is specified as... INVOKE Directive Preprocessor Action

\node.$vol.subvol.filename table is not fully qualified
and does not contain
\node.

Overrides the
INVOKE directive with
DECLARE MPLOC
names.

\node.$vol.subvol.filename table contains \node. Preserves the
INVOKE directive and
does not use
DECLARE MPLOC
names.

$vol.subvol.filename table is not fully qualified
and does not contain
\node.

Overrides the
INVOKE directive with
DECLARE MPLOC
names.

$vol.subvol.filename table contains \node. Preserves the
INVOKE directive and
does not use
DECLARE MPLOC
names.

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-30

Embedded-Only SQL/MX Statements COBOL Examples of DECLARE MPLOC
COBOL Examples of DECLARE MPLOC

 Set the default volume and subvolume:

EXEC SQL DECLARE MPLOC '$MYVOL.MYSUBVOL' END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-31

Embedded-Only SQL/MX Statements DECLARE NAMETYPE Declaration

C/C
DECLARE NAMETYPE Declaration
The DECLARE NAMETYPE declaration is a compiler directive that sets the default
NAMETYPE attribute value to ANSI or NSK for static SQL statements that follow the
declaration within a compilation unit.

DECLARE NAMETYPE is used by the preprocessor when the INVOKE directive is not
fully qualified.

DECLARE NAMETYPE is an SQL/MX extension that you use only in embedded SQL
programs.

default-nametype

is a character string literal that specifies the NAMETYPE attribute value used to
refer to SQL/MP database objects. 'ANSI' indicates logical names (ANSI), and
'NSK' indicates physical Guardian names.

If you do not specify DECLARE NAMETYPE, the default NAMETYPE is ANSI.

Considerations for DECLARE NAMETYPE

Scope of DECLARE NAMETYPE

You can specify more than one DECLARE NAMETYPE directive in an embedded SQL
program. Each directive replaces the preceding directive and stays in effect until it is
replaced by another directive or until the end of the program’s compilation unit is
reached.

If no DECLARE NAMETYPE directive is in effect when the SQL/MX compiler
encounters an unqualified object name, the compiler uses the value of the NAMETYPE
attribute as determined by NonStop SQL/MX. For more information, see Object
Naming on page 10-60 and the SQL/MX Programming Manual for C and COBOL.

C Examples of DECLARE NAMETYPE

 Set the default NAMETYPE attribute value to use Guardian physical names:

EXEC SQL DECLARE NAMETYPE 'NSK';

COBOL Examples of DECLARE NAMETYPE

 Set the default NAMETYPE attribute value to use Guardian physical names:

EXEC SQL DECLARE NAMETYPE 'NSK' END-EXEC.

DECLARE NAMETYPE default-nametype

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-32

Embedded-Only SQL/MX Statements DECLARE SCHEMA Declaration
DECLARE SCHEMA Declaration
The DECLARE SCHEMA declaration is a compiler directive that sets the default
schema (and optionally, the catalog) for unqualified object names in static SQL
statements that follow the declaration within a compilation unit. The DECLARE
CATALOG declaration also sets the default catalog. See DECLARE CATALOG
Declaration on page 3-21.

DECLARE SCHEMA is an SQL/MX extension that you use only in embedded SQL
programs.

default-schema

is a character string literal enclosed in single quotation marks (') that specifies the
default schema (and optionally the catalog). Examples are 'sales' for only a
default schema or 'samdbcat.sales' for both a default schema and catalog.

Considerations for DECLARE SCHEMA

Scope of DECLARE SCHEMA

You can specify more than one directive in an embedded SQL program. Each directive
replaces the preceding directive and stays in effect until it is replaced by another
directive or until the end of the program’s compilation unit is reached.

If no DECLARE SCHEMA declaration is in effect when the SQL/MX compiler
encounters an unqualified object name, the compiler uses the SCHEMA attribute as
determined by NonStop SQL/MX. For more information, see Object Naming on
page 10-60 and the SQL/MX Programming Manual for C and COBOL.

C Examples of DECLARE SCHEMA

 Set the default catalog and schema:

EXEC SQL DECLARE CATALOG 'SAMDBCAT';
EXEC SQL DECLARE SCHEMA 'SALES';

 Set the default catalog and schema within one statement:

EXEC SQL DECLARE SCHEMA 'SAMDBCAT.SALES';

COBOL Examples of DECLARE SCHEMA

 Set the default catalog and schema:

EXEC SQL DECLARE CATALOG 'SAMDBCAT' END-EXEC.
EXEC SQL DECLARE SCHEMA 'SALES' END-EXEC.

DECLARE SCHEMA default-schema
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-33

Embedded-Only SQL/MX Statements DESCRIBE Statement

C/C
DESCRIBE Statement
C Examples of DESCRIBE
COBOL Examples of DESCRIBE

The DESCRIBE statement obtains information, including data types of columns, about
dynamic input and output parameters contained in a prepared statement. A parameter
is a placeholder for a value to be supplied when the statement executes.

There are two forms of the DESCRIBE statement:

 DESCRIBE INPUT—initializes the input SQL descriptor area based on the input
parameters for a prepared statement

 DESCRIBE [OUTPUT]—stores descriptions into the SQL descriptor area of output
parameters (usually SELECT columns) from a prepared statement

Use DESCRIBE only in embedded SQL programs in C or COBOL.

statement-name

is an SQL identifier—the name of a prepared statement. The module that contains
DESCRIBE must also contain a PREPARE statement for statement-name. See
Identifiers on page 6-56.

ext-statement-name

is a value-specification—a host variable with character data type. When
DESCRIBE executes, the content of the value specification must identify a
statement previously prepared within the scope of DESCRIBE.

DESCRIBE {INPUT | [OUTPUT]} SQL-stmt-name using-descriptor

SQL-stmt-name is:
 statement-name | ext-statement-name

ext-statement-name is:
 [GLOBAL | LOCAL] value-specification

using-descriptor is:
 USING SQL DESCRIPTOR descriptor-name

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-34

Embedded-Only SQL/MX Statements C Examples of DESCRIBE
GLOBAL | LOCAL

specifies the scope of the prepared statement. The default is LOCAL. A GLOBAL
prepared statement can be described and executed within the SQL session. A
LOCAL prepared statement can be described and executed only within the module
or compilation unit in which it was prepared.

A prepared SQL statement must be currently available whose name is the value of
ext-statement-name and whose scope is the same scope as specified in the
DESCRIBE INPUT statement.

USING SQL DESCRIPTOR descriptor-name

identifies the SQL descriptor area for the parameters of SQL-statement-name.
An SQL descriptor area must be currently allocated whose name is the value of
descriptor-name and whose scope is the same scope as specified in the
DESCRIBE statement.

When DESCRIBE INPUT executes, NonStop SQL/MX stores information for each
input parameter of the prepared statement. Each parameter has an item descriptor.

When DESCRIBE OUTPUT executes, NonStop SQL/MX stores information about
each column specified in the select list for the prepared statement. Each column
has an item descriptor.

descriptor-name

is a value-specification—a character literal or host variable with a
character data type. When DESCRIBE executes, the content of the host
variable (if used) gives the name of the descriptor area.

C Examples of DESCRIBE

 Returns descriptions of input parameters for the prepared statement identified by
:stmt_name to an SQL descriptor area identified by the host variable
:input_sqlda:

EXEC SQL DESCRIBE INPUT :stmt_name
 USING SQL DESCRIPTOR :input_sqlda;

 Returns descriptions of output variables specified in the prepared statement
identified by S1 to the SQL descriptor area identified by the character literal
'output_sqlda':

EXEC SQL DESCRIBE OUTPUT S1
 USING SQL DESCRIPTOR 'output_sqlda';

 Prepare a statement, allocate input and output descriptor areas, and describe the
input and output descriptor areas:

...
strcpy(stmt_buffer,"SELECT * FROM EMPLOYEE"
 " WHERE EMPNUM = CAST(? AS NUMERIC(4) UNSIGNED)");
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-35

Embedded-Only SQL/MX Statements COBOL Examples of DESCRIBE
...
EXEC SQL PREPARE S1 FROM :stmt_buffer;
...
desc_max = 1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_args' WITH MAX :desc_max;
desc_max = 6;
EXEC SQL ALLOCATE DESCRIPTOR 'out_cols' WITH MAX :desc_max;
...
EXEC SQL DESCRIBE INPUT S1 USING SQL DESCRIPTOR 'in_args';
EXEC SQL DESCRIBE OUTPUT S1 USING SQL DESCRIPTOR 'out_cols';
...

COBOL Examples of DESCRIBE

 Return descriptions of input parameters for the prepared statement identified by
:stmt-name to the SQL descriptor area identified by the host variable
:input_sqlda:

EXEC SQL DESCRIBE INPUT :stmt-name
 USING SQL DESCRIPTOR :input_sqlda
END-EXEC.

 Return descriptions of output variables specified in the prepared statement
identified by S1 to the SQL descriptor area identified by the character literal
'output_sqlda':

EXEC SQL DESCRIBE OUTPUT S1
 USING SQL DESCRIPTOR 'output_sqlda'
END-EXEC.

 Prepare a statement and allocate and describe the input and output descriptor
areas:

...
MOVE "SELECT * FROM EMPLOYEE"
 & " WHERE EMPNUM = CAST(? AS NUMERIC(4) UNSIGNED)"
TO stmt-buffer.
...
EXEC SQL PREPARE S1 FROM :stmt-buffer END-EXEC.
...
MOVE 1 TO desc-max.
EXEC SQL ALLOCATE DESCRIPTOR 'in_args'
 WITH MAX :desc-max END-EXEC.
MOVE 6 TO desc-max.
EXEC SQL ALLOCATE DESCRIPTOR 'out_cols'
 WITH MAX :desc-max END-EXEC.
...
EXEC SQL DESCRIBE INPUT S1
 USING SQL DESCRIPTOR 'in_args'
END-EXEC.
EXEC SQL DESCRIBE OUTPUT S1
 USING SQL DESCRIPTOR 'out_cols'
END-EXEC.
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-36

Embedded-Only SQL/MX Statements END DECLARE SECTION Declaration

C/C
END DECLARE SECTION Declaration
END DECLARE SECTION is a preprocessor directive that ends SQL declarations in a
host program. SQL declarations are used to define host variables to be used in
SQL/MX statements—for example, to transfer data to and from a database.

Use END DECLARE SECTION only in embedded SQL programs in C or COBOL.

See BEGIN DECLARE SECTION Declaration on page 3-9.

C Examples of END DECLARE SECTION

 This example shows a declaration section in a C program:

EXEC SQL BEGIN DECLARE SECTION;
 SHORT length;
 CHAR data[10];
EXEC SQL END DECLARE SECTION;

C++ Examples of END DECLARE SECTION

 This example shows a declaration section within a class in a C++ program.
Member functions using these host variables must be defined within the visible
scope of the class.

class jobsql {
// Class member host variables
EXEC SQL BEGIN DECLARE SECTION;
 short length;
 VARCHAR data[19];
EXEC SQL END DECLARE SECTION;
public:
... // Member functions referencing these host variables
 }
}; // End of jobsql class definition

COBOL Examples of END DECLARE SECTION

 This example shows a declaration section in a COBOL program:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 length pic 9(4)comp.
01 data pic x(10).
 EXEC SQL END DECLARE SECTION END-EXEC.

END DECLARE SECTION

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-37

Embedded-Only SQL/MX Statements EXEC SQL Directive

C/C
EXEC SQL Directive
EXEC SQL is a preprocessor directive that begins an embedded SQL declaration or
statement.

Use EXEC SQL only in embedded SQL programs in C or COBOL.

sql-declaration

is any embedded SQL declaration.

sql-statement

is any embedded SQL statement.

sql-terminator

terminates the SQL declaration or statement. For a C program, semicolon (;) is the
terminator. For a COBOL program, END-EXEC is the terminator.

Considerations for EXEC SQL

Using Host Language Comments

You can use host language comments within SQL statements:

 C comments have the form: /* ... */. The comment is not restricted to one
line.

 COBOL comments have the form: * ... The asterisk (*) is in the first column of
the source code line in free format and in the seventh column of the source code
line for fixed format. The comment is restricted to one line.

Examples of EXEC SQL

For examples of the EXEC SQL directive, see the various C and COBOL examples
throughout this section.

EXEC SQL {sql-declaration | sql-statement} sql-terminator

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-38

Embedded-Only SQL/MX Statements EXECUTE IMMEDIATE Statement

C/C
EXECUTE IMMEDIATE Statement
The EXECUTE IMMEDIATE statement compiles and executes an SQL statement
whose text is contained in a host variable. The SQL statement supplied cannot have
any input or output parameters and must be a preparable statement.

Use EXECUTE IMMEDIATE only in embedded SQL programs in C or COBOL.

SQL-statement-variable

is a value-specification—a host variable with character data type. When
EXECUTE IMMEDIATE executes, the content of the value specification give the
text of the SQL statement to be compiled and executed. The SQL statement
cannot contain parameters or refer to host variables.

Considerations for EXECUTE IMMEDIATE

Parameters

If the statement to be compiled and executed contains input or output parameters, you
must use separate PREPARE and EXECUTE statements.

C Examples of EXECUTE IMMEDIATE

 Execute an SQL statement whose text is contained in the host variable named
:statement:

EXEC SQL EXECUTE IMMEDIATE :statement;

COBOL Examples of EXECUTE IMMEDIATE

 Execute an SQL statement whose text is contained in the host variable named
:statement:

EXEC SQL EXECUTE IMMEDIATE :statement END-EXEC.

EXECUTE IMMEDIATE SQL-statement-variable

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-39

Embedded-Only SQL/MX Statements FETCH Statement

C/C

C/C

C/C
FETCH Statement
Considerations for FETCH
C Examples of FETCH
COBOL Examples of FETCH

The FETCH statement is an SQL statement that positions a cursor on the next row of
the result table defined by the cursor specification and retrieves values from that row,
leaving the cursor positioned at that row.

When you use the FETCH statement with rowset host variables or descriptors with
appropriate rowset fields set, it retrieves values from multiple, consecutive rows in the
result table. The number of rows from which values are retrieved is the given by the
declared length of the rowset and the number of rows in the result table, whichever is
smaller. After the values have been retrieved NonStop SQL/MX positions the cursor on
the last row that was read.

In dynamic SQL, the cursor name is provided at execution time, and the USING or
INTO clause can specify a target list of host variables or an SQL descriptor area for the
output values. In static SQL, the INTO clause provides a target list of host variables.
Otherwise, there is no difference in the static and dynamic forms of FETCH.

FETCH is one of several statements (including COMMIT, ROLLBACK, and SET
TRANSACTION) that do not generate a system-defined transaction.

Use FETCH only in embedded SQL programs.

cursor-name

is an SQL identifier—the name of the cursor being used to fetch a row of values.
The cursor must be open. See Identifiers on page 6-56.

FETCH {cursor-name | ext-cursor-name}
{USING | INTO} {argument-list | descriptor-spec}

ext-cursor-name is:
 [GLOBAL | LOCAL] value-specification

argument-list is:
 variable-spec [,variable-spec]...

descriptor-spec is:
 SQL DESCRIPTOR descriptor-name

variable-spec is:
:variable-name [[INDICATOR] :indicator-name]

OBOL

OBOL

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-40

Embedded-Only SQL/MX Statements FETCH Statement

C/C

C/C

C/C

J

ext-cursor-name

is a value-specification—a character literal or a host variable with character
data type. When FETCH executes, the content of the host variable (if used) gives
the name of the open cursor.

GLOBAL | LOCAL

specifies scope. The default is LOCAL. The scope of a GLOBAL cursor is the SQL
session. The scope of a LOCAL cursor is the module or compilation unit in which
FETCH appears. The containing module must include a DECLARE CURSOR with
the same cursor name.

{USING | INTO} {argument-list | descriptor-spec}

specifies host variables, rowset host variables, or, in the case of a dynamic cursor,
an SQL descriptor area in which to return the values in the result row of the cursor
specification. For a static cursor, the number of row values must be equal to the
number of specified host variables, and the data type of each source value must
be compatible with the data type of its target host variable. The first value in the
result row is assigned to the first host variable, the second value to the second
variable, and so on.

If you use rowset host variables or descriptors with the appropriate rowset fields
set, values from multiple, consecutive rows are moved into the rowset host
variables with a single execution of the FETCH statement.

In static SQL, you use the INTO keyword. In dynamic SQL, you can use either
USING or INTO. The use of the keyword USING is an SQL/MX extension.

:variable-name [[INDICATOR] :indicator-name]

is a variable specification—a host variable or rowset host variable with,
optionally, an indicator variable or rowset indicator variable. A variable name
begins with a colon (:).

The data type of an indicator variable is exact numeric with a scale of 0. If the
data returned in the host variable is null, the indicator parameter is set to a
value less than zero. If character data returned is truncated, the indicator
parameter is set to the length of the string in the database.

INTO argument-list

specifies host variables. The number of row values must be equal to the number of
specified host variables, and the data type of each source value must be
compatible with the data type of its target host variable. The first value in the result
row is assigned to the first host variable, the second value to the second variable,
and so on.

OBOL

OBOL

OBOL

ava
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-41

Embedded-Only SQL/MX Statements Considerations for FETCH

C/C

J

C/C

C/C
:variable-name

is a variable specification—a host variable. A variable name begins with a
colon (:).

Considerations for FETCH

Authorization Requirements

FETCH requires read access to any tables or views associated with the cursor or
iterator. Updating fetched rows requires write access to the table or view.

Ordering Fetched Rows

Successive executions of FETCH retrieve successive rows in the result table of the
cursor specification or iterator.

To control the order in which the rows appear, include an ORDER BY clause in the
cursor specification part of DECLARE CURSOR or in the prepared statement in the
case of a dynamic cursor.

To control the order in which the rows appear, include an ORDER BY clause in the
SELECT statement that is bound to the iterator.

Too Many Values or Too Many Variables

If the number of host variables is different from the number of columns in the result
table, the execution of FETCH raises an error condition.

Using Extended Dynamic Cursors

The name of an extended dynamic cursor is not known until run time. When FETCH
executes, the name must identify an open cursor within the same scope.

Status Information

You must declare the variables SQLSTATE or SQLCODE in your module or
compilation unit. For more information on declaring SQLCODE and SQLSTATE, see
the SQL/MX Programming Manual for C and COBOL.

FETCH returns a five-character status code to SQLSTATE, whose values include:

For more information on the ANSI SQL:1999 SQLSTATE class and subclass values,
see the SQL/MX Programming Manual for C and COBOL.

00000 The FETCH was successful.

02000 The result table is empty or the end of the table was encountered.

22xxx Data exception condition.

OBOL

ava

OBOL

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-42

Embedded-Only SQL/MX Statements C Examples of FETCH
FETCH also returns an integer status code to SQLCODE, as follows:

SQLSTATE, the SQL:1999 standard, is the preferred status code for
NonStop SQL/MX.

C Examples of FETCH

 Suppose that you have a cursor that returns information from the PARTS table.
The host variables are declared in a declaration section, and the cursor declaration
lists the columns to be retrieved. The FETCH statement lists host variables to
receive the values returned for each column:

/* Variable declarations */
long SQLCODE;
...
/* Host variable declarations */
EXEC SQL BEGIN DECLARE SECTION;
 CHAR SQLSTATE[6];
 ... hostvar;
 ... hostvar1;
 ... hostvar2;
 ... hostvar3;
EXEC SQL END DECLARE SECTION;
...
/* Declare cursor. */
EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3
 FROM PARTS
 WHERE COL1 >= :hostvar
 ORDER BY COL1
 READ UNCOMMITTED ACCESS;
...
/* Open cursor. */
EXEC SQL OPEN cursor1;
...
/* Fetch current row. */
EXEC SQL FETCH cursor1
 INTO :hostvar1, :hostvar2, :hostvar3;
if SQLCODE = 100 goto ... ;
...
/* Close cursor. */
EXEC SQL CLOSE cursor1;

0 The FETCH was successful.

100 The result table is empty or the end of the table was encountered.

> 0 A warning was issued.

< 0 An error occurred.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-43

Embedded-Only SQL/MX Statements COBOL Examples of FETCH
 This example uses extended cursor and statement names:

scanf("%s", in_curspec);
...
EXEC SQL PREPARE :curspec FROM :in_curspec;
EXEC SQL ALLOCATE :extcur CURSOR FOR :curspec;
...
EXEC SQL OPEN :extcur;
...
desc_max = 10;
ALLOCATE DESCRIPTOR 'fetch_sqlda' WITH MAX :desc_max;
DESCRIBE OUTPUT :curspec USING SQL DESCRIPTOR 'fetch_sqlda';
FETCH :extcur INTO SQL DESCRIPTOR 'fetch_sqlda';
... /* Process values in SQL descriptor area. */
EXEC SQL CLOSE :extcur;

COBOL Examples of FETCH

 Suppose that you have a cursor that returns information from the PARTS table.
The host variables are declared in a declaration section, and the cursor declaration
lists the columns to be retrieved. The FETCH statement lists host variables to
receive the values returned for each column.

* Variable declarations
 01 SQLCODE PIC S9(9) comp.
 ...
* Host variable declarations
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 01 hostvar
 01 hostvar1
 01 hostvar2
 01 hostvar3
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
* Declare cursor.
 EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3
 FROM PARTS
 WHERE COL1 >= :hostvar
 ORDER BY COL1
 READ UNCOMMITTED ACCESS
 END-EXEC.
 ...
* Open cursor.
 EXEC SQL OPEN cursor1 END-EXEC.
 ...
* Fetch current row.
 EXEC SQL FETCH cursor1
 INTO :hostvar1, :hostvar2, :hostvar3
 END-EXEC.
 IF SQLCODE = 100 GOTO nodata.
 ...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-44

Embedded-Only SQL/MX Statements COBOL Examples of FETCH
* Close cursor.
 EXEC SQL CLOSE cursor1 END-EXEC.
 ...
 nodata SECTION.
 ...

 This example uses extended cursor and statement names:

 ACCEPT in-curspec.
 ...
 EXEC SQL PREPARE :curspec FROM :in-curspec END-EXEC.
 EXEC SQL ALLOCATE :extcur CURSOR FOR :curspec END-EXEC.
 ...
 EXEC SQL OPEN :extcur END-EXEC.
 ...
 MOVE 10 TO desc-max.
 EXEC SQL ALLOCATE DESCRIPTOR 'fetch_sqlda'
 WITH MAX desc-max END-EXEC.

 EXEC SQL DESCRIBE OUTPUT :curspec
 USING SQL DESCRIPTOR 'fetch_sqlda' END-EXEC.

 EXEC SQL FETCH :extcur
 INTO SQL DESCRIPTOR 'fetch_sqlda' END-EXEC.
* Process values in SQL descriptor area.
 ...
 EXEC SQL CLOSE :extcur END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-45

Embedded-Only SQL/MX Statements GET DESCRIPTOR Statement

C/C
GET DESCRIPTOR Statement
SQL Item Descriptor Area of GET DESCRIPTOR
SQL Descriptor Area Data Type Declarations of GET DESCRIPTOR
Considerations for GET DESCRIPTOR
C Examples of GET DESCRIPTOR
COBOL Examples of GET DESCRIPTOR

The GET DESCRIPTOR statement retrieves information from an SQL descriptor area.
An application program can either retrieve the count of item descriptors with
information or the value of a specific field within a specific item.

Use GET DESCRIPTOR only in embedded SQL programs in C or COBOL.

GET DESCRIPTOR descriptor-name get-descriptor-info

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

get-descriptor-info is:
 variable-name = COUNT
 | variable-name = ROWSET_SIZE
 | VALUE item-number get-item-info [,get-item-info]...

get-item-info is:
 variable-name = descriptor-item-name

descriptor-item-name is:
 CHARACTER_SET_NAME
 | CHARACTER_SET_NAME | CHAR SET
 | CHARACTER_SET_CATALOG
 | CHARACTER_SET_SCHEMA
 | COLLATION
 | COLLATION_CATALOG
 | COLLATION_NAME
 | COLLATION_SCHEMA
 | DATETIME_CODE
 | HEADING
 | INDICATOR_DATA | INDICATOR
 | INDICATOR_POINTER
 | INDICATOR_TYPE
 | LEADING_PRECISION
 | LENGTH
 | NAME
 | NULLABLE
 | OCTET_LENGTH
 | PARAMETER_MODE
 | PARAMETER_ORDINAL_POSITION
 | PRECISION
 | RETURNED_LENGTH
 | RETURNED_OCTET_LENGTH
 | ROWSET_IND_LAYOUT_SIZE
 | ROWSET_VAR_LAYOUT_SIZE

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-46

Embedded-Only SQL/MX Statements GET DESCRIPTOR Statement
descriptor-name

is a value-specification—a character literal or host variable with character
data type. The named SQL descriptor area must be currently allocated.

variable-name = COUNT

retrieves the count of item descriptors with information and stores the count in the
named host variable. COUNT is the number of input dynamic parameters or output
dynamic parameters (from a stored procedure or from select list columns)
described in the descriptor area.

variable-name = ROWSET_SIZE

retrieves the length of rowset variables specified in this descriptor descriptors and
stores the length in the named host variable. ROWSET_SIZE is the common
length of all input or output rowsets described in the descriptor area.

VALUE item-number get-item-info [,get-item-info]...

retrieves the value of a specific field within a specific item. See SQL Item
Descriptor Area of GET DESCRIPTOR on page 3-48.

item-number

refers to a particular item in the SQL descriptor area. The data type of the item
number must be exact numeric, and its value must be less than the maximum
number of occurrences specified when the SQL descriptor area was allocated.
If the item number exceeds the value of COUNT, a completion condition is
raised (no data). See ALLOCATE DESCRIPTOR Statement on page 3-6.

variable-name = descriptor-item-name

specifies the host variable in which to store information and the field from
which to retrieve the information. The host variable must be of an appropriate
data type and size for the information being retrieved.

 | SCALE
 | TYPE | TYPE_FS
 | UNNAMED
 | VARIABLE_DATA | DATA
 | VARIABLE_POINTER
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-47

Embedded-Only SQL/MX Statements SQL Item Descriptor Area of GET DESCRIPTOR
SQL Item Descriptor Area of GET DESCRIPTOR

Table 3-1 describes the items in the descriptor area for GET DESCRIPTOR. For
character fields with lengths greater than or equal to 128, declare the corresponding
host variables as type VARCHAR with length 129 (with an extra byte for the null
terminator) in C or type PIC X with length 128 in COBOL.

Table 3-1. GET DESCRIPTOR Items (page 1 of 4)

Name of Field Data Type and Description

CHARACTER_SET_NAME* Character string, minimum length >= 128. One, two, or
three-part name of the character set.

CHARACTER_SET_NAME Character string, minimum length >= 128. One-part character
set name.

CHARACTER_SET
_CATALOG

Character string, minimum length >= 128. Catalog part of the
character set name.

CHARACTER_SET
_SCHEMA

Character string, minimum length >= 128. Schema part of the
character set name.

COLLATION* Character string, minimum length >= 128. One, two, or
three-part name of the collation.

COLLATION_CATALOG Character string, minimum length >= 128. Catalog part of the
collation name.

COLLATION_NAME Character string, minimum length >= 128. One-part collation
name.

COLLATION_SCHEMA Character string, minimum length >= 128. Schema part of the
collation name.

DATETIME_CODE Exact numeric, scale 0.
Codes for DATETIME type: 1 date; 2 time; 3 timestamp.
Codes for INTERVAL subfields: 1 year; 2 month; 3 day; 4
hour; 5 minute; 6 second; 7 year to month; 8 day to hour; 9
day to minute; 10 day to second; 11 hour to minute; 12 hour
to second; 13 minute to second.
This field is equivalent to the ANSI-named
DATETIME_INTERVAL_CODE field. You cannot use the
ANSI name for this field.**

HEADING* Character string, minimum length >= 128. Heading for
associated column.

* The statement item is an SQL/MX extension.
** The SQL/MX name is different from the ANSI name.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-48

Embedded-Only SQL/MX Statements SQL Item Descriptor Area of GET DESCRIPTOR
INDICATOR_DATA Exact numeric, scale 0. Value for the indicator variable of
VARIABLE_DATA:
 0 INDICATOR_DATA is not null.
<0 INDICATOR_DATA is null.
>0 VARIABLE_DATA was truncated and INDICATOR_DATA
is the length of the source data.
This field is equivalent to the ANSI-named INDICATOR field.
You can also use INDICATOR as the name of the field.**

INDICATOR_POINTER* Pointer to the value of INDICATOR_DATA.

INDICATOR_TYPE* Exact numeric, scale 0. Type of INDICATOR_DATA. The
default type is short. Values for INDICATOR_TYPE are:
-1 numeric data is negative
0 (optional) numeric data is positive

LEADING_PRECISION Exact numeric, scale 0. Precision of interval start field.
This field is equivalent to the ANSI-named
DATETIME_INTERVAL_PRECISION field. You cannot use
the ANSI name for this field.**

LENGTH Exact numeric, scale 0. Length in characters for strings or in
bytes for other data types.

NAME Character string, minimum length >= 128. Name of the
associated column or name of the output parameter of a
stored procedure (if specified in the CREATE PROCEDURE
statement).

NULLABLE Exact numeric, scale 0. Whether the associated column is
nullable. Codes: 1 nullable; 0 not nullable.
For a dynamic parameter, NULLABLE is set to 1, indicating
that the dynamic parameter can have a null value.

OCTET_LENGTH Exact numeric, scale 0. Length in bytes for the field.

PARAMETER_MODE Smallint. Indicates whether the associated formal parameter
of the stored procedure was declared as IN, OUT, or, INOUT.
Four possible values:
0 PARAMETER_MODE_UNDEFINED
1 PARAMETER_MODE_IN
2 PARAMETER_MODE_OUT
4 PARAMETER_MODE_INOUT
The default value is 0 (zero), indicating that the parameter
mode is undefined. For all SQL statements other than the
CALL statement, PARAMETER_MODE is undefined.

Table 3-1. GET DESCRIPTOR Items (page 2 of 4)

Name of Field Data Type and Description

* The statement item is an SQL/MX extension.
** The SQL/MX name is different from the ANSI name.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-49

Embedded-Only SQL/MX Statements SQL Item Descriptor Area of GET DESCRIPTOR
PARAMETER_ORDINAL_
POSITION

Smallint. Indicates the position of a formal parameter in the
signature of a stored procedure that corresponds to a
described dynamic parameter. Values start at 1. A value of 0
(zero) means the position is undefined. For all SQL
statements other than the CALL statement,
PARAMETER_ORDINAL_POSITION is undefined.

PRECISION Exact numeric, scale 0. Precision for numeric types.
PRECISION specifies the total number of digits and cannot
exceed 18.

RETURNED_LENGTH Exact numeric, scale 0. Returned length in characters for
strings or in bytes for other data types.

RETURNED_OCTET
_LENGTH

Exact numeric, scale 0. Returned length in bytes.

ROWSET_IND_LAYOUT
_SIZE

Exact numeric, scale 0. Size of an individual array element in
a rowset host variable. A value 0 (zero) in this field denotes
that the host variable is not of rowset type and is a scalar
host variable.

ROWSET_VAR_LAYOUT
_SIZE

Exact numeric, scale 0. Size of an individual array element in
a rowset host variable. A value 0 (zero) in this field denotes
that the host variable is not of rowset type and is a scalar
host variable.

SCALE Exact numeric, scale 0. Scale for exact numeric types.
SCALE specifies the number of digits to the right of the
decimal point.

TYPE Exact numeric, scale 0.
ANSI codes for data type: 1 CHARACTER; 2 NUMERIC; 3
DECIMAL; 4 INTEGER; 5 SMALLINT; 6 IEEE FLOAT; 7 IEEE
REAL; 8 DOUBLE precision; 9 DATE, TIME, or TIMESTAMP;
10 INTERVAL; 12 CHARACTER VARYING.
SQL/MX extensions: -101 character uppercase; -201 numeric
unsigned; -301 decimal unsigned; -302 decimal large; -303
decimal large unsigned; -401 integer unsigned; -402 largeint;
-502 smallint unsigned; -601 character varying with length
specified in first two bytes.
See Version Differences for TYPE and TYPE_FS on
page 3-53.

Table 3-1. GET DESCRIPTOR Items (page 3 of 4)

Name of Field Data Type and Description

* The statement item is an SQL/MX extension.
** The SQL/MX name is different from the ANSI name.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-50

Embedded-Only SQL/MX Statements SQL Descriptor Area Data Type Declarations of GET
DESCRIPTOR
Note. You must declare the host variables for the exact numeric fields in the above table as
32-bit integers. However, declare the host variables as long for VARIABLE_POINTER and
INDICATOR_POINTER.

SQL Descriptor Area Data Type Declarations of GET
DESCRIPTOR

The TYPE_FS field can have the values shown in Table 3-2. Use the declarations in
the sqlci.h header file for the TYPE_FS field in a C or C++ program. The sqlci.h
header file is automatically included in embedded SQL source files. Therefore, you can
use these declarations without adding #include directives.

TYPE_FS* Exact numeric, scale 0. These codes are SQL/MP-specific
codes returned in the SQL descriptor area, as shown under
SQL Descriptor Area Data Type Declarations of GET
DESCRIPTOR on page 3-51.
If you set TYPE_FS, you must also set LENGTH.
This field does not provide the ANSI codes for data type;
ANSI codes are provided by TYPE.
See Version Differences for TYPE and TYPE_FS on
page 3-53.

UNNAMED Exact numeric, scale 0. Whether the associated select list
item is a named column. Codes: 1 unnamed; 0 named.

VARIABLE_DATA Actual data associated with the dynamic parameter. The type,
length, name, and so on, are determined by other fields.
This field is equivalent to the ANSI-named DATA field. You
can also use DATA as the name of the field.**

VARIABLE_POINTER* Pointer to the value of VARIABLE_DATA.

Table 3-2. Descriptor Area Data Type Declarations (page 1 of 2)

Value Declaration in sqlci.h File Description

Character Data Types (0 – 127)

0 _SQLDT_ASCII_F Fixed-length single-byte character

1 _SQLDT_ASCII_F_UP Fixed-length single-byte character, upshifted

2 _SQLDT_DOUBLE_F Fixed-length double-byte character

64 _SQLDT_ASCII_V Variable-length single-byte character

65 _SQLDT_ASCII_V_UP Variable-length single-byte character, upshifted

Numeric Data Types (128 – 134)

130 _SQLDT_16BIT_S 16-bit signed (signed SMALLINT)

Table 3-1. GET DESCRIPTOR Items (page 4 of 4)

Name of Field Data Type and Description

* The statement item is an SQL/MX extension.
** The SQL/MX name is different from the ANSI name.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-51

Embedded-Only SQL/MX Statements SQL Descriptor Area Data Type Declarations of GET
DESCRIPTOR
131 _SQLDT_16BIT_U 16-bit unsigned (unsigned SMALLINT)

132 _SQLDT_32BIT_S 32-bit signed (signed INT)

133 _SQLDT_32BIT_U 32-bit unsigned (unsigned INT)

134 _SQLDT_64BIT_S 64-bit signed (signed LARGEINT)

142 _SQLDT_IEEE_REAL 32-bit floating-point (IEEE REAL)

143 _SQLDT_IEEE_DOUBLE 64-bit floating-point (IEEE DOUBLE)

Decimal Data Types (150 – 156)

150 _SQLDT_DEC_U Unsigned DECIMAL

151 _SQLDT_DEC_LSS DECIMAL, leading sign separate (not SQL type)

152 _SQLDT_DEC_LSE ASCII DECIMAL, leading sign embedded

153 _SQLDT_DEC_TSS DECIMAL, trailing sign separate (not SQL type)

154 _SQLDT_DEC_TSE DECIMAL, trailing sign embedded (not SQL type)

155 _SQLDT_NUM_BIG_U Unsigned extended NUMERIC precision data
type

156 _SQLDT_NUM_BIG_S Signed extended NUMERIC precision data type

Date-Time and INTERVAL Data Types (192 – 212)

192 _SQLDT_DATETIME General Date-Time

195 _SQLDT_INT_Y_Y Year to Year

196 _SQLDT_INT_MO_MO Month to Month

197 _SQLDT_INT_Y_MO Year to Month

198 _SQLDT_INT_D_D Day to Day

199 _SQLDT_INT_H_H Hour to Hour

200 _SQLDT_INT_D_H Day to Hour

201 _SQLDT_INT_MI_MI Minute to Minute

202 _SQLDT_INT_H_MI Hour to Minute

203 _SQLDT_INT_D_MI Day to Minute

204 _SQLDT_INT_S_S Second to Second

205 _SQLDT_INT_MI_S Minute to Second

206 _SQLDT_INT_H_S Hour to Second

207 _SQLDT_INT_D_S Day to Second

208 _SQLDT_INT_F_F Fraction to Fraction

209 _SQLDT_INT_S_F Second to Fraction

210 _SQLDT_INT_MI_F Minute to Fraction

211 _SQLDT_INT_H_F Hour to Fraction

212 _SQLDT_INT_D_F Day to Fraction

Table 3-2. Descriptor Area Data Type Declarations (page 2 of 2)

Value Declaration in sqlci.h File Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-52

Embedded-Only SQL/MX Statements Considerations for GET DESCRIPTOR
Considerations for GET DESCRIPTOR

Processing Items in a Descriptor Area

You can retrieve:

 The number of filled-in descriptor items
 Fields for a specific item

You can use the number of filled-in descriptor items to construct a loop to process
individual items.

Version Differences for TYPE and TYPE_FS

In NonStop SQL/MX Release 1.0, the FS type (an SQL/MX extension) was equivalent
to the item TYPE, and the ANSI type was equivalent to the item TYPE_ANSI. In
NonStop SQL/MX Release 1.5 and later, to comply with ANSI standards, these
equivalents have changed. TYPE returns the ANSI type, and TYPE_FS returns the FS
type (an SQL/MX extension).

C Examples of GET DESCRIPTOR

 Allocate a descriptor area, describe the output parameters of a dynamic SQL
statement, and use the descriptor area to get information about the parameters:

...
desc_max = 10;
EXEC SQL ALLOCATE DESCRIPTOR 'out_sqlda' WITH MAX :desc_max;
...
EXEC SQL DESCRIBE OUTPUT dynamic_stmt
 USING SQL DESCRIPTOR 'out_sqlda';
...
/* First, get the count of the number of output values. */
EXEC SQL GET DESCRIPTOR 'out_sqlda' :num = COUNT;
/* Second, get the i-th output values and save. */
for (i = 1; i <= num; i++) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :sqlda_type = TYPE,
 :sqlda_length = LENGTH,
 :sqlda_name = NAME;
 /* Test type or name to determine the host variable, */
 /* assign data value to appropriate host variable. */
 ...
 if (strncmp(sqlda_name,"LAST_NAME",strlen("LAST_NAME"))==0)
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_last_name = VARIABLE_DATA;
 ...
}
... /* process the item descriptor values */
EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda';
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-53

Embedded-Only SQL/MX Statements COBOL Examples of GET DESCRIPTOR
COBOL Examples of GET DESCRIPTOR

 Allocate a descriptor area, describe the output parameters of a dynamic SQL
statement, and use the descriptor area to get information about the parameters:

 MOVE 10 TO desc-max.
 EXEC SQL ALLOCATE DESCRIPTOR 'out_sqlda'
 WITH MAX :desc-max END-EXEC.
 ...
 EXEC SQL DESCRIBE OUTPUT dynamic_stmt
 USING SQL DESCRIPTOR 'out_sqlda' END-EXEC.
 ...
* First, get the count of the number of output values.
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' :num = COUNT
 END-EXEC.
* Second, get the i-th output values and save.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > num
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :sqlda-type = TYPE,
 :sqlda-length = LENGTH,
 :sqlda-name = NAME
 END-EXEC.
* Test type or name to determine the host variable,
* assign data value to the appropriate host variable.
 ...
 IF sqlda-name = "LAST_NAME"
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-last-name = VARIABLE_DATA
 END-EXEC.
 ...
 END-PERFORM.
 ...
* Process the item descriptor values
 ...
 EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda' END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-54

Embedded-Only SQL/MX Statements GET DIAGNOSTICS Statement

C/C
GET DIAGNOSTICS Statement
Considerations for GET DIAGNOSTICS
C Examples of GET DIAGNOSTICS
COBOL Examples of GET DIAGNOSTICS

The GET DIAGNOSTICS statement returns information from the diagnostics area
about the most recently executed statement and the exception status, assigns the
specified statement and condition information to host variables, and stores the row
number.

Use GET DIAGNOSTICS only in embedded SQL programs in C or COBOL.

GET DIAGNOSTICS {statement-info | condition-info}

statement-info is:

 statement-item [,statement-item]...

statement-item is:

 variable-name = statement-item-name

statement-item-name is:

 NUMBER
 | MORE
 | COMMAND_FUNCTION
 | DYNAMIC_FUNCTION
 | ROW_COUNT

condition-info is:

 EXCEPTION condition-nbr

condition-item [,condition-item]...

condition-item is:

 variable-name = condition-item-name

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-55

Embedded-Only SQL/MX Statements GET DIAGNOSTICS Statement
statement-info

assigns statement information, statement-info, to host variables. See
Statement Items of GET DIAGNOSTICS on page 3-57.

variable-name = statement-item-name

retrieves the named statement information item statement-item-name and
stores the data into the named host variable variable-name. The data type
of the target host variable must be compatible with the data type of the
statement information item.

condition-info

assigns condition information, condition-info, to host variables. See
Condition Items of GET DIAGNOSTICS on page 3-57.

EXCEPTION condition-nbr

specifies the number, condition-nbr, of the condition about which to return
diagnostic information. The data type of the number is exact numeric with
scale 0.

variable-name = condition-item-name

retrieves the named condition information item condition-item-name and
stores the data into the named host variable variable-name. The data type
of the target host variable must be compatible with the data type of the
condition information item.

condition-item-name is:

 CONDITION_NUMBER
 | RETURNED_SQLSTATE
 | CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | SERVER_NAME
 | CONNECTION_NAME
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
 | MESSAGE_TEXT
 | MESSAGE_LENGTH
 | MESSAGE_OCTET_LENGTH
 | NSK_CODE
 | SQLCODE
 | ROW_NUMBER
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-56

Embedded-Only SQL/MX Statements Statement Items of GET DIAGNOSTICS
Statement Items of GET DIAGNOSTICS

Table 3-3 describes the statement items in the diagnostics area. For exact numeric
fields with scale 0, declare the corresponding host variables as type LONG in C or type
PIC S9(18) COMP in COBOL. For character fields with length greater than or equal
to 128, declare the corresponding host variables as type VARCHAR with length 129
(with an extra byte for the null terminator) in C or type PIC X with length 128 in
COBOL.

Condition Items of GET DIAGNOSTICS

Table 3-4 describes the condition items in the diagnostics area. For exact numeric
fields with scale 0, declare the corresponding host variables as type long in C or type
PIC S9(9) COMP in COBOL.

For character fields with length greater than or equal to 128, declare the corresponding
host variables as type CHAR in C or type PIC X with length 128 in COBOL.

Table 3-3. GET DIAGNOSTICS Statement Items

Statement Item Name Data Type and Description

NUMBER Exact numeric, scale 0. The number of exception or
completion conditions that have been stored as a result of
executing the statement.

MORE Character string, length 1. Y = more conditions were raised
during execution than stored in the area. N = all the conditions
raised have been stored. Reserved for future use.

COMMAND_FUNCTION Character varying, length>=128. Identifies which SQL
statement executed. Reserved for future use.

DYNAMIC_FUNCTION Character varying, length>=128. Identifies which prepared
statement executed. Reserved for future use.

ROW_COUNT Exact numeric, scale 0. The number of rows affected by the
execution of a searched DELETE or UPDATE or an INSERT.
For this item, declare the corresponding host variable as type
long long in C.

Table 3-4. GET DIAGNOSTICS Condition Items (page 1 of 3)

Condition Item Name Data Type and Description

CONDITION_NUMBER Exact numeric, scale 0. Identifies the condition.

RETURNED_SQLSTATE Character string (5). SQLSTATE value of this condition.

CLASS_ORIGIN Character varying, length>=128. Naming authority that
defines the class value of RETURNED_SQLSTATE.

SUBCLASS_ORIGIN Character varying, length>=128. Naming authority that
defines the subclass value of RETURNED_SQLSTATE.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-57

Embedded-Only SQL/MX Statements Condition Items of GET DIAGNOSTICS
SERVER_NAME Character varying, length>=128. Identifies server.
Reserved for future use.

CONNECTION_NAME Character varying, length>=128. Identifies connection.
Reserved for future use.

CONSTRAINT_CATALOG Character varying, length>=128. Identifies catalog of
schema containing constraint or assertion. Reserved for
future use.

CONSTRAINT_SCHEMA Character varying, length>=128. Identifies schema
containing constraint or assertion. Reserved for future
use.

CONSTRAINT_NAME Character varying, length>=128. Identifies constraint or
assertion. Returns a fully qualified name for SQLCODE
errors in the range -4000 through -4999 and in the
range -8000 through -8999.

CATALOG_NAME Character varying, length>=128. Identifies catalog of
table (referenced by failed assertion) modified by
statement execution. Reserved for future use.

SCHEMA_NAME Character varying, length>=128. Identifies schema of
table (referenced by failed assertion) modified by
statement execution. Reserved for future use.

TABLE_NAME Character varying, length>=128. Identifies table
(referenced by failed assertion) modified by statement
execution. Returns a fully qualified table name for
SQLCODE errors in the range -4000 through -4999.

COLUMN_NAME Character varying, length>=128. Identifies inaccessible
column due to access rule violation. Returns a column
name for SQLCODE errors in the range -4000 through
-4999.

CURSOR_NAME Character varying, length>=128. Identifies cursor in
invalid state. Reserved for future use.

MESSAGE_TEXT Character varying, length>=128. Explanatory text.

MESSAGE_LENGTH Exact numeric, scale 0. Character length of
MESSAGE_TEXT.

MESSAGE_OCTET_LENGTH Exact numeric, scale 0. Octet length of
MESSAGE_TEXT.

NSK_CODE Exact numeric, scale 0. NSK code value of the
condition.

Table 3-4. GET DIAGNOSTICS Condition Items (page 2 of 3)

Condition Item Name Data Type and Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-58

Embedded-Only SQL/MX Statements Considerations for GET DIAGNOSTICS
Considerations for GET DIAGNOSTICS

Processing Condition Items in the Diagnostics Area

You can retrieve:

 The number of filled-in condition items
 Fields for a specific condition item

You can use the number of filled-in condition items to construct a loop to process
individual items.

Writing a Log of Exception Conditions

You can retrieve the message text of the exception condition for SQLSTATE and
SQLCODE. To provide a log of exception conditions, write the SQLSTATE and
SQLCODE values, along with the message text, to a file to be used for future
reference.

C Examples of GET DIAGNOSTICS

 Use the diagnostics area to get information about exception conditions:

...
EXEC SQL GET DIAGNOSTICS :hv_num = NUMBER,
 ...;
for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_sqlcode = SQLCODE,
 :hv_msgtext = MESSAGE_TEXT,
 ...;
 /* Write to the exception condition log file. */
 ...
 /* Process the diagnostic area values. */
 ...
}
...

SQLCODE* Exact numeric, scale 0. SQLCODE value of this
condition.

ROW_NUMBER* Exact numeric, scale 0. Identifies the row number in
error during rowset operations.

* The condition item is an SQL/MX extension.

Table 3-4. GET DIAGNOSTICS Condition Items (page 3 of 3)

Condition Item Name Data Type and Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-59

Embedded-Only SQL/MX Statements COBOL Examples of GET DIAGNOSTICS
COBOL Examples of GET DIAGNOSTICS

 Use the diagnostics area to get information about exception conditions:

 ...
 EXEC SQL GET DIAGNOSTICS :hv-num = NUMBER,
 ...
 END-EXEC.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > hv-num
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv-sqlstate = RETURNED_SQLSTATE,
 :hv-sqlcode = SQLCODE,
 :hv-msgtext = MESSAGE_TEXT,
 ...
 END-EXEC.
* Write to the exception condition log file.
 ...
* Process the diagnostic area values.
 ...
 END-PERFORM.
 ...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-60

Embedded-Only SQL/MX Statements IF Statement

C/C
IF Statement
Considerations for IF Statement
C Example of IF Statement

An IF statement is a compound statement that provides conditional execution based on
the truth value of a conditional expression.

IF is an SQL/MX extension that you use only in embedded SQL programs in C or
COBOL.

conditional-expression

specifies an SQL conditional expression. The expression can be a relational
expression consisting of relational operators and more than one operand. The
operands are literals or host variables combined with SQL relational operators, <,
>, <=, >=, =, and <>.

The conditional expression can also contain logical operators, such as AND, OR,
and NOT, and predicates but cannot contain column references or subqueries. See
Search Condition on page 6-108.

The conditional expression evaluates to either true, false, or NULL.

SQL-statement;[SQL-statement;]...

is an SQL statement list following the THEN or ELSE keyword. The statements are
executed in sequential order as in compound statement execution; the result of
executing the statement list is exactly the same result as executing the statements
one at a time in sequential order.

NonStop SQL/MX executes an IF statement by evaluating the first (and possibly
only) conditional-expression. If the expression evaluates to true,
NonStop SQL/MX executes the statements following the THEN keyword. If the
expression evaluates to false or NULL, NonStop SQL/MX branches to the first
ELSEIF part of the statement if an ELSEIF exists. Otherwise, with no ELSEIF,
NonStop SQL/MX executes only the ELSE part of the statement, if there is one.

If the conditional-expression of the first ELSEIF evaluates to false or NULL,
NonStop SQL/MX branches to the next ELSEIF part of the statement, and so on. If
all the expressions evaluate to false or NULL, NonStop SQL/MX executes only the
ELSE part of the statement, if there is one.

IF conditional-expression THEN
 SQL-statement;[SQL-statement;]...
 [ELSEIF conditional-expression THEN
 SQL-statement;[SQL-statement;]...]...
 [ELSE SQL-statement;[SQL-statement;]...]
END IF

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-61

Embedded-Only SQL/MX Statements Considerations for IF Statement
Considerations for IF Statement

SQL Statements in the List

The restrictions for which SQL statements can be used in a list are the same as the
restrictions for the compound statement. Transactional SQL statements BEGIN
WORK, COMMIT WORK, ROLLBACK WORK, and SET TRANSACTION cannot be
used in IF statements. UPDATE STATISTICS and CONTROL statements cannot be
used in IF statements.

SELECT INTO (retrieving only one row) can be used in a list. Cursors are not allowed
in compound statements. However, rowsets can be used within compound statements
to retrieve multiple rows from database tables.

C Example of IF Statement

 These INSERT and SELECT statements execute sequentially for new orders.
Otherwise, the SELECT statement returns information about the current customer:

...
EXEC SQL
BEGIN
IF :hv_new_ordernum <> 0
THEN
 INSERT INTO SALES.ORDERS
 (ORDERNUM, ORDER_DATE, DELIV_DATE, SALESREP, CUSTNUM)
 VALUES (:hv_new_ordernum, :hv_orderdate, :hv_delivdate,
 :hv_salesrep, :hv_custnum);
 SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv_custnum, :hv_custname,
 :hv_street, :hv_city, :hv_state, :hv_postcode
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :hv_custnum;
ELSE
 SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv_custnum, :hv_custname,
 :hv_street, :hv_city, :hv_state, :hv_postcode
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :hv_current_custnum;

END IF;
END;
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-62

Embedded-Only SQL/MX Statements COBOL Example of IF Statement
COBOL Example of IF Statement

 These INSERT and SELECT statements execute sequentially for new orders.
Otherwise, the SELECT statement returns information about the current customer:

EXEC SQL
 BEGIN
 IF :hv_now_ordernum <> 0
 THEN
 INSERT INTO SALES.ORDERS
 (ORDERNUM, ORDER_NAME, DELIV_DATE,...)
 VALUES (:hv_new_ordernum, :hv_orderdate, :hv_delivdate,
 :hv_salesrep, :hv_custnum);
 SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv_custnum, :hv_custname,
 :hv_street, :hv_city, :hv_state, :hv_postcode
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :hv_custnum;
 ELSE
 SELECT ...
 INTO ...
 WHERE CUSTNUM = :hv_current_custnum;
 END IF;
 END
END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-63

Embedded-Only SQL/MX Statements INVOKE Directive

C/C
INVOKE Directive
Considerations for INVOKE
C Examples of INVOKE
COBOL Examples of INVOKE

The INVOKE preprocessor directive generates a C structure template or COBOL
record declaration that corresponds to a row in a specified table or view and inserts the
declaration directly into the host program. The row description includes a data item for
each column.

INVOKE is an SQL/MX extension.

table

is the name of an existing table or view for which to create a row description.
table can be one of these object names:

 Guardian physical name
 ANSI logical name
 DEFINE name

See Database Object Names on page 6-13.

For more information on how the preprocessor expands table in the INVOKE
directive, see Preserving or Overriding the INVOKE Directive on page 3-66. For
more information on using a DEFINE name in the Windows NT environment, see
Using DEFINE Names in the Windows NT Environment on page 3-66.

AS record

specifies a host language identifier that is the name for the record definition or
structure declaration.

For C, the default structure name is the simple name of the table or view with the
suffix _type appended; for example: mytable_type.

INVOKE table
 [AS record]
 [DATEFORMAT {DEFAULT | EUROPEAN | USA}]
 [PREFIX indicator-prefix]
 [SUFFIX indicator-suffix]
 [NULL STRUCTURE]
 [CHAR AS {STRING|ARRAY}]

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-64

Embedded-Only SQL/MX Statements INVOKE Directive
DATEFORMAT {DEFAULT | EUROPEAN | USA}

specifies the format of host variables for datetime columns.

For a column with a datetime data type that has an HOUR field, DATEFORMAT
USA causes INVOKE to produce a host variable that is three bytes longer than an
equivalent host variable for EUROPEAN or DEFAULT format. The extra bytes allow
room for “am” or “pm” following the values.

The default is DATEFORMAT DEFAULT.

PREFIX indicator-prefix or SUFFIX indicator-suffix

specifies a prefix, a suffix, or both for indicator variable names, in the form:

indicator-prefix variable-name indicator-suffix

The variable-name is the name of the column. If you do not specify a prefix,
indicator variable names have no prefix. If you specify a prefix but do not specify a
suffix, indicator names have no suffix. If you do not specify either a prefix or a
suffix, the suffix depends on the language, as follows:

C _i
COBOL -I

A prefix or suffix must consist of legal identifier values for the host language in
which it is used. However, you can use uppercase or lowercase letters in a prefix
or suffix, regardless of the host language. For C, INVOKE makes the suffix
lowercase.

If the indicator variable name with suffix is longer than 31 characters, the name is
truncated to 31 characters. A warning is issued for each truncated name.

NULL STRUCTURE

specifies that a column allowing null should be declared as a structure with the
same name as the column and with fields for the data item and its indicator
variable. The fields are named INDICATOR and VALU.

CHAR AS {STRING | ARRAY}

(for C programs) specifies whether to create a byte for the null terminator in C
character types:

The default is CHAR AS STRING.

For more information about creating C and COBOL host variables using INVOKE, see
the SQL/MX Programming Manual for C and COBOL.

STRING Generate the extra byte.

ARRAY Omit the extra byte.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-65

Embedded-Only SQL/MX Statements Considerations for INVOKE
Considerations for INVOKE

Preserving or Overriding the INVOKE Directive

The preprocessor expands the table or view name in the INVOKE directive to a fully
qualified object name, such as [\node.][[$volume.]subvol.]filename for a
Guardian physical name or catalog.schema.object for an ANSI logical name.
Expansion of the name depends on how the name is qualified in the INVOKE directive
and how you have declared object names in the program. The preprocessor either
overrides the name in the INVOKE directive with the object name declaration or
preserves the qualified name in the INVOKE directive.

For more information on whether the preprocessor preserves or overrides the INVOKE
directive for Guardian physical names, see DECLARE MPLOC Declaration on
page 3-29. For more information on whether the preprocessor preserves or overrides
the INVOKE directive for ANSI logical names, see DECLARE NAMETYPE Declaration
on page 3-32 and DECLARE SCHEMA Declaration on page 3-33.

Using DEFINE Names in the Windows NT Environment

To preprocess an embedded SQL program that uses a DEFINE in the INVOKE
directive in the Windows NT environment, you must set an environment variable for the
DEFINE:

1. At the Windows NT prompt, type:

set tab_envar =[\node.]$vol.subvol.table

2. In the INVOKE directive, use the name of the environment variable as the DEFINE
name:

EXEC SQL INVOKE =tab_envar AS tab_type;

The preprocessor then expands the INVOKE directive:

EXEC SQL INVOKE [\node.]$vol.subvol.tablename AS tab_type;

SYSKEY Column

If the table that you specify in the INVOKE directive does not contain a user-defined
primary key, the INVOKE directive includes the SYSKEY column in the structure or
record that it generates. Otherwise, SYSKEY is omitted from the INVOKE-generated
structure or record.

Authorization Requirements

To use INVOKE on a table or view, you must have SELECT privileges on all the
columns.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-66

Embedded-Only SQL/MX Statements C Examples of INVOKE
Using INVOKE in a C Program

The general syntax for using an embedded INVOKE directive within an SQL declare
section in a C program is:

EXEC SQL INVOKE table [AS structure-name];
struct structure-name structure-instance ;

The struct declaration declares structure-instance to be a structure of the type
structure-name. You must declare a variable of the struct type so that you can
use that variable in your C language statements.

Using typedef for a Structure

You can use typedef to create your own name for a structure that is created with an
INVOKE directive. A typedef struct statement can be global or local in scope and
must be defined in the SQL declare section of a C program.

C Examples of INVOKE

 Suppose that the EMPLOYEE table consists of the EMPNUM, FIRST_NAME,
LAST_NAME, and DEPTNUM columns. The FIRST_NAME column allows null,
and the EMPNUM column is the primary key. This example shows an INVOKE
statement with the NULL STRUCTURE clause and the generated structure
template:

EXEC SQL BEGIN DECLARE SECTION;
EXEC SQL DECLARE SCHEMA 'samdbcat.persnl';
EXEC SQL INVOKE employee AS emptbl_rec NULL STRUCTURE;
struct emptbl_rec, emptbl_rec1, emptbl_rec2;

 ...
EXEC SQL END DECLARE SECTION;
/* Input employee number for search */
...
EXEC SQL

SELECT empnum, first_name, last_name, deptnum
INTO :emptbl_rec1.empnum, :emptbl_rec1.first_name,

 :emptbl_rec1.last_name, :emptbl_rec1.deptnum
FROM persnl.employee
WHERE empnum = :hv_this_employee;

The SQL/MX C preprocessor generates the structure immediately after the
INVOKE statement in the preprocessed program code:

/* Beginning of generated code for SQL INVOKE */
 struct emptbl_rec {
 unsigned short empnum;
 struct {
 short indicator;
 CHAR valu[16];
 } first_name;
 CHAR last_name[21];
 unsigned short deptnum;
 };
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-67

Embedded-Only SQL/MX Statements C Examples of INVOKE
 This example shows the generated structure template that the previous INVOKE
directive would have generated if the EMPLOYEE table did not contain a user-
defined primary key, such as the EMPNUM column. Note the presence of
SYSKEY:

/* Beginning of generated code for SQL INVOKE */
 struct emptbl_rec {

long long syskey;
 unsigned short empnum;
 struct {
 short indicator;
 CHAR valu[16];
 } first_name;
 CHAR last_name[21];
 unsigned short deptnum;
 };

 Use a Guardian physical name for the table in the INVOKE directive. You must
explicitly declare the NAMETYPE as NSK for Guardian physical names, because
the default NAMETYPE is ANSI:

EXEC SQL BEGIN DECLARE SECTION;
EXEC SQL DECLARE NAMETYPE 'NSK';
EXEC SQL DECLARE MPLOC '$data07.persnl';
EXEC SQL INVOKE employee AS emptbl_rec NULL STRUCTURE;
struct emptbl_rec emptbl_rec1, emptbl_rec2;
...

EXEC SQL END DECLARE SECTION;

 Invoke an SQL table named =classdef and refer to the structure by the identifier
classdef_type. Use a typedef struct statement to define CLASSDEF as the
name of the structure type for the variable row. Use the row variable to access
rows of data from the table:

#pragma section classdef

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE =classdef AS classdef_type;
typedef struct classdef_type CLASSDEF;
EXEC SQL END DECLARE SECTION;

...

EXEC SQL BEGIN DECLARE SECTION;
 CLASSDEF row;
EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-68

Embedded-Only SQL/MX Statements COBOL Examples of INVOKE
COBOL Examples of INVOKE

 Suppose that the EMPLOYEE table consists of the EMPNUM, FIRST_NAME,
LAST_NAME, and DEPTNUM columns. The FIRST_NAME column allows null,
and the EMPNUM column is the primary key. This example shows an INVOKE
statement with the NULL STRUCTURE clause and part of the structure that is
generated:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 EXEC SQL INVOKE employee AS EMPTBL-REC NULL STRUCTURE
 END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

NonStop SQL/MX generates this record:

* Record Definition for table PERSNL.EMPLOYEE
 01 EMPTBL-REC.
 02 EMPNUM PIC 9(4) comp.
 02 FIRST-NAME.
 03 INDICATOR PIC S9(4) comp.
 03 VALU PIC X(15).
 02 LAST-NAME PIC X(20).
 02 DEPTNUM PIC 9(4) comp.

 This example shows the generated structure template that the previous INVOKE
directive would have generated if the EMPLOYEE table did not contain a user-
defined primary key, such as the EMPNUM column. Note the presence of
SYSKEY:

* Record Definition for table PERSNL.EMPLOYEE
 01 EMPTBL-REC.

02 SYSKEY PIC S9(18) comp.
 02 EMPNUM PIC 9(4) comp.
 02 FIRST-NAME.
 03 INDICATOR PIC S9(4) comp.
 03 VALU PIC X(15).
 02 LAST-NAME PIC X(20).
 02 DEPTNUM PIC 9(4) comp.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-69

Embedded-Only SQL/MX Statements MODULE Directive

C/C
MODULE Directive
The MODULE directive specifies the name of an embedded SQL/MX module for the C
or COBOL preprocessor. If you do not specify a MODULE directive, the preprocessor
generates a module name.

MODULE is an SQL/MX extension that you use only in embedded SQL programs.

module-name

is the name of the module. NonStop SQL/MX automatically qualifies a module
name with the current default catalog and schema names unless you explicitly
specify catalog and schema names with the module name. The module name is an
SQL identifier and must be unique among module names in the schema.

For a module name of catalog.schema.name, catalog, schema, and name
are SQL identifiers and therefore cannot consist of more than 128 characters. See
Identifiers on page 6-56.

NAMES ARE ISO88591

is an optional clause that specifies the character set for the module as ISO88591.

The ISO88591 character set is the default character set for CHAR or VARCHAR
data types for NonStop SQL/MX. The ISO 8859 character sets are a standard set
of nine single-byte character sets defined by ISO (International Organization for
Standardization) in a series called ISO 8859. The ISO88591 character set supports
English and other Western European languages.

Considerations for MODULE

Directive Used by the Preprocessor

The 3GL preprocessor creates a module definition file, containing only SQL
statements, as one of its two output files. The preprocessor writes the header of the
module definition file as:

MODULE module-name NAMES ARE ISO88591 ;
TIMESTAMP DEFINITION (creation_timestamp) ;

The preprocessor gets the module-name from the MODULE directive, if one exists, at
the beginning of your embedded SQL 3GL program.

MODULE module-name [NAMES ARE ISO88591]

Caution. Avoid using delimited identifiers that contain dots (.) and trailing spaces in the
names of the catalog, schema, and module. Dots and trailing spaces in delimited identifiers
might cause the three-part module name to clash with an unrelated module name, thus
overwriting the query execution plans of the other module.

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-70

Embedded-Only SQL/MX Statements C Examples of MODULE
Automatic Generation of Module Names

If you do not specify a MODULE directive, the preprocessor or customizer generates a
module name for you. If you change your source program and process and compile it
again, the new module overwrites the old module. System-generated module names
can become a management problem if you want to create different versions of your
program. For more information on module management, see the SQL/MX
Programming Manual for C and COBOL.

C Examples of MODULE

 This example shows a MODULE directive:

EXEC SQL MODULE EXF61M NAMES ARE ISO88591;

COBOL Examples of MODULE

 This example shows a MODULE directive:

EXEC SQL MODULE EXF62M NAMES ARE ISO88591 END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-71

Embedded-Only SQL/MX Statements OPEN Statement

C/C
OPEN Statement
Considerations for OPEN
C Examples of OPEN
COBOL Examples of OPEN

The OPEN statement opens a cursor in a host program and establishes the result table
specified by the DECLARE CURSOR statement for the named cursor. It positions the
cursor before the first row of the result table.

In dynamic SQL, the cursor name is provided at execution time. An optional USING
clause provides input parameters for the cursor specification. Otherwise, there is no
difference between the static and dynamic forms of OPEN.

Use OPEN only in embedded SQL programs in C or COBOL.

cursor-name

is an SQL identifier—the name of a cursor. The cursor must be previously declared
and not already open. See Identifiers on page 6-56.

ext-cursor-name

is a value-specification—a character literal or a host variable with character
data type. When OPEN executes, the content of the host variable (if used) gives
the name of the cursor. The cursor must be previously declared and not already
open.

GLOBAL | LOCAL

specifies scope. The default is LOCAL. The scope of a GLOBAL cursor is the SQL
session. The scope of a LOCAL cursor is the module or compilation unit in which
OPEN appears.

OPEN {cursor-name | ext-cursor-name}
 [USING {argument-list | descriptor-spec}]

ext-cursor-name is:
 [GLOBAL | LOCAL] value-specification

argument-list is:
 variable-spec [,variable-spec]...

descriptor-spec is:
 SQL DESCRIPTOR descriptor-name

variable-spec is:
 :variable-name [[INDICATOR] :indicator-name]

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-72

Embedded-Only SQL/MX Statements Considerations for OPEN
USING variable-spec [,variable-spec]...

(dynamic SQL) identifies the host variables for the dynamic input parameters of the
cursor specification.

Before OPEN with USING executes, the application must store information for
each parameter of the cursor specification in the appropriate host variable.

USING SQL DESCRIPTOR descriptor-name

(dynamic SQL) identifies the SQL descriptor area for the dynamic input parameters
of the cursor specification. An SQL descriptor area must be currently allocated
whose name is the value of descriptor-name and whose scope is the same
scope as specified in the OPEN statement.

Before OPEN with USING executes, the application must store information for
each input parameter of the cursor specification in the descriptor area. Each
parameter has an item descriptor.

Considerations for OPEN

Establishing the Result Table

If the cursor specification includes embedded variables, the variables are evaluated
when OPEN executes. Any subsequent changes to those variables do not affect the
result table of the cursor specification.

Authorization Requirements

To execute OPEN, you must have read authority for tables or views referred to in the
SELECT associated with the cursor. If the cursor was declared FOR UPDATE, you
must also have write authority to the tables.

Declaring Host Variables

The host variables occurring in the cursor specification must be declared within the
scope of the OPEN statement. Otherwise, an error occurs during preprocessing.

Using Extended Dynamic Cursors

The name of an extended dynamic cursor is not known until run time. When OPEN
executes, the name must identify an allocated cursor within the same scope.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-73

Embedded-Only SQL/MX Statements C Examples of OPEN
USING Clause

If the cursor specification uses dynamic input parameters, you must provide a USING
clause for either a list of arguments or an SQL descriptor area. This requirement is the
same as that for providing a USING clause for an EXECUTE statement that executes a
prepared statement with dynamic input parameters. See EXECUTE Statement on
page 2-201.

C Examples of OPEN

 Declare and open a cursor, using FETCH to retrieve data, then closing the cursor:

EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3
 FROM PARTS
 WHERE COL1 >= :hostvar
 ORDER BY COL1
 READ UNCOMMITTED ACCESS;
...
EXEC SQL OPEN cursor1;
...
EXEC SQL FETCH cursor1
 INTO :hostvar1, :hostvar2, :hostvar3;
...
EXEC SQL CLOSE cursor1;

 This example uses extended cursor and statement names in the PREPARE,
ALLOCATE CURSOR, and OPEN statements:

...
scanf("%s", in_curspec);
...
EXEC SQL PREPARE :curspec FROM :in_curspec;
...
EXEC SQL ALLOCATE :extcur CURSOR FOR :curspec;
...
EXEC SQL OPEN :extcur;
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-74

Embedded-Only SQL/MX Statements COBOL Examples of OPEN
COBOL Examples of OPEN

 Declare and open a cursor, using FETCH to retrieve data, then closing the cursor:

EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT COL1, COL2, COL3
 FROM PARTS
 WHERE COL1 >= :hostvar
 ORDER BY COL1
 READ UNCOMMITTED ACCESS
END-EXEC.
...
EXEC SQL OPEN cursor1 END-EXEC.
...
EXEC SQL FETCH cursor1
 INTO :hostvar1, :hostvar2, :hostvar3
END-EXEC.
...
EXEC SQL CLOSE cursor1 END-EXEC.

 This example uses extended cursor and statement names in the PREPARE,
ALLOCATE CURSOR, and OPEN statements:

...
ACCEPT in-curspec.
...
EXEC SQL PREPARE :curspec FROM :in-curspec END-EXEC.
...
EXEC SQL ALLOCATE :extcur CURSOR FOR :curspec END-EXEC.
...
EXEC SQL OPEN :extcur END-EXEC.
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-75

Embedded-Only SQL/MX Statements SET (Assignment) Statement

C/C
SET (Assignment) Statement
C Examples of Assignment Statement

An assignment statement in a compound statement assigns a value to a host variable
so that subsequent statements in the containing compound statement can reference
and use the value of that host variable.

SET is an SQL/MX extension that you use only in embedded SQL programs in C or
COBOL.

assignment-target

specifies a list of host variable specifications in which to return the values in the
assignment-source.

The number of items in assignment-source must be equal to the number of
specified host variables, and the data type of each source value must be
compatible with the data type of its target host variable. The first value in the
assignment-source is assigned to the first host variable, the second value to
the second variable, and so on.

You can use rowset host variables as assignment-targets if either the
assignment-source is a subquery that returns more than one row, or the
assignment-source includes rowset-expressions. In this case you can use
rowset host variables in the assignment-target to return values from multiple
consecutive rows in the assignment-source.

The values of the host variables that have been set by an assignment statement
are made available for use by subsequent statements within the compound
statement and by other statements that follow after that compound statement.

:variable-name [[INDICATOR] :indicator-name]

is a variable specification—a host variable with optionally an indicator variable.
A variable name begins with a colon (:).

SET assignment-target = assignment-source

assignment-target is:
 variable-spec [,variable-spec]...

assignment-source is:
 subquery
 | {expression | rowset-expression | NULL}
 [,{expression | rowset-expression | NULL]...

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-76

Embedded-Only SQL/MX Statements C Examples of Assignment Statement
assignment-source

specifies a list of value expressions, a list of rowset expressions, the NULL
specification, or a subquery. These values are to be inserted into the
assignment-target.

 subquery
| {expression | rowset-expression | NULL}
[,{expression | rowset-expression | NULL}]...

is a value expression, rowset expressions, NULL, or the result of a subquery.

NULL can be assigned to a host variable of any type.

If you use a rowset expression or if the subquery returns more than one row,
the assignment target must consist of rowset host variables.

C Examples of Assignment Statement

 This SET statement inside the BEGIN and END keywords sets a value that is used
in the INSERT statement:

...
EXEC SQL
BEGIN
SET :hv_salesrep = 999; /* sales rep is not known /*
INSERT INTO SALES.ORDERS
 (ORDERNUM, ORDER_DATE, DELIV_DATE, SALESREP, CUSTNUM)
 VALUES (:hv_ordernum, :hv_orderdate, :hv_delivdate,
 :hv_salesrep, :hv_custnum);
END;
...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-77

Embedded-Only SQL/MX Statements SET DESCRIPTOR Statement

C/C
SET DESCRIPTOR Statement
SQL Item Descriptor Area of SET DESCRIPTOR
Note.
C Examples of SET DESCRIPTOR
COBOL Examples of SET DESCRIPTOR

The SET DESCRIPTOR statement changes specified information in an SQL descriptor
area. An application program can either set the count of item descriptors with
information or set the value of a specific field within a specific item.

Use SET DESCRIPTOR only in embedded SQL programs in C or COBOL.

descriptor-name

is a value-specification—a character literal or host variable with character
data type. The named SQL descriptor area must be currently allocated.

COUNT = value-specification

sets the COUNT of item descriptors from a value-specification—a literal with
exact numeric data type or a host variable. value-specification is the
number of dynamic parameters described in the descriptor area.

SET DESCRIPTOR descriptor-name {set-descriptor-info}

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

set-descriptor-info is:
 COUNT = value-specification
 | ROWSET_SIZE = value-specification
 | VALUE item-number set-item-info [,set-item-info]...

set-item-info is:
 descriptor-item-name = value-specification

descriptor-item-name is:
 CHARACTER_SET_NAME
 | DATETIME_CODE
 | INDICATOR_DATA | INDICATOR
 | INDICATOR_POINTER
 | INDICATOR_TYPE
 | LEADING_PRECISION
 | LENGTH
 | PRECISION
 | ROWSET_IND_LAYOUT_SIZE
 | ROWSET_VAR_LAYOUT_SIZE
 | SCALE
 | TYPE
 | TYPE_FS
 | VARIABLE_DATA | DATA
 | VARIABLE_POINTER

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-78

Embedded-Only SQL/MX Statements SQL Item Descriptor Area of SET DESCRIPTOR
ROWSET_SIZE = value-specification

sets the length of rowsets specified in the item descriptors from
value-specification, a literal with exact numeric data type or a host variable.
value-specification is the common length of all rowsets described in the
descriptor.

VALUE item-number set-item-info [,set-item-info]...

sets the value of a specific field within a specific item. See SQL Item Descriptor
Area of SET DESCRIPTOR on page 3-79.

item-number

refers to a particular item in the SQL descriptor area. item-number must be
a host variable. The data type of item-number must be exact numeric, and its
value must be less than or equal to the maximum number of occurrences
specified when the SQL descriptor area was allocated. If item-number
exceeds the value of COUNT, a completion condition is raised (no data). See
ALLOCATE DESCRIPTOR Statement on page 3-6.

descriptor-item-name = value-specification

specifies the field descriptor-item-name in which to store the information
and the value-specification that is or contains the information—a literal
or a host variable.

SQL Item Descriptor Area of SET DESCRIPTOR

Table 3-5 describes the items in the descriptor area for SET DESCRIPTOR. For exact
numeric fields with scale 0, declare the corresponding host variables as type long in C
and PIC S9(9) COMP in COBOL. For character fields, declare the corresponding
host variables as type VARCHAR in C (with an extra byte for the null terminator) and
type PIX X in COBOL.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-79

Embedded-Only SQL/MX Statements SQL Item Descriptor Area of SET DESCRIPTOR
Table 3-5. SET DESCRIPTOR Descriptor Area Items (page 1 of 2)

Field Data Type and Description

CHARACTER_SET_NAME Character string. One-part character set name.

DATETIME_CODE Exact numeric, scale 0.
Codes for DATETIME type: 1 date; 2 time; 3 timestamp.
Codes for INTERVAL subfields: 1 year; 2 month; 3 day; 4
hour; 5 minute; 6 second; 7 year to month; 8 day to hour; 9
day to minute; 10 day to second; 11 hour to minute; 12 hour to
second; 13 minute to second.
This field is equivalent to the ANSI-named
DATETIME_INTERVAL_CODE field. You cannot use the ANSI
name for this field.**

INDICATOR_DATA Exact numeric, scale 0. Value for the indicator variable of
VARIABLE_DATA:
0 INDICATOR_DATA is not null.
<0 INDICATOR_DATA is null.
>0 VARIABLE_DATA is truncated and INDICATOR_DATA is
the length of the source data.
This field is equivalent to the ANSI-named INDICATOR field.
You can also use INDICATOR as the name of the field.**

INDICATOR_TYPE* Exact numeric, scale 0. Type of INDICATOR_DATA. The
default type is short.
Values for INDICATOR_TYPE are:
-1 numeric data is negative
0 (optional) numeric data is positive

LEADING_PRECISION Exact numeric, scale 0. Precision of interval start field.
This field is equivalent to the ANSI-named
DATETIME_INTERVAL_PRECISION field. You cannot use the
ANSI name for this field.**

LENGTH Exact numeric, scale 0. Length (in characters) for strings.

OCTET_LENGTH Exact numeric, scale 0. Length in bytes for strings.

PRECISION Exact numeric, scale 0. Precision for numeric types.
PRECISION specifies the total number of digits and cannot
exceed 18.

ROWSET_IND_LAYOUT
_SIZE

Exact numeric, scale 0. Size of an individual array element in a
rowset host variable. A value 0 (zero) in this field denotes that
the host variable is not of rowset type and is a scalar host
variable.

ROWSET_VAR_LAYOUT
_SIZE

Exact numeric, scale 0. Size of an individual array element in a
rowset host variable. A value 0 (zero) in this field denotes that
the host variable is not of rowset type and is a scalar host
variable.

* The statement item is an SQL/MX extension.

** The SQL/MX name is different from the ANSI name.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-80

Embedded-Only SQL/MX Statements Considerations for SET DESCRIPTOR
Note. You must declare the host variables for the exact numeric fields in the above table as
32-bit integers. However, declare the host variables as long for VARIABLE_POINTER and
INDICATOR_POINTER.

Considerations for SET DESCRIPTOR

When you set the TYPE item, all other items are reset to the default. If you set TYPE,
you must specify information for any other items you need.

SCALE Exact numeric, scale 0. Scale for exact numeric types. SCALE
specifies the number of digits to the right of the decimal point.

TYPE Exact numeric, scale 0.
ANSI codes for data type: 1 CHARACTER; 2 NUMERIC; 3
DECIMAL; 4 INTEGER; 5 SMALLINT; 6 IEEE FLOAT; 7 IEEE
REAL; 8 DOUBLE PRECISION; 9 DATE, TIME, or
TIMESTAMP; 10 INTERVAL; 12 CHARACTER VARYING.
SQL/MX extensions: -101 character uppercase; -201 numeric
unsigned; -301 decimal unsigned; -302 decimal large; -303
decimal large unsigned; -401 integer unsigned; -402 largeint;
-502 smallint unsigned; -601 character varying with length
specified in first two bytes.
See Version Differences for TYPE and TYPE_FS on
page 3-84.

TYPE_FS* Exact numeric, scale 0. These codes are the SQL/MP-specific
codes returned in the SQL descriptor area, as shown under
SQL Descriptor Area Data Type Declarations of GET
DESCRIPTOR on page 3-51.
This field does not provide the ANSI codes for data type. The
ANSI codes are provided by TYPE.
See Version Differences for TYPE and TYPE_FS on
page 3-84.

VARIABLE_DATA Actual data associated with the dynamic parameter. The type,
length, name, and so on, are determined by other fields.
This field is equivalent to the ANSI-named DATA field. You can
also use DATA as the name of the field.**
This field cannot contain arithmetic computation.

VARIABLE_POINTER* Pointer to the value of VARIABLE_DATA.

* The statement item is an SQL/MX extension.
** The SQL/MX name is different from the ANSI name.

Table 3-5. SET DESCRIPTOR Descriptor Area Items (page 2 of 2)

Field Data Type and Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-81

Embedded-Only SQL/MX Statements Considerations for SET DESCRIPTOR
Null values and SET DESCRIPTOR

If you use SET DESCRIPTOR to set a column's value to be a null value, you must
initialize the host variable to a number with INDICATE_DATA = -1. Otherwise,
NonStop SQL/MX issues an error. For example:

 unsigned DECIMAL(3,3) data_pic_2;
 strncpy(data_pic_2, " ", sizeof(data_pic_2));
 strcpy(data_pic_2, " 000");
 col_num = 1;
 data_ind = -1;

 EXEC SQL SET DESCRIPTOR :upd_desc VALUE :col_num
 INDICATOR_DATA = :data_ind,
 VARIABLE_DATA = :data_pic_2;
 printf("SQLCODE after SET DESCRIPTOR is %d \n", SQLCODE);
 EXEC SQL EXECUTE P_UPD USING SQL DESCRIPTOR :upd_desc;
 printf("SQLCODE after EXECUTE = %ld\n", SQLCODE);

DECIMAL Data Types and SET DESCRIPTOR

When a host variable is defined as the DECIMAL data type in an embedded program,
there are two ways to set the descriptor:

 Set with the DECRIBE statement:

 strncpy(insert_buf, " ", sizeof(insert_buf));
 strcpy(insert_buf, "INSERT INTO t (decimal_3_unsigned)
values (cast (? as decimal(3,0) unsigned));");

 strncpy(decimal_3_unsigned, " ",
sizeof(decimal_3_unsigned));
 strcpy(decimal_3_unsigned, " 382");

 desc_max = 1;

 EXEC SQL ALLOCATE DESCRIPTOR 'in_desc2' WITH MAX
:desc_max;
 printf("SQLCODE after allocate descriptor is %d\n",
 SQLCODE);

 EXEC SQL PREPARE FROM :insert_buf;
 printf("SQLCODE after prepare is %d\n", SQLCODE);

 EXEC SQL DESCRIBE INPUT USING SQL DESCRIPTOR 'in_desc2';
 printf("SQLCODE after descriptor is %d\n", SQLCODE);

 desc_val = 1;
 type_val = -301;

 EXEC SQL SET DESCRIPTOR 'in_desc2' VALUE :desc_val
 DATA = :decimal_3_unsigned;
 printf("SQLCODE after SET DESCRIPTOR is %d\n",
SQLCODE);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-82

Embedded-Only SQL/MX Statements Considerations for SET DESCRIPTOR
 EXEC SQL EXECUTE USING SQL DESCRIPTOR
'in_desc2';
 printf("SQLCODE after insert is %d\n", SQLCODE);

 Set without the DECRIBE statement. You must set LENGTH or the descriptor will
receive a numeric overflow error.

 strncpy(insert_buf, " ", sizeof(insert_buf));
 strcpy(insert_buf, "INSERT INTO t1 (decimal_3_unsigned) "
 " VALUES (cast(? as decimal(3,0) unsigned));");

 desc_max = 1;

 EXEC SQL ALLOCATE DESCRIPTOR 'in_desc3' WITH MAX
:desc_max;
 printf("SQLCODE after allocate descriptor is %d\n",
SQLCODE);

 EXEC SQL PREPARE FROM :insert_buf;
 printf("SQLCODE after prepare is %d\n", SQLCODE);

 desc_val = 1;
 type_val = -301;
 strncpy(decimal_3_unsigned, " ",
sizeof(decimal_3_unsigned));
 strcpy(decimal_3_unsigned, " 999");
 precision = 3;
 scale = 0;
 length = 5;

 EXEC SQL SET DESCRIPTOR 'in_desc3' VALUE :desc_val
 TYPE = :type_val,
 PRECISION = :precision,
 SCALE = :scale,
 LENGTH = :length,
 DATA = :decimal_3_unsigned;

 printf("SQLCODE after SET DESCRIPTOR is %d\n", SQLCODE);
 EXEC SQL EXECUTE USING SQL DESCRIPTOR 'in_desc3';
 printf("SQLCODE after insert r1 is %d\n", SQLCODE);

Using VARIABLE_POINTER

If the VARIABLE_POINTER value is set in the descriptor area, the type and length of
the host variable pointed to must exactly match the type and length of the
corresponding item in the descriptor area. The type and length of the item in the
descriptor area is set either by executing a DESCRIBE INPUT statement or by setting
the TYPE and LENGTH items in the descriptor area.

If the type and length are not identical, the results can be unpredictable at program
execution time. To avoid this problem, use one of these alternatives:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-83

Embedded-Only SQL/MX Statements C Examples of SET DESCRIPTOR
 Use arguments in an EXECUTE statement rather than descriptor areas. For more
information about dynamic SQL, see the SQL/MX Programming Manual for C and
COBOL.

 If descriptor areas are used, use VARIABLE_DATA rather than
VARIABLE_POINTER.

Use VARIABLE_POINTER to efficiently retrieve individual values from a large buffer.
For more information on retrieving multiple values from a large buffer, see the SQL/MX
Programming Manual for C and COBOL.

VARIABLE_POINTER is not supported in COBOL. Embedded COBOL does not
support the pointer type.

Processing Items in a Descriptor Area

You can retrieve the number of filled-in descriptor items for input parameters and set
fields for a specific item. Use the number of filled-in descriptor items to construct a loop
to set values for individual parameters.

When a DESCRIBE statement executes, NonStop SQL/MX identifies parameters by
the context in which they appear in a prepared statement.

If you execute a DESCRIBE statement before a SET DESCRIPTOR statement, you
need not include TYPE in the SET DESCRIPTOR statement.

Version Differences for TYPE and TYPE_FS

In SQL/MX Release 1.0, the FS type (an SQL/MX extension) was equivalent to the
item TYPE, and the ANSI type was equivalent to the item TYPE_ANSI. In SQL/MX
Release 1.5 and later, to comply with ANSI standards, these equivalents have
changed. TYPE returns the ANSI type, and TYPE_FS returns the FS type (an SQL/MX
extension).

C Examples of SET DESCRIPTOR

 Allocate a descriptor area, describe the input parameters of a dynamic SQL
statement, and use the descriptor area to set values for the parameters:

desc_max = 1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc_max;
...
strcpy (hv_sql_statement, "UPDATE employee"
 " SET salary = salary * 1.1"
 " WHERE jobcode = CAST(? AS NUMERIC(4) unsigned)");
...
EXEC SQL PREPARE sqlstmt FROM :hv_sql_statement;
EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda';
...
scanf("%ld",&in_jobcode);
desc_value = 1;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-84

Embedded-Only SQL/MX Statements COBOL Examples of SET DESCRIPTOR
EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 VARIABLE_DATA = :in_jobcode,
 ...;
EXEC SQL EXECUTE sqlstmt USING SQL DESCRIPTOR 'in_sqlda';

COBOL Examples of SET DESCRIPTOR

 Allocate a descriptor area, describe the input parameters of a dynamic SQL
statement, and use the descriptor area to set values for the parameters:

 MOVE 1 TO desc-max.
 EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda'
 WITH MAX :desc-max END-EXEC.
 ...
 MOVE "UPDATE employee
- " SET salary = salary * 1.1
- " WHERE jobcode = CAST(? AS NUMERIC(4) unsigned)"
 TO hv-sql-statement.
 EXEC SQL PREPARE sqlstmt
 FROM :hv-sql-statement END-EXEC.
 EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda' END-EXEC.
 ACCEPT in-jobcode.
 MOVE 1 TO desc-value.
 EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc-value
 VARIABLE_DATA = :in-jobcode,
 ...
 END-EXEC.
 EXEC SQL EXECUTE sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda' END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-85

Embedded-Only SQL/MX Statements WHENEVER Declaration

C/C
WHENEVER Declaration
Considerations for WHENEVER
C Examples of WHENEVER
COBOL Examples of WHENEVER

The WHENEVER declarative statement specifies an action to take when an error,
warning, or no-rows-found condition occurs. The preprocessor inserts code after every
embedded SQL statement to check values of SQLSTATE and jump to the appropriate
routine to handle the error, warning, or no-rows-found condition.

Use WHENEVER only in embedded SQL programs in C or COBOL.

condition

specifies the condition to test for:

NonStop SQL/MX tests for condition after each DDL and DML statement for
which the WHENEVER declaration is in effect. To end testing, specify WHENEVER
with the same condition but no action.

In a SELECT through a cursor, NOT FOUND means no rows or all rows qualify. In
statements with a WHERE clause, NOT FOUND means no rows satisfy the WHERE
clause. In a FETCH after a series of fetches, NOT FOUND means all rows were
fetched.

WHENEVER condition condition-action

condition is:
 NOT FOUND | SQLERROR | SQL_WARNING

condition-action is:
 CONTINUE
 | GOTO target
 | CALL C-function
 | PERFORM COBOL-routine

NOT FOUND A no-rows-found condition

SQLERROR An error

SQL_WARNING A warning

OBOL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-86

Embedded-Only SQL/MX Statements Considerations for WHENEVER
condition-action

specifies the action to take:

If you do not specify an action, NonStop SQL/MX discontinues checking for the
specified condition.

target

is a host label identifier that specifies a target location in a C program.

Considerations for WHENEVER

SQL/MX Extensions to WHENEVER

The SQL_WARNING condition and the CALL action are SQL/MX extensions.

Status Codes

FETCH returns a five-character status code to SQLSTATE, whose values include:

FETCH also returns an integer status code to SQLCODE, whose values include:

CONTINUE Continue with next statement.

GOTO target Pass control to the target location.

CALL C-function Execute the named C function.

PERFORM COBOL-routine Execute the named COBOL routine.

00000 The FETCH was successful.

02000 NOT FOUND—The result table is empty or the end of the table was encountered.

22xxx SQLERROR—Data exception condition.

0 The FETCH was successful.

100 NOT FOUND—The result table is empty or the end of the table was encountered.

> 0 SQL_WARNING—A warning was issued.

< 0 SQLERROR—An error occurred.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-87

Embedded-Only SQL/MX Statements C Examples of WHENEVER
C Examples of WHENEVER

 The effect of this statement is the same as if you had written a C statement that
tests for an SQLSTATE of 02000 and executes a C continue statement:

WHENEVER NOT FOUND CONTINUE;

 WHENEVER sets actions for all embedded SQL statements that physically follow it
in the program. In this example, if statement_2 caused an error, control
continues at label x.

...
EXEC SQL statement_1;
EXEC SQL WHENEVER SQLERROR GOTO label_x;
EXEC SQL statement_2;
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL statement_3;
...
label_x:
...

COBOL Examples of WHENEVER

For more COBOL examples, see the SQL/MX Programming Manual for C and
COBOL.

 The effect of this statement is the same as if you had written a COBOL statement
that tests for an SQLSTATE of 02000 and executes a COBOL NEXT SENTENCE
statement:

WHENEVER NOT FOUND CONTINUE END-EXEC.

 WHENEVER sets actions for all embedded SQL statements that physically follow it
in the program. In this example, if statement_2 caused an error, control
continues at paragraph x:

 ...
 EXEC SQL statement_1 END-EXEC.
 EXEC SQL WHENEVER SQLERROR GOTO para-x END-EXEC.
 EXEC SQL statement_2 END-EXEC.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL statement_3 END-EXEC.
 ...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
3-88

4 MXCI Commands

This section describes the syntax and semantics of MXCI commands. MXCI
commands are NonStop SQL/MX extensions that typically affect attributes of an MXCI
session. You can run these commands only through MXCI, with the exceptions noted:

ADD DEFINE Command on page 4-4 Creates DEFINEs for Guardian file names.

ALTER DEFINE Command on
page 4-6

Changes DEFINEs for Guardian file names.

CD Command on page 4-8 Changes the current working directory.

DELETE DEFINE Command on
page 4-9

Deletes current DEFINEs.

DISPLAY USE OF Command on
page 4-10

Displays usage information on compiled modules.

DISPLAY USE OF SOURCE on
page 4-14

Displays all modules and their corresponding
source SQL files.

DISPLAY USE OF ALL | INVALID
MODULES on page 4-16

Displays all / Invalid modules along with their
corresponding source SQL files for a given object

DISPLAY_QC Command on
page 4-19

Generates and displays selected data from the
result of the QUERYCACHE function.

DISPLAY_QC_ENTRIES Command
on page 4-21

Generates and displays selected data from the
result of the QUERYCACHEENTRIES function.

DISPLAY STATISTICS Command on
page 4-23

Displays statistics about the last DML or PREPARE
statement you executed.

ENV Command on page 4-25 Displays MXCI session attributes. You can also use
the SHOW SESSION Command on page 4-75.

ERROR Command on page 4-27 Displays error text.

Exclamation Point (!) Command on
page 4-28

Re-executes a command. You can also use the
REPEAT Command on page 4-59.

EXIT Command on page 4-29 Ends an MXCI session.

FC Command on page 4-30 Edits and re-executes a previous command.

GET ALL SECURITY_ADMINS
Statement on page 2-234

Displays the available list of security administrators.

GET NAMES OF RELATED NODES
Command on page 4-34

Displays the names of the transitive closure of
nodes that are related to the specified node.

GET NAMES OF RELATED
SCHEMAS Command on page 4-35

Displays the names of the transitive closure of
schemas related to the specified schema.

GET NAMES OF RELATED
CATALOGS on page 4-36

Displays the names of the transitive closure of
catalogs related to the specified catalog.

GET VERSION OF SYSTEM on
page 4-37

Displays SQL/MX Software Version.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-1

MXCI Commands
GET VERSION OF SCHEMA
Command on page 4-38

Displays the schema version of the specified
schema.

GET VERSION OF SYSTEM
SCHEMA Command on page 4-39

Displays the system schema version of the
specified node.

GET VERSION OF Object Command
on page 4-40

Displays the object schema version (OSV) and the
object feature version (OFV) of the specified
database object.

GET VERSION OF MODULE
Command on page 4-41

Displays the module version of the specified
module.

GET VERSION OF PROCEDURE
Command on page 4-42

Displays the plan version of the specified procedure
in the specified module.

GET VERSION OF STATEMENT
Command on page 4-43

Displays the plan version of the specified prepared
statement.

HISTORY Command on page 4-44 Displays recently executed commands.

INFO DEFINE Command on
page 4-45

Displays current DEFINEs.

INVOKE Command on page 4-46 Displays a record description for the specified table
or view. Can also be run as embedded SQL to
create a C structure or COBOL record. See
INVOKE Directive on page 3-64.

LOG Command on page 4-47 Starts or ends session logging to a file.

LS Command on page 4-51 Lists file statistics.

MODE Command on page 4-54 Changes command mode.

MXCI Command on page 4-55 Starts an MXCI session from the OSS environment.

OBEY Command on page 4-57 Executes MXCI commands and statements from a
file. This file is referred to as an OBEY command
file.

REPEAT Command on page 4-59 Re-executes a command. You can also use the
exclamation point (!) command.

RESET PARAM Command on
page 4-60

Clears the values of the specified parameter or all
the parameters in the current session.

SET LIST_COUNT Command on
page 4-62

Sets the maximum number of rows to be displayed
for the next SELECT statement.

SET PARAM Command on page 4-63 Sets a value for a parameter used in queries to be
executed.

SET SHOWSHAPE Command on
page 4-66

Displays the access plans in effect. Generates the
output of the SHOWSHAPE command for multiple
SQL statements.

SET STATISTICS Command on
page 4-69

Displays statistics automatically after each SQL
statement.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-2

MXCI Commands
For more information about utilities that you can run through MXCI, see Section 5,
SQL/MX Utilities.

For more information on entering MXCI commands, see Entering a Command on
page 1-3.

SET WARNINGS Command on
page 4-71

Sets the display of warnings within MXCI to ON or
OFF.

SH Command on page 4-72 Invokes the shell from MXCI.

SHOW PARAM Command on
page 4-73

Lists each parameter, and its value, defined in the
current MXCI session.

SHOW PREPARED Command on
page 4-74

Displays the prepared statements in the current
MXCI session.

SHOW SESSION Command on
page 4-75

Displays MXCI session attributes. You can also use
ENV.

SHOWCONTROL Command on
page 4-77

Displays the access plan, controls, and system
defaults in effect.

SHOWDDL Command on page 4-83 Displays the DDL syntax used to create a table,
view, sequence generator or stored procedure as it
exists in metadata,

SHOWLABEL Command on
page 4-99

Displays file-label and resource-fork information for
SQL/MX objects.

SHOWSHAPE Command on
page 4-110

Displays the control query shape for a given DML
statement. The result can be used at a later time to
force the same access plan.

SHOWSTATS Command on
page 4-112

Retrieves statistics from column(s) of a table.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-3

MXCI Commands ADD DEFINE Command
ADD DEFINE Command
Considerations for ADD DEFINE
Examples of ADD DEFINE

The ADD DEFINE command creates a new DEFINE in the current MXCI session.
(ADD DEFINE is similar to the TACL command ADD DEFINE and the OSS shell
command add_define.)

You can use defines only for SQL/MP objects.

You can use ADD DEFINE only within an MXCI session.

define

is the name for the new DEFINE. To change an existing DEFINE, use the ALTER
DEFINE command; define cannot be the same as an existing DEFINE name.
See ALTER DEFINE Command on page 4-6.

A DEFINE name must begin with an equal sign (=) followed by a letter. The name
is not case-sensitive and can be up to 24 characters, including alphanumeric
characters and underscores (_).

A DEFINE name must not be a reserved word. Otherwise, you cannot select data
using the DEFINE name of the table, view, or partition. See Appendix B, Reserved
Words.

CLASS MAP

specifies that the DEFINE name define is associated with the name of a table,
view, or partition. Use the DEFINE name in SQL statements as the logical name of
an object, altering the DEFINE when you want to point to a different physical entity.
MAP is the default CLASS.

FILE [\node.][[$volume.]subvol.]filename

specifies the Guardian physical name of a table, view, or partition. \node is the
name of a node on a NonStop system, $volume is the name of a disk volume,
subvol is the name of a subvolume, and filename is the name of a Guardian
disk file. If the physical name is not fully qualified, it is expanded by using the
current default node, volume, and subvolume.

The Guardian physical name must not include a reserved word. Otherwise, you
cannot select data using the DEFINE name of the table, view, or partition. See
Appendix B, Reserved Words.

ADD DEFINE define
 [,CLASS MAP], FILE [\node.][[$volume.]subvol.]filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-4

MXCI Commands Considerations for ADD DEFINE
If the Guardian physical name includes a reserved word, consider using the
CREATE SQLMP ALIAS statement, instead of the ADD DEFINE command, to
create a logical name mapping.

Considerations for ADD DEFINE

Scope of ADD DEFINE

A DEFINE stays in effect until you change or delete it or until you exit the current
session.

A user can delete a DEFINE within MXCI. A user can delete a DEFINE within MXCI
only that DEFINE was added using the MXCI ADD DEFINE or ALTER DEFINE
command previously in the session. See the DELETE DEFINE Command on page 4-9.

Examples of ADD DEFINE

 Add a DEFINE that assigns the logical name =ORDERS to the table whose
Guardian physical name is $SAMDB.SALES.ORDERS:

ADD DEFINE =ORDERS, CLASS MAP, FILE $SAMDB.SALES.ORDERS;

While this DEFINE is in effect, you can refer to the table as =ORDERS. The
previous ADD DEFINE command is equivalent to:

ADD DEFINE =ORDERS, FILE $SAMDB.SALES.ORDERS;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-5

MXCI Commands ALTER DEFINE Command
ALTER DEFINE Command
Considerations for ALTER DEFINE
Examples of ALTER DEFINE
The ALTER DEFINE command changes a DEFINE in the current MXCI session.
(ALTER DEFINE is similar to the TACL command ALTER DEFINE.)

You can use ALTER DEFINE only within an MXCI session.

define

is the name of the existing DEFINE to change. DEFINEs can be inherited from the
TACL process or the OSS shell and modified within MXCI. DEFINEs can also be
created within MXCI and then modified within MXCI. See ADD DEFINE Command
on page 4-4.

A DEFINE name must not be a reserved word. Otherwise, you cannot select data
using the DEFINE name of the table, view, or partition. See Appendix B, Reserved
Words.

CLASS MAP

specifies that the DEFINE name define is associated with the name of a table,
view, or partition. Use the DEFINE name in SQL statements as the logical name of
an object, altering the DEFINE when you want to point to a different physical entity.
MAP is the default CLASS.

FILE [\node.][[$volume.]subvol.]filename

specifies the Guardian physical name of a table, view, or partition. \node is the
name of a node on a NonStop system, $volume is the name of a disk volume,
subvol is the name of a subvolume, and filename is the name of a Guardian
disk file. If the physical name is not fully qualified, it is expanded by using the
current default node, volume, and subvolume.

The Guardian physical name must not include a reserved word. Otherwise, you
cannot select data by using the DEFINE name of the table, view, or partition. See
Appendix B, Reserved Words.

Considerations for ALTER DEFINE

Scope of ALTER DEFINE

When you end an MXCI session, DEFINEs that you inherited from the TACL process
or the OSS shell and modified within MXCI revert to the values they had when you
started MXCI. You cannot alter an inherited DEFINE within MXCI.

ALTER DEFINE define
 [,CLASS MAP], FILE [\node.][[$volume.]subvol.]filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-6

MXCI Commands Examples of ALTER DEFINE
Examples of ALTER DEFINE

 Alter a DEFINE that assigns the logical name =ORDERS to the table whose
Guardian physical name is $MYVOL.SALES.ORDERS:

ALTER DEFINE =ORDERS, FILE $MYVOL.SALES.ORDERS;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-7

MXCI Commands CD Command
CD Command
The CD command changes the current working session directory.

You can use CD only within an MXCI session.

directory

is an absolute or relative path name that specifies the new current working
directory. An absolute path name begins with a slash (/), the symbol representing
the root directory. A relative path name defines a path relative to the current
directory; it does not begin with /.

If you omit the name of the directory, the current working directory reverts to your
home directory.

Considerations for CD

End of an MXCI Session

When your MXCI session ends, the working directory in effect when you started MXCI
becomes the current working directory.

During an MXCI Session

During your MXCI session, you can use SHOW SESSION or its equivalent ENV to
display the name of the current working directory.

Examples of CD

 Set the current working directory:

cd /prjdir/testdir;

The next sequence produces the same result but first resets the current directory
to the root directory:

cd /;
cd prjdir/testdir;

 Set the current working directory to your home directory:

cd;

CD [directory]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-8

MXCI Commands DELETE DEFINE Command
DELETE DEFINE Command
The DELETE DEFINE command deletes a DEFINE in the current MXCI session.
(DELETE DEFINE is similar to the TACL command DELETE DEFINE and the OSS
shell command del_define.)

You can use DELETE DEFINE only within an MXCI session.

define

is the name of the existing DEFINE to delete.

Considerations for DELETE DEFINE

Scope of DELETE DEFINE

After the DELETE DEFINE command executes, the specified DEFINEs inherited from
the TACL process or the OSS shell are no longer in effect for the MXCI session,
although these DEFINEs remain in effect for the TACL process or OSS shell.

The current user cannot delete inherited DEFINEs.

Examples of DELETE DEFINE

 Delete a DEFINE for the logical name =ORDERS:

DELETE DEFINE =ORDERS;

DELETE DEFINE define
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-9

MXCI Commands DISPLAY USE OF Command
DISPLAY USE OF Command
Considerations for DISPLAY USE OF
Examples of DISPLAY USE OF

The DISPLAY USE OF command provides usage information on statically compiled
modules.

DISPLAY USE OF displays a list of modules and, for each module, a list of
dependent objects. If you specify the object 'object-name' clause, DISPLAY
USE OF displays a list of all dependent modules for that object.

NOE

directs NonStop SQL/MX to scan modules only in the local node and not the nodes
on the Expand network.

module-directory-path

is the path name of a directory, enclosed in single quotes.

module-directory-path is case-sensitive.

If you omit the module_dir clause, DISPLAY USE OF searches the default path,
/usr/tandem/sqlmx/USERMODULES.

You can look for similar values by specifying only part of the characters of
module-directory-path combined with “*” (asterisk) wild-card characters.

All of these specifications are valid:

[module_dir 'd1']
[module_dir './d1']
[module_dir '../d1']
[module_dir '/usr/tandem/sqlmx/USERMODULES/../d1']
[module_dir '*']
[module_dir '/*']
[module_dir '*/d1']
[module_dir '/*/d1']
[module_dir 'd1/*']
[module_dir '/d1/*']

display use of [NOE] [module_dir 'module-directory-path']
 [module 'module-name'] [object 'object-name']

Note. The current DISPLAY USE OF command does not support module names to be
searched inside the Guardian location (path names starting with /G/). The new
enhancement does not support the modules to be searched inside the Guardian location
and displays the error as:

*** ERROR[19031] Searching modules in Guardian location is not
supported.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-10

MXCI Commands Considerations for DISPLAY USE OF
module-name

is the name of the module to search for, enclosed in single quotes.
NonStop SQL/MX searches all modules matching the pattern in
/usr/tandem/sqlmx/USERMODULES or in the directory you specified with
module_dir.

module-name is case-sensitive.

You can look for similar values by specifying only part of the characters of
module-name combined with the “*” (asterisk) wild-card characters.

If you omit the module clause, DISPLAY USE OF will search for all modules.

All of these specifications are valid:

module 'CAT.SCH.M1'
module 'CAT.sch.*'
module 'CAT.*.*M'

object-name

is the fully qualified name of an object, such as a table or index name in SQL/MP
alias name or Guardian format, enclosed in single quotes. object-name can be
an SQL/MX object (tables, indexes, and SQL/MP aliases) or an SQL/MP object
(tables and indexes.) The node is required for SQL/MP objects.

object-name is case-sensitive. Wild-card characters are not allowed.

These are valid specifications:

object 'TPCC.OE.CUSTOMER'
object '\SAMDBCAT.$PERSNL.EMPLOYEE.SALARY'

If you omit the 'object object-name' clause, DISPLAY USE OF searches all
objects (tables and indexes) in the matching modules.

Considerations for DISPLAY USE OF

Object Types

DISPLAY USE OF tracks dependencies among these types of objects when they are
used with a static embedded SQL application written in either C, C++, COBOL, or
Java:

 Compiled modules produced by the SQL/MX compiler
 SQL/MX objects: tables, indexes, and SQL/MP aliases
 SQL/MP objects: tables, and indexes

Information about the dependencies among these object types is derived from the
Explain section of the compiled module.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-11

MXCI Commands Examples of DISPLAY USE OF
If the module could not be loaded because the module name is not valid or the module
name is valid but has been corrupted, NonStop SQL/MX displays an error. If the
module could not be loaded because the name is valid but the module cannot be
found, NonStop SQL/MX displays a warning.

Parallel Execution of DISPLAY USE OF

Suppose your system has many modules. When you run DISPLAY USE OF against all
modules on the system, it might take 30 minutes or more.

If you name the modules with a distinguishing prefix, such as an indication of what
application the module belongs to, you can use wild cards to run multiple instances of
DISPLAY USE OF that each target a different set of modules, in different CPUS. Each
of these instances will complete much more quickly. See the SQL/MX Installation and
Management Guide for a detailed example of this.

Examples of DISPLAY USE OF

 Display all modules and dependent objects:

>>display use of;
Module: CAT.SCH.CONSTRAINTM
 Index: \NODE1.$DATA08.ORDERS.TI(CAT.SCH.T)
Object: CAT.SCH.T

Module: CAT.SCH.CURSOMEM
Object: \NODE1.$DATA08.ORDERS.T071CH
 Object: \NODE1.$DATA08.ORDERS.T071M
 Object: \NODE1.$DATA08.ORDERS.T071S
 Object: \NODE1.$DATA08.ORDERS.T071T
 Object: \NODE1.$DATA08.ORDERS.T071U

Module: CAT.SCH.TESTE001M
Table: \NODE1.$DATA08.ORDERS.RSWORKS
...

(and so on for all modules).

 Display objects for all modules matching wild card “c*M”:

>>display use of module 'CAT.*.c*M';

Module: CAT.SCH.constraintM
Index: \NODE1.$DATA08.ORDERS.TI(CAT.SCH.T)
Table: CAT.SCH.T
Module: CAT.SCH.cursomeM
Table: \NODE1.$DATA08.ORDERS.T071CH
 Table: \NODE1.$DATA08.ORDERS.T071M
 Table: \NODE1.$DATA08.ORDERS.T071S
 Table: \NODE1.$DATA08.ORDERS.T071T
 Table: \NODE1.$DATA08.ORDERS.T071U
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-12

MXCI Commands Examples of DISPLAY USE OF
 Display use of a specified Guardian object in all modules:

>>display use of object '\NODE1.$DATA08.ORDERS.T1';

Object: \NODE1.$DATA08.ORDERS.T1
 Object: \NODE1.$DATA08.ORDERS.T1 Module:
TANDEM_SYSTEM_NSK.SCH.INS1M
Object: \NODE1.$DATA08.ORDERS.T1 Module:
TANDEM_SYSTEM_NSK.SCH.MULTCURM
Object: \NODE1.$DATA08.ORDERS.T1 Module:
TANDEM_SYSTEM_NSK.SCH.MULTIM
Object: \NODE1.$DATA08.ORDERS.T1 Module:
TANDEM_SYSTEM_NSK.SCH.STRUCTM Table: \NODE1.$DATA08.ORDERS.T1
Module: TANDEM_SYSTEM_NSK.SCH.T1INDM
Object: \NODE1.$DATA08.ORDERS.T1 Module:
TANDEM_SYSTEM_NSK.SCH.T1ROWSM

 Display use of a specified SQL/MP alias object in specified modules:

>>display use of module 'CAT.SCH.*' object 'CAT.SCH.T';

Object: CAT.SCH.T
 Table: CAT.SCH.T Module: CAT.SCH.CONSTRAINTM

 Display modules that could not be loaded:

>>display use of object '\NODE1.$DATA08.ORDERS.T1';

Object: \NODE1.$DATA08.ORDERS.T11
 Object: \NODE1.$DATA08.ORDERS.T11 Module:
TANDEM_SYSTEM_NSK.SCH.INS1M
Modules not loaded:
 Module: SUPER.SUPER.MXOLTP
Error: -8809
 Module: SUPER.SUPER.NOWAITOLTM
Error: -8809
 Module: SUPER.SUPER.UPDATETESTM
Error: -8809
 Module: SUPER.SUPER.UPDATETESTNOWAITOLTM
Error: -8809
 Module: junk
Error: -8809
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-13

MXCI Commands DISPLAY USE OF SOURCE
DISPLAY USE OF SOURCE
Examples of DISPLAY USE OF Source

The DISPLAY USE OF SOURCE Command displays the source SQL file (from which
the module was created) for the given module. The syntax and utility of the new
enhancement is as follows

NOE

directs NonStop SQL/MX to scan modules only in the local node and not the nodes
on the Expand network.

module-directory-path

is the path name of a directory, enclosed in single quotes.

module-directory-path is case-sensitive.

If you omit the module_dir clause, DISPLAY USE OF SOURCE searches the
default path, /usr/tandem/sqlmx/USERMODULES.

You can search for similar values by specifying only part of the characters of
module-directory-path combined with “*” (asterisk) wild-card characters.

All these specifications are valid:

[module_dir 'd1']
[module_dir './d1']
[module_dir '../d1']
[module_dir '/usr/tandem/sqlmx/USERMODULES/../d1']
[module_dir '*']
[module_dir '/*']
[module_dir '*/d1']
[module_dir '/*/d1']
[module_dir 'd1/*']
[module_dir '/d1/*']

module-name

is the name of the module to search for, enclosed in single quotes. NonStop
SQL/MX searches all modules matching the pattern in
/usr/tandem/sqlmx/USERMODULES or in the directory specified with module_dir.

module-name is case-sensitive.

DISPLAY USE OF [NOE] [MODULE_DIR 'module-directory-path']
SOURCE ['module-name']

Note. The current DISPLAY USE OF command does not support module names to be
searched inside the guardian location (that is, path names starting with /G/). Similarly, this
command does not support the modules to be searched inside the guardian location.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-14

MXCI Commands Examples of DISPLAY USE OF Source
You can search for similar values by specifying only part of the characters of
module-name combined with the “*” (asterisk) wild-card characters.

If you omit the module clause, DISPLAY USE OF will search for all modules.

All of these specifications are valid:

module 'CAT.SCH.M1'
module 'CAT.sch.*'
module 'CAT.*.*M'

Examples of DISPLAY USE OF Source

 Display all modules and their corresponding source SQL files:

>>display use of SOURCE;

Module: CAT.SCH.CONSTRAINTM
Source Name: /E/NODE1/usr/user1/file1.sql

Module: CAT.SCH.CURSOMEM
Source Name: /E/NODE2/usr/user1/file2.sql

Module: CAT.SCH.TESTE001M
Source Name: /E/NODE1/usr/user2/file3.sql

 Display source SQL files for all modules matching wild card “c*M”:

>>display use of source 'CAT.*.c*M';

Module: CAT.SCH.constraintM
Source Name: /E/NODE11/usr/user2/constraint.sql

Module: CAT.SCH.cursomeM
Source Name: /E/NODE2/customer.sql

>>display use of module_dir '/usr/user1/all/modulestorage'
source 'CAT.ALL.MODULE1';

Module: CAT.ALL.MODULE1
Source Name: /E/NODE11/usr/user2/constraint.sql

Note. If you do not specify the module-name, the command displays the source SQL file
name for all the modules.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-15

MXCI Commands DISPLAY USE OF ALL | INVALID MODULES
DISPLAY USE OF ALL | INVALID MODULES
Considerations for DISPLAY USE OF ALL | INVALID MODULES

Examples of ALL | INVALID MODULES

If the INVALID keyword is specified in the command, it displays all the dependent
modules along with their source SQL files for a given object that has become invalid
because of the DDL changes to the object, after the module was created. If the ALL
keyword is specified in the command, it displays all the dependent modules along with
their source SQL files for a given object.

NOE

directs NonStop SQL/MX to scan modules only in the local node and not the nodes
on the Expand network.

module-directory-path

is the path name of a directory, enclosed in single quotes.

module-directory-path is case-sensitive.

You can look for similar values by specifying only part of the characters of module-
name combined with the “*” (asterisk) wild-card characters.

All of these specifications are valid:

[module_dir 'd1']
[module_dir './d1']
[module_dir '../d1']
[module_dir '/usr/tandem/sqlmx/USERMODULES/../d1']
[module_dir '*']
[module_dir '/*']
[module_dir '*/d1']
[module_dir '/*/d1']
[module_dir 'd1/*']
[module_dir '/d1/*']

object-name

is the fully qualified name of an object, such as SQL/MX object (tables, indexes,
and SQL/MP aliases).

DISPLAY USE OF [NOE] [MODULE_DIR 'module-directory-path']
ALL|INVALID MODULES FOR 'object-name'

Note. The current DISPLAY USE OF command does not support module names to be
searched inside the guardian location (that is, path names starting with /G/). Similarly, this
command also does not support modules to be searched inside the guardian location.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-16

MXCI Commands Considerations for DISPLAY USE OF ALL | INVALID
MODULES
object-name is case-sensitive. Wild-card characters are not allowed.

A valid example is:

TPCC.OE.CUSTOMER

ALL | INVALID

If you specify the INVALID clause, only the modules that are invalid, because of
DDL operations performed on the object-name (after the module was created),
will be listed (along with their source SQL filename). However, if the ALL clause is
specified, there will be no timestamp comparison and all the modules that are
dependent on the object-name will be displayed along with their source SQL file
name.

Considerations for DISPLAY USE OF ALL | INVALID MODULES

Object Types

DISPLAY USE OF tracks dependencies among objects when they are used with a
static embedded SQL application written in either C, C++, COBOL, or Java:

 Compiled modules produced by the SQL/MX compiler

 SQL/MX objects: tables, indexes, and SQL/MP aliases

NonStop SQL/MX displays an error if a module cannot be loaded because the module
name is not valid, or the module name is valid but has been corrupted. Also, if the
module was compiled by an older compiler and does not contain the desired
information, like the source SQL file name that is needed for these new commands,
NonStop SQL/MX displays an error.
The error message in this case would be:

Note. The current design does not support SQL/MP aliases to know about the DDL changes
performed on the underlying SQL/MP object. Hence, this command can consider a module to
be valid even if the underlying SQL/MP object has been changed after the creation of the
module.

Version of these modules is incompatible for this command.

Note. All the modules that could not be read because of this error, are listed below the
above-mentioned error message.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-17

MXCI Commands Examples of ALL | INVALID MODULES
Examples of ALL | INVALID MODULES

 Display invalid modules along with their corresponding source SQL files for a given
object:

>>display use of INVALID MODULES FOR ‘CAT.SCH.TABLE1’;

Object: CAT.SCH.TABLE1

Module: CAT.SCH.MODTABLE1
Source Name: /E/NODE11/modulelist/module1.sql

Module: CAT.SCH.MODTABLE2
Source Name: /E/NODE11/modulelist/module2.sql

 Display invalid modules along with their corresponding source SQL files for a given
object when the search directory (where the modules need to be searched) is
specified

>>display use of module_dir ‘/usr/user1/module_storage’
INVALID MODULES FOR ‘CAT.SCH.TABLE2’;

Object: CAT.SCH.TABLE2

Module: CAT.SCH.MOD1
Source Name: /E/NODE11/modules/mod1.sql

 Display all modules along with their corresponding source SQL files for a given
object:

>>display use of ALL MODULES FOR ‘CAT.SCH.TABLE1;

Object: CAT.SCH.TABLE1

Module: CAT.SCH.MODTABLE1
Source Name: /E/NODE11/modulelist/module1.sql

Object: CAT.SCH.TABLE1

Module: CAT.SCH.MODTABLE3
Source Name: /E/NODE11/modulelist/module3.sql

 Display all modules along with their corresponding source SQL files for a given
object when the search directory (module_dir) is specified:

>>display use of module_dir ‘/usr/user1/module_storage’ ALL
MODULES FOR ‘CAT.SCH.TABLE2’;

Object: CAT.SCH.TABLE2

Module: CAT.SCH.MOD123
Source Name: /E/NODE11/modules/mod123.sql
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-18

MXCI Commands DISPLAY_QC Command
DISPLAY_QC Command
Considerations for DISPLAY_QC
Examples of DISPLAY_QC

The DISPLAY_QC command generates and displays selected data from the result of
the QUERYCACHE function. For a description of the result table of the QUERYCACHE
function, see the QUERYCACHE Function on page 8-134.

You can use DISPLAY_QC only within an MXCI session.

Considerations for DISPLAY_QC

Using QUERYCACHE and DISPLAY_QC

The DISPLAY_QC command provides a shortcut method of seeing the most commonly
used columns of the QUERYCACHE function.

Purpose of the QUERYCACHE Function Result

The query plan cache automatically collects statistics regarding its use. When invoked,
the QUERYCACHE table-valued function collects and returns these statistics in a
single row table. The statistics are reinitialized when an mxcmp session is started and
each mxcmp session maintains an independent set of statistics.

Result of the DISPLAY_QC Command

The DISPLAY_QC command displays these selected columns from the
QUERYCACHE function:

Note that some of the fields can take on the value OVERFLOW if the cache statistics
value is too large.

DISPLAY_QC

Column Name Type Source column in QUERYCACHE Function

AVGSIZE CHAR(8) AVG_PLAN_SIZE

CURSIZE CHAR(8) CURRENT_SIZE

MAXSIZE CHAR(8) MAX_CACHE_SIZE

NPINNED CHAR(8) NUM_PINNED

NRECOM CHAR(8) NUM_RECOMPILES

NRETR CHAR(8) NUM_RETRIES

NCACHE CHAR(8) NUM_CACHEABLE_PARSING +
NUM_CACHEABLE_BINDING

NHITS CHAR(8) NUM_CACHE_HITS_PARSING +
NUM_CACHE_HITS_BINDING
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-19

MXCI Commands Examples of DISPLAY_QC
Examples of DISPLAY_QC
>>SET SCHEMA SAMDBCAT.PERSNL;

--- SQL operation complete.

>SELECT * FROM EMPLOYEE;

Employee/Number First Name Last Name Dept/Num Job/Code Salary
-------------- -------------- -------------- -------- -------- ---------
 1 ROGER GREEN 9000 100 175500.00
 23 JERRY HOWARD 1000 100 137000.10
 29 JANE RAYMOND 3000 100 136000.00
.
.
.
--- 62 row(s) selected.

>>DISPLAY_QC;

AVGSIZE CURSIZE MAXSIZE NPINNED NRECOM NRETR NCACHE NHITS

------- -------- -------- -------- -------- -------- -------- --------

31 35 1024 0 0 0 1 0

--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-20

MXCI Commands DISPLAY_QC_ENTRIES Command
DISPLAY_QC_ENTRIES Command
Considerations for DISPLAY_QC_ENTRIES
Examples of DISPLAY_QC_ENTRIES

The DISPLAY_QC_ENTRIES command generates and displays selected data from the
result of the QUERYCACHEENTRIES function. For a description of the result table of
the QUERYCACHEENTRIES function, see the QUERYCACHEENTRIES Function on
page 8-138.

You can use DISPLAY_QC_ENTRIES only within an MXCI session.

Considerations for DISPLAY_QC_ENTRIES

Using QUERYCACHEENTRIES and DISPLAY_QC_ENTRIES

The DISPLAY_QC_ENTRIES command provides a shortcut display of the most
commonly used columns of the QUERYCACHEENTRIES function.

Purpose of the QUERYCACHEENTRIES Function Result

The query plan cache automatically collects statistics on each entry of the cache.
When invoked, the QUERYCACHEENTRIES table-valued function collects and returns
these statistics in a table with one row for each entry of the cache. The statistics are
reinitialized when an mxcmp session is started. Each mxcmp session maintains an
independent set of statistics.

Result of the DISPLAY_QC_ENTRIES Command

The DISPLAY_QC_ENTRIES command displays these selected columns from the
QUERYCACHEENTRIES function:

Note that some of the fields can take on the value OVERFLOW if the cache statistics
value is too large. In addition, the TEXT field can be truncated with only the first 36
characters displayed.

DISPLAY_QC_ENTRIES

Column Name Type
Source column in QUERYCACHEENTRIES
Function

ROWID CHAR(8) ROW_ID

TEXT CHAR(36) TEXT

NUMHITS CHAR(8) NUM_HITS

PH CHAR(1) PHASE

COMPTIME CHAR(8) COMPILATION_TIME

AVGHITTIME CHAR(8) AVERAGE_HIT_TIME
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-21

MXCI Commands Examples of DISPLAY_QC_ENTRIES
Examples of DISPLAY_QC_ENTRIES
>>SET SCHEMA SAMDBCAT.PERSNL;

--- SQL operation complete.

>SELECT * FROM EMPLOYEE;

Employee/Number First Name Last Name Dept/Num Job/Code Salary
-------------- -------------- -------------- -------- -------- ---------
 1 ROGER GREEN 9000 100 175500.00
 23 JERRY HOWARD 1000 100 137000.10
 29 JANE RAYMOND 3000 100 136000.00
.
.
.
--- 62 row(s) selected.

>SELECT * FROM DEPT;

Dept/Num Dept/Name Mgr Rpt/Dept Location
-------- ------------ ----- -------- ------------------
 1000 FINANCE 23 9000 CHICAGO
 1500 PERSONNEL 213 1000 CHICAGO
 2000 INVENTORY 32 9000 LOS ANGELES
.
.
.
--- 12 row(s) selected.

>SELECT * FROM JOB;

Job/Code Job Description
-------- ------------------

 100 MANAGER
 200 PRODUCTION SUPV
 250 ASSEMBLER
.
.
.
--- 10 row(s) selected.

>>DISPLAY_QC_ENTRIES;

ROWID TEXT NUMHITS PH COMPTIME AVGHTIME
------- --------------------------------- -------- -- -------- --------

0 select * from job; 0 B 88 0
1 select * from dept; 0 B 115 0
2 select * from employee; 0 B 1605 0

--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-22

MXCI Commands DISPLAY STATISTICS Command
DISPLAY STATISTICS Command
Considerations for DISPLAY STATISTICS
Examples of DISPLAY STATISTICS

DISPLAY STATISTICS displays statistics about the last DML or PREPARE statement
executed within the current MXCI session.

Use DISPLAY STATISTICS only within an MXCI session.

Considerations for DISPLAY STATISTICS

When you issue the DISPLAY STATISTICS command, MXCI displays:

DISPLAY STATISTICS

Start time Time when the query is first issued from MXCI.

End time Time when the query ends and results are displayed.

Elapsed time Equals the sum of the compile time and execution time.

Compile time Amount of time to prepare the query.

Execution time Amount of time used by the SQL executor to execute the
query.

Number of records
accessed and used

Records accessed gives a count of the number of records
accessed in each table. This count includes records examined
by the disk process, the file system, and the SQL executor.
Records used gives a count of records actually used by the
statement. For INSERT and FETCH operations, the count is
always 0 or 1. For UPDATE, DELETE, and SELECT
operations, the count can be greater than 1.

Disk I/Os Disk I/Os gives a count of the number of disk reads caused by
accessing this table.

Message count Message count gives a count of the number of messages sent
to execute operations on this table. For example, a FETCH
operation through a secondary index generally sends two
messages.

Message bytes Message bytes gives a count of the message bytes sent to
access this table.

Lock Lock displays flags indicating that lock waits occurred (W) or
that lock escalations occurred (E) for the table. If this field is
blank, no locks were obtained during the processing of this
statement.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-23

MXCI Commands Examples of DISPLAY STATISTICS
Examples of DISPLAY STATISTICS

 Suppose that this was the last DML command issued:

DELETE FROM invent.partsupp
WHERE suppnum NOT IN
 (SELECT suppnum FROM supplier
 WHERE state='TEXAS');

--- 41 row(s) deleted.

You can display statistics for this statement by using the DISPLAY STATISTICS
command:

DISPLAY STATISTICS;

Start Time 2001/08/22 09:24:50.188
End Time 2001/08/22 09:24:51.966
Elapsed Time 00:00:01.777
Compile Time 00:00:00.633
Execution Time 00:00:01.145

Table Name Records Records Disk Message Message Lock
 Accessed Used I/Os Count Bytes

SAMDBCAT.INVENT.PARTSUPP
 49 49 0 2 9056 0
SAMDBCAT.INVENT.SUPPLIER
 49 8 0 11 31304 0
SAMDBCAT.INVENT.PARTSUPP
 41 41 0 6 17144 0
"\MYSYS.$SAMDB".INVENT.XSUPORD
 41 41 2 9 23056 0
>>log;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-24

MXCI Commands ENV Command
ENV Command
ENV displays attributes of the current MXCI session. You can use ENV (or SHOW
SESSION Command) only within an MXCI session.

ENV displays these attributes:

ENV

CURRENT
DIRECTORY

Path name of the current working directory. You can change it with
the CD command.

HOME DIRECTORY Default directory.

LIST_COUNT Current list count.

LOG FILE Current log file.

MESSAGEFILE Current message file.

TERMINAL CHARSET Current character set

MESSAGEFILE LANG Language of the text in the message file.

MESSAGEFILE VRSN Version of the message file; its value is stored in the message.

SQL CATALOG Default catalog.

SQL SCHEMA Default schema.

TRANSACTION ID Transaction identifier of the current transaction if one is in
progress.

TRANSACTION STATE Transaction status (in progress or not in progress).

WARNINGS Current state of warnings (on or off).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-25

MXCI Commands Examples of ENV
Examples of ENV

 An ENV command and its output:

>>env;

Current Environment

CURRENT DIRECTORY /usr/manager/bin
HOME DIRECTORY /usr/manager
LIST_COUNT 4294967295
LOG FILE
MESSAGEFILE /usr/manager/bin/mxcierrors.cat
TERMINAL CHARSET ISO88591
MESSAGEFILE LANG US English
MESSAGEFILE VRSN {2003-12-11 13:56 NSK:SQUAW/SUPER.SUPER}
SQL CATALOG CAT
SQL SCHEMA SCH
TRANSACTION ID
TRANSACTION STATE not in progress
WARNINGS on
>>

 An ENV command showing the effect of the NSK NAMETYPE:

>>set nametype NSK;
>>env;

Current Environment

CURRENT DIRECTORY /usr/manager/bin
HOME DIRECTORY /usr/manager
LIST_COUNT 4294967295
LOG FILE
MESSAGEFILE /usr/manager/bin/mxcierrors.cat
TERMINAL CHARSET ISO88591
MESSAGEFILE LANG US English
MESSAGEFILE VRSN {2003-12-11 13:56 NSK:SQUAW/SUPER.SUPER}
SQL CATALOG CAT (\SQUAW.$SYSTEM)
SQL SCHEMA SCH (ZSDGTXNC)
TRANSACTION ID
TRANSACTION STATE not in progress
WARNINGS on
>>
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-26

MXCI Commands ERROR Command
ERROR Command
The ERROR command displays the error text associated with an error number.

You can use ERROR only within an MXCI session.

number

is an unsigned integer that identifies the error you want described.

BRIEF

displays the error text associated with the specified number. The ERROR
command returns the same information with or without this keyword.

Examples of ERROR

 Display the text of error 1000:

ERROR 1000;

*** SQLSTATE (Err): 42000 SQLSTATE (Warn): 01500
*** ERROR[1000] A syntax error occurred.

ERROR number [,BRIEF]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-27

MXCI Commands Exclamation Point (!) Command
Exclamation Point (!) Command
The exclamation point (!) command re-executes a previous MXCI command.

You can use ! only within an MXCI session.

text

specifies the text of the most recent use of a command. The command must have
been executed beginning with text, but text need be only as many characters
as necessary to identify the command. Leading blanks are ignored.

[-]number

is an integer that identifies a command in the history buffer. If number is negative,
it indicates the position of the command in the history buffer relative to the current
command; if number is positive, it is the ordinal number of a command in the
history buffer.

The HISTORY command displays the commands or statements in the history
buffer. See HISTORY Command on page 4-44.

To re-execute the immediately preceding command, enter an exclamation point without
specifying text or number. If you enter more than one MXCI command on a line, the
exclamation point re-executes only the last command on the line.

Examples of !

 Suppose that you have a series of statements you have executed. Re-execute the
last SELECT:

>>! SELECT;
>>SELECT * FROM samdbcat.invent.partsupp;

PARTNUM SUPPNUM PARTCOST QTY_RECEIVED
------- ------- ------------ ------------
 2000 95 1000.00 10
 2010 99 30.00 20
 2020 186 200.00 30
 ...

 Re-execute the second to the last command:

!-2;

 Re-execute the second command in the history buffer:

! 2;

! [text | [-]number]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-28

MXCI Commands EXIT Command
EXIT Command
The EXIT command ends an MXCI session and returns control to the process from
which you started MXCI.

You can use EXIT only within an MXCI session.

Considerations for EXIT

Effect of EXIT on Active Transactions

A transaction can be user-initiated or system-initiated. If you attempt to end an MXCI
session when either type of transaction is active, MXCI prompts you to specify whether
to commit or roll back the work of the transaction.

Examples of EXIT

 End an MXCI session:

>>EXIT;

End of MXCI Session

EXIT
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-29

MXCI Commands FC Command
FC Command
Examples of FC

The FC command allows you to edit and reissue an MXCI command in the history
buffer. You can display the commands in the history buffer by using the HISTORY
command. For more information about the history buffer, see HISTORY Command on
page 4-44.

You can use FC only within an MXCI session.

text

is the beginning text of a command in the MXCI history buffer. Case is not
significant in matching the text to a command.

[-]number

is either a positive integer that is the ordinal number of a command in the MXCI
history buffer or a negative integer that indicates the position of a command
relative to the most recent command.

Without text or number FC retrieves the most recent command.

A semicolon (;) is not required after the FC command.

As each line is displayed, you can modify it by entering these commands (in uppercase
or lowercase letters) on the line below the displayed command:

To specify more than one editing command on a line, separate the editing commands
with a double slash (//).

The end of a line terminates a command. After you edit the last line of the command,
MXCI displays the command again and allows you to edit it again. To stop editing and
execute the edited command, press Return without entering any editing commands.

To terminate a command without saving changes to the command, use the double
slash (//), and then press Return.

FC [text | [-]number]

D Deletes the character immediately above the letter D. Repeat to
delete more characters.

Icharacters Inserts characters in front of the character immediately above the
letter I.

Rcharacters Replaces existing characters one-for-one with characters,
beginning with the character immediately above the letter R.

characters Replaces existing characters one-for-one with characters,
beginning with the first character immediately above characters.
characters must begin with a nonblank character.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-30

MXCI Commands Examples of FC
Examples of FC

 Re-execute the most recent command that begins with SH:

>>FC SH;
>>SHOW SESSION;
..

Pressing Return executes the SHOW SESSION command.

 Correct a statement entered incorrectly:

>>SELECR * FROM MYTABLE;

*** ERROR[15001] A syntax error at or before:
selecr * from $boy000.persnl.employee;
 ^

>>FC;
>>SELECR * FROM MYTABLE;
.. T
>>SELECT * FROM MYTABLE;
..

Pressing Return executes the corrected SELECT statement.

 Modify a previously executed statement:

>>SELECT SUPPNAME, CITY, STATE
>+FROM INVENT.SUPPLIER
>+WHERE SUPPNUM = 4;

-- 0 row(s) selected.
>>FC;
>>SELECT SUPPNAME, CITY, STATE
..

>>FROM INVENT.SUPPLIER
..
>>WHERE SUPPNUM = 4;
..DDDDDDDDDDDDDDDDD
>>;
..

Pressing Return lists all of the suppliers.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-31

MXCI Commands GTACL Command
GTACL Command
Considerations for GTACL

Examples of GTACL

The GTACL command allows you to run the TACL commands, such as, FUP, PSTATE,
STATUS, TACL macros, programs, and utilities from the MXCI interface.

option

All filename and pathname arguments used with GTACL options must be specified
using the OSS pathname syntax.

operands

Operands used with the GTACL command must follow the GTACL option
specifications. The operands can be any TACL command.

For more information about the option and operands, run the following command at
the MXCI prompt:

SH man gtacl;

For information about the gtacl command in the OSS environment, see the
gtacl(1) reference page either online or in the Open System Services Shell and
Utilities Reference Manual.

Considerations for GTACL

The GTACL command writes the data to the standard output file. If you issue the LOG
command in the current MXCI session, the GTACL command still writes the data to the
standard output file, only the command will be logged.

Examples of GTACL

 To identify the users who have currently logged in, run the following command:

>>gtacl -c "who";

Note. The GTACL command is available only on systems running J06.09 and later J-series
RVUs and H06.20 and later H-series RVUs. This command is introduced to inherit the same
property as provided in the gtacl command of the Open System Services (OSS)
environment.

In the MXCI session, the GTACL command is not case-sensitive; it can be invoked using
GTACL or gtacl.

GTACL [option ...] [operands]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-32

MXCI Commands Examples of GTACL
The output is displayed as:

gtacl[9]: warning: unable to propagate all environment
variables
Home terminal: $ZTN0.#PTMMMM5
TACL process: \NSAA12.$Z1QA
Primary CPU: 2 (NSE-D)
Default Segment File: $DATA02.#0000085
 Pages allocated: 56 Pages Maximum: 1036
 Bytes Used: 99116 (4%) Bytes Maximum: 2121728
Current volume: $DATA02.LAKDGTST
Saved volume: $SYSTEM.SYSTEM
Userid: 255,255 Username: SUPER.SUPER Security: "NUNU"
Logon name: SUPER.SUPER

 To invoke a TACL executable file, run the following command:

>>gtacl

The output is displayed as:

gtacl[9]: warning: unable to propagate all environment
variables

TACL 1>

The TACL EXIT command stops the TACL command and returns to the MXCI
session.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-33

MXCI Commands GET NAMES OF RELATED NODES Command
GET NAMES OF RELATED NODES Command
The GET NAMES OF RELATED NODES command displays the names of the
transitive closure of nodes that are related to the specified node. A node is related to
another node if they have one or more catalogs in common. The specified node is
included in the output.

node

is the node name for which the list of related nodes is requested. The default is the
local node.

Error Conditions for GET NAMES OF RELATED NODES

An error for the GET NAMES OF RELATED NODES command occurs when:

 The specified node does not exist.

 The specified node cannot be accessed.

 One or more required nodes other than the specified node cannot be accessed.

 SQL/MX is not installed on the specified node.

 An invalid node name is specified.

Example of GET NAMES OF RELATED NODES

In this example, catalog CAT1 is visible on \LONDON and \GLASGOW, catalog CAT2 is
visible on \LONDON and \CPH, and catalog CAT3 is visible on \BERLIN and \CPH:

>> GET NAMES OF RELATED NODES FOR \LONDON;

NODES:\BERLIN
 \CPH
 \GLASGOW
 \LONDON

GET NAMES OF RELATED NODES [FOR node];
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-34

MXCI Commands GET NAMES OF RELATED SCHEMAS Command
GET NAMES OF RELATED SCHEMAS
Command

The GET NAMES OF RELATED SCHEMAS command displays the names of the
transitive closure of schemas related to the specified schema. Schemas are related if a
view, a trigger, or a constraint in one schema references an object in the other schema.
The specified schema is included in the output.

schema-name

is the ANSI name of the schema for which the list of related schemas is requested.
There is no default for the schema-name. However, the MXCI default catalog
applies.

Error Conditions for GET NAMES OF RELATED SCHEMAS

An error for the GET NAMES OF RELATED SCHEMAS command occurs when:

 The catalog of the specified schema is not visible on the local node.

 The specified schema does not exist.

 The specified schema has no metadata on the local node and the remote node(s),
where an automatic reference for the schema's catalog exists, cannot be
accessed.

 A related schema has no metadata on the local node and the remote node(s),
where an automatic reference for the schema's catalog exists, cannot be
accessed.

 An invalid schema name is specified.

Example of GET NAMES OF RELATED SCHEMAS

In this example, view CAT.SCH1.V1 references tables CAT.SCH2.T2 and
CAT.SCH3.T3. A referential integrity constraint exists between tables CAT.SCH3.TX
and CAT.SCH4.TY.

>> GET NAMES OF RELATED SCHEMAS FOR CAT.SCH1;

SCHEMAS:CAT.SCH1
 CAT.SCH2
 CAT.SCH3
 CAT.SCH4

GET NAMES OF RELATED SCHEMAS FOR schema-name;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-35

MXCI Commands GET NAMES OF RELATED CATALOGS
GET NAMES OF RELATED CATALOGS
The GET NAMES OF RELATED CATALOGS command displays the names of the
transitive closure of catalogs related to the specified catalog. Catalogs are related if a
view, a trigger, or a constraint in one catalog references an object in the other catalog.
The specified catalog is included in the output.

catalog-name

is the ANSI name of the catalog for which the list of related catalogs is desired.
There is no default for the catalog-name.

Error Conditions for GET NAMES OF RELATED CATALOGS

An error for the GET NAMES OF RELATED CATALOGS command occurs when:

 The specified catalog is not visible on the local node.

 The specified catalog has a manual reference on the local node, and the remote
node(s), where an automatic reference for the catalog exists, cannot be accessed.

 A related catalog has a manual reference on the local node, and the remote
node(s), where an automatic reference for the catalog exists, cannot be accessed.

 An invalid catalog name is specified.

Example of GET NAMES OF RELATED CATALOGS

In this example, view CAT1.SCH.V1 references tables CAT2.SCH.T2 and
CAT3.SCHA.T3. A referential integrity constraint exists between tables
CAT3.SCHB.TX and CAT4.SCH.TY.

>> GET NAMES OF RELATED CATALOGS FOR CAT1;

CATALOGS:CAT1
 CAT2
 CAT3
 CAT4

GET NAMES OF RELATED CATALOGS FOR catalog-name;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-36

MXCI Commands GET VERSION OF SYSTEM
GET VERSION OF SYSTEM
The GET VERSION OF SYSTEM command displays the SQL/MX Software Version
(MXV) information of a specified node. If no node is specified, the MXV of the local
node is returned.

node

is the node name for which the SQL/MX Software Version information is requested.
The default is the local node.

Error Conditions for GET VERSION OF SYSTEM

An errors for the GET VERSION OF SYSTEM command occurs when:

 The specified node does not exist.

 The specified node cannot be accessed.

 SQL/MX is not installed on the specified node.

 An invalid node name is specified.

Example of GET VERSION OF SYSTEM

>> GET VERSION OF SYSTEM \NODEX;

VERSION: 1200

GET VERSION OF SYSTEM [node];
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-37

MXCI Commands GET VERSION OF SCHEMA Command
GET VERSION OF SCHEMA Command
The GET VERSION OF SCHEMA command displays the schema version of the
specified schema.

schema-name

is the ANSI name of the schema for which the schema version is requested. There
is no default for the schema-name. However, the MXCI default catalog applies.

Error Conditions for GET VERSION OF SCHEMA

An error for the GET VERSION OF SCHEMA command occurs when:

 The catalog of the specified schema does not exist.

 The specified schema does not exist.

 The specified schema is not defined on the local node and the remote node(s),
where a full replica of the schema's catalog exists, cannot be accessed.

 An invalid schema name is specified.

Examples of GET VERSION OF SCHEMA

>> GET VERSION OF SCHEMA MYCAT.MYSCH;

VERSION: 1200

>> GET VERSION OF SCHEMA YOURDB;

VERSION: 3000

GET VERSION OF SCHEMA schema-name;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-38

MXCI Commands GET VERSION OF SYSTEM SCHEMA Command
GET VERSION OF SYSTEM SCHEMA
Command

The GET VERSION OF SYSTEM SCHEMA command displays the system schema
version of the specified node. If no node is specified, the system schema version of the
local node is displayed.

node

is the node name for which the system schema version information is requested.
The default is the local node.

Error Conditions for GET VERSION OF SYSTEM SCHEMA

An error for the GET VERSION OF SYSTEM SCHEMA command occurs when:

 The specified node does not exist.

 The specified node cannot be accessed.

 SQL/MX is not installed on the specified node.

 SQL/MX has not been initialized on the specified node.

 An invalid node name is specified.

Example of GET VERSION OF SYSTEM SCHEMA

>> GET VERSION OF SYSTEM SCHEMA ON \NODEY;

VERSION: 1000

GET VERSION OF SYSTEM SCHEMA [ON node];
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-39

MXCI Commands GET VERSION OF Object Command
GET VERSION OF Object Command
The GET VERSION OF Object command displays the object schema version (OSV)
and the object feature version (OFV) of the specified database object.

object-type

is the type of object for which version information is requested. The following are
the object types:

 TABLE

 INDEX

 VIEW

 CONSTRAINT

 TRIGGER

 STORED PROCEDURE

 MPALIAS

There is no default object type.

object-name

is the ANSI name of the object, of the specified type, for which the version
information is requested. There is no default for object-name. However, MXCI
default catalog and schema apply.

Error Conditions for GET VERSION OF Object

An error for the GET VERSION OF Object command occurs when:

 The object of the specified catalog does not exist.

 The schema of the specified object schema does not exist.

 The specified object is not defined on the local node and the remote node(s),
where a full reference of the object's catalog exists, cannot be accessed.

 An invalid object name is specified.

Example of GET VERSION OF Object

>> GET VERSION OF TABLE PROD.ORDERDB.ORDER_DETAIL;

OBJECT SCHEMA VERSION: 3000

OBJECT FEATURE VERSION: 1200

GET VERSION OF object-type object-name;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-40

MXCI Commands GET VERSION OF MODULE Command
GET VERSION OF MODULE Command
The GET VERSION OF MODULE command displays the version of the specified
module.

module-name

is the name of the module for which the module version information is requested.
There is no default for module-name, and MXCI default catalog and schema do
not apply. If the module exists in an OSS directory other than USERMODULES,
the full OSS path must be specified as the module name.

Error Conditions for GET VERSION OF MODULE

An error for the GET VERSION OF MODULE command occurs when:

 The specified module does not exist.

 The specified module cannot be accessed.

 An invalid module name is specified.

Example of GET VERSION OF MODULE

>> GET VERSION OF MODULE 'PROD.CUSTDB.CUSTOMER_MAINTENANCE';

VERSION: 1200

GET VERSION OF MODULE 'module-name';

Note. The module name must be specified within single quotes.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-41

MXCI Commands GET VERSION OF PROCEDURE Command
GET VERSION OF PROCEDURE Command
The GET VERSION OF PROCEDURE command displays the plan version of the
specified procedure in the specified module.

module-name

is the name of the module for which version information is desired. There is no
default for module-name and MXCI default catalog and schema do not apply. If a
module exists in metadata and a module with the same name also exists in the
USERMODULES OSS directory, the module in metadata is reported. If the module
exists in an OSS directory other than USERMODULES, the full OSS path must be
specified as module name.

procedure-name

is the name of the specific procedure in the module for which plan version
information is requested.

Error Conditions for GET VERSION OF PROCEDURE

An error for the GET VERSION OF PROCEDURE occurs when:

 The specified module does not exist.

 The specified procedure name does not exist in the specified module.

 The specified procedure name is invalid.

 The specified module cannot be accessed.

 An invalid module name is specified.

Example of GET VERSION OF PROCEDURE

>> GET VERSION OF PROCEDURE ('/usr/sqlmods/CAT.SCH.MOD',
'PROC47');

VERSION: 1200

GET VERSION OF PROCEDURE ('module-name','procedure-name');

Note. The module name must be specified in single quotes.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-42

MXCI Commands GET VERSION OF STATEMENT Command
GET VERSION OF STATEMENT Command
The GET VERSION OF STATEMENT command displays the plan version of the
specified prepared statement.

statement-name

is the name of a prepared statement for which plan version information is
requested. There is no default for statement-name. The statement must have
been previously prepared in the same MXCI session as the one where the GET
VERSION command is issued.

Error Conditions for GET VERSION OF STATEMENT

An error for the GET VERSION OF STATEMENT command occurs when:

 The specified statement does not exist.

 An invalid statement name is specified.

Example of GET VERSION OF STATEMENT

>> prepare myquery from select * from cat.sch.t22;

>> GET VERSION OF STATEMENT myquery;

VERSION: 1200

GET VERSION OF STATEMENT statement-name;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-43

MXCI Commands HISTORY Command
HISTORY Command
The HISTORY command displays recently executed MXCI commands, identifying
each command by a number you can use to re-execute or edit the command with FC.
See FC Command on page 4-30.

You can use HISTORY only within an MXCI session.

number

is the number of commands to display. The default number is 10.

You can use the FC command to edit and re-execute a command in the history buffer,
or use the exclamation point command (!) to re-execute a command without modifying
it.

Examples of HISTORY

 Display the three most recent MXCI commands and use FC to redisplay one:

>>HISTORY 3;

1> SHOW SESSION;
2> SELECT * FROM PERSNL.DEPT;
3> HISTORY 3;
>>FC 2;
>>SELECT * FROM PERSNL.DEPT;
..

Now you can use the edit capabilities of FC to modify and execute a different
SELECT statement.

HISTORY [number]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-44

MXCI Commands INFO DEFINE Command
INFO DEFINE Command
INFO DEFINE displays the logical and physical names of DEFINEs in the current
MXCI session. (INFO DEFINE is similar to the TACL command INFO DEFINE and the
OSS shell command info_define.)

ALL

displays information about all the DEFINEs. If you do not specify ALL, the INFO
DEFINE command displays information about the current class MAP DEFINEs,
which are associated with the names of tables, views, or partitions.

Examples of INFO DEFINE

 Display information about the current class MAP DEFINEs:

>> INFO DEFINE;

=ORDERS
$SAMDB.SALES.ORDERS
=CUSTOMER
$SAMDB.SALES.CUSTOMER
=ODETAIL
$SAMDB.SALES.ODETAIL
=PARTS
$SAMDB.SALES.PARTS

 Display information about all the DEFINES:

>> INFO DEFINE ALL;

=ORDERS, class MAP, FILE \MYSYS\$SAMDB.SALES.ORDERS
=CUSTOMER, class MAP, FILE \MYSYS\$SAMDB.SALES.CUSTOMER
=ODETAIL, class MAP, FILE \MYSYS\$SAMDB.SALES.ODETAIL
=PARTS, class MAP, FILE \MYSYS\$SAMDB.SALES.PARTS
=_DEFAULTS, class DEFAULTS, VOLUME $SYSTEM.NOSUBVOL

INFO DEFINE [ALL]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-45

MXCI Commands INVOKE Command
INVOKE Command
Examples of INVOKE

The INVOKE command generates a record description that corresponds to a row in the
specified table or view. The record description includes a data item for each column in
the table or view except the SYSKEY column; it includes the SYSKEY column of a
view only if the view explicitly listed the column in its definition.

You can use this version of INVOKE only within an MXCI session.

table

names the table or view for which to generate a record description.

Examples of INVOKE

 Generate a record description of table EMPLOYEE:

INVOKE EMPLOYEE;
-- Definition of table EMPLOYEE
-- Definition current Mon Apr 24 16:03:04 2000
 (
 EMPNUM NUMERIC(4, 0) UNSIGNED NO DEFAULT
 HEADING 'Employee/Number' NOT NULL NOT DROPPABLE
 , FIRST_NAME CHAR(15) CHARACTER SET ISO88591 COLLATE
 DEFAULT DEFAULT ' '
 HEADING 'First Name' NOT NULL NOT DROPPABLE
 , LAST_NAME CHAR(20) CHARACTER SET ISO88591 COLLATE
 DEFAULT DEFAULT ' '
 HEADING 'Last Name' NOT NULL NOT DROPPABLE
 , DEPTNUM NUMERIC(4, 0) UNSIGNED NO DEFAULT
 HEADING 'Dept/Num' NOT NULL NOT DROPPABLE
 , JOBCODE NUMERIC(4, 0) UNSIGNED DEFAULT NULL
 HEADING 'Job/Code'
 , SALARY NUMERIC(8, 2) UNSIGNED DEFAULT NULL
 HEADING 'Salary'
)

--- SQL operation complete.

INVOKE table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-46

MXCI Commands LOG Command
LOG Command
Considerations for LOG
Examples of LOG

The LOG command starts or stops MXCI logging to a disk file. When logging is in
effect, MXCI writes the commands you enter to a file (in addition to executing them)
and writes the output of the commands to the file.

Use LOG only within an MXCI session.

log_file

is the name of a file to which MXCI writes the commands you use and the
command output. LOG closes the previous log file, if any, and opens log_file as
the new log file. The path name can be either an absolute path name or a relative
path name.

To stop logging, omit log_file.

[COMMAND[S]]

logs only MXCI input, not output or prompts.

[RESULT]

logs the output of a command or query, all success and error messages, and row
count information that are entered from an MXCI session. It does not log the
entered commands or queries.

[RESULT ONLY]

logs only the output of a command or query from an MXCI session. The ONLY
option must be used only with the RESULT option. If it is used with the
COMMAND[S] option, a syntax error is displayed.

CLEAR

clears log_file before logging. If you omit CLEAR, LOG appends the new log to
existing data in log_file.

LOG [log_file {[COMMAND[S]] | [RESULT [ONLY]]} [CLEAR]]

Caution. To ensure that log information is retained for an MXCI session, use a unique name
for the log file. For more information, see Concurrent MXCI Sessions on page 4-48.

Note. The RESULT and ONLY options are available only on systems running J06.09 and
later J-series RVUs and H06.20 and later H-series RVUs. The ONLY option does not
display the rows selected, operation complete status, and the result headings. The ONLY
option writes the statistics, control, and explain outputs to the log_file.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-47

MXCI Commands Considerations for LOG
Considerations for LOG

Contents of the Log File

The log file includes all lines you enter except FC editing lines, including the final
version of any line you edit by using FC. It also includes the prompts for lines that you
enter and all text that MXCI displays or prints in response to those lines, including
output from commands and diagnostic messages—except for output from the CD, FC,
HISTORY, LS, SH, GTACL, and ! commands.

Concurrent MXCI Sessions

If two or more concurrent MXCI sessions use the same log_file name in a LOG
command, each MXCI session writes information to the same log file. After the log file
is closed, you cannot determine which information was written by each MXCI session.
To ensure that log information is retained for a session, use a unique name for each
log file.

Examples of LOG

 Start logging only commands to an OSS text file in the current directory, clearing
the file first:

>>LOG myfile COMMANDS CLEAR;

 Stop logging:

>>LOG;

 Start logging with CLEAR option:

>>LOG myfile CLEAR;
>>select * from mytable;
>>select * from tab;
>>LOG;

The log file displays the following information:

>>select * from mytable;

 I

 1
 2
 3
 4
 5

 --- 5 row(s) selected.
>>select * from tab;

*** ERROR[4082] Table, view or stored procedure CAT.SCH.TAB
does not exist or is inaccessible.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-48

MXCI Commands Examples of LOG
*** ERROR[8822] The statement was not prepared.

>>LOG;

 Start logging only commands:

>>LOG myfile COMMANDS CLEAR;
>>select * from mytable;
>>select * from tab;
>>LOG;

The log file displays the following information:

>>select * from mytable;
>>select * from tab;
>>LOG;

 Start logging using RESULT option:

>>LOG myfile RESULT CLEAR;
>>select * from mytable;
>>select * from tab;
>>LOG;

The log file displays the following information:

 I

 1
 2
 3
 4
 5

 --- 5 row(s) selected.

*** ERROR[4082] Table, view or stored procedure CAT.SCH.TAB
does not exist or is inaccessible.

*** ERROR[8822] The statement was not prepared.

 Start logging using RESULT and ONLY options:

>>LOG myfile RESULT ONLY CLEAR;
>>select * from mytable;
>>select * from tab;
>>LOG;

The log file displays the following information:

 1
 2
 3
 4
 5
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-49

MXCI Commands Examples of LOG
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-50

MXCI Commands LS Command
LS Command
Considerations for LS
Examples of LS

LS lists file statistics.

You can use LS only within an MXCI session.

-abcCdfFgilmnopqrRstux1

indicates some of the standard flags available to you through your platform’s shell
ls command, as follows:

LS [-abcCdfFgilmnopqrRstux1] [file | directory]...

-a Lists all entries in directory, including those beginning with dot (.)

-b Displays nonprintable characters in octal notation.

-c Uses the time of last property change, mode change, and so on, for sorting
(when used with -t option) or for displaying (when used with -l, -g, -n, -o, or -u
options).

-C Sorts output vertically in a multicolumn format, the default.

-d Displays only the information for the directory that is named, rather than for its
contents. This option is useful with the -l option to get the status of a directory.

-f This option turns off the -l, -t, -s, and -r options and turns on the -a option; the
option uses the order in which entries appear in the directory.

-F Puts a / (slash) after each file name if the file is a directory and an * (asterisk)
after each file name if the file can be executed.

-g Displays the same information as the -l option, except for the owner, which is
not displayed.

-i Displays the inode number in the first column of the report for each file.

-l Displays the mode, number of links, owner, group, size, time of last
modification for each file, and file name.

-m Uses stream output format (a comma-separated series).

-n Displays the same information as the -l option, except that it displays user and
group IDs instead of user and group names.

-o Displays the same information as the -l option, except for the group, which is
not displayed. The -n option overrides the -o option.

-p Puts a slash after each file name if that file is a directory.

-q Displays nonprintable characters in file names as a ? (question mark)
character if output is sent to the monitor (the default destination).

-r Reverses the order of the sort, giving reverse collation, or the oldest first, as
appropriate.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-51

MXCI Commands Considerations for LS
To display all the command-line arguments that your shell supports, at the MXCI
prompt, type:

sh man ls;

A reference page of the LS command explains the command-line arguments that
your shell supports. At the end of the reference page, the MXCI prompt
automatically appears.

Considerations for LS

Output

The LS command writes to the standard output file the names of the specified files,
along with any other information you ask for by specifying options. If logging is
enabled—that is, you have issued the LOG command in the current session—the LS
command still writes to the standard output file, not to the log file.

Defaults

If you do not specify a file or directory, LS displays the files in the current directory. By
default, LS displays information by file name.

Examples of LS

 Change to the /usr/jbrook directory and display the files in the directory:

>>cd /usr/jbrook;
>>ls;
logjb myfile sh_history

 Display detailed information about the files named logjb and myfile in the
/usr/jbrook directory:

>>ls -l logjb myfile;
-rw-rw-rw- 1 PUBS.JBROOK PUBS 4856 Mar 6

-R Lists all subdirectories recursively.

-s Gives space used in 512-byte units (including indirect blocks) for each entry.

-t Sorts by time of last modification (latest first) instead of by name, before
sorting the operands by the collating sequence.

-u Uses the time of the last access instead of the time of the last modification for
sorting (when used with the -t option) or for displaying (when used with the -l
option). The -u option has no effect unless used with either the -t or -l option or
both.

-x Sorts output horizontally in a multicolumn format.

-1 Forces an output format of one entry per line: this is the default format when
output is not directed to a monitor.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-52

MXCI Commands Examples of LS
13:03 logjb
-rw-rw-rw- 1 PUBS.JBROOK PUBS 18961 Feb 8
14:11 myfile

 Display detailed information about the directory named /usr:

>>ls -d -l /usr;
drwxrwxr-x 1 SUPER.SUPER SUPER 4096 May 3 1999
/usr

Without the -d option, this LS command lists detailed information about all the files
in the directory named /usr.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-53

MXCI Commands MODE Command
MODE Command
MODE selects the MXCI command mode.

MXCS

specifies that commands that follow will be sent to MXCS.

REPORT

specifies that commands that follow will be sent to the Report Writer. For details on
the Report Writer, see the SQL/MX Report Writer Guide.

SQL

specifies that commands that follow will be sent to NonStop SQL/MX. When you
begin an MXCI session, the mode is set to SQL. For details on MXCI, see MXCI
Session on page 1-2.

MODE { MXCS | REPORT | SQL }
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-54

MXCI Commands MXCI Command
MXCI Command
MXCI is the command that starts an MXCI session from the OSS environment.

filename

specifies the file from which MXCI reads the commands.

The file must either be closed or open for read only.

The file must be an OSS text file (an odd-unstructured file, type 180) or a file
specified with a Guardian path name which is an EDIT file (type 101).

If the -i option is specified, MXCI stops the session immediately after executing the
commands in the file.

If the -s or -script option is specified, MXCI session waits for user inputs after
executing the commands in the file.

-i, -s, and -script options are mutually exclusive.

Examples of MXCI Command

 Start the console version of MXCI by using the MXCI command:

/mxutil/sys 1>mxci

Hewlett-Packard NonStop(TM) SQL/MX Conversational Interface 2.3
(c) Copyright 2007 Hewlett-Packard Development Company, LP.
>>

You can stop an MXCI session by using the EXIT command. See EXIT Command
on page 4-28.

 For command:

mxci -i input.sql

The contents of input.sql could be:

drop table tab;
create table tab(a INT);
insert into tab values(10);
select * from tab;

The results of input file can be stored in another file using:

mxci -i inputfile >>outputfile

For example:

mxci [-i filename] | [{ -s | -script } filename]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-55

MXCI Commands Examples of MXCI Command
mxci -i input.sql >>result

 Example of MXCI command-line option -s

mxci -s inputfile.sql

 The contents of the inputfile.sql can be:

Create catalog tempcat;
Create schema tempcat.tempsch;
Set schema tempcat.tempsch;
Create table sampletab(a int);
Insert into sampletab values(10);
Select * from sampletab;

 The result after running the command:

Hewlett-Packard NonStop(TM) SQL/MX Conversational
Interface 3.2.1
(c) Copyright 2003, 2004-2013 Hewlett-Packard Development
Company, LP.
>>Create catalog tempcat;

--- SQL operation complete.
>>Create schema tempcat.tempsch;

--- SQL operation complete.
>>Set schema tempcat.tempsch;

--- SQL operation complete.
>>Create table sampletab(a int);

--- SQL operation complete.
>>Insert into sampletab values(10);

--- 1 row(s) inserted.
>>Select * from sampletab;

A

 10

--- 1 row(s) selected.

>>
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-56

MXCI Commands OBEY Command
OBEY Command
Considerations for OBEY
Examples of OBEY

The OBEY command executes MXCI commands and SQL statements from a file
exactly as if you had entered the commands and statements from within an MXCI
session.

You can use OBEY only within an MXCI session.

command-file

is the path name of a file that contains MXCI commands and SQL statements to be
executed by the OBEY command.

command-file must be an OSS text file (an odd-unstructured file, type 180) or a
file specified with a Guardian path name that is an EDIT file (type 101). The file is
sometimes referred to as an OBEY command file.

An OBEY command file must either be closed at the time you execute OBEY or
open for read only. OBEY opens the file if necessary, executes the commands and
statements, and then closes the file.

section-name

is the name of a section within command-file to execute.

If you specify section-name, OBEY executes the commands between the
header line for the specified section and the header line for the following section
(or the end of the file).

If you omit section-name, OBEY executes the entire file.

Considerations for OBEY

Specifying Sections in Command Files

Specify sections within a command file by including a section header that starts in
column 1 at the beginning of each section:

?SECTION section-name

The section-name is a regular SQL identifier that is the name of the section. It
cannot begin with a number or underscore. Each section name should be unique within
its file, because MXCI executes only the first section it finds that has the name you
specify in an OBEY command.

OBEY command-file [(section-name)]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-57

MXCI Commands Examples of OBEY
Effect of the MXCI Break Key

Typically, if you press the MXCI break key (Ctrl-c, Ctrl-Break, or the OutsideView Break
icon) while MXCI is executing commands and statements from an OBEY command
file, the current command or statement is interrupted, the processing of the OBEY
command file is terminated, and the transaction might be rolled back. Execute the
SHOW SESSION command to determine the status of the transaction.

Examples of OBEY

 Suppose that the EXAMPLES file is an OSS file in the current directory. Execute all
statements and commands in the EXAMPLES file:

>>OBEY EXAMPLES;

 Suppose that the EXAMPLES file is a Guardian file in $DATA06.TEMPJB. Execute
the statements and commands only in the SETFCNS section of the EXAMPLES
file:

>>OBEY /G/data06/tempjb/examples (setfcns);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-58

MXCI Commands REPEAT Command
REPEAT Command
The REPEAT command re-executes a previous MXCI command.

You can use REPEAT only within an MXCI session.

text

specifies the text of the most recent use of a command. The command must have
been executed beginning with text, but text need be only as many characters
as necessary to identify the command. Leading blanks are ignored.

[-]number

is an integer that identifies a command in the history buffer. If number is negative,
it indicates the position of the command in the history buffer relative to the current
command; if number is positive, it is the ordinal number of a command in the
history buffer.

The HISTORY command displays the commands or statements in the history
buffer. See HISTORY Command on page 4-44.

To re-execute the immediately preceding command, enter REPEAT without specifying
text or number. If you enter more than one MXCI command on a line, the REPEAT
command re-executes only the last command on the line.

Examples of REPEAT

 Suppose that you have a series of statements you have executed. Re-execute the
last SELECT:

>>REPEAT SELECT;
>>SELECT * FROM samdbcat.invent.partsupp;

PARTNUM SUPPNUM PARTCOST QTY_RECEIVED
------- ------- ------------ ------------
 2000 95 1000.00 10
 2010 99 30.00 20
 2020 186 200.00 30
 ...

 Re-execute the second to the last command:

REPEAT -2;

 Re-execute the second command in the history buffer:

REPEAT 2;

REPEAT [text | [-]number]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-59

MXCI Commands RESET PARAM Command
RESET PARAM Command
The RESET PARAM command is used to clear all parameter values or a specified
parameter value within an MXCI session.

You can use RESET PARAM only within an MXCI session.

?param-name

is the name param-name of the parameter for which the value is specified. If you
do not specify param-name, all of the parameter values in the current MXCI
session are cleared. If you want to clear several parameter values but not all, you
must use a separate RESET PARAM statement for each parameter.

See MXCI Parameters on page 6-77.

Examples of RESET PARAM

 Before you can execute a SELECT statement with parameters, you must specify
the parameter values. Clear all parameter values so that unexpected values are
not provided during execution of the FINDSUPP file.

RESET PARAM;

SET PARAM ?ST 'TEXAS';
SET PARAM ?PN 3210;

Execute the SELECT statement as follows:

SELECT S.suppnum, suppname
FROM sales.supplier S,
 invent.partsupp PS
WHERE S.suppnum = PS.suppnum AND
 partnum = ?PN AND state = ?ST;

SUPPNUM SUPPNAME
------- ------------------
 15 DATADRIVE CORP

--- 1 row(s) selected.

 Reset only one parameter:

Display the parameters:

>>SHOW PARAM;

PARAM ?ST TEXAS
PARAM ?PN 3210

RESET PARAM [?param-name]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-60

MXCI Commands Examples of RESET PARAM
Clear the ?ST parameter and display the parameters:

>>RESET PARAM ?ST;
>>SHOW PARAM;

PARAM ?PN 3210

Note that NonStop SQL/MX displays only the ?PN parameter.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-61

MXCI Commands SET LIST_COUNT Command
SET LIST_COUNT Command
The SET LIST_COUNT command is used to set the maximum number of rows to be
displayed in SELECT statements executed after this command.

You can use SET LIST_COUNT only within an MXCI session.

num-rows

is a positive integer that specifies the maximum number of rows of data to be
displayed from the execution of SELECT statements after the execution of this
command.

To reset the number of displayed rows, issue SET LIST_COUNT without specifying
the number of rows. The system-defined default setting is 4,000,000. To terminate
the listing of rows, use the MXCI break key.

Considerations for SET LIST_COUNT

Range for Number of Rows

The allowable values for the list count are from 0 to the maximum value of an unsigned
integer. If the specified value is 0, the number of retrieved rows is zero. If the specified
value is greater than the maximum value of an unsigned integer, the number of
retrieved rows is that maximum value.

Examples of SET LIST_COUNT

 Specify the number of rows to display:

SET LIST_COUNT 5;

SELECT empnum, first_name, last_name
FROM persnl.employee
ORDER BY empnum;

EMPNUM FIRST_NAME LAST_NAME
------ --------------- --------------------
 1 ROGER GREEN
 23 JERRY HOWARD
 29 JANE RAYMOND
 32 THOMAS RUDLOFF
 39 KLAUS SAFFERT

--- 5 row(s) selected.LIST_COUNT was reached.

SET LIST_COUNT [num-rows]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-62

MXCI Commands SET PARAM Command
SET PARAM Command
Considerations for SET PARAM
Examples of SET PARAM

The SET PARAM command is used to set a parameter value within an MXCI session.
The value is used for queries that contain the associated parameter name. A separate
SET PARAM is required for each parameter. See MXCI Parameters on page 6-77.

You can use SET PARAM only within an MXCI session.

?param-name

is the name of the parameter for which the value is specified. Parameter names
are case-sensitive—for example, the parameter ?pn is not equivalent to the
parameter ?PN.

char-set-name

is the character set name, preceded by an underscore (_) character. Valid values
are ISO88591, UCS2, KANJI or KSC5601. If you do not enter char-set-name,
the default is ISO88591.

You can use an ISO88591 param in an SQL query as a non-character typed value
(such as INT). You can use a UCS2 param in an SQL query as either a non
character typed value or an ISO88591 value. You can use a param with a
character set that you have specified as a character value in an SQL query where
the character value is expected to be of that character set.

param-value

is a numeric or character literal that specifies the value for the parameter. If you
specify char-set-name, you must enclose param-value in single quotes.
Otherwise, if param-value is a character literal and the target column is
character, you do not have to enclose it in single quotation marks; its data type is
determined from the data type of the column to which the literal is assigned. If you
do not specify a value, NonStop SQL/MX uses a string with a length of zero for the
parameter. You can enter the value in hexadecimal format.

NULL

represents the null value. You must enter it in uppercase letters.

SET PARAM ?param-name [[_char-set-name] param-value | NULL]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-63

MXCI Commands Considerations for SET PARAM
Considerations for SET PARAM

Using With PREPARE and EXECUTE

If you use the PREPARE statement to compile an SQL statement, you must specify all
of the parameters in the prepared SQL statement with the SET PARAM command prior
to issuing the EXECUTE statement.

Examples of SET PARAM

 Set param ?x to ISO88591 string 'abc':

set param ?x _iso88591'abc'

or

set param ?x 'abc'

 Set param ?y to UCS2 string 'abc':

set param ?y _ucs2'abc'

 Set param ?z to KANJI string '1234':

set param ?z _kanji'1234'

 Set param ?x to ISO88591 string 'abc':

set param ?x _iso88591 x'61 62 63'

 Set param ?y to UCS2 string 'abc':

set param ?y _ucs2 x'0061 0062 0063'

 Set param ?z to KANJI string '123':

set param ?z _kanji x'8250 8251 8253'

 Suppose that SET PARAM commands are specified as:

SET PARAM ?ST 'TEXAS';
SET PARAM ?PN 3210;

Execute this query.

SELECT S.suppnum, suppname
FROM invent.supplier S,
 invent.partsupp PS
WHERE S.suppnum = PS.suppnum AND
 partnum = ?PN AND state = ?ST;

Supp/Num Supplier Name
-------- ------------------
 15 DATADRIVE CORP

--- 1 row(s) selected.

You can set values for another state and part number and rerun the query.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-64

MXCI Commands Examples of SET PARAM
 The PROJECT table has a SHIP_TIMESTAMP column. This UPDATE statement
uses the character literal in the ?SHIP parameter to set the value:

SET PARAM ?SHIP '1998-04-03 21:05:36.143';
UPDATE persnl.project
 SET ship_timestamp = CAST (?SHIP AS TIMESTAMP(3));

 The PROJECT table has an EST_COMPLETE column. This UPDATE statement
uses the character literal in the ?EST parameter to set the value:

SET PARAM ?EST 60;
UPDATE persnl.project
 SET est_complete = CAST (?EST AS INTERVAL DAY);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-65

MXCI Commands SET SHOWSHAPE Command
SET SHOWSHAPE Command
Considerations for SET SHOWSHAPE
Examples of SET SHOWSHAPE

The SET SHOWSHAPE command allows you to display access plans in effect. The
effect of SET SHOWSHAPE is to generate the output of the SHOWSHAPE command
for multiple SQL statements. See SHOWSHAPE Command on page 4-110.

You can use SET SHOWSHAPE only within an MXCI session.

ON

displays the access plans in effect for executed queries. The control query shape
is displayed immediately before the query output.

OFF

turns off the display of access plans.

INFILE infile-name OUTFILE outfile-name

allows you to specify the name of an input file of SQL statements and the name of
an output file that is the result of executing the input file. The output file includes
the control query shape for each query in the input file.

infile-name

is the full or relative path name of an input file that contains MXCI commands
and SQL statements to be executed by an OBEY command. See OBEY
Command on page 4-57.

outfile-name

is the full or relative path name of an output file to which are written the results
of queries and their access plans. The query output is the result of the
execution of the input OBEY command file infile-name. The control query
shape for each query is displayed immediately before the query text.

SET SHOWSHAPE showshape-option

showshape-option is:
 ON
 | OFF
 | INFILE infile-name OUTFILE outfile-name

Note. The default setting when you start MXCI is SHOWSHAPE OFF.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-66

MXCI Commands Considerations for SET SHOWSHAPE
Considerations for SET SHOWSHAPE

Default Control Query Shape

For those statements that do not have a shape—for example, the CREATE SCHEMA
statement—a control query shape (CQS) of the form CONTROL QUERY SHAPE
ANYTHING is issued.

CONTROL QUERY SHAPE ANYTHING resets the effect of any preceding CQSs. Its
use is especially important when CQSs are being generated from an input file of
commands and statements.

Examples of SET SHOWSHAPE

 To turn on the display of access plans, enter:

SET SHOWSHAPE ON;

SELECT * FROM persnl.job
WHERE jobcode >= 500;

control query shape partition_access(
scan('JOB', forward, blocks_per_access 1, mdam off));

Job/Code Job Description
-------- ------------------
 500 ACCOUNTANT
 600 ADMINISTRATOR
 900 SECRETARY

--- 3 row(s) selected.

 To turn on the display of access plans, enter:

SET SHOWSHAPE ON;

SELECT * FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.DEPTNUM = DEPT.DEPTNUM
 AND EMPLOYEE.LAST_NAME = 'SMITH';

control query shape merge_join(sort(
partition_access(scan('EMPLOYEE', forward,
blocks_per_access 1, mdam off))),
partition_access(scan('DEPT', forward,
blocks_per_access 3, mdam off)));

Employee/Number First Name Last Name Dept/Num ...
--------------- ------------ -------------- -------- ...
 89 PETER SMITH 3300 ...

--- 1 row(s) selected.

Use this displayed plan to implement a forced plan. For more information about
forcing plans, see CONTROL QUERY SHAPE Statement on page 2-62.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-67

MXCI Commands Examples of SET SHOWSHAPE
 To turn off the display of access plans, enter:

SET SHOWSHAPE OFF;

 To write results of queries, which are provided in an input file named examples,
and their plans to an output file named plans, enter:

SET SHOWSHAPE INFILE /G/data06/judy/examples
 OUTFILE plans;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-68

MXCI Commands SET STATISTICS Command
SET STATISTICS Command
The SET STATISTICS command allows you to specify whether to display statistics
after each SQL statement executes.

ON

displays statistics automatically after each statement executes.

OFF

turns off the automatic display of statistics.

For a description of the statistics displayed, see DISPLAY STATISTICS Command on
page 4-23.

Examples of SET STATISTICS

 To enable the automatic display of statistics, enter:

>> SET STATISTICS ON;
>> DELETE FROM persnl.employee
+> WHERE first_name = 'TIM' AND last_name = 'WALKER';

--- 1 row(s) deleted.

Start Time 2001/08/31 09:57:33.793
End Time 2001/08/31 09:57:37.268
Elapsed Time 00:00:03.476
Compile Time 00:00:02.963
Execution Time 00:00:00.513

Table Name Records Records Disk Message Message Lock
 Accessed Used I/Os Count Bytes

SAMDBCAT.PERSNL.EMPLOYEE
 62 1 2 2 22496 0
"\MYSYS.$SAMDB".PERSNL.XEMPDEPT
 1 1 2 2 7096 0
"\MYSYS.$SAMDB".PERSNL.XEMPNAME
 1 1 2 2 10784 0

 To disable the automatic display of statistics, enter:

>> SET STATISTICS OFF;
>> DELETE FROM persnl.employee
+> WHERE first_name = 'GINNY' AND last_name = 'FOSTER';

--- 1 row(s) deleted.

SET STATISTICS {ON | OFF}

Note. The default setting when you start MXCI is STATISTICS OFF.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-69

MXCI Commands SET TERMINAL_CHARSET Command
SET TERMINAL_CHARSET Command
The SET TERMINAL_CHARSET command is used to set the character set for
messages that an interactive SQL/MX client can send to or receive from NonStop
SQL/MX. Examples of such messages include commands, SQL statements or query
results generated during a MXCI session.

value

is any one of the supported character set names (‘ISO88591’, ‘SJIS’, ‘EUCJP’,
‘BIG5’, ‘GB18030’, ‘GB2312’, ‘GBK’, ‘KSC5601’ or ‘UTF8’) enclosed in single
quotes. The default value is 'ISO88591'.

You can set the character set attribute to different values during an interaction
session. Its scope is limited only to the interaction session in which it is issued, and
has no effect in any other contexts such as in an embedded program processed
during the MXCI session. If you set the attribute to a value that does not represent
a valid character set name, NonStop SQL/MX issues error 3010. If a character set
name cannot be used as a terminal character set (such as the character set is not
supported by any known emulators), NonStop SQL/MX issues an error.

Considerations for SET TERMINAL_CHARSET

You must verify that this attribute is compatible with the human-interface environment
of the client. For example, if an OutsideView running under Japanese Windows 2000 is
hosting a MXCI session, you should set the attribute to 'SJIS,' and you should use a
Shift JIS compatible IME (input method editor) for input. You can receive syntax errors
or garbage output if the attribute is not properly set.

SET TERMINAL_CHARSET 'value'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-70

MXCI Commands SET WARNINGS Command
SET WARNINGS Command
The SET WARNINGS command is used to turn the display of warnings on or off during
an MXCI session. An MXCI session starts with the warnings on.

You can use SET WARNINGS only within an MXCI session.

Examples of SET WARNINGS

 Suppose that T1 is a table containing one row. This example is executed with
warnings on—the MXCI default:

SET WARNINGS ON;

SELECT CAST('abcd' as CHAR(1)) FROM T1;

*** WARNING[8402] A string overflow occurred during the
evaluation of a character expression.

(EXPR)

a

--- 1 row(s) selected.

 Suppose that table T1 exists as in the preceding example. This example is
executed with warnings off:

SET WARNINGS OFF;

SELECT CAST('abcd' as CHAR(1)) FROM T1;

(EXPR)

a

--- 1 row(s) selected.

SET WARNINGS {ON | OFF}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-71

MXCI Commands SH Command
SH Command
SH invokes the shell of your platform.

You can use SH only within an MXCI session.

command-line-argument

To display the command-line arguments that your shell supports, at the MXCI
prompt, enter:

sh man sh;

A reference page of the SH command explains the command-line arguments that
your shell supports. At the end of the reference page, the MXCI prompt
automatically appears.

Examples of SH

 Invoke the OSS shell from MXCI:

>>SH;
/usr/jbrook:

 Return to MXCI from the OSS shell:

/usr/jbrook:exit

>>

SH [command-line-argument]...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-72

MXCI Commands SHOW PARAM Command
SHOW PARAM Command
The SHOW PARAM command is used to display all of the parameters and their values
that are defined in the current MXCI session.

You can use SHOW PARAM only within an MXCI session.

See MXCI Parameters on page 6-77.

Examples of SHOW PARAM

 Display parameter values:

SHOW PARAM;

Param ?ST TEXAS
Param ?PN 3210
Param ?pn 1234

Note that parameter names are case-sensitive. For example, the parameter ?pn is
not equivalent to the parameter ?PN. The two parameters have different values.

SHOW PARAM
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-73

MXCI Commands SHOW PREPARED Command
SHOW PREPARED Command
The SHOW PREPARED command is used to display prepared statements in the
current MXCI session.

Use SHOW PREPARED only within an MXCI session.

* | ALL

displays all the currently prepared statements.

See An operation is a postfix merge if the range of data ends at the bottom of the
partition. You can specify only the TO NEXT PARTITION clause. The split partition
cannot be the last partition (the rightmost partition in the list). on page 2-279.

Examples of SHOW PREPARED

 Display all currently prepared statements:

>>SHOW PREPARED;

FINDEMP
SELECT * FROM PERSNL.EMPLOYEE WHERE SALARY > 40000.00
AND JOBCODE = 450;

EMPCOM
SELECT FIRST_NAME, LAST_NAME, DEPTNUM FROM PERSNL.EMPLOYEE
WHERE DEPTNUM <> 1500 AND SALARY <= (SELECT AVG(SALARY)
FROM PERSNL.EMPLOYEE WHERE DEPTNUM = 1500);

 This command also displays all currently prepared statements:

>>SHOW PREPARED *;

FINDEMP
SELECT * FROM PERSNL.EMPLOYEE WHERE SALARY > 40000.00
AND JOBCODE = 450;

EMPCOM
SELECT FIRST_NAME, LAST_NAME, DEPTNUM FROM PERSNL.EMPLOYEE
WHERE DEPTNUM <> 1500 AND SALARY <= (SELECT AVG(SALARY)
FROM PERSNL.EMPLOYEE WHERE DEPTNUM = 1500);

SHOW PREPARED [* | ALL]

Note. The SHOW PREPARED command displays all the currently prepared statements
regardless of whether you specify the * or the ALL option.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-74

MXCI Commands SHOW SESSION Command
SHOW SESSION Command
Examples of SHOW SESSION

SHOW SESSION displays attributes of the current MXCI session. You can use SHOW
SESSION (or ENV) only within an MXCI session.

SHOW SESSION displays these attributes:

SHOW SESSION

CURRENT DIRECTORY Path name of the current server directory. You can use the CD
command to change it.

HOME DIRECTORY Default directory.

LIST_COUNT Current list count.

LOG FILE Current log file.

MESSAGEFILE Current message file.

TERMINAL_CHARSET Current character set for the session.

MESSAGEFILE LANG Language of the text in the message file.

MESSAGEFILE VRSN Version of the message file; its value is stored in the message.

SQL CATALOG Default catalog.

SQL SCHEMA Default schema.

TRANSACTION ID Transaction identifier of the current transaction if one is in
progress.

TRANSACTION STATE Transaction status (in progress or not in progress).

WARNINGS Current state of warnings (on or off).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-75

MXCI Commands Examples of SHOW SESSION
Examples of SHOW SESSION

 A SHOW SESSION command and its output:

>>SHOW SESSION
+>;

Current Environment

CURRENT DIRECTORY /usr/manager/bin
HOME DIRECTORY /usr/manager
LIST_COUNT 5
LOG FILE
MESSAGEFILE /usr/manager/bin/mxcierrors.cat
TERMINAL CHARSET ISO88591
MESSAGEFILE LANG US English
MESSAGEFILE VRSN {2003-12-11 13:56 NSK:SQUAW/SUPER.SUPER}
SQL CATALOG CAT
SQL SCHEMA SCH
TRANSACTION ID
TRANSACTION STATE not in progress
WARNINGS on
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-76

MXCI Commands SHOWCONTROL Command
SHOWCONTROL Command
Examples of SHOWCONTROL

The SHOWCONTROL command displays the access plan, controls, and system
defaults in effect.

Use SHOWCONTROL only within an MXCI session.

[QUERY] SHAPE

displays the access plan (or control query shape) in effect, which is the result of
the last CONTROL QUERY SHAPE statement that is executed. See CONTROL
QUERY SHAPE Statement on page 2-62.

TABLE

displays all controls in effect that are the result of CONTROL TABLE statements.
See CONTROL TABLE Statement on page 2-74.

table [,MATCH {FULL | PARTIAL}]

displays only the table controls in effect that match, either fully or partially, the
table used in CONTROL TABLE statements. The match is not case-
sensitive.

MATCH FULL specifies that table must be the same as the table name used
in CONTROL TABLE statements. MATCH PARTIAL specifies that table must
be included in the table name used in CONTROL TABLE statements. The
default is MATCH PARTIAL.

[QUERY] DEFAULT

displays all system defaults in effect that are the result of executing CONTROL
QUERY DEFAULT statements or executing other statements that also affect the
external system defaults—for example, SET CATALOG. See CONTROL QUERY
DEFAULT Statement on page 2-60.

attribute-name [,MATCH {FULL | PARTIAL}]

displays only the system defaults in effect that match, either fully or partially,
the attribute used in CONTROL QUERY DEFAULT statements. The match
is not case-sensitive.

SHOWCONTROL showcontrol-option

showcontrol-option is:
 [QUERY] SHAPE
 | TABLE [table [,MATCH {FULL | PARTIAL}]]
 | [QUERY] DEFAULT [attribute-name [,MATCH {FULL |
 PARTIAL}]]
 | ALL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-77

MXCI Commands Examples of SHOWCONTROL
MATCH FULL specifies that attribute-name must be the same as the
attribute name used in a CONTROL QUERY DEFAULT statement. MATCH
PARTIAL specifies that attribute-name must be included in the attribute
name used in a CONTROL QUERY DEFAULT statement. The default is
MATCH PARTIAL.

If attribute-name is a reserved word, such as MAX, MIN, or TIME, you
must capitalize attribute-name and delimit it within double quotes ("). The
only exceptions to this rule are the reserved words CATALOG and SCHEMA,
which you can either capitalize and delimit within double quotes or specify
without quotation marks.

ALL

displays all CONTROL QUERY SHAPE settings, CONTROL TABLE settings,
CONTROL QUERY DEFAULT settings, and a list of all default settings in effect.
See System Defaults Table on page 10-37.

Examples of SHOWCONTROL

 Show the access plan in effect when CONTROL QUERY SHAPE has not been
executed in the current session:

SHOWCONTROL SHAPE;

No CONTROL QUERY SHAPE settings are in effect.

--- SQL operation complete.

 Issue one or more CONTROL QUERY SHAPE statements followed by a
SHOWCONTROL SHAPE:

CONTROL QUERY SHAPE NESTED_JOIN(PARTITION_ACCESS(SCAN('J',
FORWARD, MDAM OFF)),MATERIALIZE(PARTITION_ACCESS(SCAN('E',
FORWARD, MDAM OFF))));

--- SQL operation complete.

CONTROL QUERY SHAPE NESTED_JOIN (PARTITION_ACCESS(SCAN),
PARTITION_ACCESS(SCAN('DEPT')));

--- SQL operation complete.

SHOWCONTROL SHAPE;

CONTROL QUERY SHAPE NESTED_JOIN (PARTITION_ACCESS(SCAN),
 PARTITION_ACCESS(SCAN('DEPT')));

--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-78

MXCI Commands Examples of SHOWCONTROL
 Display output when CONTROL TABLE has not been executed in the current
session:

SHOWCONTROL TABLE;

No CONTROL TABLE settings are in effect.

--- SQL operation complete.

 Issue multiple CONTROL TABLE statements followed by a SHOWCONTROL
TABLE:

CONTROL TABLE PERSNL.JOB MDAM 'OFF';

--- SQL operation complete.

CONTROL TABLE * TIMEOUT '3000';

--- SQL operation complete.

SHOWCONTROL TABLE;
CONTROL TABLE SAMDBCAT.PERSNL.JOB
 MDAM OFF
CONTROL TABLE *
 TIMEOUT 3000

--- SQL operation complete.

 Issue multiple CONTROL QUERY DEFAULT statements followed by a
SHOWCONTROL DEFAULT:

SET CATALOG SAMDBCAT;

CONTROL QUERY DEFAULT ISOLATION_LEVEL 'READ UNCOMMITTED';

--- SQL operation complete.

CONTROL QUERY DEFAULT TIMEOUT '1000';

--- SQL operation complete.

SHOWCONTROL DEFAULT;

CONTROL QUERY DEFAULT
 CATALOG SAMDBCAT
 ISOLATION_LEVEL READ UNCOMMITTED
 TIMEOUT 1000

--- SQL operation complete.

Note that the catalog name is set by the SET CATALOG statement.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-79

MXCI Commands Examples of SHOWCONTROL
 Change the TIMEOUT attribute and then issue a SHOWCONTROL DEFAULT for
TIME, which is a reserved word:

CONTROL QUERY DEFAULT TIMEOUT '2000';

--- SQL operation complete.

SHOWCONTROL DEFAULT "TIME", MATCH PARTIAL;

CONTROL QUERY DEFAULT
 TIMEOUT 2000

Current DEFAULTS
 STREAM_TIMEOUT -1
 TIMEOUT 2000

--- SQL operation complete.

In this example, the TIME name matches the TIMEOUT and STREAM_TIMEOUT
attributes.

 Change the CATALOG attribute and then issue a SHOWCONTROL DEFAULT for
CAT:

CONTROL QUERY DEFAULT CATALOG 'SAMDBCAT';

--- SQL operation complete.

SHOWCONTROL DEFAULT CAT;

CONTROL QUERY DEFAULT
 CATALOG SAMDBCAT

Current DEFAULTS
 CATALOG SAMDBCAT
 SCHEMA PERSNL

 --- SQL operation complete.

In this example, the CAT name matches only the CATALOG attribute. Note that the
SCHEMA attribute is always displayed if the CATALOG attribute is displayed, and
the reverse is also true.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-80

MXCI Commands Examples of SHOWCONTROL
 Display all settings and defaults in effect:

>>showcontrol all;
..

No CONTROL QUERY SHAPE settings are in effect.

No CONTROL TABLE settings are in effect.

No CONTROL QUERY DEFAULT settings are in effect.

Current DEFAULTS
 ATTEMPT_ASYNCHRONOUS_ACCESS ON
 ATTEMPT_ESP_PARALLELISM SYSTEM
 AUTOMATIC_RECOMPILATION ON
 CACHE_HISTOGRAMS ON
 CACHE_HISTOGRAMS_REFRESH_INTERVAL 3600
 CATALOG CAT
 CHECK_CONSTRAINT_PRUNING ON
 CREATE_DEFINITION_SCHEMA_VERSION SYSTEM
 CROSS_PRODUCT_CONTROL ON
 DATA_FLOW_OPTIMIZATION ON
 DDL_DEFAULT_LOCATIONS
 DEF_MAX_HISTORY_ROWS 1024
 DOOM_USERTRANSACTION OFF
 DP2_CACHE_4096_BLOCKS 1024
 DYNAMIC_HISTOGRAM_COMPRESSION ON
 FFDC_DIALOUTS_FOR_MXCMP OFF
 FLOATTYPE IEEE
 GENERATE_EXPLAIN ON
 GEN_EIDR_BUFFER_SIZE 31000
 GEN_MAX_NUM_PART_DISK_ENTRIES 3
 GEN_MAX_NUM_PART_NODE_ENTRIES 255
 GEN_PA_BUFFER_SIZE 31000
 HIST_BASE_REDUCTION ON
 HIST_DEFAULT_SEL_FOR_LIKE_WILDCARD 0.10
 HIST_DEFAULT_SEL_FOR_PRED_RANGE 0.3333
 HIST_JOIN_CARD_LOWBOUND 1.0
 HIST_NO_STATS_REFRESH_INTERVAL 3600
 HIST_NO_STATS_ROWCOUNT 100
 HIST_NO_STATS_UEC 2
 HIST_PREFETCH ON
 HIST_ROWCOUNT_REQUIRING_STATS 50000
 HIST_SAME_TABLE_PRED_REDUCTION 0.0
 HIST_SCRATCH_VOL
 HIST_SECURITY_WARNINGS ON
 INDEX_ELIMINATION_LEVEL MAXIMUM
 INFER_CHARSET OFF
 INSERT_VSBB SYSTEM
 INTERACTIVE_ACCESS OFF
 ISOLATION_LEVEL READ_COMMITTED
 IUD_NONAUDITED_INDEX_MAINT OFF
 JOIN_ORDER_BY_USER OFF
 MATERIALIZE SYSTEM
 MAX_ESPS_PER_CPU_PER_OP 1
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-81

MXCI Commands Examples of SHOWCONTROL
 MAX_ROWS_LOCKED_FOR_STABLE_ACCESS 1
 MDAM_SCAN_METHOD ON
 MIN_MAX_OPTIMIZATION ON
 MIN_COALITIONS
 MP_SUBVOLUME SKYOSTST
 MP_SYSTEM \HPIDMR5
 MP_VOLUME $DATA01
 MSCF_ET_REMOTE_MSG_TRANSFER 0.00005
 MULTIUNION ON
 MV_AS_ROW_TRIGGER OFF
 MV_REFRESH_MAX_PARALLELISM 1
 MV_REFRESH_MAX_PIPELINING 1
 MXCMP_PLACES_LOCAL_MODULES OFF
 NAMETYPE ANSI
 NATIONAL_CHARSET UCS2
 NOT_NULL_CONSTRAINT_DROPPABLE_OPTION OFF
 NUMBER_OF_USERS 1
 OLT_QUERY_OPT ON
 OPTIMIZATION_LEVEL 3
 OPTS_PUSH_DOWN_DAM 0
 PARALLEL_NUM_ESPS SYSTEM
 PM_OFFLINE_TRANSACTION_GRANULARITY 5000
 PM_ONLINE_TRANSACTION_GRANULARITY 400
 POS_LOCATIONS
 POS_NUM_OF_PARTNS 0
 POS_RAISE_ERROR 0
 PREFERRED_PROBING_ORDER_FOR_NESTED_JOIN OFF
 PRESERVE_MIN_SCALE 0
 PRIMARY_KEY_CONSTRAINT_DROPPABLE_OPTION OFF
 QUERY_CACHE 1024
 QUERY_CACHE_MAX_VICTIMS 10
 QUERY_CACHE_REQUIRED_PREFIX_KEYS 255
 QUERY_CACHE_STATEMENT_PINNING OFF
 READONLY_CURSOR TRUE
 RECOMPILATION_WARNINGS OFF
 REF_CONSTRAINT_NO_ACTION_LIKE_RESTRICT SYSTEM
 REMOTE_ESP_ALLOCATION SYSTEM
 SAVE_DROPPED_TABLE_DDL OFF
 SCHEMA SCH
 SCRATCH_DISKS
 SCRATCH_DISKS_EXCLUDED
 SCRATCH_DISKS_PREFERRED
 SCRATCH_FREESPACE_THRESHOLD_PERCENT 10
 SIMILARITY_CHECK ON
 SORT_MAX_HEAP_SIZE_MB 20
 STREAM_TIMEOUT -1
 TABLELOCK SYSTEM
 TEMPORARY_TABLE_HASH_PARTITIONS
 TIMEOUT 6000
 UDR_JAVA_OPTIONS OFF
 UNION_TRANSITIVE_PREDICATES ON
 UPD_ORDERED ON
 UPD_SAVEPOINT_ON_ERROR ON
 VARCHAR_PARAM_DEFAULT_SIZE 255
 ZIG_ZAG_TREES OFF
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-82

MXCI Commands SHOWDDL Command
--- SQL operation complete.
>>

SHOWDDL Command
Considerations for SHOWDDL
Examples of SHOWDDL

The SHOWDDL command displays the DDL syntax used to create a table, view, or
stored procedure as it exists in metadata and optionally lists the object’s dependent
objects. You can use the SHOWDDL output as input to MXCI to recreate the specified
object.

SHOWDDL is an SQL/MX extension.

procedure-name

specifies the name of a stored procedure. If you do not fully qualify
procedure-name, SHOWDDL uses the default catalog and schema for the
session.

object-name

specifies the ANSI name of a table, view, or SQL/MP alias. If you do not fully
qualify object-name, SHOWDDL uses the default catalog and schema for the
session.

SQLMP

specifies that SQL/MP DDL is to be generated. The default is to generate DDL for
an SQL/MP object in SQL/MX syntax.

SHOWDDL {[PROCEDURE] procedure-name }| {object-name
[,SQLMP]|[,DEPENDENT objects]]}

procedure-name is:

 [[catalog-name.]schema-name.]procedure-name

object-name is:

 [[catalog-name.]schema-name.]object-name.

objects is:

 { TABLES | CONSTRAINTS }

Note. The SQLMP option is applicable only for SQL/MP tables.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-83

MXCI Commands SHOWDDL Command
DEPENDENT TABLES

displays the list of tables with referential integrity constraints that reference this
table.

DEPENDENT CONSTRAINTS

displays the list of referential integrity constraints for this table.

The list of dependent objects is displayed as commented lines in the SHOWDDL
output.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-84

MXCI Commands Considerations for SHOWDDL
Considerations for SHOWDDL

 SHOWDDL cannot accurately replicate the original creation text for an object.

For ways in which the output of SHOWDDL can differ from the original DDL used
to create an object, see Differences Between SHOWDDL Output and Original DDL
on page 4-85.

 SHOWDDL will start a TMF transaction if one is not present. Ensure that TMF is
running for SHOWDDL to start the transaction.

 SHOWDDL output is in the English (ISO88591) character set.

 When used on an SQL/MP table through an SQL/MP alias, SHOWDDL displays
the DDL of the SQL/MP table using equivalent SQL/MX syntax.

 SHOWDDL can display referential integrity actions. If the referential integrity action
is NO ACTION, then it is not displayed in the output.

 The SHOWDDL DEPENDENT option is not supported for views and triggers.

 The SHOWDDL output shows if the view Similarity Check option is enabled or
disabled for views.

 Starting with SQL/MX Release 3.2.1, SHOWDDL displays the DDL syntax for
sequence generators. SHOWDDL also displays the Guardian file location of
SG_TABLE associated with the sequence generator.

 SHOWDDL will display the following attributes for the IDENTITY column:

 Default specification of the IDENTITY column

 Internal Sequence Generator attributes

 Location of the SG Table

Differences Between SHOWDDL Output and Original DDL

 SHOWDDL displays SQL/MX system-created indexes as user-created indexes. In
the output of SHOWDDL, each system-created index is preceded by the comment
'--The following index is a system-created index--'. Because
you cannot explicitly create a system-created index, feeding the output of a
system-created index back into MXCI results in a user-created index.

 All column constraints (NOT NULL, UNIQUE, PRIMARY KEY, CHECK,
REFERENCES) are transformed into table constraints. For NOT NULL constraints,
“NOT NULL [NOT DROPPABLE]” is included in the column definitions but is
commented out. All NOT NULL NOT DROPPABLE constraints are consolidated
into a single check constraint, while NOT NULL DROPPABLE column constraints
remain in separate check constraints.

 Each droppable constraint that creates an index (droppable primary key and
unique constraints) is moved out of the CREATE TABLE statement and
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-85

MXCI Commands Considerations for SHOWDDL
encapsulated in a separate ALTER TABLE ADD CONSTRAINT statement.
Creating an index before creating the constraint that is dependent on the index
allows the details of the index to be specified explicitly.

 Check constraints are moved out of the CREATE TABLE statement and
encapsulated in a separate ALTER TABLE ADD CONSTRAINT statement.

 In cases where an index is created by the system to support a not droppable
primary key constraint, the DDL of this system-created index is commented out
(each line is preceded by “--”). Unlike droppable constraints, a not droppable
primary key constraint affects the structure of a table and therefore cannot be
moved from the CREATE TABLE statement and into an ALTER TABLE ADD
CONSTRAINT statement.

Consequently, if a system-created index is implicitly created by the system to
support a not droppable primary key constraint, the DDL output for explicitly
creating such an index must be commented out, or a duplicate index results.

 SHOWDDL generates ALTER TABLE ADD COLUMN statements for each column
that was added to the table. SHOWDDL also generates the comment '--The
partition is offline-' before the DDL of each partition that is offline
because of a partition management operation, and the DDL for the offline partitions
is commented out. The entire partition clause is commented out if all of the
partitions are offline.

 The PIC data type is stored as CHAR, DECIMAL, or NUMERIC in
NonStop SQL/MX. SHOWDDL, therefore, displays these data types in place of the
PIC data type.

 The NCHAR data type is displayed as a CHAR CHARACTER SET
default-char-set showing the current default national character set (either
UCS2 or ISO88591.)

 All ANSI names in the output are fully qualified.

 All physical location names are fully expanded.

 SHOWDDL displays constraint names even though they might not have been
specified during the creation of the constraint.

 STORE BY is displayed even though it might not have been explicitly stated in the
creation of the table.

 The ordering of the primary key (ASC/DESC) might differ from that of the original
DDL because it might be changed by the STORE BY ordering.

 If NO HEADING is specified for a column, NonStop SQL/MX stores it as HEADING
‘‘ (blank,) which SHOWDDL displays.

 If the column name, which is stored as an upshifted string unless it is delimited, is
identical to the heading (case-sensitive), NonStop SQL/MX treats it as if no
heading was entered. SHOWDDL does not display a heading.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-86

MXCI Commands Considerations for SHOWDDL
 If there are two not null droppable constraints on the same user added column,
only one of these is displayed.

 The ALLOCATE attribute is not stored in metadata or file label, so it is not
displayed.

 The partitioning key is displayed only if it is different from the store by key. Such a
scenario is when SYSKEY is a part of the store by key but not a part of the
partitioning key, although the keys might appear to be the same because the
SYSKEY is not displayed by SHOWDDL.

 SHOWDDL does not omit the optional clauses of the CREATE PROCEDURE
statement, such as LOCATION, CONTAINS SQL, NOT DETERMINISTIC, and NO
ISOLATE.

 SHOWDDL always generates a Java signature for the SPJ.

 SHOWDDL does not display the GRANT and REVOKE statements used to grant
or revoke any privileges on the table.

SQL/MP Conversion Issues

Note these syntax conversions when you are displaying DDL for an SQL/MP table:

 If you run SHOWDDL on an MP alias, the MP alias name is displayed as the table
name unless you use the SQLMP option, in which case the SQL/MP table name is
displayed. SHOWDDL fully qualifies all SQL/MP aliases and fully expands SQL/MP
table names.

 The subvolume name and table name in the physical location of the SQL/MP table
are invalid for the SQL/MX syntax. If you do not specify the SQLMP option, only
system name and volume name of the SQL/MP physical location are displayed
with the location clause for SQL/MP tables.

 The SMF logical name is displayed instead of the physical volume name
(PHYSVOL) for SQL/MP tables located on SMF volumes.

 SHOWDDL does not display individual ALTER TABLE ADD COLUMN statements
for added columns in SQL/MP tables as they are for SQL/MX tables. The message
[-- This SQL/MP table contains user added columns --] is displayed before the DDL
of the table, and all columns are included in the DDL for the table.

 NATIONAL CHAR (NCHAR) data type is converted into CHAR CHARACTER SET
using the default national character set.

 Character sets that NonStop SQL/MP supports but NonStop SQL/MX does not
support are displayed by SHOWDDL, but the warning "*** WARNING[3010]
Character set ISO88599 is not yet supported." is displayed.

 The UNKNOWN character set in NonStop SQL/MP is converted into ISO88591 if
you do not specify the SQLMP option.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-87

MXCI Commands Considerations for SHOWDDL
 Only COLLATE DEFAULT is supported by NonStop SQL/MX. Other collations that
are supported by NonStop SQL/MP are displayed but are not valid for NonStop
SQL/MX.

 The COLLATE statement must come last in an SQL/MP column definition or an
SQL/MP syntax error occurs, even though this is valid SQL/MP syntax. However,
this is not the order in which SHOWDDL outputs, so if you use SHOWDDL output
as input for NonStop SQL/MP you will receive this syntax error:

DEFAULT NULL is displayed after COLLATE.

 FLOAT data type can be converted into equivalent REAL data types with a
precision value.

 UPSHIFT is not displayed for PIC X data type.

 For NUMERIC and SMALLINT data types, SIGNED does not appear because it is
the default. Only UNSIGNED is displayed.

 DATETIME is not a supported data type in NonStop SQL/MX, but SHOWDDL
displays this data type for SQL/MP tables that contain it.

 The largest MAXEXTENTS value for an SQL/MX table is 768, but it is 959 for
NonStop SQL/MP.

 SHOWDDL displays the EXTENT and MAXEXTENTS only for the primary partition
of an SQL/MP table or index.

 The only allowed BLOCKSIZE supported by NonStop SQL/MX is 4096. If you do
not specify the SQLMP option and an SQL/MP table has a BLOCKSIZE other than
4096, its BLOCKSIZE is still displayed as 4096 for SQL/MX syntax. If its
BLOCKSIZE is 4096, it is not displayed because this is the default.

 SHOWDDL displays only whether an SQL/MP table has DCOMPRESS on or off
and does not distinguish between compression methods 1 and 2. DCOMPRESS is
displayed only with the SQLMP option.

 KEYTAG is displayed as an unsigned small integer because of how it is stored.
KEYTAG is entered as two bytes of CHAR data, but SHOWDDL shows the
converted values. KEYTAG is displayed only with the SQLMP option.

 RECLENGTH is not supported because it applies only to relative sequenced files
which are not supported by NonStop SQL/MX.

 DSLACK, ISLACK, and SLACK for indexes are not displayed by SHOWDDL.

 If you do not specify the SQL/MP option, SQL/MP NOT NULL column constraints
are converted to NOT NULL NOT DROPPABLE constraints.

 SHOWDDL on an SQL/MP view includes added correlated names:

CREATE VIEW V1 (N) AS SELECT N FROM
\FIGARO.$DATA05.DEANCAT.T1 T1 ;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-88

MXCI Commands Considerations for SHOWDDL
When displaying an SQL/MP view in SQL/MX syntax (not using SQLMP option),
you must manually remove correlated Guardian location names because they are
not valid SQL/MX syntax:

CREATE VIEW V1 (N) AS SELECT N FROM T1 T1 ;

 Headings for SQL/MP views are not supported.

 Added check not null constraints do not have accompanying "-- NOT NULL "
comments by columns that they determine are not null, as in the output for an
SQL/MX table. This situation is caused by differences in how NonStop SQL/MP
and NonStop SQL/MX implement NOT NULL constraints.

 SHOWDDL does not display any table or column privilege information for the table.

 If you do not specify the SQL/MP option, SHOWDDL displays the string constants
enclosed with single quotes.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-89

MXCI Commands Examples of SHOWDDL
Examples of SHOWDDL

 This is an example of SHOWDDL on an SQL/MX table that contains unique and
primary key constraints:

>>CREATE TABLE CAT.SCH.T1
(N INT NOT NULL,
C INT NOT NULL UNIQUE,
CONSTRAINT PK PRIMARY KEY (N) NOT DROPPABLE)
STORE BY (C DESC, N)
ATTRIBUTE MAXEXTENTS 600;

>>SHOWDDL CAT.SCH.T1;

CREATE TABLE CAT.SCH.T1
 (
 N INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , C INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , CONSTRAINT CAT.SCH.PK PRIMARY KEY (N ASC) NOT DROPPABLE
 , CONSTRAINT CAT.SCH.T1_102261179_0003 CHECK
 (CAT.SCH.T1.N IS NOT NULL AND
 CAT.SCH.T1.C IS NOT NULL) NOT DROPPABLE
)
 LOCATION \FIGARO.$DATA1.ZSDQXXBK.B7VVVW00
 NAME FIGARO_DATA1_ZSDQXXBK_B7VVVW00
 ATTRIBUTES MAXEXTENTS 600
 STORE BY (C DESC, N ASC)
 ;
-- The following index is a system created index --
CREATE UNIQUE INDEX T1_102261179_0004 ON CAT.SCH.T1
 (
 C ASC
)
 LOCATION \FIGARO.$DATA2.ZSDUXXBK.B7VVVW00
 NAME FIGARO_DATA2_ZSDQXXBK_B7VVVW00
 ATTRIBUTES MAXEXTENTS 600
 ;
-- The following index is a system created index --
--CREATE UNIQUE INDEX PK ON CAT.SCH.T1
-- (
-- N ASC
--)
-- LOCATION \FIGARO.$DATA1.ZSDXXXBK.B7VVVW00
-- NAME FIGARO_DATA1_ZSDQXXBK_B7VVVW00
-- ATTRIBUTES MAXEXTENTS 600
-- ;
ALTER TABLE CAT.SCH.T1
 ADD CONSTRAINT CAT.SCH.T1_102261179_0004 UNIQUE
(C) DROPPABLE;

Note how the unique constraint is moved out of the CREATE TABLE statement and
into an ALTER TABLE statement, how the index supporting the unique constraint
precedes the creation of the unique constraint, and how the index supporting the
not droppable primary key is commented out because a system created index
would be implicitly created.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-90

MXCI Commands Examples of SHOWDDL
 These are examples of SHOWDDL on tables with partitions that are offline. Note
the commenting out of partitions that are offline, and the whole partition clause if all
of the partitions are offline.

>>SHOWDDL T1;

CREATE TABLE CAT.SCH.T1
 (
 A INT DEFAULT NULL
 , B INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , C INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , CONSTRAINT CAT.SCH.T1_104871912_0091
PRIMARY KEY (B ASC, C DESC) NOT DROPPABLE
 , CONSTRAINT CAT.SCH.T1_104871912_0090 CHECK
(CAT.SCH.T1.B IS NOT NULL AND
 CAT.SCH.T1.C IS NOT NULL) NOT DROPPABLE
)
 LOCATION \FIGARO.$DATA.ZSDADM53.VZBRLI00
 NAME FIGARO_DATA_ZSDADM53_VZBRLI00
-- HASH PARTITION
-- (
-- The following partition is offline --
-- ADD LOCATION \FIGARO.$DATA.ZSDWWWWW.AADZ1200
-- NAME FIGARO_$DATA_ZSDWWWWW_AADZ1200
--)
 STORE BY (B ASC, C DESC)
 ;

>>showddl t1;

CREATE TABLE CAT.SCH.T1
 (
 C1 INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , C2 INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , C3 INT DEFAULT NULL
 , CONSTRAINT CAT.SCH.T1_104871911_0089
 PRIMARY KEY (C1 ASC, C2 ASC) NOT DROPPABLE
 , CONSTRAINT CAT.SCH.T1_104871911_0088 CHECK
 (CAT.SCH.T1.C1 IS NOT NULL AND
 CAT.SCH.T1.C2 IS NOT NULL) NOT DROPPABLE
)
 LOCATION \FIGARO.$DATA.ZSDADM53.QUSGEI00
 NAME FIGARO_DATA_ZSDADM53_QUSGEI00
 PARTITION
 (
 ADD FIRST KEY (1200)
 LOCATION \FIGARO.$DATA.ZSDWWWWW.AADZ1400
-- The following partition is offline --
-- ADD FIRST KEY (1300)
-- LOCATION \FIGARO.$DATA.ZSDWWWWW.AADZ1600
-- NAME FIGARO_$DATA_ZSDWWWWW_AADZ1600
 , ADD FIRST KEY (1500)
 LOCATION \FIGARO.$DATA.ZSDWWWWW.AADZ1200
 NAME FIGARO_$DATA_ZSDWWWWW_AADZ1200
)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-91

MXCI Commands Examples of SHOWDDL
 STORE BY (C1 ASC, C2 ASC)
 ;

 This is an example of SHOWDDL on an SQL/MP table. By default, SQL/MX syntax
is used to output the DDL of the table, and file names are not fully qualified.

>>CREATE TABLE T1 (NAME CHAR(10) DEFAULT "NOBODY"
HEADING "NAME",
 SID LARGEINT NOT NULL,
 PRIMARY KEY (SID DESC),
 SSN INT UNSIGNED NOT NULL,
 BIRTHDATE DATE NOT NULL
)
 EXTENT 48
 MAXEXTENTS 300
 PARTITION (
 \FIGARO.$DATA14.DEANCAT.T1
 FIRST KEY (5000),
 \FIGARO.$DATA15.DEANCAT.T1
 EXTENT 48
 MAXEXTENTS 300
 FIRST KEY (10000))
 NO AUDITCOMPRESS;

--- SQL operation complete.

>>CREATE INDEX IDXA on T1 (SID)
PARTITION (\FIGARO.$DATA14.DEANCAT.IDXA FIRST KEY(100),
\FIGARO.$DATA15.DEANCAT.IDXA FIRST KEY (1000));

--- SQL operation complete.

>>CREATE UNIQUE INDEX UIDX ON T1 (SSN);

--- SQL operation complete.

>>CREATE CONSTRAINT C1 on T1 CHECK (NAME >"AAA");

--- SQL operation complete.

>>SHOWDDL T1;

CREATE TABLE T1
 (
 NAME CHAR(10) CHARACTER SET ISO88591 COLLATE
 DEFAULT DEFAULT 'NOBODY' HEADING 'NAME'
 , SID LARGEINT NO DEFAULT NOT NULL NOT DROPPABLE
 , SSN INT UNSIGNED NO DEFAULT NOT NULL NOT DROPPABLE
 , BIRTHDATE DATE NO DEFAULT NOT NULL NOT DROPPABLE
 , PRIMARY KEY (SID DESC)
)
 LOCATION \FIGARO.$DATA17
 ATTRIBUTES NO AUDITCOMPRESS
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-92

MXCI Commands Examples of SHOWDDL
 , EXTENT (48, 48),MAXEXTENTS 300
 PARTITION
 (
 ADD FIRST KEY (10000)
 LOCATION \FIGARO.$DATA14
 , ADD FIRST KEY (5000)
 LOCATION \FIGARO.$DATA15
)
 ;
CREATE INDEX IDXA ON T1
 (
 SID ASC
)
 LOCATION \FIGARO.$DATA17
 PARTITION
 (
 ADD FIRST KEY (100)
 LOCATION \FIGARO.$DATA14
 , ADD FIRST KEY (1000)
 LOCATION \FIGARO.$DATA15
)
 ATTRIBUTES NO AUDITCOMPRESS

 ;
CREATE UNIQUE INDEX UIDX ON T1
 (
 SSN ASC
)
 LOCATION \FIGARO.$DATA17
 ATTRIBUTES NO AUDITCOMPRESS
 ;
ALTER TABLE T1
 ADD CONSTRAINT C1 CHECK (NAME >'AAA') ;

--- SQL operation complete.

 This is an example of SHOWDDL on an SQL/MP table using the SQLMP syntax
option. File names are shown fully qualified.

>>CREATE TABLE T1 (name CHAR(10) DEFAULT 'nobody'
HEADING 'NAME',
 SID LARGEINT NOT NULL,
 PRIMARY KEY (SID DESC),
 SSN INT UNSIGNED NOT NULL,
 birthdate DATE NOT NULL
)
 PARTITION (
 \FIGARO.$DATA14.DEANCAT.T1
 EXTENT 32
 MAXEXTENTS 300
 FIRST KEY 5000)
 NO AUDITCOMPRESS;

>>CREATE CONSTRAINT C1 on T1 CHECK SID > 1000;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-93

MXCI Commands Examples of SHOWDDL
>>SHOWDDL T1, SQLMP
CREATE TABLE \FIGARO.$DATA17.DEANCAT.T1
 (
 NAME CHAR(10) CHARACTER SET ISO88591 COLLATE
 DEFAULT DEFAULT 'nobody' HEADING 'NAME'
 , SID LARGEINT NO DEFAULT
 -- NOT NULL NOT DROPPABLE
 , SSN INT UNSIGNED NO DEFAULT
 -- NOT NULL NOT DROPPABLE
 , BIRTHDATE DATE NO DEFAULT -- NOT NULL NOT DROPPABLE
 , PRIMARY KEY (SID DESC)
)

 CATALOG \FIGARO.$DATA17.DEANCAT
 PARTITION (
 \FIGARO.$DATA14.DEANCAT.T1
 FIRST KEY 5000
)
 ;
CREATE CONSTRAINT C1 on \FIGARO.$DATA17.DEANCAT.T1 CHECK SID
> 1000;

 This is an example of SHOWDDL on a table with a trigger. The DDL of the triggers
is shown, but the ALTER TRIGGER DISABLE statement is not displayed for
triggers that are disabled.

>>CREATE TABLE T074T3
(A INT NOT NULL, B INT, C CHAR(8), D INT, PRIMARY KEY(A));

>>CREATE TRIGGER BTR BEFORE UPDATE ON T074T3
 REFERENCING OLD AS MYOLDROW,
 NEW AS MYNEWROW WHEN (MYNEWROW.D > MYOLDROW.D)
 SET MYNEWROW.B = MYNEWROW.B + MYOLDROW.D;

>>SHOWDDL T074T3;

CREATE TABLE CAT.SCH.T074T3
 (
 A INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , B INT DEFAULT NULL
 , C CHAR(8) CHARACTER SET ISO88591 COLLATE
 DEFAULT DEFAULT NULL
 , D INT DEFAULT NULL
 , CONSTRAINT CAT.SCH.T074T3_102459148_0001
PRIMARY KEY (A ASC) NOT DROPPABLE
 , CONSTRAINT CAT.SCH.T074T3_102459148_0000
CHECK (CAT.SCH.T074T3.A IS NOT
 NULL) NOT DROPPABLE
)
 LOCATION \FIGARO.$DATA.ZSDADM53.QUSGEI00
 NAME FIGARO_DATA_ZSDADM53_QUSGEI00
 ;
CREATE TRIGGER CAT.SCH.BTR
BEFORE UPDATE ON CAT.SCH.T074T3 REFERENCING OLD AS
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-94

MXCI Commands Examples of SHOWDDL
 MYOLDROW, NEW AS MYNEWROW
WHEN (MYNEWROW.D > MYOLDROW.D) SET MYNEWROW.B =
 MYNEWROW.B + MYOLDROW.D;
 ;

 This is an example of SHOWDDL on a view.

>>CREATE VIEW V1
 AS SELECT keycol, valcol, ssn, salary
 FROM T2
 TRANSPOSE SSN, salary AS valcol
 KEY BY keycol;

>>SHOWDDL V1;

CREATE VIEW CAT.SCH.V1 AS
 SELECT CAT.SCH.T2.KEYCOL, CAT.SCH.T2.VALCOL,
 CAT.SCH.T2.SSN, CAT.SCH.T2.SALARY
 FROM CAT.SCH.T2 TRANSPOSE CAT.SCH.T2.SSN,
 CAT.SCH.T2.SALARY AS
 CAT.SCH.T2.VALCOL KEY BY CAT.SCH.T2.KEYCOL;

 This is an example of SHOWDDL on a stored procedure.

>>CREATE PROCEDURE CAT.SCH.T110_IO_NN
 (
 IN IN1 NUMERIC(9,3),
 OUT OUT2 NUMERIC(9,3)
)
 EXTERNAL NAME 't110.T110_io_nn
(java.math.BigDecimal,java.math.BigDecimal[])'

 EXTERNAL PATH '/usr/ned/regress/udr'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 CONTAINS SQL
 NOT DETERMINISTIC
 ISOLATE
 ;

>>showddl procedure T110_IO_NN;

CREATE PROCEDURE CAT.SCH.T110_IO_NN
 (
 IN IN1 NUMERIC(9,3),
 OUT OUT2 NUMERIC(9,3)
)
 EXTERNAL NAME 't110.T110_io_nn
(java.math.BigDecimal,java.math.BigDecimal[])'
 EXTERNAL PATH '/usr/ned/regress/udr'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 CONTAINS SQL
 NOT DETERMINISTIC
 ISOLATE
 ;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-95

MXCI Commands Examples of SHOWDDL
 This is an example of SHOWDDL that reports the maximum number of result sets
the sales.order_summary procedure returns.

>>showddl samdbcat.sales.order_summary;

CREATE PROCEDURE SAMDBCAT.SALES.ORDER_SUMMARY
(
 IN ON_OR_AFTER_DATE VARCHAR(20) CHARACTER SET ISO88591
, OUT NUM_ORDERS LARGEINT
)
EXTERNAL NAME 'SPJMethods.orderSummary
(java.lang.String,long[],java.sql.ResultSet[],java.sql.Result
Set[])'
EXTERNAL PATH '/usr/mydir/myclasses'
LOCATION \ALPINE.$SYSTEM.ZSDCR2C6.L1Z7NW00
LANGUAGE JAVA
PARAMETER STYLE JAVA
READS SQL DATA
DYNAMIC RESULT SETS 2
NOT DETERMINISTIC
ISOLATE
;

--- SQL operation complete.

 This is an example of SHOWDDL on an SQL/MX table that contains BLOCKSIZE
with a value other than the default value.

>>showddl cat.sch.t1;

CREATE TABLE CAT.SCH.T1
(
 C1 INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , C2 INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , C3 INT DEFAULT NULL
 , CONSTRAINT CAT.SCH.T1_104871911_0089 PRIMARY KEY (C1 ASC,
C2 ASC) NOT DROPPABLE
 , CONSTRAINT CAT.SCH.T1_104871911_0088
 CHECK (CAT.SCH.T1.C1 IS NOT NULL AND CAT.SCH.T1.C2 IS
NOT NULL) NOT DROPPABLE
)
LOCATION \FIGARO.$DATA.ZSDADM53.QUSGEI00
NAME FIGARO_DATA_ZSDADM53_QUSGEI00
PARTITION
(
 ADD FIRST KEY (1200)
 LOCATION \FIGARO.$DATA.ZSDWWWWW.AADZ1400
, ADD FIRST KEY (1500)
 LOCATION \FIGARO.$DATA.ZSDWWWWW.AADZ1200
 NAME FIGARO_$DATA_ZSDWWWWW_AADZ1200
)
ATTRIBUTES BLOCKSIZE 32768, MAXEXTENTS 600
STORE BY (C1 ASC, C2 ASC);

CREATE UNIQUE INDEX T1_102261179_0004 ON CAT.SCH.T1
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-96

MXCI Commands Examples of SHOWDDL
(
C1 ASC
)
LOCATION \FIGARO.$DATA2.ZSDUXXBK.B7VVVW00
NAME FIGARO_DATA2_ZSDQXXBK_B7VVVW00
ATTRIBUTES BLOCKSIZE 32768, MAXEXTENTS 600
;

 The following example displays the Sequence Generator attributes for an
IDENTITY column:

>>showddl cat.sch.t1;

CREATE TABLE CAT.SCH.T1
 (
 SURROGATE_KEY LARGEINT GENERATED ALWAYS AS IDENTITY
 (START WITH 99 INCREMENT BY 2 MAXVALUE 900 MINVALUE 50 NO
CYCLE)

 LOCATION \NSK.$SYSTEM.ZSDGNCWF.G423GN00
 -- NOT NULL NOT DROPPABLE
 , B INT UNSIGNED NO DEFAULT
 -- NOT NULL NOT DROPPABLE
 , CONSTRAINT CAT.SCH.T1_344545289_4325 PRIMARY KEY
(SURROGATE_KEY ASC) NOT
 DROPPABLE
 , CONSTRAINT CAT.SCH.T1_482894289_4325 CHECK
(CAT.SCH.T1.SURROGATE_KEY IS NOT
 NULL AND CAT.SCH.T1.B IS NOT NULL) NOT DROPPABLE
)
 LOCATION \NSK.$DATA.ZSDGNCWF.HWD7GN00
 NAME NSK_DATA_ZSDGNCWF_HWD7GN00
 ATTRIBUTES ALIGNED FORMAT, BLOCKSIZE 4096
 STORE BY (SURROGATE_KEY ASC)
;

 This is an example of SHOWDDL on a view for which Similarity Check is enabled:

>>showddl cat.sch.v1;

CREATE VIEW CAT.SCH.V1 ENABLE SIMILARITY CHECK AS SELECT
CAT.SCH.T1.I, CAT.SCH.T1.J from CAT.SCH.T1;

 This is an example of SHOWDDL on a view for which Similarity Check is disabled:

>>showddl cat.sch.v2;

CREATE VIEW CAT.SCH.V2 DISABLE SIMILARITY CHECK AS SELECT
CAT.SCH.T2.I, CAT.SCH.T2.J from CAT.SCH.T2;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-97

MXCI Commands Examples of SHOWDDL
 This is an example of SHOWDDL on a sequence generator created with default
attribute values:

>>create sequence seq1;

--- SQL operation complete.

>>showddl seq1;

CREATE SEQUENCE CAT.SCH.SEQ1 LARGEINT

START WITH 1

INCREMENT BY 1

MINVALUE 1

MAXVALUE 9223372036854775807

NO CYCLE

LOCATION \HPIDMR5.$DATA07.ZSDFGVS8.Z1S98C00

;

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-98

MXCI Commands SHOWLABEL Command
SHOWLABEL Command
Considerations for SHOWLABEL
Examples of SHOWLABEL

The SHOWLABEL command displays file-label information for SQL/MX objects. This
information includes the object version, physical location, and other characteristics.
Supported objects are tables, trigger temporary tables, views, and indexes.

SHOWLABEL is an SQL/MX extension.

namespace

specifies the namespace in which the object name is to be searched. If no
namespace is specified, the table namespace is used as the default namespace.

object-name

specifies the ANSI name of a table, worktable, or index. This must be an SQL/MX
object name because SQL/MP objects and SQL/MP aliases are not supported. If a
catalog name and schema are not specified when using an ANSI name,
SHOWLABEL uses the default catalog and schema.

location-name

specifies the Guardian physical location of an SQL/MX object. The location name
must be the data fork of an SQL/MX object (files that end in “00” and exist in
subvolumes beginning with the letters ZSD). SQL/MP objects are not supported.

\node is the name of a node on a NonStop system, $volume is the name of a
disk volume, subvol is the name of a subvolume, and filename is the name of a
Guardian disk file. If the physical name is not fully qualified, it is expanded by using
the current default node, volume, and subvolume.

DETAIL

specifies the display of additional information about:

 Security
 Key columns
 Partitions

SHOWLABEL {[namespace] object-name | location-name }
 [, DETAIL]

namespace is:
 TABLE
 | INDEX

object-name is: [catalog.][schema.]name

location-name is: [\node.]$volume.subvol.filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-99

MXCI Commands Considerations for SHOWLABEL
 Indexes
 Triggers

Considerations for SHOWLABEL

Every SQL object includes a logical file label to store the object’s file attributes and
information about its dependent objects. The resource fork is a new file that contains
structural descriptions of a table. When an SQL/MX object is created, two physical files
are instantiated: the data fork and the resource fork. The data fork is where the user
data resides. The resource fork contains structural information, such as the partition
map.

 You can use SHOWLABEL only within an MXCI session.

 SHOWLABEL does not support stored procedures, SQL/MP objects, or SQL/MP
aliases.

 SHOWLABEL displays all output in the English (ISO88591) character set only.

 SHOWLABEL requires that TMF, NonStop SQL/MX, and MXCI be available and
running on the system.

SHOWLABEL Output

This table describes SHOWLABEL output. For actual output values, see the examples
that follow.

AnsiName ANSI name of the object.

AnsiNameSpace Namespace in which the object exists (TA, IX, and so
on).

GuardianName Physical location name of the object

Version The high level SQL version that was running when the
object was created.

ObjectSchemaVersion The schema version of the object’s schema. It is
assigned when the object is created and changes when
the schema is upgraded or downgraded.

ObjectFeatureVersion The feature version that describes features used by the
database object. Can change as features are added or
removed from an object as the result of DDL or utility
operations.

Owner The name of the object’s owner.

RedefTimestamp Date, time, and Julian timestamp indicating when the
object’s definition was last modified.

CreationTimeStamp Date, time, and Julian timestamp indicating when the
object was created.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-100

MXCI Commands Considerations for SHOWLABEL
LastModTimestamp Date, time, and Julian timestamp indicating when the
object’s data was last modified.

LastOpenTimestamp Date, time, and Julian timestamp of last open time.
NEVER OPENED is generated if the object has never
been opened (for example, timestamp=0).

SMDtable Indicates whether the object is a system metadata
(SMD) table. User metadata tables are not SMD tables.

File Organization The file organization of the object (for example,
key-sequenced).

Block Length The length of a block.

File Code File code in the range 550 through 565.

AuditCompress Indicates if compressed audit-checkpoint messages are
generated for Disk Process 2 (DP2) files.

ClearOnPurge Indicates disk erasure when the file is dropped.

Audited Indicates whether the file is audited. If the value is F, a
utility operation is in progress or has failed.

Broken Indicates whether the broken bit is set.

Buffered Indicates whether the file is buffered

CrashOpen The file is in crash-open state.

CrashLabel The file is in crash-label state.

Corrupt The file is corrupt (the contents of the file are in
question). If the value is T, a utility operation is in
progress or has failed.

RollfwdNeeded Roll forward is needed.

RedoNeeded The file cannot be opened, and media recover (redo) is
needed.

UndoNeeded The file cannot be opened, and media recover (undo) is
needed.

IncompletePartBoundChg Indicates whether a partition boundary change is in
progress. If the value is T, a utility operation is in
progress or has failed.

UnreclaimedSpace Indicates whether discarded blocks need to be cleaned
up following a partition boundary change. If the value is
T, a utility operation is in progress or has failed.

Primary Extent Size Size of the primary extent in pages.

Secondary Extent Size Size of the secondary extents in pages.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-101

MXCI Commands Examples of SHOWLABEL
SHOWLABEL, DETAIL Output

SHOWLABEL, DETAIL returns the SHOWLABEL output and some additional
information. This table describes the additional information that SHOWLABEL, DETAIL
provides. For actual output values, see the examples that follow:

Examples of SHOWLABEL

 Use the SHOWLABEL command with an object (ANSI) name:

>>showlabel tab1;
===

GuardianName: \CARNAG.$CHINA.ZSDQHSJZ.RGCX9K00
AnsiName: MOD107.SCH.TAB1
AnsiNameSpace: TA

ObjectSchemaVersion: 1200
ObjectFeatureVersion: 1200

Max Extents Maximum number of extents.

EOF The relative byte address of the first byte of the next
available block.

Extents Allocated Number of extents currently allocated for the file.

Index Levels Number of index levels used for index blocks.

Record Expression Label
Length

Length of the Record Expression label.

Security Label Length Length of the Security label.

Key Columns Column number and order of key columns. If the primary
key and store by key are not the same,
NonStop SQL/MX displays the SYSKEY after the key
columns.

Partitioning Scheme Scheme used for partitioning (for example, RP).

Low Key Specifies the first partitioning key value that can be
stored in the associated partition. Specifies the lowest
value for the partition if the column for the value has an
ascending order. Specifies the highest value for the
partition if the column has a descending order. This
information is displayed only for objects that are range
partitioned.

ID ID of the trigger. The timestamp indicating when the
trigger was created.

status Indicates whether the trigger is enabled or disabled.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-102

MXCI Commands Examples of SHOWLABEL
Owner: QADEV.TEG

RedefTimestamp: 29 Feb, 2004 20:34:18 (211944875658652063
)
CreationTimeStamp: 29 Feb, 2004 20:31:24 (211944875484237505
)
LastModTimestamp: 29 Feb, 2004 20:31:24 (211944875484237505
)
LastOpenTimeStamp: NEVER OPENED

SMDtable: F
File Organization: Key-sequenced
Block Length: 4096
File Code: 550

AuditCompress: T
Audited: T (If F, a Utility operation is in progress or has
failed)
Broken: F
Buffered: T
ClearOnPurge: F
Corrupt: F (If T, a Utility operation is in progress or has
failed)
CrashLabel: F
CrashOpen: F

IncompletePartBoundChg: F (If T, a Utility operation is in
 progress or has failed)
RedoNeeded: F
RollfwdNeeded: F
UndoNeeded: F
UnreclaimedSpace: F (If T, a Utility operation is in progress
or has failed)

Primary Extent Size: 16 Pages
Secondary Extent Size: 64 Pages
Max Extents: 160
Extents Allocated: 0
EOF: 0

Index Levels: 0

===

 Use the SHOWLABEL, DETAIL command with an object name:

>>showlabel tab1, detail;
===

GuardianName: \CARNAG.$CHINA.ZSDQHSJZ.RGCX9K00
AnsiName: MOD107.SCH.TAB1
AnsiNameSpace: TA

ObjectSchemaVersion: 1200
ObjectFeatureVersion: 1200

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-103

MXCI Commands Examples of SHOWLABEL
Owner: QADEV.TEG

RedefTimestamp: 29 Feb, 2004 20:34:18 (211944875658652063
)
CreationTimeStamp: 29 Feb, 2004 20:31:24 (211944875484237505
)
LastModTimestamp: 29 Feb, 2004 20:31:24 (211944875484237505
)
LastOpenTimeStamp: NEVER OPENED
SecurityTimestamp: 29 Feb, 2004 20:31:24 (211944875484152346
)

SMDtable: F
File Organization: Key-sequenced
Block Length: 4096
File Code: 550

AuditCompress: T
Audited: T (If F, a Utility operation is in progress or has
failed)
Broken: F
Buffered: T
ClearOnPurge: F
Corrupt: F (If T, a Utility operation is in progress or has
failed)
CrashLabel: F
CrashOpen: F

IncompletePartBoundChg: F (If T, a Utility operation is in
 progress or has failed)
RedoNeeded: F
RollfwdNeeded: F
UndoNeeded: F
UnreclaimedSpace: F (If T, a Utility operation is in progress
or has failed)

Primary Extent Size: 16 Pages
Secondary Extent Size: 64 Pages
Max Extents: 160
Extents Allocated: 0
EOF: 0

Index Levels: 0

Record Expression Label Length: 9168
Security Label Length: 120

Key Columns: 0 ASC

Partitioning Scheme: RP

Partition Array - 3 partition[s]
Partition[0]: \CARNAG.$CHINA.ZSDQHSJZ.RGCX9K00
 Low Key: (-2147483648)
Partition[1]: \CARNAG.$KEMPO.ZSDQHSJZ.N9HX9K00
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-104

MXCI Commands Examples of SHOWLABEL
 Low Key: (20)
Partition[2]: \CARNAG.$LORI.ZSDQHSJZ.HMNX9K00
 Low Key: (40)

IndexMap Array - 2 index[es]
Index[0]: \CARNAG.$BLANCA.ZSDQHSJZ.JH8TCM00
 Index columns: 1 ASC , 0 ASC
Index[1]: \CARNAG.$BLANCA.ZSDQHSJZ.W7DJ2M00
 Index columns: 0 ASC , 1 ASC , 0 ASC

Trigger Status Array - 2 trigger[s]
Trigger[0]: trigger created (ID): 211944875578177762
 Status: ENABLED
Trigger[1]: trigger created (ID): 211944875658652063
 Status: ENABLED

===

 Use the SHOWLABEL command with a physical location (Guardian) name:

>>showlabel \CARNAG.$CHINA.ZSDQHSJZ.RGCX9K00;
===

GuardianName: \CARNAG.$CHINA.ZSDQHSJZ.RGCX9K00
AnsiName: MOD107.SCH.TAB1
AnsiNameSpace: TA

ObjectSchemaVersion: 1200
ObjectFeatureVersion: 1200

Owner: QADEV.TEG

RedefTimestamp: 29 Feb, 2004 20:34:18 (211944875658652063
)
CreationTimeStamp: 29 Feb, 2004 20:31:24 (211944875484237505
)
LastModTimestamp: 29 Feb, 2004 20:31:24 (211944875484237505
)
LastOpenTimeStamp: NEVER OPENED

SMDtable: F
File Organization: Key-sequenced
Block Length: 4096
File Code: 550

AuditCompress: T
Audited: T (If F, a Utility operation is in progress or has
failed)
Broken: F
Buffered: T
ClearOnPurge: F
Corrupt: F (If T, a Utility operation is in progress or has
failed)
CrashLabel: F
CrashOpen: F

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-105

MXCI Commands Examples of SHOWLABEL
IncompletePartBoundChg: F (If T, a Utility operation is in
progress or has failed)
RedoNeeded: F
RollfwdNeeded: F
UndoNeeded: F
UnreclaimedSpace: F (If T, a Utility operation is in progress
or has failed)

Primary Extent Size: 16 Pages
Secondary Extent Size: 64 Pages
Max Extents: 160
Extents Allocated: 0
EOF: 0

Index Levels: 0

===

 Use the SHOWLABEL, DETAIL command with a physical location (Guardian)
name:

>>showlabel \CARNAG.$CHINA.ZSDQHSJZ.RGCX9K00, detail;
===

GuardianName: \CARNAG.$CHINA.ZSDQHSJZ.RGCX9K00
AnsiName: MOD107.SCH.TAB1
AnsiNameSpace: TA

ObjectSchemaVersion: 1200
ObjectFeatureVersion: 1200

Owner: QADEV.TEG

RedefTimestamp: 29 Feb, 2004 20:34:18 (211944875658652063
)
CreationTimeStamp: 29 Feb, 2004 20:31:24 (211944875484237505
)
LastModTimestamp: 29 Feb, 2004 20:31:24 (211944875484237505
)
LastOpenTimeStamp: NEVER OPENED
SecurityTimestamp: 29 Feb, 2004 20:31:24 (211944875484152346
)

SMDtable: F
File Organization: Key-sequenced
Block Length: 4096
File Code: 550

AuditCompress: T
Audited: T (If F, a Utility operation is in progress or has
failed)
Broken: F
Buffered: T
ClearOnPurge: F
Corrupt: F (If T, a Utility operation is in progress or has
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-106

MXCI Commands Examples of SHOWLABEL
failed)
CrashLabel: F
CrashOpen: F

IncompletePartBoundChg: F (If T, a Utility operation is in
progress or has failed)
RedoNeeded: F
RollfwdNeeded: F
UndoNeeded: F
UnreclaimedSpace: F (If T, a Utility operation is in progress
or has failed)

Primary Extent Size: 16 Pages
Secondary Extent Size: 64 Pages
Max Extents: 160
Extents Allocated: 0
EOF: 0

Index Levels: 0

Record Expression Label Length: 9168
Security Label Length: 120

Key Columns: 0 ASC

Partitioning Scheme: RP

Partition Array - 3 partition[s]
Partition[0]: \CARNAG.$CHINA.ZSDQHSJZ.RGCX9K00
 Low Key: (-2147483648)
Partition[1]: \CARNAG.$KEMPO.ZSDQHSJZ.N9HX9K00
 Low Key: (20)
Partition[2]: \CARNAG.$LORI.ZSDQHSJZ.HMNX9K00
 Low Key: (40)

IndexMap Array - 2 index[es]
Index[0]: \CARNAG.$BLANCA.ZSDQHSJZ.JH8TCM00
 Index columns: 1 ASC , 0 ASC
Index[1]: \CARNAG.$BLANCA.ZSDQHSJZ.W7DJ2M00
 Index columns: 0 ASC , 1 ASC , 0 ASC

Trigger Status Array - 2 trigger[s]
Trigger[0]: trigger created (ID): 211944875578177762
 Status: ENABLED
Trigger[1]: trigger created (ID): 211944875658652063
 Status: ENABLED

===

--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-107

MXCI Commands Examples of SHOWLABEL
 Use the SHOWLABEL, DETAIL command with a physical location (Guardian)
name on a table with a SYSKEY:

>>showlabel $FL0115.ZSDJNQHX.Z91KC400,detail;

===

 GuardianName: \BERT.$FL0115.ZSDJNQHX.Z91KC400
 AnsiName: TESTCAT.TESTSCH.Y4
 AnsiNameSpace: TA

 ObjectSchemaVersion: 1200
 ObjectFeatureVersion: 1200

 Owner: QADEV.TEG

 RedefTimestamp: 23 Nov, 2004 07:28:40 (
211967983720864326)
 CreationTimeStamp: 23 Nov, 2004 07:28:45 (
211967983725720055)
 LastModTimestamp: 23 Nov, 2004 07:28:45 (
211967983725720055)
 LastOpenTimeStamp: NEVER OPENED
 SecurityTimestamp: 23 Nov, 2004 07:28:40 (
211967983720864326)

 SMDtable: F
 File Organization: Key-sequenced
 Block Length: 4096
 File Code: 550

 AuditCompress: T
 Audited: T (If F, a Utility operation is in progress
or has failed)
 Broken: F
 Buffered: T
 ClearOnPurge: F
 Corrupt: F (If T, a Utility operation is in progress
or has failed)
 CrashLabel: F
 CrashOpen: F

 IncompletePartBoundChg: F (If T, a Utility operation
is in progress or has failed)
 RedoNeeded: F
 RollfwdNeeded: F
 UndoNeeded: F
 UnreclaimedSpace: F (If T, a Utility operation is in
progress or has failed)

 Primary Extent Size: 16 Pages
 Secondary Extent Size: 64 Pages
 Max Extents: 160
 Extents Allocated: 0
 EOF: 0
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-108

MXCI Commands Examples of SHOWLABEL

 Index Levels: 0

 Record Expression Label Length: 46656
 Security Label Length: 120

 Key Columns: 2 ASC , 3 ASC , 5 ASC , 6 ASC , 7 ASC ,
8 ASC , 9 ASC , 10 ASC, 0 ASC

 Partitioning Scheme: RP

 Partition Array - 1 partition[s]

 IndexMap Array - 4 index[es]
 Index[0]: \BERT.$FL0115.ZSDJNQHX.PJLVC400
 Index columns: 11 ASC
 Index[1]: \BERT.$FL0115.ZSDJNQHX.CL17H400
 Index columns: 15 ASC
 Index[2]: \BERT.$FL0115.ZSDJNQHX.L3ZHK400
 Index columns: 16 ASC
 Index[3]: \BERT.$FL0115.ZSDJNQHX.VTXSL400
 Index columns: 2 ASC , 3 ASC , 5 ASC

 Trigger Status Array - 0 trigger[s]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-109

MXCI Commands SHOWSHAPE Command
SHOWSHAPE Command
The SHOWSHAPE command displays the control query shape for a given DML
statement. You can use the result at a later time to force the same access plan for the
statement. See CONTROL QUERY SHAPE Statement on page 2-62 and SET
SHOWSHAPE Command on page 4-66.

Use SHOWSHAPE only within an MXCI session.

statement

is an SQL DML statement.

Considerations for SHOWSHAPE

Default Control Query Shape

You can use the SHOWSHAPE command for any SQL statement. For those
statements that do not have a shape—for example, the CREATE SCHEMA
statement—a control query shape (CQS) of the form CONTROL QUERY SHAPE
ANYTHING is issued.

CONTROL QUERY SHAPE ANYTHING resets the effect of any preceding CQSs. Its
use is especially important when CQSs are being generated from an input file of
commands and statements. See SET SHOWSHAPE Command on page 4-66.

Examples of SHOWSHAPE

 Display the access plan for the given statement:

SHOWSHAPE
 SELECT E.last_name, J.jobdesc
 FROM persnl.employee E, persnl.job J
 WHERE E.salary > 40000.00
 AND E.jobcode = J.jobcode;

control query shape
 nested_join(partition_access(scan(
 'J', forward, mdam off)),
 materialize(partition_access(scan(
 'E', forward, mdam off))));

--- SQL operation complete.

SHOWSHAPE statement
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-110

MXCI Commands Examples of SHOWSHAPE
 Display the access plan for the given statement:

SET NAMETYPE NSK;
SET MPLOC $DATA06.PERSNL;

SHOWSHAPE
SELECT first_name, last_name, deptnum, salary
FROM persnl.employee
WHERE salary >
 (SELECT MAX (salary)
 FROM persnl.employee
 WHERE deptnum = 1500);

control query shape
 hybrid_hash_join(partition_access(
 sort_groupby(scan(path 'EMPLOYEE',
 forward, mdam off))),
 partition_access(scan(path 'EMPLOYEE',
 forward, mdam off)));

--- SQL operation complete.

 This example shows the output of the SHOWSHAPE command using the
MultiUnion operator:

>>showshape select * from t1 union all select * from t1 union
all select * from t1;

control query shape
expr(MultiUnion(partition_access(scan(path 'CAT.SCH.T1',
forward, blocks_per_access 1 , mdam off)),
partition_access(scan(path 'CAT.SCH.T1', forward,
blocks_per_access 1, mdam off)),partition_access(scan(path
'CAT.SCH.T1', forward, blocks_per_access 1 , mdam off))));
--- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-111

MXCI Commands SHOWSTATS Command
SHOWSTATS Command
The SHOWSTATS command retrieves statistics from a column(s) of a table. You can
use MXCI or an embedded program to execute this command.

DETAIL

displays the detailed statistics, which includes the histogram ID, number of
intervals, total number of rows, total UEC, column names, and low and high values
for each interval.

EVERY KEY

displays the statistics for every column that is a key or a part of the key.

EVERY COLUMN

displays the statistics for every column in the table for which statistics are
available.

EXISTING COLUMN[S]

displays the statistics for every single column and multi-column group of the table
for which statistics are available.

column1 TO column2

displays the available statistics from column1 to column2 in the table .

Consideration for SHOWSTATS

If you have upgraded SQL/MX from an earlier version to 3.2 or later, HP recommends
that you run the UPDATE STATISTICS command before executing the SHOWSTATS
command. Otherwise, the display order for the column’s histogram might differ.

SHOWSTATS FOR TABLE tablename ON column-spec [DETAIL]

column-spec is:
 | EVERY KEY [columnname,columnname...]
 | EVERY COLUMN
 | EXISTING COLUMN[S]
 | column1 TO column2
 | column-set

column-set is:
 column-set-member [, column-set-member...]

column-set-member is:
 columnname | multi-column-group

multi-column-group is: (columnname1, columnname2...)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-112

MXCI Commands Examples of SHOWSTATS
Examples of SHOWSTATS

 This example displays the histogram for every column in the table for which
statistics are available:

 >>SHOWSTATS FOR TABLE student ON EVERY COLUMN;

 Histogram data for Table SHOWSTATS.SCH.STUDENT
 Table ID: 520295568744812

 Hist ID # Ints Rowcount UEC Colname(s)

 ======= ==== ======== ==== ==========

 1126276632 6 6 6 ROLLNO

 1126276627 6 6 6 NAME

 1126276622 6 6 6 DOB

 1126276617 6 6 6 SUBJECT

 --- SQL operation complete.

 This example displays the histogram for the column, name:

 >>SHOWSTATS FOR TABLE student ON name;

 Histogram data for Table SHOWSTATS.SCH.STUDENT
 Table ID: 520295568744812

 Hist ID # Ints Rowcount UEC Colname(s)

 ======== ===== ========= ===== ==========

 1126276627 6 6 6 NAME

 --- SQL operation complete.

 This example displays the histogram for the SQL/MP table, mpteach:

 >>SHOWSTATS FOR TABLE \DMR15.$DATA07.CHANVOLM.mpteach ON
EVERY COLUMN;

Histogram data for Table \DMR15.$DATA07.CHANVOLM.MPTEACH

 Table ID: 212193205206643373
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-113

MXCI Commands Examples of SHOWSTATS

 Hist ID # Ints Rowcount UEC Colname(s)

 ========== ====== =========== ==== ==========

 1013503854 5 5 5 SYSKEY

 1013503849 5 5 5 ID

 1013503844 5 5 5 NAME

 1013503839 4 5 4 SUBJECT

 --- SQL operation complete.

 This example displays the detailed histogram for the column, dob:

 >>SHOWSTATS FOR TABLE student ON dob DETAIL;

 Detailed Histogram data for Table SHOWSTATS.SCH.STUDENT

 Table ID: 520295568744812

 Hist ID: 1126276622

 Column(s): DOB

 Total Rows: 6

 Total UEC: 6

 Low Value: (DATE '1976-05-15')

 High Value: (DATE '1999-09-13')

 Intervals: 6

 Number Rowcount UEC Boundary

 ====== ========= ==== ==================

 0 0 0 (DATE '1976-05-15')

 1 1 1 (DATE '1976-05-15')

 2 1 1 (DATE '1981-01-22')

 3 1 1 (DATE '1985-12-12')

 4 1 1 (DATE '1987-10-19')

 5 1 1 (DATE '1991-11-25')

 6 1 1 (DATE '1999-09-13')

 --- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-114

MXCI Commands Examples of SHOWSTATS
 This example displays the detailed histogram for the multi-column-group (name,
dob):

>>SHOWSTATS FOR TABLE student ON (name,dob) DETAIL;

 Detailed Histogram data for Table SHOWSTATS.SCH.STUDENT

 Table ID: 1952836866910076444

 Hist ID: 850886066

 Column(s): NAME, DOB

 Total Rows: 6

 Total UEC: 6

 Low Value: ('Ajay',DATE '1976-05-15')

 High Value: ('vijay',DATE '1999-09-13')

 Intervals: 1

 Number Rowcount UEC Boundary

 ====== =========== =========== ========================

 0 0 0 ('Ajay',DATE '1976-05-15')

 1 6 6 ('vijay',DATE '1999-09-13')

 --- SQL operation complete.

 This example displays the SHOWSTATS output when a column does not exist:

 >>SHOWSTATS FOR TABLE student ON nonexistencecolumn;

 *** ERROR[9209] Column NONEXISTENCECOLUMN does not exist in
object SHOWSTATS.SCH.STUDENT.

--- SQL operation failed with errors.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-115

MXCI Commands Examples of SHOWSTATS
 This example displays the SHOWSTATS output when there are no histograms for
the requested columns:

 >>SHOWSTATS FOR TABLE student ON name;

 Histogram data for Table SHOWSTATS.SCH.STUDENT

 Table ID: 520295568744812

 Hist ID # Ints Rowcount UEC Colname(s)

 ======== ===== ========= ===== ===========

 No Histograms exist for the requested columns or groups

 --- SQL operation complete.

 This example displays the SHOWSTATS output if there are no histograms for
some of the requested columns (histogram for the column name is not available):

 >>SHOWSTATS FOR TABLE student ON name,subject;

 *** WARNING[9225] No histogram data is available for columns
(NAME).

 Histogram data for Table SHOWSTATS.SCH.STUDENT

 Table ID: 520295568744812

 Hist ID # Ints Rowcount UEC Colname(s)

 ========= ====== ========= ===== ==========

 1126276641 6 6 6 SUBJECT

 --- SQL operation complete.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
4-116

5 SQL/MX Utilities

A utility is a tool that runs within NonStop SQL/MX or from the OSS shell and performs
such tasks as importing data, duplicating files, fixing database discrepancies, and
migrating metadata. SQL/MX utilities can be run from MXCI or from the OSS command
line.

For a description of MXCI, see MXCI SQL/MX Conversational Interface on page 1-2.
For more information about OSS, see the Open System Services User’s Guide.

For descriptions of the BACKUP and RESTORE commands, see the Guardian Disk
and Tape Utilities Reference Manual.

This section describes these SQL/MX utilities:

CLEANUP Operation on
page 5-3

Removes damaged objects and orphaned Guardian
files from an SQL/MX database.

FIXRCB Operation on
page 5-7

Performs RCB fixup for all required database objects
in catalogs that have an automatic reference on the
local system.

FIXUP Operation on
page 5-8

Fixes problems in the database and file labels
associated with an SQL/MX object.

GOAWAY Operation on
page 5-13

Removes Guardian files associated with SQL/MX
objects.

import Utility on page 5-18 Imports data from a file into an SQL/MX table.

INFO Operation on
page 5-53

Displays file information for Guardian files associated
with SQL/MX objects.

mxexportddl Utility on
page 5-55

Exports DDL and statistics information to an XML file.

MXGNAMES Utility on
page 5-59

Converts ANSI table names into a list of
corresponding Guardian file names formatted for TMF
or BACKUP/RESTORE 2.

mximportddl Utility on
page 5-67

Imports DDL and statistics information from an XML
file.

MXRPM tool on page 5-75 Reprocesses module files.

mxtool Utility on page 5-78 Performs FIXUP, GOAWAY, CLEANUP, INFO or
VERIFY operations.

VERIFY Operation on
page 5-79

Reports whether SQL/MX objects and programs are
consistently described in file labels, resource forks,
and metadata.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-1

SQL/MX Utilities Privileges Required to Execute Utilities
Privileges Required to Execute Utilities
Utility Privileges Required

CLEANUP Object owner or Super ID if the operation is by ANSI name.

If the -oo option is specified, Super ID is required.

FIXUP operation Super ID.

GOAWAY operation Super ID.

import Have ALL privileges.

INFO operation Any privilege level.

mxexportddl Super ID.

mximportddl Super ID.

MXGNAMES Have READ/WRITE access to the Guardian subvolume where
you are executing MXGNAMES.

VERIFY operation SELECT privilege on all columns of the table.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-2

SQL/MX Utilities CLEANUP Operation
CLEANUP Operation
CLEANUP is an OSS command-line utility, run from mxtool, which can remove
damaged objects and orphaned Guardian files when a regular DROP operation fails.

The CLEANUP operation supports the following two modes:

 CLEANUP of a single damaged object, by object type and ANSI name.

 CLEANUP of one or more orphaned partitions. An orphaned partition is a Guardian
file which represents an SQL/MX partition that is not associated with any object in
metadata.

object-type

specifies the damaged object for cleanup, and is either TABLE, VIEW, INDEX,
SEQUENCE, or PROCEDURE.

object-name

is the ANSI name of the cleanup object. The name must be fully qualified with the
catalog and schema.

Note. The CLEANUP operation is available only on systems running J06.14 and later J-series

RVUs, and H06.25 and later H-series RVUs.

mxtool CLEANUP { object-option | orphaned-files-opt }

object-option is: object-type object-name options

object-type is:
{ TABLE | VIEW | INDEX | SEQUENCE | PROCEDURE }

object-name is: catalog.schema.object.

options is: [[-c | -r][-o=outinfo]]

outinfo is: output-file-name [CLEAR]

output-file-name is: an OSS file name

orphaned-files-opt is:
-oo { -f=input-filename | guardian-physical-filename }[-
o=outinfo]

input-filename is: an OSS file name generated by VERIFY
operation, which lists the orphaned files in the node.

guardian-physical-filename is:
[\node.]$volume.subvol.filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-3

SQL/MX Utilities Considerations
options

determines how the CLEANUP operation is performed.

-r restricts the CLEANUP operation for the specified object. If the object has
dependent objects, the CLEANUP operation fails with an error. If no options are
specified, the default is -r.

-c cascades the CLEANUP operation for dependent objects. The dependent
objects are cleaned up along with the specified object.

input-filename

is the OSS file name of a file generated as a result of running the mxtool
VERIFY operation with the -oo option. This file contains the Guardian file
names of orphaned partitions to be removed.

guardian-physical-filename

is a single Guardian file name of a single orphaned cleanup partition. The node
name part is optional.

output-filename

is the OSS path name of the file to which the utility writes the log output. The
CLEAR option clears the file before logging the output. If CLEAR is omitted, and if
the log file exists, output is appended to the existing data in the file. The output-
filename cannot have a , (comma) or ; (semicolon).

Considerations

 The CLEANUP operation for a single object can be performed by the schema
owner, object owner, or Super ID. The cleanup of orphaned objects can only be
performed by the Super ID.

 The CLEANUP operation is used when standard DROP requests fail because of
metadata inconsistencies. The CLEANUP operation removes the objects when:

 The metadata for the object exists and is available, but one or more partitions
are physically missing (dangling partition references)

 One or more partitions physically exist, but the metadata for the object is
missing (orphaned partitions)

 The CLEANUP operation creates a log file with details of the outcome. If outinfo
is not specified, a log file with a name in the format of LOG_weekday_month_day
of month_time_year is created in the current working directory.

 The cleanup of an object with dangling partition references requires the following to
be present in the metadata:

 Catalog information for the object’s catalog in the CATSYS and
CAT_REFERENCES tables in the system schema
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-4

SQL/MX Utilities Restrictions
 Schema information for the object's schema in the SCHEMATA table in the
system schema

 Object information in the OBJECTS table in the
DEFINITION_SCHEMA_VERSION_nnnn schema in the object's catalog

 The cleanup of orphaned partitions requires the metadata to be available to
determine if the partitions are orphaned. For each partition to be cleaned up, the
following information must be available:

 Catalog information for the partition's catalog must be present in the CATSYS
and CAT_REFERENCES tables in the system schema. If no information exists
for the partition's catalog, then the partition is considered orphaned.

 If catalog information for the partition's catalog exists, then schema information
for the partition's schema must be present in the SCHEMATA table in the
system schema. If no information exists for the partition's schema, then the
partition is considered orphaned.

 If catalog and schema information for the partition's catalog and schema exists,
then object information must be present in the OBJECTS table in the
DEFINITION_SCHEMA_VERSION_nnnn schema for the partition's catalog. If
no information exists for the partition's object, then the partition is considered
orphaned.

 If one or more of the metadata tables mentioned above are not available at the
time of cleanup, then it cannot be determined if the partition is orphaned. In this
case, the partition is not cleaned up.

Restrictions

 You cannot perform the CLEANUP operation on a schema or a catalog.

 You cannot perform the CLEANUP operation to remove a system metadata object
by object name. However, you can remove orphaned partitions from system
metadata objects.

Examples

The following example performs cleanup of a table with a dangling partition reference.
The log file name is not specified and the CLEANUP operation generates a default log
file, LOG_Wed_Jun_27_00_35_20_2012.

 >> mxtool cleanup catalog.schema.sometable
 Hewlett-Packard NonStop(TM) SQL/MX MXTOOL Utility 3.2
 (c) Copyright 2003, 2004-2012 Hewlett-Packard Development Company, LP.

 Log file containing results of the operation: LOG_Wed_Jun_27_00_35_20_2012

 cat LOG_Wed_Jun_27_00_35_20_2012

 *************** Time: <time> Process: <process> Log opened ***************
 Cleanup of Table CAT.SCH.SOMETABLE -- Operation Started.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-5

SQL/MX Utilities Examples
 \COBOLT.$DATA01.ZSDR4XG7.FG5BNL01: error returned 11

 Table: CAT.SCH.SOMETABLE

 Cleanup of Table CAT.SCH.SOMETABLE -- Operation Finished.

Note. The date-time prefix of each log line has been omitted for brevity.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-6

SQL/MX Utilities FIXRCB Operation
FIXRCB Operation
Error Conditions
Example of FIXRCB Operation

FIXRCB is an OSS command-line utility run from mxtool. It performs a Record
Control Block (RCB) fixup for all the required database objects in catalogs that have
metadata tables on the local system. The command must be executed by the Super
ID.

Error Conditions

One of the following error conditions might occur while executing the mxtool fixrcb
command:

 An involved node has an incompatible version.

 A user other than the local super ID performed the operation.

Example of FIXRCB Operation

The following command performs an RCB fixup for all the required database objects in
catalogs that have an automatic reference on the local system.

mxtool fixrcb

Hewlett-Packard NonStop(TM) SQL/MX MXTOOL Utility 3.0
(c) Copyright 2003, 2004-2010 Hewlett-Packard Development
Company, LP.

*** mxtool fixrcb completed successfully ***

mxtool fixrcb

Note. The FIXRCB operation does not fix the objects in catalogs that do not have metadata
tables on the local system. RCB fixup for objects in such catalogs must be performed on the
system where the metadata tables are located.

The FIXRCB operation is available on systems running J06.11 and later J-series RVUs and
H06.22 and later H-series RVUs, and on fallback SPR (H06.21-ANC).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-7

SQL/MX Utilities FIXUP Operation
FIXUP Operation
Considerations for FIXUP Operation
Examples of FIXUP Operation

FIXUP is an OSS command-line utility run from mxtool that repairs problems in the
SQL/MX database that cannot be repaired by normal operations.

guardian-file

specifies the Guardian file to be changed. It must be fully qualified with the volume
and subvolume name.

Because the name contains special characters such as “\” or “$”, you must
precede these characters with a backslash (\), or you can enclose the entire
four-part name in single quotes. For example:

\\node2.\$data3.sales.mytable or '\node2.$data3.sales.mytable'.

g-opts

are options available for a Guardian file:

 Toggle the AUDIT attribute
 Turn off the broken attribute
 Turn off the corrupt attribute
 Reset the redefinition timestamp
 Fix inconsistent label and metadata object UIDs

mxtool utility-operation

utility-operation is:

FIXUP {guardian-option | object-option}

guardian-option is

 LABEL guardian-file g-opts

guardian-file is [\node.]$volume.subvolume.filename

g-opts is: { -a= { on|off } | -rb | -rc | -rt | -ru }

object-option is

 object-type object-name o-opts

object-type is { TABLE | INDEX | SEQUENCE }

object-name is catalog.schema.object

o-opts is: { -rc | -rt | -ru } [-d]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-8

SQL/MX Utilities FIXUP Operation
{ -a= { on | off }

toggles the audit attribute on the label. If the audit attribute is ON and you issue a
request to turn it on, FIXUP returns a warning that the audit attribute is already on.
If the audit attribute is OFF and you issue a request to turn it off, FIXUP returns a
warning.

You must be the super ID to perform this operation.

If you turn off auditing for the table, this invalidates online dumps. After the FIXUP
operation completes, you must perform a new TMF online dump for all partitions of
the table.

-rb

turns off the broken attribute on the label. If the broken attribute is already reset
and you issue a request to reset it, FIXUP returns a warning.

-rc

turns off the corrupt attribute in the label and in the PARTITIONS metadata table
for the specific partition. If the partition already has the corrupt attribute turned off
and you issue a request to turn it off, FIXUP returns a warning.

-rt

sets the redefinition timestamp in label to the value in the OBJECTS table. If the
partition already has the correct redefinition time and you issue a request to reset
it, FIXUP returns a warning.

You must be the owner of the object or super ID to execute this request.

-ru

sets the UID value in the resource fork to match the UID value in metadata.
NonStop SQL/MX replaces the catalog, schema, and object UIDs in the resource
fork with the values found in metadata.

object-type

is an SQL table, sequence generator, or index which has an associated Guardian
file.

Caution. The -rb operation to reset the broken attribute on the label is potentially a risky
operation. If the file is really broken and you reset the attribute, the consistency of the database
will be in question. In addition, the next time DP2 attempts to access the broken file, it resets
this attribute.

Caution. The -rc operation to turn off the corrupt attribute on the label is potentially a risky
operation. If the file is really corrupted and you reset the attribute, the consistency of the
database will be in question.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-9

SQL/MX Utilities FIXUP Operation
object-name

specifies the SQL object to be changed. It must be fully qualified with the catalog
and schema name.

o-opts

are options available for an SQL object:

 Turn off the corrupt attribute
 Reset the redefinition timestamp

{ -rc [-d] }

turns off the corrupt attribute on the label and in the PARTITIONS metadata table.

FIXUP attempts to reset all local partitions associated with the object. If the object
has partitions on remote nodes, FIXUP displays a warning and continues.

If an update to the label or metadata fails, the operation fails. If one of the partitions
already has the corrupt attribute turned off, FIXUP continues to reset partitions that
need to be reset.

If you specify the -d option, FIXUP resets the corrupt attribute of all dependencies
associated with the object. Table dependencies include indexes and trigger
temporary tables. Indexes have no dependencies, so the -d option is ignored.

You must be the super ID to execute this request. Both remote and local partitions
can have their corrupt attribute reset.

If the metadata and label attributes do not match, FIXUP turns both values off.

{ -rt [-d] }

sets the redefinition timestamp of one or all local partitions of an object to the value
saved in the OBJECTS metadata table. If FIXUP cannot extract the redefinition
time from the metadata, it returns an error.

FIXUP updates all partitions that make up the object, on the local node.

If the partition has the same timestamp as the metadata, FIXUP continues to
update timestamps for partitions that need to be updated. If an update to the label
fails, the operation fails.

{ -ru [-d] }

sets the UID value in the resource fork to match the UID value in metadata.
NonStop SQL/MX replaces the catalog, schema, and object UIDs in the resource
fork with the values found in metadata.

Caution. The -rc operation to turn off the corrupt attribute on the label is potentially a risky
operation. If the file is really corrupted and you reset the attribute, the consistency of the
database will be in question.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-10

SQL/MX Utilities Considerations for FIXUP Operation
If you request the -d option, FIXUP updates timestamps for all dependencies
associated with the object. Table dependencies include indexes and trigger
temporary tables. Each dependent object has its own redefinition timestamp, so
each object is set to its own individual time.

You must be the super ID to execute this request.

If the metadata and label timestamps do not match, no warning is issued, but the
label value is set to the metadata value.

Considerations for FIXUP Operation

If you change the redefinition timestamp of the label, all executor opens are
invalidated. The next time the executor tries to open the file, a similarity check is
performed. If it fails, programs are recompiled. The redefinition timestamp is updated
whenever the corrupt attribute, broken attribute, or audit attribute is changed.

Examples of FIXUP Operation

Suppose that you create a table, FIXUPtable, located in catalog mycat and schema
mysch. It has three partitions, two of which are located on the local node \local and
one located on a remote node \remote. It contains a trigger which requires a trigger
temporary table. That table exists on the local node. There are two indexes associated
with the table, index1 and index2. Each index has three partitions, organized like
the table.

 Suppose a partition on FIXUPtable is broken. To fix the problem, you need to
turn off the audit attribute, fix the problem, reset the broken attribute, and turn audit
back on.

Partition \LOCAL2.$DATA02.ZSDQ123U.SUEIFO00 is marked broken. Run FIXUP
to turn off the audit attribute:

mxtool FIXUP LABEL \LOCAL2.$DATA02.ZSDQ123U.SUEIFO00 -a=off

Determine the problem and fix it. Then run FIXUP to reset the broken attribute and
to turn the audit attribute back on:

mxtool FIXUP LABEL \LOCAL2.$DATA02.ZSDQ123U.SUEIFO00 -rb
mxtool FIXUP LABEL \LOCAL2.$DATA02.ZSDQ123U.SUEIFO00 -a=on

Suppose that several of the timestamps on FIXUPtable do not match the value
on the label. Run FIXUP to reset the timestamps:

mxtool FIXUP TABLE mycat.mysch.FIXUPtable -rt -d

 Suppose a disk or node failure occurs and you must recover table FIXUPtable.
Following instructions in the SQL/MX Installation and Management Guide, you use
saved DDL information to recreate the table and recover the privileges in the
metadata, then execute the TMF RECOVER FILES command to recover the label,
data, and resource forks.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-11

SQL/MX Utilities Examples of FIXUP Operation
The metadata will now have a new object UID and the label information will have
the old object UID. When you perform a VERIFY on this file, because the UID
value in the metadata tables does not match the UID value in the resource fork.,
you receive this message:

20799 The { catalog | schema | object } UID in the resource
fork (value) does not match the UID (value) in the metadata
for Guardian file (filename).

Run FIXUP to make the UID value in the resource fork match the UID value in the
metadata:

mxtool FIXUP TABLE mycat.mysch.FIXUPtable -ru -d

Run FIXUP to make the UID value in the resource fork match the UID value in the
metadata for a sequence generator:

mxtool FIXUP SEQUENCE mycat.mysch.seq1 -ru -d
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-12

SQL/MX Utilities GOAWAY Operation
GOAWAY Operation
Considerations for GOAWAY
Examples of GOAWAY

GOAWAY is an OSS command-line utility run from mxtool that removes Guardian
files associated with SQL/MX objects.

SQL/MX files consist of two physical Guardian files, the data fork and the resource
fork. Normally, when the data fork is dropped, DP2 automatically drops the
corresponding resource fork. In some cases, either an orphaned resource fork or data
fork might exist.

GOAWAY does not remove corresponding metadata entries and does not use ANSI
names.

Syntax Description of GOAWAY

guardian-file

specifies the Guardian file(s) to be removed. If guardian-file is not an SQL/MX
object, GOAWAY returns an error. You must fully qualify the file name with the
volume and subvolume names. ANSI names are not permitted.

In this four-part name, node is the name of a node of a NonStop server, $volume
is the name of a disk volume, subvol is the name of a subvolume that begins with
the letters ZSD, and filename is the automatically generated name of a Guardian
table that ends with “00” or “01” (zero zero or zero one).

If you do not specify \node, the default is the Guardian system named in your
=_DEFAULTS define. If you specify \node, it must be the local system or
GOAWAY will return an error. GOAWAY does not drop labels on remote systems.

You can use the “*” Guardian wild card in the volume, subvolume, and file name.

If guardian-file does not exist or is inaccessible, an error is returned.

If the Guardian file system encounters an error while searching for files, GOAWAY
returns an error. If guardian-file is locked, GOAWAY tries for 90 seconds, and
then returns a timeout message.

{-df | -rf | -both}

directs GOAWAY to drop a single Guardian file (either a data fork or a resource
fork), or both.

GOAWAY guardian-file [{-df | -rf | -both}] [-s] [!]

guardian-file is

 [\node.]volume.subvolume.filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-13

SQL/MX Utilities Syntax Description of GOAWAY
If you do not specify this option, the default is -both.

-df

directs GOAWAY to drop a data fork file.

guardian-file must be the name of the data fork. Successful delete of a
data fork with the data fork option generates an informational message. If you
specify a resource fork name, the operation fails.

-rf

directs GOAWAY to drop a resource fork file.

guardian-file must be the name of the resource fork. If you specify a data
fork name, the operation fails.

-both

directs GOAWAY to drop both files.

guardian-file must be the name of the data fork. If you specify a resource
fork name, the operation fails.

If you specify -both and only the resource fork exists or only the data fork
exists, the operation fails.

If you request the data fork option and a resource fork exists, an error is returned. If
you request the resource fork option and a data fork exists, an error is returned.

Valid examples are:

mxtool GOAWAY \\figaro.\$vol.subvol.file00 -df

mxtool GOAWAY \\figaro.\$vol.subvol.file01 -rf

mxtool GOAWAY \\figaro.\$vol.subvol.file00

mxtool GOAWAY \\figaro.\$vol.subvol.file00 -both

If GOAWAY fails to remove the specified files, it returns an error. Because
GOAWAY can do no more, you should notify your service provider.

-s

When you run mxtool, specific SQL/MX information is extracted including the
ANSI name associated with the physical file. This takes some time to process and
errors can occur while NonStop SQL/MX is extracting this information. This option
allows mxtool to skip this step and drop the label.

!

When a drop is performed, GOAWAY requests confirmation with each file that
matches the list of files specified in guardian-file to be dropped (data and
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-14

SQL/MX Utilities Considerations for GOAWAY
resource fork). If you specify!, GOAWAY does not ask for confirmation but
performs the requested operation.

If you do not specify this option, GOAWAY returns with the name of the file it plans
to drop. You must confirm (YES) or reject (NO) this action. If you specify YES, the
operation continues to the next file that matches the list of files specified in the
guardian-file. If you specify NO, the operation is aborted on the particular file,
a message is generated, and the operation proceeds to the next file that matches
the list of files specified in guardian-file.

Considerations for GOAWAY

You should use GOAWAY only when no other method of getting rid of an object works.

If you use wild card options and GOAWAY fails after removing one or more files, these
files are not rolled back. They are permanently deleted.

For more information about using GOAWAY, see the SQL/MX Installation and
Management Guide.

Examples of GOAWAY

 Confirm a request to drop a file:

mxtool goaway \$DATA09.ZSDLLS6G.ZDFXPR00
 ***WARNING[20456] The following file will be removed
 \FIGARO.$DATA09.ZSDLLS6G.ZDFXPR00. Are you sure? (ENTER YES
or NO):
 yes
 Goaway of file: \FIGARO.$DATA09.ZSDLLS6G.ZDFXPR00
successful
 Goaway of file: \FIGARO.$DATA09.ZSDLLS6G.ZDFXPR01
successful
 Ansi Name: CAT.SCH.MVS USED UMD
 Ansi NameSpace: TA
 Object Schema Version: 1200

 Drop a file without confirming the drop:

mxtool goaway \$DATA09.ZSDLLS6G.WKPRKR00 !
 Goaway of file: \FIGARO.$DATA09.ZSDLLS6G.WKPRKR00
successful
 Goaway of file: \FIGARO.$DATA09.ZSDLLS6G.WKPRKR01
successful
 ANSI Name: CAT.SCH.HISTOGRAM_INTERVALS
 Ansi NameSpace: TA
 Object Schema Version: 1200

Note. When the GOAWAY operation is completed, you must manually change the metadata
tables to remove the associated metadata, with a licensed MXCI process.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-15

SQL/MX Utilities Examples of GOAWAY
 Drop a resource fork file:

mxtool goaway \$data09.ZSDT6TG2.BLJ35501 -rf !
 Goaway of file:\FIGARO.$DATA09.ZSDT6TG2.BLJ35501 successful

 Drop a file and skip the step that extracts ANSI information:

mxtool goaway \\FIGARO.$DATA09.ZSDLLS6G.QJ1QNR00 -s !
 Goaway of file: \FIGARO.$DATA09.ZSDLLS6G.QJ1QNR00
successful
 Goaway of file: \FIGARO.$DATA09.ZSDLLS6G.QJ1QNR01
successful

 Attempt to drop a file with an invalid volume name:

mxtool goaway \DATA09.ZSDKJWZP.BG4LMN00
 *** ERROR[20350] A syntax error was found near 'DATA09',
near character position 7.

 Attempt to drop a file without super ID privileges:

mxtool goaway \$data09.ZSDT6TG2.HSNZ4500
 *** ERROR[20354] Only super ID can use the MXTOOL operation
GOAWAY.

 Attempt to drop a nonexistent file:

mxtool goaway \$DATA09.ZSDKJWZP.NONEXI00
 *** ERROR[20355] File $DATA09.ZSDKJWZP.NONEXI00 was not
found.

 Attempt to drop an invalid object:

mxtool goaway \$system.system.mxcmp
 *** ERROR[20357] File \FIGARO.$SYSTEM.SYSTEM.MXCMP is not
an SQL/MX object.

 Attempt to drop a file with an invalid volume specification:

mxtool goaway \$vol.ZSDKJWZP.BG4QTN00
 *** ERROR[20362] Error 14 was returned while validating the
file set list specified by '$VOL.ZSDKJWZP.BG4QTN00'.

 Attempt to perform GOAWAY with an invalid flag:

mxtool goaway \$data09.ZSDT6TG2.HSNZ4500 ! +L=\$data09.zsd0
 *** ERROR[20370] Invalid flag provided for the operation.
Try 'mxtool help'for the operation.

 Drop only a data fork:

mxtool goaway \$data09.ZSDT6TG2.HMVV3500 -df !
 Goaway of file: \FIGARO.$DATA09.ZSDT6TG2.HMVV3500
successful
 *** WARNING[20372] The resource fork is not accessible.

 Attempt to drop only a data fork of a file with both forks:

mxtool goaway \$DATA09.ZSDLLS6G.WKPRKR00 -df
 *** ERROR[20450] You asked to drop only the data fork
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-16

SQL/MX Utilities Examples of GOAWAY
 \FIGARO.$DATA09.ZSDLLS6G.WKPRKR00 but a resource fork
exists \FIGARO.$DATA09.ZSDLLS6G.WKPRKR01.

 Attempt to drop only a resource fork of a file with both forks:

mxtool goaway \$DATA09.ZSDLLS6G.WKPRKR01 -rf
 *** ERROR[20451] You asked to drop only the resource fork
 \FIGARO.$DAT09.ZSDLLS6G.WKPRKR01 but a data fork exists
 \FIGARO.$DAT09.ZSDLLS6G.WKPRKR00.

 Attempt to drop a Guardian file on a remote system:

mxtool goaway \\SQUAW.\$DATA09.ZSDLLSRG.GJ1GNR00
 *** ERROR[20452] GOAWAY cannot be used to remove a Guardian
file on a remote system \SQUAW.

 Attempt to drop a file, but the operation times out:

mxtool goaway \$DATA09.ZSDKJWZP.BG4QTN00 !
 *** ERROR[20453] Operation failed on
\FIGARO.$DATA09.ZSDKJWZP.BG4QTN00 due to timeout.

 Attempt to drop a file, then abort attempt:

mxtool goaway \$DATA09.ZSDKJWZP.BG4QTN00
 *** WARNING[20456] The following file will be removed
 \FIGARO.$DATA09.ZSDKJWZP.BG4QTN00. Are you sure? (Enter YES or NO):

 no
 *** WARNING[20457] GOAWAY aborted at the request of the user.

 Attempt to drop a file whose resource fork has been deleted:

mxtool goaway \$data09.ZSDT6TG2.HMVV3500
 *** ERROR[20459] You specified -both for the GOAWAY request.
However, only \FIGARO.$DATA09.ZSDT6TG2.HMVV3500 exists. You must use
-df or -rf option to GOAWAY the label.

 Attempt to drop both fork files, but specify the resource fork file name:

mxtool goaway \$DATA09.ZSDLLS6G.WKPRKR01 -both
 *** ERROR[20460] You specified -both for GOAWAY request of
 \FIGARO.$DATA09.ZSDLLS6G.WKPRKR01. You must specify
 \FIGARO.$DATA09.ZSDLLS6G.WKPRKR00 to GOAWAY the label.

 Attempt to drop the data fork, but specify the resource fork file name:

mxtool goaway \$DATA09.ZSDKJWZP.BG4QTN01 -df
 *** ERROR[20461] Option -df does not match label
\FIGARO.$DATA09.ZSDKJWZP.BG4ATN01. Use -rf option to GOAWAY the label.

 Attempt to drop the resource fork, but specify the data fork file name:

mxtool goaway \$DATA09.ZSDKJWZP.BG4QTN00 -rf
 *** ERROR[20462] Option -rf does not match label
\FIGARO.$DATA09.ZSDKJWZP.BG4ATN00. Use -df option to GOAWAY the label.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-17

SQL/MX Utilities import Utility
import Utility
Considerations for import
Parallel Load for import
Programmatic Interfaces
Output File Consideration
Examples of import

The import utility imports data from an input file in ASCII or UCS2 format into an
SQL/MX table. This utility supports OSS large files (files greater than 2 GB) as input
files.

The import utility executes at the OSS or MXCI command prompt using the
command-line options described next. You cannot directly execute the import utility
from programs.

From an OSS command prompt:

From the MXCI command prompt:

Note. You can use DataLoader/MX, in conjunction with import, to load and maintain SQL/MP
and SQL/MX databases. For more information, see the DataLoader/MX Reference Manual.

import catalog.schema.table -I input-filename
 [import-option]...

import-option is:
 | -C num-rows
 | -D
 | -E error-filename
 | -F first-row
 | -FD field-delimiter
 | -H help
 | -IP proc-name
 | -L max-errors
 | -LES
 | -PM parsing-errormsg-filename
 | -QL field-qualifier
 | -RD row-delimiter
 | -SF summary-filename
 | -SI summary-interval
 | -T transaction-size
 | -U format-filename
 | -W file-type
 | -XE exec-error-filename
 | -XL max-exec-errors
 | -XM exec-errormsg-filename
 | -Z charset

sh import catalog.schema.table -I input-filename
 [import-option]... ;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-18

SQL/MX Utilities import Utility
import

must be lowercase.

catalog.schema.table

specifies the fully qualified name of the destination table for the imported data. You
must specify the catalog and schema names.

To import data to the table mycat.mysch."%&*()", you must specify the
delimited table name in the import command:

import 'mycat.mysch."%&*()"' -I myinput.dat

The delimited name is enclosed within a pair of double quotes (") and the fully
qualified name of the destination table is enclosed in single quotes (‘).

For object names containing single quote ('), use the escape character "\" before
special characters and quote. For example, to import data in table
cat.sch."t1'*&", use the import command:

import mycat.mysch.\"t1\'*\&\" -I myinput.dat

-I input-filename

specifies the name of the input file that contains the data to import.

input-filename must be an OSS text file (an odd-unstructured file, type 180)
or a Guardian text file (type 101). You must specify the file name in OSS format.
For example: /usr/bin/input.txt or /G/USER/DATA/INPUT.

input-filename must not contain a minus sign (-) as the first character of the
name.

For OSS text file, the newline (\n) character is the line break. For Guardian text file,
a carriage return followed by a newline (\r\n) is the line break. You must explicitly
mention the row delimiter for Guardian files. For example,

import table_name -i /G/USER/DATA/INPUT -RD '\r\n'

-C num-rows

is the number of rows (or records) to import. import terminates when num-rows
input rows have been imported or when it reaches the end of the input file. If you
do not specify this parameter, import imports all rows.

-D

disables all triggers before the actual insert operation starts and enables the
disabled triggers after the import operation is complete.

-E error-filename

specifies the name of the log file for rows in error.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-19

SQL/MX Utilities import Utility
error-filename must be an OSS text file (an odd-unstructured file, type 180)
or a Guardian text file (type 101). You must specify the file name in OSS format.
For example: /usr/bin/error.txt or /G/USER/DATA/ERROR.

error-filename must not contain a minus sign (-) as the first character of the
name.

-F first-row

is the number of the first row (or record) to import. The first row of the input file is
designated as the number 0. If you do not specify this number, import begins with
the first row (which is the same as specifying -F 0).

-FD field-delimiter

specifies the single or multicharacter field delimiter for the file. The default delimiter
is a comma (,). This parameter takes precedence over the field delimiter specified
in a format file. To specify a space as a field delimiter, use " " or ' '. If you
specify both a field-delimiter and a row-delimiter, they cannot be the same
character.

If you are running import from the MXCI command prompt and are using special
characters as field delimiters, you must enclose special characters in single or
double quotes (for example, '|*|').

If you are running import from the OSS command prompt and are using special
characters as field delimiters, you must use the escape character "\" before special
characters.

-H

displays helpful information about import command-line options.

-IP proc-name

directs import to accept data from a DataLoader process, proc-name.

-L max-errors

directs import to ignore the specified number of parsing errors without
terminating. Executor errors due to constraint violation are not included in this
count. Valid values are 0 through 2147483647.

-LES

is an option to log errors. This option lets you ignore some parsing and execution
errors. It also allows the error log filenames and error message log filenames to be
automatically generated, instead of specifying values for the new -XL, -XE, -XM, -
PM, and -SF options, and the existing -L and -E options. The -LES option
changes the default values for the -L and -XL options to be 1000 each and the
default value for the -SF option to be Stdout (For description of the -SF option, see
section 5.1.2.). Using -LES changes the default values for the -E, -XE, -PM, and
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-20

SQL/MX Utilities import Utility
-XM options to filenames, which import automatically chooses as unique files in
the current directory. Unless the -Z option is used to specify that the input file
contains non-ISO88591 characters, import will choose the filenames for the -PM
and -XM options similar to the -E and -XE options, respectively, thus intermixing
the error messages with the associated rows in error.

If the -LES option is specified and any -L, -XL, -E, -XE, -PM, -XM, or -SF options
are also specified, the value(s) specified for the individual options overrides the
default value, which the -LES option establishes. The default values established
by the -LES option is applicable for any of the seven individual options, which are
not specified on the command line.

All error output filenames, including any that are automatically chosen by import,
is reported in the results summary file output.

-PM parsing-errormsg-filename

is an option that specifies the pathname parsing-errormsg-filename of an
OSS output file to which import logs the error messages that correspond with the
logged data rows that have parsing errors. The name of the error message file
must be specified in OSS format, for example /usr/jdoe/errfile, may be the
same as the one specified with the -E option, but must not be the same as any
other output file.

This output file is created by the import utility as a non-audited, OSS
unstructured file (or a Guardian file of type 180 if the error log file is specified to be
under /G). If the file already exists, import terminates with an error message. If
the -PM option is not specified, the error messages corresponding to rows with
parsing errors are not logged. If the -PM option is specified, but the -E option is
not, import terminates with an error message.

If parsing-errormsg-filename and error-filename are specified to be the same file,
import logs each error message to the error log file, prefixed by the string
^@ERR_ST]^ and suffixed by the string ^\[ERR_ND^, and by a row delimiter if the
input file is a delimited file. The corresponding row in error immediately follows.

If the -Z option is used to specify that the input file contains characters other than
ISO88591, and parsing-errormsg-filename and error-filename are
specified to be the same file, import will terminate with an error message.

If parsing-errormsg-filename and error-filename are not the same file,
the error messages in the error message file will be in the same order as the
corresponding logged rows in error in the error file. This is sufficient to allow the
user to determine the corresponding error message for any particular row in error-
filename.

The error messages written to parsing-errormsg-filename do not have any
row numbers to indicate the row in error-filename associated with the error
message. However, some parsing error messages do have a row number
indicating the associated row in the input file.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-21

SQL/MX Utilities import Utility
Regardless of whether parsing-errormsg-filename and error-filename
are the same file, if you invoke import again, with error-filename as the input
file, the same format file can be used. Any interspersed error messages are
automatically ignored by import. You must specify the same file type (DELIM or
FIXED) when using error-filename, as was used for the original input file.

-QL field-qualifier

specifies a single character field qualifier. The default qualifier is double quote (").
This parameter takes precedence over the field qualifier specified in a format file.

If you are running import from an MXCI command prompt and are using special
characters as field qualifiers, you must enclose special characters in single or
double quotes.

If you are running import from an OSS command prompt and are using special
characters as field qualifiers, you must use the escape character "\" before special
characters.

-RD row-delimiter

specifies the row delimiter row-delimiter. The default is the end-of-line
character (\n). This parameter takes precedence over the row delimiter specified in
a format file. If you specify both a field-delimiter and a row-delimiter, they cannot be
the same character.

If you are running import from an MXCI command prompt and are using special
characters as field qualifiers, you must enclose special characters in single or
double quotes (for example: '\r\n').

If you are running import from an OSS command prompt and are using special
characters as row delimiters, you must use the escape character "\" before special
characters (for example: \\r\\n).

-SF summary-filename

specifies the name summary-filename of a non-audited, OSS unstructured file
(or Guardian file of type 180 if the filename is under /G) to which import writes
the number of input rows read so far, the number of input rows that were skipped
(either due to the use of the -F <first-row> option or because they were comment
lines), the elapsed time since starting to read the first input row, and the elapsed
time since skipping the initial rows specified via the -F <first-row> option. These
four lines are repeated after every summary-interval number of rows have been
read from the input file. Additional information is appended to the results summary

Note. If -PM option is specified, you must also consider the space consumed by the error
message log file when choosing the -L value. Each error message will take at least 80
bytes or more if the error message includes specified column data, and so on.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-22

SQL/MX Utilities import Utility
file at the completion of the import operation (see Support for restarting import on
page 5-49).

The results summary file is created by the import utility. If it already exists or if
the specified filename is the same as for any error output file, import terminates
with an appropriate error message. If the -SF option is not specified, the summary
information will not be generated.

If only -SF is specified (without file name), the results summary information is
written to Stdout at the completion of the import operation. Any positive value
specified for the -SI option is ignored because the process responsible for
updating the four lines of progress information cannot access Stdout for the
import process.

-SI summary-interval

specifies the number of rows (1 to 2147483647) that import has to read from the
input file between updates of the information written to the summary file. If this
option is not specified, the default configuration writes the results summary
information only at the completion of the import operation.

-T transaction-size

specifies the number of records processed before a commit. If import returns an
error before the record count reaches transaction-size, the changes to the
database within that transaction are rolled back. The number of imported rows is
the number successfully committed.

You might want to set the -T option to less than 500 to avoid lock escalation. If you
do not specify this parameter the default transaction-size is 10,000 records.

To perform fast load for better performance, import turns off the audit attribute on
the table before inserting rows. In this case, the -T option has no effect because
the table is unaudited during the import operation.

-U format-filename

specifies the name of an OSS or Guardian text file that contains format
specifications for input-filename. Using a format file is optional.

format-filename must be an OSS text file (an odd-unstructured file, type 180)
or a Guardian text file (type 101). You must specify the file name in OSS format (for
example: /usr/bin/format.txt or /G/USER/DATA/FORMAT).

Note. It is important to remember that (for best performance reasons and to keep the
results summary file from growing very large) the value for summary-interval be at least
10000. The size of the results summary file will increase by approximately 130 bytes each
time the four lines of progress information is appended. Therefore, for example, if the input
file has 100,000,000 rows and summary-interval is chosen to be 10000, the results
summary file will be about 1.3MB in size.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-23

SQL/MX Utilities import Utility
format-filename must not contain a circumflex (^) character or a comma (,)
and must not contain a minus sign (-) as the first character of the name.

-W file-type

specifies the input file type. The possible values for file-type are DELIM and
FIXED. If you do not specify this parameter, import assumes the default DELIM
file type (a delimited input file). If you do not specify this parameter and there is no
format file, import assumes the default delimiters for a delimited input file.

If you use the -W option, it must follow the -IP option on the command line.

-XE exec-error-filename

is an option that specifies the pathname exec-error-filename of an OSS
output file to which import logs data rows that have execution errors. After the
rows in the error file are edited to resolve the execution errors, the resultant error
file can be used as an input file by a subsequent import execution.

The name of the error file must be specified in the OSS format, for example
/usr/jdoe/errfile, and must not be the same file as the one specified with the
-E error-filename option if the -E option is also specified. This output file is
created by the import utility as a non-audited, OSS unstructured file (or a
Guardian file of type 180 if the error log file is specified to be under /G). If the file
already exists, import terminates with an error message. If the -XE option is not
specified, rows with execution errors shall not be logged. If the -XE option is
specified but the -XL option is not, import terminates with an error message.

Note. In Release 2.0, if you specify a parsing error file using the -E option and if the file
currently exists, import purges the contents of the file before logging the first parsing
error into the file. The handling of the parsing error file is changed so that import
terminates with an error message if the specified parsing error file already exists.

Note. In Release 2.0, if you specify the -E option but not the -L option, import does
not report an error, it creates the file specified via the -E option as a zero-length file. It
does not write any data rows to the file since the default action when no -L option is
specified is to not accept (and hence not log) any rows with parsing errors. The handling of
the -E option is changed so that import terminates with an error message if the -E
option is specified without the -L option also being specified.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-24

SQL/MX Utilities import Utility
-XL max-exec-errors

is an option that directs import to ignore the specified number max-exec-
errors (from 0 to 2147483646) of ignorable execution errors without terminating.
If the number of execution errors detected by import exceeds max-exec-
errors, import shall terminate, although because of internal bundling of multiple
rows for insertion, import may report several more than max-exec-errors
detected when it does terminate.

 If this option is not specified, the default value shall be zero and if any row
encounters an execution error, import terminates and writes the associated error
message to Stdout (similar to the current version of import). Regardless of the
value specified for max-exec-errors, non-ignorable execution errors cause
import to terminate and write the associated error message to Stdout.

If import terminates before exhausting the input data, any rows that were inserted
but not yet committed are backed out (similar to the current import utility).

-XM exec-errormsg-filename

is an option that specifies the pathname exec-errormsg-filename of an OSS
output file to which import logs the error messages that correspond with the
logged data rows that have execution errors. The name of the error message file
must be specified in OSS format, for example /usr/jdoe/errfile, and may be
the same as the one specified with the -XE option, but must not be the same as
any other output file.

This output file shall be created by the Import utility as a non-audited, OSS
unstructured file (or a Guardian file of type 180 if the error log file is specified to be
under /G). If the file already exists, import terminates with an error message. If
the -XM option is not specified, the error messages corresponding to rows with
execution errors shall not be logged. If the -XM option is specified but the -XE
option is not, import terminates with an error message.

If exec-errormsg-filename and exec-error-filename are specified to be
the same file, import logs each error message to the error log file, prefixed by the
string ^@ERR_ST]^ and suffixed by the string ^\[ERR_ND^ and by a row delimiter
if the input file is a delimited file. The corresponding row in error will immediately
follow.

Note. Although the -XL option allows a maximum of 2,147,483,646 errors to be ignored,
the execution error log file grows to consume a large amount of disk space long before
that many errors were actually encountered. Even if the average input row size were only
50 bytes, the error log file grows to the current OSS file size limit of 2,090,950,656 bytes
when the number of encountered errors is only 41,819,013. Therefore, it is important to
remember that if the -XE option is used, the potential size (and disk space consumption)
of the error log file must be considered when choosing the -XL value.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-25

SQL/MX Utilities import Utility
If the -Z option is used to specify that the input file contains characters other than
ISO88591, and exec-errormsg-filename and exec-error-filename are
specified to be the same file, Import will terminate with an error message.
(Displaying or editing a file with characters from more than one character set would
be very difficult, if not impossible.)

If exec-errormsg-filename and exec-error-filename are not the same
file, the error messages in the error message file will be in the same order as the
corresponding logged rows in error in the error file. This should be sufficient to
allow the user to determine the corresponding error message for any particular row
in exec-error-filename.

The error messages written to exec-errormsg-filename will not have any row
number in them to indicate the row in the input file or in exec-error-filename
associated with the error message.

Regardless of whether exec-errormsg-filename and exec-error-
filename are the same file, if you invoke import again with exec-error-
filename as the input file, the same format file can be used. Any interspersed
error messages will be automatically ignored by import. You must specify the
same file type (DELIM or FIXED) when using exec-error-filename as was
used for the original input file.

It is important to note that Dataloader/MX has a pass-through mode where the
input data is sent on as the output data without performing any transformations on
the data. That capability should allow an error log file produced by import (with or
without interspersed error message strings) to be used as the input file for
Dataloader/MX, if desired.

-Z charset

specifies the character set for the data being imported. Valid values are ISO88591
or UCS2. The default value for -Z option is ISO88591. For details about character
set conversion, see Data Types of Input Values for Input File on page 5-34.

Note. If the -XM option is used, you should also consider the space consumed by the
error message log file when choosing the -XL value. Each error message will take at least
65 bytes and may be much longer if the error message includes a specified table name,
check condition name, and so on. If exec-errormsg-filename and exec-error-
filename are the same file, the error messages also have the indicator prefix and suffix
strings and with both the error messages and the rows in error going into the same file, an
even smaller -XL value may be appropriate.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-26

SQL/MX Utilities Considerations for import
Considerations for import

Fast Loading and Transaction Considerations

If you are importing into an empty table, import uses the fast-loading technique if the
target table meets these criteria:

 It is empty.
 It has no indexes.
 It has no droppable primary key, unique key, or foreign key constraints.
 It has no enabled triggers or you specified the -D option to disable triggers.

To improve the performance of the fast-loading technique, import turns off the audit
attribute for the entire table at the start of the operation and turns it back on when the
operation ends. If another import operation is attempted on the same table while an
import operation with the fast-loading technique is being performed, the second
operation fails with a concurrent access error.

If you turn off auditing for the table, online dumps are invalidated. After the import
operation completes, you must perform a new TMF online dump for all partitions of the
table. When you specify the transaction size using the -T option, transactions are
enforced, and the audit attribute of the table is not altered even if the table meets the
rest of the criteria for using the fast-loading technique.

DDL Locks

When import uses the fast-insert technique, a DDL lock is held on the object for the
entire duration of the operation. This strategy prevents any concurrent import
operation or any DDL or utility operation on this table until the first import using the
fast-insert technique is complete. If you use multiple import processes to load different
partitions of an empty table that meets the described criteria, only the first import
operation would be able to use the more efficient fast-insert technique. Start the
remaining import operations after the first one completes and VSBB inserts will be
used with TMF transactions

If the import operation fails unexpectedly, you must run the RECOVER utility to remove
the DDL lock and perform cleanup. For expected errors, error handling will ensure that
the data in the table is purged.

Import records the status in the DDL_LOCKS metadata table. You can query this table
to determine the progress of import operation.

Status Description

 1 The DDL Lock row is created.

 2 Audit is turned off as part of import.

 3 Data copy completed.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-27

SQL/MX Utilities Considerations for import
Recovery

If import fails, you must run the RECOVER utility command to clean up the failed
operation.

 If import fails to reset the audit attribute of the table that was altered during the
operation, specify RECOVER with the CANCEL or RESUME option to reset the audit
attribute.

 If import fails after successful data insertion and fails to reset the audit attribute,
specify RECOVER with the RESUME option.

 If import fails before the data is successfully inserted, specify RECOVER with the
CANCEL option to remove the DDL lock and remove partial data if inserts were not
done.

You can find this information by reading the DDL_LOCK table. If you run the
RECOVER operation with the incorrect option, RECOVER displays an error message
so you can rerun it with the correct option. For details, see Checking DDL Locks on
page 2-9.

If the import operation fails unexpectedly, the RECOVER utility does not re-enable
triggers that were disabled before running import. You must re-enable them. For
expected errors, error handling ensures that triggers are re-enabled.

No restart facility is available to handle partially copied data.

Concurrency

If you are importing into an empty table or if the target table does not have index or
referential integrity constraints, import uses fast-loading techniques. Concurrent
import operations are not allowed. Concurrent DML, DDL, and utility operations are
also not allowed.

If import is not using fast-loading techniques, all DML operations (SELECT, UPDATE,
DELETE, INSERT) can be performed concurrently. If too many locks are on the
partition, DP2 escalates to a table lock, which prevents concurrent DML operations.
Utilities that read only metadata (EXPORTDDL, INFO, MXGNAMES, SHOWDDL,
SHOWLABEL, VERIFY) can be performed concurrently.

Parallel imports on the same table are allowed. DDL operations are not recommended.

Format File Sections for import

A format file is optional and, if used, consists of up to four sections. You specify the
format file by using the option -U format-filename. A sample format file is
provided in the import example (see Format File Describing the Data). The sections
you can include are:

 [DATE FORMAT]
 [COLUMN FORMAT]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-28

SQL/MX Utilities Considerations for import
 [DELIMITED FORMAT]
 [FIXED WIDTH FORMAT]

The format file structure and field options that are available are:

Format File Structure Format File Field Options

[DATE FORMAT]

DateOrder=order Order of the date fields:
MDY: month/day/year
DYM: day/year/month
YMD: year/month/day
YDM: year/day/month
DMY: day/month/year
MYD: month/year/day
Default is MDY.

DateDelimiter=date_delim Delimiter for the date. Default is a slash (for
example, mm/dd/yyyy).

TimeDelimiter=time_delim Delimiter for the time. Default is a colon (for
example, hh:mm:ss).

FourDigitYear=four_year Y or N. Default is Y; 4 digits (for example,
12/25/1997).
You have the option of specifying a two-digit
year date or timestamp value. If you specify two
digits and the year value is less than 30,
import assumes the first two digits of the year
to be 20. If the year value is greater than or
equal to 30, import assumes the first two digits
of the year to be 19.

DecimalSymbol=decimal One character. Default is a decimal point (.).
You can specify some character, other than the
default decimal point (.) character, to be used
whenever the input file has a time value that
includes a fractional part of a second. This
DecimalSymbol character is used only with a
fractional second. It is not recognized in general
numeric input, such as 12345.67, or in floating
point numbers. For general numerics and
floating point numbers, you must use the
decimal point.

NormalizeDate=normalize Y or N. Default is N; no datetime normalization.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-29

SQL/MX Utilities Considerations for import
[COLUMN FORMAT]

col=field_name,skip
 [,NullDefault_flag]

The source field name and whether to skip the
field in the source data file.
If data is to be stored in the target table,
field_name must be the name of the target
column.
skip is Y or N. Default is N: do not skip.
NullDefault_flag is Y or N. Default is N: no
null or default flag preceding the data.
If the flag in the input field is N, null is inserted
into the column.
If the flag is D, the default value is inserted into
the column. Otherwise, the input field value is
inserted.
Each field in the source data file has a
corresponding col entry.

[DELIMITED FORMAT]

FieldDelimiter=field_delim One or more characters that separate fields in a
row or record. Default is a comma (,).

RowDelimiter=row_delim One or more characters that separate rows.
Default is the new line character (\n).

Qualifier=qualifier One character that can enclose a field in a row
or record. Default is a double quote (").

[FIXED WIDTH FORMAT]

RecordLength=record_length A decimal ASCII number that specifies the
physical record length (in characters, not bytes)
of each input row. The length must include the
row delimiter, if used. You must specify
record_length for fixed width format.
The value specified for record_length must
be greater than or equal to (start + length -
1) / (number of bytes per character) for all
subsequent col= lines in this section of the
format file.
All input records must be the same length,
exactly record_length characters long.

NullValue=null_char A character denoting null. Default is space. If an
input field consists of all null_char, null is
stored in the target column.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-30

SQL/MX Utilities Considerations for import
Format File Considerations––import

Format File for a DELIM Input File

If the input file type is DELIM and you want to use a format file, you must include the
[COLUMN FORMAT] section. The other sections are optional. See [COLUMN
FORMAT] on page 5-30.

Format File for a FIXED Input File

If the input file type is FIXED, you must specify a format file that includes the
[COLUMN FORMAT] and [FIXED WIDTH FORMAT] sections. The columns listed in
the [COLUMN FORMAT] section must match the columns listed in the [FIXED WIDTH
FORMAT] section. The other sections are optional. See [FIXED WIDTH FORMAT] on
page 5-30.

col=column_name,start,length
 [,varcharPrefix_length]

The target table column name and the start
position and length of the input field in each row
of the source data file.
start is a decimal ASCII number that specifies
the byte position of the first character of the field
(where 1, not 0, refers to the first byte of the
input row). length is a decimal ASCII number
that specifies the number of bytes in the field.
For fields whose target is a VARCHAR column,
you can optionally specify the actual length of
the data as a decimal ASCII number (of
characters, not bytes) at the beginning of the
data in the input field. If you do, start must
specify the byte position of the actual length
value and all input rows must use the same
number of characters at the beginning of the
input field to contain the actual length value, and
you must specify the varcharPrefix_length
parameter on the col= line for the column.
If you specify varchar_Prefix_length, it
must be a decimal ASCII number that specifies
the number of characters, not bytes, at the
beginning of the input field data that are used to
contain the actual length value.
If the null or default flag
NullDefault_flag is defined, it precedes
the length prefix (if any) in the input field.
Each field in the source data file must have a
corresponding col= entry. Any of the
record_length number of characters in each
input record that are not covered by a col= entry
will be ignored.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-31

SQL/MX Utilities Considerations for import
Input File Considerations––import

Fixed Input File

In a fixed input file, specified by using the -W FIXED option, different columns might
have different lengths, but for each column, all rows must be the same length. You
should pad column values that are shorter than the column width with spaces or
NullValue characters to ensure that every row has exactly the same number of bytes
for a given column.

Delimited Input File

A delimited input file, specified by using the -W DELIM option or by default, uses field
and row delimiters and field qualifiers if needed. If you specify a format file, import
uses the delimiters in the file.

If you do not specify a format file, import uses these default delimiters:

This example shows a row from a delimited file with default coding and field qualifiers:

"135","Jane Jackson","100 East St.","Cupertino","CA","95014"

You are not required to use field qualifiers. In this record, the fields are correctly
delimited by a comma(,), and field qualifiers are not needed:

135,Jane Jackson,100 East St.,Cupertino,CA,95014

Using a Field Qualifier

Use a field qualifier to include field or row delimiters as part of the field data. For
example, suppose that your input file uses a comma (,) to delimit the fields in a record.
Suppose further that a record contains a field consisting of these characters:

Jackson,Jane

You can use a field qualifier to ensure that the comma (,) is included in this field. You
are not required to use a field qualifier for other fields in the row. For example:

135,"Jackson,Jane",100 East St.,Cupertino,CA,95014

If your field data contains a default field qualifier of double quote ("), enclose this field
data within field qualifiers. For example:

135,"Re: "Meeting Request" subject", 01-JUL-1985

Field delimiter One or more characters used to separate fields in a row or
record. The default is a comma (,).

Row or record
delimiter

One or more characters used to separate rows or records. The
default is the new line character (\n).

Field qualifier A character used to enclose a field of a row (or record). The
default is a double quotation mark(").
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-32

SQL/MX Utilities Considerations for import
If the data is enclosed within field qualifiers, HP recommends that you use a unique
multicharacter string as a field delimiter that can be distinguished from the enclosed
data.

Using a Field Delimiter

Use field delimiters to separate field data for a record. The default field delimiter
character is a comma (','). HP recommends that you use a unique multicharacter field
delimiter string that is not part of enclosed or nonenclosed field data. For example:

135|*| "Re: "Meeting Request|*|" subject" |*| 01-JUL01985

In this example, the field delimiter is part of the data. When import processes this
type of data, as soon as it encounters the first |*| in the data that corresponds to the
second field, it is treated as a field delimiter. import then processes the data following
this first |*| as next field data, and so on through the data. Therefore, in this example,
the column count of the data is considered to be more than the table column count.

Row or Record Delimiters

The new line character (\n) is typically used as a record delimiter in an input data file. If
a new line character already exists in an input file as a record delimiter, you cannot
specify and include a different record delimiter in the file. If you do, import interprets
the new line character as part of a data field.

Under some circumstances, you might want to include a new line character as part of a
data field. For example, suppose that you have data that is to be used as printed text,
and the new line character is included in the data for the purpose of formatting. Then
you must specify a record delimiter other than the new line character.

Null Input Values for Delimited Data Input Files

For a delimited input file, if a column in the target table allows null, you can specify null
for that column in the input file. Two consecutive field delimiters specify null.

For example, suppose that the EMPLOYEE target table begins with the columns
EMPNUM, FIRST_NAME, MIDDLE_INITIAL, and LAST_NAME. The MIDDLE_INITIAL
column allows null. Some employees have no middle initial. As a result, the input file
contains records like this:

2961,Mary,,Smith,143,3490,80000.00

To insert null in a nullable target column, you can specify two consecutive field
delimiters as shown in the preceding example. To insert blanks in the target column,
you can specify two field delimiters with the appropriate number of blanks between the
delimiters.

Default Values for Delimited Data Input Files

For a delimited input file, if a column in the target table does not allow null, using two
consecutive field delimiters directs import to use the default value for the column
(instead of null for the column). For example, a column defined as NOT NULL might
have space as its default value. In this case, two consecutive field delimiters in the
corresponding input field specify that space is to be stored in the target column.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-33

SQL/MX Utilities Considerations for import
Null Input Values for Fixed-Width Files

For a fixed-width input file, if a column in the target table allows null, you can specify a
null indicator character for that column in the input file. See [FIXED WIDTH FORMAT]
on page 5-30.

For example, suppose that the EMPLOYEE target table begins with the columns
EMPNUM, FIRST_NAME, MIDDLE_INITIAL, and LAST_NAME. Some employees
have no middle initial. You specify a hyphen (-) as the null indicator. As a result, the
input file contains records like this:

296 Mary -Smith 143 349080000.00

Null or Default Flag

For a delimited or fixed-width input file, if a column in the target table allows null or has
a default value, you can specify a null or default flag for that column in the input file.
The [COLUMN FORMAT] section of the format file indicates that this flag is used in the
input file. See [COLUMN FORMAT] on page 5-30. For details about importing into
nullable columns, see import and Nullable Columns on page 5-37.

These column definitions, for example, allow these insert values:

Two-Digit Year Input Values for Input File

You have the option of specifying a two-digit year date or timestamp value in the [DATE
FORMAT] section of a format file. If you do and the year value is less than 30, import
assumes the first two digits of the year to be 20. If the year value is greater than or
equal to 30, import assumes the first two digits of the year to be 19.

Data Types of Input Values for Input File

import converts the character data in the input file to the appropriate data types as
defined in the target table. The data types of the values in an input record must be
compatible with the data types of the columns in the destination table.

Use the -Z option to specify the character set for the data being imported. import will
import data in a UCS2 input file to any noncharacter-typed column after a
Unicode-to-ISO88591 conversion, and to a character-type column through a
conversion that translates the Unicode data to the character set of the column. import
will directly import UCS2 data to UCS2 columns without conversion.

Column Definition Insert Value

NOT NULL NO DEFAULT Input value must be provided. Null or default value is
not allowed.

NOT NULL DEFAULT 'abc' If flag is D, default value is inserted. Otherwise, input
value is inserted. Null is not allowed.

NO DEFAULT If flag is N, null is inserted. Otherwise, input value is
inserted. Default value is not allowed.

DEFAULT 'abc' If flag is D, default value is inserted. If flag is N, null is
inserted. Otherwise, input value is inserted.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-34

SQL/MX Utilities Considerations for import
Format and Data File Requirement for Unicode import

A UCS2 data input file must be in UTF-16BE (UTF-16 big-endian) or UTF-16LE
(UTF-16 little-endian) format. The byte order mark (BOM) must occupy the first two
bytes of the input file.

Because the format file or the import command line is specified in ASCII, the field
delimiter, the field qualifier, or the row delimiter character in a UCS2 input data file must
be the ASCII-equivalent version. For example, the field delimiter ',' (ASCII value 0x2C)
for a Unicode data file must be supplied in Unicode 0x002C.

If the Unicode data file is subjected to a fixed width format importing, the unit for the
start position, the length of input fields in the COL attribute, and the record length in the
RecordLength field in the FIXED width format section is in characters, not in bytes.

If the Unicode data file is subjected to a fixed width format importing, the unit for these
components is characters, not bytes:

 start position

 length of input fields in the COL attribute

 record length in the RecordLength field in the FIXED width format section

Error Reporting for Unicode import

Error messages sent to the console remain in ASCII. If UCS2 data is to be included in
the message, its content is converted first. All UCS2 characters in the range [0x00.
0xFF] are converted to an 8-bit ASCII equivalent. For all other UCS2 characters,
NonStop SQL/MX uses the hexadecimal form of their code values. import inserts a
space before and after the hexadecimal value for readability.

Error rows logged to the error log file are in UCS2, in the same byte order as the
source data file. You can resubmit the log file to import after errors have been
corrected.

If a character in the data file cannot be translated into one required by the target
column, NonStop SQL/MX issues an error. Importing an UCS2 data file into an
ISO88591 column with character' code values beyond the range of ISO88591 leads to
this translation error condition.

Datetime and Interval Data for Input File

For datetime and interval data, do not specify keywords that are part of the data type in
the column definition.

For example:

 If the datetime value to be imported is DATE '1990-01-22', specify the field
without the keyword in the input data file, as:

1990-01-22
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-35

SQL/MX Utilities Considerations for import
 If the interval value to be imported is INTERVAL '03-04' YEAR TO MONTH,
specify the field without the keywords in the input data file, as:

03-04

Datetime Normalization

NonStop SQL/MX supports the three standard ANSI SQL:1999 datetime formats,
which can be loaded without normalization.

Date formats other than ANSI SQL:1999 formats must be normalized to substitute the
appropriate year, month, and day delimiters; zero-pad missing digits; and transpose
year, month, and day field order. Time formats other than ANSI SQL:1999 formats
must be normalized to substitute the appropriate hour, minute, and second delimiters,
and zero-pad missing digits. See [DATE FORMAT] on page 5-29.

Transaction Considerations for import

import might automatically turn auditing off for all partitions on an empty table without
indexes. Auditing is turned back on after the import operation completes or if it fails for
any reason. This behavior allows import to take advantage of fast loading techniques
and to avoid TMF transaction issues. Turning off auditing for the table invalidates
online dumps. After the import operation completes, you must perform a new TMF
online dump for all partitions of the table.

If multiple import processes are started on different partitions of a table without
indexes, the first import operation turns auditing off for all the partitions of the table. In
this scenario, only the first import operation would benefit from the efficient insert
technique. A warning about performance is issued for other import processes on the
same table, because the table can be unaudited and nonempty.

If the table is not empty or has dependent indexes, import continues with the normal
load operation using TMF transactions.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-36

SQL/MX Utilities Considerations for import
import and Nullable Columns

Suppose you need to import into a table that allows nullable columns. Follow these
guidelines:

If you specify that the input file is in delimited format:

 You can specify a null value for a particular column value with a record in the input
file by using two successive field delimiters. In the case of the first column, start the
record with a field delimiter. In the case of the last column, end the record with a
field delimiter just before the row delimiter.

 If you specify a format file, import ignores the [FIXED WIDTH FORMAT] section,
and ignores any NullValue= line.

 In the [COLUMN FORMAT] section of the format file, you could specify Y for the
nullDefault_flag portion of the col=field_name,skip,nullDefault_flag line. If you do
this, then on any particular input record:

 You can specify a null value for that column either by specifying two
successive field delimiters, or by starting the input data specification with the
character “N” or “n”. import ignores any characters after the “N” or “n” and
before the next field delimiter or row delimiter.

 You can specify that the column be given the default value (for the column) by
starting the input data specification with the character “D” or “d”. import ignores
anything following that and preceding the next field delimiter or row delimiter.

 If the first character of the input data specification is anything other than “N”,
“n”, “D”, or ‘d’, import ignores the first character. import uses data beginning in
the next character position up to the next field delimiter or row delimiter as the
value for the column.

If you specify that the input file is in fixed format:

 You can specify a null value for a particular column value by specifying all of the
characters in the fixed-length field as the NullValue character.

 If you specify a format file with a [FIXED WIDTH FORMAT] section that contains a
NullValue= line, the specified character is taken as the NullValue character.
Otherwise, the NullValue character defaults to the space character (0x20 for
ISO88591 input files or 0x0020 for UCS2 files).

 In the [COLUMN FORMAT] section of the format file, you could specify Y for the
nullDefault_flag portion of the col=field_name,skip,nullDefault_flag line. If you do
this, then on any particular input record:

 You can specify a null value for that column either by specifying two
successive field delimiters, or by starting the input data specification with the
character “N” or “n”. import ignores any characters after the '“N” or “n” and
before the end of the input field.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-37

SQL/MX Utilities Considerations for import
 You can specify that the column be given the default value (for the column) by
starting the input data specification with the character “D” or “d”. import ignores
anything following that and preceding the end of the input field.

 If the first character of the input data is anything other than “N”, “n”, “D”, or “d”,
import ignores the first character. import uses the data beginning in the next
character position up to the end of the input field as the value for the column.

 The col=column_name,start,length line in the format file specifies the byte offset
(within each row) and the length (in bytes) where you specify the value for that
column. If you specify Y for the nullDefault_flag for a particular column, the leading
indicator character (where you might put “N”, “n”, “D”, or “d”) is part of the
specification of the value for the column, so the start value should be the byte
offset where that leading indicator character is found, and the length value should
include the leading indicator character, because it is part of the specification for the
value.

Parallel Load for import

Use parallel load when the destination table is partitioned. When using parallel load:

 Some data types require more CPU time during import and therefore parallel load
would be a benefit.

 Sorting input data by storage key results in faster import time.

 More processors improve parallel load performance.

You cannot import into one partition in parallel. You receive a locking error if you have
two instances of import loading the same partition.

You can perform a parallel load in two ways:

 Run multiple instances of import—one for each partition in the destination table—
to load data into a partitioned table by using a single input file. For each import
command, specify the number of input rows (or records), the number of the first
record to import, and the transaction size. The number of the first record to import
begins with zero.

For example, suppose that you partition the EMPLOYEE table into three partitions.
The first partition begins with 0 for the employee number, the second partition
begins with 3000 for the employee number, and the third partition begins with 5000
for the employee number.

Note. For better performance, you must specify the transaction size. If you do not, and
other import processes are running on the same table, import issues a warning regarding
performance. If the table is empty and does not have any indexes, the first import process
might turn off auditing for all partitions. Turning auditing off enables the first import process
to use a fast loading technique. However, performance of the parallel import processes on
the remaining partitions is affected, because auditing for all partitions is off, and the table
contains data as a result of the first import operation.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-38

SQL/MX Utilities Programmatic Interfaces
You might specify the three import commands as:

C:\>import corpcat.persnl.employee -I empfile -C 2999 -T 500
C:\>import corpcat.persnl.employee -I empfile -C 1999 -F 3000
-T 500
C:\>import corpcat.persnl.employee -I empfile -C 1999 -F 5000
-T 500

The number of records for each partition must be less than or equal to the space
available in each partition, and the rows to be imported into each partition must
have an appropriate clustering key. In the preceding example, the first partition
allows for employee numbers ranging from 0 to 2999.

 Run multiple instances of the import utility—one for each partition in the
destination table—to load data into a partitioned table by using a separate input file
for each partition. Each of the input files contains the data for each partition.

For example, you might specify the three import commands for the partitioned
EMPLOYEE table as:

C:\>import corpcat.persnl.employee -I empfile1 -T 500
C:\>import corpcat.persnl.employee -I empfile2 -T 500
C:\>import corpcat.persnl.employee -I empfile3 -T 500

Programmatic Interfaces

Exit Status Code Handling

import sets the exit status code to 0, only if it successfully imports all the specified
rows from the input file into the target table. (Complete success).

import sets the exit status code to 10, if it attempts to import all specified rows from
the input file, encounters one or more ignorable errors (parsing or execution errors),
does not encounter any non-ignorable errors, and does not exceed any error threshold.
(A qualified success).

import sets the exit status code to 20, if one or more rows are successfully imported,
but it encounters a non-ignorable error or exceeds an error threshold. (Some success,
but a serious problem encountered).

Note. Check that the ranges specified are exact (for example, no gaps or omissions and
no overlap of rows).

Note. In Release 2.0, under these conditions, import wrote a message to Stdout
displaying "Import Completed Successfully". For Release 2.X, under these conditions,
import will write the same message to Stdout.

Note. In Release 2.0, when import reached the end of all specified rows and encountered
only ignorable errors, Import wrote a message to Stdout displaying "Import Completed
Successfully". For Release 2.X, under these conditions, import will instead write a message
displaying "Import Completed with some non-fatal errors"
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-39

SQL/MX Utilities Programmatic Interfaces
import sets the exit status code to 30 if the input file is readable, but is a zero-length
file. (No success and no ignorable errors).

import sets the exit status code to 40, if it attempts to import all specified rows from
the input file, encounters one or more ignorable errors, does not encounter any non-
ignorable errors, and no rows are successfully imported. (No success and ignorable
errors encountered).

import sets the exit status code to 50, if no rows are successfully imported and it
encounters a non-ignorable error or exceeds an error threshold. (No success and a
serious problem encountered).

import sets the exit status code to 70, if it detects any errors opening, reading, or
writing of input or output files, or other serious problems that prevent it from starting to
import the first row from the input file. (Serious problems that prevent the import from
starting)

import sets the exit status code to 90, if it detects any invalid option or combination of
options..

To summarize these exit status codes:

Note. In Release 2.0, under these conditions, import wrote a message to Stdout
displaying how many rows were imported, but did not write a message displaying "Import
Completed …" In Release 2.X, import will do the same.

Note. In Release 2.0, under these conditions, Import wrote both a message saying "Rows
Imported = 0" and a message saying "Import Completed Successfully" to Stdout . For Release
2.X, under these conditions, Import will write only the message "Rows Imported = 0".

Note. In Release 2.0, under these conditions, import wrote a message to Stdout
displaying "Import Completed Successfully". For Release 2.X, under these same conditions,
import will instead write a message displaying "Import Completed with some non-fatal
errors".

Note. In Release 2.0, under these conditions, import wrote a message to Stdout
displaying how many rows were imported, but did not write a message displaying "Import
Completed”. In Release 2.X, import will do the same.

Note. In Release 2.0, under these conditions, import will write the same messages to
Stdout as was done by Release 2.0.

Note. In Release 2.0, under these conditions, import will write the same messages to
Stdout as was done by Release 2.0.

0 Complete success

10 A qualified success

20 Some success, but a serious problem encountered
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-40

SQL/MX Utilities Output File Consideration
File permissions

When import creates any of the error output files, import ensures that the
permissions are set so that read and write permission is granted only for the current
user and his/her group because these files may have user data that is confidential.
Read and write permission for the current user and/or the group may be further
restricted depending on the umask setting at the time of the file creations. If any of the
error output files is created under the /G directory, the Guardian file access codes shall
be set to "CCCU", which will prevent any user other than the owner and his/her group
from reading or writing to the file.

Displaying messages

import uses the existing error message to display capability when it encounters any
error.

Output File Consideration

Non-ignorable execution errors

Inserting a row into a table may be a multi-step process. This involves inserting the row
into the base table and may also require adding a row to one or more index tables,
checking referential integrity constraints, performing trigger actions,and so on. Some
execution errors are detected after a row has been inserted into the target's base table.
These include any uniqueness constraints that are enforced by an index, referential
integrity constraints, and errors detected while performing trigger actions. Other such
errors include those returned by DP2, TMF, and other low level components such as
file full conditions, audit file full, or network errors. If any error is encountered after the
row has been inserted into the base table, the error cannot be ignored and the
IMPORT utility shall terminate just as it does in the current release.

The row contents of the error log file are the same as the input file. However, the
position of rows may differ.

Rows in the parsing error log file look exactly like the corresponding row in the input
file. However, rows in the execution error log file may not look like the corresponding
row in the input file.

Four notable cases are:

30 No success and no ignorable errors

40 No success and ignorable errors encountered

50 No success and a serious problem encountered

70 Serious problems that prevent the import from starting

90 Invalid option or combination of options
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-41

SQL/MX Utilities Output File Consideration
1. The format of numbers may be changed.
For example: 123456.7 in the original input file may appear as 1.234567E+05 in
the error log file.

2. The value of some floating point numbers may not be exactly the same (though
extremely close). This is due to an internal conversion to binary format and then
back to floating point ASCII format for logging to the error log file.

3. Any string which includes the field delimiter, the row delimiter, or the field-qualifier
character may appear different.
For example, if the field qualifier is a double-quote character (")

Use a double-quote("") <in the original input file>

will reflect as

"Use a double-quote(")" <in the error log file>

4. If the format file is said to skip column 1 of each row in the original input file, the
data in column 1 will not be displayed in the execution error log file.
For example:
"Data for a manager", 378456, Comm. Dept, 125 <in the original input file>

will reflect as

, 378456, Comm. Dept, 125 <in the error log file>

If the format file is said to skip a column in the middle of each row, the same would
be indicated by consecutive Field Delimiter characters in execution error log rows.

If the input file has fixed-width columns instead of field delimiters, the rows in the
execution error log file would contain all NullValue characters (as specified in the
format file or space by default) for any skipped columns.

Although the appearance of such rows will be different in the execution error log
than in the input file, these rows in the error log can still be used to import to the
destination table without requiring you to fix these appearance differences. The
real problem that caused the row to get an execution error would need to be fixed
by you. However, these appearance differences do not require fixing before the
row can be imported. Such appearance differences do not affect the column values
in the destination table. The only possible exception to this would be if the
miniscule change in the value of a floating point number is considered to be
significant.

Note. The leading comma (Field Delimiter character) indicates that the first field is
missing.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-42

SQL/MX Utilities Examples of import
Examples of import

 Example 1 shows an import of data from a delimited file. This example shows the
schema of the table to be loaded, the data to be loaded (the input data file), the
format file describing the data, and the import command used to load it.

Table Schema

This statement creates the target table, COMPANY:

CREATE TABLE company
 (id INT NOT NULL
 ,company VARCHAR (176)
 ,phone VARCHAR (12)
 ,fax VARCHAR (12)
 ,PRIMARY KEY (id)
);

Data to Input

The input file, COINPUT, contains records like this:

1,"Test String 1","111-222-3333","222-333-4444"
2,"Test String 2","111-222-3333","222-333-4444"
3,"Test String 3","111-222-3333","222-333-4444"
4,"Test String 4","111-222-3333","222-333-4444"
5,"Test String 5","111-222-3333","222-333-4444"
6,"Test String 6","111-222-3333","222-333-4444"
7,"Test String 7","111-222-3333","222-333-4444"
8,"Test String 8","111-222-3333","222-333-4444"

Format File Describing the Data

Create a format file, FORMFILE, which consists of [DATE FORMAT], [COLUMN
FORMAT], and [DELIMITED FORMAT] sections:

[DATE FORMAT]
DateOrder=MDY
DateDelimiter=/
TimeDelimiter=:
FourDigitYear=Y
DecimalSymbol=.

[COLUMN FORMAT]
col=id,N
col=company,N
col=phone,N
col=fax,N

[DELIMITED FORMAT]
FieldDelimiter=,
RowDelimiter=\n
Qualifier="

import Load Command
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-43

SQL/MX Utilities Examples of import
This import command imports data into the COMPANY table from the delimited
input file named COINPUT using the format file FORMFILE:

import cat.sch.company -I coinput -U formfile -W DELIM

 Example 2 shows an import into the same COMPANY table from a fixed width file.
This example shows the data to be loaded (the input data file), the format file
describing the data, and the import command used to load it.

Data to Input

The input file, COINPUT_FX, contains records like this:

00000000001,"Test String 3456","111-222-3333","444-555-6666"
00000000002,"ibm ","408-111-2222","408-222-3333"
00000000003,"apple ","408-222-1111","408-333-2222"
00000000004,"tandem ","408-285-5000","408-285-2227"
00000000005,"diyatech ","510-111-2222","510-222-3333"

Format File Describing the Data

[DATE FORMAT]
DateOrder=MDY
DateDelimiter=/
TimeDelimiter=:
FourDigitYear=Y
DecimalSymbol=.

[COLUMN FORMAT]
col=id,N
col=company,N
col=phone,N
col=fax,N

[FIXED WIDTH FORMAT]
col=id,1,11
col=company,14,16
col=phone,33,12
col=fax,48,12
RecordLength=61

All commas and double-quote characters in the input file are ignored because they
are not covered by any of the col= entries in the [FIXED WIDTH FORMAT] section
of the format file. Also, in this example the RecordLength value of 61 includes one
newline character at the end of each input record.

import Load Command

This import command imports data into the COMPANY table from the fixed width
input file named COINPUT_FX using the format file FORMFILE:

import cat.sch.COMPANY -i COINPUT_FX -u FORMFILE -w FIXED

 Example 3 shows an import into TABLE_2 from a fixed width file with data that is
not separated by double-quote characters. This example shows the schema of the
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-44

SQL/MX Utilities Examples of import
table to be loaded, the data to be loaded (the input data file), the format file
describing the data, and the import command used to load it.

Table Schema

This statement creates the TABLE_2 table:

CREATE TABLE table_2
 (COL1 CHAR(5)
);

Data to Input

The input file, COINPUT_FX2, contains records like this:

0123456789012345
ABCDEFGHIJKLMNPQ
0123456789012345

Three hidden spaces are at the end of each line.

Format File Describing the Data

[DATE FORMAT]
NormalizeDate = y

[COLUMN FORMAT]
col=col1

[FIXED WIDTH FORMAT]
FileIsBinary=N
RecordLength =5
col=col1,1,5

import Load Command

This import command imports data into the table_2 table from the delimited input
file named COINPUT using the format file FORMFILE:

import cat.sch.table_2 -I coinput_fx2 -U formfile -W FIXED

 Example 4 illustrates how to use new options and analyze the output files.

 Table Schema

 This statement creates the target table, cat.sch.Xample:

CREATE TABLE cat.sch.Xample
 (C1 INT NOT NULL PRIMARY KEY
 , C2 CHAR(8) NOT NULL
 , CONSTRAINT cnd1 CHECK (c1 > 5)
);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-45

SQL/MX Utilities Examples of import
Data to Input

 Suppose you have an input file named X.in , containing the following 10 lines

11,12345678

A8,22345678

11,82345678

14,423456789

17,52345678,9

15,62345678

27,72345678

5,32345678

BZ,XYZ

55,12345678

Execute the following command:

 import cat.sch.Xample -i X.in -L 50 -E X.perrs -PM
X.perrmsg \
-XL 5 -XE X.xerrs -XM X.xerrmsg \
-SF X.sum -SI 10

Output

NonStop SQL/MX Import Utility 2.3

(c) Copyright 2007 Hewlett-Packard Development Company, LP.

Rows Imported = 4

Import Completed with some non-fatal errors

A select statement on the table would show the following:

select * from cat.sch.Xample;

C1 C2

-------- --------

 11 12345678

 15 62345678

 27 72345678

 55 12345678

--- 4 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-46

SQL/MX Utilities Examples of import
The X.perrs file would contain:

A8,22345678
14,423456789
17,52345678,9
BZ,XYZ

The X.perrmsg file would contain:

*** ERROR[20081] Row number 2 and column number 1 could not
be processed. Column Data: A8

*** ERROR[20291] The data specified in row number 4 column
number 2 is longer than the actual column size definition.
Column Data:123456789.

*** ERROR[20070] Columns in the datafile are not correct.
Columns found so far: 3

*** ERROR[20081] Row number 9 and column number 1 could not
be processed. Column Data: BZ

The X.xerrs would contain:

11,82345678
5,32345678

The X.xerrmsg file would contain:

*** ERROR[8102] The operation is prevented by a unique
constraint.

*** ERROR[8101] The operation is prevented by check
constraint CAT.SCH.CND1 on table CAT.SCH.XAMPLE.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-47

SQL/MX Utilities Examples of import
The results summary file, X.sum, would contain:

Import Results Summary

Import Process ID: 4060

Input File or Process Name: X.in

Start time: Mon Oct 15 13:12:43 2007

Rows to be skipped initially: 0

Rows read so far = 10

Rows skipped = 0

Elapsed time = 0:0:0.088011

Elapsed time since skipping initial rows = 0:0:0.088011

Rows Imported Successfully = 4

Rows ignored due to parsing errors = 4

Rows ignored due to execution errors = 2

Parsing Error Log File Name: X.perrs

Parsing Error Messages File Name: X.perrmsg

Execution Error Log File Name: X.xerrs

Execution Error Messages File Name: X.xerrmsg

Import Completed with some non-fatal errors
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-48

SQL/MX Utilities Examples of import
 Example 5 illustrate –LES options, which takes default value of 1000 each for –L
and –XL and auto generates the output error file and error message file and prints
the summary to the stdout at the end.

import cat.sch.Xample -I x.in -LES

NonStop SQL/MX Import Utility 2.3

(c) Copyright 2007 Hewlett-Packard Development Company, LP.

Rows Imported = 4

Import Results Summary

Import Process ID: 5380

Input File or Process Name: x.in

Start time: Thu Oct 18 15:28:30 2007

Rows to be skipped initially: 0

Rows read so far = 10

Rows skipped = 0

Elapsed time = 0:0:0.187612

Elapsed time since skipping initial rows = 0:0:0.187612

Rows Imported Successfully = 4

Rows ignored due to parsing errors = 5

Rows ignored due to execution errors = 1

Parsing Error Log File Name: PE5380

Parsing Error Messages File Name: PE5380

Execution Error Log File Name: XE5380

Execution Error Messages File Name: XE5380

Import Completed with some non-fatal errors

Support for restarting import

To support the ability to restart import after it terminates due to excessive parsing
errors, excessive execution errors, or non-ignorable errors, the following information is
appended to the results summary file before import terminates:

 The number of rows with parsing errors.

 The number of rows with execution errors.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-49

SQL/MX Utilities Examples of import
 The number of rows imported successfully.

 A line saying "Import Completed Successfully" or "Import Completed with non-fatal
errors" if import has reached the end of the input data without encountering any
non-ignorable errors.

 The name for the parsing error log file (if any).

 The name for the parsing error message log file (if any).

 The name for the execution error log file (if any).

 The name for the execution error message log file (if any).

If import terminates due to any non-ignorable error, the following information is also
appended:

 The value, X, to specify with the -F <first-row> option on a subsequent execution
of import to have the subsequent import pick up where the first import left.

 A warning message if the last Y number of rows in the parsing error output file
were detected on or after row X (see the previous bulleted point) in the input file (if
Y is greater than 0).

 A warning message if the last Z number of rows in the execution error output file
were detected on or after row X (see previous bullet) in the input file (if Z is greater
than 0).

When transactions are being used, X is the number of rows read by import as of the
last successful transaction.

When transactions are not being used (while using the Fast Loading technique --
known as Side-Tree inserts by project personnel) and termination is due to exceeding
a user-specified error threshold, X is the number of rows read by import before the
threshold was exceeded.

When transactions are not being used and termination is due to a non-ignorable error
other than exceeding a user-specified error threshold, X is zero.

The two warning messages in the above list are needed for you to understand that if
you fix the problem in the error output file(s) and import those rows before restarting
import with the original input file using the -F <first-row> option, the restarted
import will attempt to import those rows for the second time (unless you delete those
rows from the input file).

The rows with errors reported after the row, indicated for <first-row> must be dealt with
carefully. If you fix such rows in the error log file(s), import the fixed rows from the
error log file(s), but do not delete the rows in the original input file before restarting

Note. If the associated error messages are interspersed in the same file as the rows in error,
the values reported for Y and Z will count each associated error message as if it were a row
(even if the input file is of type FIXED and the associated error messages are variable in
length.)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-50

SQL/MX Utilities Examples of import
import with the original input file (using the -F <first-row> option). The parsing errors
and/or execution errors will still be detected for those rows. The easiest way to handle
such rows would be to delete them from the error log before using it as an input file
and fix those rows in the original input file before restarting import with the original
input file (using the -F option). If the original input file cannot be easily modified, it is
recommended that you delete such rows from the error log and let those errors occur
again when import is restarted with the original input file. Presumably, those rows
would be detected before the new error thresholds are reached.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-51

SQL/MX Utilities Examples of import
A sample results summary file is as follows:

Input File or Process Name: myinput_for_MYTABLE

Start time: Mon May 2 15:33:13 CDT 2005

Rows to be skipped initially: 201986

Rows read so far = 2579352

Rows skipped = 359827

Elapsed time = 01:46:37.18

Elapsed time since skipping initial rows = 01:13:54:30

Rows Imported Successfully = 2570000

Rows ignored due to parsing errors = 4

Rows ignored due to execution errors = 2

Parsing Error Log File Name: MYTABLE_perrs

Parsing Error Messages File Name: MYTABLE_perrs

Execution Error Log File Name: MYTABLE_xerrs

Execution Error Messages File Name: MYTABLE_xerrs

You should specify -F 2570003 if you want to restart IMPORT
and have it start where this import operation left off.

Import Completed with some non-fatal errors

Import Completed Successfully

Note. The lines that can be repeated are shown in bold in the following sample summary file.

WARNING. The last two rows of the error output file, MYTABLE_perrs, are found on or after
row number 2570003 in the input file.

WARNING. The last 1 rows of the error output file, MYTABLE_xerrs, are found on or after row
number 2570003 in the input file.

Note. A line displaying one of the following will be appended to the end of the results
summary file whenever import reaches the end of the input data without encountering any
non-ignorable error conditions. For this sample results file, neither message would be
appended as this example is for a case where import had to roll back to the last transaction,
and must have encountered some non-ignorable error condition.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-52

SQL/MX Utilities INFO Operation
INFO Operation
Considerations for INFO
Examples of INFO

INFO is an OSS command-line utility run from mxtool that displays information about
SQL/MX files. INFO displays the Guardian file name, the ANSI name, the ANSI
namespace, and the object schema version.

[node.]\$volume.subvol.filename

is the Guardian qualified file set list that specifies the set of Guardian files that is
being queried. It must be fully qualified with the volume and subvolume names.

In this four-part name, node is the name of a node of a NonStop server, $volume
is the name of a disk volume, subvol is the name of a subvolume that begins with
the letters ZSD, and filename is the automatically generated name of a Guardian
table that ends with “00” or “01” (zero zero or zero one).

You can use the “*” Guardian wild card in the volume, subvolume, and file name.

Considerations for INFO

Security Considerations

To perform INFO on files on other nodes, the remote system must be available.

If INFO tries to access objects that have a schema version that is greater than the
NonStop SQL/MX software version (MXV) of the local node, you receive a versioning
error.

Other Considerations

Use INFO to request specific SQL/MX information for a Guardian file name without
writing queries against metadata. Use INFO to obtain this information if metadata is
unavailable.

You can also use the SHOWLABEL command to get more information on a Guardian
file. See SHOWLABEL Command on page 4-99 for more information.

This information is displayed:

 The ANSI name

 The ANSI namespace, including table namespace (which includes views and
stored procedures), index namespace, and trigger namespace

 The object schema version

INFO [\node.]\$volume.subvol.filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-53

SQL/MX Utilities Examples of INFO
Examples of INFO

 These are examples of INFO queries:

mxtool INFO \\figaro.\$data*.*svol*.*
mxtool INFO \\figaro.\$*.*.*
mxtool INFO \\figaro.\$vol.subvol.file*
mxtool INFO \\figaro.\$vol.subvol*.file*00

 This is an example of an INFO query on SQL/MX catalogs using a wild card:

mxtool INFO \$DATA09.ZSD0.CATSYS0*
File Name: \FIGARO.$DATA09.ZSD0.CATSYS00
Object Schema Version: 1200
Ansi Name: NONSTOP_SQLMX_FIGARO.SYSTEM_SCHEMA.CATSYS
Ansi NameSpace: TA

File Name: \FIGARO.$DATA09.ZSD0.CATSYS01

 This is an example of an INFO query on a volume that does not exist:

mxtool INFO \$VOL.SUBVOL.FILE
*** ERROR[20362] Error 14 was returned while validating the
file set list specified by "$VOL.SUBVOL.FILE".

 This is an example of an INFO query on a node that does not exist:

mxtool INFO \\SQUAW.\$DATA09.ZSDT6TG2.HSNZ4500
*** ERROR[20373] The specified system does not exist in the
network.

 This is an example of an INFO query on a file that is not an SQL/MX object:

mxtool INFO \$DATA09.XYZ.MXCMP
*** ERROR[20357] File \FIGARO.$DATA09.XYZ.MXCMP is not an
SQL/MX object.

 This is an example of an INFO query on a file that does not exist:

mxtool INFO \$DATA09.ZSDT6TG2.HSNZ4500
*** ERROR[20355] File $DATA09.ZSDT6TG2.HSNZ4500 was not
found.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-54

SQL/MX Utilities mxexportddl Utility
mxexportddl Utility
Considerations for mxexportddl

Examples of mxexportddl

mxexportddl is an OSS command-line utility that captures the metadata and
statistics of SQL/MX objects and saves them in the XML format. This utility supports
OSS large files (files greater than 2 GB) as output files.

It is used to export the:

 SQL/MX object metadata to an XML file for DDL replication

 SQL/MX table statistics to an XML file for statistics replication

Exporting Metadata and Statistics of SQL/MX Objects

A catalog is a logical object; it is a collection of schemas. A schema is a logical objects
that has a collection of database objects such as tables, indexes, views, and stored
procedures.

 Exporting a catalog includes exporting all the subordinate objects in its hierarchy
such as schemas, tables, and the subordinate objects of the tables.

 To export objects on a remote node, the catalog must be registered using the
REGISTER CATALOG command. A catalog is not visible to a remote node until it
is registered.

 Exporting a schema includes exporting all its subordinate tables, views, and stored
procedures.

 Exporting a table includes:

 Non-droppable constraints

 Droppable constraints unless the CONSTRAINTS OFF option is enabled

 All table partitions excluding data

 All indexes and index partitions excluding data

 All triggers and referential integrity constraints

 Statistics of the table unless the STATS OFF option is enabled

 Indexes cannot be explicitly specified in the mxexportddl utility. They are
subordinate to the table object and can only be exported with the parent table.

Note. The mxexportddl utility is enhanced and is available only on systems running
J06.07 and later J-series RVUs and H06.18 and later H-series RVUs.

The XML files generated by the older version of the mxexportddl utility cannot be imported
with the newer version of the mximportddl utility and vice versa.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-55

SQL/MX Utilities mxexportddl Utility
 A constraint cannot be specified explicitly in the mxexportddl utility. To export a
constraint, the table including the constraint must be exported. The constraints that
are exported vary depending on whether the CONSTRAINTS option is set to ON or
OFF.

 Views can be implicitly exported with the entire schema and not only by the table.

 System defaults are always exported.

mxexportddl

must be lowercase.

-HELP

directs mxexportddl to display the syntax.

sqlmx-object-spec-list

is the list of SQL/MX object names with their corresponding object types. The
sqlmx-object-spec-list can be specified as:

(sqlmx-object-type sqlmx-object-name-list
[sqlmx-object-type sqlmx-object-name-list] ...)

The sqlmx-object-type is one of these object types:

{ -CAT | -CATALOG }
{ -SCH | -SCHEMA }
{ -TAB | -TABLE }

-CAT | -CATALOG

is the object type for a catalog.

-SCH | -SCHEMA

is the object type for a schema.

mxexportddl
-HELP
|
{
sqlmx-object-spec-list
-XMLFILE xml-file-name
[-CONSTRAINTS ON | OFF]
[-LOGFILE log-file-name]
[-STATS ON | OFF]
[-CLEAR ON | OFF]
}

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-56

SQL/MX Utilities mxexportddl Utility
-TAB | -TABLE

is the object type for a table.

The sqlmx-object-name-list is:

(sqlmx-object-name [sqlmx-object-name] ...)

sqlmx-object-name is a fully-qualified SQL/MX object name of the
specified sqlmx-object-type. The specified object and all subordinate
objects are exported. Wild cards are not permitted in the
sqlmx-object-name. For delimited names, use ' \" ' to represent a
quote. If a schema is "CATALOG"."SCHEMA", you must represent the
schema as \"CATALOG\".\"SCHEMA\". If you do not use ' \" ', the osh shell
strips the required ' " ' characters.

-XMLFILE xml-file-name

specifies the name of the XML file, which is generated by the mxexportddl utility.
The xml-file-name must be a valid OSS file name.

-CONSTRAINTS ON | OFF

specifies whether droppable constraints need to be exported or not. The default is
ON.

ON

exports the droppable and non-droppable constraints of the table.

OFF

exports only the non-droppable constraints of the table.

-LOGFILE log-file-name

redirects the screen logs of the mxexportddl utility into an OSS file. The
log-file-name must be a valid OSS file name.

-STATS ON |OFF

specifies if the statistics of the tables needs to be exported. The default is ON.

ON

exports the statistics of the tables.

OFF

does not export the statistics of the tables. Only the metadata of the SQL/MX
objects is exported.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-57

SQL/MX Utilities Considerations for mxexportddl
-CLEAR ON |OFF

specifies if the mxexportddl utility can overwrite the specified XML file if it
already exists. The default is OFF.

ON

overwrites the specified XML file if it already exists.

OFF

does not overwrite the specified XML file. If the file already exists, the write
operation fails.

Considerations for mxexportddl

You can edit the XML file manually using simple text editors. However, this method can
be error-prone and is not recommended.

Because the schema owner information in the XML file can be updated, other users
can import the schema and its objects.

Remote catalogs must be registered manually before executing mxexportddl.

mxexportddl supports the RI actions CASCADE/SET NULL/SET DEFAULT in
addition to NO ACTION and RESTRICT.

Supported by mxexportddl

 System defaults
 Tables and associated objects such as indexes and partitions
 Constraints: check, not null, primary key, and unique
 Table statistics that includes physical statistics (index level, nonempty block count,

and EOF), histograms, and histogram intervals
 Referential integrity constraints, views, triggers, and stored procedures
 For a table containing the IDENTITY column, the internal Sequence Generator

attributes will also be stored in the XML file

Not Supported by mxexportddl

 SQL/MP tables and aliases

Examples of mxexportddl

 To export the catalog cat1 and schema cat2.sch1 and cat2.sch2:

mxexportddl -cat cat1 -sch cat2.sch1 cat2.sch2 -xmlfile
export.xml

 To export the catalog cat1 without statistics:

mxexportddl -cat cat1 -xmlfile export.xml -stats off
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-58

SQL/MX Utilities MXGNAMES Utility
MXGNAMES Utility
Considerations for MXGNAMES
Examples of MXGNAMES

MXGNAMES is a Guardian program that is run from a TACL prompt or an OBEY
command file.

It converts one or more ANSI table names into a list of corresponding Guardian file
names, appropriately formatted for TMF or BACKUP/RESTORE 2.

For table containing an IDENTITY column, the SG Table location is also displayed in
the MXGNAMES output.

output-file-name

is the name of a nonexistent Guardian disk file to which the output should be
written. If you do not specify an output file, output is written to the screen. If the file
already exists, or cannot be created, an error is returned.

SQL-table-name-list-file

is an EDIT format file that consists of a list of a list of fully qualified ANSI table
names, one per line. MXGNAMES ignores blank lines.

Because of the 255 character limit for EDIT files, MXGNAMES cannot support
table names in the file whose overall length is greater than 255 characters,
including the dots separating the catalog, schema, and table name portions. You
must specify such names individually on the MXGNAMES command line.

SHOWDDL-file-name

is an EDIT file to be used as input that contains SHOWDDL output for one SQLMX
table.

SHOWDDL output is normally saved to an OSS format text file. You must use
CTOEDIT to convert this file to an EDIT file before you can use it as input to
MXGNAMES. You cannot convert the SHOWDDL file to an EDIT file if it contains

MXGNAMES -HELP |

input [-output=output-file-name] output-format
 [-node=node-name] [-length=file-length] [-nocomment]

input is
 -SQLnames=SQL-table-name-list-file
 | -Showddl=SHOWDDL-file-name
 | SQLMX-table-name

output-format is
 -BR2
 -TMF
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-59

SQL/MX Utilities MXGNAMES Utility
an ANSI table name whose overall length is greater than 255 characters, including
the dots separating the catalog, schema, and table name portions. You must
specify such names individually on the MXGNAMES command line.

SQLMX-table-name

is a single fully qualified SQLMX table name entered directly on the command line

output-format

indicates what subsystem the output file is to be used with:

-BR2

indicates output should be formatted for use with the BR2 RESTORE
command.

The resulting LOCATION clauses contain both the complete source and target
file names, where the target node-name specified in the -node option is
substituted in the target location, and the target volume, subvolume and file
name match the source exactly.

-TMF

indicates output should be formatted for use with TMF.

TMF has limits on the size of a command file. The maximum size of a
command file is 28,000 bytes. You can use the -length option to control the
size of the output file, while allowing for other text to be manually added to the
command file without exceeding the 28,000 byte limit.

Resource forks must be explicitly dumped and recovered. Therefore, the
output contains file names listed as wild cards that include the resource forks.

node-name

indicates what node name, including the backslash, should be appended to the
target location for the RESTORE command. If output-format is -BR2, this
argument is required. If output-format is -TMF, this option is ignored.

file-length

is an integer representing the maximum size of the output file in bytes. If the total
amount of data exceeds this amount, MXGNAMES generates additional files by
appending numbers to the output file name, truncating the output file name, if
necessary. If you do not specify the -length option, all output is placed in a single
file. The value you specify for file-length must be at least 1000.

-nocomment

indicates that no comments are to be included in the output file. TMF commands
allow comments in the text, which is the default if the output-format is -TMF. If
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-60

SQL/MX Utilities Considerations for MXGNAMES
the output format is -BR2, no comments are included, regardless of whether you
specify -nocomment.

-HELP

displays help for the utility.

Considerations for MXGNAMES

You must have READ/WRITE access to the Guardian subvolume where you are
executing MXGNAMES.

Input and output of MXGNAMES is in standard Guardian EDIT files, which have these
characteristics:

 Guardian file code of 101
 Maximum line length of 255 characters

You can use other tools or programs to capture data for use with MXGNAMES. To use
the captured data with MXGNAMES, you might need to convert the file to the EDIT
format. You can use tools such as CTOEDIT to perform the conversions.

Temporary Work Files

MXGNAMES might generate temporary workfiles during execution. These files are
placed in the current volume and subvolume. You must have authority to read and
write to this location, or MXGNAMES generates an error and halts execution.

Examples of MXGNAMES

 Suppose that these SQLMX tables and indexes exist on the system:

create table CAT.SCH.T126A
 (c1 INT not null
 , c2 TIMESTAMP default current_timestamp not null
 , c3 CHAR(4) default 'abcd'
 , c4 SMALLINT not null
 , PRIMARY KEY (c1,c2))
location $VOL1.ZSDA126A.BXNL1R00
partition
 (add first key (1r00) location $VOL2.ZSDA126A.BXNL2R00
 , add first key (2r00) location $VOL3.ZSDA126A.BXNL3R00
 , add first key (3r00) location $VOL4.ZSDA126A.BXNL4R00
 , add first key (4r00) location $VOL5.ZSDA126A.BXNL5R00
 , add first key (5r00) location $VOL6.ZSDA126A.BXNL6R00)
store by primary key;

create index T126A_NDX1 on CAT.SCH.T126A(c4)
location $vol1.ZSDA126a.qdxwg100
partition
 (add first key (100) location $VOL2.ZSDA126A.QDXWG200
 , add first key (500) location $VOL3.ZSDA126A.QDXWG300
 , add first key (700) location $VOL4.ZSDA126A.QDXWG400)
;

create table CAT.SCH.T126B
 (c1 timestamp default current_timestamp not null
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-61

SQL/MX Utilities Examples of MXGNAMES
 , c2 INT not null
 , c3 VARCHAR (30)
 , c4 SMALLINT not null
 , PRIMARY KEY (c4, c1))
location $VOL1.ZSDA126B.BXNW1R00
hash partition by (c4)
 (add location $VOL2.ZSDA126B.BXNW2R00
 , add location $VOL3.ZSDA126B.BXNW3R00
 , add location $VOL4.ZSDA126B.BXNW4R00)
;
create unique index T126B_NDX1 on CAT.SCH.T126B(C2, C1)
LOCATION $vol1.ZSDA126b.qdx1g100
hash partition by (c2)
 (add location $VOL2.ZSDA126B.QDX1G200
 , add location $VOL3.ZSDA126B.QDX1G300
 , add location $VOL4.ZSDA126B.QDX1G400
 , add location $VOL5.ZSDA126B.QDX1G500)
;

 This example prepares a list of file names to be used with TMF. The input is a list
of fully qualified SQL names.

MXGNAMES -SQLNames=$VOL1.SQLSTUFF.SQLNAMES -output=NAMELIST -TMF

Suppose the contents of the file SQLNAMES are:

CAT.SCH.T126A
CAT.SCH.T126B

The output of the command is a file called NAMELIST which contains:

(-- Table CAT.SCH.T126A --&
$VOL1.ZSDA126A.BXNL1R*,&
$VOL2.ZSDA126A.BXNL2R*,&
$VOL3.ZSDA126A.BXNL3R*,&
$VOL4.ZSDA126A.BXNL4R*,&
$VOL5.ZSDA126A.BXNL5R*,&
$VOL6.ZSDA126A.BXNL6R*,&
-- Index T126A_NDX1 on CAT.SCH.T126A--&
$VOL1.ZSDA126A.QDXWG1*,&
$VOL2.ZSDA126A.QDXWG2*,&
$VOL3.ZSDA126A.QDXWG3*,&
$VOL4.ZSDA126A.QDXWG4*,&
-- End of table CAT.SCH.T126A--&
-- Table CAT.SCH.T126B--&
$VOL1.ZSDA126A.BXNW1R*, &
$VOL2.ZSDA126A.BXNW2R*, &
$VOL3.ZSDA126A.BXNW3R*, &
$VOL4.ZSDA126A.BXNW4R*, &
-- Index T126B_NDX1 on CAT.SCH.T126B-- &
$VOL1.ZSDA126A.QDX1G1*,&
$VOL2.ZSDA126A.QDX1G2*,&
$VOL3.ZSDA126A.QDX1G3*,&
$VOL4.ZSDA126A.QDX1G4*,&
$VOL5.ZSDA126A.QDX1G5* &
-- End of table CAT.SCH.T126B--)

 This example prepares a list of file names to be used with TMF. The input is
SHOWDDL text.

MXGNAMES -Showddl=$VOL1.SQLSTUFF.SHOWD123 -output=NAMELST -TMF

Suppose the contents of the file SHOWD123 are:

CREATE TABLE CAT.SCH.T126A
 (
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-62

SQL/MX Utilities Examples of MXGNAMES
 C1 INT NO DEFAULT -- NOT NULL NOT DROPPABLE
 , C2 TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP -- NOT NULL NOT
DROPPABLE
 , C3 CHAR(4) CHARACTER SET ISO88591 COLLATE DEFAULT DEFAULT
_ISO88591'abcd'
 , C4 SMALLINT NO DEFAULT -- NOT NULL NOT
DROPPABLE
 , CONSTRAINT CAT.SCH.T126A_106009919_0001 PRIMARY KEY (C1 ASC, C2 ASC)
 NOT DROPPABLE
 , CONSTRAINT CAT.SCH.T126A_106009919_0000 CHECK (CAT.SCH.T126A.C1 IS
NOT NULL
 AND CAT.SCH.T126A.C2 IS NOT NULL AND CAT.SCH.T126A.C4 IS NOT NULL)
NOT
 DROPPABLE
)
 LOCATION \NSK.$VOL1.ZSDA126A.BXNL1R00
 NAME PART_A_Z_1
 PARTITION
 (
 ADD FIRST KEY (1000)
 LOCATION \NSK.$VOL2.ZSDA126A.BXNL2R00
 NAME PART_A_B_C
 , ADD FIRST KEY (2000)
 LOCATION \NSK.$VOL3.ZSDA126A.BXNL3R00
 NAME PART_D_E_F
 , ADD FIRST KEY (3000)
 LOCATION \NSK.$VOL4.ZSDA126A.BXNL4R00
 NAME PART_J_K_L
 , ADD FIRST KEY (4000)
 LOCATION \NSK.$VOL5.ZSDA126A.BXNL5R00
 NAME PART_M_N_O
 , ADD FIRST KEY (5000)
 LOCATION \NSK.$VOL6.ZSDA126A.BXNL6R00
 NAME PART_P_Q_R
)
 STORE BY (C1 ASC, C2 ASC)
 ;
CREATE INDEX T126A_NDX1 ON CAT.SCH.T126A
 (
 C4 ASC
)
 LOCATION \NSK.$VOL1.ZSDA126A.QDXWG100
 NAME PART_V_W_X PARTITION
 (
 ADD FIRST KEY (100)
 LOCATION \NSK.$VOL2.ZSDA126A.QDXWG200
 NAME PART_S_T_U
 , ADD FIRST KEY (500)
 LOCATION \NSK.$VOL3.ZSDA126A.QDXWG300
 NAME PART_Y_Z_1
 , ADD FIRST KEY (700)
 LOCATION \NSK.$VOL4.ZSDA126A.QDXWG400
 NAME PART_A_Z_1
)
 ;

The resulting contents of file NAMELST would be:

(-- Table CAT.SCH.T126A -- &
$VOL1.ZSDA126A.BXNL1R*,&
$VOL2.ZSDA126A.BXNL2R*,&
$VOL3.ZSDA126A.BXNL3R*,&
$VOL4.ZSDA126A.BXNL4R*,&
$VOL5.ZSDA126A.BXNL5R*,&
$VOL6.ZSDA126A.BXNL6R*,&
 &
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-63

SQL/MX Utilities Examples of MXGNAMES
-- Index T126A_NDX1 on CAT.SCH.T126A -- &
$VOL1.ZSDA126A.QDXWG1*,&
$VOL2.ZSDA126A.QDXWG2*,&
$VOL3.ZSDA126A.QDXWG3*,&
$VOL4.ZSDA126A.QDXWG4* &
-- End of table CAT.SCH.T126A) --

 This example prepares a list of file names to be used with TMF. The input is an
SQL table name.

MXGNAMES CAT.SCH.T126A -output=NAMELSTX -TMF

The contents of NAMELSTX are identical to the output file of the second example.

 This example uses MXGNAMES with TMF. The input is a list of SQL names with
the file length specified.

MXGNAMES -SQLNames=$VOL1.SQLSTUFF.SQLNAMES -output=NAMELIST -TMF
 -length=28000

The above use of the -length option specifies that output files should be limited
to a length of 28000 bytes. If the output exceeds 28000 bytes, the first additional
file generated is called NAMELIS2. If ten output files are needed, the tenth output
file is called NAMELI10.

You can use the file length to allow for additional text to be added to the TMF
command file, in addition to the text generated by MXGNAMES, without exceeding
TMF's 28000 byte limit. The minimum file length allowed is 1000 bytes.

If MXGNAMES generates multiple output files, a duplicate file name error can
occur on one of these files. To avoid duplicates you should:

 Specify shorter output file names, so that the extra digits can be appended
without overwriting characters from the original name.

 Avoid using digits in the end of the output file name.

Additional files either do or do not contain comments, depending on whether you
use the -no comment option.

Each continuation file will resume with the very next line of output, whether that line
is a comment or a file location. Other than the opening parenthesis for each new
file, the contents are exactly the same, regardless of the number of files generated.

 This example prepares a list of file names to be used with RESTORE. The input is
a list of SQL names.

MXGNAMES -SQLNames=$VOL1.SQLSTUFF.SQLNAMES -output=NAMELIST -BR2
 -node=\BNODE

Suppose the contents of the file SQLNAMES are as:

CAT.SCH.T126A
CAT.SCH.T126B

The output of the command is a file called NAMELIST containing this:

LOCATION
(
\PNODE.$VOL1.ZSDA126A.BXNL1R00 TO \BNODE.$VOL1.ZSDA126A.BXNL1R00,
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-64

SQL/MX Utilities Examples of MXGNAMES
\PNODE.$VOL2.ZSDA126A.BXNL2R00 TO \BNODE.$VOL2.ZSDA126A.BXNL2R00,
\PNODE.$VOL3.ZSDA126A.BXNL3R00 TO \BNODE.$VOL3.ZSDA126A.BXNL3R00,
\PNODE.$VOL4.ZSDA126A.BXNL4R00 TO \BNODE.$VOL4.ZSDA126A.BXNL4R00,
\PNODE.$VOL5.ZSDA126A.BXNL5R00 TO \BNODE.$VOL5.ZSDA126A.BXNL5R00,
\PNODE.$VOL6.ZSDA126A.BXNL6R00 TO \BNODE.$VOL6.ZSDA126A.BXNL6R00,
\PNODE.$VOL1.ZSDA126A.QDXWG100 TO \BNODE.$VOL1.ZSDA126A.QDXWG100,
\PNODE.$VOL2.ZSDA126A.QDXWG200 TO \BNODE.$VOL2.ZSDA126A.QDXWG200,
\PNODE.$VOL3.ZSDA126A.QDXWG300 TO \BNODE.$VOL3.ZSDA126A.QDXWG300,
\PNODE.$VOL4.ZSDA126A.QDXWG400 TO \BNODE.$VOL4.ZSDA126A.QDXWG400,
\PNODE.$VOL1.ZSDA126A.BXNW1R00 TO \BNODE.$VOL1.ZSDA126A.BXNW1R00,
\PNODE.$VOL2.ZSDA126A.BXNW2R00 TO \BNODE.$VOL2.ZSDA126A.BXNW2R00,
\PNODE.$VOL3.ZSDA126A.BXNW3R00 TO \BNODE.$VOL3.ZSDA126A.BXNW3R00,
\PNODE.$VOL4.ZSDA126A.BXNW4R00 TO \BNODE.$VOL4.ZSDA126A.BXNW4R00,
\PNODE.$VOL1.ZSDA126A.QDX1G100 TO \BNODE.$VOL1.ZSDA126A.QDX1G100,
\PNODE.$VOL2.ZSDA126A.QDX1G200 TO \BNODE.$VOL2.ZSDA126A.QDX1G200,
\PNODE.$VOL3.ZSDA126A.QDX1G300 TO \BNODE.$VOL3.ZSDA126A.QDX1G300,
\PNODE.$VOL4.ZSDA126A.QDX1G400 TO \BNODE.$VOL4.ZSDA126A.QDX1G400,
\PNODE.$VOL5.ZSDA126A.QDX1G500 TO \BNODE.$VOL5.ZSDA126A.QDX1G500
)

 This example prepares a list of file names to be used with RESTORE. The input is
SHOWDDL text.

MXGNAMES -Showddl=$VOL1.SQLSTUFF.SHOWD123 -output=NAMELST2 -BR2
 -node=\bnode

Suppose the contents of the file SHOWD123 are the same as for the second
example. The contents of output file NAMELST2 is:

LOCATION
(
\PNODE.$VOL1.ZSDA126A.BXNW1R00 TO \BNODE.$VOL1.ZSDA126A.BXNW1R00,
\PNODE.$VOL2.ZSDA126A.BXNW2R00 TO \BNODE.$VOL2.ZSDA126A.BXNW2R00,
\PNODE.$VOL3.ZSDA126A.BXNW3R00 TO \BNODE.$VOL3.ZSDA126A.BXNW3R00,
\PNODE.$VOL4.ZSDA126A.BXNW4R00 TO \BNODE.$VOL4.ZSDA126A.BXNW4R00,
\PNODE.$VOL5.ZSDA126A.BXNW5R00 TO \BNODE.$VOL5.ZSDA126A.BXNW5R00,
\PNODE.$VOL6.ZSDA126A.BXNW6R00 TO \BNODE.$VOL6.ZSDA126A.BXNW6R00,
\PNODE.$VOL1.ZSDA126A.QDX1G100 TO \BNODE.$VOL1.ZSDA126A.QDX1G100,
\PNODE.$VOL2.ZSDA126A.QDX1G200 TO \BNODE.$VOL2.ZSDA126A.QDX1G200,
\PNODE.$VOL3.ZSDA126A.QDX1G300 TO \BNODE.$VOL3.ZSDA126A.QDX1G300,
\PNODE.$VOL4.ZSDA126A.QDX1G400 TO \BNODE.$VOL4.ZSDA126A.QDX1G400
)

 This example prepares a list of file names to be used with RESTORE. The input is
an SQL table name.

MXGNAMES CAT.SCH.T126A -output=NAMELST3 -BR2 -node=\bnode

The contents of NAMELST3 are identical to the output file in the sixth example
(assuming the definition of table CAT.SCH.T126A is the same).

 In this example, the table contains an IDENTITY column:

CREATE TABLE CAT.SCH.TABLE_IDENTITY
 (
 I LARGEINT GENERATED BY DEFAULT AS IDENTITY
 (START WITH 0 INCREMENT BY 1 MAXVALUE 9223372036854775807
MINVALUE 0 NO CYCLE)
 LOCATION \DMR15.$SYSTEM.ZSDWDPR4.WD4DR900
 -- NOT NULL NOT DROPPABLE
 , CONSTRAINT CAT.SCH.TABLE_IDENTITY_849996266_9538 CHECK
 (CAT.SCH.TABLE_IDENTITY.I IS NOT NULL) NOT DROPPABLE
)
 LOCATION \DMR15.$SYSTEM.ZSDWDPR4.L26KR900
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-65

SQL/MX Utilities Examples of MXGNAMES
 NAME DMR15_SYSTEM_ZSDWDPR4_L26KR900
 ATTRIBUTES BLOCKSIZE 4096
 NO PARTITION
 ;

The following command prepares a list of file names to be used with TMF. The input is a
SQL table name.

$SYSTEM ZMXTOOLS 23> run mxgnames cat.sch.table_identity -TMF
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-66

SQL/MX Utilities mximportddl Utility
mximportddl Utility
Considerations for mximportddl

Examples of mximportddl

mximportddl is an OSS command-line utility that replicates the DDL definition and
statistics of SQL/MX objects.

It is used to import the:

 SQL/MX object metadata from an XML file for DDL replication

 SQL/MX table statistics from an XML file for statistics replication

Importing Metadata and Statistics of SQL/MX Objects

A catalog is a logical object; it is a collection of schemas. A schema is a logical object
that has a collection of database objects such as tables, indexes, views, and stored
procedures.

 Importing a catalog includes importing all the subordinate objects in its hierarchy
such as schemas, tables, and the subordinate objects of the tables.

 Importing a schema includes importing all its subordinate tables, views, and stored
procedures.

 Importing a table includes:

 Non-droppable constraints

 Droppable constraints unless the CONSTRAINTS OFF option is enabled

 All table partitions excluding data

 All indexes and index partitions excluding data

 All triggers and referential integrity constraints

 Statistics of the table unless the STATS OFF option is enabled

 Indexes cannot be specified explicitly in the mximportddl utility. They are
subordinate to the table object and can only be imported with the parent table.

 A constraint cannot be explicitly specified in the mximportddl utility. To import a
constraint, the table including the constraint must be imported. The constraints that
are imported vary depending on whether the CONSTRAINTS option is set to ON or
OFF.

Note. The mximportddl utility is available only on systems running J06.07 and later J-
series RVUs and H06.18 and later H-series RVUs.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-67

SQL/MX Utilities mximportddl Utility
 Referential integrity constraints, views, triggers, and stored procedures are referred
to as dependency objects. The dependency objects are imported at the end of the
mximportddl utility to ensure that all parent objects are imported in advance.

 The SHOWDDL ON and SHOWDDLLOC options are provided, the DDL of
dependency objects will be written to OSS files. This can be used to manually
create the objects later. Dependency objects will not be imported.

 Views can be implicitly imported with the entire schema and not only by the table.

 System defaults are not imported.

mximportddl

must be lowercase.

-HELP

directs mximportddl to display the syntax.

sqlmx-object-spec-list

is the list of SQL/MX object names with their corresponding object types. The
sqlmx-object-spec-list is specified as:

mximportddl
-HELP
|
{
-XMLFILE xml-file-name
[sqlmx-object-spec-list]
[-MAPFILE map-file-name]
[-CONSTRAINTS ON | OFF]
[-LISTONLY ON | OFF]
[-LOGFILE log-file-name]
[-STATS ON | OFF]
[-KEEPSTATS ON | OFF]
[-KEEPDDL ON | OFF]
[-KEEPGFN ON | OFF]
[-SHOWDDL ON | OFF]
[-SHOWDDLLOC oss-directory]
}
|
{
-PREPAREMAP
-XMLFILE xml-file-name
-MAPFILE map-file-name
[-LOGFILE log-file-name]
[-CLEAR ON | OFF]
}

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-68

SQL/MX Utilities mximportddl Utility
(sqlmx-object-type sqlmx-object-name-list
[sqlmx-object-type sqlmx-object-name-list] ...)

The sqlmx-object-type is one of these object types:

{ -CAT | -CATALOG }
{ -SCH | -SCHEMA }
{ -TAB | -TABLE }

-CAT | -CATALOG

is the object type for a catalog.

-SCH | -SCHEMA

is the object type for a schema.

-TAB | -TABLE

is the object type for a table.

The sqlmx-object-name-list is:

(sqlmx-object-name [sqlmx-object-name] ...)

sqlmx-object-name is a fully-qualified SQL/MX object name of the
specified sqlmx-object-type. The specified object and all subordinate
objects are imported. Wild cards are not permitted in the sqlmx-object-
name. For delimited names, use ' \" ' to represent a quote. If a schema is
"CATALOG"."SCHEMA", you must represent the schema as
\"CATALOG\".\"SCHEMA\". If you do not use the ' \" ', the osh shell strips
the required ' " ' characters.

If sqlmx-object-spec-list is not provided, all the SQL/MX objects in the
XML file will be imported.

-CONSTRAINTS ON | OFF

specifies if droppable constraints need to be imported. The default is ON.

ON

imports the droppable and non-droppable constraints of the table.

OFF

imports only the non-droppable constraints of the table.

-LOGFILE or -LOG log-file-name

redirects the screen logs of the mximportddl utility into an OSS file. The
log-file-name must be a valid OSS file name.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-69

SQL/MX Utilities mximportddl Utility
-MAPFILE or -MAP map-file-name

specifies the name of the MAP file. map-file-name must be a valid OSS file
name.

While importing the XML file, MAP file can be used to map the source catalog or
schema to a target catalog or schema. Also, the source node name and volume
can be mapped to the target node name and volume. The MAP file template can
be generated for the specific XML file, by specifying -PREPAREMAP in the
mximportddl utility.

A MAP file consists of multiple sections, which are listed below:

[CATALOG-MAPPING]

[SCHEMA-MAPPING]

[LOCATION-MAPPING]

These sections have the following keywords:

-XMLFILE or -XML xml-file-name

specifies the name of the XML file, which is generated by the mxexportddl utility.
The xml-file-name must be a valid OSS file name.

-STATS ON |OFF

specifies if the statistics of the tables needs to be imported. The default is ON.

ON

imports the statistics of the tables.

[CATALOG-MAPPING]
CATALOG <catalog name> = <New catalog name>;
. . .

[SCHEMA-MAPPING]
SCHEMA <catalog name>.<schema name> = <New catalog name>.<new
schema name>;
. . .

[LOCATION-MAPPING]
LOCATION <System name>.<volume name> = <New system name>.<new
volume name>;
. . .
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-70

SQL/MX Utilities mximportddl Utility
OFF

does not import the statistics of the tables. Only the metadata of the SQL/MX
objects is imported.

-CLEAR ON |OFF

specifies if the mximportddl utility can overwrite the specified MAP file if it
already exists and -PREPAREMAP is provided. The default is OFF.

ON

overwrites the specified MAP file if it already exists.

OFF

does not overwrite the specified MAP file. If the file already exists, the write
operation fails.

-KEEPDDL ON | OFF

specifies whether the mximportddl utility should retain the target tables and its
corresponding indexes if it already exists. The default is ON.

ON

imports the metadata of table and its indexes only if the target table does not
exist. If the target table exists, physical statistics (index level, nonempty block
count, and EOF) will not be imported regardless of the KEEPSTATS option
value.

OFF

imports the metadata even if the target table already exists. The existing table
and its indexes will be dropped, before creating the table. The existing
statistics will also be deleted. The KEEPDDL OFF option will override the
KEEPSTATS ON option.

-KEEPGFN ON | OFF

specifies whether the Guardian file names of table and index partitions must be
retained by the mximportddl utility. The default is ON.

ON

imports the partitions with same Guardian file names as in the original table.

OFF

imports the partitions with SQL/MX generated Guardian file names.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-71

SQL/MX Utilities mximportddl Utility
-KEEPSTATS ON | OFF

specifies whether the mximportddl utility should retain the statistics of target
tables if they already exist. The default is ON.

ON

imports the statistics only if the target table does not have statistics.

OFF

imports the statistics even if the target table already has statistics. The existing
statistics will be deleted before importing the statistics.

-LISTONLY ON | OFF

lists the SQL/MX objects in the specified XML file. Object is not imported. The
default is OFF.

ON

lists the objects in the XML file that matches the specified sqlmx-objects-
spec-list. The specified SQL/MX objects are not imported and will not
display the statistics details.

OFF

imports the specified SQL/MX objects.

-SHOWDDL ON | OFF

generates OSS files containing DDL information of dependency objects. The
default is OFF.

ON

generates one or more OSS files containing DDL information of dependency
objects. These files are created in addition to the objects that are normally
imported.

OFF

does not generate OSS files containing DDL information of dependency
objects.

Guidelines

 If SHOWDDL ON is specified, the SHOWDDLLOC option also needs to be
specified.

 The DDL information can be used to manually create triggers, views,
referential integrity constraints, and stored procedures after importing the
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-72

SQL/MX Utilities Considerations for mximportddl
SQL/MX objects. The generated files are named as shown in the following
table:

n starts at 0 and increments by one. A new file is created every time when the
current file becomes full.

-SHOWDDLLOC oss-directory

places the files containing DDL information in the specified oss-directory. The
oss-directory must be a valid OSS directory.

Guidelines

 Along with the -SHOWDDLLOC oss-directory option, the SHOWDDL ON
option needs to be enabled.

 If the OSS directory already contains files with the same name as the files that
are being generated, the original files are overwritten.

-PREPAREMAP

generates the MAP file from the provided XML file. No object will be imported. The
generated MAP file can be used to map the parent object names and Guardian
locations of the SQL/MX objects.

Considerations for mximportddl

You can edit the XML file manually using simple text editors. However, this method can
be error-prone and is not recommended.

As the schema owner information in the XML file can be updated, other users can
import the schema and its objects.

Remote catalogs must be registered manually before executing mximportddl. While
importing, mximportddl will not register catalogs on the remote system.

mximportddl supports the RI actions CASCADE/SET NULL/SET DEFAULT in
addition to NO ACTION and RESTRICT.

Supported by mximportddl

 Tables and associated objects such as indexes and partitions
 Constraints: check, not null, primary key, and unique

File Name Purpose Subordinate object of...

SHOWDDLn_RI_Constraints Referential integrity Table

SHOWDDLn_Stored_Procedur
es

Java stored
procedures

Schema

SHOWDDLn_Triggers Triggers Table

SHOWDDLn_Views Views Schema
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-73

SQL/MX Utilities Examples of mximportddl
 Table statistics that includes physical statistics (index level, nonempty block count,
and EOF), histograms, and histogram intervals

 Referential integrity constraints, views, triggers, and stored procedures
 For a table containing the IDENTITY column, the internal Sequence Generator

attributes will also be stored in the XML file

Not Supported by mximportddl

 System defaults

 SQL/MP tables and aliases

Examples of mximportddl

 To import the catalog cat1 and schema cat2.sch1 and cat2.sch2:

mximportddl -cat cat1 -sch cat2.sch1 cat2.sch2 -xml
export.xml

 To import the catalog cat1 without statistics:

mximportddl -cat cat1 -xml export.xml -stats off

 To import all the SQL/MX objects existing in the XML file:

mximportddl -xml export.xml

 To generate the MAP file template from the XML file:

mximportddl -preparemap -xml export.xml -map export.map

The sample MAP FILE is shown below:

@CURRENTNODE will be replaced by the system name in which the mximportddl
utility is running.

 To import the SQL/MX objects to a different target using map file:

mximportddl -xml export.xml -map export.map -cat cat1 cat2

[CATALOG-MAPPING]
CATALOG CAT1 = NCAT1;

[SCHEMA-MAPPING]
SCHEMA CAT2.SCH1 = NCAT3.NSCH;

[LOCATION-MAPPING]
LOCATION \NSK.$DATA1 = @CURRENTNODE.$DATA03;
LOCATION \NSK.$DATA2 = @CURRENTNODE.$DATA04;
LOCATION \NSK.$DATA3 = @CURRENTNODE.$DATA05;
LOCATION \NSK.$DATA4 = \DEV5.$DATA06;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-74

SQL/MX Utilities MXRPM tool
MXRPM tool
MXRPM is an OSS tool that reprocesses module files. This tool processes module files
with version 3200 and above.

This tool helps to improve embedded SQL application performance by persisting the
result of Similarity Check in the module files. When you move the module files from a
test to a production system, use this tool to replace compile time objects and their
specific attributes with run time objects and their specific attributes in the module file.
When the application loads in the production environment, Similarity Checks are
avoided for statements in the module files that are successfully reprocessed by the
tool.

-map map-file

map-file is an unstructured OSS file, which contains the mappings between
compile time and runtime ANSI names for tables and views. If the absolute path for
the file is not specified, the tool searches for the file in the current directory.

The compile time and runtime ANSI names specified in the map-file can contain
only ISO88591 characters. A colon is used as a delimiter between the compile time
and the runtime ANSI names. Any leading and trailing spaces are removed. Each
mapping must be on a separate line. For more information, see Guidelines for
map-file on page 5-76.

-log log-file

This tool logs the result of processing the module files in log-file. If the -log
option is specified without the log-file, it logs the result to the console. For
more information, see Guidelines for log-file on page 5-76.

-modlist modules-list-input-file

modules-list-input-file is an unstructured OSS file which contains the list
of module files. This tool can process only OSS module files. Each module file
must be specified on a separate line. For more information, see Guidelines for
module-list-input-file on page 5-76.

module-files-list-separated-by-spaces

You can specify the modules on the command line with the module file names
separated by spaces.

mxrpm [-log [log-file]]
 -map map-file
 { -modlist modules-list-input-file | module-

files-list-separated-by-spaces }
 | -help
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-75

SQL/MX Utilities Guidelines for map-file
-help

provides information on how to use the tool.

Guidelines for map-file

The guidelines to create a map file are:

 Specify a single mapping between a compile time and runtime table or view name.
This tool stops processing and returns an error if it detects more than one mapping
for the same compile time table or view.

 Specify three part ANSI names for compile time and runtime names.

 All references to the PROTOTYPE table or view will be mapped to the runtime
table or view provided in the map-file.

 Mappings are not required for indexes.

Guidelines for module-list-input-file

The guidelines to create a module-list-input-file are:

 List each module file on a separate line.

 This tool does not process system module files. It processes the module files
sequentially and stops if it finds a system module file.

 You must have read and write permissions on the module file.

 If the full path for the module file is not specified, this tool uses the following search
sequence for the module file:

 Local directory (from where you launch the tool)

 User specified directories using the environment variables or Guardian
DEFINES

 Global module directory

 If the full path is specified and the file does not exist, the tool will not process the
module file.

Guidelines for log-file

 If the absolute path is not specified, this tool searches for the file in the current
directory. It creates a file if the file does not exist. If the file exists, this tool renames
the existing file with an extension .sqlmx.bak and creates a new file. If the file
with extension .sqlmx.bak already exists, this tool purges the file.

Note. HP recommends that you take a backup of the module files before processing.

Note. You must have read permission on the map-file and search permission on the directory.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-76

SQL/MX Utilities Considerations
 To display logging information on the terminal, specify the -log option without a
filename. If the option is not specified, only summary report is displayed. Do not
use the wildcards in the log file name.

Considerations

The following are considerations when running this tool:

 It supports only SQL/MX tables or views.

 It does not support SQL/MP tables or views. If a statement accesses SQL/MP
tables or views, SQL/MP tables using MP aliases or both SQL/MP and SQL/MX
objects, this tool skips the statement and does not update the redefinition
timestamps or the ANSI names.

 It does not process SQL/MX queries using DEFINEs.

 It uses the existing Similarity Check criteria to determine if the compile time and
runtime tables or views are similar. It does not override any existing Similarity
Check criteria. If the Similarity Check fails for a statement, this tool does not
update the redefinition timestamps for the statement. An automatic recompilation
occurs for these statements if Similarity Check is enabled at runtime.

 If you compile the module files with Similarity Check disabled, this tool skips
Similarity Check on statements in these module files.

 It processes both OSS and Guardian module files. You can provide an absolute
path for the module file. If the absolute path is not specified, the module file is
searched using the search criteria. For more information, see Guidelines for
module-list-input-file on page 5-76. For Guardian modules, specify either the three-
part module name as specified in the application or the fully qualified filename
starting with /G.

 It creates a temporary module file in the location specified by TMPDIR environment
variable. If TMPDIR is not set, this tool creates a temporary module file in the
current directory. If both TMPDIR and current directories are Guardian locations,
this tool returns an error. You must have the read and write permissions for these
locations.

If the temporary module file, which is composed by appending _sqlmx_temp to the
module file name, already exists, this tool returns an error.

It replaces the original module file with the temporary module file upon successful
processing of the module file. You must have write permission on the module file
directory.

This tool purges the temporary module file if there is an error in processing or there
are no changes to the original module file.

Note. You must have write and search permission on the directory to create a log file. If a log
file exists, you must have write permission on the file.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-77

SQL/MX Utilities mxtool Utility
mxtool Utility
mxtool is an OSS command-line utility that performs various utility functions.

mxtool utility-operation

executes this utility, which must appear in lowercase letters.

utility-operation

is the operation to be performed. It is not case-sensitive. utility-operation is
one of:
FIXRCB Operation on page 5-7
mxtool FIXUP TABLE mycat.mysch.FIXUPtable -ru -d on page 5-12
FIXUP Operation on page 5-8
GOAWAY Operation on page 5-13
INFO Operation on page 5-53
VERIFY Operation on page 5-79
CLEANUP Operation on page 5-3

HELP
and

HELP ALL

display helpful information about the mxtool command-line options.

mxtool utility-operation
utility-operation is

 { FIXUP fixup operation
 | GOAWAY goaway operation
 | HELP [help options]
 | INFO info operation
 | VERIFY verify operation
 | CLEANUP cleanup operation
}
help options is

 { ALL | FIXUP | GOAWAY | INFO | VERIFY | CLEANUP }
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-78

SQL/MX Utilities VERIFY Operation
VERIFY Operation
Considerations for VERIFY
Examples of VERIFY

VERIFY is an OSS command-line utility run from mxtool that reports whether
SQL/MX objects and programs are consistently described in file labels, resource forks,
and metadata. Starting with SQL/MX Release 3.2, the VERIFY operation can produce
a list of orphaned Guardian files. The orphaned Guardian files are existing Guardian
files for which metadata information is not available in the SQLMX database.

object-option

specifies that VERIFY should be performed against all partitions and dependent
indexes of a table.

catalog.schema.object

is the fully qualified ANSI name of a table. If any of the three parts of the name is
an SQL/MX reserved word, you must delimit it by enclosing it in double quotes.
Such delimited parts are case-sensitive. For example: cat.sch."join".

VERIFY displays inconsistencies to the standard output file.

file-option

specifies that VERIFY should be performed against a file. Only a table object can
be specified.

orphan-file-option

specifies that VERIFY must report the name(s) of an orphaned Guardian file or set
of files.

mxtool VERIFY { object-option | file-option | orphan-file-
option}

object-option is: ANSI name of the object

file option is: PART guardian-file-name

guardian-file-name is: [\node.]$volume.subvol.filename

orphan-file-option is: -oo wildcard-guardian-file-name
 output

wildcard-guardian-file-name is:

Guardian file name, which includes the wild card character,*.

output is: -f=OSS-file-name
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-79

SQL/MX Utilities Considerations for VERIFY
guardian-file-name

is a single Guardian physical file name to be verified. The Guardian file name
specification can contain a node, volume, subvolume, and a file name. The node
name is optional.

wildcard-guardian-file-name

 allows wild card character “*” as part of the Guardian file name. For example,

 \dmr15.$*.*.*

 \dmr15.$data*.ZSDV1*.PART*

OSS-file-name

the name of an OSS file. When the -oo option is used, VERIFY writes the names
of orphaned Guardian files to this file, one orphaned file name per line.

[\node.]$volume.subvol.filename

is the Guardian qualified file name that describes the partition that is being queried.

In this four-part name, \node is the name of a node of a NonStop server, $volume
is the name of a disk volume, subvol is the name of a subvolume, and filename
is the name of an SQL/MX table or view.

If the name contains special characters such as “\” or “$”, you must precede these
characters with a backslash (\), or you can enclose the entire four-part name in
single quotes. For example:

\\node2.\$data3.sales.mytable or '\node2.$data3.sales.mytable'.

If you do not specify \node, the default is the Guardian system named in your
=_DEFAULTS define.

You can find the Guardian (physical) file name by using the SHOWLABEL
command. For example:

SHOWLABEL CAT.SCH.T1, DETAIL;

For more information, see SHOWLABEL Command on page 4-99.

Considerations for VERIFY

When the object option or file option is used, VERIFY checks for inconsistencies
between information stored in the metadata and information stored in labels, including:

 ANSI name
 ANSI namespace
 Partition map, including:

 Number of partitions
 First key values
 Physical locations

 Version information
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-80

SQL/MX Utilities Considerations for VERIFY
 Number of indexes
 Partition name

 For dependent indexes, similar checks are made for inconsistencies, including:

 ANSI name
 ANSI namespace
 Partition map
 Version information

 Constraint information.

Constraint information stored in the label is used during similarity checking to see if
the current plan can be executed or needs to be recompiled. The number of
constraints defined must be the same. In addition, the constraint text and disabled
attribute must match. Only droppable check constraint information is verified.

 Redefinition time
 Extent sizes (primary extent size, secondary extent size, maximum number of

extents)
 Audit flag
 Corrupt flag

If a table has offline partitions or unpopulated indexes defined in metadata, they are
noted in the output. If a table has both offline partitions and unpopulated indexes
defined in metadata, they will be ignored.

When the -oo option is used, VERIFY searches the set of Guardian files that match
the specified file-name-template. For each matching file, VERIFY checks if the
corresponding SQL/MX metadata exists. If not, that Guardian file is considered
orphaned, and its name is written to the specified output file.

After VERIFY has completed the search for orphaned Guardian files, the resulting
output file can be used as input to CLEANUP.

Security Considerations

 VERIFY does not check privilege information.

 VERIFY obtains read-only locks on metadata while verifying an object. Other
operations that read metadata can run concurrently. Operations that change
metadata or labels such as DDL, partition management, PURGEDATA, and
UPDATE STATISTICS statements cannot run concurrently.

 To verify some objects NonStop SQL/MX might need to access remote systems.
The remote system must be available and you must have privileges to view
information on it.

 If VERIFY tries to access objects that have a schema version that is greater than
the SQL/MX software version (MXV) of the local node, you receive a versioning
error.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-81

SQL/MX Utilities Examples of VERIFY
Examples of VERIFY

 This example shows the creation of a table:

CREATE TABLE payroll.dec2000.hourly

 C1 INT NO DEFAULT -- NOT NULL NOT DROPPABLE
, C2 INT DEFAULT NULL
, C3 CHAR(10) CHARACTER SET ISO88591 COLLATE DEFAULT
DEFAULT NULL
, CONSTRAINT payroll.dec2000.hourly_392165858_3314 PRIMARY
KEY (C1 ASC)
 NOT DROPPABLE
, CONSTRAINT payroll.dec2000.hourly_328843858_3314 CHECK
 (payroll.dec2000.hourly.C1 IS NOT NULL) NOT DROPPABLE
)
LOCATION \SQUAW.$DATA08.ZSDVVVVV.T1000100
NAME SQUAW_DATA08_ZSDVVVVV_T1000100
ATTRIBUTES EXTENT (64, 512), MAXEXTENTS 400
PARTITION
(
 ADD FIRST KEY (1000)
 LOCATION \SQUAW.$DATA08.ZSDVVVVV.T1000200
 NAME SQUAW_DATA08_ZSDVVVVV_T1000200
 EXTENT (16, 512) MAXEXTENTS 100
, ADD FIRST KEY (2000)
 LOCATION \SQUAW.$DATA08.ZSDVVVVV.T1000300
 NAME SQUAW_DATA08_ZSDVVVVV_T1000300
 EXTENT (16, 512) MAXEXTENTS 200
, ADD FIRST KEY (3000)
 LOCATION \SQUAW.$DATA08.ZSDVVVVV.T1000400
 NAME SQUAW_DATA08_ZSDVVVVV_T1000400
 EXTENT (16, 1024) MAXEXTENTS 300
)
STORE BY (C1 ASC);

CREATE INDEX VERIFY_T1_NDX2 ON payroll.dec2000.hourly
 (
 C3 ASC
)
 LOCATION \SQUAW.$DATA08.ZSDVVVVV.T1X20100
 NAME SQUAW_DATA08_ZSDVVVVV_T1X20100
 PARTITION
 (
 ADD FIRST KEY (_ISO88591'a1')
 LOCATION \SQUAW.$DATA08.ZSDVVVVV.T1X20200
 NAME SQUAW_DATA08_ZSDVVVVV_T1X20200
 EXTENT (16, 128) MAXEXTENTS 200
 , ADD FIRST KEY (_ISO88591'a2')
 LOCATION \SQUAW.$DATA08.ZSDVVVVV.T1000300
 NAME SQUAW_DATA08_ZSDVVVVV_T1000300
 EXTENT (16, 512) MAXEXTENTS 200
 , ADD FIRST KEY (3000)
 LOCATION \SQUAW.$DATA08.ZSDVVVVV.T1000400
 NAME SQUAW_DATA08_ZSDVVVVV_T1000400
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-82

SQL/MX Utilities Examples of VERIFY
 EXTENT (16, 1024) MAXEXTENTS 300
)
 STORE BY (C1 ASC);

ALTER TABLE payroll.dec2000.hourly
 ADD CONSTRAINT payroll.dec2000.hourly_chk1 CHECK
 (payroll.dec2000.hourly.C2 > 0) DROPPABLE ;

 This example shows the VERIFY operation run against table
payroll.dec2000.hourly, without options. VERIFY defaults to the -a option:

mxtool VERIFY payroll.dec2000.hourly

NonStop SQL/MX MXTOOL Utility 2.0
(c) Copyright 2003 Hewlett-Packard Development Company, LP.
All Rights Reserved.

Verifying table: payroll.dec2000.hourly

 Verifying label for partition :
\SQUAW.$DATA08.ZSDVVVVV.T1000100

 Verifying resource fork for partition:
\SQUAW.$DATA08.ZSDVVVVV.T1000100
 Verifying constraints: \SQUAW.$DATA08.ZSDVVVVV.T1000100
 Verifying Partition Map: \SQUAW.$DATA08.ZSDVVVVV.T1000100
 Verifying Index Map : \SQUAW.$DATA08.ZSDVVVVV.T1000100

 Verifying label for partition :
\SQUAW.$DATA08.ZSDVVVVV.T1000200

 Verifying resource fork for partition:
\SQUAW.$DATA08.ZSDVVVVV.T1000200
 Verifying constraints: \SQUAW.$DATA08.ZSDVVVVV.T1000200
 Verifying Partition Map: \SQUAW.$DATA08.ZSDVVVVV.T1000200
 Verifying Index Map : \SQUAW.$DATA08.ZSDVVVVV.T1000200

 Verifying label for partition :
\SQUAW.$DATA08.ZSDVVVVV.T1000300

 Verifying resource fork for partition:
\SQUAW.$DATA08.ZSDVVVVV.T1000300
 Verifying constraints: \SQUAW.$DATA08.ZSDVVVVV.T1000300
 Verifying Partition Map: \SQUAW.$DATA08.ZSDVVVVV.T1000300
 Verifying Index Map : \SQUAW.$DATA08.ZSDVVVVV.T1000300

 Verifying label for partition :
\SQUAW.$DATA08.ZSDVVVVV.T1000400

 Verifying resource fork for partition:
\SQUAW.$DATA08.ZSDVVVVV.T1000400
 Verifying constraints: \SQUAW.$DATA08.ZSDVVVVV.T1000400
 Verifying Partition Map: \SQUAW.$DATA08.ZSDVVVVV.T1000400
 Verifying Index Map : \SQUAW.$DATA08.ZSDVVVVV.T1000400
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-83

SQL/MX Utilities Examples of VERIFY
Verifying index: payroll.dec2000.VERIFY_T1_NDX2

 Verifying label for partition :
\SQUAW.$DATA08.ZSDVVVVV.T1X20100

 Verifying resource fork for partition:
\SQUAW.$DATA08.ZSDVVVVV.T1X20100
 Verifying Partition Map: \SQUAW.$DATA08.ZSDVVVVV.T1X20100

 Verifying label for partition :
\SQUAW.$DATA08.ZSDVVVVV.T1X20200

 Verifying resource fork for partition:
\SQUAW.$DATA08.ZSDVVVVV.T1X20200
 Verifying Partition Map: \SQUAW.$DATA08.ZSDVVVVV.T1X20200

 Verifying label for partition :
\SQUAW.$DATA08.ZSDVVVVV.T1X20300

 Verifying resource fork for partition:
\SQUAW.$DATA08.ZSDVVVVV.T1X20300
 Verifying Partition Map: \SQUAW.$DATA08.ZSDVVVVV.T1X20300

 Verifying label for partition :
\SQUAW.$DATA08.ZSDVVVVV.T1X20400

 Verifying resource fork for partition:
\SQUAW.$DATA08.ZSDVVVVV.T1X20400
 Verifying Partition Map: \SQUAW.$DATA08.ZSDVVVVV.T1X20400

Object verification complete for : payroll.dec2000.hourly
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
5-84

6 SQL/MX Language Elements

NonStop SQL/MX language elements, which include data types, expressions,
functions, identifiers, literals, and predicates, occur within the syntax of SQL/MX
statements and MXCI commands. The statement and command topics support the
syntactical and semantic descriptions of the language elements in this section.

This section describes:

 Catalogs on page 6-3

 Character Sets on page 6-4

 Collations on page 6-6

 Columns on page 6-7

 Constraints on page 6-9

 Correlation Names on page 6-11

 Database Objects on page 6-12

 Database Object Names on page 6-13

 Data Types on page 6-17

 DEFINEs on page 6-38

 Expressions on page 6-41

 Identifiers on page 6-56

 Indexes on page 6-59

 Keys on page 6-60

 Literals on page 6-64

 MXCI Parameters on page 6-77

 Null on page 6-80

 Partitions on page 6-83

 Predicates on page 6-85

 Pseudocolumns on page 6-105

 Schemas on page 6-107

 Search Condition on page 6-108

 Sequence Generators on page 6-110

 SQL/MP Aliases on page 6-112

 Stored Procedures on page 6-112
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-1

SQL/MX Language Elements
 Subquery on page 6-112

 Tables on page 6-114

 Triggers on page 6-115

 Views on page 6-115
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-2

SQL/MX Language Elements Catalogs
Catalogs

SQL/MX Catalogs

An SQL/MX catalog is a named logical object that contains descriptions of a set of
schemas. You can access SQL/MX objects with the three-part name of the actual
object.

The ANSI SQL:1999 catalog name is an SQL identifier. In SQL/MX Release 2.x, ANSI
catalogs do not have any physical representation, nor do they have a physical
relationship to SQL/MP catalogs.

A catalog is owned by the user ID that created it, though catalog ownership does not
imply authorization over schemas or objects in that catalog, and any user can drop an
empty catalog, regardless who the catalog owner is. Each of the schemas described in
a catalog has an owner. A catalog can contain multiple schemas, each possibly owned
by a different user. A catalog cannot contain other catalogs. Any user on a node can
create a catalog on that node. The catalog’s owner has the authority to register and
unregister the catalog.

An SQL/MX catalog name can be up to 128 characters and is location-independent.

SQL/MP Catalogs

An SQL/MP catalog is a set of tables and indexes that describe SQL objects. Tables in
the set are called catalog tables and NonStop SQL/MP creates them, along with their
indexes, when you execute a CREATE CATALOG statement. Each catalog resides on
its own Guardian subvolume, and the name of that subvolume is also the name of the
catalog.

A catalog name has the form: [\node.][$volume.]subvol

Each node on which NonStop SQL/MP is used has one special catalog called the
system catalog and might have many other catalogs. Each table, view, index, partition,
collation, or catalog table located on a node must be described in a catalog on the
same node. For more information, see the SQL/MP Reference Manual.

See SET CATALOG Statement on page 2-366 and Object Naming on page 10-60.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-3

SQL/MX Language Elements Character Sets
Character Sets
When you run the InstallSqlmx script during NonStop SQL/MX installation, you
specify the NATIONAL_CHARSET attribute to select a default NCHAR character set of
UCS2, ISO88591, KANJI, or KSC5601. If you do not specify a character set, the
default is UCS2. Once the default is set, you cannot change it. For more information
about setting this default, see the instructions for installing NonStop SQL/MX in the
SQL/MX Installation and Management Guide.

After you have set the character set default, when you create SQL/MX tables, NCHAR
data type fields use this character set as the default.

Within programs, NonStop SQL/MX allows you to associate one of these character
sets with a literal or host variable:

KANJI and KSC5601 are valid only for SQL/MP tables.

For more information about defining character data, see the guidelines for creating an
SQL/MX database in the SQL/MX Installation and Management Guide.

Restrictions on Using Character Set Data

For SQL/MX tables, only ISO88591 characters are allowed in these fields:

Note. KANJI and KSC5601 are valid character sets for SQL/MP tables but not SQL/MX tables.
If you attempt to create an SQL/MX table with KANJI, KSC5601, or other unsupported
character sets, you get an SQL error and the operation fails.

ISO88591 Default single-byte 8-bit character set for character data types, which
supports English and other Western European languages.

UCS2 Double-byte Unicode character set in UTF16 big-endian encoding. All
Basic Multilingual Plan (BMP) characters are included. Surrogate
characters are treated as two double-byte characters.

KANJI Double-byte character set widely used on Japanese mainframes. It is a
subset of Shift JIS (the double character portion). Its encoding is
big-endian.

KSC5601 Double-byte character set required on systems used by government
and banking within Korea. Its encoding is big-endian.

ISO88591 Field Where Found

BY partitioning-column CREATE INDEX, CREATE TABLE statements

FIRST KEY values CREATE TABLE, CREATE INDEX statements; MODIFY TABLE
utility.

CHECK constraint text CREATE TABLE and ALTER TABLE statements

Column HEADING
text

CREATE TABLE and ALTER TABLE statement
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-4

SQL/MX Language Elements Restrictions on Using Character Set Data
In addition, user data fields in SQL/MX tables must use either ISO88591 or UCS2.
KANJI and KSC5601 are not allowed.

In SQL/MP tables, a character data type has an associated character set and collation
that can be implicitly or explicitly specified. Internally, the ISO88591 character set is
implemented as an 8-bit data type, while the UCS2, KANJI, and KSC5601 character
sets are implemented as 16-bit data types. The CHAR data type can be associated
with any of the character sets. The NCHAR data type is typically associated with the
UCS2 character set.

You can insert into and update NCHAR columns in an SQL/MP table. See Character
String Literals on page 6-64. You can query SQL/MP tables that have columns
associated with the KANJI or KSC5601 character sets.

View text CREATE VIEW statement

$volume specification CREATE CATALOG, CREATE TABLE, CREATE INDEX, CREATE
PROCEDURE, CREATE VIEW, DUP, and PURGEDATA
statements; MODIFY and RESTORE utilities

SQL/MX names Names of catalogs, columns, constraints, indexes, schemas,
stored procedures, tables, and views

ISO88591 Field Where Found
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-5

SQL/MX Language Elements Collations
Collations
A collation is an object that contains rules for a collating sequence (the sequence in
which characters are ordered for sorting), case, and character class and character
string equivalence.

Every character set has a collation. See Character Sets on page 6-4. To be compared,
character strings must be from the same character set. When two strings are
compared, the comparison is made with a temporary copy of the shorter string that has
been padded on the right with blanks to have the same length as the longer string.

You create an SQL/MP collation with the SQL/MP CREATE COLLATION statement. A
collation name must be a Guardian name. For more information, see the SQL/MP
Reference Manual.

You cannot use SQL/MP collations on SQL/MX tables and you cannot create collations
for SQL/MX tables. SQL/MX Release 2.x supports only the DEFAULT collation.
DEFAULT is based on binary ordering and is the default collating sequence for CHAR
and NCHAR data types.

Binary collation is a collating sequence based on binary ordering. A binary collation
comparison of two equal length strings, s1 and s2, compares the values of the
corresponding characters of s1 and s2 until it finds a difference. If a difference is found
and the differing character value of s1 is less than that of s2, s1 is considered to come
before s2. If there is no difference, s1 is considered equal to s2. Otherwise, s1 comes
after s2. If the two strings are not equal in length, the shorter one is padded with
spaces in the corresponding character set.

Comparison of two identical strings associated with the same character set will always
be evaluated as equal by the DEFAULT collation. However, the DEFAULT collation
does not necessarily yield sorting orders that are culturally correct.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-6

SQL/MX Language Elements Columns
Columns
Examples of Derived Column Names

A column is a vertical component of a table and is the relational representation of a
field in a record. A column contains one data value for each row of the table.

A column value is the smallest unit of data that can be selected from or updated in a
table. Each column has a name that is an SQL identifier and is unique within the table
or view that contains the column.

Column References

A qualified column name, or column reference, is a column name qualified by the
name of the table or view to which the column belongs, or by a correlation name.

If a query refers to columns that have the same name but belong to different tables,
you must use a qualified column name to refer to the columns within the query. You
must also refer to a column by a qualified column name if you join a table with itself
within a query to compare one row of the table with other rows in the same table.

The syntax of a column reference or qualified column name is:

{table-name | view-name | correlation-name}.column-name

If you define a correlation name for a table in the FROM clause of a statement, you
must use that correlation name if you need to qualify the column name within the
statement.

If you do not define an explicit correlation name in the FROM clause, you can qualify
the column name with the name of the table or view that contains the column. See
Correlation Names on page 6-11.

Derived Column Names

A derived column is an SQL value expression that appears as an item in the select list
of a SELECT statement. An explicit name for a derived column is an SQL identifier
associated with the derived column. The syntax of a derived column name is:

column-expression [[AS] column-name]

The column expression can simply be a column reference. The expression is optionally
followed by the AS keyword and the name of the derived column.

If you do not assign a name to derived columns, the headings for unnamed columns in
query result tables appear as (EXPR). Use the AS clause to assign names that are
meaningful to you, which is important if you have more than one derived column in
your select list.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-7

SQL/MX Language Elements Column Default Settings
Column Default Settings

You can define specific default settings for columns when the table is created. The
CREATE TABLE statement defines the default settings for columns within tables. The
default setting for a column is the value inserted in a row when an INSERT statement
omits a value for a particular column.

Examples of Derived Column Names

 These two examples show how to use names for derived columns.

The first example shows (EXPR) as the column heading of the SELECT result
table:

SELECT AVG (salary)
FROM persnl.employee;
(EXPR)

 49441.52

--- 1 row(s) selected.

The second example shows AVERAGE SALARY as the column heading:

SELECT AVG (salary) AS "AVERAGE SALARY"
FROM persnl.employee;
"AVERAGE SALARY"

 49441.52

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-8

SQL/MX Language Elements Constraints
Constraints
An SQL/MX constraint is an object that protects the integrity of data in a table by
specifying a condition that all the values in a particular column or set of columns of the
table must satisfy.

NonStop SQL/MX enforces these constraints on SQL/MP and SQL/MX tables:

Creating, Adding, and Dropping Constraints on SQL/MX Tables

To create constraints on an SQL/MX table when you create the table, use the CHECK,
NOT NULL, PRIMARY KEY, [FOREIGN KEY] REFERENCES, or UNIQUE clauses of
the CREATE TABLE statement.

To add or drop constraints on an existing table, use the CHECK, PRIMARY KEY,
[FOREIGN KEY] REFERENCES, or UNIQUE clauses of the ALTER TABLE statement.
You will receive an error if rows that already exist in the table violate that constraint.

You can define constraints either on a single column (column constraint) or on a set of
columns (table constraint). You can create a NOT NULL column constraint by using
CREATE TABLE and drop NOT NULL by using ALTER TABLE. All other constraints
can be added or dropped by using ALTER TABLE.

You can specify a NOT NULL or PRIMARY KEY constraint as NOT DROPPABLE at
table creation time. NonStop SQL/MX implements these constraints more efficiently if
they are specified as NOT DROPPABLE. For performance reasons, all NOT NULL
NOT DROPPABLE constraints for a table are replaced by a single CHECK constraint
that enforces the entire set.

For more information on SQL/MX commands, see CREATE TABLE Statement on
page 2-107 and ALTER TABLE Statement on page 2-19.

CHECK Column or table constraint specifying a condition must be satisfied for
each row in the table. For SQL/MX tables, check constraints cannot
contain non-ISO88591 string literals.

NOT NULL Column constraint specifying the column cannot contain nulls.

PRIMARY KEY Column or table constraint specifying the column or set of columns as
the primary key for the table.

REFERENTIAL
INTEGRITY

Column or table constraint specifying a referential constraint: a
column or set of columns in the table can contain only values
matching those in a column or set of columns in the referenced table.
This type of constraint is also called a references column constraint.
(SQL/MX tables only.)

UNIQUE Column or table constraint specifying the column or set of columns
cannot contain more than one occurrence of the same non-null value
or set of values. (SQL/MX tables only.)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-9

SQL/MX Language Elements Creating and Dropping Constraints on SQL/MP
Tables
Constraint Names

When you create a constraint, you can either specify a name for it or allow a name to
be generated by NonStop SQL/MX. You can optionally specify both column and table
constraint names. Constraint names are three-part logical names. Constraints have
their own namespace within a schema, so a constraint name can have the same name
as a table, index, or view. However, no two constraints in a schema can have the same
name.

The name you specify can be fully qualified or not. If you specify the catalog or schema
parts of the name, they must match those parts of the affected table and must be
unique among constraint names in that schema. If you omit the catalog or schema
portion of the name you specify, NonStop SQL/MX expands the name by using the
catalog and schema for the table.

If you do not specify a constraint name, NonStop SQL/MX constructs an SQL identifier
as the name for the constraint and qualifies it with the catalog and schema of the table.
The identifier consists of the table name concatenated with a system-generated unique
identifier. Use the SHOWDDL statement to display this generated constraint name.

Restrictions on Publish/Subscribe

Embedded update and embedded delete statements are not allowed on tables with
referential integrity constraints.

Creating and Dropping Constraints on SQL/MP Tables

To create check constraints on an SQL/MP table, use the SQL/MP CREATE
CONSTRAINT statement when you create the table. To drop constraints on an
SQL/MP table, use the SQL/MP DROP statement. A constraint name is an SQL
identifier.

For more information on SQL/MP commands, see the SQL/MP Reference Manual.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-10

SQL/MX Language Elements Correlation Names
Correlation Names
A correlation name is a name you can associate with a table reference that is a table,
view, or subquery in a SELECT statement to:

 Distinguish a table or view from another table or view referred to in a statement
 Distinguish different uses of the same table
 Make the query shorter

A correlation name can be explicit or implicit.

Explicit Correlation Names

An explicit correlation name for a table reference is an SQL identifier associated with
the table reference in the FROM clause of a SELECT statement. The correlation name
must be unique within the FROM clause. For more information about the FROM
clause, table references, and correlation names, see SELECT Statement on
page 2-330.

The syntax of a correlation name for the different forms of a table reference within a
FROM clause is the same:

{table | view | (query-expression)} [AS]correlation-name

A table or view is optionally followed by the AS keyword and the correlation name. A
derived table, resulting from the evaluation of a query expression, must be followed by
the AS keyword and the correlation name. An explicit correlation name is known only
to the statement in which you define it. You can use the same identifier as a correlation
name in another statement.

Implicit Correlation Names

A table or view reference that has no explicit correlation name has an implicit
correlation name. The implicit correlation name is the table or view name qualified with
the catalog and schema names.

You cannot use an implicit correlation name for a reference that has an explicit
correlation name within the statement.

Examples of Correlation Names

 This query refers to two tables (ORDERS and CUSTOMER) that contain columns
named CUSTNUM. In the WHERE clause, one column reference is qualified by an
implicit correlation name (ORDERS) and the other by an explicit correlation name
(C):

SELECT ordernum, custname
FROM orders, customer c
WHERE orders.custnum = c.custnum
 AND orders.custnum = 543;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-11

SQL/MX Language Elements Database Objects
Database Objects
A database object is an SQL entity that exists in a namespace, maps to a Guardian file
in most cases, and is registered in the system catalog. SQL/MX Release 2.x includes
SQL/MX objects. SQL/MX DML statements can access both SQL/MX and SQL/MP
objects. The subsections listed below describe these SQL/MX objects.

Collations
Constraints
Indexes
Partitions
SQL/MP Aliases
Stored Procedures
Tables
Triggers
Views

Ownership

In SQL/MX Release 2.x, the creator of a schema owns all the objects defined in the
schema. In addition, NonStop SQL/MX allows the super ID to act as the owner of any
object. In addition, you can use the GRANT and REVOKE statements to grant access
privileges for a table or view to specified users.

For more information, see Security on page 1-5, EXPLAIN Statement on page 2-208,
and REVOKE Statement on page 2-317. For more information on privileges on tables
and views, see CREATE TABLE Statement on page 2-107, ALTER TABLE Statement
on page 2-19, and CREATE VIEW Statement on page 2-154.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-12

SQL/MX Language Elements Database Object Names
Database Object Names
Logical Names for SQL/MX Objects
Physical Names for SQL/MP Objects
Logical Names for SQL/MP Objects
DEFINE Names for SQL/MP Objects
SQL/MX Object Namespaces
Considerations for Database Object Names

SQL/MX DML statements can refer to SQL/MX database objects and SQL/MP
database objects. To refer to a database object in a statement, use an appropriate
database object name. For more information on the types of database objects, see
Database Objects on page 6-12.

Logical Names for SQL/MX Objects

You can refer to an SQL/MX table, stored procedure, or view by using a three-part
logical name, also called an ANSI name:

catalog-name.schema-name.object-name

In this three-part name, catalog-name is the name of the catalog, schema-name is
the name of the schema, and object-name is the simple name of the table, stored
procedure, or view. Each of the parts is an SQL identifier. See Identifiers on page 6-56.
The NAMETYPE attribute defaults to ANSI, allowing you to use logical names of
SQL/MX objects.

NonStop SQL/MX automatically qualifies an object name with the current default
catalog and schema name unless you explicitly specify catalog and schema names
with the object name. A two-part name schema-name.object-name is qualified
implicitly with the current default catalog. A one-part name object-name is qualified
implicitly with the default schema and catalog.

You can qualify a column name in an SQL/MX statement by using a three-part, two-
part or one-part object name, or a correlation name.

For more information about the default catalog and schema, and the NAMETYPE
attribute, see Object Naming on page 10-60.

Physical Names for SQL/MP Objects

Physical names of tables and views are qualified with the system node, volume, and
subvolume names. SQL/MP tables and views are created with Guardian physical
names of the form:

[\node.][[$volume.]subvol.]filename

In this four-part name, \node is the name of a node on a NonStop system, $volume
is the name of a disk volume, subvol is the name of a subvolume, and filename is
the name of a Guardian disk file or the name of an SQL/MP table or view.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-13

SQL/MX Language Elements Logical Names for SQL/MP Objects
You can choose to use physical names to refer to SQL/MP tables and views by setting
the NAMETYPE attribute to NSK. If the NAMETYPE is NSK, NonStop SQL/MX
automatically qualifies a physical table or view name with the current default node,
volume, and subvolume names unless you explicitly specify these names with the
object name.

In SQL/MX releases earlier than SQL/MX Release 2.x, if NAMETYPE was NSK and
you did not use a correlation name, SQL/MX used the table part of the name as the
correlation name. This behavior was similar to that of NonStop SQL/MP. In SQL/MX
Release 2.x, if you do not use a correlation name, SQL/MX uses the default volume
and subvolume to qualify the name. If the file does not exist, NonStop SQL/MX returns
an error, which is ANSI-compliant behavior.

For more information about the default node, volume and subvolume names, and the
NAMETYPE attribute, see Object Naming on page 10-60.

Logical Names for SQL/MP Objects

You can refer to an SQL/MP table or view by using the three-part logical name of an
SQL/MP alias:

catalog-name.schema-name.object-name

In this three-part name, catalog-name is the name of the catalog, schema-name is
the name of the schema, and object-name is the simple name of the table or view.
Each of the parts is an SQL identifier. See Identifiers on page 6-56. The NAMETYPE
attribute defaults to ANSI, allowing you to use logical names of SQL/MP aliases for
SQL/MP objects.

NonStop SQL/MX automatically qualifies an object name with the current default
catalog and schema name unless you explicitly specify catalog and schema names
with the object name. A two-part name schema-name.object-name is qualified
implicitly with the current default catalog. A one-part name object-name is qualified
implicitly with the default schema and catalog.

If the NAMETYPE is ANSI, you can qualify a column name in an SQL/MX statement by
using a three-part, two-part, or one-part object name, or a correlation name.

For more information about the default catalog and schema, and the NAMETYPE
attribute, see Object Naming on page 10-60. For more information on assigning logical
names to SQL/MP tables or views, see SQL/MP Aliases on page 6-112.

DEFINE Names for SQL/MP Objects

You can use DEFINE names as logical names for SQL/MP tables, views, or partitions
in DML statements. When NonStop SQL/MX compiles such statements, it replaces the
DEFINE name in the statement with the associated Guardian physical name. DEFINE
names can be created within MXCI or can be inherited from the TACL process or the
OSS shell.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-14

SQL/MX Language Elements SQL/MX Object Namespaces
You cannot use DEFINE names to refer to SQL/MX tables, views, partitions, or stored
procedures.

The advantages of using DEFINEs rather than Guardian physical names are:

 DEFINE names are easier to understand than Guardian names.

For example, the name =CUSTOMERS is simpler than the physical name
\SYS.$VOL2.SALES.CSTMERS. See ADD DEFINE Command on page 4-4.

 DEFINE names provide location independence.

If you use DEFINE names, you can change the physical file location without
changing the SQL statement. See ALTER DEFINE Command on page 4-6. For
more information on DEFINEs and late name resolution, see the SQL/MX
Programming Manual for C and COBOL.

SQL/MX Object Namespaces

SQL/MX objects are organized in a hierarchical manner. Database objects exist in
schemas, which are themselves contained in catalogs. Catalogs are collections of
schemas. Schema names must be unique within a given catalog.

Multiple objects with the same name can exist provided that each belongs to a
different namespace. NonStop SQL/MX supports these namespaces:

Objects in one schema can refer to objects in a different schema. Objects of a
given namespace are required to have unique names within a given schema.

Considerations for Database Object Names

OBJECTS Table

The OBJECTS table is created at SQL/MX installation time and is used to store
mappings from logical object names to physical Guardian locations. See OBJECTS
Table on page 10-22.

Namespace Description

CN Constraint

IX Index

LK Lock

MD Module

TA Table value object (table, view, stored procedure, MP Alias)

TR Trigger

TT Trigger temporary table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-15

SQL/MX Language Elements Considerations for Database Object Names
You can use the CREATE SQLMP ALIAS command within your application to create
the needed mappings from logical to physical names. This command has the form:

CREATE SQLMP ALIAS catalog-name.schema-name.table-name
 [\node.]$volume.subvol.filename

When this command is executed, a mapping is inserted as a row in the OBJECTS
table. SQL/MP aliases are simulated ANSI names that represent the underlying
Guardian physical names of SQL/MP objects. True ANSI names do not exist for
SQL/MP objects.

See DELETE Statement on page 2-162.

Mixing Name Types

 In a single SQL statement, tables or views can use ANSI logical names or
Guardian physical names. You can combine these two name types in the same
DML statement. For example:

SELECT salary FROM samdbcat.persnl.employee
WHERE \mysys.$samdb.persnl.empnum IN
 (SELECT mgr FROM \mysys.$samdb.persnl.dept);

INSERT INTO \mysys.$samdb.persnl.new_emps
 (SELECT * FROM samdbcat.persnl.employee);

SET NAMETYPE ANSI;
SET SCHEMA samdbcat.sales;
UPDATE odetail
 SET unit_price = unit_price * 10
 WHERE partnum IN
 (SELECT partnum FROM \mysys.$samdb.sales.parts);

 You can use DEFINE names and ANSI logical names in the same DML statement:

SELECT * FROM =parts p, samdbcat.sales.odetail o
 WHERE p.partnum = o.partnum;

 You can use DEFINE names and Guardian physical names in the same DML
statement:

SELECT * FROM =parts p, \mysys.$samdb.sales.odetail o
 WHERE p.partnum = o.partnum;

Default Name Types

If the table or view names are partial names, they are fully qualified according to the
rules of the current NAMETYPE attribute. The fully qualified names are either all ANSI
logical names or all Guardian physical names. For more information, see Object
Naming on page 10-60.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-16

SQL/MX Language Elements Data Types
Data Types
SQL/MX data types are either character, datetime, interval, or numeric (exact or
approximate):

Each column in a table is associated with a data type. You can use the CAST
expression to convert data to the data type that you specify. For more information, see
CAST Expression on page 8-20.

Comparable and Compatible Data Types

Two data types are comparable if a value of one data type can be compared to a value
of the other data type.

Two data types are compatible if a value of one data type can be assigned to a column
of the other data type, and if columns of the two data types can be combined using
arithmetic operations. Compatible data types are also comparable.

Assignment and comparison are the basic operations of NonStop SQL/MX.
Assignment operations are performed during the execution of INSERT and UPDATE
statements. Comparison operations are performed during the execution of statements
that include predicates, aggregate (or set) functions, and GROUP BY, HAVING, and
ORDER BY clauses.

The basic rule for both assignment and comparison is that the operands have
compatible data types. For assignment operations, a further restriction is that null
cannot be assigned to a column that has been defined as NOT NULL. Data types with
different character sets cannot be compared.

Character Data Types

Values of fixed and variable length character data types of the same character set are
all character strings and are all mutually comparable and mutually assignable.

When two strings are compared, the comparison is made with a temporary copy of the
shorter string that has been padded on the right with blanks to have the same length
as the longer string.

Character String Data Types
on page 6-22

Fixed-length and variable-length character data types.

Datetime Data Types on
page 6-25

DATE, TIME, and TIMESTAMP data types.

Interval Data Types on
page 6-31

Year-month intervals (years and months) and day-time
intervals (days, hours, minutes, seconds, and fractions of a
second).

Numeric Data Types on
page 6-34

Exact and approximate numeric data types.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-17

SQL/MX Language Elements Comparable and Compatible Data Types
Datetime Data Types

Values of type datetime are mutually comparable and mutually assignable only if the
types have the same datetime fields. A DATE, TIME, or TIMESTAMP value can be
compared with another value only if the other value has the same data type.

All comparisons are chronological. For example, this predicate is true:

TIMESTAMP '1997-09-28 00:00:00' >
 TIMESTAMP '1997-06-26 00:00:00'

Interval Data Types

Values of type INTERVAL are mutually comparable and mutually assignable only if the
types are either both year-month intervals or both day-time intervals.

For example, this predicate is true:

INTERVAL '02-01' YEAR TO MONTH > INTERVAL '00-01' YEAR TO MONTH

The field components of the INTERVAL do not have to be the same. For example, this
predicate is also true:

INTERVAL '02-01' YEAR TO MONTH > INTERVAL '01' YEAR

Numeric Data Types

Values of the approximate data types FLOAT, REAL, and DOUBLE PRECISION, and
values of the exact data types NUMERIC, DECIMAL, INTEGER, SMALLINT, and
LARGEINT, are all numbers and are all mutually comparable and mutually assignable.

When an approximate data type value is assigned to a column with exact data type,
rounding might occur, and the fractional part might be truncated. When an exact data
type value is assigned to a column with approximate data type, the result might not be
identical to the original number.

When two numbers are compared, the comparison is made with a temporary copy of
one of the numbers, according to defined rules of conversion. For example, if one
number is INTEGER and the other is DECIMAL, the comparison is made with a
temporary copy of the integer converted to a decimal.

Extended NUMERIC Precision

SQL/MX provides support for extended NUMERIC precision data type. Extended
NUMERIC is either a signed numeric value with precision greater than 18 or an
unsigned numeric value with precision greater than 9.

Note. Dynamic SQL programs must convert the extended NUMERIC precision data type to
other compatible data types, such as CHAR.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-18

SQL/MX Language Elements Comparable and Compatible Data Types
Considerations for Extended NUMERIC Precision Data Type

 Supported in all DDL and DML statements where an ordinary NUMERIC data type
is supported.

 MX tables only

 Supported from the MXCI, ODBC, JDBC T2 and T4 interfaces.

 Does not support for host variable declarations in embedded programs.

 CAST function allows conversion between an ordinary NUMERIC and extended
NUMERIC precision data type.

To convert a signed extended NUMERIC data type to CHAR data type, the
required length of the CHAR host variable is p + 3, where p is the precision of the
extended NUMERIC data type. Three extra bytes are for the sign, decimal point,
and the null terminator. For unsigned extended NUMERIC data type, the required
length is p + 2.

 Implemented in software (versus hardware for ordinary numeric data type) and
therefore is CPU intensive.

 Supported in arithmetic operations of addition, subtraction, multiplication, division,
and exponentiation.

 Supported as a parameter in the following scalar functions:

ABS ACOS ASIN

ATAN ATAN2 AVG

CEILING COS COSH

COUNT DEGREES DIFF1

DIFF2 EXP FLOOR

HASHPARTFUNC INSERT LASTNOTNULL

LEFT LOG LOG10

LPAD MAX MIN

MOVINGAVG MOVINGCOUNT MOVINGMAX

MOVINGMIN MOVINGSTDDEV MOVINGSUM

MOVINGVARIANCE OFFSET POWER

RADIANS REPEAT RIGHT

ROWS SINCE RPAD RUNNINGAVG

RUNNINGCOUNT RUNNINGMAX RUNNINGMIN

RUNNINGSTDDEV RUNNINGSUM RUNNINGVARIANCE

SIGN SIN SINH
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-19

SQL/MX Language Elements Comparable and Compatible Data Types
Restrictions for Extended NUMERIC Precision Data Type

The extended NUMERIC precision data type is not supported:

 On the disk for SQL/MP tables

 By Module File caching (MFC)

Example for Extended NUMERIC Precision Data Type

>>create table t(n NUMERIC(128,30));

--- SQL operation complete.

>>

>>showddl table t;

CREATE TABLE CAT.SCH.T
 (
 N NUMERIC(128, 30) DEFAULT NULL
)
.....
.....
.....
.....
 ;

--- SQL operation complete.

Floating-Point Data

NonStop SQL/MX Release 2.x uses IEEE floating-point format internally and
automatically converts Tandem floating-point formats used in host variables or SQL/MP
tables. However, that conversion can cause rounding errors, or it can fail for extremely
large or extremely small values. Therefore, your programs might experience a
difference in the results compared to previous releases of NonStop SQL/MX.

Applications might not be able to retrieve rows using floating-point values in equal
comparison predicates by using these columns for some floating-point values.

In addition, if you are using an SQL/MP table that contains FLOAT columns (REAL,
DOUBLE PRECISION) with user default values specified, a similarity check for the
table with the compile-time default value might fail for some values, and
NonStop SQL/MX will recompile the query.

For some queries that use the default value, you might not be able to access a float
column with a default value near the boundary value for Tandem float values.

SPACE SQRT STDDEV

SUBSTRING SUM TAN

TANH THIS VARIANCE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-20

SQL/MX Language Elements Comparable and Compatible Data Types
In this example, you are able to perform an ALTER TABLE statement in SQLCI on an
SQL/MP table to add a float column with a default value near the boundary value for
Tandem float values, but you are unable to use NonStop SQL/MX to insert this default
value into the float column. In SQLCI, create an SQL/MP table:

>>create table tfloat (c1 INT, c2 INT);
--- SQL operation complete.
>>insert into tfloat (c1) values (10);
--- 1 row(s) inserted.
>>select * from tfloat;

C1 C2
----------- -----------

 10 ?

--- 1 row(s) selected.

You can alter the table to add a float column with the default value
1.15792089237316189e77:

>>alter table tfloat add column c3 float(54) default -
1.15792089237316189e77;
--- SQL operation complete.
--
-- Float column c3 has not been populated yet.
--
>>select * from tfloat;

C1 C2 C3
----------- ----------- ------------------------

 10 ? -0.11579208923731618E+78

But you cannot use NonStop SQL/MX to insert into this table using the default value for
the float column:

Hewlett-Packard NonStop(TM) SQL/MX Conversational Interface 2.0
(c) Copyright 2003 Hewlett-Packard Development Company, LP.

>> insert into $data16.pnlmx.tfloat(c1,c2) values (12, 13);

*** ERROR[8411] A numeric overflow occurred during an arithmetic
computation or data conversion.

--- 0 row(s) inserted.

You can select the rows from the table:

>>select * from $vol.subvol.tfloat;
C1 C2 C3
----------- ----------- -------------------------
10 ? -1.15792089237316160E+077
--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-21

SQL/MX Language Elements Character String Data Types
Character String Data Types

Considerations for Character String Data Types
SQL/MP Considerations for Character String Data Types

SQL/MX includes both fixed-length character data and variable-length character data.
You cannot compare character data to numeric, datetime, or interval data.

CHAR, PIC, NCHAR, and NATIONAL CHAR are fixed-length character types. CHAR
VARYING, VARCHAR, NCHAR VARYING and NATIONAL CHAR VARYING are
varying-length character types.

length

is a positive integer that specifies the number of characters allowed in the column.
You must specify a value for length.

char-set-name

is the character set name, which can be ISO88591 or UCS2 for any use or KANJI
or KSC5601 if the data type is not used to define an SQL/MX column.

collation

is the collation. The only allowed collation is DEFAULT.

The UPSHIFT clause directs NonStop SQL/MX to upshift characters before storing
them in the column.

character-type is:
 CHAR[ACTER] [(length [CHARACTERS])] [char-set]
 [collate-clause] [UPSHIFT]
 | PIC[TURE] X[(length)] [CHARACTERS] [char-set] [DISPLAY]
 [collate-clause] [UPSHIFT]
 | CHAR[ACTER] VARYING(length) [CHARACTERS][char-set]
 [collate-clause] [UPSHIFT]
 | VARCHAR(length) [CHARACTERS] [char-set]
 [collate-clause] [UPSHIFT]
 | NCHAR [(length)] [CHARACTERS] [collate-clause] [UPSHIFT]
 | NCHAR VARYING (length) [CHARACTERS] [collate-clause]
 [UPSHIFT]
 | NATIONAL CHAR[ACTER] [(length)] [CHARACTERS]
 [collate-clause] [UPSHIFT]
 | NATIONAL CHAR[ACTER] VARYING (length) [CHARACTERS]
 [collate-clause] [UPSHIFT]

char-set is
 CHARACTER SET char-set-name

collate-clause is
 COLLATE collation
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-22

SQL/MX Language Elements Character String Data Types
CHAR[ACTER] [(length [CHARACTERS])] [char-set] [collate-clause]
 [UPSHIFT]

specifies a column with fixed-length character data.

PIC[TURE] X[(length)] [DISPLAY] [char-set] [collate-clause]
 [UPSHIFT]

specifies a column with fixed-length character data.

You can specify the number of characters in a PIC X column by specify either
length or multiple Xs, with each X representing one character position. DISPLAY
does not change the meaning of the clause.

PIC is an SQL/MX extension.

CHAR[ACTER] VARYING (length) [CHARACTERS] [char-set]
 [collate-clause] [UPSHIFT]

specifies a column with varying-length character data. VARYING specifies that the
number of characters stored in the column can be fewer than the length.

Note that values in a column declared as VARYING can be logically and physically
shorter than the maximum length, but the maximum internal size of a VARYING
column is actually four characters larger than the size required for an equivalent
column that is not VARYING.

VARCHAR (length) [char-set] [collate-clause] [UPSHIFT]

specifies a column with varying-length character data.

VARCHAR is equivalent to data type CHAR[ACTER] VARYING.

NCHAR [(length)] [collate-clause] [UPSHIFT]
NATIONAL CHAR[ACTER] [(length)] [collate-clause]
 [UPSHIFT]

specifies a column with data in the pre-defined national character set.

NCHAR VARYING [(length)] [collate-clause] [UPSHIFT]
NATIONAL CHAR[ACTER] VARYING (length) [collate-clause]
 [UPSHIFT]

specifies a column with varying-length data in the pre-defined national character
set.

Considerations for Character String Data Types

Difference Between CHAR and VARCHAR

You can specify a fixed-length character column as CHAR(n), where n is the number of
characters you want to store. However, if you store five characters into a column
specified as CHAR(10), ten characters are stored where the rightmost five characters
are blank.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-23

SQL/MX Language Elements Character String Data Types
If you do not want to have blanks added to your character string, you can specify a
variable-length character column as VARCHAR(n), where n is the maximum number of
characters you want to store. If you store five characters in a column specified as
VARCHAR(10), only the five characters are stored logically—without blank padding.

When you are creating SQL/MP tables, group all variable-length columns after all
fixed-length columns for faster access. This practice also allows for more efficient use
of disk storage. For SQL/MX tables, the executor will put variable-length columns in the
most effective place.

Maximum Byte Length of a Character Column

The maximum length of a character column in an SQL/MP Format 1 table depends on
whether the data type is fixed-length or variable-length and on the file organization of
the file that contains the column. All SQL/MX tables are key-sequenced files.

Each variable-length character data item requires eight characters of storage for length
information, in addition to the space required for the data itself. As a result, the
maximum length for a variable-length column is less than the maximum length for an
otherwise equivalent fixed-length column.

A column that allows null value requires two extra storage characters.

Collations and Character Sets

For SQL/MX Release 2.x, a character data type can be associated only with the
DEFAULT collation. You set the default NCHAR data type when you install NonStop
SQL/MX, and you can select from the ISO88591, UCS2, KANJI or KSC5601 character
sets. If you do not make a selection, the default is UCS2.

Data Type Key-Sequenced Entry-Sequenced

SQL/MP Format 1 tables:

Single-byte fixed-length 4061 4072

Single-byte variable-length 4059 4070

Double-byte fixed-length 2030 2036

Double-byte variable-length 2029 2035

SQL/MX tables:

4K block size 4040* Not applicable

32K block size 32712** Not applicable

*The maximum row size is 4040 bytes, but the actual row size is less than that because of bytes used
by the header, null indicator, column length indicator, and other system features.

**The maximum row size is 32712 bytes, but the actual row size is less than that because of bytes
used by the header, null indicator, column length indicator, and other system features.

For information about the maximum row size available to users, see Table 2-2.

Note. SQL/MX tables do not support the KANJI or KSC5601 character sets. If you attempt to
create an SQL/MX table with these or other unsupported character set types, an SQL error is
returned and the operation fails.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-24

SQL/MX Language Elements Datetime Data Types
For SQL/MP tables, a character data type has an associated character set and
collation that can be implicitly or explicitly specified. The CHAR data type can be
associated with any of the character sets, and the NCHAR data type is typically
associated with the KANJI and KSC5601character sets.

For more information, see Character Sets on page 6-4 and Database Object Names on
page 6-13.

NCHAR Columns in SQL/MX and SQL/MP Tables

In NonStop SQL/MX and NonStop SQL/MP, the NCHAR type specification is
equivalent to:

 NATIONAL CHARACTER

 NATIONAL CHAR

 CHAR ... CHARACTER SET ..., where the character set is the default character
set for NCHAR

Similarly, you can use NATIONAL CHARACTER VARYING, NATIONAL CHAR
VARYING, and VARCHAR ... CHARACTER SET

SQL/MP Considerations for Character String Data Types

Selecting NCHAR Columns

NonStop SQL/MX supports accessing KANJI- or KSC5601-aliased NCHAR columns in
an SQL/MP table. For example, suppose that an SQL/MP table has an NCHAR column
defined as:

MPNcharCol NCHAR(10)

You can select from this column as shown:

SELECT MPNcharCol FROM MPTable;

This query returns ten characters for each row.

Using the CHAR Keyword in the CAST Operation

You can also use the CAST operation to ensure a certain number of characters are
returned from a query. For example:

SELECT CAST(MPNcharCol AS CHAR(5) character set KANJI) FROM
 MPTable;

This query returns five characters for each row.

You can also insert into or update NCHAR columns in SQL/MP tables. See Inserting
Into or Updating SQL/MP NCHAR Columns on page 6-66.

Datetime Data Types

Considerations for Datetime Data Types
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-25

SQL/MX Language Elements Datetime Data Types
SQL/MP Considerations for Datetime Data Types Not Equivalent to DATE, TIME,
TIMESTAMP
SQL/MP Considerations for Datetime Data Types Equivalent to DATE, TIME,
TIMESTAMP

A value of datetime data type represents a point in time according to the Gregorian
calendar and a 24-hour clock in local civil time (LCT). A datetime item can represent a
date, a time, or a date and time.

NonStop SQL/MX accepts dates, such as October 5 to 14, 1582, that were omitted
from the Gregorian calendar. This functionality is an SQL/MX extension.

The range of times that a datetime value can represent is:

January 1, 1 A.D., 00:00:00.000000 (low value)
December 31, 9999, 23:59:59.999999 (high value)

NonStop SQL/MX has three datetime data types:

DATE

specifies a datetime column that contains a date in the external form yyyy-mm-dd
and stored in four bytes.

TIME [(time-precision)]

specifies a datetime column that, without the optional time-precision, contains
a time in the external form hh:mm:ss and is stored in three bytes. time-
precision is an unsigned integer that specifies the number of digits in the
fractional seconds and is stored in four bytes. The default for time-precision is
0, and the maximum is 6.

TIMESTAMP [(timestamp-precision)]

specifies a datetime column that, without the optional timestamp-precision,
contains a timestamp in the external form yyyy-mm-dd hh:mm:ss and is stored in
seven bytes. timestamp-precision is an unsigned integer that specifies the
number of digits in the fractional seconds and is stored in four bytes. The default
for timestamp-precision is 6, and the maximum is 6.

datetime-type is:
 DATE
 | TIME [(time-precision)]
 | TIMESTAMP [(timestamp-precision)]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-26

SQL/MX Language Elements Datetime Data Types
Considerations for Datetime Data Types

Datetime Ranges

The range of values for the individual fields in a DATE, TIME, or TIMESTAMP column
is specified as:

SQL/MP Considerations for Datetime Data Types Not
Equivalent to DATE, TIME, TIMESTAMP

When accessing SQL/MP DATETIME columns, you can:

 Select SQL/MP DATETIME columns that are not equivalent to DATE, TIME, or
TIMESTAMP.

 Insert into or update SQL/MP DATETIME columns with literals that are not
equivalent to DATE, TIME, or TIMESTAMP.

The SQL/MP DATETIME columns that do not map to standard SQL/MX types are
represented as SQL/MP DATETIME types in NonStop SQL/MX. These types are:

 DATETIME YEAR
 DATETIME YEAR TO MONTH
 DATETIME YEAR TO HOUR
 DATETIME YEAR TO MINUTE
 DATETIME MONTH
 DATETIME MONTH TO DAY
 DATETIME MONTH TO HOUR
 DATETIME MONTH TO MINUTE
 DATETIME MONTH TO SECOND
 DATETIME MONTH TO FRACTION(n)
 DATETIME DAY
 DATETIME DAY TO HOUR
 DATETIME DAY TO MINUTE
 DATETIME DAY TO SECOND
 DATETIME DAY TO FRACTION(n)
 DATETIME HOUR
 DATETIME HOUR TO MINUTE
 DATETIME HOUR TO SECOND

yyyy Year, from 0001 to 9999

mm Month, from 01 to 12

dd Day, from 01 to 31

hh Hour, from 00 to 23

mm Minute, from 00 to 59

ss Second, from 00 to 59

msssss Microsecond, from 000000 to 999999
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-27

SQL/MX Language Elements Datetime Data Types
 DATETIME HOUR TO FRACTION(n)
 DATETIME MINUTE
 DATETIME MINUTE TO SECOND
 DATETIME MINUTE TO FRACTION(n)
 DATETIME SECOND
 DATETIME SECOND TO FRACTION(n)

Selecting DATETIME Columns in SQL/MP Tables

The SQL/MP DATETIME data type has a range of logically contiguous fields in this
order: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and FRACTION.

A specific DATETIME data type consists of a subset or range of these fields and a
specified number of significant digits for the FRACTION field. For example:

DATETIME YEAR TO MONTH
DATETIME DAY TO FRACTION(3)

The qualifier that specifies the range of fields for the DATETIME data type has the
same syntax as the qualifier that specifies the range of fields for the INTERVAL data
type.

Selecting Supported DATETIME Columns

NonStop SQL/MX supports accessing any SQL/MP DATETIME column—except those
consisting of FRACTION only. For example, suppose that an SQL/MP table has a
DATETIME column defined as:

MPDateTimeCol DATETIME MONTH TO DAY
 DEFAULT DATETIME '03-12' MONTH TO DAY

You can select from this column as shown:

SELECT MPDateTimeCol FROM MPTable;

MPDateTimeCol

 ...
 03-12
 ...

Selecting FRACTION-Only DATETIME Columns

If you attempt to select data from a FRACTION-only DATETIME column, the value is
returned as a string of '#' characters with the same display length as the length of the
column. For example, suppose that an SQL/MP table has a DATETIME column
defined as:

MPDateTimeCol DATETIME FRACTION(6)
 DEFAULT DATETIME '123456' FRACTION(6)

You cannot select the data from this column. For example:

SELECT MPDateTimeCol FROM MPTable;

MPDateTimeCol
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-28

SQL/MX Language Elements Datetime Data Types

 ######
 ######
 ...

NonStop SQL/MX returns a warning indicating that you selected an unsupported data
type with undefined contents.

SQL/MP Considerations for Datetime Data Types Equivalent
to DATE, TIME, TIMESTAMP

When accessing SQL/MP DATETIME columns, you can:

 Select SQL/MP DATETIME columns that are equivalent to DATE, TIME, or
TIMESTAMP.

 Insert into or update SQL/MP DATETIME columns with equivalent DATE, TIME, or
TIMESTAMP literals

The SQL/MP DATETIME columns that map to standard SQL/MX types are
represented as standard types in NonStop SQL/MX. As a result, the behavior of these
SQL/MP data types might be different within NonStop SQL/MX compared to their
behavior in NonStop SQL/MP.

The equivalent mappings are:

SQL/MP DATETIME Type Equivalent SQL/MX Type

DATETIME YEAR TO DAY DATE

DATETIME YEAR TO SECOND TIMESTAMP(0)

DATETIME YEAR TO FRACTION(1) TIMESTAMP(1)

DATETIME YEAR TO FRACTION(2) TIMESTAMP(2)

DATETIME YEAR TO FRACTION(3) TIMESTAMP(3)

DATETIME YEAR TO FRACTION(4) TIMESTAMP(4)

DATETIME YEAR TO FRACTION(5) TIMESTAMP(5)

DATETIME YEAR TO FRACTION(6) TIMESTAMP(6) or TIMESTAMP

DATETIME HOUR TO SECOND TIME(0) or TIME

DATETIME HOUR TO FRACTION(1) TIME(1)

DATETIME HOUR TO FRACTION(2) TIME(2)

DATETIME HOUR TO FRACTION(3) TIME(3)

DATETIME HOUR TO FRACTION(4) TIME(4)

DATETIME HOUR TO FRACTION(5) TIME(5)

DATETIME HOUR TO FRACTION(6) TIME(6)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-29

SQL/MX Language Elements Datetime Data Types
Using SQL/MX Datetime Functions on DATETIME Data

You can use SQL/MX datetime functions to select individual fields from a DATETIME
column in an SQL/MP table. For example, suppose that an SQL/MP table has a
DATETIME column defined as:

MPDateTimeCol DATETIME MONTH TO DAY
 DEFAULT DATETIME '03-12' MONTH TO DAY

You can select the month from this column:

SELECT MONTH(MPDateTimeCol) FROM MPTable;

(EXPR)

 ...
 3
 ...

See Datetime Functions on page 8-4.

Casting DATETIME Data for Compatibility

DATETIME data types are compatible only if the types have the same start and end
fields. No implicit extension or truncation is performed. If the data does not have the
same start and end fields, you must use CAST to provide an explicit conversion that
allows you to operate on different DATETIME data types.

Overlapping Fields Requirement

You can use CAST provided that the two DATETIME values have at least one
overlapping field. This specification is valid because the types overlap on the DAY field:

CAST(DATE '2000-03-31' AS DATETIME DAY TO HOUR)

However, this specification is not valid because no fields overlap:

CAST(DATETIME '2000-03' YEAR TO MONTH AS TIME)

Extension Resulting From CAST

Suppose that an SQL/MP table has a DATETIME column defined as:

MPDateTimeCol DATETIME MONTH TO DAY
 DEFAULT DATETIME '03-12' MONTH TO DAY

Use CAST to compare data:

SELECT * FROM MPTable
WHERE CAST(MPDateTimeCol AS DATE) > CURRENT_DATE;

If extension occurs on the more significant end of a value, the values for the missing
fields are drawn from the fields of CURRENT_TIMESTAMP. If extension occurs on the
less significant end, the values are the minimum field values. In this example, the
YEAR field is from the YEAR field of CURRENT_TIMESTAMP.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-30

SQL/MX Language Elements Interval Data Types
Suppose that the current timestamp is 2000-01-26:10:24:10.212072. This expression
involves extension on both ends:

CAST(DATETIME '12-23' MONTH TO DAY AS TIMESTAMP)

The result of the CAST is 2000-12-23:00:00:00.000000.

Operations Equivalent to UNITS

The SQL/MP UNITS operator is not supported. However, NonStop SQL/MX does
support equivalent syntax.

Suppose that an SQL/MP table has a DATETIME column defined as:

MPDateTimeCol DATETIME MONTH TO DAY
 DEFAULT DATETIME '03-12' MONTH TO DAY

Using this column as an example, you can specify this equivalent:

Interval Data Types

Considerations for Interval Data Types
SQL/MP Considerations for Interval Data Types

Values of interval data type represent durations of time in year-month units (years and
months) or in day-time units (days, hours, minutes, seconds, and fractions of a
second).

INTERVAL { start-field TO end-field | single-field }

specifies a column that represents a duration of time as either a year-month or
day-time range or a single-field. The optional sign indicates if this is a positive or
negative integer. If you omit the sign, it defaults to positive.

If the interval is specified as a range, the start-field and end-field must be
in one of these categories:

SQL/MP Element SQL/MX Equivalent

MPDateTimeCol UNITS MONTH MONTH(MPDateTimeCol)

interval-type is:
INTERVAL { start-field TO end-field | single-field }

start-field is:
 {YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

end-field is:
 YEAR | MONTH | DAY | HOUR | MINUTE | SECOND
 [(fractional-precision)]

single-field is:
 start-field | SECOND [(leading-precision,
 fractional-precision)]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-31

SQL/MX Language Elements Interval Data Types
{YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

specifies the start-field. A start-field can have a leading-precision
up to 18 digits (the maximum depends on the number of fields in the interval). The
leading-precision is the number of digits allowed in the start-field. The
default for leading-precision is 2.

YEAR | MONTH | DAY | HOUR | MINUTE | SECOND [(fractional-
 precision)]

specifies the end-field. If the end-field is SECOND, it can have a
fractional-precision up to 6 digits. The fractional-precision is the
number of digits of precision after the decimal point. The default for
fractional-precision is 6.

start-field | SECOND [(leading-precision,
 fractional-precision)]

specifies the single-field. If the single-field is SECOND, the
leading-precision is the number of digits of precision before the decimal
point, and the fractional-precision is the number of digits of precision after
the decimal point.

The default for leading-precision is 2, and the default for
fractional-precision is 6. The maximum for leading-precision is 18,
and the maximum for fractional-precision is 6.

Considerations for Interval Data Types

Interval Leading Precision

The maximum for the leading-precision depends on the number of fields in the
interval and on the fractional-precision. The maximum is computed as:

max-leading-precision = 18 - fractional-precision - 2 * (N - 1)

where N is the number of fields in the interval.

For example, the maximum number of digits for the leading-precision in a column
with data type INTERVAL YEAR TO MONTH is computed as: 18 – 0 – 2 * (2 – 1) = 16

Interval Ranges

Within the definition of an interval range (other than a single field), the start-field
and end-field can be any of the specified fields with these restrictions:

 An interval range is either year-month or day-time—that is, if the start-field is
YEAR, the end-field is MONTH; if the start-field is DAY, HOUR, or
MINUTE, the end-field is also a time field.

 The start-field must precede the end-field within the hierarchy: YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND.

Signed Intervals
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-32

SQL/MX Language Elements Interval Data Types
To include a quoted string in a signed interval data type, the sign must be outside the
quoted string. It can be before the entire literal or immediately before the duration
enclosed in quotes.

For example, for the interval “minus (5 years 5 months)”, the following formats are
valid:

INTERVAL - '05-05'YEAR TO MONTH
- INTERVAL '05-05' YEAR TO MONTH

Overflow Conditions

When you insert a fractional value into an INTERVAL data type field, if the fractional
value is 0 (zero) it does not cause an overflow. Inserting value INTERVAL '1.000000'
SECOND(6) into a field SECOND(0) does not cause a loss of value. Provided that the
value fits in the target column without a loss of precision, NonStop SQL/MX does not
return an overflow error.

However, if the fractional value is > 0, an overflow occurs. Inserting value INTERVAL
'1.000001' SECOND(6) causes a loss of value.

SQL/MP Considerations for Interval Data Types

Selecting INTERVAL Columns in SQL/MP Tables

SQL/MP INTERVAL values represent durations of time in year-month units (years and
months), in day-time units (days, hours, minutes, seconds, and fractions of a second),
or in subsets of those units.

A specific INTERVAL data type consists of a subset or range of these fields and a
specified number of significant digits for the FRACTION field if it exists. For example:

INTERVAL YEAR TO MONTH

INTERVAL DAY TO FRACTION(3)

Selecting Supported INTERVAL Columns

NonStop SQL/MX supports accessing any INTERVAL column—except those
consisting of FRACTION only. For example, suppose that an SQL/MP table has an
INTERVAL column defined as:

MPIntervalCol INTERVAL SECOND(2) TO FRACTION(1)
 DEFAULT INTERVAL '36.8' SECOND(2) TO FRACTION(1)

You can select from this column as shown:

SELECT MPIntervalCol FROM MPTable;

MPIntervalCol

 ...
 36.8
 ...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-33

SQL/MX Language Elements Numeric Data Types
In this example, the SQL/MP column of type INTERVAL SECOND(2) TO
FRACTION(1) is interpreted in NonStop SQL/MX as type INTERVAL SECOND(2,1).

In general, a FRACTION end field in NonStop SQL/MP is interpreted in NonStop
SQL/MX as though it were the fractional precision of a SECOND field, provided the
start field is SECOND or larger.

Selecting FRACTION-Only INTERVAL Columns

If you attempt to select data from a FRACTION-only INTERVAL column, the column
value is returned as a string of '#' characters with the same display length as the
length of the column.

For example, suppose that an SQL/MP table has an INTERVAL column defined as:

MPIntervalCol INTERVAL FRACTION(6)
 DEFAULT INTERVAL '123456' FRACTION(6)

You can select from this column as shown:

SELECT MPIntervalCol FROM MPTable;

MPIntervalCol

 ######
 ######
 ...

NonStop SQL/MX returns a warning indicating that you selected an unsupported data
type with undefined contents.

Numeric Data Types

Example for Extended NUMERIC Precision Data Type

Numeric data types are either exact or approximate. A numeric data type is compatible
with any other numeric data type, but not with character, datetime, or interval data
types.

exact-numeric-type is:
 NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]
 | SMALLINT [SIGNED|UNSIGNED]
 | INT[EGER] [SIGNED|UNSIGNED]
 | LARGEINT
 | DEC[IMAL] [(precision [,scale])] [SIGNED|UNSIGNED]
 | PIC[TURE] [S]{9(integer) [V[9(scale)]] | V9(scale)}
 [DISPLAY [SIGN IS LEADING] | COMP]
approximate-numeric-type is:
 FLOAT [(precision)]
 | REAL
 | DOUBLE PRECISION
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-34

SQL/MX Language Elements Numeric Data Types
Exact numeric data types are types that can represent a value exactly: NUMERIC,
SMALLINT, INTEGER, LARGEINT, DECIMAL, and PICTURE COMMENT:.

Approximate numeric data types are types that do not necessarily represent a value
exactly: FLOAT, REAL, and DOUBLE PRECISION.

A column in an SQL/MP table declared with a floating-point data type is stored in
Tandem floating-point format and all computations on it are done assuming that.
SQL/MP tables can contain only Tandem floating-point data. For more information
about SQL/MP data types, see the SQL/MP Reference Manual.

A column in an SQL/MX table declared with a floating-point data type is stored in IEEE
floating-point format and all computations on it are done assuming that. SQL/MX tables
can contain only IEEE floating-point data. NonStop SQL/MX can select data from both
SQL/MP and SQL/MX tables. See default attribute Data Types on page 10-51 for
details.

NUMERIC [(precision [,scale])] [SIGNED|UNSIGNED]

specifies an exact numeric column, which can be SIGNED or UNSIGNED.

 precision specifies the total number of digits and cannot exceed 128.

scale specifies the number of digits to the right of the decimal point and cannot
exceed precision.

For signed numbers with a precision up to 9 and unsigned numbers with a
precision of up to 18, the number is stored internally in binary and is supported in
hardware. In all other cases, the number is supported in software, which is less
efficient.

The default is NUMERIC (9,0) SIGNED.

SMALLINT [SIGNED|UNSIGNED]

specifies an exact numeric column—a two-byte binary integer, SIGNED or
UNSIGNED. The column stores integers in the range unsigned 0 to 65535 or signed
-32768 to +32767.

The default is SIGNED.

INT[EGER] [SIGNED|UNSIGNED]

specifies an exact numeric column—a four-byte binary integer, SIGNED or
UNSIGNED. The column stores integers in the range unsigned 0 to 4294967295 or
signed -2147483648 to +2147483647.

The default is SIGNED.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-35

SQL/MX Language Elements Numeric Data Types
LARGEINT

specifies an exact numeric column—an eight-byte signed binary integer. The
column stores integers in the range -2**63 to 2**63 -1 (approximately 9.223 times
10 to the eighteenth power).

DEC[IMAL] [(precision [,scale])] [SIGNED|UNSIGNED]

specifies an exact numeric column—a decimal number, SIGNED or UNSIGNED,
stored as ASCII characters. precision specifies the total number of digits and
cannot exceed 18. If precision is 10 or more, the value must be SIGNED. The
sign is stored as the first bit of the leftmost byte. scale specifies the number of
digits to the right of the decimal point.

The default is DECIMAL (9,0) SIGNED.

PIC[TURE] [S]{ 9(integer) [V[9(scale)]] | V9(scale) }
 [DISPLAY [SIGN IS LEADING] | COMP]

specifies an exact numeric column. If you specify COMP, the column is binary and
equivalent to the data type NUMERIC. If you omit COMP, DISPLAY [SIGN IS
LEADING] is the default, and the data type is equivalent to the data type DECIMAL.

The S specifies a signed column. The sign is stored as the first bit of the leftmost
byte (digit). If you omit S, the column is unsigned. A column with ten or more digits
must be signed.

The 9(integer) specifies the number of digits in the integral part of the value.
The V designates a decimal position. The 9(scale) designates the number of
positions to the right of the decimal point. If you omit V9 (scale), the scale is 0. If
you specify only V9, the scale is 1.

Instead of integer or scale, you can specify multiple 9s, with each 9
representing one digit. For example, PIC 9V999 has a scale of 3. The values of
integer and scale determine the length of the column. The sum of these values
cannot exceed 18.

There is no default. You must specify either 9(integer) or V9 (scale).

FLOAT [(precision)]

specifies an approximate numeric column. The column stores floating-point
numbers and designates from 1 through 52 bits of precision. The range is from
+/- 2.2250738585072014e-308 through +/-1.7976931348623157e+308 stored in 8
bytes.

An IEEE FLOAT precision data type is stored as an IEEE DOUBLE, that is, in 8
bytes, with the specified precision.

The default precision is 52.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-36

SQL/MX Language Elements Numeric Data Types
REAL

specifies a 4-byte approximate numeric column. The column stores 32-bit
floating-point numbers with 23 bits of binary precision and 8 bits of exponent.

The minimum and maximum range is from +/- 1.17549435e-38 through
+/ 3.40282347e+38.

DOUBLE PRECISION

specifies an 8-byte approximate numeric column.

The column stores 64-bit floating-point numbers and designates from 1 through 52
bits of precision.

An IEEE DOUBLE PRECISION data type is stored in 8 bytes with 52 bits of binary
precision and 11 bits of exponent. The minimum and maximum range is from +/-
2.2250738585072014e-308 through +/-1.7976931348623157e+308.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-37

SQL/MX Language Elements DEFINEs
DEFINEs
A DEFINE is a named set of attribute-value pairs associated with a process. You can
use DEFINEs to pass information to a process when you start the process. DEFINEs
are often used to pass information about Guardian names. DEFINEs can be used only
for SQL/MP objects.

NonStop SQL/MX allows you to use DEFINE names as logical names for tables, views,
or partitions in SQL/MX statements that query SQL/MP objects. When NonStop
SQL/MX compiles such statements, it replaces the DEFINE name in the statement with
the Guardian name currently associated with the DEFINE.

A DEFINE name begins with an equal sign (=) followed by a letter and can contain 1 to
24 characters, including alphanumeric characters and underscores (_). Uppercase and
lowercase characters are considered equivalent in DEFINE names.

A DEFINE name must not be a reserved word. Otherwise, you cannot select data
using the DEFINE name of the table, view, or partition. See Appendix B, Reserved
Words.

The reasons for using DEFINE names in SQL/MX statements are as follows:

 DEFINE names are easier to understand than Guardian names.

For example, the name =CUSTOMER is simpler than an actual file name such as
\MYSYS.$SAMDB.SALES.CUSTOMER.

 DEFINE names provide location independence.

For example, if you code with DEFINE names, you can rename database objects,
move database objects, or change the database that a program accesses without
changing source code.

Using DEFINEs

DEFMODE is an attribute of a process that controls whether you can create DEFINEs
from the process and whether DEFINEs are propagated when the process starts
another process. The process can be a TACL process, an OSS shell process, an MXCI
process, or a process of your own creation. The DEFMODE attribute is ON by default
but can be set to OFF in TACL or the OSS shell.

When DEFMODE is ON, you can create, modify, delete, propagate, and display
information about DEFINEs. For example, if you start an MXCI process from a TACL
process with DEFMODE ON, DEFINEs set in the TACL process are propagated to the
MXCI process. Similarly, you can set DEFINEs in an OSS shell process and the
DEFINEs are propagated to a process you start from an OSS program with embedded
SQL statements. DEFMODE ON is the default. Note that for OSS processes,
DEFMODE ON becomes the default after the first add_define command is issued.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-38

SQL/MX Language Elements Using DEFINEs
When DEFMODE is OFF, DEFINEs are ignored, and you cannot create new DEFINEs.
You can still modify, delete, and display information about existing DEFINEs, but such
DEFINEs have no effect because they are not propagated to other programs.

Use these commands to work with DEFINEs from MXCI. Each command is described
in more detail in a separate entry.

TACL has similar commands with the same names as the MXCI commands just listed.
The OSS shell has similar commands, add_define, del_define, info_define, set_define,
and show_define. See the TACL Reference Manual or the Open System Services
Shell and Utilities Reference Manual for more information about DEFINE-related
commands in TACL or the OSS shell, respectively.

Use these system procedures to work with DEFINEs from within an SQL program. See
the Guardian Procedure Calls Reference Manual or the Open System Services System
Calls Reference Manual for more information about the procedures.

ADD DEFINE Command
on page 4-4

Adds a DEFINE in the current MXCI session

ALTER DEFINE
Command on page 4-6

Changes the physical name of a DEFINE in the current MXCI
session

DELETE DEFINE
Command on page 4-9

Deletes a DEFINE in the current MXCI session

INFO DEFINE Command
on page 4-45

Displays the logical and physical names of DEFINEs in the
current MXCI session

DEFINEADD Adds a DEFINE

CHECKDEFINE Checkpoints a DEFINE to a backup process

DEFINEDELETE Deletes DEFINEs

DEFINEDELETEALL Deletes all DEFINEs except =_DEFAULTS from the context of
the current process

DEFINEINFO Returns DEFINE attribute values

DEFINEMODE Enables or disables the use of DEFINEs

DEFINEEXTNAME Returns the next DEFINE name (DEFINEs are stored in
ascending order by name)

DEFINEREADATTR Returns an attribute value for a DEFINE or for the working
attribute set

DEFINERESTOREWORK Restores the working attribute set from the background set

DEFINESAVEWORK Saves the working attribute set in the background set

DEFINESETATTR Alters the value of an attribute in the working set, or resets the
attribute

DEFINESETLIKE Sets all attributes of the working set to match those of an
existing DEFINE

DEFINEVALIDATEWORK Checks the working set for consistency and completeness
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-39

SQL/MX Language Elements Using DEFINEs From MXCI
Using DEFINEs From MXCI

 Make sure DEFMODE is set to ON in TACL or the OSS shell.

DEFMODE is ON by default but can be set to OFF in TACL or the OSS shell. To
inherit DEFINEs from the process that starts MXCI, such as TACL or the OSS
shell, verify that DEFMODE is ON before you start MXCI. If you set DEFMODE
OFF before you start MXCI, you will not inherit DEFINEs, and you will not be able
to create new DEFINEs during the MXCI session.

For more information on how to show or change the DEFMODE setting in TACL or
the OSS shell, see the TACL Reference Manual or the Open System Services
Shell and Utilities Reference Manual, respectively.

 DEFINEs that you create during an MXCI session remain in effect until you alter
them, delete them, or end the MXCI session. DEFINEs you inherit from another
process and then modify with MXCI commands revert to their previous attribute
values (that is, the values they had when you started MXCI) when you end the
MXCI session. Any changes you make to inherited attributes within the MXCI
session apply only until you exit MXCI.

 MXCI resolves DEFINE names in a statement at the time you enter or execute the
statement.

For more information on using DEFINEs with SQL programs, see the SQL/MX
Programming Manual for C and COBOL.

DEFINEs of Class MAP

In NonStop SQL/MX, DEFINEs can have only one CLASS attribute, the MAP class. A
DEFINE of class MAP associates a DEFINE name with the name of a table, view, or
partition. You can use the DEFINE name in SQL statements as the logical name of a
table, view, or partition, altering the DEFINE (but not the SQL statement) when you
want to point to a different physical entity.

For example, this command adds a DEFINE that assigns the logical name =ORDERS
to the table whose name is $SAMDB.SALES.ORDERS:

ADD DEFINE =ORDERS, CLASS MAP, FILE $SAMDB.SALES.ORDERS;

While this DEFINE is in effect, you can refer to the table as =ORDERS in SQL
statements.

MAP is the default class, so the previous command is normally equivalent to:

ADD DEFINE =ORDERS, FILE $SAMDB.SALES.ORDERS;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-40

SQL/MX Language Elements Expressions
Expressions
An SQL value expression, referred to as an expression, can evaluate to a value with
one of these:

The data type of an expression is the data type of the value of the expression.

A value expression can be, among other things, a character string literal, a numeric
literal, a host variable, a dynamic parameter, or a column name that specifies the value
of the column in a row of a table. A value expression can also include, among other
operands, functions and scalar subqueries.

Character Value Expressions

The operands of a character value expression—referred to as character primaries—
can be combined with the concatenation operator (||). The data type of a character
primary is character string.

Character Value Expressions
on page 6-41

Operands can be combined with the concatenation
operator (||). Example: 'HOUSTON,' ||' TEXAS'

Datetime Value Expressions on
page 6-43

Operands can be combined in specific ways with
arithmetic operators.
Example: CURRENT_DATE + INTERVAL '1' DAY

Interval Value Expressions on
page 6-47

Operands can be combined in specific ways with addition
and subtraction operators.
Example: INTERVAL '2' YEAR
 - INTERVAL '3' MONTH

Numeric Value Expressions on
page 6-52

Operands can be combined in specific ways with
arithmetic operators. Example: SALARY * 1.10

Rowset Expressions on
page 6-55

Operands can be combined to form rowset expressions.

character-expression is:
 character-primary
 | character-expression || character-primary

character-primary is:
 character-string-literal
 | column-reference
 | character-type-host-variable
 | dynamic parameter
 | character-value-function
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (character-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-41

SQL/MX Language Elements Character Value Expressions
Character (or string) value expressions are built from operands that can be:

 Character string literals

 Character string functions

 Column references with character values

 Host variables of type CHAR, VARCHAR, and PIC X(l)

 Dynamic parameters

 CURRENT_USER, SESSION_USER, and USER functions

 Aggregate functions, sequence functions, scalar subqueries, CASE expressions,
or CAST expressions that return character values

Examples of Character Value Expressions

These are examples of character value expressions:

Expression Description

'ABILENE' Character string literal.

'ABILENE ' ||' TEXAS' The concatenation of two string literals.

'ABILENE ' ||' TEXAS' || x’55 53 41 The concatenation of three string literals to
form the literal: 'ABILENE TEXAS USA'

'Customer ' || custname The concatenation of a string literal with
the value in column CUSTNAME.

CAST (order_date AS CHAR) CAST function applied to a DATE value.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-42

SQL/MX Language Elements Datetime Value Expressions
Datetime Value Expressions

SQL/MP Considerations for Datetime Value Expressions
Considerations for Datetime Value Expressions
Examples of Datetime Value Expressions

The operands of a datetime value expression can be combined in specific ways with
arithmetic operators.

In this syntax diagram, the data type of a datetime primary is DATE, TIME, or
TIMESTAMP. The data type of an interval term is INTERVAL.

datetime-expression is:
 datetime-primary
 | interval-expression + datetime-primary
 | datetime-expression + interval-term
 | datetime-expression - interval-term

datetime-primary is:
 datetime-literal
 | column-reference
 | datetime-type-host-variable
 | dynamic parameter
 | datetime-value-function
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (datetime-expression)

interval-term is:
 interval-factor
 | numeric-term * interval-factor

interval-factor is:
 [+|-] interval-primary

interval-primary is:
 interval-literal
 | column-reference
 | interval-type-host-variable
 | dynamic parameter
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (interval-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-43

SQL/MX Language Elements Datetime Value Expressions
Datetime value expressions are built from operands that can be:

 Interval value expressions

 Datetime or interval literals

 Host variables of type DATE, TIME, TIMESTAMP, and INTERVAL

 Dynamic parameters

 Column references with datetime or interval values

 Host variables of type INTERVAL

 Dynamic parameters

 Datetime or interval value functions

 Any aggregate functions, sequence functions, scalar subqueries, CASE
expressions, or CAST expressions that return datetime or interval values

SQL/MP Considerations for Datetime Value Expressions

FRACTION-Only DATETIME Columns

Suppose that an SQL/MP table has a DATETIME column defined as:

MPDateTimeCol DATETIME FRACTION(6)
 DEFAULT DATETIME '123456' FRACTION(6)

You cannot use this column in a datetime expression, as a CAST argument, or as an
argument of an aggregate function such as MIN or MAX. NonStop SQL/MX returns an
error indicating that operations with FRACTION-only columns are not supported.

Considerations for Datetime Value Expressions

Data Type of Result

In general, the data type of the result is the data type of the datetime-primary part
of the datetime expression. For example, datetime value expressions include:

The datetime primary in the first expression is CURRENT_DATE, a function that
returns a value with DATE data type. Therefore, the data type of the result is DATE.

CURRENT_DATE + INTERVAL '1' DAY The sum of the current date and an
interval value of one day.

CURRENT_DATE + est_complete The sum of the current date and the
interval value in column
EST_COMPLETE.

(SELECT ship_timestamp
 FROM project
 WHERE projcode=1000)
 + INTERVAL '07:04' DAY TO HOUR

The sum of the ship timestamp for
the specified project and an interval
value of seven days, four hours.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-44

SQL/MX Language Elements Datetime Value Expressions
In the last expression, the datetime primary is this scalar subquery:

(SELECT ship_timestamp FROM project WHERE projcode=1000)

The preceding subquery returns a value with TIMESTAMP data type. Therefore, the
data type of the result is TIMESTAMP.

Restrictions on Operations With Datetime or Interval Operands

You can use datetime and interval operands with arithmetic operators in a datetime
value expression only in these combinations:

When using these operations, note:

 Adding or subtracting an interval of months to a DATE value results in a value of
the same day plus or minus the specified number of months. Because different
months have different lengths, this is an approximate result.

 Datetime and interval arithmetic can yield unexpected results, depending on how
the fields are used. For example, execution of this expression (evaluated left to
right) returns an error:

DATE '1996-01-30' + INTERVAL '1' MONTH + INTERVAL '7' DAY

In contrast, this expression (which adds the same values as the previous
expression, but in a different order) correctly generates the value 1996-03-06:

DATE '1996-01-30' + INTERVAL '7' DAY + INTERVAL '1' MONTH

Examples of Datetime Value Expressions

The PROJECT table consists of five columns that use the data types NUMERIC,
VARCHAR, DATE, TIMESTAMP, and INTERVAL DAY. Suppose that you have inserted
values into the PROJECT table. For example:

INSERT INTO persnl.project
VALUES (1000,'SALT LAKE CITY',DATE '1996-04-10',
 TIMESTAMP '1996-04-21:08:15:00.00',INTERVAL '15' DAY);

The next examples use these values in the PROJECT table:

Operand 1 Operator Operand 2 Result Type

Datetime + or – Interval Datetime

Interval + Datetime Datetime

PROJCODE START_DATE SHIP_TIMESTAMP EST_COMPLETE

 1000 1996-04-10 1996-04-21 08:15:00.00 15

 945 1996-10-20 1996-12-21 08:15:00.00 30

 920 1996-02-21 1996-03-12 09:45:00.00 20

 134 1996-11-20 1997-01-01 00:00:00.00 30
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-45

SQL/MX Language Elements Datetime Value Expressions
 Add an interval value qualified by YEAR to a datetime value:

SELECT start_date + INTERVAL '1' YEAR
FROM persnl.project
WHERE projcode = 1000;

(EXPR)

1997-04-10

--- 1 row(s) selected.

 Subtract an interval value qualified by MONTH from a datetime value:

SELECT ship_timestamp - INTERVAL '1' MONTH
FROM persnl.project
WHERE projcode = 134;

(EXPR)

1996-12-01 00:00:00.000000

--- 1 row(s) selected.

The result is 1996-12-01 00:00:00.00. The YEAR value is decremented by 1
because subtracting a month from January 1 causes the date to be in the previous
year.

 Add a column whose value is an interval qualified by DAY to a datetime value:

SELECT start_date + est_complete
FROM persnl.project
WHERE projcode = 920;

(EXPR)

1996-03-12

--- 1 row(s) selected.

The result of adding 20 days to 1996-02-21 is 1996-03-12. NonStop SQL/MX
correctly handles 1996 as a leap year.

 Subtract an interval value qualified by HOUR TO MINUTE from a datetime value:

SELECT ship_timestamp - INTERVAL '15:30' HOUR TO MINUTE
FROM persnl.project
WHERE projcode = 1000;

(EXPR)

1996-04-20 16:45:00.000000

The result of subtracting 15 hours and 30 minutes from 1996-04-21 08:15:00.00 is
1996-04-20 16:45:00.00.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-46

SQL/MX Language Elements Interval Value Expressions
Interval Value Expressions

SQL/MP Considerations for Interval Value Expressions
Considerations for Interval Value Expressions
Examples of Interval Value Expressions

The operands of an interval value expression can be combined in specific ways with
addition and subtraction operators. In this syntax diagram, the data type of a datetime
expression is DATE, TIME, or TIMESTAMP; the data type of an interval term or
expression is INTERVAL.

interval-expression is:
 interval-term
 | interval-expression + interval-term
 | interval-expression - interval-term
 | (datetime-expression - datetime-primary)
 [interval-qualifier]

interval-term is:
 interval-factor
 | interval-term * numeric-factor
 | interval-term / numeric-factor
 | numeric-term * interval-factor

interval-factor is:
 [+|-] interval-primary

interval-primary is:
 interval-literal
 | column-reference
 | interval-type-host-variable
 | dynamic parameter
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (interval-expression)

numeric-factor is:
 [+|-] numeric-primary
 | [+|-] numeric-primary ** numeric-factor
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-47

SQL/MX Language Elements Interval Value Expressions
Interval value expressions are built from operands that can be:

 Integers

 Datetime value expressions

 Interval literals

 Column references with datetime or interval values

 Host variables of type INTERVAL

 Dynamic parameters

 Datetime or interval value functions

 Aggregate functions, sequence functions, scalar subqueries, CASE expressions,
or CAST expressions that return interval values

For interval-term, datetime-expression, and datetime-primary, see
Datetime Value Expressions on page 6-43.

If the interval expression is the difference of two datetime expressions, by default, the
result is expressed in the least significant unit of measure for that interval. For date
differences, the interval is expressed in days. For timestamp differences, the interval is
expressed in fractional seconds.

numeric-primary is:
 unsigned-numeric-literal
 | column-reference
 | numeric-type-host-variable
 | dynamic parameter
 | numeric-value-function
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (numeric-expression)

interval-qualifier is:
 start-field TO end-field | single-field

start-field is:
 {YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

end-field is:
 YEAR | MONTH | DAY | HOUR | MINUTE | SECOND [(fractional-
 precision)]

single-field is:
 start-field | SECOND [(leading-precision,
 fractional-precision)]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-48

SQL/MX Language Elements Interval Value Expressions
If the interval expression is the difference or sum of interval operands, the interval
qualifiers of the operands are either year-month or day-time. If you are updating or
inserting a value that is the result of adding or subtracting two interval qualifiers, the
interval qualifier of the result depends on the interval qualifier of the target column.

SQL/MP Considerations for Interval Value Expressions

FRACTION-Only Interval Columns

Suppose that an SQL/MP table has an INTERVAL column defined as:

MPDateTimeCol INTERVAL FRACTION(6)
 DEFAULT INTERVAL '123456' FRACTION(6)

You cannot use this column in an interval expression, as a CAST argument, or as an
argument of an aggregate function such as MIN or MAX. NonStop SQL/MX returns an
error indicating that operations with FRACTION-only columns are not supported.

Considerations for Interval Value Expressions

Start and End Fields

Within the definition of an interval range, the start-field and end-field can be
any of the specified fields with these restrictions:

 An interval is either year-month or day-time. If the start-field is YEAR, the
end-field is MONTH; if the start-field is DAY, HOUR, or MINUTE, the end-
field is also a time field.

 The start-field must precede the end-field within the hierarchy YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND.

Within the definition of an interval expression, the start-field and end-field of
all operands in the expression must be either year-month or day-time.

Interval Qualifier

The rules for specifying the interval qualifier of the result expression vary. For example,
interval value expressions include:

CURRENT_DATE
- start_date

By default, the interval difference between the current date
and the value in column START_DATE is expressed in
days. You are not required to specify the interval qualifier.

INTERVAL '3' DAY
 - INTERVAL '2' DAY

The difference of two interval literals. The result is 1 day.

INTERVAL '3' DAY
 + INTERVAL '2' DAY

The sum of two interval literals. The result is 5 days.

INTERVAL '2' YEAR
 - INTERVAL '3' MONTH

The difference of two interval literals. The result is 1 year, 9
months.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-49

SQL/MX Language Elements Interval Value Expressions
Restrictions on Operations

You can use datetime and interval operands with arithmetic operators in an interval
value expression only in these combinations:

This table lists valid combinations of datetime and interval arithmetic operators, and the
data type of the result:

When using these operations, note:

 If you subtract a datetime value from another datetime value, both values must
have the same data type. To get this result, use the CAST expression. For
example:

CAST (ship_timestamp AS DATE) - start_date

Operand 1 Operator Operand 2 Result Type

Datetime – Datetime Interval

Interval + or – Interval Interval

Interval * or / Numeric Interval

Numeric * Interval Interval

Operands Result type

Date + Interval or
Interval + Date

Date

Date – Interval Date

Date – Date Interval

Time + Interval or
 Interval + Time

Time

Time – Interval Time

Timestamp + Interval or
Interval + Timestamp

Timestamp

Timestamp – Interval Timestamp

year-month Interval + year-month Interval year-month Interval

day-time Interval + day-time Interval day-time Interval

year-month Interval – year-month Interval year-month Interval

day-time Interval – day-time Interval day-time Interval

Time – Time Interval

Timestamp – Timestamp Interval

Interval * Number or
Number * Interval

Interval

Interval / Number Interval

Interval – Interval or
Interval + Interval

Interval
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-50

SQL/MX Language Elements Interval Value Expressions
 If you subtract a datetime value from another datetime value, and you specify the
interval qualifier, you must allow for the maximum number of digits in the result for
the precision. For example:

(CURRENT_TIMESTAMP - ship_timestamp) DAY(4) TO SECOND(6)

 If you are updating a value that is the result of adding or subtracting two interval
values, an SQL error occurs if the source value does not fit into the target column's
range of interval fields. For example, this expression cannot replace an INTERVAL
DAY column:

INTERVAL '1' MONTH + INTERVAL '7' DAY

 If you multiply or divide an interval value by a numeric value expression,
NonStop SQL/MX converts the interval value to its least significant subfield and
then multiplies or divides it by the numeric value expression. The result has the
same fields as the interval that was multiplied or divided. For example, this
expression returns the value 5-02:

INTERVAL '2-7' YEAR TO MONTH * 2

Examples of Interval Value Expressions

The PROJECT table consists of six columns using the data types NUMERIC,
VARCHAR, DATE, TIMESTAMP, and INTERVAL DAY. Suppose that you have inserted
values into the PROJECT table. For example:

INSERT INTO persnl.project
VALUES (1000,9657,'SALT LAKE CITY',DATE '1996-04-10',
 TIMESTAMP '1996-04-21:08:15:00.00',INTERVAL '15' DAY);

The next example uses these values in the PROJECT table:

 Suppose that the CURRENT_TIMESTAMP is 2000-01-06 11:14:41.748703. Find
the number of days, hours, minutes, seconds, and fractional seconds in the
difference of the current timestamp and the SHIP_TIMESTAMP in the PROJECT
table:

SELECT projcode,
 (CURRENT_TIMESTAMP - ship_timestamp) DAY(4) TO SECOND(6)
FROM samdbcat.persnl.project;

Project/Code (EXPR)

PROJCODE START_DATE SHIP_TIMESTAMP EST_COMPLETE

1000 1996-04-10 1996-04-21:08:15:00.0000 15

2000 1996-06-10 1996-07-21:08:30:00.0000 30

2500 1996-10-10 1996-12-21:09:00:00.0000 60

3000 1996-08-21 1996-10-21:08:10:00.0000 60

4000 1996-09-21 1996-10-21:10:15:00.0000 30

5000 1996-09-28 1996-10-28:09:25:01.1111 30
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-51

SQL/MX Language Elements Numeric Value Expressions
------------ ---------------------
 1000 1355 02:58:57.087086
 2000 1264 02:43:57.087086
 2500 1111 02:13:57.087086
 3000 1172 03:03:57.087086
 4000 1172 00:58:57.087086
 5000 1165 01:48:55.975986

--- 6 row(s) selected.

Numeric Value Expressions

Considerations for Numeric Value Expressions
Examples of Numeric Value Expressions

The operands of a numeric value expression can be combined in specific ways with
arithmetic operators. In this syntax diagram, the data type of a term, factor, or numeric
primary is numeric.

As shown in the preceding syntax diagram, numeric value expressions are built from
operands that can be:

 Numeric literals

 Column references with numeric values

numeric-expression is:
 numeric-term
 | numeric-expression + numeric-term
 | numeric-expression - numeric-term

numeric-term is:
 numeric-factor
 | numeric-term * numeric-factor
 | numeric-term / numeric-factor

numeric-factor is:
 [+|-] numeric-primary
 | [+|-] numeric-primary ** numeric-factor

numeric-primary is:
 unsigned-numeric-literal
 | column-reference
 | numeric-type-host-variable
 | dynamic parameter
 | numeric-value-function
 | aggregate-function
 | sequence-function
 | scalar-subquery
 | CASE-expression
 | CAST-expression
 | (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-52

SQL/MX Language Elements Numeric Value Expressions
 Host variables of type NUMERIC, PIC S9()V9(), DECIMAL, SMALLINT, INTEGER,
LARGEINT, FLOAT, REAL, and DOUBLE PRECISION

 Dynamic parameters

 Numeric value functions

 Aggregate functions, sequence functions, scalar subqueries, CASE expressions,
or CAST expressions that return numeric values

Considerations for Numeric Value Expressions

Order of Evaluation

1. Expressions within parentheses
2. Unary operators
3. Exponentiation
4. Multiplication and division
5. Addition and subtraction

Operators at the same level are evaluated from left to right for all operators except
exponentiation. Exponentiation operators at the same level are evaluated from right to
left. For example, X + Y + Z is evaluated as (X + Y) + Z, whereas X ** Y ** Z is
evaluated as X ** (Y ** Z).

Additional Rules for Arithmetic Operations

Numeric expressions are evaluated according to these additional rules:

 An expression with a numeric operator evaluates to null if any of the operands is
null.

 Dividing by 0 causes an error.

 Exponentiation is allowed only with numeric data types. If the first operand is 0
(zero), the second operand must be greater than 0, and the result is 0. If the
second operand is 0, the first operand cannot be 0, and the result is 1. If the first
operand is negative, the second operand must be a value with an exact numeric
data type and a scale of zero.

 Exponentiation is subject to rounding error. In general, results of exponentiation
should be considered approximate.

Precision, Magnitude, and Scale of Arithmetic Results

The precision, magnitude, and scale are computed during the evaluation of an
arithmetic expression. Precision is the maximum number of digits in the expression.
Magnitude is the number of digits to the left of the decimal point. Scale is the number
of digits to the right of the decimal point.

For example, a column declared as NUMERIC (18, 5) has a precision of 18, a
magnitude of 13, and a scale of 5. As another example, the literal 12345.6789 has a
precision of 9, a magnitude of 5, and a scale of 4.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-53

SQL/MX Language Elements Numeric Value Expressions
The maximum precision for exact numeric data types is 18 digits. The maximum
precision for the REAL data type is approximately 7 decimal digits, and the maximum
precision for the DOUBLE PRECISION data type is approximately 16 digits.

When NonStop SQL/MX encounters an arithmetic operator in an expression, it applies
these rules (with the restriction that if the precision becomes greater than 18, the
resulting precision is set to 18 and the resulting scale is the maximum of 0 and (18-
(resulted precision - resulted scale)).

If the operator is + or -, the resulting scale is the maximum of the scales of the
operands. The resulting precision is the maximum of the magnitudes of the operands,
plus the scale of the result, plus 1.

 If the operator is *, the resulting scale is the sum of the scales of the operands. The
resulting precision is the sum of the magnitudes of the operands and the scale of
the result.

 If the operator is /, the resulting scale is the sum of the scale of the numerator and
the magnitude of the denominator. The resulting magnitude is the sum of the
magnitude of the numerator and the scale of the denominator.

For example, if the numerator is NUMERIC (7, 3) and the denominator is NUMERIC (7,
5), the resulting scale is 3 plus 2 (or 5), and the resulting magnitude is 4 plus 5 (or 9).
The expression result is NUMERIC (14, 5).

Conversion of Numeric Types for Arithmetic Operations

NonStop SQL/MX automatically converts between floating-point numeric types (REAL
and DOUBLE PRECISION) and other numeric types. All numeric values in the
expression are first converted to binary, with the maximum precision needed anywhere
in the evaluation. The maximum precision for exact numeric data types is 18 digits.
The maximum precision for REAL and DOUBLE PRECISION data types is
approximately 16.5 digits (54 bits).

NonStop SQL/MX converts floating-point data types following these rules:

 NonStop SQL/MX cannot convert a Tandem REAL or a FLOAT data type with
precision between 1 and 22 bits to IEEE REAL, because the Tandem exponent will
not fit in an IEEE REAL data type. The precision of a Tandem data type will be
maintained correctly.

 There is no equivalent to a Tandem REAL in IEEE floating-point data type which
preserves the precision and exponent. If you want a small floating-point data type
with less exponent and less storage, declare columns or host variables as REAL. If
you want more exponent and more precision, declare it as DOUBLE or FLOAT.

Suppose that you have an SQL/MP table that includes a column, mympcol,
declared as REAL. If you create an SQL/MX table with a column mymxcol,
declared as REAL, you would not be able to convert the SQL/MP column mympcol
into the SQL/MX column mymxcol. You should declare the SQL/MX column as
type FLOAT or DOUBLE PRECISION.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-54

SQL/MX Language Elements Rowset Expressions
Examples of Numeric Value Expressions

These are examples of numeric value expressions:

Rowset Expressions

An expression that contains a rowset host variable or rowset parameter as one of its
operands is called a rowset expression. A rowset expression is an array of single value
expressions, where the operands for the nth single value expression are obtained from
the nth rowset element. All array elements in a given rowset expression are of identical
type.

For more information about rowsets, see the SQL/MX Programming Manual for C and
COBOL.

-57 Numeric literal.

salary * 1.10 The product of the values in the SALARY column
and a numeric literal.

unit_price * qty_ordered The product of the values in the UNIT_PRICE and
QTY_ORDERED columns.

12 * (7 - 4) An expression whose operands are numeric
literals.

COUNT (DISTINCT city) Function applied to the values in a column.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-55

SQL/MX Language Elements Identifiers
Identifiers
SQL/MP Considerations for Identifiers
Examples of Identifiers

SQL identifiers are names used to identify tables, views, columns, and other SQL
entities. The two types of identifiers are regular and delimited. A delimited identifier is
enclosed in double quotes ("). An identifier of either type can contain up to 128
characters.

Regular Identifiers

Regular identifiers begin with a letter (A through Z or a through z), but can also contain
digits (0 through 9), or underscore characters (_). Regular identifiers are not
case-sensitive. You cannot use a reserved word as a regular identifier.

Delimited Identifiers

Delimited identifiers are character strings that appear within double quote characters
(") and consist of alphanumeric characters and other characters except for the at sign
(@), the forward slash (/), backward slash (\), and circumflex (^). To include a double
quote character in a delimited identifier, use two consecutive double quotes (for
example, "da Vinci’s ""Mona Lisa""").

Unlike regular identifiers, delimited identifiers are case-sensitive. Spaces within a
delimited identifier are significant except for trailing spaces, which NonStop SQL/MX
truncates. You can use reserved words as delimited identifiers.

These forms of delimited identifiers are not supported. Results are unpredictable for
delimited identifiers that:

 Start with a “\” or “$”

 Consist of space characters only (for example, " ", " ")

 Consist of special characters only (for example, "~" or "~!#$%^&")

 Contain more than two consecutive double quote characters (for example,
""""""""""abc"""""""""")

 Contain dots (for example, "cat.sch".sch2."cat3.sch3.mod")

 Cause a length limit (128) overflow (for example, 250 double quotes will result in
character length of 125 bytes)

Specifying Delimited Identifiers in OSS Command-Line
Arguments

Occasionally, you might want to use SQL reserved words such as TIME and ZONE as
identifiers to name some of your SQL objects. SQL provides delimited identifiers
specifically for these situations. Suppose you have chosen the name TIME for one of
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-56

SQL/MX Language Elements SQL/MP Considerations for Identifiers
your catalogs and the name ZONE for a schema within that catalog. You can pass
these delimited identifier names as command-line arguments to an OSS hosted
preprocessor invocation by using an escape character for their quotes.

mxsqlco prog.cob -g moduleSchema="\"TIME\".\"ZONE\""

Suppose that prog.cob has this module directive:

EXEC SQL MODULE progmod END-EXEC.

The preprocessor invocation preprocesses this module directive as if it were:

EXEC SQL MODULE "TIME"."ZONE".progmod END-EXEC.

SQL/MP Considerations for Identifiers

Using SQL/MX Reserved Words in SQL/MP Names

Do not use reserved words as identifiers. See Appendix B, Reserved Words.

If an SQL/MP object or column name contains SQL/MX reserved words, you must
delimit that part of the Guardian name, either in the SQL/MX statement or in the
CREATE SQLMP ALIAS statement, by enclosing the reserved word in double quotes.

For example, suppose that a table has the Guardian name, ALLOCATE.DESCRIBE. In
NonStop SQL/MX, you must enclose both parts of the name in double quotes because
both parts of the name are reserved words. The delimited name is
"ALLOCATE"."DESCRIBE." If either part of the name is a reserved word, enclose
only the part that is a reserved word in double quotes.

When you delimit a column name in NonStop SQL/MX, the column name must be in
uppercase letters, because NonStop SQL/MP stores the identifier of the column (or of
any SQL entity that is not a physical object) in uppercase. The Guardian names of
SQL/MP tables, views, and other physical objects are case insensitive and are not
required to be in uppercase letters when you delimit them in NonStop SQL/MX.

Examples of Identifiers

 These are regular identifiers:

mytable
SALES1995
Employee_Benefits_Selections
CUSTOMER_BILLING_INFORMATION

Because regular identifiers are case insensitive, NonStop SQL/MX treats all these
identifiers as alternative representations of mytable:

mytable MYTABLE MyTable mYtAbLe

 These are delimited identifiers:

"mytable"
"table"
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-57

SQL/MX Language Elements Examples of Identifiers
"1995 SALES"
"CUSTOMER-BILLING-INFORMATION"
"%&*()"

Because delimited identifiers are case-sensitive, NonStop SQL/MX treats the
identifier "mytable" as different from the identifiers "MYTABLE" or "MyTable".
Trailing spaces in a delimited identifier are truncated. For example, "mytable
" is equivalent to "mytable".

You can use reserved words as delimited identifiers. For example, table is not
allowed as a regular identifier, but "table" is allowed as a delimited identifier.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-58

SQL/MX Language Elements Indexes
Indexes
An index is an ordered set of pointers to rows of a table. Each index is based on the
values in one or more columns. An index is stored in a key-sequenced file.

There is always a one-to-one correspondence between index rows and base table
rows.

SQL/MP Indexes

Each row in an SQL/MP index contains:

 A keytag column

 The columns specified in the CREATE INDEX statement

 The primary key of the underlying table (the user-defined primary key, the
SYSKEY, or a combination of the user-defined clustering key and the SYSKEY)

See Index Keys in the SQL/MP Reference Manual.

SQL/MX Indexes

Each row in an SQL/MX index contains:

 The columns specified in the CREATE INDEX statement

 The clustering key of the underlying table (the user-defined clustering key, the
SYSKEY, or a combination of the user-defined clustering key and the SYSKEY)

An index name is an SQL identifier. Indexes have their own namespace within a
schema, so an index name might be the same as a table or constraint name. However,
no two indexes in a schema can have the same name.

See CREATE INDEX Statement on page 2-80 and ALTER INDEX Statement on
page 2-11.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-59

SQL/MX Language Elements Keys
Keys
NonStop SQL/MX supports these types of keys:

Clustering Keys
First (Partition) Keys
Index Keys
Primary Keys
SYSKEYs

Clustering Keys

NonStop SQL/MX organizes records of a table or index by using a b-tree based on the
“clustering key”. Values of the clustering key act as logical row-ids. The set of columns
that make up the clustering key must guarantee uniqueness. If necessary, to guarantee
uniqueness, NonStop SQL/MX appends an additional key to the set of columns you
specify to define the clustering key as shown in Table 6-1 and Table 6-2. Any table or
index that enforces uniqueness must also have the property that its primary key is the
same as its clustering key.

You can update any column in the table that is not part of the clustering key.

Table 6-1 compares construction of the clustering key for tables with various
combinations of the STORE BY and PRIMARY KEY options.

Table 6-1. Construction of the Clustering Key (page 1 of 2)

Primary Key
Specified

DROPPABLE
Attribute Clustering Key

No STORE BY No Not applicable SYSKEY

Yes DROPPABLE SYSKEY
Primary key enforced by unique
index.

Yes NOT
DROPPABLE

Same as primary key

STORE BY
primary key

No Not applicable Not supported (error)

Yes DROPPABLE Not supported (error)

Yes NOT
DROPPABLE

Same as primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-60

SQL/MX Language Elements First (Partition) Keys
Table 6-2 compares construction of the clustering key for unique and nonunique
indexes.

First (Partition) Keys

The FIRST KEY option of the PARTITION clause specifies the beginning of the range
for a range partitioned table or index partition. The FIRST KEY clause specifies the
lowest values in the partition for columns stored in ascending order and the highest
values in the partition for columns stored in descending order. These column values
are referred to as the partitioning key.

You specify the first value allowed in the associated partition for that column of the
partitioning key as a literal. If there are more storage key columns than literal items, the
first key value for each remaining key column is the lowest or highest value for the data
type of the column (the lowest value for an ascending column and the highest value for
a descending column).

Partitioning character columns must derive from the ISO88591 character set and
cannot be floating-point data columns.

STORE BY key
column list

No Not applicable Key column list + SYSKEY

Yes DROPPABLE Not supported (error)

Yes NOT
DROPPABLE

If STORE BY column list is a
prefix of or the same as the
primary key column list,
NonStop SQL/MX uses the
primary key column list.
Other combinations are not
supported and generate errors.

Table 6-2. Clustering Key for Indexes

Unique Nonunique

Clustering key indexedColumns indexedColumns+
ClusteringKeyOfTable

Default
partitioning key*

indexedColumns indexedColumns+
ClusteringKeyOfTable+
SYSKEY

* The columns of the default partitioning key are also the columns that are available for partitioning using the
PARTITION BY clause

Table 6-1. Construction of the Clustering Key (page 2 of 2)

Primary Key
Specified

DROPPABLE
Attribute Clustering Key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-61

SQL/MX Language Elements Index Keys
Index Keys

An index is stored in a key-sequenced file. There is always a one-to-one
correspondence between index rows and base table rows.

SQL/MP Index Keys

Each row in an SQL/MP index contains:

 A two-byte column called the “keytag” column

 The columns specified in the CREATE INDEX statement

 The primary key of the underlying table (the user-defined primary key, the
SYSKEY, or combination of the clustering key and the SYSKEY)

For a unique index, the primary key of the index is composed of the first two of these
items. The primary key of the index cannot exceed 255 bytes, but the entire row
(including the primary key of the index) can contain up to 510 bytes.

For a nonunique index, the primary key of the index is composed of all three items.
The primary key cannot exceed 255 bytes. Because the primary key includes all the
columns in the table, each row is also limited to 255 bytes.

For varying-length character columns, the length referred to in these byte limits is the
defined column length, not the stored length. (The stored length is the expanded
length, which includes two extra bytes for storing the data length of the item.)

The keytag value must be unique among indexes for the table; you can specify it when
you create the index with the CREATE INDEX statement, or you can allow the system
to generate it for you. (System-generated keytags are sequential numbers, beginning
with one. User-specified keytag values can be either two bytes of character data or a
SMALLINT UNSIGNED value in the range 1 through 65535. The keytag value for the
primary key is 0.)

For more information, see the SQL/MP Reference Manual and the SQL/MX Query
Guide.

SQL/MX Index Keys

Each row in an SQL/MX index contains:

 The columns specified in the CREATE INDEX statement

 The clustering (primary) key of the underlying table (the user-defined clustering
key, the SYSKEY, or combination of the clustering key and the SYSKEY)

For a unique index, the clustering key of the index is composed of columns specified in
create index only. The clustering key of the index cannot exceed 2010 bytes for 4K
blocks and 2048 bytes for 32K blocks, but the entire row of the index can contain up to
4096 bytes.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-62

SQL/MX Language Elements Primary Keys
For a nonunique index, the clustering key of the index is composed of columns
specified in create index and the clustering key of the table. The clustering key of the
index cannot exceed 2010 bytes for 4K blocks and 2048 bytes for 32K blocks.
Because the entire row of the index is the clustering key of the index, the entire row of
the index cannot exceed 2010 bytes for 4K blocks and 2048 bytes for 32K blocks. For
more information, see Table 6-2 on page 6-61.

For varying-length character columns, the length referred to in these byte limits is the
defined column length, not the stored length. (The stored length is the expanded
length, which includes two extra bytes for storing the data length of the item.)

See CREATE INDEX Statement on page 2-80 and ALTER INDEX Statement on
page 2-11.

Primary Keys

A primary key is the column or set of columns that define the uniqueness constraint for
a table. The columns cannot contain nulls, and there is only one primary key constraint
on a table.

SYSKEYs

A SYSKEY (or system-defined clustering key) is a clustering or storage key defined by
NonStop SQL/MX rather than by the user. Tables stored in files or in key-sequenced
files without a user-defined clustering key have a clustering key defined by
NonStop SQL/MX and stored in a column named SYSKEY. Its type is LARGEINT
SIGNED.

To establish the clustering key, in some cases NonStop SQL/MX appends a SYSKEY
to ensure uniqueness. See Table 6-1 on page 6-60 and Table 6-2 on page 6-61 for the
cases in which a SYSKEY is appended.

When you insert a record in a table stored in a file or in a key-sequenced file with a
SYSKEY column, the file system automatically generates a value for the SYSKEY
column. You cannot supply the value.

Selecting SYSKEY

You cannot update values in the SYSKEY column of any table, but you can use the
SELECT statement to query SYSKEY values. If SYSKEY is provided in the value list or
for a query, the value range allowed is 0 through 2**63 -1 (approximately 9.223 times
10 to the eighteenth power).

A query must explicitly select the SYSKEY column. For example, this SELECT
statement does not display SYSKEY values:

SELECT * FROM table-name

However, if a view definition explicitly includes the SYSKEY column of a table, a
SELECT * on the view does return SYSKEY values.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-63

SQL/MX Language Elements Literals
Literals
A literal is a constant you can use in an expression, in a statement, or as a parameter
value. Literals are stored in columns of tables according to how you specify the column
definitions in a CREATE TABLE statement. An SQL literal can be one of these data
types:

Character String Literals

Considerations for Character String Literals
SQL/MP Considerations for Character String Literals
Examples of Character String Literals

A character string literal is a series of characters enclosed in single quotes.

_character-set

specifies the character set ISO88591, UCS2, KANJI, or KSC5601. If you omit the
character set specification, the default is whatever character set default you set
when you installed NonStop SQL/MX. See Character Sets on page 6-4.

N

associates the system default character set with the string literal. The default is set
by the value of the NATIONAL_CHARSET attribute during SQL/MX installation.
See NATIONAL_CHARSET on page 10-50.

'string'

is a series of any input characters enclosed in single quotes. A single quote within
a string is represented by two single quotes (''). A string can have a length of
zero if you specify two single quotes ('') without a space in between.

Character String Literals on
page 6-64

A series of characters enclosed in single quotes.
Example: 'Planning'

Datetime Literals on
page 6-68

Begins with keyword DATE, TIME, or TIMESTAMP and
followed by a character string.
Example: DATE '1990-01-22'

Interval Literals on page 6-71 Begins with keyword INTERVAL and followed by a
character string and an interval qualifier.
Example: INTERVAL '2-7' YEAR TO MONTH

Numeric Literals on page 6-75 A simple numeric literal (one without an exponent) or a
numeric literal in scientific notation. Example: 99E-2

[_character-set | N]'string'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-64

SQL/MX Language Elements Character String Literals
You can specify string literals using hexadecimal code values in DML statements.

_character-set

specifies the character set ISO88591 or UCS2. If you omit the character set
specification, the default is whatever character set default you set when you
installed NonStop SQL/MX. See Character Sets on page 6-4.

N

associates the system default character set with the string literal. The default is set
by the value of the NATIONAL_CHARSET attribute during SQL/MX installation.
See NATIONAL_CHARSET on page 10-50.

X

represents the X in hexadecimal notation.

'hex-code-value'

represents the code value of a character in hexadecimal form enclosed in single
quotes. It must contain an even number of hexadecimal digits. For UCS2, KANJI
and KSC5601, each hex-code-value must be of four hexadecimal digits long. For
ISO88591, each value must be two digits long. If hex-code-value is improperly
formatted (for example, it contains an invalid hexadecimal digit or an odd number
of hexadecimal digits), an error is returned.

space

is space sequences that can be added before or after hex-code-value for
readability. The encoding for space must be the TERMINAL_CHARSET for an
interactive interface and the SQL module character set for the programmatic
interface.

Considerations for Character String Literals

Using String Literals

You can use a character string literal anywhere you need to supply a column value that
has a character string data type. A string literal can be as long as a character column.
See Character String Data Types on page 6-22.

You can also use string literals in string value expressions—for example, in
expressions that use the concatenation operator (||) or in expressions that use
functions returning string values.

[_character-set | N] X'hex-code-value... '
| [_character-set | N] X'[space…]hex-code-value[[space…]
 hex-code-value...][space…]'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-65

SQL/MX Language Elements Character String Literals
When specifying string literals:

 Do not put a space between the character set qualifier (for example, _KANJI) and
the character string literal (for example, 'abcd'). If you use this character string
literal in a statement, NonStop SQL/MX returns an error:

_KANJI 'abcd'

 To specify a single quotation mark within a string literal, use two consecutive single
quotation marks.

 To specify a string literal whose length is more than one line, separate the literal
into several smaller string literals, and use the concatenation operator (||) to
concatenate them.

 Case is significant in string literals. Lowercase letters are not equivalent to the
corresponding uppercase letters.

 Leading and trailing spaces within a string literal are significant.

SQL/MP Considerations for Character String Literals

SQL/MP Stored Text With Spaces

In NonStop SQL/MX, you cannot put a space between the character set qualifier and
the character string literal in a statement. For example, you must specify
_KANJI'abcd'.

However, NonStop SQL/MP allows a space between the character set qualifier and
character string literal (for example, _KANJI 'abcd'). When NonStop SQL/MX
parses SQL/MP stored text, it accepts the space after the character set qualifier in an
SQL/MP character string literal.

Inserting Into or Updating SQL/MP NCHAR Columns

NonStop SQL/MX supports inserting into or updating columns with the NCHAR data
type in SQL/MP tables. The only restriction is that the NCHAR data being written to the
table contains an even number of bytes.

A string literal used to insert into or update an NCHAR column in an SQL/MP table can
be written:

_UCS2'string'

_UCS2 associates the default character set with the string literal. The default is set by
the value of the NATIONAL_CHARSET attribute during SQL/MX installation. See
NATIONAL_CHARSET on page 10-50.

For example, suppose that column K is a UCS2 column in an SQL/MP table named T,
and the NATIONAL_CHARSET is set to UCS2. This statement updates column K:

UPDATE T SET K = N'abcd'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-66

SQL/MX Language Elements Character String Literals
Because the NATIONAL_CHARSET attribute is set to UCS2, the N'abcd' literal is a
shorter way of writing _UCS2'abcd':

UPDATE T SET K = _UCS2'abcd'

See NCHAR Columns in SQL/MX and SQL/MP Tables on page 6-25.

Inserting Into or Updating SQL/MP Kanji Columns

NonStop SQL/MX Release 2.x supports inserting into or updating columns with the
KANJI or KSC data type in SQL/MP tables.

The only restriction is that the data being written to an SQL/MP table contains an even
number of bytes. SQL/MX character functions that refer to double byte-encoded
characters in KANJI and KSC5601 columns should provide the correct results. For
more details, see the SQL/MX Programming Manual for C and COBOL.

Examples of Character String Literals

 These data type column specifications are shown with examples of literals that can
be stored in the columns.

 These are string literals:

'This is a string literal.'
'abc^&*'
'1234.56'
'This literal contains '' a single quotation mark.'

 This is a string literal concatenated over three lines:

'This MXCI literal is' ||
' in three parts,' ||
'specified over three lines.'

 This is a hexadecimal string literal representing the VARCHAR pattern of the ASCII
string 'Strauß':

_ISO88591 X'53 74 72 61 75 DF'

 This is a KANJI example for the full-width character string 'ABC':

_kanji x'8261 8262 8263'

 This is a KSC5601 example for the full-width character string 'ABC':

-ksc5601 x'A3C1 A3C2 A3C3'

Character String Data Type Character String Literal Example

CHAR (12) UPSHIFT 'PLANNING'

PIC X (12) 'Planning'

VARCHAR (18) 'NEW YORK'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-67

SQL/MX Language Elements Datetime Literals
Datetime Literals

SQL/MP Considerations for Datetime Literals
Examples of Datetime Literals

A datetime literal is a DATE, TIME, or TIMESTAMP constant you can use in an
expression, in a statement, or as a parameter value. Datetime literals have the same
range of valid values as the corresponding datetime data types. You cannot use
leading or trailing spaces within a datetime string (within the single quotes).

A datetime literal begins with the DATE, TIME, or TIMESTAMP keyword and can appear
in default, USA, or European format.

date,time,timestamp

specify the datetime literal strings whose component fields are:

SQL/MP Considerations for Datetime Literals

Inserting Into or Updating Any SQL/MP DATETIME Column

DATE 'date' | TIME 'time' | TIMESTAMP 'timestamp'

date is:
 yyyy-mm-dd Default
 | mm/dd/yyyy USA
 | dd.mm.yyyy European

time is:
 hh:mm:ss.msssss Default
 | hh:mm:ss.msssss [am | pm] USA
 | hh.mm.ss.msssss European

timestamp is:
 yyyy-mm-dd hh:mm:ss.msssss Default
 | mm/dd/yyyy hh:mm:ss.msssss [am | pm] USA
 | dd.mm.yyyy hh.mm.ss.msssss European

yyyy Year, from 0001 to 9999

mm Month, from 01 to 12

dd Day, from 01 to 31

hh Hour, from 00 to 23

mm Minute, from 00 to 59

ss Second, from 00 to 59

msssss Microsecond, from 000000 to 999999

am AM or am, indicating time from midnight to before noon

pm PM or pm, indicating time from noon to before midnight
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-68

SQL/MX Language Elements Datetime Literals
NonStop SQL/MX supports inserting into or updating any columns with the DATETIME
data type in SQL/MP tables except those consisting of FRACTION only.

Use a special SQL/MX DATETIME literal to insert into or update a DATETIME column
in an SQL/MP table. The literal is written:

DATETIME 'datetime' [start-field TO] end-field

The string literal 'datetime' is a subset of the standard datetime form:

'yyyy-mm-dd:hh:mm:ss.msssss'

The literal is followed by the qualifier, consisting of an optional start field and an end
field. The qualifier has a range of logically contiguous fields in this order: YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, and FRACTION. NonStop SQL/MX
supports all SQL/MP DATETIME literals except those consisting of FRACTION only.

Nonstandard Datetime Literal Fields

NonStop SQL/MX requires that the individual fields of a DATETIME literal have the
specified standard lengths. For example, this literal is not supported because the hour
field is not two digits:

TIME '1:40:05'

For NonStop SQL/MX, use:

TIME '01:40:05'

Inserting Into or Updating Supported DATETIME Columns

Suppose that an SQL/MP table has a DATETIME column defined as:

MPDateTimeCol DATETIME MONTH TO DAY
 DEFAULT DATETIME '03-12' MONTH TO DAY

You can insert into this column by using a DATETIME MONTH TO DAY literal. For
example:

INSERT INTO MPTable (MPDateTimeCol)
 VALUES (DATETIME '04-15' MONTH TO DAY);

FRACTION-Only DATETIME Columns

Suppose that an SQL/MP table has a DATETIME column defined as:

MPDateTimeCol DATETIME FRACTION(6)
 DEFAULT DATETIME '123456' FRACTION(6)

You cannot insert into tables with unsupported FRACTION-only DATETIME columns
because you cannot specify values for these columns. Therefore, tables with columns
of this type must be populated by using NonStop SQL/MP instead of
NonStop SQL/MX.

You can select data from a DATETIME column. See Selecting DATETIME Columns in
SQL/MP Tables on page 6-28.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-69

SQL/MX Language Elements Datetime Literals
Examples of Datetime Literals

 These are DATE literals in default, USA, and European formats, respectively:

DATE '1990-01-22'
DATE '01/22/1990'
DATE '22.01.1990'

 These are TIME literals in default, USA, and European formats, respectively:

TIME '13:40:05'
TIME '01:40:05 PM'
TIME '13.40.05'

 These are TIMESTAMP literals in default, USA, and European formats,
respectively:

TIMESTAMP '1990-01-22 13:40:05'
TIMESTAMP '01/22/1990 01:40:05 PM'
TIMESTAMP '22.01.1990 13.40.05'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-70

SQL/MX Language Elements Interval Literals
Interval Literals

Considerations for Interval Literals
SQL/MP Considerations for Interval Literals
Examples of Interval Literals

An interval literal is a constant of data type INTERVAL that represents a positive or
negative duration of time as a year-month or day-time interval; it begins with the
keyword INTERVAL optionally preceded or followed by a minus sign (for negative
duration). You cannot include leading or trailing spaces within an interval string (within
single quotes).

start-field TO end-field

must be either year-month or day-time. The start-field you specify must
precede the end-field you specify in the list of field names.

{YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

specifies the start-field. A start-field can have a leading-
precision up to 18 digits (the maximum depends on the number of fields in
the interval). The leading-precision is the number of digits allowed in the
start-field. The default for leading-precision is 2.

[-]INTERVAL [-]{'year-month' | 'day:time'} interval-qualifier

year-month is:
 years [-months] | months

day:time is:
 days [[:]hours [:minutes [:seconds [.fraction]]]]
 | hours [:minutes [:seconds [.fraction]]]
 | minutes [:seconds [.fraction]]
 | seconds [.fraction]

interval-qualifier is:
 start-field TO end-field | single-field

start-field is:
 {YEAR | MONTH | DAY | HOUR | MINUTE} [(leading-precision)]

end-field is:
 YEAR | MONTH | DAY | HOUR | MINUTE | SECOND [(fractional-
 precision)]

single-field is:
 start-field | SECOND [(leading-precision,
 fractional-precision)]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-71

SQL/MX Language Elements Interval Literals
YEAR | MONTH | DAY | HOUR | MINUTE | SECOND [(fractional-
 precision)]

specifies the end-field. If the end-field is SECOND, it can have a
fractional-precision up to 6 digits. The fractional-precision is
the number of digits of precision after the decimal point. The default for
fractional-precision is 6.

start-field | SECOND [(leading-precision,
 fractional-precision)]

specifies the single-field. If the single-field is SECOND, the leading-
precision is the number of digits of precision before the decimal point, and the
fractional-precision is the number of digits of precision after the decimal
point.

The default for leading-precision is 2, and the default for fractional-
precision is 6. The maximum for leading-precision is 18, and the
maximum for fractional-precision is 6.

See Interval Data Types on page 6-31 and Interval Value Expressions on page 6-47.

'year-month' | 'day:time'

specifies the date and time components of an interval literal. The day and hour
fields can be separated by a space or a colon. The interval literal strings are:

years Unsigned integer that specifies a number of years. years can be up to
18 digits, or 16 digits if months is the end-field. The maximum for the
leading-precision is specified within the interval qualifier by either
YEAR(18) or YEAR(16) TO MONTH.

months Unsigned integer that specifies a number of months. Used as a starting
field, months can have up to 18 digits. The maximum for the leading-
precision is specified by MONTH(18). Used as an ending field, the
value of months must be in the range 0 to 11.

days Unsigned integer that specifies number of days. days can have up to 18
digits if there is no end-field; 16 digits if hours is the end-field; 14 digits if
minutes is the end-field; and 13-f digits if seconds is the end-field,
where f is the fraction less than or equal to 6. These maximums are
specified by DAY(18), DAY(16) TO HOUR, DAY(14) TO MINUTE, and
DAY(13-f) TO SECOND(f).

hours Unsigned integer that specifies a number of hours. Used as a starting
field, hours can have up to 18 digits if there is no end-field; 16 digits if
minutes is the end-field; and 14-f digits if seconds is the end-field,
where f is the fraction less than or equal to 6. These maximums are
specified by HOUR(18), HOUR(16) TO MINUTE, and HOUR(14-f) TO
SECOND(f). Used as an ending field, the value of hours must be in the
range 0 to 23.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-72

SQL/MX Language Elements Interval Literals
Considerations for Interval Literals

Length of Year-Month and Day-Time Strings

An interval literal can contain a maximum of 18 digits, in the string following the
INTERVAL keyword, plus a hyphen (-) that separates the year-month fields, and colons
(:) that separate the day-time fields. You can also separate day and hour with a space.

SQL/MP Considerations for Interval Literals

SQL/MP Interval Literals With Negative Durations

NonStop SQL/MX allows you to specify a negative interval by placing the sign before
the entire literal, such as -INTERVAL '5' DAY, or immediately before the duration
enclosed in quotes, such as INTERVAL -'5' DAY.

NonStop SQL/MX does not allow your application or SQL/MP stored text (in views,
constraints, column defaults, or partitioning keys) to contain other notations of negative
intervals, such as INTERVAL '-5' DAY.

Inserting Into or Updating Any SQL/MP INTERVAL Column

NonStop SQL/MX supports inserting into or updating any columns with the INTERVAL
data type in SQL/MP tables—except those consisting of FRACTION only. Use the
usual SQL/MX INTERVAL literal to insert into or update an INTERVAL column in an
SQL/MP table.

minutes Unsigned integer that specifies a number of minutes. Used as a starting
field, minutes can have up to 18 digits if there is no end-field; and 16-f
digits if seconds is the end-field, where f is the fraction less than or
equal to 6. These maximums are specified by MINUTE(18), and
MINUTE(16-f) TO SECOND(f). Used as an ending field, the value of
minutes must be in the range 0 to 59.

seconds Unsigned integer that specifies a number of seconds. Used as a starting
field, seconds can have up to 18 digits, minus the number of digits f in
the fraction less than or equal to 6. This maximum is specified by
SECOND(18-f, f). The value of seconds must be in the range 0 to
59.9(n), where n is the number of digits specified for seconds precision.

fraction Unsigned integer that specifies a fraction of a second. When seconds is
used as an ending field, fraction is limited to the number of digits
specified by the fractional-precision field following the SECOND
keyword.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-73

SQL/MX Language Elements Interval Literals
Updating Supported INTERVAL Columns

Suppose that an SQL/MP table has an INTERVAL column defined as:

MPIntervalCol INTERVAL YEAR TO MONTH
 DEFAULT INTERVAL '01-03' YEAR TO MONTH

You can insert into this column by using an INTERVAL YEAR TO MONTH literal. For
example:

INSERT INTO MPTable (MPIntervalCol)
 VALUES (INTERVAL '01-03' YEAR TO MONTH);

Updating INTERVAL SECOND TO FRACTION Columns

Suppose that an SQL/MP table has an INTERVAL column defined as:

MPIntervalCol INTERVAL SECOND TO FRACTION(1)
 DEFAULT INTERVAL '30.0' SECOND TO FRACTION(1)

You can insert into this column by using the equivalent SQL/MX INTERVAL SECOND
literal. For example:

INSERT INTO MPTable (MPIntervalCol)
 VALUES (INTERVAL '36.3' SECOND(2,1));

See SQL/MP INTERVAL SECOND TO FRACTION Types on page 6-74.

FRACTION-Only INTERVAL Columns

Suppose that an SQL/MP table has an INTERVAL column defined as:

MPIntervalCol INTERVAL FRACTION(6)
 DEFAULT INTERVAL '123456' FRACTION(6)

You cannot insert into tables with unsupported FRACTION-only INTERVAL columns
because you cannot specify values for these columns. Therefore, you must populate
tables with columns of this type by using SQL/MP instead of NonStop SQL/MX.

You can select data from an INTERVAL column. See Selecting INTERVAL Columns in
SQL/MP Tables on page 6-33.

SQL/MP INTERVAL SECOND TO FRACTION Types

You must use the equivalent SQL/MX INTERVAL SECOND literal to insert into or
update an SQL/MP INTERVAL SECOND TO FRACTION column. The equivalent
mappings are:

SQL/MP Start Field SQL/MP End Field Equivalent SQL/MX Type

SECOND SECOND or none SECOND(2,0)

SECOND(x) SECOND or none SECOND(x,0)

SECOND FRACTION SECOND(2,6)

SECOND(x) FRACTION SECOND(x,6)

SECOND(x) FRACTION(y) SECOND(x,y)

SECOND FRACTION(y) SECOND(2,y)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-74

SQL/MX Language Elements Numeric Literals
Note that in both NonStop SQL/MX and NonStop SQL/MP, the default leading precision
for seconds is 2, and the default trailing precision for fraction of a second is 6.

Examples of Interval Literals

Numeric Literals

A numeric literal represents a numeric value. Numeric literals can be represented as
an exact numeric literal (without an exponent) or as an approximate numeric literal by
using scientific notation (with an exponent).

FRACTION FRACTION None

FRACTION(x) FRACTION None

FRACTION(x) FRACTION(y) None

FRACTION FRACTION(y) None

INTERVAL '1' MONTH Interval of 1 month

INTERVAL '7' DAY Interval of 7 days

INTERVAL '2-7' YEAR TO MONTH Interval of 2 years, 7 months

INTERVAL '5:2:15:36.33' DAY
TO SECOND(2)

Interval of 5 days, 2 hours, 15 minutes, and
36.33 seconds

INTERVAL - '5' DAY Interval that subtracts 5 days

INTERVAL '100' DAY(3) Interval of 100 days. This example requires
an explicit leading precision of 3 because
the default is 2.

INTERVAL '364 23' DAY(3)
TO HOUR

Interval of 364 days, 23 hours. The
separator for the day and hour fields can
be a space or a colon.

exact-numeric-literal is:
 [+|-]unsigned-integer[.[unsigned-integer]]
 | [+|-].unsigned-integer

approximate-numeric-literal is:
 mantissa{E|e}exponent

mantissa is:
 exact-numeric-literal

exponent is:
 [+|-]unsigned-integer

unsigned-integer is:
 digit...

SQL/MP Start Field SQL/MP End Field Equivalent SQL/MX Type
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-75

SQL/MX Language Elements Numeric Literals
exact-numeric-literal

is an exact numeric value that includes an optional plus sign (+) or minus sign (-),
up to 128 digits (0 through 9), and an optional period (.) that indicates a decimal
point. Leading zeros do not count toward the 128-digit limit; trailing zeros do.

A numeric literal without a sign is a positive number. An exact numeric literal that
does not include a decimal point is an integer. Every exact numeric literal has the
data type NUMERIC and the minimum precision required to represent its value.

approximate-numeric-literal

is an exact numeric literal followed by an exponent expressed as an uppercase E
or lowercase e followed by an optionally signed integer.

Numeric values expressed in scientific notation are treated as data type REAL if
they include no more than seven digits before the exponent, but treated as type
DOUBLE PRECISION if they include eight or more digits. Because of this factor,
trailing zeros after a decimal can sometimes increase the precision of a numeric
literal used as a DOUBLE PRECISION value.

For example, if XYZ is a table that consists of one DOUBLE PRECISION column,
the inserted value:

INSERT INTO XYZ VALUES (1.00000000E-10)

has more precision than:

INSERT INTO XYZ VALUES (1.0E-10)

Examples of Numeric Literals

 These are all numeric literals, along with their display format:

Literal Display Format in MXCI

477 477

580.45 580.45

+005 5

-.3175 -.3175

1300000000 1300000000

99. 99

-0.123456789012345678 -.123456789012345678

99E-2 9.9000000E-001

12.3e+5 1.2299999E+006
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-76

SQL/MX Language Elements MXCI Parameters
MXCI Parameters
Examples of MXCI Parameters

Typically, you use parameters (both within MXCI and in embedded SQL) so that you
can prepare an SQL statement and then execute it later, providing different values for
each execution. Within an MXCI file to be obeyed, you can also use parameters for
values so that an SQL statement within the file can execute with different values.

MXCI Named Parameters

You specify a named parameter in a DML statement or a CALL statement within MXCI
as:

?param-name

An MXCI param-name is preceded by a question mark. It begins with an alphabetic or
underscore character and can contain up to 128 alphabetic, numeric, and underscore
characters. Parameter names are case-sensitive. For example, the parameter ?pn is
not equivalent to the parameter ?PN.

Unlike SQL identifiers, you cannot delimit MXCI parameter names with double-quote
characters ("). You can use reserved words. For example, you can use ?at as an
MXCI parameter.

The value of a named parameter is set by using the SET PARAM command.

MXCI Unnamed Parameters

You specify an unnamed parameter in a DML statement or a CALL statement within
MXCI as:

?

The value of an unnamed parameter is set by using the USING clause of the
EXECUTE statement.

Type Assignment for Parameters

The data type of a parameter is either numeric or character. Only character literals
associated with ISO88591 can be used for MXCI parameters. If the data type of the
target column is either datetime or interval, you must convert (by using CAST) the
parameter to the data type of the target column.

 If the parameter and target column has numeric data type, NonStop SQL/MX treats
the parameter as DECIMAL(n), where n is the number of digits in the parameter
value.

 If the parameter and target column has character data type, NonStop SQL/MX
treats the parameter as CHAR(n), where n is the number of bytes in the parameter
value.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-77

SQL/MX Language Elements Working With MXCI Parameters
 If the parameter is character and the target column has datetime data type, you
must CAST the parameter to have the same data type as the target column.

 If the parameter is character or numeric and the target column has INTERVAL data
type, you must CAST the parameter to have the INTERVAL data type.

Working With MXCI Parameters

Use these statements with MXCI parameters:

Use of Parameter Names

Each occurrence of the same parameter name within an MXCI session refers to the
same parameter. The parameter has the value set by the most recent execution of a
SET PARAM statement. If no SET PARAM statement has been issued, the parameter
is undefined and NonStop SQL/MX returns an error message if you attempt to execute
a DML statement that uses the parameter name.

For example, during the execution of an INSERT statement, a parameter is assigned
the same attributes as the column into which the parameter's value is first inserted. If
NonStop SQL/MX truncates the parameter value to fit into the column, other
occurrences of the parameter also receive the truncated value, even if the columns for
those parameters are large enough to hold the entire value.

SET PARAM Command on
page 4-63

Sets the value of an MXCI-named parameter.

RESET PARAM Command on
page 4-60

Clears all named parameter values or a specified named
parameter value.

SHOW PARAM Command on
page 4-73

Displays all named parameters and their values that are
defined in the current MXCI session.

EXECUTE Statement on
page 2-201

Executes an SQL statement previously compiled by the
PREPARE statement. You can specify values for unnamed
parameters in the SQL statement with the USING clause of
the EXECUTE statement.

An operation is a postfix
merge if the range of data
ends at the bottom of the
partition. You can specify only
the TO NEXT PARTITION
clause. The split partition
cannot be the last partition
(the rightmost partition in the
list). on page 2-279

Compiles an SQL statement for later execution with
EXECUTE. The SQL statement might include named or
unnamed parameters.

Caution. If you use the same parameter name more than once in a single statement, do so
carefully to avoid the loss of data in certain cases. NonStop SQL/MX considers each reference
to point to the same parameter and assigns each occurrence the same data type and length as
the first occurrence.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-78

SQL/MX Language Elements Examples of MXCI Parameters
Examples of MXCI Parameters

 The PROJECT table has a START_DATE column. This UPDATE statement uses
the character literal in the ?STARTDAY parameter to set the START_DATE column
value in the PROJECT table:

SET PARAM ?STARTDAY '1999-11-15';
UPDATE persnl.project
 SET start_date = CAST(?STARTDAY AS DATE);

 Suppose that the PROJECT table has an EST_COMPLETE column whose default
value is INTERVAL '30' DAY. This UPDATE statement uses the numeric literal in
the ?EST parameter to update the EST_COMPLETE column value in the
PROJECT table:

SET PARAM ?EST 60;
UPDATE persnl.project
 SET est_complete = CAST(?EST AS INTERVAL DAY);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-79

SQL/MX Language Elements Null
Null
Null is a special symbol, independent of data type, that represents an unknown. The
SQL/MX keyword NULL represents null. Null indicates that an item has no value. For
sorting purposes, null is greater than all other values. You cannot store null in a column
by using either INSERT or UPDATE, unless the column allows null.

A column that allows null can be null at any row position. A nullable column has extra
bytes associated with it in each row. A special value stored in these bytes indicates
that the column has null for that row.

Consider these guidelines:

 Using Null Versus Default Values on page 6-80
 Defining Columns That Allow or Prohibit Null on page 6-81
 Determining Whether a Column Allows Null on page 6-81
 Null in DISTINCT, GROUP BY, and ORDER BY Clauses on page 6-82
 Null and Expression Evaluation Comparison on page 6-82

Using Null Versus Default Values

There are various scenarios in which a row in a table might contain no value for a
specific column. For example:

 A database of telemarketing contacts might have null AGE fields if contacts did not
provide their age.

 An order record might have a DATE_SHIPPED column empty until the order is
actually shipped.

 An employee record for an international employee might not have a social security
number.

You allow null in a column when you want to convey that a value in the column is either
unknown (such as the age of a telemarketing contact) or not applicable (such as the
social security number of an international employee).

In deciding whether to allow nulls or use defaults, also note:

 Nulls are not the same as blanks. Two blanks can be compared and found equal,
while the result of a comparison of two nulls is indeterminate.

 Nulls are not the same as zeros. Zeros can participate in arithmetic operations,
while nulls are excluded from any arithmetic operation.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-80

SQL/MX Language Elements Defining Columns That Allow or Prohibit Null
Defining Columns That Allow or Prohibit Null

The CREATE TABLE and ALTER TABLE statements define the attributes for columns
within tables. A column allows nulls unless the column definition includes the NOT
NULL clause or the column is part of the primary key of the table.

Null is the default for a column (other than NOT NULL) unless the column definition
includes either a DEFAULT clause (other than DEFAULT NULL) or the NO DEFAULT
clause. The default value for a column is the value NonStop SQL/MX inserts in a row
when an INSERT statement omits a value for a particular column.

Determining Whether a Column Allows Null

To determine whether a column accepts null, use the INVOKE command to list the
table description and check the column definitions. See INVOKE Command on
page 4-46.

This INVOKE example illustrates how to display information about whether columns
allow or prohibit null. The display shows NOT NULL for columns whose definition
prohibits null.

INVOKE PERSNL.EMPLOYEE;
-- Definition of table SAMDBCAT.PERSNL.EMPLOYEE
-- Definition current Mon Sep 22 13:44:08 1997

 (
 EMPNUM NUMERIC(4, 0) UNSIGNED NO DEFAULT
 HEADING 'Employee/Number' NOT NULL NOT DROPPABLE
 ,FIRST_NAME CHAR(15) DEFAULT _ISO88591' '
 HEADING 'First Name' NOT NULL NOT DROPPABLE
 ,LAST_NAME CHAR(20) DEFAULT _ISO88591' '
 HEADING 'Last Name' NOT NULL NOT DROPPABLE
 ,DEPTNUM NUMERIC(4, 0) UNSIGNED NO DEFAULT
 HEADING 'Dept/Num' NOT NULL NOT DROPPABLE
 ,JOBCODE NUMERIC(4, 0) UNSIGNED DEFAULT NULL
 HEADING 'Job/Code'
 ,SALARY NUMERIC(8, 2) UNSIGNED DEFAULT NULL
)

--- SQL operation complete.

In the preceding example, the columns EMPNUM, FIRST_NAME, LAST_NAME, and
DEPTNUM are defined as NOT NULL. The columns JOBCODE and SALARY are
allowed to be null.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-81

SQL/MX Language Elements Defining Columns That Allow or Prohibit Null
Null in DISTINCT, GROUP BY, and ORDER BY Clauses

In evaluating the DISTINCT, GROUP BY, and ORDER BY clauses, NonStop SQL/MX
considers all nulls to be equal. Additional considerations for these clauses are:

Null and Expression Evaluation Comparison

DISTINCT Nulls are considered duplicates; therefore, a result has at most one
null.

GROUP BY The result has at most one null group.

ORDER BY Nulls are considered greater than non-null values.

Expression Type Condition Result

Boolean operators (AND,
OR, NOT)

Either operand is null. For AND, the result is null.
For OR, the result is true if the
other operand is true, or null if
the other operand is null or false.
For NOT, the result is null.

Arithmetic operators Either or both operands are
null.

The result is null.

NULL predicate The operand is null. The result is true.

Aggregate (or set)
functions
(except COUNT)

Some rows have null
columns. The function is
evaluated after eliminating
nulls.

The result is null if set is empty.

COUNT(*) The function does not
eliminate nulls.

The result is the number of rows
in the table whether or not the
rows are null.

COUNT
COUNT DISTINCT

The function is evaluated
after eliminating nulls.

The result is zero if set is empty.

Comparison: =, <>,
<, >, <=, >=, LIKE

Either operand is null. The result is null.

IN predicate Some expressions in the IN
value list are null.

The result is null if all of the
expressions are null.

Subquery No rows are returned. The result is null.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-82

SQL/MX Language Elements Partitions
Partitions
Typically, there is a one-to-one correspondence between a table definition and a
physical file. However, large tables, or tables with special performance requirements,
might require partitioning into multiple physical files.

A partition is the part of a table or index that resides on a single disk volume. Each
table or index consists of at least one partition. A nonpartitioned table or index consists
of exactly one partition. A partitioned table or index consists of more than one partition.

You create partitions by using the PARTITION clause in an SQL/MP or SQL/MX
CREATE TABLE; or CREATE INDEX statement, SQL/MP ALTER statement, or
SQL/MX MODIFY utility.

Partitioning character columns must derive from the ISO88591 character set and
cannot be floating-point data columns.

SQL/MP Tables

A partition name, like a table or index name, is a Guardian name. If a table or index
consists of more than one partition, the subvolume and file name portions of the name
of each partition must be identical. Different partitions reside on different volumes. You
cannot partition key-sequenced tables stored only by the SYSKEY.

You must specify the FIRST KEY, or first possible values, for each partition of key-
sequenced tables. The primary partition contains the lowest set of key values if the first
column of the key is stored in ascending order or the primary partition contains the
highest set of key values if the first column of the key is stored in descending order.

For a key-sequenced table, you can use the PARTONLY MOVE clause of the SQL/MP
ALTER TABLE statement to break the table into partitions or to break a partition into
additional partitions.

See CREATE TABLE Statement, ALTER TABLE Statement, and Partitions in the
SQL/MP Reference Manual.

SQL/MX Tables

If an index or a table is stored by a user-specified key, either a primary key or a key
column list, you can specify partitioning for the index or table.

NonStop SQL/MX supports range partitioning and hash partitioning. With range
partitioning, you use a FIRST KEY definition to define key ranges for each partition,
and each record is assigned to the partition whose range includes the value of its
partitioning key.

With hash partitioning, SQL uses a hash function on the values of the partitioning key,
and each record is assigned to a partition based on the result. Partitioning key values
are distributed among all partitions in a generally balanced way. The distribution is
random: some rows are assigned more partitioning key values, and some rows are
assigned fewer. However, although partitioning key values are balanced among the
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-83

SQL/MX Language Elements SQL/MX Tables
partitions, it is possible that records are not (for example, if data is skewed within
partitioning key values).

In this scenario, suppose that you have a database with 10 partitions and 1,000 unique
partitioning key values. Each partition will be assigned approximately 100 partitioning
key values, plus or minus. However, if one of the partitioning key values is in 20
percent of the rows and the other 999 partitioning key values are distributed evenly
among the other 80 percent of the rows, one partition will be assigned at least 20
percent of the rows, twice as many than would be expected in a random distribution.

Another example is when the unique entry count of the partitioning key values is
relatively small compared to the total number of partitions. In this scenario, suppose
that you have a database with 10 partitions and 20 partitioning key values. You would
expect that each partition would be assigned 2 partitioning key values, but because the
distribution is a random distribution based on the hash value of the partitioning key,
some partitions are assigned more values and others fewer. Some partitions can get 3,
4, or more partitioning key values. Other partitions can be assigned 2, 1, or no
partitioning key values. Even if there are many records, some partitions could have
more than twice the expected number of records, and could partitions could have no
records.

You control how values are distributed with the partitioning key. In another scenario,
suppose that you want to distribute a database over many partitions, based on a
unique telephone number that consists of an area code, an exchange, and a number
(nnn-nnn-nnnn). If you use the area code values as the partitioning key, the
distribution will be uneven because there are not many different area code values, and
the number of different values is small in relation to the number of partitions. Instead,
use the entire telephone number because it has so many more unique values.

Hash partitioning enables you to maintain partitions of approximately equal size, even
if you do not know range values, if you have a partitioning key that:

 Does not have much data skew.

 Has many values relative to the number of partitions. The partitioning key should
have at least 50 times as many distinct values as there are partitions.

For more information, see PARTITION Clause on page 7-6 CREATE TABLE Statement
on page 2-107, CREATE INDEX Statement on page 2-80, and ALTER TABLE
Statement on page 2-19. For a description of this utility including details about which
attributes you can set for individual partition, see MODIFY Utility on page 2-271.

Automatically Creating Partitions

MXCS and JDBC/MX users can automatically create hash-partitioned SQL/MX tables
with the Partition Overlay Specification (POS) feature of the CREATE TABLE
statement. NonStop SQL/MX does not support automatic creation of range-partitioned
tables.

Applications can control whether POS is enabled, the number of partitions, and the
physical location of the partitions.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-84

SQL/MX Language Elements Predicates
CONTROL QUERY DEFAULT attributes determine the number and physical location
of the partitions. For values and syntax of these defaults, see Partition Management on
page 10-63.

For more information on this feature, see Creating Partitions Automatically on
page 2-127.

Predicates
A predicate determines an answer to a question about a value or group of values. A
predicate returns true, false, or, if the question cannot be answered, unknown. Use
predicates within search conditions to choose rows from tables or views.

See the individual entry for a predicate or predicate group.

BETWEEN Predicate

Considerations for BETWEEN
Examples of BETWEEN

BETWEEN Predicate on page 6-85 Determines whether a sequence of values is within
a range of sequences of values.

Comparison Predicates on page 6-88
(=, <>, <, >, <=, >=)

Compares the values of sequences of expressions,
or compares the values of sequences of row values
that are the result of row subqueries.

EXISTS Predicate on page 6-92 Determines whether any rows are selected by a
subquery. If the subquery finds at least one row that
satisfies its search condition, the predicate
evaluates to true. Otherwise, if the result table of the
subquery is empty, the predicate is false.

IN Predicate on page 6-94 Determines if a sequence of values is equal to any
of the sequences of values in a list of sequences.

LIKE Predicate on page 6-97 Searches for character strings that match a pattern.

NULL Predicate on page 6-99 Determines whether all the values in a sequence of
values are null.

Quantified Comparison Predicates on
page 6-101
(ALL, ANY, SOME)

Compares the values of sequences of expressions
to the values in each row selected by a table
subquery. The comparison is quantified by ALL,
SOME, or ANY.

Rowset Predicates on page 6-104 A predicate that contains a rowset expression.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-85

SQL/MX Language Elements BETWEEN Predicate
The BETWEEN predicate determines whether a sequence of values is within a range
of sequences of values.

row-value-constructor

specifies an operand of the BETWEEN predicate. The three operands can be
either of:

(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed
in parentheses. expression cannot include an aggregate function unless
expression is in a HAVING clause. expression can be a scalar subquery
(a subquery that returns a single row consisting of a single column). See
Expressions on page 6-41.

row-subquery

is a subquery that returns a single row (consisting of a sequence of values).
See Subquery on page 6-112.

The three row-value-constructors specified in a BETWEEN predicate must
contain the same number of elements. That is, the number of value expressions in
each list, or the number of values returned by a row subquery, must be the same.

The data types of the respective values of the three row-value-constructors
must be comparable. Respective values are values with the same ordinal position
in the two lists. See Comparable and Compatible Data Types on page 6-17.

Considerations for BETWEEN

Logical Equivalents Using AND and OR

The predicate expr1 BETWEEN expr2 AND expr3 is true if and only if this condition
is true:

expr2 <= expr1 AND expr1 <= expr3

The predicate expr1 NOT BETWEEN expr2 AND expr3 is true if and only if this
condition is true:

expr2 > expr1 OR expr1 > expr3

Descending Columns in Keys

row-value-constructor [NOT] BETWEEN
 row-value-constructor AND row-value-constructor

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-86

SQL/MX Language Elements BETWEEN Predicate
If a clause specifies a column in a key BETWEEN expr2 and expr3, expr3 must be
greater than expr2 even if the column is specified as DESCENDING within its table
definition.

Examples of BETWEEN

 This predicate is true if the total price of the units in inventory is in the range from
$1,000 to $10,000:

qty_on_hand * price
 BETWEEN 1000.00 AND 10000.00

 This predicate is true if the part cost is less than $5 or more than $800:

partcost NOT BETWEEN 5.00 AND 800.00

 This BETWEEN predicate selects the part number 6400:

SELECT * FROM partsupp
WHERE partnum BETWEEN 6400 AND 6700
 AND partcost > 300.00 SERIALIZABLE ACCESS;

Part/Num Supp/Num Part/Cost Qty/Rec
-------- -------- ------------ ----------
 6400 1 390.00 50
 6401 2 500.00 20
 6401 3 480.00 38

--- 3 row(s) selected.

 Find names between Jody Selby and Gene Wright:

(last_name, first_name) BETWEEN
 ('SELBY', 'JODY') AND ('WRIGHT', 'GENE')

The name Barbara Swift would meet the criteria; the name Mike Wright would not.

SELECT empnum, first_name, last_name
FROM persnl.employee
WHERE (last_name, first_name) BETWEEN
 ('SELBY', 'JODY') AND ('WRIGHT', 'GENE');

EMPNUM FIRST_NAME LAST_NAME
------ --------------- --------------------
 43 PAUL WINTER
 72 GLENN THOMAS
 74 JOHN WALKER
 ...
--- 15 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-87

SQL/MX Language Elements Comparison Predicates
Comparison Predicates

Considerations for Comparison Predicates
Examples of Comparison Predicates

A comparison predicate compares the values of sequences of expressions, or the
values of sequences of row values that are the result of row subqueries.

row-value-constructor

specifies an operand of a comparison predicate. The two operands can be either of
these:

(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed
in parentheses. expression cannot include an aggregate function unless
expression is in a HAVING clause. expression can be a scalar subquery
(a subquery that returns a single row consisting of a single column). See
Expressions on page 6-41.

row-subquery

is a subquery that returns a single row (consisting of a sequence of values).
See Subquery on page 6-112.

The two row-value-constructors must contain the same number of elements.
That is, the number of value expressions in each list, or the number of values
returned by a row subquery, must be the same.

The data types of the respective values of the two row-value-constructors
must be comparable. (Respective values are values with the same ordinal position
in the two lists.) See Comparable and Compatible Data Types on page 6-17.

row-value-constructor comparison-op row-value-constructor

comparison-op is:
 = Equal
 | <> Not equal
 | < Less than
 | > Greater than
 | <= Less than or equal to
 | >= Greater than or equal to

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-88

SQL/MX Language Elements Comparison Predicates
Considerations for Comparison Predicates

When a Comparison Predicate Is True

NonStop SQL/MX determines whether a relationship is true or false by comparing
values in corresponding positions in sequence, until it finds the first nonequal pair.

You cannot use a comparison predicate in a WHERE or HAVING clause to compare
row value constructors when the value expressions in one row value constructor are
equal to null. Use the IS NULL predicate instead.

Suppose that there are two rows with multiple components, X and Y:

X=(X1,X2,...,Xn), Y=(Y1,Y2,...,Yn).

Predicate X=Y is true if for all i=1,...,n: Xi=Yi. For this predicate, NonStop
SQL/MX must look through all values. Predicate X = Y is false if for some i Xi<>Yi.
When SQL finds nonequal components, it stops and does not look at remaining
components.

Predicate X<>Y is true if X=Y is false. If X1<>Y1, NonStop SQL/MX does not look at all
components. It stops and returns a value of false for the X=Y predicate and a value of
true for the X<>Y predicate. Predicate X<>Y is false if X=Y is true, or for all
i=1,...,n: Xi=Yi. In this situation, NonStop SQL/MX must look through all
components.

Predicate X>Y is true if for some index m Xm>Ym and for all i=1,..,m-1: Xi=Yi.
NonStop SQL/MX does not look through all components. It stops when it finds the first
nonequal components, Xm<>Ym. If Xm>Ym, the predicate is true. Otherwise the
predicate is false. The predicate is also false if all components are equal, or X=Y.

Predicate X>=Y is true if X>Y is true or X=Y is true. In this scenario, NonStop SQL/MX
might look through all components and return true if they are all equal. It stops at the
first nonequal components, Xm<>Ym. If Xm>Ym, the predicate is true. Otherwise, it is
false.

Predicate X<Y is true if for some index m Xm<Ym, and for all i=1,..,m-1: Xi=Yi.
NonStop SQL/MX does not look through all components. It stops when it finds the first
nonequal components Xm<>Ym. If Xm<Ym, the predicate is true. Otherwise, the
predicate is false. The predicate is also false if all components are equal, or X=Y.

Predicate X<=Y is true if X<Y is true or X=Y is true. In this scenario, NonStop SQL/MX
might need to look through all components and return true if they are all equal. It stops
at the first nonequal components, Xm<>Ym. If Xm<Ym, the predicate is true. Otherwise,
it is false.

Comparing Character Data

For comparisons between character strings of different lengths, the shorter string is
padded on the right with spaces (HEX 20) until it is the length of the longer string. Both
fixed-length and variable-length strings are padded in this way.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-89

SQL/MX Language Elements Comparison Predicates
For example, NonStop SQL/MX considers the string ‘JOE’ equal to a value JOE stored
in a column of data type CHAR or VARCHAR of width three or more. Similarly,
NonStop SQL/MX considers a value JOE stored in any column of the CHAR data type
equal to the value JOE stored in any column of the VARCHAR data type.

Two strings are equal if all characters in the same ordinal position are equal.
Lowercase and uppercase letters are not considered equivalent.

Comparing Numeric Data

Before evaluation, all numeric values in an expression are first converted to the
maximum precision needed anywhere in the expression.

Comparing Interval Data

For comparisons of INTERVAL values, NonStop SQL/MX first converts the intervals to
a common unit. If no common unit exists, NonStop SQL/MX reports an error. Two
INTERVAL values must be both year-month intervals or both day-time intervals.

Comparing Multiple Values

Use multivalue predicates whenever possible; they are generally more efficient than
equivalent conditions without multivalue predicates.

Examples of Comparison Predicates

 This predicate is true if the customer number is equal to 3210:

custnum = 3210

 This predicate is true if the salary is greater than the average salary of all
employees:

salary >
 (SELECT AVG (salary) FROM persnl.employee);

 This predicate is true if the customer name is BACIGALUPI:

custname = 'BACIGALUPI'

 This predicate evaluates to unknown for any rows in either CUSTOMER or
ORDERS that contain null in the CUSTNUM column:

customer.custnum > orders.custnum

 This predicate returns information about anyone whose name follows MOSS,
DUNCAN in a list arranged alphabetically by last name and, for the same last
name, alphabetically by first name:

(last_name, first_name) > ('MOSS', 'DUNCAN')

REEVES, ANNE meets this criteria, but MOSS, ANNE does not.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-90

SQL/MX Language Elements Comparison Predicates
This multivalue predicate is equivalent to this condition with three comparison
predicates:

(last_name > 'MOSS') OR
(last_name = 'MOSS' AND first_name > 'DUNCAN')

 Compare two datetime values START_DATE and the result of the
CURRENT_DATE function:

START_DATE < CURRENT_DATE

 Compare two datetime values START_DATE and SHIP_TIMESTAMP:

CAST (start_date AS TIMESTAMP) < ship_timestamp

 Compare two INTERVAL values:

JOB1_TIME < JOB2_TIME

Suppose that JOB1_TIME, defined as INTERVAL DAY TO MINUTE, is 2 days 3
hours, and JOB2_TIME, defined as INTERVAL DAY TO HOUR, is 3 days.

To evaluate the predicate, NonStop SQL/MX converts the two INTERVAL values to
MINUTE. The comparison predicate is true.

 The next examples contain a subquery in a comparison predicate. Each subquery
operates on a separate logical copy of the EMPLOYEE table.

The processing sequence is outer to inner. A row selected by an outer query
allows an inner query to be evaluated, and a single value is returned. The next
inner query is evaluated when it receives a value from its outer query.

Find all employees whose salary is greater than the maximum salary of employees
in department 1500:

SELECT first_name, last_name, deptnum, salary
 FROM persnl.employee
 WHERE salary > (SELECT MAX (salary)
 FROM persnl.employee
 WHERE deptnum = 1500);

FIRST_NAME LAST_NAME DEPTNUM SALARY
--------------- -------------------- ------- -----------
ROGER GREEN 9000 175500.00
KATHRYN HALL 4000 96000.00
RACHEL MCKAY 4000 118000.00
THOMAS RUDLOFF 2000 138000.40
JANE RAYMOND 3000 136000.00
JERRY HOWARD 1000 137000.10

--- 6 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-91

SQL/MX Language Elements EXISTS Predicate
Find all employees from other departments whose salary is less than the minimum
salary of employees (not in department 1500) that have a salary greater than the
average salary for department 1500:

SELECT first_name, last_name, deptnum, salary
FROM persnl.employee
WHERE deptnum <> 1500 AND
 salary < (SELECT MIN (salary)
 FROM persnl.employee
 WHERE deptnum <> 1500 AND
 salary > (SELECT AVG (salary)
 FROM persnl.employee
 WHERE deptnum = 1500));

FIRST_NAME LAST_NAME DEPTNUM SALARY
--------------- -------------------- ------- -----------
JESSICA CRINER 3500 39500.00
ALAN TERRY 3000 39500.00
DINAH CLARK 9000 37000.00
BILL WINN 2000 32000.00
MIRIAM KING 2500 18000.00
...

--- 35 row(s) selected.

The first subquery of this query determines the minimum salary of employees from
other departments whose salary is greater than the average salary for department
1500. The main query then finds the names of employees who are not in
department 1500 and whose salary is less than the minimum salary determined by
the first subquery.

EXISTS Predicate

The EXISTS predicate determines whether any rows are selected by a subquery. If the
subquery finds at least one row that satisfies its search condition, the predicate
evaluates to true. Otherwise, if the result table of the subquery is empty, the predicate
is false.

subquery

specifies the operand of the predicate. A subquery is a query expression
enclosed in parentheses. An EXISTS subquery is typically correlated with an
outer query. See Subquery on page 6-112.

Examples of EXISTS

 Find locations of employees with job code 300:

SELECT deptnum, location FROM persnl.dept D
WHERE EXISTS

[NOT] EXISTS subquery
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-92

SQL/MX Language Elements EXISTS Predicate
 (SELECT jobcode FROM persnl.employee E
 WHERE D.deptnum = E.deptnum AND jobcode = 300);

DEPTNUM LOCATION
------- -------------
 3000 NEW YORK
 3100 TORONTO
 3200 FRANKFURT
 3300 LONDON
 3500 HONG KONG

--- 5 row(s) selected.

In the preceding example, the EXISTS predicate contains a subquery that
determines which locations have employees with job code 300. The subquery
depends on the value of D.DEPTNUM from the outer query and must be evaluated
for each row of the result table where D.DEPTNUM equals E.DEPTNUM. The
column D.DEPTNUM is an example of an outer reference.

 Search for departments that have no employees with job code 420:

SELECT deptname FROM persnl.dept D
WHERE NOT EXISTS
 (SELECT jobcode FROM persnl.employee E
 WHERE D.deptnum = E.deptnum AND jobcode = 420);

DEPTNAME

FINANCE
PERSONNEL
INVENTORY
...
--- 11 row(s) selected.

 Search for parts with less than 20 units in the inventory:

SELECT partnum, suppnum
FROM invent.partsupp PS
WHERE EXISTS
 (SELECT partnum FROM invent.partloc PL
 WHERE PS.partnum = PL.partnum AND qty_on_hand < 20);

PARTNUM SUPPNUM
------- -------
 212 1
 212 3
 2001 1
 2003 2
 ...

--- 18 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-93

SQL/MX Language Elements IN Predicate
IN Predicate

Considerations for IN
Examples of IN

The IN predicate determines if a sequence of values is equal to any of the sequences
of values in a list of sequences. The NOT operator reverses its truth value. For
example, if IN is true, NOT IN is false.

row-value-constructor

specifies the first operand of the IN predicate. The first operand can be either of:

(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed
in parentheses. expression cannot include an aggregate function unless
expression is in a HAVING clause. expression can be a scalar subquery
(a subquery that returns a single row consisting of a single column). See
Expressions on page 6-41.

row-subquery

is a subquery that returns a single row (consisting of a sequence of values).
See Subquery on page 6-112.

table-subquery

is a subquery that returns a table (consisting of rows of columns). The table
specifies rows of values to be compared with the row of values specified by the
row-value-constructor. The number of values of therow-value-
constructor must be equal to the number of columns in the result table of the
table-subquery, and the data types of the values must be comparable.

in-value-list

is a sequence of SQL value expressions, separated by commas and enclosed in
parentheses. expression cannot include an aggregate function defined on a
column. expression can be a scalar subquery (a subquery that returns a single
row consisting of a single column). In this case, the result of the row-value-

row-value-constructor
 [NOT] IN {table-subquery | in-value-list}

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery

in-value-list is:
 (expression [,expression]...)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-94

SQL/MX Language Elements IN Predicate
constructor is a single value. The data types of the values must be comparable.
The limit for the number of expressions in the in-value-list is 1900.

Considerations for IN

Logical Equivalent Using ANY (or SOME)

The predicate expr IN (expr1, expr2, ...) is true if and only if the following
predicate is true:

expr = ANY (expr1, expr2, ...)

IN Predicate Results

The IN predicate is true if and only if either of these is true:

 The result of the row-value-constructor (a row or sequence of values) is
equal to any row of column values specified by table-subquery.

Note that a table subquery is a query expression and can be specified as a form of
a simple table; for example, as the VALUES keyword followed by a list of row
values. See SELECT Statement on page 2-330.

 The result of the row-value-constructor (a single value) is equal to any of the
values specified by the list of expressions in-value-list.

In this case, it is helpful to think of the list of expressions as a one-column table—a
special case of a table subquery. The degree of the row value constructor and the
degree of the list of expressions are both one.

Comparing Character Data

Two strings are equal if all characters in the same ordinal position are equal.
Lowercase and uppercase letters are not considered equivalent. For comparisons
between character strings of different lengths, the shorter string is padded on the right
with spaces (HEX 20) until it is the length of the longer string. Both fixed-length and
varying-length strings are padded in this way.

For example, NonStop SQL/MX considers the string ‘JOE’ equal to a value JOE stored
in a column of data type CHAR or VARCHAR of width three or more. Similarly,
NonStop SQL/MX considers a value JOE stored in any column of the CHAR data type
equal to the value JOE stored in any column of the VARCHAR data type.

Comparing Numeric Data

Before evaluation, all numeric values in an expression are first converted to the
maximum precision needed anywhere in the expression.

Comparing Interval Data

For comparisons of INTERVAL values, NonStop SQL/MX first converts the intervals to
a common unit. If no common unit exists, NonStop SQL/MX reports an error. Two
INTERVAL values must be both year-month intervals or both day-time intervals.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-95

SQL/MX Language Elements IN Predicate
Examples of IN

 Find those employees whose EMPNUM is 39, 337, or 452:

SELECT last_name, first_name, empnum
FROM persnl.employee
WHERE empnum IN (39, 337, 452);

LAST_NAME FIRST_NAME EMPNUM
-------------------- --------------- ------
CLARK DINAH 337
SAFFERT KLAUS 39
--- 2 row(s) selected.

 Find those items in PARTS whose part number is not in the PARTLOC table:

SELECT partnum, partdesc
FROM sales.parts
WHERE partnum NOT IN
 (SELECT partnum
 FROM invent.partloc);

PARTNUM PARTDESC
------- ------------------
 186 186 MegaByte Disk

--- 1 row(s) selected.

 Find those items (and their suppliers) in PARTS that have a supplier in the
PARTSUPP table:

SELECT P.partnum, P.partdesc, S.suppnum, S.suppname
FROM sales.parts P,
 invent.supplier S
WHERE P.partnum, S.suppnum IN
 (SELECT partnum, suppnum
 FROM invent.partsupp);

 Find those employees in EMPLOYEE whose last name and job code match the list
of last names and job codes:

SELECT empnum, last_name, first_name
FROM persnl.employee
WHERE (last_name, jobcode) IN
 (VALUES ('CLARK', 500), ('GREEN', 200));
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-96

SQL/MX Language Elements LIKE Predicate
LIKE Predicate

Considerations for LIKE
Examples of LIKE

The LIKE predicate searches for character strings that match a pattern.

match-value

is a character value expression that specifies the set of strings to search for that
match the pattern.

pattern

is a character value expression that specifies the pattern string for the search.

esc-char-expression

is a character value expression that must evaluate to a single character. The
escape character value is used to turn off the special meaning of percent and
underscore. See Wild Card Characters on page 6-98.

See Character Value Expressions on page 6-41.

Considerations for LIKE

Comparing the Value to the Pattern

The values you compare must be character strings. Lowercase and uppercase letters
are not equivalent. To make lowercase letters match uppercase letters, use the
UPSHIFT function. A blank is compared in the same way as any other character.

When a LIKE Predicate Is True

When you reference a column, the LIKE predicate is true if the pattern matches the
column value. If the value of a column reference is null, the LIKE predicate evaluates
to unknown for that row. If the values you compare are both empty strings (that is,
strings of zero length), the LIKE predicate is true.

Using NOT

If you specify NOT, the predicate is true if the value you are comparing does not match
any string to which you are comparing or is not the same length as any string to which
you are comparing. For example, NAME NOT LIKE '_Z' is true if the string is not two
characters long or the last character is not Z.

In a search condition, the predicate NAME NOT LIKE '_Z' is equivalent to NOT (NAME
LIKE '_Z').

match-value [NOT] LIKE pattern [ESCAPE esc-char-expression]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-97

SQL/MX Language Elements LIKE Predicate
Wild Card Characters

You can look for similar values by specifying only part of the characters of pattern
combined with these wild-card characters:

Escape Characters

To search for a string containing a percent sign or underscore, define an escape
character (using ESCAPE esc-char-expression) to turn off the special meaning of
percent sign and underscore.

To include a percent sign or underscore in the comparison string, type the escape
character immediately preceding it. For example, to locate the value 'A_B', type:

NAME LIKE 'A_B' ESCAPE '\'

To include the escape character itself in the comparison string, type two escape
characters. For example, to locate 'A_B\C%', type:

NAME LIKE 'A_B\\C\%' ESCAPE '\'

The escape character must precede only the percent sign, underscore, or escape
character itself. For example, the pattern RA\BS is not valid if the escape character is
defined to be '\'.

Comparing the Pattern to CHAR Columns

Columns of data type CHAR are fixed length. When a value is inserted into a CHAR
column, NonStop SQL/MX pads the value in the column with blanks if necessary. The
value 'JOE' inserted into a CHAR(6) column becomes 'JOE ' (3 characters plus 3
blanks). The LIKE predicate is true only if the column value and the comparison value
are the same length. The column value 'JOE ' does not match 'JOE' but does match
'JOE%'.

Comparing the Pattern to VARCHAR Columns

Columns of variable-length character data types do not include trailing blanks unless
blanks are specified when data is entered. For example, the value 'JOE' inserted in a
VARCHAR(4) column is 'JOE' (with no trailing blanks). The value matches both 'JOE'
and 'JOE%'.

If you cannot locate a value in a variable-length character column, it might be because
trailing blanks were specified when the value was inserted into the table. For example,
a value of '5MB ' (with 1 trailing blank) will not be located by LIKE '%MB' but will be
located by '%MB%'.

% Use a percent sign to indicate zero or more characters of any type. For example,
'%ART%' matches 'SMART', 'ARTIFICIAL', and 'PARTICULAR'—but not
'smart'. The code value for %r for KANJI character set is 0x8193, while that for
KSC5601 is 0xA3A5.

_ Use an underscore to indicate any single character. For example, 'BOO_'
matches 'BOOK' or 'BOOR'—but not 'BOO', 'BOOKLET', or 'book'. The code
value for _ for KANJI character set is 0x8151, while that for KSC5601 is 0xA3DF.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-98

SQL/MX Language Elements NULL Predicate
Examples of LIKE

 Find all employee last names beginning with ZE:

last_name LIKE 'ZE%'

 Find all job titles that match a specific string provided at execution time:

jobdesc LIKE ?SOMEJOB

This predicate example is a part of a prepared statement where the parameter
value of SOMEJOB is provided at execution time.

 Find all part descriptions that are not 'FLOPPY_DISK':

partdesc NOT LIKE 'FLOPPY_DISK' ESCAPE '\'

The escape character indicates that the underscore in ‘FLOPPY_DISK’ is part of
the string to search for, not a wild-card character.

NULL Predicate

The NULL predicate determines whether all the expressions in a sequence are null.
See Null on page 6-80.

row-value-constructor

specifies the operand of the NULL predicate. The operand can be either of these:

(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed
in parentheses. expression cannot include an aggregate function unless
expression is in a HAVING clause. expression can be a scalar subquery
(a subquery that returns a single row consisting of a single column). See
Expressions on page 6-41.

row-subquery

is a subquery that returns a single row (consisting of a sequence of values).
See Subquery on page 6-112.

If all of the expressions in the row-value-constructor are null, the IS NULL
predicate is true. Otherwise, it is false. If none of the expressions in the row-value-
constructor are null, the IS NOT NULL predicate is true. Otherwise, it is false.

row-value-constructor IS [NOT] NULL

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-99

SQL/MX Language Elements NULL Predicate
Considerations for NULL

Summary of NULL Results

Let rvc be the value of the row-value-constructor. This table summarizes the
results of NULL predicates. The degree of a rvc is the number of values in the rvc.

Note that the rvc IS NOT NULL predicate is not equivalent to NOT rvc IS NULL.

Examples of NULL

 Find all rows with null in the SALARY column:

salary IS NULL

 This predicate evaluates to true if the expression (PRICE + TAX) evaluates to null:

(price + tax) IS NULL

 Find all rows where both FIRST_NAME and SALARY are null:

(first_name, salary) IS NULL

Expressions
rvc IS
 NULL

rvc IS
NOT NULL

NOT rvc IS
 NULL

NOT rvc IS
 NOT NULL

degree 1: null TRUE FALSE FALSE TRUE

degree 1: not null FALSE TRUE TRUE FALSE

degree>1: all null TRUE FALSE FALSE TRUE

degree>1: some null FALSE FALSE TRUE TRUE

degree>1: none null FALSE TRUE TRUE FALSE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-100

SQL/MX Language Elements Quantified Comparison Predicates
Quantified Comparison Predicates

Considerations for ALL, ANY, SOME
Examples of ALL, ANY, SOME

A quantified comparison predicate compares the values of sequences of expressions
to the values in each row selected by a table subquery. The comparison operation is
quantified by the logical quantifiers ALL, ANY, or SOME.

row-value-constructor

specifies the first operand of a quantified comparison predicate. The first operand
can be either of:

(expression [,expression]...)

is a sequence of SQL value expressions, separated by commas and enclosed
in parentheses. expression cannot include an aggregate function unless
expression is in a HAVING clause. expression can be a scalar subquery
(a subquery that returns a single row consisting of a single column). See
Expressions on page 6-41.

row-subquery

is a subquery that returns a single row (consisting of a sequence of values).
See Subquery on page 6-112.

ALL

specifies that the predicate is true if the comparison is true for every row selected
by table-subquery (or if table-subquery selects no rows), and specifies that
the predicate is false if the comparison is false for at least one row selected.

row-value-constructor comparison-op quantifier table-subquery

row-value-constructor is:
 (expression [,expression]...)
 | row-subquery

comparison-op is:
 = Equal
 | <> Not equal
 | != Not equal
 | < Less than
 | > Greater than
 | <= Less than or equal to
 | >= Greater than or equal to

quantifier is:
 ALL | ANY | SOME
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-101

SQL/MX Language Elements Quantified Comparison Predicates
ANY | SOME

specifies that the predicate is true if the comparison is true for at least one row
selected by the table-subquery and specifies that the predicate is false if the
comparison is false for every row selected (or if table-subquery selects no
rows).

table-subquery

provides the values for the comparison. The number of values returned by the
row-value-constructor must be equal to the number of values specified by
the table-subquery, and the data types of values returned by the row-value-
constructor must be comparable to the data types of values returned by the
table-subquery. See Subquery on page 6-112.

Considerations for ALL, ANY, SOME

Let R be the result of the row-value-constructor, T the result of the table-
subquery, and RT a row in T.

Result of R comparison-op ALL T

If T is empty or if R comparison-op RT is true for every row RT in T, the
comparison-op ALL predicate is true.

If R comparison-op RT is false for at least one row RT in T, the comparison-op
ALL predicate is false.

Result of R comparison-op ANY T or R comparison-op SOME T

If T is empty or if R comparison-op RT is false for every row RT in T, the
comparison-op ANY predicate is false.

If R comparison-op RT is true for at least one row RT in T, the comparison-op
ANY predicate is true.

Examples of ALL, ANY, SOME

 This predicate is true if the salary is greater than the salaries of all the employees
who have a jobcode of 420:

salary > ALL (SELECT salary
 FROM persnl.employee
 WHERE jobcode = 420)

Consider this SELECT statement using the preceding predicate:

SELECT empnum, first_name, last_name, salary
FROM persnl.employee
WHERE salary > ALL (SELECT salary
 FROM persnl.employee
 WHERE jobcode = 420);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-102

SQL/MX Language Elements Quantified Comparison Predicates
The inner query providing the comparison values yields these results:

SELECT salary
FROM persnl.employee
WHERE jobcode = 420;

SALARY

 33000.00
 36000.00
 18000.10

--- 3 row(s) selected.

The SELECT statement using this inner query yields these results. The salaries
listed are greater than the salary of every employees with jobcode equal to 420—
that is, greater than $33,000.00, $36,000.00, and $18,000.10:

SELECT empnum, first_name, last_name, salary
FROM persnl.employee
WHERE salary > ALL (SELECT salary
 FROM persnl.employee
 WHERE jobcode = 420);

EMPNUM FIRST_NAME LAST_NAME SALARY
------ --------------- -------------------- -----------
 1 ROGER GREEN 175500.00
 23 JERRY HOWARD 137000.10
 29 JANE RAYMOND 136000.00
 ...
 343 ALAN TERRY 39500.00
 557 BEN HENDERSON 65000.00
 568 JESSICA CRINER 39500.00

--- 23 row(s) selected.

 This predicate is true if the part number is equal to any part number with more than
five units in stock:

partnum = ANY (SELECT partnum
 FROM sales.odetail
 WHERE qty_ordered > 5)

Consider this SELECT statement using the preceding predicate:

SELECT ordernum, partnum, qty_ordered
FROM sales.odetail
WHERE partnum = ANY (SELECT partnum
 FROM sales.odetail
 WHERE qty_ordered > 5);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-103

SQL/MX Language Elements Rowset Predicates
The inner query providing the comparison values yields these results:

SELECT partnum
FROM sales.odetail
WHERE qty_ordered > 5;

Part/Num

 2403
 5100
 5103
 6301
 6500

--- 60 row(s) selected.

The SELECT statement using this inner query yields these results. All of the order
numbers listed have part number equal to any part number with more than five
total units in stock—that is, equal to 2403, 5100, 5103, 6301, 6500, and so on:

SELECT ordernum, partnum, qty_ordered
FROM sales.odetail
WHERE partnum = ANY (SELECT partnum
 FROM sales.odetail
 WHERE qty_ordered > 5);

Order/Num Part/Num Qty/Ord
---------- -------- ----------
 100210 244 3
 100210 2001 3
 100210 2403 6
 100210 5100 10
 100250 244 4
 100250 5103 10
 100250 6301 15
 100250 6500 10

--- 71 row(s) selected.

Rowset Predicates

A predicate that contains a rowset expression is called a rowset predicate. A rowset
predicate is an array of single value predicates, where the nth predicate is composed
from nth rowset element. Each array element in a rowset predicate returns true, false
or unknown.

For more information about rowsets, see the SQL/MX Programming Manual for C and
COBOL.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-104

SQL/MX Language Elements Pseudocolumns
Pseudocolumns
A pseudocolumn is a virtual column, which behaves like a table column. You can only
select values from a pseudocolumn. You cannot insert, update, or delete values from a
pseudocolumn. User queries can access the values from a sequence generator using the fol-
lowing pseudocolumns:

 CURRVAL, which returns the current value in the sequence

 NEXTVAL, which returns the next value in the sequence

sequence

specifies the ANSI name of the sequence generator.

sequence.CURRVAL | sequence.NEXTVAL
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-105

SQL/MX Language Elements Considerations for Pseudocolumns
Considerations for Pseudocolumns

You must access NEXTVAL at least once in a session before accessing CURRVAL.
You can access NEXTVAL and CURRVAL in same or different statements in a session.

You can use the pseudocolumns in:

 The select list of a SELECT statement that is not contained in the subquery, or
the view

 The select list of a top level subquery in an INSERT statement

 The VALUES clause of an INSERT statement

 The SET clause of an UPDATE statement

You must not use the pseudocolumns in:

 A trigger, view, or constraint definition

 An embedded UPDATE, DELETE, or stream access query

 A DELETE statement

 An aggregate or sequence function

 The WHERE clause of a SELECT statement

 A query with a GROUP BY, SEQUENCE BY, or ORDER BY clause

 A CASE expression

 A query with a UNION clause

 As a parameter to a CALL statement

Rules for Pseudocolumns

 After a sequence generator is created, the first reference to NEXTVAL from an
SQL statement returns the initial value (START WITH value) of the sequence.
Subsequent references to NEXTVAL returns the current value and then increments
or decrements the sequence value by the defined increment or decrement.

 Any reference to CURRVAL always returns the current value of the sequence,
which is the value returned by the last reference to NEXTVAL.

 If the SQL statement contains references to both CURRVAL and NEXTVAL, then
the sequence is incremented or decremented and the same value is returned for
both CURRVAL and NEXTVAL.

 The NEXTVAL value is incremented or decremented for the following:

 Every row inserted by the outermost INSERT statement.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-106

SQL/MX Language Elements Schemas
 Every row returned by the outermost SELECT statement of an
INSERT...SELECT statement. In this case, the NEXTVAL reference must be
from the VALUES clause.

 Every row projected by the outermost SELECT statement.

 Every row updated with an UPDATE statement. In this case, sequence can be
acccessed only from the SET clause.

 The sequence generator is updated by an internal transaction. Sequence
generator updates are independent of the current DML transaction.

Schemas
The ANSI SQL:1999 schema name is an SQL identifier that is unique for a given ANSI
catalog name. NonStop SQL/MX automatically qualifies a schema name with the
current default catalog name unless you explicitly specify a catalog name with the
schema name:

catalog.schema

The three-part logical name of the form catalog.schema.object is an ANSI name.
The parts catalog and schema denote the ANSI-defined catalog and schema.

To be compliant with ANSI SQL:1999, NonStop SQL/MX provides support for ANSI
three-part object names. By using these names, you can develop ANSI-compliant
applications that access all SQL/MX and SQL/MP objects. You can access SQL/MX
objects with the three-part name of the actual object, but you must create an alias for
SQL/MP objects. See CREATE SQLMP ALIAS Statement on page 2-104 and ALTER
SEQUENCE Statement on page 2-13 for more information.

See SET SCHEMA Statement on page 2-370, Object Naming on page 10-60, and
Using NonStop SQL/MX to Access SQL/MP Databases on page 1-25.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-107

SQL/MX Language Elements Search Condition
Search Condition
A search condition is used to choose rows from tables or views, depending on the
result of applying the condition to rows. The condition is a Boolean expression
consisting of predicates combined together with OR, AND, and NOT operators.

You can use a search condition in the WHERE clause of a SELECT, DELETE, or
UPDATE statement, the HAVING clause of a SELECT statement, the searched form of
a CASE expression, the ON clause of a SELECT statement that involves a join, a
CHECK constraint, or a ROWS SINCE sequence function.

OR

specifies the resulting search condition is true if and only if either of the
surrounding predicates or search conditions is true.

AND

specifies the resulting search condition is true if and only if both the surrounding
predicates or search conditions are true.

NOT

reverses the truth value of its operand—the following predicate or search condition.

predicate

is a BETWEEN, comparison, EXISTS, IN, LIKE, NULL, or quantified comparison
predicate. A predicate specifies conditions that must be satisfied for a row to be
chosen. See Predicates on page 6-85 and individual entries.

search-condition is:
 boolean-term | search-condition OR boolean-term

boolean-term is:
 boolean-factor | boolean-term AND boolean-factor

boolean-factor is:
 [NOT] boolean-primary

boolean-primary is:
 predicate | (search-condition)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-108

SQL/MX Language Elements Considerations for Search Condition
Considerations for Search Condition

Order of Evaluation

SQL evaluates search conditions in this order:

1. Predicates within parentheses
2. NOT
3. AND
4. OR

Column References

Within a search condition, a reference to a column refers to the value of that column in
the row currently being evaluated by the search condition.

Subqueries

If a search condition includes a subquery and the subquery returns no values, the
predicate evaluates to null. See Subquery on page 6-112.

Examples of Search Condition

 Select rows by using a search condition composed of three comparison predicates
joined by AND operators:

select O.ordernum, O.deliv_date, OD.qty_ordered
FROM sales.orders O,
 sales.odetail OD
WHERE qty_ordered < 9 AND deliv_date <= DATE '1998-11-01'
 AND O.ordernum = OD.ordernum;

ORDERNUM DELIV_DATE QTY_ORDERED
---------- ---------- -----------
 100210 1997-04-10 3
 100210 1997-04-10 3
 100210 1997-04-10 6
 100250 1997-06-15 4
 101220 1997-12-15 3
 ...
--- 28 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-109

SQL/MX Language Elements Rowset Search Condition
 Select rows by using a search condition composed of three comparison predicates,
two of which are joined by an OR operator (within parentheses), and where the
result of the OR and the first comparison predicate are joined by an AND operator:

SELECT partnum, S.suppnum, suppname
FROM invent.supplier S,
 invent.partsupp PS
WHERE S.suppnum = PS.suppnum
 AND (partnum < 3000 OR partnum = 7102);

PARTNUM SUPPNUM SUPPNAME
------- ------- ------------------
 212 1 NEW COMPUTERS INC
 244 1 NEW COMPUTERS INC
 255 1 NEW COMPUTERS INC
 ...
 7102 10 LEVERAGE INC

--- 18 row(s) selected.

Rowset Search Condition

A search condition that contains a rowset predicate is a rowset search condition. A
rowset search condition applies an array of search conditions to tables or views
successively, starting from the first search condition, which is obtained from the first
rowset element, and proceeding to the last search condition, which is obtained from
the last rowset element. All the search conditions are applied in a single SQL
statement.

You can use a rowset search condition in the:

 WHERE clause of a SELECT, DELETE, or UPDATE statement
 HAVING clause of a SELECT statement
 searched form of a CASE expression
 ON clause of a SELECT statement that involves a join

For more information about rowsets, see the SQL/MX Programming Manual for C and
COBOL.

Sequence Generators
A sequence generator is a database object that generates unique sequential values.
For example, you can use sequence generators to generate primary key values. After
a number is generated, the sequence is incremented for ascending sequence and
decremented for descending sequence.

For information about creating, altering and dropping sequence generators, see
CREATE SEQUENCE Statement on page 2-100, ALTER SEQUENCE Statement on
page 2-13, and DROP SEQUENCE Statement on page 2-185.

After a sequence generator is created, you can access its values in SQL statements
with the CURRVAL pseudocolumn, which returns the current value of the sequence, or
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-110

SQL/MX Language Elements Sequence Generators
the NEXTVAL pseudocolumn, which increments or decrements the sequence and
returns the new value.

For more information, see Pseudocolumns on page 6-105.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-111

SQL/MX Language Elements SQL/MP Aliases
SQL/MP Aliases
In product versions prior to SQL/MX Release 2.x, you referenced SQL/MP database
objects using their Guardian physical names. In SQL/MX Release 2.x you can create
SQL/MP aliases that map logical object names to physical Guardian locations.
SQL/MP aliases are simulated ANSI names that represent the underlying Guardian
physical names of SQL/MP objects. True ANSI names do not exist for SQL/MP
objects.

You can use the CREATE SQLMP ALIAS command within your application to create
the mappings from logical to physical names. When NonStop SQL/MX executes this
command, it inserts a mapping as a row in the OBJECTS table.

See CREATE SQLMP ALIAS Statement on page 2-104, ALTER SEQUENCE
Statement on page 2-13, and DROP SQLMP ALIAS Statement on page 2-188 for
descriptions of the statements that affect SQL/MP Aliases. See OBJECTS Table on
page 10-22 for a description of the table. See Database Object Names on page 6-13
for a description of Object Names and their relationship with the OBJECTS Table.

Stored Procedures
A stored procedure is a type of user-defined routine (UDR) that operates within a
database server. Stored procedures are registered in NonStop SQL/MX during the
execution of a CREATE PROCEDURE statement and invoked by NonStop SQL/MX
during the execution of a CALL statement. For more information, see CREATE
PROCEDURE Statement on page 2-88 and CALL Statement on page 2-54.

Unlike a user-defined function, a stored procedure does not return a value directly to
the caller. Instead, a stored procedure returns a value to a host variable or dynamic
parameter in its parameter list.

NonStop SQL/MX supports only stored procedures that are written in the Java
language. For more information, see the SQL/MX Guide to Stored Procedures in Java.

Subquery
A subquery is a query expression enclosed in parentheses. Its syntactic form is
specified in the syntax of a SELECT statement. For more information about query
expressions, see SELECT Statement on page 2-330.

A subquery is used to provide values for a BETWEEN, comparison, EXISTS, IN, or
quantified comparison predicate in a search condition. It is also used to specify a
derived table in the FROM clause of a SELECT statement.

A subquery can be a table, row, or scalar subquery. Therefore, its result table can be a
table consisting of multiple rows and columns, a single row of column values, or a
single row consisting of only one column value.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-112

SQL/MX Language Elements Subquery
When you use rowset-search-condition in a subquery, all the individual
search-conditions in the rowset are applied successively. The result table is the
union of all the rows selected by these successive applications. Using rowsets in a
subquery implies that the entire rowset in the subquery is evaluated and the result
table passed on the outer query. If the outer query has rowset-search-
conditions, for each element in the outer query rowset-search-condition,
NonStop SQL/MX will use the entire result table from the subquery, obtained by
evaluating all the search conditions in the subquery rowset-search-condition.

SELECT Form of a Subquery

A subquery is typically specified as a special form of a SELECT statement enclosed in
parentheses that queries (or selects) to provide values in a search condition or to
specify a derived table as a table reference.

The form of a subquery specified as a SELECT statement is:

Notice that an ORDER BY clause is not allowed in a subquery.

Using Subqueries to Provide Comparison Values

When a subquery is used to provide comparison values, the SELECT statement that
contains the subquery is called an outer query. The subquery within the SELECT is
called an inner query. In this case, the differences between the SELECT statement and
the SELECT form of a subquery are:

 A subquery is always enclosed in parentheses.

 A subquery cannot contain an ORDER BY clause.

 If a subquery is not part of an EXISTS, IN, or quantified comparison predicate, and
the subquery evaluates to more than one row, a run-time error occurs.

Nested Subqueries When Providing Comparison Values

An outer query (a main SELECT statement) can have up to 15 levels of nested
subqueries. Subqueries within the same WHERE or HAVING clause are at the same
level. For example, this query has one level of nesting:

SELECT * FROM TABLE1
 WHERE A = (SELECT P FROM TABLE2 WHERE Q = 1)
 AND B = (SELECT X FROM TABLE3 WHERE Y = 2)

(SELECT [ALL | DISTINCT] select-list
 FROM table-ref [,table-ref]...
 [WHERE search-condition | rowset-search-condition]
 [GROUP BY colname [,colname]...]
 [HAVING search-condition | rowset-search-condition]
 [[FOR] access-option ACCESS]
 [IN {SHARE | EXCLUSIVE} MODE]
 [UNION [ALL] select-stmt])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-113

SQL/MX Language Elements Tables
A subquery within the WHERE clause of another subquery is at a different level,
however, so this query has two levels of nesting:

SELECT * FROM TABLE1
 WHERE A = (SELECT P FROM TABLE2
 WHERE Q = (SELECT X FROM TABLE3
 WHERE Y = 2))

Correlated Subqueries When Providing Comparison Values

In the search condition of a subquery, when you refer to columns of any table or view
defined in an outer query, the reference is called an outer reference. A subquery
containing an outer reference is called a correlated subquery.

If you refer to a column name that occurs in more than one outer query, you must
qualify the column name with the correlation name of the table or view to which it
belongs. Similarly, if you refer to a column name that occurs in the subquery and in one
or more outer queries, you must qualify the column name with the correlation name of
the table or view to which it belongs. The correlation name is known to other
subqueries at the same level, or to inner queries but not to outer queries.

If you use the same correlation name at different levels of nesting, an inner query uses
the one from the nearest outer level. MXCI checks the FROM clause of the subquery
first, then its outer query, and so forth, until it determines the applicable table or view.

Tables
A table is a logical representation of data in which a set of records is represented as a
sequence of rows, and the set of fields common to all rows is represented by columns.
A column is a set of values of the same data type with the same definition. The
intersection of a row and column represents the data value of a particular field in a
particular record.

Every table must have one or more columns, but the number of rows can be zero.
There is no inherent order of rows within a table.

You create an SQL/MX or SQL/MP user table by using the CREATE TABLE statement
in the appropriate environment. The definition of a user table within the statement
includes this information:

 Name of the table

 Name of each column of the table

 Type of data you can store in each column of the table

 Other information about the table, including the physical characteristics of the file
that stores the table (for example, the storage order of rows within the table)

An SQL/MP table is described in an SQL/MP catalog and stored in a physical file in the
Guardian environment. An SQL/MP table name must be a Guardian name of the form:
[\node.][[$volume.]subvol.]filename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-114

SQL/MX Language Elements Triggers
An SQL/MX table is described in an SQL/MX schema and stored in a physical file in
the Guardian environment. An SQL/MX table name can be a fully qualified ANSI name
of the form catalog-name.schema-name.object-name.

Base Tables and Views

In some descriptions of SQL, tables created with a CREATE TABLE statement are
referred to as base tables to distinguish them from views, which are referred to as
logical tables.

A view is a named logical table defined by a query specification that uses one or more
base tables or other views. See Views on page 6-115.

Example of a Base Table

For example, this EMPLOYEE table is a base table in the sample database:

In this sample table, the columns are EMPNUM, FIRST_NAME, LAST_NAME,
DEPTNUM, JOBCODE, and SALARY. The values in each column have the same data
type.

See Tables in the SQL/MP Reference Manual.

Triggers
A trigger is a mechanism that resides in the database and specifies that when a
particular action—an insert, delete, or update—occurs on a particular table,
NonStop SQL/MX should automatically perform one or more additional actions.
Triggers are not allowed on SQL/MP aliases.

For a complete description of triggers and their use, see Considerations for CREATE
TRIGGER on page 2-146. See also CREATE TRIGGER Statement on page 2-144,
ALTER TRIGGER Statement on page 2-48, DROP TRIGGER Statement on
page 2-192, SET Statement on page 2-365, and SIGNAL SQLSTATE Statement on
page 2-381.

Views
A view provides an alternate way of looking at data in one or more tables. A view is a
named specification of a result table, which is a set of rows selected or generated from

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY

1 ROGER GREEN 9000 100 175500.00

23 JERRY HOWARD 1000 100 137000.00

75 TIM WALKER 3000 300 32000.00

.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-115

SQL/MX Language Elements SQL/MX Views
one or more base tables or other views. The specification is a SELECT statement that
is executed whenever the view is referenced.

An view is a logical table created with the CREATE VIEW statement and derived by
projecting a subset of columns, restricting a subset of rows, or both, from one or more
base tables or other views.

You cannot create a view that references both an SQL/MP table and an SQL/MX table.

SQL/MX Views

The distinction between protection and shorthand views does not exist for SQL/MX
views. To create a view, you must have SELECT privileges for the objects underlying
the view.

A view’s name must be unique among table and view names within the schema that
contains it. You cannot create views with names prefixed by the name of a user
metadata table. For example, you cannot create a view named
HISTOGRAMS_MYVIEW.

Single table views are updatable. Multitable views are not updatable.

For more information about SQL/MX views, see CREATE VIEW Statement on
page 2-154 and DROP VIEW Statement on page 2-193.

SQL/MP Views

SQL/MP views are either protection views or shorthand views. A protection view is
derived from a single table and can be read, updated, and secured. A shorthand view
is derived from one or more tables or other views and inherits the security of the
underlying tables. A shorthand view can be read but not updated.

A view name must be a Guardian name.

For retrieval, you can use all views like base tables. Whether you can use a view in an
insert, update, or delete operation depends on its definition.

For more information about SQL/MP views, see Views in the SQL/MP Reference
Manual.

Example of a View

You can define a view to show only part of the data in a table. For example, this
EMPLIST view is defined as part of the EMPLOYEE table in the sample database:

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE

1 ROGER GREEN 9000 100

23 JERRY HOWARD 1000 100

75 TIM WALKER 3000 300

.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-116

SQL/MX Language Elements SQL/MP Views
In this sample view, the columns are EMPNUM, FIRST_NAME, LAST_NAME,
DEPTNUM, and JOBCODE. The SALARY column in the EMPLOYEE table is not part
of the EMPLIST view.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-117

SQL/MX Language Elements SQL/MP Views
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
6-118

7 SQL/MX Clauses

Clauses are used by SQL/MX statements to specify default values, ways to sample or
sort data, how to store physical data, how to partition file, and other details.

This section describes these clauses for SQL/MX objects:

DEFAULT Clause on
page 7-2

Specifies a default value for a column being created.

PARTITION Clause on
page 7-6

Creates one or more secondary partitions for a table or
index.

SAMPLE Clause on
page 7-9

Specifies the sampling method used to select a subset of
the intermediate result table of a SELECT statement.

SEQUENCE BY Clause
on page 7-19

Specifies the order in which to sort rows of the
intermediate result table for calculating sequence
functions.

STORE BY Clause on
page 7-23

Specifies the organization and storage order of the
physical files that make up a table.

TRANSPOSE Clause
on page 7-26

Generates, for each row of the SELECT source table, a
row for each item in the transpose item list.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-1

SQL/MX Clauses DEFAULT Clause
DEFAULT Clause
Considerations for DEFAULT
Examples of DEFAULT

The DEFAULT option of the CREATE TABLE or ALTER TABLE table-name ADD
COLUMN statement specifies a default value for a column being created. The default
value is used when a row is inserted in the table without a value for the column.

Syntax Description of DEFAULT

DEFAULT literal

is a literal of a data type compatible with the data type of the associated column.

For a character column, literal must be a string literal of no more than 240
characters or the length of the column, whichever is less. The maximum length of a
default value for a character column is 240 bytes, which includes the control
characters (character set prefixes and single quote delimiter).

For a numeric column, literal must be a numeric literal that does not exceed
the defined length of the column. The number of digits to the right of the decimal
point must not exceed the scale of the column, and the number of digits to the left
of the decimal point must not exceed the number in the length (or length minus
scale, if you specified scale for the column).

For a datetime column, literal must be a datetime literal with a precision that
matches the precision of the column.

For an INTERVAL column, literal must be an INTERVAL literal that has the
range of INTERVAL fields defined for the column.

DEFAULT NULL

specifies NULL as the default. This default can occur only with a column that
allows null.

DEFAULT default | NO DEFAULT | identity-column-default-
specification-type

default is:
literal
| NULL
| CURRENT_DATE
| CURRENT_TIME
| CURRENT_TIMESTAMP

identity-column-default-specification-type is:
GENERATED BY DEFAULT AS IDENTITY
| GENERATED ALWAYS AS IDENTITY
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-2

SQL/MX Clauses Considerations for DEFAULT
DEFAULT CURRENT_DATE

specifies the default value for the column as the value returned by the
CURRENT_DATE function at the time of the operation that assigns a value to the
column. This default can occur only with a column whose data type is DATE.

DEFAULT CURRENT_TIME

specifies the default value for the column as the value returned by the
CURRENT_TIME function at the time of the operation that assigns a value to the
column. This default can occur only with a column whose data type is TIME.

DEFAULT CURRENT_TIMESTAMP

specifies the default value for the column as the value returned by the
CURRENT_TIMESTAMP function at the time of the operation that assigns a value
to the column. This default can occur only with a column whose data type is
TIMESTAMP.

DEFAULT {CURRENT_USER | USER}

specifies the default value for the column as the value returned by the
CURRENT_USER or USER function at the time of the operation that assigns a
value to the column. This default can occur only with a column whose data type is
fixed or variable length CHARACTER.

NO DEFAULT

specifies the column has no default value. You cannot specify NO DEFAULT in an
ALTER TABLE statement. See ALTER TABLE Statement on page 2-19.

identity-column-default-specification-type

The identity-column-default-specification-type option specifies
if an IDENITY column is of GENERATED BY DEFAULT AS IDENTITY type or
GENERATED ALWAYS AS IDENTITY type. For more details, see CREATE
TABLE Statement on page 2-107.

Considerations for DEFAULT

Default Value on a CREATE TABLE Statement

When the DEFAULT clause for a column is not specified, the column definition and the
NOT_NULL_CONSTRAINT_DROPPABLE_OPTION in the SYSTEM_DEFAULTS table
affects the default value in these ways:

Column Definition Default Value

column data-type Default null.

column data-type
 NOT NULL DROPPABLE

Default null.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-3

SQL/MX Clauses Examples of DEFAULT
See CREATE TABLE Statement on page 2-107.

Examples of DEFAULT

 This example uses DEFAULT clauses on CREATE TABLE to specify default
column values:

CREATE TABLE items
 (item_id CHAR(12) NO DEFAULT
 ,description CHAR(50) DEFAULT NULL
 ,num_on_hand INTEGER DEFAULT 0 NOT NULL
 ,PRIMARY KEY (item_id) NOT DROPPABLE);

 This example uses DEFAULT clauses on CREATE TABLE to specify default
column values:

CREATE TABLE persnl.project
 (projcode NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 ,empnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 ,projdesc VARCHAR (18)
 DEFAULT NULL
 ,start_date DATE
 DEFAULT CURRENT_DATE
 ,ship_timestamp TIMESTAMP
 DEFAULT CURRENT_TIMESTAMP
 ,est_complete INTERVAL DAY
 DEFAULT INTERVAL '30' DAY
 ,PRIMARY KEY (projcode) NOT DROPPABLE);

 The following example uses DEFAULT clauses on CREATE TABLE to specify
default column values:

CREATE TABLE items
 (item_id CHAR(12) NO DEFAULT
 ,description CHAR(50) DEFAULT NULL
 ,num_on_hand INTEGER DEFAULT 0 NOT NULL);

column data-type
 NOT NULL NOT DROPPABLE

No default.

column data-type
 NOT NULL

Default null when NOT_NULL_
CONSTRAINT_DROPPABLE_OPTION is
set to ON.

column data-type
 NOT NULL

No default when NOT_NULL_
CONSTRAINT_DROPPABLE_OPTION is
set to OFF (the default).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-4

SQL/MX Clauses Examples of DEFAULT
 The following example uses DEFAULT clauses on CREATE TABLE to specify
default column values:

CREATE TABLE persnl.project
 (projcode NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL
 ,empnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL
 ,projdesc VARCHAR (18)
 DEFAULT NULL
 ,start_date DATE
 DEFAULT CURRENT_DATE
 ,ship_timestamp TIMESTAMP
 DEFAULT CURRENT_TIMESTAMP
 ,est_complete INTERVAL DAY
 DEFAULT INTERVAL '30' DAY
 ,PRIMARY KEY (projcode)) ;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-5

SQL/MX Clauses PARTITION Clause
PARTITION Clause
Considerations for PARTITION
Examples of Partitions

The PARTITION clause of the CREATE INDEX and CREATE TABLE statements
creates one or more secondary partitions for a table or index.

NonStop SQL/MX supports range partitioning and hash partitioning. See Partitions on
page 6-83 for details.

PARTITION is an SQL/MX extension.

BY (partitioning-column[,partitioning-column]...)

specifies the partitioning columns. The default is the default partitioning key
described by the STORE BY clause. Partitioning character columns can only be of
ISO88591 character set.

[(ADD partn-defn [,ADD partn-defn])]

specifies the LOCATION of secondary partitions for a range-partitioned table or a
hash-partitioned table. For range-partitioned tables only, each ADD also specifies
the FIRST KEY for that partition.

FIRST KEY {col-value | (col-value [,col-value]...)}

specifies the beginning of the range for a range-partitioned table or index partition.
The FIRST KEY clause specifies the lowest values in the partition for columns
stored in ascending order and the highest values in the partition for columns stored
in descending order. These column values are referred to as the partitioning key.

{[RANGE] PARTITION
 [BY (partitioning-column [,partitioning-column])]
 [(ADD range-partn-defn [,ADD range-partn-defn]...)]
|
HASH PARTITION
 [BY (partitioning-column [,partitioning-column]...)]
 (ADD partn-defn [,ADD partn-defn]...)}

range-partn-defn is:
 FIRST KEY {col-value | (col-value [,col-value]...)}
 partn-defn

partn-defn is:
 LOCATION $volume[.subvolume.file-name]
 [NAME partition-name] [attribute [attribute]...]

attribute is:
 EXTENT ext-size | (pri-ext-size [,sec-ext-size])
 | MAXEXTENTS num-extents
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-6

SQL/MX Clauses Considerations for PARTITION
col-value is a literal that specifies the first value allowed in the associated
partition for that column of the partitioning key. If there are more storage key
columns than col-value items, the first key value for each remaining key column
is the lowest or highest value for the data type of the column (the lowest value for
an ascending column and the highest value for a descending column). col-value
must contain only characters from the ISO88591 character set.

The values you specify on the FIRST KEY clause cannot be the same as the
values you specify on the FIRST KEY clause for another partition of the same table
or index.

For a table partition, the values in the FIRST KEY clause have a one-to-one
correspondence with the columns in the partitioning key of the table.

For an index partition, the values in the FIRST KEY clause have a one-to-one
correspondence with the partitioning key of the index.

LOCATION [\node.]$volume[.subvolume.file-name]

specifies a disk volume and, optionally, a node, subvolume and file name for the
partition. The node must be the name of a node on the Expand network. For
Guardian files representing a table or index partition, a view label, or a stored
procedure node can be any node from which the object's catalog is visible.

The subvolume must be the designated subvolume for the schema in which the
table or index is being created. More than one partition of a given table or index
can be located on a single disk volume.

partition-name

is an SQL identifier for a partition.

ATTRIBUTE

specifies attributes of the partition. See EXTENT on page 9-6 and MAXEXTENTS
on page 9-7 for more information.

Considerations for PARTITION

Data Type Limitations

You cannot mix APPROXIMATE data types with EXACT data types in specifying a first
key value or a default value for a column. For example, if the column has type
NUMERIC (9,0), for the value of that column in a FIRST KEY clause, 1000 will be
accepted, but 10E4 will not (an error is returned if 10E4 is specified in this example).

EXTENT Controls the size of extents that will be allocated on disk.

MAXEXTENTS Controls the maximum disk space to be allocated.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-7

SQL/MX Clauses Examples of Partitions
Decoupling of Clustering Key and Partitioning Key

Decoupling the clustering key from the partitioning key allows those keys to differ.
NonStop SQL/MX does not support full decoupling (that is, complete independence of
the keys), but does support partial decoupling in which the set of partitioning key
columns is allowed to be a subset of the clustering key columns. The composition of
the clustering key is described in the STORE BY clause. See the STORE BY Clause
on page 7-23. The partitioning key is made up of one of these:

 The columns you specify in the PARTITION BY clause
 The clustering key (omitting SYSKEY) if no PARTITION BY clause was specified

For creation of partitioned or range partitioned tables, the set of columns you specify
for the partitioning key can be identical to or a subset of the clustering key columns,
excluding the SYSKEY if present, and these columns can be specified in any order. A
decoupled partitioned or range partitioned index can be created.

Examples of Partitions

This example creates a table with three partitions that are on different physical
volumes and which have different extent sizes:

CREATE TABLE TIMBUKTOO

(ORDERNUM NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 PARTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 UNIT_PRICE NUMERIC (8,2) NO DEFAULT NOT NULL,
 QTY_ORDERED NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,

 PRIMARY KEY (ORDERNUM, PARTNUM) NOT DROPPABLE)

 STORE BY PRIMARY KEY
 LOCATION $DATA14.ZSDLKRIS.ZZZZ0000
 ATTRIBUTE EXTENT (125000,125000) MAXEXTENTS 600

 PARTITION
 (ADD FIRST KEY (10000) LOCATION $DATA14 EXTENT 900
 MAXEXTENTS 300,

 ADD FIRST KEY (20000) LOCATION $DATA15 EXTENT (1024,2048)
 MAXEXTENTS 600,

 ADD FIRST KEY (30000) LOCATION $DATA16 MAXEXTENTS 599
 EXTENT 66000);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-8

SQL/MX Clauses SAMPLE Clause
SAMPLE Clause
Considerations for SAMPLE
Examples of SAMPLE

The SAMPLE clause of the SELECT statement specifies the sampling method used to
select a subset of the intermediate result table of a SELECT statement. The
intermediate result table consists of the rows returned by a WHERE clause or, if there
is no WHERE clause, the FROM clause. The SAMPLE clause always uses READ
UNCOMMITTED access mode. It overrides the user specified access mode. See
SELECT Statement on page 2-330.

SAMPLE is an SQL/MX extension.

RANDOM percent-size

directs NonStop SQL/MX to choose rows randomly (each row having an unbiased
probability of being chosen) without replacement from the result table. The
sampling size is determined by the percent-size, defined as:

SAMPLE sampling-method

sampling-method is:
 RANDOM percent-size
 | FIRST rows-size
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]
 | PERIODIC rows-size EVERY number-rows ROWS
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]

percent-size is:
 percent-result PERCENT [ROWS
 | {CLUSTERS OF number-blocks BLOCKS}]
 | BALANCE WHEN condition
 THEN percent-result PERCENT [ROWS]
 [WHEN condition THEN percent-result PERCENT [ROWS]]...
 [ELSE percent-result PERCENT [ROWS]] END

rows-size is:
 number-rows ROWS
 | BALANCE WHEN condition THEN number-rows ROWS
 [WHEN condition THEN number-rows ROWS]...
 [ELSE number-rows ROWS] END
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-9

SQL/MX Clauses SAMPLE Clause
 percent-result PERCENT [ROWS
 | {CLUSTERS OF number-blocks BLOCKS}]
| BALANCE WHEN condition THEN percent-result PERCENT [ROWS]
 [WHEN condition THEN percent-result PERCENT [ROWS]]...
 [ELSE percent-result PERCENT [ROWS]] END

specifies the value of the size for RANDOM sampling by using a percent of the
result table. The value percent-result must be a numeric literal.

You can determine the actual size of the sample. Suppose that there are N
rows in the intermediate result table. Each row is picked with a probability of
r%, where r is the sample size in PERCENT. Therefore, the actual size of the
resulting sample is approximately r% of N. The number of rows picked follows
a binomial distribution with mean equal to r * N/100.

If you specify a sample size greater than 100 PERCENT, NonStop SQL/MX
returns all the rows in the result table plus duplicate rows. The duplicate rows
are picked from the result table according to the specified sampling method.
This technique is referred to as oversampling and is not allowed with cluster
sampling.

ROWS

specifies row sampling. Row sampling is the default if you specify neither
ROWS nor CLUSTERS.

CLUSTERS OF number-blocks BLOCKS

specifies cluster sampling. You can use the CLUSTERS clause for a base
table only if there is no WHERE clause in the SELECT statement. First, a
cluster is chosen randomly, and then all rows in the selected cluster are
added to the sample. The size of the cluster is determined by number-
blocks. This process is repeated until the sample size is generated. See
Cluster Sampling on page 7-11.

BALANCE

If you specify a BALANCE expression, NonStop SQL/MX performs
stratified sampling. The intermediate result table is divided into disjoint
strata based on the WHEN conditions. Each stratum is sampled
independently by using the sampling size. For a given row, the stratum to
which it belongs is determined by the first WHEN condition that is true for
that row—if there is a true condition. If there is no true condition, the row
belongs to the ELSE stratum.

FIRST rows-size [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]

directs NonStop SQL/MX to choose the first rows from the result table. You can
specify the order of the rows to sample. Otherwise, NonStop SQL/MX chooses an
arbitrary order. The sampling size is determined by the rows-size, defined as:
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-10

SQL/MX Clauses Considerations for SAMPLE
 number-rows ROWS
| BALANCE WHEN condition THEN number-rows ROWS
 [WHEN condition THEN number-rows ROWS]...
 [ELSE number-rows ROWS] END

specifies the value of the size for FIRST sampling by using the number of rows
intended in the sample. The value number-rows must be an integer literal.

You can determine the actual size of the sample. Suppose that there are N
rows in the intermediate result table. If the size s of the sample is specified as
a number of rows, the actual size of the resulting sample is the minimum of s
and N.

PERIODIC rows-size EVERY number-rows ROWS
 [SORT BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...]

directs NonStop SQL/MX to choose the first rows from each block (or period) of
contiguous rows. This sampling method is equivalent to a separate FIRST
sampling for each period, and the rows-size is defined as in FIRST sampling.

The size of the period is specified as a number of rows. You can specify the order
of the rows to sample. Otherwise, NonStop SQL/MX chooses an arbitrary order.

You can determine the actual size of the sample. Suppose that there are N rows in
the intermediate result table. If the size s of the sample is specified as a number of
rows and the size p of the period is specified as a number of rows, the actual size
of the resulting sample is calculated as:

FLOOR (N/p) * s + minimum (MOD (N, p), s)

Note that minimum in this expression is used simply as the mathematical minimum
of two values.

Considerations for SAMPLE

Sample Rows

In general, when you use the SAMPLE clause, the same query returns different sets of
rows for each execution. The same set of rows is returned only when you use the
FIRST and PERIODIC sampling methods with the SORT BY option, where there are
no duplicates in the specified column combination for the sort.

Cluster Sampling

Cluster sampling is an option supported by the SAMPLE RANDOM clause in a
SELECT statement. A cluster, in this sense, is a logically contiguous set of disk blocks
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-11

SQL/MX Clauses Examples of SAMPLE
in the file in which a table is stored. The number of blocks in a cluster is specified in the
CLUSTERS subclause of the SAMPLE RANDOM clause. For example:

SELECT * FROM customers
SAMPLE RANDOM 1 PERCENT
CLUSTERS OF 2 BLOCKS;

This query randomly selects one percent of the clusters in the CUSTOMERS table and
then adds each row in all selected clusters to the result table. In other words, think of
the CUSTOMERS table as a sequence of disk blocks, where each two blocks in the
sequence is a cluster. The preceding query selects one percent of the clusters at
random and then returns all the rows in each selected cluster.

Cluster sampling can be done only on a base table, not on intermediate results.

Cluster sampling is generally faster than sampling individual rows because fewer
blocks are read from disk. In random row and periodic sampling, the entire result table
being sampled is read, and each row in the table is processed. In cluster sampling,
only the disk blocks that are part of the result table are read and processed. Therefore,
if the sampling percentage is small, the performance advantage of cluster sampling
over other sampling methods can be dramatic.

Cluster sampling is designed for large tables. It might return zero rows if there are not
enough blocks in a table to fill at least one cluster and you specify a large cluster size.
This can also happen with a partitioned table if each partition does not have enough
blocks to fill at least one cluster. For example, if a table uses 1000 blocks and is
distributed over 256 partitions, there will be an average of 4 blocks per partition. If you
specify a SAMPLE RANDOM clause with a cluster size of 25 blocks and ten percent,
even if there are 10,000 rows in the table, sampling will result in the SELECT
statement returning 0 rows. To avoid this, use a smaller CLUSTER size.

For more information, see the SQL/MX Query Guide.

Examples of SAMPLE

Within SQLCI, suppose that the data-mining tables SALESPER, SALES, and DEPT
have been created as:

CREATE TABLE $db.mining.salesper
 (empid NUMERIC (4) UNSIGNED NOT NULL
 ,dnum NUMERIC (4) UNSIGNED NOT NULL
 ,salary NUMERIC (8,2) UNSIGNED
 ,age INTEGER
 ,sex CHAR (6)
 ,PRIMARY KEY (empid));

CREATE TABLE $db.mining.sales
 (empid NUMERIC (4) UNSIGNED NOT NULL
 ,product VARCHAR (20)
 ,region CHAR (4)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-12

SQL/MX Clauses Examples of SAMPLE
 ,amount NUMERIC (9,2) UNSIGNED
 ,PRIMARY KEY (empid));

CREATE TABLE $db.mining.dept
 (dnum NUMERIC (4) UNSIGNED NOT NULL
 ,name VARCHAR (20)
 ,PRIMARY KEY (dnum));

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.salesperson $db.mining.salesper;
CREATE SQLMP ALIAS db.mining.sales $db.mining.sales;
CREATE SQLMP ALIAS db.mining.department $db.mining.dept;

Suppose, too, that sample data is inserted into this database similar to the data in the
sample database.

 Return the SALARY of the youngest 50 sales people:

SELECT salary
FROM salesperson
SAMPLE FIRST 50 ROWS SORT BY age;

SALARY

 90000.00
 90000.00
 28000.00
 27000.12
 136000.00
 37000.40
 ...

--- 50 row(s) selected.

 Return the SALARY of 50 sales people. In this case, the table is clustered on
EMPID. If the optimizer chooses a plan to access rows using the primary access
path, the result consists of salaries of the 50 sales people with the smallest
employee identifiers.

SELECT salary
FROM salesperson
SAMPLE FIRST 50 ROWS;

SALARY

 175500.00
 137000.10
 136000.00
 138000.40
 75000.00
 90000.00
 ...

--- 50 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-13

SQL/MX Clauses Examples of SAMPLE
 Return the SALARY of the youngest five sales people, skip the next 15 rows, and
repeat this process until there are no more rows in the intermediate result table.
Note that you cannot specify periodic sampling with the sample size larger than the
period.

SELECT salary
FROM salesperson
SAMPLE PERIODIC 5 ROWS EVERY 20 ROWS SORT BY age;

SALARY

 90000.00
 90000.00
 28000.00
 27000.12
 136000.00
 36000.00
 ...

--- 17 row(s) selected.

In this example, there are 62 rows in the SALESPERSON table. For each set of 20
rows, the first five rows are selected. The last set consists of two rows, both of
which are selected.

 Compute the average salary of a random 10 percent of the sales people. You will
get a different result each time you run this query because it is based on a random
sample.

SELECT AVG(salary)
FROM salesperson
SAMPLE RANDOM 10 PERCENT;

(EXPR)

 61928.57

--- 1 row(s) selected.

 Compute the average salary of a random 10 percent of the sales people using
cluster sampling where each cluster is 4 blocks. You will get a different result each
time you run this query because it is based on a random sample.

SELECT AVG(salary)
FROM salesperson
SAMPLE RANDOM 10 PERCENT CLUSTERS OF 4 BLOCKS;

(EXPR)

 50219.524

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-14

SQL/MX Clauses Examples of SAMPLE
For this query execution, the number of rows returned is limited by the total
number of rows in the SALESPERSON table. Therefore, it is possible that no rows
are returned, and the result is null.

 This query illustrates sampling after execution of the WHERE clause has chosen
the qualifying rows. The query computes the average salary of a random 10
percent of the sales people over 35 years of age. You will get a different result
each time you run this query because it is based on a random sample.

SELECT AVG(salary)
FROM salesperson
WHERE age > 35
SAMPLE RANDOM 10 PERCENT;

(EXPR)

 58000.00

--- 1 row(s) selected.

 Compute the average salary of a random 10 percent of sales people belonging to
the CORPORATE department. The sample is taken from the join of the
SALESPERSON and DEPARTMENT tables. You will get a different result each
time you run this query because it is based on a random sample.

SELECT AVG(salary)
FROM salesperson S, department D
WHERE S.DNUM = D.DNUM
AND D.NAME = 'CORPORATE'
SAMPLE RANDOM 10 PERCENT;

(EXPR)

 106250.000

--- 1 row(s) selected.

 In this example, the SALESPERSON table is first sampled and then joined with the
DEPARTMENT table. This query computes the average salary of all the sales
people belonging to the CORPORATE department in a random sample of 10
percent of the sales employees.

SELECT AVG(salary)
FROM (SELECT salary, dnum
 FROM salesperson
 SAMPLE RANDOM 10 PERCENT) AS S, department D
WHERE S.DNUM = D.DNUM
AND D.NAME = 'CORPORATE';

(EXPR)

 37000.000

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-15

SQL/MX Clauses Examples of SAMPLE
Note that the results of this query and some of the results of previous queries might
return null:

SELECT AVG(salary)
FROM (SELECT salary, dnum
 FROM salesperson
 SAMPLE RANDOM 10 PERCENT) AS S, department D
WHERE S.DNUM = D.DNUM
AND D.NAME = 'CORPORATE';

(EXPR)

 ?

--- 1 row(s) selected.

For this query execution, the number of rows returned by the embedded query is
limited by the total number of rows in the SALESPERSON table. Therefore, it is
possible that no rows satisfy the search condition in the WHERE clause.

 In this example, both the tables are sampled first and then joined. This query
computes the average salary and the average sale amount generated from a
random 10 percent of all the sales people and 20 percent of all the sales
transactions.

SELECT AVG(salary), AVG(amount)
FROM (SELECT salary, empid
 FROM salesperson
 SAMPLE RANDOM 10 PERCENT) AS S,
 (SELECT amount, empid
 FROM sales
 SAMPLE RANDOM 20 PERCENT) AS T
WHERE S.empid = T.empid;

(EXPR) (EXPR)
--------- ---------
 45000.00 31000.00

--- 1 row(s) selected.

 This example illustrates oversampling. This query retrieves 150 percent of the
sales transactions where the amount exceeds $1000. The result contains every
row at least once, and 50 percent of the rows, picked randomly, occur twice.

SELECT *
FROM sales
WHERE amount > 1000
SAMPLE RANDOM 150 PERCENT;

EMPID PRODUCT REGION AMOUNT
----- -------------------- ------ -----------
 1 PCGOLD, 30MB E 30000.00
 23 PCDIAMOND, 60MB W 40000.00
 23 PCDIAMOND, 60MB W 40000.00
 29 GRAPHICPRINTER, M1 N 11000.00
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-16

SQL/MX Clauses Examples of SAMPLE
 32 GRAPHICPRINTER, M2 S 15000.00
 32 GRAPHICPRINTER, M2 S 15000.00

--- 88 row(s) selected.

 The BALANCE option enables stratified sampling. Retrieve the age and salary of
1000 sales people such that 50 percent of the result are male and 50 percent
female.

SELECT age, sex, salary
FROM salesperson
SAMPLE FIRST
 BALANCE WHEN sex = 'male' THEN 15 ROWS
 WHEN sex = 'female' THEN 15 ROWS
 END
ORDER BY age;

AGE SEX SALARY
----------- ------ -----------
 22 male 28000.00
 22 male 90000.00
 22 female 136000.00
 22 male 37000.40

--- 30 row(s) selected.

 Retrieve all sales records with the amount exceeding $10000 and a random
sample of 10 percent of the remaining records:

SELECT *
FROM sales
SAMPLE RANDOM
 BALANCE WHEN amount > 10000 THEN 100 PERCENT
 ELSE 10 PERCENT
 END;

EMPID PRODUCT REGION AMOUNT
----- -------------------- ------ -----------
 1 PCGOLD, 30MB E 30000.00
 23 PCDIAMOND, 60MB W 40000.00
 29 GRAPHICPRINTER, M1 N 11000.00
 32 GRAPHICPRINTER, M2 S 15000.00

 228 MONITORCOLOR, M2 N 10500.00

--- 32 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-17

SQL/MX Clauses Examples of SAMPLE
 This query shows an example of stratified sampling where the conditions are not
mutually exclusive:

SELECT *
FROM sales
SAMPLE RANDOM
BALANCE WHEN amount > 10000 THEN 100 PERCENT
 WHEN product = 'PCGOLD, 30MB' THEN 25 PERCENT
 WHEN region = 'W' THEN 40 PERCENT
 ELSE 10 PERCENT
 END;

EMPID PRODUCT REGION AMOUNT
----- -------------------- ------ -----------
 1 PCGOLD, 30MB E 30000.00
 23 PCDIAMOND, 60MB W 40000.00
 29 GRAPHICPRINTER, M1 N 11000.00
 32 GRAPHICPRINTER, M2 S 15000.00
 39 GRAPHICPRINTER, M3 S 20000.00
 75 LASERPRINTER, X1 W 42000.00

--- 30 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-18

SQL/MX Clauses SEQUENCE BY Clause
SEQUENCE BY Clause
Considerations for SEQUENCE BY
Examples of SEQUENCE BY

The SEQUENCE BY clause of the SELECT statement specifies the order in which to
sort the rows of the intermediate result table for calculating sequence functions. This
option is used for processing time-sequenced rows in data mining applications. See
SELECT Statement on page 2-330.

SEQUENCE BY is an SQL/MX extension.

colname

names a column in select-list or a column in a table reference in the FROM
clause of the SELECT statement. colname is optionally qualified by a table, view,
or correlation name; for example, CUSTOMER.CITY.

ASC | DESC

specifies the sort order. ASC is the default. For ordering an intermediate result
table on a column that can contain null, nulls are considered equal to one another
but greater than all other non-null values.

You must include a SEQUENCE BY clause if you include a sequence function in the
select list of the SELECT statement. Otherwise, NonStop SQL/MX returns an error.
Further, you cannot include a SEQUENCE BY clause if there is no sequence function
in the select list. See Sequence Functions on page 8-7.

Considerations for SEQUENCE BY

 Sequence functions behave differently from set (or aggregate) functions and
mathematical (or scalar) functions.

 If you include both SEQUENCE BY and GROUP BY clauses in the same SELECT
statement, the values of the sequence functions must be evaluated first and then
become input for aggregate functions in the statement.

 For a SELECT statement that contains both SEQUENCE BY and GROUP BY
clauses, you can nest the sequence function in the aggregate function:

SELECT ordernum,
 MAX(MOVINGSUM(qty_ordered, 3)) AS maxmovsum_qty,
 AVG(unit_price) AS avg_price
FROM odetail
SEQUENCE BY partnum
GROUP BY ordernum;

SEQUENCE BY colname [ASC[ENDING] | DESC[ENDING]]
 [,colname [ASC[ENDING] | DESC[ENDING]]]...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-19

SQL/MX Clauses Considerations for SEQUENCE BY
 To use a sequence function as a grouping column, you must use a derived
table for the SEQUENCE BY query and use the derived column in the GROUP
BY clause:

SELECT ordernum, movsum_qty, AVG(unit_price)
FROM
 (SELECT ordernum, MOVINGSUM(qty_ordered, 3), unit_price
 FROM odetail
 SEQUENCE BY partnum)
 AS tab2 (ordernum, movsum_qty, unit_price)
GROUP BY ordernum, movsum_qty;

 To use an aggregate function as the argument to a sequence function, you
must also use a derived table:

SELECT MOVINGSUM(avg_price,2)
FROM
 (SELECT ordernum, AVG(unit_price)
 FROM odetail
 GROUP BY ordernum)
 AS tab2 (ordernum, avg_price)
SEQUENCE BY ordernum;

 Like aggregate functions, sequence functions generate an intermediate result. If
the query has a WHERE clause, its search condition is applied during the
generation of the intermediate result. Therefore, you cannot use sequence
functions in the WHERE clause of a SELECT statement.

 This query returns an error:

SELECT ordernum, partnum, RUNNINGAVG(unit_price)
FROM odetail
WHERE ordernum > 800000 AND RUNNINGAVG(unit_price) > 350
SEQUENCE BY qty_ordered;

 Apply a search condition to the result of a sequence function, use a derived
table for the SEQUENCE BY query, and use the derived column in the
WHERE clause:

SELECT ordernum, partnum, runavg_price
FROM
 (SELECT ordernum, partnum, RUNNINGAVG(unit_price)
 FROM odetail
 SEQUENCE BY qty_ordered)
 AS tab2 (ordernum, partnum, runavg_price)
WHERE ordernum > 800000 AND runavg_price > 350;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-20

SQL/MX Clauses Examples of SEQUENCE BY
Examples of SEQUENCE BY

 Sequentially number each row for the entire result and also number the rows for
each part number:

SELECT RUNNINGCOUNT(*) AS RCOUNT, MOVINGCOUNT(*,
 ROWS SINCE (d.partnum<>THIS(d.partnum)))
 AS MCOUNT,
 d.partnum
FROM orders o, odetail d
WHERE o.ordernum=d.ordernum
SEQUENCE BY d.partnum, o.order_date, o.ordernum
ORDER BY d.partnum, o.order_date, o.ordernum;

RCOUNT MCOUNT Part/Num
-------------------- --------------------- --------
 1 1 212
 2 2 212
 3 1 244
 4 2 244
 5 3 244

 67 1 7301
 68 2 7301
 69 3 7301
 70 4 7301

--- 70 row(s) selected.

 Show the orders for each date, the amount for each order item and the moving
total for each order, and the running total of all the orders. The query sequences
orders by date, order number, and part number. (The CAST function is used for
readability only.)

SELECT o.ordernum,
 CAST (MOVINGCOUNT(*,ROWS SINCE(THIS(o.ordernum) <>
 o.ordernum)) AS INT) AS MCOUNT,
 d.partnum, o.order_date,
 (d.unit_price * d.qty_ordered) AS AMOUNT,
 MOVINGSUM (d.unit_price * d.qty_ordered,
 ROWS SINCE(THIS(o.ordernum)<>o.ordernum)) AS ORDER_TOTAL,
 RUNNINGSUM (d.unit_price * d.qty_ordered) AS TOTAL_SALES
FROM orders o, odetail d
WHERE o.ordernum=d.ordernum
SEQUENCE BY o.order_date, o.ordernum, d.partnum
ORDER BY o.order_date, o.ordernum, d.partnum;

Order/Num MCOUNT Part/Num Order/Date
AMOUNT ORDER_TOTAL TOTAL_SALES
---------- ----------- -------- ----------
---------- -------------- --------------

 100250 1 244 1997-01-23
 14000.00 14000.00 14000.00
 100250 2 5103 1997-01-23
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-21

SQL/MX Clauses Examples of SEQUENCE BY
 4000.00 18000.00 18000.00
 100250 3 6500 1997-01-23
 950.00 18950.00 18950.00

 200300 1 244 1997-02-06
 28000.00 28000.00 46950.00
 200300 2 2001 1997-02-06
 10000.00 38000.00 56950.00
 200300 3 2002 1997-02-06
 14000.00 52000.00 70950.00

 800660 18 7102 1997-10-09
 1650.00 187360.00 1113295.00
 800660 19 7301 1997-10-09
 5100.00 192460.00 1118395.00

--- 69 row(s) selected.

Note that, for example, for order number 200300, the ORDER_TOTAL is a moving
sum within the order date 1997-02-06, and the TOTAL_SALES is a running sum for
all orders. The current window for the moving sum is defined as ROWS SINCE
(THIS(o.ordernum)<>o.ordernum), which restricts the ORDER_TOTAL to the
current order number.

 Show the amount of time between orders by calculating the interval between two
dates:

SELECT RUNNINGCOUNT(*),o.order_date,DIFF1(o.order_date)
FROM orders o
SEQUENCE BY o.order_date, o.ordernum
ORDER BY o.order_date, o.ordernum ;

(EXPR) Order/Date (EXPR)
-------------------- ---------- -------------
 1 1997-01-23 ?
 2 1997-02-06 14
 3 1997-02-17 11
 4 1997-03-03 14
 5 1997-03-19 16
 6 1997-03-19 0
 7 1997-03-27 8
 8 1997-04-10 14
 9 1997-04-20 10
 10 1997-05-12 22
 11 1997-06-01 20
 12 1997-07-21 50
 13 1997-10-09 80

--- 13 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-22

SQL/MX Clauses STORE BY Clause
STORE BY Clause
Considerations for STORE BY

The STORE BY clause determines the order of rows within the physical file that holds
the table, and has an effect on how you can partition the object.

STORE BY store-option

specifies a set of columns on which to base the clustering key. The clustering key
determines the order of rows within the physical file that holds the table. The
storage order has an effect on how you can partition the object.

store-option is defined as:

PRIMARY KEY

bases the clustering key on the primary key columns. This store option
requires that the primary key is NOT DROPPABLE. If the primary key is
defined as DROPPABLE, NonStop SQL/MX returns an error.

key-column-list

bases the clustering key on the columns in the key-column-list. The key
columns in key-column-list must be specified as NOT NULL NOT
DROPPABLE and cannot have a combined length of more than 247 bytes.

The default is PRIMARY KEY if you specified a PRIMARY KEY clause that has the
NOT DROPPABLE constraint in the CREATE TABLE statement.

If you omit the STORE BY clause and you do not specify a PRIMARY KEY that
has the NOT DROPPABLE constraint, the storage order is determined only by the
SYSKEY. You cannot partition a table stored only by SYSKEY. See SYSKEYs on
page 6-63.

STORE BY store-option

store-option is:
 PRIMARY KEY
 | (key-column-list)

key-column-list is:
 column-name [ASC[ENDING] | DESC[ENDING]]
 [,column-name [ASC[ENDING] | DESC[ENDING]]]...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-23

SQL/MX Clauses Considerations for STORE BY
Considerations for STORE BY

Storage Order and Partitioning

The organization of the physical files that make up a table and the order of rows within
those physical files determine the ways you can partition the table and affect the
performance of queries on that table.

You specify the organization and storage order with the STORE BY clause of the
CREATE TABLE statement (either explicitly or by omitting the clause), and you cannot
change it after the table is created. There are three possibilities.

Primary Key Storage Order

If you specify STORE BY PRIMARY KEY or you omit the STORE BY clause but
specify a PRIMARY KEY clause that has the NOT DROPPABLE option,
NonStop SQL/MX stores and retrieves rows in the order of the values in the primary
key and allows you to partition the table based on values of the primary key.

This ordering mechanism is generally the most efficient method if you want to partition
by values of a unique key.

SYSKEY Storage Order

If you omit the STORE BY clause and do not specify a PRIMARY KEY that has the
NOT DROPPABLE option, NonStop SQL/MX determines the storage order for rows
without reference to the data you specify for the rows.

As a mechanism for determining row order, NonStop SQL/MX creates the table with an
additional column named SYSKEY (type LARGEINT SIGNED) and automatically
generates a unique eight-byte number as the SYSKEY value of each row you insert in
the table. Rows are stored and retrieved in ascending order by the SYSKEY value. You
cannot update values in the SYSKEY column, although you can list them if you
explicitly name SYSKEY in a SELECT statement. (SELECT * does not include
SYSKEY.) See SYSKEYs on page 6-63.

You cannot partition a table stored only by the SYSKEY.

Key Column List Storage Order

If you specify STORE BY key-column-list and do not have a NOT DROPPABLE
PRIMARY KEY, NonStop SQL/MX orders the table using a combination of the two
methods previously described and allows you to partition based on values of the
columns in key-column-list.

NonStop SQL/MX creates a SYSKEY column and treats it as the last column in a key
that begins with the column or columns you specified in key-column-list. The
SYSKEY column makes the overall key unique, even though the columns you
specified might not be unique. NonStop SQL/MX then stores and retrieves rows in the
order of the values in the overall key (the columns in key-column-list followed by
the SYSKEY column) just as if it were a primary key.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-24

SQL/MX Clauses Effect of Storage Order on Partitioning
This ordering mechanism is the only method that allows you to partition by values of a
nonunique key.

You cannot specify a STORE BY key-column-list and a NOT DROPPABLE PRIMARY
KEY in the same statement.

The relationship between the STORE BY clause, the primary key, and the clustering
key in addition to the resulting default partitioning key is summarized in Table 6-1,
Construction of the Clustering Key, on page 6-60 and Table 6-2, Clustering Key for
Indexes, on page 6-61.

Effect of Storage Order on Partitioning

Primary Key Storage Order

If your clustering key is based on a non droppable primary key, you can partition the
table. This ordering mechanism is generally the most efficient method if you want to
partition by values of a unique key.

SYSKEY Storage Order

You cannot partition a table stored only by the SYSKEY.

Key Column List Storage Order

If you specify STORE BY key-column-list, you can partition based on values of the
columns in key-column-list.

You must use this storage order to partition by values of a nonunique key.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-25

SQL/MX Clauses TRANSPOSE Clause
TRANSPOSE Clause
Considerations for TRANSPOSE
Examples of TRANSPOSE

The TRANSPOSE clause of the SELECT statement generates for each row of the
SELECT source table a row for each item in the transpose item list. The result table of
the TRANSPOSE clause has all the columns of the source table plus, for each
transpose item list, a value column or columns and an optional key column.

TRANSPOSE is an SQL/MX extension.

transpose-item-list AS transpose-col-list

specifies a transpose-set, which correlates a transpose-item-list with a
transpose-col-list. The transpose-item-list can be either a list of
expressions or a list of expression lists enclosed in parentheses. The transpose-
col-list can be either a single column name or a list of column names enclosed
in parentheses.

For example, in the transpose-set TRANSPOSE (A,X),(B,Y),(C,Z) AS
(V1,V2), the items in the transpose-item-list are (A,X),(B,Y), and
(C,Z), and the transpose-col-list is (V1,V2). The number of expressions
in each item must be the same as the number of value columns in the column list.

In the example TRANSPOSE A,B,C AS V, the items are A,B, and C, and the
value column is V. This form can be thought of as a shorter way of writing
TRANSPOSE (A),(B),(C) AS (V).

TRANSPOSE transpose-set [transpose-set]...
 [KEY BY key-colname]

transpose-set is:
 transpose-item-list AS transpose-col-list

transpose-item-list is:
 expression-list
 | (expression-list) [,(expression-list)]...

expression-list is:
 expression [,expression]...

transpose-col-list is:
 colname
 | (colname-list)

colname-list is:
 colname [,colname]...
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-26

SQL/MX Clauses TRANSPOSE Clause
transpose-item-list

specifies a list of items. An item is either a value expression or a list of value
expressions enclosed in parentheses.

expression-list

specifies a list of SQL value expressions, separated by commas. The
expressions must have compatible data types.

For example, in the transpose set TRANSPOSE A,B,C AS V, the
expressions A,B, and C have compatible data types.

(expression-list) [,(expression-list)]...

specifies a list of expressions enclosed in parentheses, followed by
another list of expressions enclosed in parentheses, and so on. The
number of expressions within parentheses must be equal for each list. The
expressions in the same ordinal position within the parentheses must have
compatible data types.

For example, in the transpose set TRANSPOSE (A,X),(B,Y),(C,Z) AS
(V1,V2), the expressions A,B, and C have compatible data types, and the
expressions X,Y, and Z have compatible data types.

transpose-col-list

specifies the columns that consist of the evaluation of expressions in the item
list as the expressions are applied to rows of the source table.

colname

is an SQL identifier that specifies a column name. It identifies the column
consisting of the values in expression-list.

For example, in the transpose set TRANSPOSE A,B,C AS V, the column
V corresponds to the values of the expressions A,B, and C.

(colname-list)

specifies a list of column names enclosed in parentheses. Each column
consists of the values of the expressions in the same ordinal position within
the parentheses in the transpose item list.

For example, in the transpose set TRANSPOSE (A,X),(B,Y),(C,Z) AS
(V1,V2), the column V1 corresponds to the expressions A,B, and C, and
the column V2 corresponds to the expressions X,Y, and Z.

KEY BY key-colname

optionally specifies which expression (the value in the transpose column list
corresponds to) by its position in the item list. key-colname is an SQL identifier.
The data type of the key column is exact numeric, and the value is NOT NULL.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-27

SQL/MX Clauses Considerations for TRANSPOSE
Considerations for TRANSPOSE

Multiple TRANSPOSE Clauses and Sets

 Multiple TRANSPOSE clauses can be used in the same query. For example:

SELECT KEYCOL1, VALCOL1, KEYCOL2, VALCOL2 FROM MYTABLE
TRANSPOSE A, B, C AS VALCOL1
 KEY BY KEYCOL1
TRANSPOSE D, E, F AS VALCOL2
 KEY BY KEYCOL2

 A TRANSPOSE clause can contain multiple transpose sets. For example:

SELECT KEYCOL, VALCOL1, VALCOL2 FROM MYTABLE
TRANSPOSE A, B, C AS VALCOL1
 D, E, F AS VALCOL2
 KEY BY KEYCOL

Degree and Column Order of the TRANSPOSE Result

The degree of the TRANSPOSE result is the degree of the source table (the result
table derived from the table reference or references in the FROM clause and a
WHERE clause if specified), plus one if the key column is specified, plus the
cardinalities of all the transpose column lists.

The columns of the TRANSPOSE result are ordered beginning with the columns of the
source table, followed by the key column if specified, and then followed by the list of
column names in the order in which they are specified.

Data Type of the TRANSPOSE Result

The data type of each of the value columns is the union compatible data type of the
corresponding expressions in the transpose-item-list. You cannot have
expressions with data types that are not compatible in a transpose-item-list.

For example, in TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2), the data type of
V1 is the union compatible type for A, B, and C, and the data type of V2 is the union
compatible type for X, Y, and Z.

See Comparable and Compatible Data Types on page 6-17.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-28

SQL/MX Clauses Considerations for TRANSPOSE
Cardinality of the TRANSPOSE Result

The items in each transpose-item-list are enumerated from 1 to N, where N is
the total number of items in all the item lists in the transpose sets.

In this example with a single transpose set, the value of N is 3:

TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2)

In this example with two transpose sets, the value of N is 5:

TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2)
 L,M AS V3

The values 1 to N are the key values ki. The items in each transpose-item-list
are the expression values vi.

The cardinality of the result of the TRANSPOSE clause is the cardinality of the source
table times N, the total number of items in all the transpose item lists.

For each row of the source table and for each value in the key values ki, the
TRANSPOSE result contains a row with all the attributes of the source table, the key
value ki in the key column, the expression values vi in the value columns of the
corresponding transpose set, and NULL in the value columns of other transpose sets.

For example, consider this TRANSPOSE clause:

TRANSPOSE (A,X),(B,Y),(C,Z) AS (V1,V2)
 L,M AS V3
 KEY BY K

The value of N is 5. One row of the SELECT source table produces this TRANSPOSE
result:

columns-of-source K V1 V2 V3

source-row 1 value-of-A value-of-X NULL

source-row 2 value-of-B value-of-Y NULL

source-row 3 value-of-C value-of-Z NULL

source-row 4 NULL NULL value-of-L

source-row 5 NULL NULL value-of-M
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-29

SQL/MX Clauses Examples of TRANSPOSE
Examples of TRANSPOSE

Suppose that MYTABLE has been created as:

CREATE TABLE $db.mining.mytable
 (A INTEGER, B INTEGER, C INTEGER, D CHAR(2),
 E CHAR(2), F CHAR(2));

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.mytable $db.mining.mytable;

The table MYTABLE has columns A, B, C, D, E, and F with related data. The columns
A, B, and C are type INTEGER, and columns D, E, and F are type CHAR.

 Suppose that MYTABLE has only the first three columns: A, B, and C. The result of
the TRANSPOSE clause has three times as many rows (because there are three
items in the transpose item list) as there are rows in MYTABLE:

SELECT * FROM mytable
TRANSPOSE A, B, C AS VALCOL
 KEY BY KEYCOL;

The result table of the TRANSPOSE query is:

A B C D E F

1 10 100 d1 e1 f1

2 20 200 d2 e2 f2

A B C D E F KEYCOL VALCOL

1 10 100 d1 e1 f1 1 1

1 10 100 d1 e1 f1 2 10

1 10 100 d1 e1 f1 3 100

2 20 200 d2 e2 f2 1 2

2 20 200 d2 e2 f2 2 20

2 20 200 d2 e2 f2 3 200
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-30

SQL/MX Clauses Examples of TRANSPOSE
 This query shows that the items in the transpose item list can be any valid scalar
expressions:

SELECT KEYCOL, VALCOL, A, B, C FROM mytable
TRANSPOSE A + B, C + 3, 6 AS VALCOL
 KEY BY KEYCOL;

The result table of the TRANSPOSE query is:

 This query shows how the TRANSPOSE clause can be used with a GROUP BY
clause. This query is typical of queries used to obtain cross-table information,
where A, B, and C are the independent variables, and D is the dependent variable.

SELECT KEYCOL, VALCOL, D, COUNT(*) FROM mytable
TRANSPOSE A, B, C AS VALCOL
 KEY BY KEYCOL
GROUP BY KEYCOL, VALCOL, D;

The result table of the TRANSPOSE query is:

KEYCOL VALCOL A B C

1 11 1 10 100

2 103 1 10 100

3 6 1 10 100

1 22 2 20 200

2 203 2 20 200

3 6 2 20 200

KEYCOL VALCOL D COUNT(*)

1 1 d1 1

2 10 d1 1

3 100 d1 1

1 2 d2 1

2 20 d2 1

3 200 d2 1
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-31

SQL/MX Clauses Examples of TRANSPOSE
 This query shows how to use COUNT applied to VALCOL. The result table of the
TRANSPOSE query shows the number of distinct values in VALCOL.

SELECT COUNT(DISTINCT VALCOL) FROM mytable
TRANSPOSE A, B, C AS VALCOL
 KEY BY KEYCOL
GROUP BY KEYCOL;

(EXPR)

 2
 2
 2

--- 3 row(s) selected.

 This query shows how multiple TRANSPOSE clauses can be used in the same
query. The result table from this query has nine times as many rows as there are
rows in MYTABLE:

SELECT KEYCOL1, VALCOL1, KEYCOL2, VALCOL2 FROM mytable
TRANSPOSE A, B, C AS VALCOL1
 KEY BY KEYCOL1
TRANSPOSE D, E, F AS VALCOL2
 KEY BY KEYCOL2;

The result table of the TRANSPOSE query is:

KEYCOL1 VALCOL1 KEYCOL2 VALCOL2

1 1 1 d1

1 1 2 e1

1 1 3 f1

2 10 1 d1

2 10 2 e1

2 10 3 f1

3 100 1 d1

3 100 2 e1

3 100 3 f1

1 2 1 d2

1 2 2 e2

1 2 3 f2

2 20 1 d2

2 20 2 e2

2 20 3 f2

3 200 1 d2

3 200 2 e2

3 200 3 f2
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-32

SQL/MX Clauses Examples of TRANSPOSE
 This query shows how a TRANSPOSE clause can contain multiple transpose
sets—that is, multiple transpose-item-list AS transpose-col-list. The
expressions A, B, and C are of type integer, and expressions D, E, and F are of
type character.

SELECT KEYCOL, VALCOL1, VALCOL2 FROM mytable
TRANSPOSE A, B, C AS VALCOL1
 D, E, F AS VALCOL2
 KEY BY KEYCOL;

The result table of the TRANSPOSE query is:

A question mark (?) in a value column indicates no value for the given KEYCOL.

 This query shows how the preceding query can include a GROUP BY clause:

SELECT KEYCOL, VALCOL1, VALCOL2, COUNT(*) FROM mytable
TRANSPOSE A, B, C AS VALCOL1
 D, E, F AS VALCOL2
 KEY BY KEYCOL
GROUP BY KEYCOL, VALCOL1, VALCOL2;

The result table of the TRANSPOSE query is:

KEYCOL VALCOL1 VALCOL2

1 1 ?

2 10 ?

3 100 ?

4 ? d1

5 ? e1

6 ? f1

1 2 ?

2 20 ?

3 200 ?

4 ? d2

5 ? e2

6 ? f2

KEYCOL VALCOL1 VALCOL2 (EXPR)

1 1 ? 1

2 10 ? 1

3 100 ? 1

1 2 ? 1

2 20 ? 1

3 200 ? 1

4 ? d2 1
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-33

SQL/MX Clauses Examples of TRANSPOSE
 This query shows how an item in the transpose item list can contain a list of
expressions and that the KEY BY clause is optional:

SELECT * FROM mytable
TRANSPOSE (1, A, 'abc'), (2, B, 'xyz')
 AS (VALCOL1, VALCOL2, VALCOL3);

The result table of the TRANSPOSE query is:

5 ? e2 1

6 ? f2 1

4 ? d1 1

5 ? e1 1

6 ? f1 1

A B C D E F VALCOL1 VALCOL2 VALCOL3

1 10 100 d1 e1 f1 1 1 abc

1 10 100 d1 e1 f1 2 10 xyz

2 20 200 d2 e2 f2 1 2 abc

2 20 200 d2 e2 f2 2 20 xyz

KEYCOL VALCOL1 VALCOL2 (EXPR)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
7-34

8
SQL/MX Functions and Expressions

This section describes the syntax and semantics of specific functions and expressions
that you can use in NonStop SQL/MX statements. The functions and expressions are
categorized according to their functionality.

Categories
Use these types of functions within an SQL value expression:

 Aggregate (Set) Functions on page 8-1
 Character String Functions on page 8-2
 Datetime Functions on page 8-4
 Mathematical Functions on page 8-5
 Sequence Functions on page 8-7
 Other Functions and Expressions on page 8-8

For more information on SQL value expressions, see Expressions on page 6-41.

Table-valued stored functions cannot be used within an SQL value expression. See
Table-Valued Stored Functions on page 8-9.

Aggregate (Set) Functions

An aggregate (or set) function operates on a group or groups of rows retrieved by the
SELECT statement or the subquery in which the aggregate function appears.

AVG Function on
page 8-14

Computes the average of a group of numbers derived from the
evaluation of the expression argument of the function.

COUNT Function on
page 8-38

Counts the number of rows that result from a query (by using *) or
the number of rows that contain a distinct value in the one-column
table derived from the expression argument of the function
(optionally distinct values).

MAX Function on
page 8-103

Determines a maximum value from the group of values derived
from the evaluation of the expression argument.

MIN Function on
page 8-104

Determines a minimum value from the group of values derived
from the evaluation of the expression argument.

STDDEV Function on
page 8-171

Computes the statistical standard deviation of a group of numbers
derived from the evaluation of the expression argument of the
function. The numbers can be weighted.

SUM Function on
page 8-176

Computes the sum of a group of numbers derived from the
evaluation of the expression argument of the function.

VARIANCE Function on
page 8-207

Computes the statistical variance of a group of numbers derived
from the evaluation of the expression argument of the function.
The numbers can be weighted.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-1

SQL/MX Functions and Expressions Character String Functions
Note that columns and expressions can be arguments of an aggregate function. The
expressions cannot contain aggregate functions or subqueries.

An aggregate function can accept an argument specified as DISTINCT, which
eliminates duplicate values before the aggregate function is applied. Only one
DISTINCT aggregate function is allowed at each level of a SELECT statement. Multiple
DISTINCT aggregates are allowed if they are on the same column but are not
permitted on different columns. Exceptions to this rule include MIN and MAX functions
and aggregate functions with unique columns or expressions for which DISTINCT is
unnecessary. See DISTINCT Aggregate Functions on page 2-349.

If you include a GROUP BY clause in the SELECT statement, the columns you refer to
in the select list must be either grouping columns or arguments of an aggregate
function. If you do not include a GROUP BY clause but you specify an aggregate
function in the select list, all rows of the SELECT result table form the one and only
group.

See the individual entry for the function.

Character String Functions

These functions manipulate character strings. These functions either use a character
value expression as an argument or return a result of character data type:

ASCII Function on page 8-11 Returns the ASCII code value of the first character of a
ISO88591 character value expression.

CHAR Function on page 8-23 Returns the specified code value in a character set.

CHAR_LENGTH Function on
page 8-24

Returns the number of characters in a string. You can
also use CHARACTER_LENGTH.

CONCAT Function on page 8-34 Returns the concatenation of two character value
expressions as a string value. You can also use the
concatenation operator (||).

INSERT Function on page 8-84 Returns a character string where a specified number of
characters within the character string have been deleted
and then a second character string has been inserted at
a specified start position.

LCASE Function on page 8-87 Downshifts characters. You can also use LOWER.

LEFT Function on page 8-88 Returns the leftmost specified number of characters
from a character expression.

LOWER Function on page 8-94 Downshifts single-byte characters. You can also use
LCASE.

LPAD Function on page 8-99 Replaces the leftmost specified number of characters in
a character expression with a padding character.

LTRIM Function on page 8-102 Removes the specified characters from the left of the
character string.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-2

SQL/MX Functions and Expressions Character String Functions
See the individual entry for the function.

POSITION Function on
page 8-131

Returns the position of a specified substring within a
character string. You can also use LOCATE.

REPEAT Function on
page 8-145

Returns a character string composed of the evaluation
of a character expression repeated a specified number
of times.

REPLACE Function on
page 8-146

Returns a character string where all occurrences of a
specified character string in the original string are
replaced with another character string.

RIGHT Function on page 8-147 Returns the rightmost specified number of characters
from a character expression.

RPAD Function on page 8-150 Replaces the rightmost specified number of characters
in a character expression with a padding character.

RTRIM Function on page 8-152 Removes the specified characters from the right of the
character string.

SPACE Function on page 8-170 Returns a character string consisting of a specified
number of spaces.

SUBSTRING Function on
page 8-174

Extracts a substring from a character string.

TO_CHAR(<NUMERIC>)
Function on page 8-181

Converts a numeric data to VARCHAR as per the
specified format.

TO_CHAR(<DATETIME>)
Function on page 8-185

Converts datetime data to VARCHAR as per the
specified format.

TRIM Function on page 8-192 Removes the specified characters from the left side, the
right side, or both sides of a character string.

UCASE Function on page 8-193 Upshifts single-byte characters. You can also use
UPSHIFT or UPPER.

UPPER Function on page 8-201 Upshifts single-byte characters. You can also use
UPSHIFT or UCASE.

UPSHIFT Function on
page 8-202

Upshifts single-byte characters. You can also use
UPPER or UCASE.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-3

SQL/MX Functions and Expressions Datetime Functions
Datetime Functions

These functions use either a datetime value expression as an argument or return a
result of datetime data type:

CONVERTTIMESTAMP Function on
page 8-36

Converts a Julian timestamp to a TIMESTAMP
value.

CURRENT Function on page 8-40 Returns the current timestamp. You can also use
the CURRENT_TIMESTAMP Function.

CURRENT_DATE Function on
page 8-41

Returns the current date.

CURRENT_TIME Function on
page 8-42

Returns the current time.

CURRENT_TIMESTAMP Function on
page 8-43

Returns the current timestamp. You can also use
the CURRENT Function.

DATE_ADD Function on page 8-44 Adds an interval specified by an
interval_expression to a datetime_expression.

DATEADD Function on page 8-44 Adds a time interval specified by a datepart and
num_expression to a datetime_expression.

DATE_SUB Function on page 8-48 Subtracts an interval_expression from a
datetime_expression.

DATEDIFF Function on page 8-46 Returns the integer value for the number of
datepart unit boundaries of time crossed
between startdate and enddate.

DATEFORMAT Function on page 8-48 Formats a datetime value for display purposes.

DAY Function on page 8-50 Returns an integer value in the range 1 through
31 that represents the corresponding day of the
month. You can also use DAYOFMONTH.

DAYNAME Function on page 8-51 Returns the name of the day of the week from a
date or timestamp expression.

DAYOFMONTH Function on page 8-52 Returns an integer value in the range 1 through
31 that represents the corresponding day of the
month. You can also use DAY.

DAYOFWEEK Function on page 8-53 Returns an integer value in the range 1 through 7
that represents the corresponding day of the
week.

DAYOFYEAR Function on page 8-54 Returns an integer value in the range 1 through
366 that represents the corresponding day of the
year.

EXTRACT Function on page 8-75 Returns a specified datetime field from a
datetime value expression or an interval value
expression.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-4

SQL/MX Functions and Expressions Mathematical Functions
See the individual entry for the function.

Mathematical Functions

Use these mathematical functions within an SQL numeric value expression:

HOUR Function on page 8-83 Returns an integer value in the range 0 through
23 that represents the corresponding hour of the
day.

JULIANTIMESTAMP Function on
page 8-85

Converts a datetime value to a Julian timestamp.

MINUTE Function on page 8-105 Returns an integer value in the range 0 through
59 that represents the corresponding minute of
the hour.

MONTH Function on page 8-107 Returns an integer value in the range 1 through
12 that represents the corresponding month of
the year.

MONTHNAME Function on page 8-108 Returns a character literal that is the name of the
month of the year (January, February, and so
on).

QUARTER Function on page 8-133 Returns an integer value in the range 1 through 4
that represents the corresponding quarter of the
year.

SECOND Function on page 8-167 Returns an integer value in the range 0 through
59 that represents the corresponding second of
the minute.

WEEK Function on page 8-212 Returns an integer value in the range 1 through
54 that represents the corresponding week of the
year.

YEAR Function on page 8-213 Returns an integer value that represents the
year.

ABS Function on
page 8-10

Returns the absolute value of a numeric value expression.

ACOS Function on
page 8-10

Returns the arccosine of a numeric value expression as an angle
expressed in radians.

ASIN Function on
page 8-12

Returns the arcsine of a numeric value expression as an angle
expressed in radians.

ATAN Function on
page 8-13

Returns the arctangent of a numeric value expression as an angle
expressed in radians.

ATAN2 Function on
page 8-13

Returns the arctangent of the x and y coordinates, specified by two
numeric value expressions, as an angle expressed in radians.

CEILING Function on
page 8-22

Returns the smallest integer greater than or equal to a numeric
value expression.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-5

SQL/MX Functions and Expressions Mathematical Functions
See the individual entry for the function.

COS Function on
page 8-37

Returns the cosine of a numeric value expression, where the
expression is an angle expressed in radians.

COSH Function on
page 8-37

Returns the hyperbolic cosine of a numeric value expression, where
the expression is an angle expressed in radians.

EXP Function on
page 8-65

Returns the exponential value (to the base e) of a numeric value
expression.

FLOOR Function on
page 8-78

Returns the largest integer less than or equal to a numeric value
expression.

LOG Function on
page 8-93

Returns the natural logarithm of a numeric value expression.

LOG10 Function on
page 8-93

Returns the base 10 logarithm of a numeric value expression.

MOD Function on
page 8-106

Returns the remainder (modulus) of an integer value expression
divided by an integer value expression.

PI Function on
page 8-130

Returns the constant value of pi as a floating-point value.

POWER Function on
page 8-132

Returns the value of a numeric value expression raised to the power
of an integer value expression. You can also use the exponential
operator **.

RADIANS Function
on page 8-143

Converts a numeric value expression expressed in degrees to the
number of radians.

SIGN Function on
page 8-168

Returns an indicator of the sign of a numeric value expression. If
value is less than zero, returns -1 as the indicator. If value is zero,
returns 0. If value is greater than zero, returns 1.

SIN Function on
page 8-169

Returns the sine of a numeric value expression, where the
expression is an angle expressed in radians.

SINH Function on
page 8-169

Returns the hyperbolic sine of a numeric value expression, where
the expression is an angle expressed in radians.

SQRT Function on
page 8-170

Returns the square root of a numeric value expression.

TAN Function on
page 8-178

Returns the tangent of a numeric value expression, where the
expression is an angle expressed in radians.

TANH Function on
page 8-178

Returns the hyperbolic tangent of a numeric value expression,
where the expression is an angle expressed in radians.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-6

SQL/MX Functions and Expressions Sequence Functions
Sequence Functions

Sequence functions operate on ordered rows of the intermediate result table of a
SELECT statement that includes a SEQUENCE BY clause. Sequence functions are
categorized generally as difference, moving, offset, or running.

Difference sequence functions:

DIFF1 Function on
page 8-59

Calculates differences between values of a column expression
in the current row and previous rows.

DIFF2 Function on
page 8-62

Calculates differences between values of the result of DIFF1of
the current row and DIFF1 of previous rows.

Moving sequence functions:

MOVINGAVG Function on
page 8-109

Returns the average of non-null values of a column expression
in the current window.

MOVINGCOUNT
Function on page 8-111

Returns the number of non-null values of a column expression
in the current window.

MOVINGMAX Function
on page 8-113

Returns the maximum of non-null values of a column
expression in the current window.

MOVINGMIN Function on
page 8-115

Returns the minimum of non-null values of a column expression
in the current window.

MOVINGSTDDEV
Function on page 8-117

Returns the standard deviation of non-null values of a column
expression in the current window.

MOVINGSUM Function
on page 8-119

Returns the sum of non-null values of a column expression in
the current window.

MOVINGVARIANCE
Function on page 8-121

Returns the variance of non-null values of a column expression
in the current window.

Offset sequence function:

OFFSET Function on
page 8-128

Retrieves columns from previous rows.

Running sequence functions:

RUNNINGAVG Function
on page 8-153

Returns the average of non-null values of a column expression
up to and including the current row.

RUNNINGCOUNT
Function on page 8-155

Returns the number of rows up to and including the current row.

RUNNINGMAX Function
on page 8-157

Returns the maximum of values of a column expression up to
and including the current row.

RUNNINGMIN Function
on page 8-159

Returns the minimum of values of a column expression up to
and including the current row.

RUNNINGSTDDEV
Function on page 8-161

Returns the standard deviation of non-null values of a column
expression up to and including the current row.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-7

SQL/MX Functions and Expressions Other Functions and Expressions
See SEQUENCE BY Clause on page 7-19 and the individual entry for each function.

Other Functions and Expressions

Use these other functions and expressions in an SQL value expression:

RUNNINGSUM Function
on page 8-163

Returns the sum of non-null values of a column expression up
to and including the current row.

RUNNINGVARIANCE
Function on page 8-165

Returns the variance of non-null values of a column expression
up to and including the current row.

Other sequence functions:

LASTNOTNULL Function
on page 8-86

Returns the last non-null value for the specified column
expression. If only null values have been returned, returns null.

ROWS SINCE Function
on page 8-148

Returns the number of rows counted since the specified
condition was last true.

THIS Function on
page 8-179

Used in ROWS SINCE to distinguish between the value of the
column in the current row and the value of the column in
previous rows.

CASE (Conditional)
Expression on
page 8-16

A conditional expression. The two forms of the CASE expression
are simple and searched.

CAST Expression on
page 8-20

Converts a value from one data type to another data type that you
specify.

CURRENT_USER
Function on page 8-43

Returns the Guardian user name corresponding to the current
authorization ID. This function is equivalent to SESSION_USER
and USER.

HASHPARTFUNC
Function on page 8-79

Returns the number of the partition to which a specified
partitioning key belongs

SESSION_USER
Function on page 8-168

Returns the Guardian user name corresponding to the current
authorization ID. This function is equivalent to CURRENT_USER
and USER.

USER Function on
page 8-203

Returns the Guardian user name corresponding to the current
authorization ID. This function is equivalent to CURRENT_USER
and SESSION_USER.

NVL Function on
page 8-123

Returns a specified value when the expression is NULL.

NVL2 Function on
page 8-125

Returns a specified value when the expression is NULL and, if the
expression is not NULL, returns another specified value.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-8

SQL/MX Functions and Expressions Table-Valued Stored Functions
See the individual entry for the function.

Table-Valued Stored Functions

Table-valued stored functions are system-defined functions that generate a result table.
Use these functions anywhere a table reference can be used in a SELECT statement
or the SELECT form of a subquery:

See the individual entry for the function.

LNNVL Function on
page 8-89

Returns TRUE if the condition is FALSE or NULL, and FALSE
when the condition is TRUE.

DECODE Function on
page 8-55

Compares the given expression to a set of specified conditions
one by one in the specified order. Returns the value
corresponding to the matching condition.

COALESCE Function
on page 8-27

Returns the value of the first expression in the list that is not
NULL. If all the expressions in the list result in NULL, the function
returns NULL.

COMPILERCONTROL
S Function on
page 8-31

Retrieves the active control settings, such as, CQDs, CTs, CQS
from the compiler.

EXPLAIN Function on
page 8-66

Builds a result table that describes the access plan of a DML
statement, which can then be queried by a SELECT statement.

FEATURE_VERSION_I
NFO Function on
page 8-76

Returns feature version information for all user objects with an
object feature version (OFV) higher than a given value, in a
specified set of catalogs.

QUERYCACHE
Function on page 8-134

Collects and returns the current state of the query plan cache
statistics in a single-row result table.

QUERYCACHEENTRI
ES Function on
page 8-138

Collects and returns the query plan cache statistics in a result
table with one row for each entry of the cache.

RELATEDNESS
Function on page 8-144

Returns relatedness information for a single entity.

VERSION_INFO
Function on page 8-204

Returns version information for a single entity.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-9

SQL/MX Functions and Expressions ABS Function
ABS Function
The ABS function returns the absolute value of a numeric value expression.

ABS is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the ABS function. The result is returned as an unsigned numeric value if the
precision of the argument is less than 10 or as a LARGEINT if the precision of the
argument is greater than or equal to 10. See Numeric Value Expressions on
page 6-52.

Examples of ABS

 This function returns the value 8:

ABS (-20 + 12)

ACOS Function
The ACOS function returns the arccosine of a numeric value expression as an angle
expressed in radians.

ACOS is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the ACOS function. The range for the value of the argument is from -1 to +1. See
Numeric Value Expressions on page 6-52.

Examples of ACOS

 This function returns the value 3.49044274380724352E-001 or approximately
0.3491 in radians (which is 20 degrees):

ACOS (0.9397)

 This function returns the value 0.3491. The function ACOS is the inverse of the
function COS.

ACOS (COS (0.3491))

ABS (numeric-expression)

ACOS (numeric-expression)

ABS Function
The ABS function returns the absolute value of a numeric value expression.

ABS is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the ABS function. The result is returned as an unsigned numeric value if the
precision of the argument is less than 10 or as a LARGEINT if the precision of the
argument is greater than or equal to 10. See Numeric Value Expressions on
page 6-52.

Examples of ABS

 This function returns the value 8:

ABS (-20 + 12)

ACOS Function
The ACOS function returns the arccosine of a numeric value expression as an angle
expressed in radians.

ACOS is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the ACOS function. The range for the value of the argument is from -1 to +1. See
Numeric Value Expressions on page 6-52.

Examples of ACOS

 This function returns the value 3.49044274380724352E-001 or approximately
0.3491 in radians (which is 20 degrees):

ACOS (0.9397)

 This function returns the value 0.3491. The function ACOS is the inverse of the
function COS.

ACOS (COS (0.3491))

ABS (numeric-expression)

ACOS (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-10

SQL/MX Functions and Expressions ASCII Function
ASCII Function
The ASCII function returns the integer that is the ASCII code of the first character in a
character string expression associated with the ISO8891 character set.

ASCII is an SQL/MX extension.

character-expression

is an SQL character value expression that specifies a string of characters. See
Character Value Expressions on page 6-41.

Examples of ASCII

 Select the column JOBDESC and return the ASCII code of the first character of the
job description:

SELECT jobdesc, ASCII (jobdesc)
FROM persnl.job;

JOBDESC (EXPR)
----------------- --------
MANAGER 77
PRODUCTION SUPV 80
ASSEMBLER 65
SALESREP 83
... ...

--- 10 row(s) selected.

ASCII (character-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-11

SQL/MX Functions and Expressions ASIN Function
ASIN Function
The ASIN function returns the arcsine of a numeric value expression as an angle
expressed in radians.

ASIN is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the ASIN function. The range for the value of the argument is from -1 to +1. See
Numeric Value Expressions on page 6-52.

Examples of ASIN

 This function returns the value 3.49044414403046464E-001 or approximately
0.3491 in radians (which is 20 degrees):

ASIN (0.3420)

 This function returns the value 0.3491. The function ASIN is the inverse of the
function SIN.

ASIN (SIN (0.3491))

ASIN (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-12

SQL/MX Functions and Expressions ATAN Function
ATAN Function
The ATAN function returns the arctangent of a numeric value expression as an angle
expressed in radians.

ATAN is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the ATAN function. See Numeric Value Expressions on page 6-52.

Examples of ATAN

 This function returns the value 8.72766423249958400E-001 or approximately
0.8727 in radians (which is 50 degrees):

ATAN (1.192)

 This function returns the value 0.8727. The function ATAN is the inverse of the
function TAN.

ATAN (TAN (0.8727))

ATAN2 Function
The ATAN2 function returns the arctangent of the x and y coordinates, specified by two
numeric value expressions, as an angle expressed in radians.

ATAN2 is an SQL/MX extension.

numeric-expression-x,numeric-expression-y

are SQL numeric value expressions that specify the value for the x and y
coordinate arguments of the ATAN2 function. See Numeric Value Expressions on
page 6-52.

Examples of ATAN2

 This function returns the value 2.66344329881899600E+000, or approximately
2.6634:

ATAN2 (1.192,-2.3)

ATAN (numeric-expression)

ATAN2 (numeric-expression-x,numeric-expression-y)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-13

SQL/MX Functions and Expressions AVG Function
AVG Function
AVG is an aggregate function that returns the average of a set of numbers.

ALL | DISTINCT

specifies whether duplicate values are included in the computation of the AVG of
the expression. The default option is ALL, which causes duplicate values to be
included. If you specify DISTINCT, duplicate values are eliminated before the AVG
function is applied.

expression

specifies a numeric or interval value expression that determines the values to
average. The expression cannot contain an aggregate function or a subquery.
The DISTINCT clause specifies that the AVG function operates on distinct values
from the one-column table derived from the evaluation of expression.

See Numeric Value Expressions on page 6-52 and Interval Value Expressions on
page 6-47.

Considerations for AVG

Data Type of the Result

The data type of the result depends on the data type of the argument. If the argument
is an exact numeric type, the result is LARGEINT. If the argument is an approximate
numeric type, the result is DOUBLE PRECISION. If the argument is INTERVAL data
type, the result is INTERVAL with the same precision as the argument.

The scale of the result is the same as the scale of the argument. If the argument has
no scale, the result is truncated.

Operands of the Expression

The expression includes columns from the rows of the SELECT result table but cannot
include an aggregate function. These expressions are valid:

AVG (SALARY)
AVG (SALARY * 1.1)
AVG (PARTCOST * QTY_ORDERED)

Nulls

All nulls are eliminated before the function is applied to the set of values. If the result
table is empty, AVG returns NULL.

AVG ([ALL | DISTINCT] expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-14

SQL/MX Functions and Expressions Examples of AVG
Examples of AVG

 Return the average value of the SALARY column:

SELECT AVG (salary)
FROM persnl.employee;

(EXPR)

 49441.52

--- 1 row(s) selected.

 Return the average value of the set of unique SALARY values:

SELECT AVG(DISTINCT salary) AS Avg_Distinct_Salary
FROM persnl.employee;

AVG_DISTINCT_SALARY

 53609.89

--- 1 row(s) selected.

 Return the average salary by department:

SELECT deptnum, AVG (salary) AS "AVERAGE SALARY"
FROM persnl.employee
WHERE deptnum < 3000
GROUP BY deptnum;

Dept/Num "AVERAGE SALARY"
-------- ---------------------
 1000 52000.17
 2000 50000.10
 1500 41250.00
 2500 37000.00

--- 4 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-15

SQL/MX Functions and Expressions CASE (Conditional) Expression
CASE (Conditional) Expression
Considerations for CASE
Examples of CASE

The CASE expression is a conditional expression with two forms: simple and
searched.

In a simple CASE expression, NonStop SQL/MX compares a value to a sequence of
values and sets the CASE expression to the value associated with the first match—if
there is a match. If there is no match, NonStop SQL/MX returns the value specified in
the ELSE clause (which can be null).

In a searched CASE expression, NonStop SQL/MX evaluates a sequence of
conditions and sets the CASE expression to the value associated with the first
condition that is true—if there is a true condition. If there is no true condition,
NonStop SQL/MX returns the value specified in the ELSE clause (which can be null).

case-expression

specifies a value expression that is compared to the value expressions in each
WHEN clause of a simple CASE. The data type of each expression in the
WHEN clause must be comparable to the data type of case-expression.

expression-1 ... expression-n

specifies a value associated with each result-expression. If the value of an
expression in a WHEN clause matches the value of case-expression, simple
CASE returns the associated result-expression value. If there is no match,
the CASE expression returns the value expression specified in the ELSE clause, or
NULL if the ELSE value is not specified.

Simple CASE is:

CASE case-expression
 WHEN expression-1 THEN {result-expression-1 | NULL}
 WHEN expression-2 THEN {result-expression-2 | NULL}
 ...
 WHEN expression-n THEN {result-expression-n | NULL}
 [ELSE {result-expression | NULL}]
END

Searched CASE is:

CASE
 WHEN condition-1 THEN {result-expression-1 | NULL}
 WHEN condition-2 THEN {result-expression-2 | NULL}
 ...
 WHEN condition-n THEN {result-expression-n | NULL}
 [ELSE {result-expression | NULL}]
END
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-16

SQL/MX Functions and Expressions Considerations for CASE
result-expression-1 ... result-expression-n

specifies the result value expression associated with each expression in a
WHEN clause of a simple CASE, or with each condition in a WHEN clause of a
searched CASE. All of the result-expressions must have comparable data
types, and at least one of the result-expressions must return non-null.

result-expression

follows the ELSE keyword and specifies the value returned if none of the
expressions in the WHEN clause of a simple CASE are equal to the case
expression, or if none of the conditions in the WHEN clause of a searched CASE
are true. If the ELSE result-expression clause is not specified, CASE returns
NULL. The data type of result-expression must be comparable to the other
results.

condition-1 ... condition-n

specifies conditions to test for in a searched CASE. If a condition is true, the
CASE expression returns the associated result-expression value. If no
condition is true, the CASE expression returns the value expression specified in
the ELSE clause, or NULL if the ELSE value is not specified.

Considerations for CASE

Data Type of the CASE Expression

The data type of the result of the CASE expression depends on the data types of the
result expressions. If the results all have the same data type, the CASE expression
adopts that data type. If the results have comparable but not identical data types, the
CASE expression adopts the data type of the union of the result expressions. This
result data type is determined in these ways.

Character Data Type

If any data type of the result expressions is variable-length character string, the result
data type is variable-length character string with maximum length equal to the
maximum length of the result expressions.

If any one of the result expressions is a character string constant, the result data type
is a variable-length character string with a maximum length equal to the maximum
length of the result expressions.

However, if either of the data types is not a variable-length character string and the
result expressions is not a character string constant, the result data type is fixed-length
character string with a length equal to the maximum of the lengths of the result
expressions.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-17

SQL/MX Functions and Expressions Examples of CASE
Numeric Data Type

If all of the data types of the result expressions are exact numeric, the result data type
is exact numeric with precision and scale equal to the maximum of the precisions and
scales of the result expressions.

For example, if result-expression-1 and result-expression-2 have data
type NUMERIC(5) and result-expression-3 has data type NUMERIC(8,5), the
result data type is NUMERIC(10,5).

If any data type of the result expressions is approximate numeric, the result data type
is approximate numeric with precision equal to the maximum of the precisions of the
result expressions.

Datetime Data Type

If the data type of the result expressions is datetime, the result data type is the same
datetime data type.

Interval Data Type

If the data type of the result expressions is interval, the result data type is the same
interval data type (either year-month or day-time) with the start field being the most
significant of the start fields of the result expressions and the end field being the least
significant of the end fields of the result expressions.

Examples of CASE

 Use a simple CASE to decode JOBCODE and return NULL if JOBCODE does not
match any of the listed values:

SELECT last_name, first_name,
 CASE jobcode
 WHEN 100 THEN 'MANAGER'
 WHEN 200 THEN 'PRODUCTION SUPV'
 WHEN 250 THEN 'ASSEMBLER'
 WHEN 300 THEN 'SALESREP'
 WHEN 400 THEN 'SYSTEM ANALYST'
 WHEN 420 THEN 'ENGINEER'
 WHEN 450 THEN 'PROGRAMMER'
 WHEN 500 THEN 'ACCOUNTANT'
 WHEN 600 THEN 'ADMINISTRATOR ANALYST'
 WHEN 900 THEN 'SECRETARY'
 ELSE NULL
 END
FROM persnl.employee;

LAST_NAME FIRST_NAME (EXPR)
-------------------- --------------- -----------------

GREEN ROGER MANAGER
HOWARD JERRY MANAGER
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-18

SQL/MX Functions and Expressions Examples of CASE
RAYMOND JANE MANAGER
...
CHOU JOHN SECRETARY
CONRAD MANFRED PROGRAMMER
HERMAN JIM SALESREP
CLARK LARRY ACCOUNTANT
HALL KATHRYN SYSTEM ANALYST
...

--- 62 row(s) selected.

 Use a searched CASE to return LAST_NAME, FIRST_NAME and a value based
on SALARY that depends on the value of DEPTNUM:

SELECT last_name, first_name, deptnum,
 CASE
 WHEN deptnum = 9000 THEN salary * 1.10
 WHEN deptnum = 1000 THEN salary * 1.12
 ELSE salary
 END
FROM persnl.employee;

LAST_NAME FIRST_NAME DEPTNUM (EXPR)
---------------- ------------ ------- -------------------
GREEN ROGER 9000 193050.0000
HOWARD JERRY 1000 153440.1120
RAYMOND JANE 3000 136000.0000
...
--- 62 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-19

SQL/MX Functions and Expressions CAST Expression
CAST Expression
Considerations for CAST
Valid Conversions for CAST
Examples of CAST

The CAST expression converts data to the data type you specify.

expression | NULL

specifies the operand to convert to the data type data-type.

If the operand is an expression, then data-type depends on the data type of
expression and follows the rules outlined in Valid Conversions for CAST.

If the operand is NULL, or if the value of the expression is null, the result of
CAST is NULL, regardless of the data type you specify.

data-type

specifies a data type to associate with the operand of CAST. See Data Types on
page 6-17.

When casting data to a CHAR or VARCHAR data type, the resulting data value is
left justified. Otherwise, the resulting data value is right justified. Further, when you
are casting to a CHAR or VARCHAR data type, you must specify the length of the
target value.

Considerations for CAST

Depending on how your file is set up, using CAST might cause poor query
performance by preventing the optimizer from choosing the most efficient plan and
requiring the executor to perform a complete table or index scan.

Valid Conversions for CAST

 An exact or approximate numeric value to any other numeric data type. The size of
the character string should be large enough to hold the numeric value without
truncation. An error 8402 is returned if the size of the character string cannot hold
the numeric value without truncation.

 An exact or approximate numeric value to any character string data type.

 An exact numeric value to either a single-field year-month or day-time interval such
as INTERVAL ‘30’ DAY.

 A character string to any other data type, with one restriction:

CAST ({expression | NULL} AS data-type)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-20

SQL/MX Functions and Expressions Examples of CAST
The contents of the character string to be converted must be consistent in meaning
with the data type of the result. For example, if you are converting to DATE, the
contents of the character string must be 10 characters consisting of the year, a
hyphen, the month, another hyphen, and the day.

 A date value to a character string or to a TIMESTAMP (NonStop SQL/MX fills in
the time part with 00:00:00.00).

 A time value to a character string or to a TIMESTAMP (NonStop SQL/MX fills in the
date part with the current date).

 A timestamp value to a character string, a DATE, a TIME, or another TIMESTAMP
with different fractional seconds precision.

 A year-month interval value to a character string, an exact numeric, or to another
year-month INTERVAL with a different start field precision.

 A day-time interval value to a character string, an exact numeric, or to another day-
time INTERVAL with a different start field precision.

Examples of CAST

 This example returns the difference of two timestamps in minutes:

CAST((d.step_end - d.step_start) AS INTERVAL MINUTE)

 The PROJECT table contains a column START_DATE of data type DATE and a
column SHIP_TIMESTAMP of data type TIMESTAMP.

Use CAST to return the number of days for completion of a project:

SELECT projdesc, start_date, ship_timestamp,
 (CAST (ship_timestamp AS DATE) - start_date) DAY
FROM persnl.project;

PROJDESC START_DATE SHIP_TIMESTAMP (EXPR)
-------------- ---------- -------------------------- ------
SALT LAKE CITY 1996-04-10 1996-04-21 08:15:00.000000 11
ROSS PRODUCTS 1996-06-10 1996-07-21 08:30:00.000000 41
MONTANA TOOLS 1996-10-10 1996-12-21 09:00:00.000000 72
AHAUS TOOL 1996-08-21 1996-10-21 08:10:00.000000 61
THE WORKS 1996-09-21 1996-10-21 10:15:00.000000 30

--- 5 row(s) selected.

Note that DATE differences can be expressed only in the number of days, the least
significant unit of measure for dates. (An interval is either year-month or day-time.)
In this example, the result is the same if you express the difference as:

CAST (ship_timestamp AS DATE) - start_date

You are not required to specify the interval qualifier.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-21

SQL/MX Functions and Expressions CEILING Function
 Suppose that your database includes a log file of user information. This example
converts the current timestamp to a character string and concatenates the result to
a character literal. Note the length must be specified.

INSERT INTO stats.logfile
(user_key, user_info)
VALUES (001, 'User JBrook, executed at ' ||
 CAST (CURRENT_TIMESTAMP AS CHAR(26)));

CEILING Function
The CEILING function returns the smallest integer, represented as a FLOAT data type,
greater than or equal to a numeric value expression.

CEILING is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the CEILING function. See Numeric Value Expressions on page 6-52.

Examples of CEILING

 This function returns the integer value 3.00000000000000064E+000, represented
as a FLOAT data type:

CEILING (2.25)

CEILING (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-22

SQL/MX Functions and Expressions CHAR Function
CHAR Function
The CHAR function returns the character that has the specified code value, which must
be of exact numeric with scale 0.

CHAR is an SQL/MX extension.

code-value

is a valid code value in the character set in use.

char-set-name

can be ISO88591, KANJI, KSC5601, or UCS2. The returned character will be
associated with the character set specified by char-set-name with the DEFAULT
collation.

The default is ISO88591.

Examples of CHAR

 Select the column CUSTNAME and return the ASCII code of the first character of
the customer name and its CHAR value:

SELECT custname, ASCII (custname), CHAR (ASCII (custname))
FROM sales.customer;

CUSTNAME (EXPR) (EXPR)
------------------ ------- -------
CENTRAL UNIVERSITY 67 C
BROWN MEDICAL CO 66 B
STEVENS SUPPLY 83 S
PREMIER INSURANCE 80 P
...

--- 15 row(s) selected.

CHAR(code-value, [,char-set-name])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-23

SQL/MX Functions and Expressions CHAR_LENGTH Function
CHAR_LENGTH Function
Considerations for CHAR_LENGTH
SQL/MP Considerations for CHAR_LENGTH
Examples of CHAR_LENGTH

The CHAR_LENGTH function returns the number of characters in a string. You can
also use CHARACTER_LENGTH.

string-value-expression

specifies the string value expression for which to return the length in characters.
NonStop SQL/MX returns the result as a two-byte signed integer with a scale of
zero. If string-value-expression is null, NonStop SQL/MX returns a length of
null. See Character Value Expressions on page 6-41.

Considerations for CHAR_LENGTH

CHAR and VARCHAR Operands

For a column declared as fixed CHAR, NonStop SQL/MX returns the maximum length
of that column. For a VARCHAR column, NonStop SQL/MX returns the actual length of
the string stored in that column.

SQL/MP Considerations for CHAR_LENGTH

Similarity to OCTET_LENGTH Function

The CHAR_LENGTH and OCTET_LENGTH functions are similar. The
CHAR_LENGTH function returns the number of characters in a string, and the
OCTET_LENGTH function returns the number of bytes in a string.

For example, suppose that an SQL/MP table has been created in this way:

CREATE TABLE tab (col_kanji CHAR(10) CHARACTER SET KANJI,
 col_char CHAR(10));

This row is inserted into the table:

INSERT INTO tab VALUES (_KANJI'kkkk', 'ccc');

CHAR[ACTER]_LENGTH (string-value-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-24

SQL/MX Functions and Expressions Examples of CHAR_LENGTH
This SELECT statement returns the same values for the character length and the octet
length of the ISO88591 column. One character of an ISO88591 character set is
equivalent to one byte.

SELECT CHAR_LENGTH(col_char) AS CHARLENGTH_CHAR,
 OCTET_LENGTH(col_char) AS OCTETLENGTH_CHAR
FROM tab;

CHARLENGTH_CHAR OCTETLENGTH_CHAR
--------------- ----------------

 10 10

--- 1 row(s) selected.

This SELECT statement returns the same values for the character length and the octet
length of the KANJI column.

SELECT CHAR_LENGTH(col_kanji) AS CHARLENTH_KANJI,
 OCTET_LENGTH(col_kanji) AS OCTETLENGTH_KANJI
FROM tab;

CHARLENTH_KANJI OCTETLENGTH_KANJI
--------------- -----------------
 10 20

--- 1 row(s) selected.

Examples of CHAR_LENGTH

 This function returns 12 as the result. The concatenation operator is denoted by
two vertical bars (||).

CHAR_LENGTH ('ROBERT' || ' ' || 'SMITH')

 The string '' is the null (or empty) string. This function returns 0 (zero):

CHAR_LENGTH ('')

 The DEPTNAME column has data type CHAR(12). Therefore, this function always
returns 12:

CHAR_LENGTH (deptname)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-25

SQL/MX Functions and Expressions Examples of CHAR_LENGTH
 The PROJDESC column in the PROJECT table has data type VARCHAR(18). This
function returns the actual length of the column value—not 18 for shorter strings—
because it is a VARCHAR value:

SELECT CHAR_LENGTH (projdesc)
FROM persnl.project;

(EXPR)

 14
 13
 13
 17
 9
 9
--- 6 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-26

SQL/MX Functions and Expressions COALESCE Function
COALESCE Function
Returns the value of the first expression in the list that is NOT NULL or if all the
expressions in the list result in NULL, the function returns NULL.

expr1, expr2 , expr3 and so on are SQL value expressions of comparable data
types.

Considerations

 If all the expressions in the argument list are fixed-length character types, the
return value is a fixed-length character string equal to the maximum size of all the
expression value types.

 If any of the expressions in the argument list are variable-length character type, the
return value is a variable-length character string with the maximum size of all the
expression value types.

 If all the expressions in the argument list are integer types, the return value is of
the same data type as the largest integer type of all the possible return values.

 If all the expressions in the argument list are numeric types, and at least one is
REAL, FLOAT, or DOUBLE PRECISION, the return value is a DOUBLE
PRECISION type.

 If all the expressions in the argument list are numeric types, none are REAL,
FLOAT, or DOUBLE PRECISION, and at least one is of type NUMERIC, the return
value is a NUMERIC type.

 The last expression in the COALESCE function cannot be NULL. This is a
NonStop SQL/MX restriction.

 If the return value is of type NUMERIC or DECIMAL, the value has a precision
value equal to the sum of:

 The maximum scale of all the return values.

 The maximum of precision minus scale value for all the return values.

However, the precision value must not exceed 18.

 If the return value is of type NUMERIC or DECIMAL, the scale of the return value
is the minimum of:

 The maximum scale of all the return values.

 18 - (the maximum of precision minus scale value for all the return values).

 The COALESCE function is internally transformed into the SQL/MX
CASE…WHEN…ELSE…END function, and therefore all typing rules that apply to
the CASE…WHEN…ELSE…END also apply to this function.

COALESCE (expr1, expr2[,expr3 ...])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-27

SQL/MX Functions and Expressions Examples of COALESCE
 The COALESCE function has no limit on the number of arguments, other than the
general limit of an SQL expression. However, large lists of expressions do not
perform well.

Examples of COALESCE

 This function returns the first NOT NULL value from the expression list (msg, warn,
err). For the first row, value for column warn is returned. For the second row, value
for column err is returned.

create table tab1(msg varchar(20), warn varchar(20), err
varchar(20));

-- The Default for column msg, column warn and column err is
NULL
insert into tab1(warn) values('xxxx');
insert into tab1(err) values('zzzz');

-- In the first row
select COALESCE(msg,warn,err), msg, warn, err from tab1;

>>select COALESCE(msg,warn,err), msg, warn, err from tab1;

(EXPR) MSG WARN ERR

---- ------- ------- -----

xxxx ? xxxx ?

zzzz ? ? zzzz

 The function returns the language marks for the students. Assume that each
student can only choose one language course (English, French, Spanish, or
German).

Create table student(name varchar(20),
math int,
science int,
economics int,
english int,
french int,
spanish int,
german int);
--- SQL operation complete.

-- This inserts the French marks for John, in addition to
math, science and economics.
insert into student(name, math, science, economics, french)

Note. Existing NonStop SQL/MX conversions rules are applied to the above
rules.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-28

SQL/MX Functions and Expressions Examples of COALESCE
values('John', 60, 70, 80, 60);
--- 1 row(s) inserted.

-- This inserts the English marks for Harry, in addition to
math, science and economics.
insert into student(name, math, science, economics, english)
values('Harry', 50, 80, 75, 55);
--- 1 row(s) inserted.

-- This inserts the German marks for Mike, in addition to
math, science and economics.
insert into student(name, math, science, economics, german)
values('Mike', 90, 50, 60, 80);
--- 1 row(s) inserted.

-- This inserts the Spanish marks for Raul, in addition to
math, science and economics.
insert into student(name, math, science, economics, spanish)
values('Raul', 60, 70, 80, 70);
--- 1 row(s) inserted.

-- This inserts the Spanish marks for Leo, in addition to
math, science and economics.
insert into student(name, math, science, economics, spanish)
values('Leo', 60, 70, 80, 35);
--- 1 row(s) inserted.

-- This inserts the English marks for Donald, in addition to
math, science and economics.
insert into student(name, math, science, economics, english)
values('Donald',60, 70, 80, 25);
--- 1 row(s) inserted.

-- The COALESCE function selects the language marks opted by
each student.
select name, math, science, economics, coalesce(english,
french, spanish, german) as language_mark from student;

NAME MATH SCIENCE ECONOMICS LANGUAGE_MARK

-------------------- ----------- ----------- -----------

John 60 70 80 60

Harry 50 80 75 55

Mike 90 50 60 80

Raul 60 70 80 70

Leo 60 70 80 35

Donald 60 70 80 25

--- 6 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-29

SQL/MX Functions and Expressions CODE_VALUE Function
CODE_VALUE Function
The CODE_VALUE function returns an unsigned integer (INTEGER UNSIGNED) that
is the code point of the first character in a character value expression that can be
associated with any character sets allowed.

CODE_VALUE is an SQL/MX extension.

character-value-expression

is a character string.

Considerations for CODE_VALUE Function

 This function returns 97 as the result:

>>select code_value('abc') from (values(1))x;

(EXPR)

 97

CODE_VALUE(character-value-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-30

SQL/MX Functions and Expressions COMPILERCONTROLS Function
COMPILERCONTROLS Function
Considerations for COMPILERCONTROLS

Examples of COMPILERCONTROLS

The COMPILERCONTROLS function is an SQL/MX extension.

The COMPILERCONTROLS function can be specified as a table reference (table) in
the FROM clause of a SELECT statement if it is preceded by the keyword TABLE and
surrounded by parentheses. The syntax for the COMPILERCONTROLS function has
no parameters.

In a dynamic environment (that is, MXCI, MXCS, JDBC, or dynamic SQL), the
COMPILERCONTROLS function returns the active control query defaults (CQDs) and
CTDs from the SQL/MX compiler.

Considerations for COMPILERCONTROLS

Using SELECT and COMPILERCONTROLS

The SELECT statement displays the selected columns from the
COMPILERCONTROLS function:

COMPILERCONTROLS ()

Column Name Type/Size Description

SeqNum INTEGER Organizes the attribute values that are larger than 78
characters.

Type CHAR(4) Indicates the type of the attribute being displayed.

Supported values are CQD, CT, CS, and CQS.

State CHAR(8) Indicates how the attribute is set. Supported values
are: DEF_TAB, BY_SYS, DEFAULT, BY_USER,
NOT_SET, RD_ONLY.

Attribute CHAR(50) Displays the name of the attribute.

Attribute_Value CHAR(78) Provides the value of the attribute. This column can
have actual values larger than 78 characters, where
the values will be split into chunks of 78 characters
and displayed. The SeqNum column is used to orga-
nize the chunks.

Table_Name CHAR(386) Populates only for the Control table type. Only the first
78 characters of the table name are displayed.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-31

SQL/MX Functions and Expressions Examples of COMPILERCONTROLS
Examples of COMPILERCONTROLS

 To display control tables, set the following CTs to ON:

>>control table t3 mdam 'on';
--- SQL operation complete.

>>control table t4 mdam 'on';
--- SQL operation complete.

To view compiler controls of type CT that are active, run the following query:

>>select * from table(compilercontrols()) where type = 'CT';

The query displays the following output:

SEQNUM TYPE STATE ATTRIBUTE ATTRIBUTE_VALUE TABLE_NAME

------ ---- ---- --------- ------------- ----------
0 CT BY_USER MDAM ON T3

0 CT BY_USER MDAM ON T4

--- 2 row(s) selected.

 Consider that the following CQS is set to ON:

>>CONTROL QUERY SHAPE JOIN (CUT,UNION(CUT,SCAN));
--- SQL operation complete.

To view the control query shape, run the following query:

>>select * from table(compilercontrols()) where type =
'CQS'and state = 'BY_USER';

The query displays the following output:

SEQNUM TYPE STATE ATTRIBUTE ATTRIBUTE_VALUE TABLE_NAME

------ --- ---- -------- ------------- ----------
0 CQS BY_USER CONTROL QUERY SHAPE CONTROL QUERY
SHAPE JOIN (CUT, UNION(CUT, SCAN)); ?

--- 1 row(s) selected.

 Consider that the following CQS is set to ON:

>>CONTROL QUERY SHAPE SCAN (TABLE 'T1', PATH 'IT1');
--- SQL operation complete.

To view the control query shape, run the following query:

>>select * from table(compilercontrols()) where type =
'CQS'and state = 'BY_USER';
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-32

SQL/MX Functions and Expressions Examples of COMPILERCONTROLS
The query displays the following output:

SEQNUM TYPE STATE ATTRIBUTE ATTRIBUTE_VALUE TABLE_NAME

------ --- ---- -------- ------------- ----------

0 CQS BY_USER CONTROL QUERY SHAPE CONTROL QUERY
SHAPE SCAN (TABLE1 'T1', PATH 'IT1'); ?

 --- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-33

SQL/MX Functions and Expressions CONCAT Function
CONCAT Function
The CONCAT function returns the concatenation of two character value expressions as
a character string value. You can also use the concatenation operator (||).

CONCAT is an SQL/MX extension.

character-expr-1, character-expr-2

are SQL character value expressions (of data type CHAR or VARCHAR) that
specify two strings of characters. The result of the CONCAT function is the
concatenation of character-expr-1 with character-expr-2. See Character
Value Expressions on page 6-41.

Concatenation Operator (||)

The concatenation operator, denoted by two vertical bars (||), concatenates two string
values to form a new string value. To indicate that two strings are concatenated,
connect the strings with two vertical bars (||):

character-expr-1 || character-expr-2

An operand can be any SQL value expression of data type CHAR or VARCHAR.

Considerations for CONCAT

Operands

A string value can be specified by any character value expression, such as a character
string literal, character string function, column reference, aggregate function, scalar
subquery, CASE expression, or CAST expression. The value of the operand must be
of type CHAR or VARCHAR.

If you use the CAST expression, you must specify the length of CHAR or VARCHAR.

SQL Parameters

You can concatenate an SQL parameter and a character value expression. The
concatenated parameter takes on the data type attributes of the character value
expression. Consider this example, where ?p is assigned a string value of
'5 March':

?p || ' 2002'

The type assignment of the parameter ?p becomes CHAR(5), the same data type as
the character literal ' 2002'. Because you assigned a string value of more than five
characters to ?p, NonStop SQL/MX returns a truncation warning, and the result of the
concatenation is 5 Mar 2002.

CONCAT (character-expr-1, character-expr-2)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-34

SQL/MX Functions and Expressions Examples of CONCAT
To specify the type assignment of the parameter, use the CAST expression on the
parameter as:

CAST(?p AS CHAR(7)) || '2002'

In this example, the parameter is not truncated, and the result of the concatenation is
5 March 2002.

Examples of CONCAT

Suppose that the LOGFILE table has been created in NonStop SQL/MP as:

CREATE TABLE $sys.stats.logfile
 (user_key NUMERIC (3) UNSIGNED NO DEFAULT NOT NULL
 ,run_date DATE DEFAULT CURRENT
 ,run_time TIME DEFAULT CURRENT
 ,user_name VARCHAR (20)
 ,user_info VARCHAR (80)
 ,PRIMARY KEY (user_key))
 CATALOG $sys.stats
 ORGANIZATION KEY SEQUENCED;

After the table is created, you can insert the mapping into the OBJECTS table in this
way by using MXCI:

CREATE SQLMP ALIAS sys.stats.logfile $sys.stats.logfile;

 Insert information consisting of a single character string before you end an MXCI
session. Use the CONCAT function to construct and insert the value:

INSERT INTO stats.logfile
(user_key, user_info)
VALUES (001, CONCAT ('Executed at ',
 CAST (CURRENT_TIMESTAMP AS CHAR(26))));

 Use the concatenation operator || to construct and insert the value:

INSERT INTO stats.logfile
(user_key, user_info)
VALUES (002, 'Executed at ' ||
 CAST (CURRENT_TIMESTAMP AS CHAR(26)));

This table now includes:

 1 2000-01-03 12:58:32 ?
Executed at 2000-01-03 12:58:32.527117

 2 2000-01-03 12:58:40 ?
Executed at 2000-01-03 12:58:40.364611
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-35

SQL/MX Functions and Expressions CONVERTTIMESTAMP Function
CONVERTTIMESTAMP Function
The CONVERTTIMESTAMP function converts a Julian timestamp to a value with data
type TIMESTAMP.

CONVERTTIMESTAMP is an SQL/MX extension.

julian-timestamp

is an expression that evaluates to a Julian timestamp, which is a LARGEINT value.

Considerations for CONVERTTIMESTAMP

Relationship to the JULIANTIMESTAMP Function

The operand of CONVERTTIMESTAMP is a Julian timestamp, and the function result
is a value of data type TIMESTAMP. The operand of the JULIANSTAMP function is a
value of data type TIMESTAMP, and the function result is a Julian timestamp. That is,
the two functions have an inverse relationship to one another.

Use of CONVERTTIMESTAMP

You can use the inverse relationship between the JULIANTIMESTAMP and
CONVERTTIMESTAMP functions to insert Julian timestamp columns into your
database and display these column values in a TIMESTAMP format.

Examples of CONVERTTIMESTAMP

 Suppose that the EMPLOYEE table includes a column, named HIRE_DATE, which
contains the hire date of each employee as a Julian timestamp. Convert the Julian
timestamp into a TIMESTAMP value:

SELECT CONVERTTIMESTAMP (hire_date)
FROM persnl.employee;

 This example illustrates the inverse relationship between JULIANTIMESTAMP and
CONVERTTIMESTAMP.

SELECT CONVERTTIMESTAMP (JULIANTIMESTAMP (ship_timestamp))
FROM persnl.project;

If, for example, the value of SHIP_TIMESTAMP is 1998-04-03 21:05:36.143000,
the result of CONVERTTIMESTAMP(JULIANTIMESTAMP(ship_timestamp)) is
the same value, 1998-04-03 21:05:36.143000.

CONVERTTIMESTAMP (julian-timestamp)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-36

SQL/MX Functions and Expressions COS Function
COS Function
The COS function returns the cosine of a numeric value expression, where the
expression is an angle expressed in radians.

COS is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the COS function. See Numeric Value Expressions on page 6-52.

Examples of COS

 This function returns the value 9.39680940386503936E-001, or approximately
0.9397, the cosine of 0.3491 (which is 20 degrees):

COS (0.3491)

COSH Function
The COSH function returns the hyperbolic cosine of a numeric value expression,
where the expression is an angle expressed in radians.

COSH is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the COSH function. See Numeric Value Expressions on page 6-52.

Examples of COSH

 This function returns the value 1.88842387716101616E+000, or approximately
1.8884, the hyperbolic cosine of 1.25 in radians:

COSH (1.25)

COS (numeric-expression)

COSH (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-37

SQL/MX Functions and Expressions COUNT Function
COUNT Function
The COUNT function counts the number of rows that result from a query or the number
of rows that contain a distinct value in a specific column. The result of COUNT is data
type LARGEINT. The result can never be NULL.

COUNT (*)

returns the number of rows in the table specified in the FROM clause of the
SELECT statement that contains COUNT (*). If the result table is empty (that is, no
rows are returned by the query) COUNT (*) returns zero.

ALL | DISTINCT

returns either the number of all rows or the number of distinct rows in the one-
column table derived from the evaluation of expression. The default option is
ALL, which causes duplicate values to be included. If you specify DISTINCT,
duplicate values are eliminated before the COUNT function is applied.

expression

specifies a value expression that determines the values to count. The
expression cannot contain an aggregate function or a subquery. The DISTINCT
clause specifies that the COUNT function operates on distinct values from the one-
column table derived from the evaluation of expression. See Expressions on
page 6-41.

Considerations for COUNT

Operands of the Expression

The operand of COUNT is either * or an expression that includes columns from the
result table specified by the SELECT statement that contains COUNT. However, the
expression cannot include an aggregate function or a subquery. These expressions are
valid:

COUNT (*)
COUNT (DISTINCT JOBCODE)
COUNT (UNIT_PRICE * QTY_ORDERED)

COUNT {(*) | ([ALL | DISTINCT] expression)}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-38

SQL/MX Functions and Expressions Examples of COUNT
Nulls

COUNT is evaluated after eliminating all nulls from the one-column table specified by
the operand. If the table has no rows, COUNT returns zero.

COUNT(*) does not eliminate null rows from the table specified in the FROM clause of
the SELECT statement. If all rows in a table are null, COUNT(*) returns the number of
rows in the table.

Examples of COUNT

 Count the number of rows in the EMPLOYEE table:

SELECT COUNT (*)
FROM persnl.employee;

(EXPR)

 62

--- 1 row(s) selected.

 Count the number of employees who have a job code in the EMPLOYEE table:

SELECT COUNT (jobcode)
FROM persnl.employee;

(EXPR)

 56

--- 1 row(s) selected.

SELECT COUNT(*)
FROM persnl.employee
WHERE jobcode IS NOT NULL;

(EXPR)

 56

--- 1 row(s) selected.

 Count the number of distinct departments in the EMPLOYEE table:

SELECT COUNT (DISTINCT deptnum)
FROM persnl.employee;

(EXPR)

 11

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-39

SQL/MX Functions and Expressions CURRENT Function
CURRENT Function
The CURRENT function returns a value of type TIMESTAMP based on the current
local date and time. You can also use CURRENT_TIMESTAMP Function on
page 8-43.

precision

is an integer value in the range 0 to 6 that specifies the precision of (the number of
decimal places in) the fractional seconds in the returned value. The default is 6.

For example, the function CURRENT (2) returns the current date and time as a
value of data type TIMESTAMP, where the precision of the fractional seconds is
2—for example, 1997-06-26 09:01:20.89. The value returned is not a string value.

Examples of CURRENT

 The PROJECT table contains a column SHIP_TIMESTAMP of data type
TIMESTAMP. Update a row by using the CURRENT value:

UPDATE persnl.project
SET ship_timestamp = CURRENT
WHERE projcode = 1000;

CURRENT [(precision)]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-40

SQL/MX Functions and Expressions CURRENT_DATE Function
CURRENT_DATE Function
The CURRENT_DATE function returns the local current date as a value of type DATE.

The CURRENT_DATE function returns the current date, such as 1997-09-28. The
value returned is a value of type DATE, not a string value.

Examples of CURRENT_DATE

 Select rows from the ORDERS table based on the current date:

SELECT * FROM sales.orders
WHERE deliv_date >= CURRENT_DATE;

 The PROJECT table has a column EST_COMPLETE of type INTERVAL DAY. If
the current date is the start date of your project, determine the estimated date of
completion:

SELECT projdesc, CURRENT_DATE + est_complete
FROM persnl.project;

Project/Description (EXPR)
------------------- ----------
SALT LAKE CITY 2000-01-18
ROSS PRODUCTS 2000-02-02
MONTANA TOOLS 2000-03-03
AHAUS TOOL/SUPPLY 2000-03-03
THE WORKS 2000-02-02
THE WORKS 2000-02-02

--- 6 row(s) selected.

CURRENT_DATE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-41

SQL/MX Functions and Expressions CURRENT_TIME Function
CURRENT_TIME Function
The CURRENT_TIME function returns the current local time as a value of type TIME.

precision

is an integer value in the range 0 to 6 that specifies the precision of (the number of
decimal places in) the fractional seconds in the returned value. The default is 0.

For example, the function CURRENT_TIME (2) returns the current time as a value
of data type TIME, where the precision of the fractional seconds is 2—for example,
14:01:59.30. The value returned is not a string value.

Examples of CURRENT_TIME

Suppose that the LOGFILE table has been created in NonStop SQL/MP as:

CREATE TABLE $sys.stats.logfile
 (user_key NUMERIC (3) UNSIGNED NO DEFAULT NOT NULL
 ,run_date DATE
 ,run_time TIME
 ,user_name VARCHAR (20)
 ,user_info VARCHAR (80)
 ,PRIMARY KEY (user_key))
 CATALOG $sys.stats
 ORGANIZATION KEY SEQUENCED;

After the table is created, you can insert the mapping into the OBJECTS table in this
way by using MXCI:

CREATE SQLMP ALIAS sys.stats.logfile $sys.stats.logfile;

 Use CURRENT_DATE and CURRENT_TIME as a value in an inserted row:

INSERT INTO stats.logfile
(user_key, run_date, run_time, user_name)
VALUES (001, CURRENT_DATE, CURRENT_TIME, 'JuBrock');

CURRENT_TIME [(precision)]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-42

SQL/MX Functions and Expressions CURRENT_TIMESTAMP Function
CURRENT_TIMESTAMP Function
The CURRENT_TIMESTAMP function returns a value of type TIMESTAMP based on
the current local date and time. You can also use the CURRENT Function on
page 8-40.

precision

is an integer value in the range 0 to 6 that specifies the precision of (the number of
decimal places in) the fractional seconds in the returned value. The default is 6.

For example, the function CURRENT_TIMESTAMP (2) returns the current date
and time as a value of data type TIMESTAMP, where the precision of the fractional
seconds is 2; for example, 1997-06-26 09:01:20.89. The value returned is not a
string value.

Examples of CURRENT_TIMESTAMP

 The PROJECT table contains a column SHIP_TIMESTAMP of data type
TIMESTAMP. Update a row by using the CURRENT_TIMESTAMP value:

UPDATE persnl.project
SET ship_timestamp = CURRENT_TIMESTAMP
WHERE projcode = 1000;

CURRENT_USER Function
The CURRENT_USER function returns the current Guardian user ID as variable-length
character data in the form group.name.

The CURRENT_USER function is equivalent to the SESSION_USER Function on
page 8-168 and the USER Function on page 8-203.

Examples of CURRENT_USER

 Retrieve the user name value for the current user:

SELECT CURRENT_USER FROM logfile;

(EXPR)

DCS.TSHAW
...

--- 5 row(s) selected.

CURRENT_TIMESTAMP [(precision)]

CURRENT_USER
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-43

SQL/MX Functions and Expressions DATE_ADD Function
DATE_ADD Function
The DATE_ADD function adds the interval specified by the interval_expression
to the datetime_expression.

datetime_expression

is an expression that specifies a datetime value of type, DATE, TIMESTAMP, or
TIME.

interval_expression

is an expression that specifies an INTERVAL data type.

Return type

The return type is same as the type of datetime_expression, but if the
interval_expression consists of any time components, a timestamp is returned.
For example:

DATE_ADD(DATE ‘2007-02-28’, INTERVAL ‘7’ DAY) returns DATE
DATE_ADD(DATE ‘2007-02-28’, INTERVAL ‘7’ HOUR) returns TIMESTAMP

Examples of DATE_ADD

The following example illustrates the use of DATE_ADD function:

>>select dt_ts, date_add(dt_ts, interval '1' day) from T01
where sm_int = 2;

DT_TS (EXPR)

-------------------------- --------------------------

2010-02-28 20:13:53.000000 2010-03-01 20:13:53.000000

--- 1 row(s) selected.

DATEADD Function
The DATEADD function adds the num_expression units specified by the datepart
to the datetime_expression.

DATE_ADD (datetime_expression, interval_expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-44

SQL/MX Functions and Expressions Considerations for DATEADD
datepart

specifies the units of time being added: YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, QUARTER, WEEK, or one of the following abbreviations:

num_expression

is an SQL exact numeric value expression that specifies how many datepart
units of time must be added to the datetime_expression.

datetime_expression

is an expression that specifies a datetime value of type, DATE, TIMESTAMP, or
TIME.

Considerations for DATEADD

 If the specified interval is in years or months, DATEADD normalizes the result. For
example, if the end day of the resulting date is invalid, the day will be rounded off
to the last day of the resulting month.

 If num_expression has a fraction, it is ignored. However, if datepart is
SECOND, then the fractional portion for num_expression is considered.

 If num_expression is negative, num_expression units of datepart are
subtracted from datetime_expression.

DATEADD(datepart, num_expression, datetime_expression)

Note. Unlike DATE_ADD function, the interval is provided in terms of
datepart and num_expression instead of an interval_expression.

YEAR YY and YYYY

MONTH M and MM

DAY D and DD

HOUR HH

MINUTE MI

SECOND S and SS

QUARTER Q and QQ

WEEK WW and WK
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-45

SQL/MX Functions and Expressions Return type
Return type

The return type is same as the datetime_expression type, but if the
datetime_expression consists of any time components, a timestamp is returned.
For example:

DATEADD(DAY, 7, ‘DATE 2007-02-28’) returns DATE
DATEADD(HOUR, 7, ‘DATE 2007-02-28’) returns TIMESTAMP

Examples of DATEADD

The following example illustrates the use of DATEADD function:

>>select dt_ts, dateadd(week, 5, dt_ts) from T01;

DT_TS (EXPR)

-------------------------- --------------------------

2008-11-12 03:03:03.000000 2008-12-17 03:03:03.000000

2112-01-30 09:05:00.000000 2112-03-05 09:05:00.000000

--- 2 row(s) selected.

DATEDIFF Function
The DATEDIFF function returns the integer number of datepart unit boundaries
crossed between the startdate and enddate.

datepart

represents YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, QUARTER, WEEK,
or one of the following abbreviations:

DATEDIFF (datepart, startdate, enddate)

YEAR YY and YYYY

MONTH M and MM

DAY D and DD

HOUR HH

MINUTE MI
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-46

SQL/MX Functions and Expressions Considerations for DATEDIFF
startdate, enddate

is of type DATE or TIMESTAMP.

Considerations for DATEDIFF

 If startdate is later than enddate, the return value is either negative or zero.

 If the result is out of range for integer values, an error is returned.

 The maximum seconds datepart allowed is equivalent to 68 years.

 If a difference in weeks is specified, and one of the two dates is earlier than
January 7, 0001, then an error is returned.

Return type

The result is a signed integer value equal to the number of datepart boundaries
crossed between the first and second date.

Examples of DATEDIFF

The following example illustrates the use of DATEDIFF function:

>>select dt_ts, dt_date, datediff(second, dt_ts, dt_date)
from T01;

DT_TS DT_DATE (EXPR)

-------------------------- ---------- -----------

2008-11-12 03:03:03.000000 2011-11-27 95893017

2112-01-30 09:05:00.000000 2112-01-30 -32700

--- 2 row(s) selected.

SECOND S and SS

QUARTER Q and QQ

WEEK WW and WK
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-47

SQL/MX Functions and Expressions DATEFORMAT Function
DATEFORMAT Function
The DATEFORMAT function returns a datetime value as a character string literal in the
DEFAULT, USA, or EUROPEAN format. The data type of the result is CHAR.

DATEFORMAT is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE, TIME, or
TIMESTAMP. See Datetime Value Expressions on page 6-43.

DEFAULT | USA | EUROPEAN

specifies a format for a datetime value. See Datetime Literals on page 6-68.

Examples of DATEFORMAT

 Convert a datetime literal in DEFAULT format to a string in USA format:

DATEFORMAT (TIMESTAMP '1996-06-20 14:20:20.00', USA)

The function returns this string literal:

'06/20/1996 02:20:20.00 PM'

 Convert a datetime literal in DEFAULT format to a string in European format:

DATEFORMAT (TIMESTAMP '1996-06-20 14:20:20.00', EUROPEAN)

The function returns this string literal:

'20.06.1996 14.20.20.00'

DATE_SUB Function
The DATE_SUB function subtracts the specified interval-expression from the
datetime-expression.

datetime-expression

is an expression that specifies a datetime value of type DATE, TIMESTAMP, or
TIME.

interval-expression

is an expression that specifies an INTERVAL data type.

DATEFORMAT (datetime-expression,{DEFAULT | USA | EUROPEAN})

DATE_SUB (datetime_expression, interval_expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-48

SQL/MX Functions and Expressions Considerations for DATE_SUB
Considerations for DATE_SUB

If the specified interval is in years or months, the DATE_SUB function normalizes the
result. For example, if the end day of the resulting date is invalid, the day is rounded off
to the last day of the resulting month.

Return type

The return type is same as the type of datetime-expression, but if the
interval-expression consists of any time components, a timestamp is returned.
For example,

DATE_SUB(DATE ‘2007-02-28’, INTERVAL ‘7’ DAY) returns DATE
DATE_SUB(DATE ‘2007-02-28’, INTERVAL ‘7’ HOUR) returns TIMESTAMP

Examples of DATE_SUB

The following example illustrates the use of DATE_SUB function:

>>select dt_ts, intr_sec, date_sub(dt_date, intr_sec) from
T01;

DT_TS INTR_SEC (EXPR)

-------------------------- ---------- ---------------------

2008-11-12 03:03:03.000000 7.000000 2011-11-26
23:59:53.0000002112-01-29 23:58:50.000000

2112-01-30 09:05:00.000000 70.000000 2112-01-29
23:58:50.000000

--- 2 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-49

SQL/MX Functions and Expressions DAY Function
DAY Function
The DAY function converts a DATE or TIMESTAMP expression into an INTEGER value
in the range 1 through 31 that represents the corresponding day of the month. The
result returned by the DAY function is equal to the result returned by the
DAYOFMONTH function.

DAY is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of DAY

 Return an integer that represents the day of the month from the START_DATE
column of the PROJECT table:

SELECT start_date, ship_timestamp, DAY(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
1996-04-10 1996-04-21 08:15:00.000000 10

DAY (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-50

SQL/MX Functions and Expressions DAYNAME Function
DAYNAME Function
The DAYNAME function converts a DATE or TIMESTAMP expression into a character
literal that is the name of the day of the week (Sunday, Monday, and so on).

DAYNAME is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of DAYNAME

 Return the name of the day of the week from the START_DATE column in the
PROJECT table:

SELECT start_date, ship_timestamp, DAYNAME(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ---------
1996-04-10 1996-04-21 08:15:00.000000 Wednesday

DAYNAME (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-51

SQL/MX Functions and Expressions DAYOFMONTH Function
DAYOFMONTH Function
The DAYOFMONTH function converts a DATE or TIMESTAMP expression into an
INTEGER value in the range 1 through 31 that represents the corresponding day of the
month. The result returned by the DAYOFMONTH function is equal to the result
returned by the DAY function.

DAYOFMONTH is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of DAYOFMONTH

 Return an integer that represents the day of the month from the START_DATE
column of the PROJECT table:

SELECT start_date, ship_timestamp, DAYOFMONTH(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
1996-04-10 1996-04-21 08:15:00.000000 10

DAYOFMONTH (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-52

SQL/MX Functions and Expressions DAYOFWEEK Function
DAYOFWEEK Function
The DAYOFWEEK function converts a DATE or TIMESTAMP expression into an
INTEGER value in the range 1 through 7 that represents the corresponding day of the
week. The value 1 represents Sunday, 2 represents Monday, and so forth.

DAYOFWEEK is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of DAYOFWEEK

 Return an integer that represents the day of the week from the START_DATE
column in the PROJECT table:

SELECT start_date, ship_timestamp, DAYOFWEEK(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
1996-04-10 1996-04-21 08:15:00.000000 4

The value returned is 4, representing Wednesday. The week begins on Sunday.

DAYOFWEEK (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-53

SQL/MX Functions and Expressions DAYOFYEAR Function
DAYOFYEAR Function
The DAYOFYEAR function converts a DATE or TIMESTAMP expression into an
INTEGER value in the range 1 through 366 that represents the corresponding day of
the year.

DAYOFYEAR is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of DAYOFYEAR

 Return an integer that represents the day of the year from the START_DATE
column in the PROJECT table:

SELECT start_date, ship_timestamp, DAYOFYEAR(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- --------------------
1996-04-10 1996-04-21 08:15:00.000000 101

DAYOFYEAR (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-54

SQL/MX Functions and Expressions DECODE Function
DECODE Function
The functionality of DECODE is similar to the CASE-WHEN-THEN-ELSE-END
expression. The DECODE function compares the expr with each test_expr one by
one in the order specified. If expr is equal to a test_expr, the function returns the
corresponding retval value. If no match is found, default is returned. If no match is
found and default is omitted, NULL is returned.

expr,test_expr,test_expr2 are SQL value expressions of comparable data
types.

retval is a SQL value expression.

default, retval, retval2,.. are SQL value expressions of comparable data
types.

DECODE (expr,test_expr,retval [,test_expr2,retval2 ...] [,
default]) is logically equivalent to the following:

CASE WHEN (expr IS NULL AND test_expr IS NULL) OR
expr = test_expr THEN retval
WHEN (expr IS NULL AND test_expr2 IS NULL) OR
expr = test_expr2 THEN retval2
...
ELSE default /* or ELSE NULL if default not specified */
END

Considerations

 In a DECODE function, two NULLs are considered to be equivalent. If expr is
NULL, then the returned value is the retval of the first test_expr that is also
NULL.

 The arguments can be any of the numeric types or character types. However,
expr and each test_expr value must be of comparable data types. If expr and
test_expr values are character types, they must be in the same character set (to
be comparable types).

 All the default and retval value, if any, must be of comparable types.

 If expr and a test_expr value are character data, the comparison is made using
nonpadded comparison semantics.

 If expr and a test_expr value are numeric data, the comparison is made with a
temporary copy of one of the numbers, according to the NonStop SQL/MX defined
rules of conversion. For example, if one number is integer and the other is decimal,
the comparison is made with a temporary copy of the integer converted to a
decimal.

DECODE (expr,test_expr,retval [,test_expr2,retval2 ...] [,
default])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-55

SQL/MX Functions and Expressions Considerations
 If all the possible return values are fixed-length character types, the return value is
a fixed-length character string equal to the maximum size of all the possible return
value types.

 If any of the possible return values are variable-length character types, the return
value is a variable-length character string with maximum size of all the possible
return value types.

 If all the possible return values are integer types, the return value is of the same
data type as the largest integer type of all the possible return value types.

 If the return value is FLOAT, the precision is the maximum precision of all the
possible return values.

 If all the possible return values are of the same non-integer, numeric type (REAL,
FLOAT, DOUBLE PRECISION, NUMERIC, or DECIMAL), the return value is of the
same type.

 If all the possible return values are numeric types but not all the same, and at least
one is REAL, FLOAT, or DOUBLE PRECISION, the return value is a DOUBLE
PRECISION type.

 If all the possible return values are numeric types but not all the same, none are
REAL, FLOAT, or DOUBLE PRECISION, and at least one is of type NUMERIC, the
return value is NUMERIC type.

 If all the possible return values are numeric types, none are NUMERIC, REAL,
FLOAT, or DOUBLE PRECISION, and at least one is of type DECIMAL, the return
value is DECIMAL type.

 If the return value is of type NUMERIC or DECIMAL, the value has a precision
value equal to the sum of:

 The maximum scale of all the return values.

 The maximum of precision minus scale value for all the return values.

However, the precision value must not exceed 18.

 If the return value is of type NUMERIC or DECIMAL, the scale of the return value
is the minimum of:

 The maximum scale of all the return values.

 18 - (the maximum of precision minus scale value for all the return values).

 There is no limit on the number of components in the DECODE function (includes
expr,test_exprs,retval, and the default) other than the general limit of
an SQL expression. However, large lists of components do not perform well.

Note. Existing NonStop SQL/MX conversions rules are applied to the above
rules.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-56

SQL/MX Functions and Expressions Examples of DECODE
Examples of DECODE

 In this example, the DECODE function returns a value of 3:

create table tab1(colA varchar(15));

insert into tab1 values('FAILED');

select DECODE(colA ,'PREPARE',1,

'OPERATION',2,

'FAILED',3,

'SUCCESS',4,

0)

from tab1;

(EXPR)

3

DEGREES Function
The DEGREES function converts a numeric value expression expressed in radians to
the number of degrees.

DEGREES is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the DEGREES function. See Numeric Value Expressions on page 6-52.

Examples of DEGREES

 This function returns the value 45 in degrees:

DEGREES (0.78540)

DEGREES (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-57

SQL/MX Functions and Expressions Examples of DEGREES
 This function returns the value 45. The function DEGREES is the inverse of the
function RADIANS.

DEGREES (RADIANS (45))
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-58

SQL/MX Functions and Expressions DIFF1 Function
DIFF1 Function
Considerations for DIFF1
Examples of DIFF1

The DIFF1 function is a sequence function that calculates the amount of change in an
expression from row to row in an intermediate result table ordered by a SEQUENCE
BY clause in a SELECT statement. See SEQUENCE BY Clause on page 7-19.

DIFF1 is an SQL/MX extension.

column-expression-a

specifies a derived column determined by the evaluation of the column expression.
If you specify only one column as an argument, DIFF1 returns the difference
between the value of the column in the current row and its value in the previous
row; this version calculates the unit change in the value from row to row.

column-expression-b

specifies a derived column determined by the evaluation of the column expression.
If you specify two columns as arguments, DIFF1 returns the difference in
consecutive values in column-expression-a divided by the difference in
consecutive values in column-expression-b.

The purpose of the second argument is to distribute the amount of change from
row to row evenly over some unit of change (usually time) in another column.

Considerations for DIFF1

Equivalent Result

If you specify one argument, the result of DIFF1 is equivalent to:

column-expression-a - OFFSET(column-expression-a, 1)

If you specify two arguments, the result of DIFF1 is equivalent to:

DIFF1(column-expression-a) / DIFF1(column-expression-b)

The two-argument version involves division by the result of the DIFF1 function. To
avoid divide-by-zero errors, make sure that column-expression-b does not
contain any duplicate values whose DIFF1 computation could result in a divisor of
zero.

Datetime Arguments

In general, NonStop SQL/MX does not allow division by a value of INTERVAL data
type. However, to permit use of the two-argument version of DIFF1 with times and

DIFF1 (column-expression-a [,column-expression-b])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-59

SQL/MX Functions and Expressions Examples of DIFF1
dates, NonStop SQL/MX relaxes this restriction and allows division by a value of
INTERVAL data type.

Examples of DIFF1

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Retrieve the difference between the I1 column in the current row and the I1 column
in the previous row:

SELECT DIFF1 (I1) AS DIFF1_I1
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF1_I1

 ?
 21959
 -9116
 -14461
 7369

--- 5 row(s) selected.

Note that the first row retrieved displays null because the offset from the current
row does not fall within the results set.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

19058 TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-60

SQL/MX Functions and Expressions Examples of DIFF1
 Retrieve the difference between the TS column in the current row and the TS
column in the previous row:

SELECT DIFF1 (TS) AS DIFF1_TS
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF1_TS

 ?
 30002620.000000
 134157861.000000
 168588029.000000
 114055223.000000

--- 5 row(s) selected.

Note that the results are expressed as the number of seconds. For example, the
difference between TIMESTAMP '1951-02-15 14:35:49' and TIMESTAMP '1950-
03-05 08:32:09' is approximately 347 days. The difference between TIMESTAMP
'1955-05-18 08:40:10' and TIMESTAMP '1951-02-15 14:35:49' is approximately 4
years and 3 months, and so on.

 This query retrieves the difference in consecutive values in I1 divided by the
difference in consecutive values in TS:

SELECT DIFF1 (I1,TS) AS DIFF1_I1TS
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF1_I1TS

 ?
 .0007319
 -.0000679
 -.0000857
 .0000646

--- 5 row(s) selected.

Note that the results are equivalent to the quotient of the results from the two
preceding examples. For example, in the second row of the output of this example,
0.0007319 is equal to 21959 divided by 30002620.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-61

SQL/MX Functions and Expressions DIFF2 Function
DIFF2 Function
Considerations for DIFF2
Examples of DIFF2

The DIFF2 function is a sequence function that calculates the amount of change in a
DIFF1 value from row to row in an intermediate result table ordered by a SEQUENCE
BY clause in a SELECT statement. See SEQUENCE BY Clause on page 7-19.

DIFF2 is an SQL/MX extension.

column-expression-a

specifies a derived column determined by the evaluation of the column expression.
If you specify only one column as an argument, DIFF2 returns the difference
between the value of DIFF1(column-expression-a) in the current row and the
same result in the previous row.

column-expression-b

specifies a derived column determined by the evaluation of the column expression.
If you specify two columns as arguments, DIFF2 returns the difference in
consecutive values of DIFF1(column-expression-a) divided by the difference
in consecutive values in column-expression-b.

See DIFF1 Function on page 8-59.

Considerations for DIFF2

Equivalent Result

If you specify one argument, the result of DIFF2 is equivalent to:

DIFF1(column-expression-a)- OFFSET(DIFF1(column-expression-a),1)

If you specify two arguments, the result of DIFF2 is equivalent to:

DIFF2(column-expression-a) / DIFF1(column-expression-b)

The two-argument version involves division by the result of the DIFF1 function. To
avoid divide-by-zero errors, make sure that column-expression-b does not
contain any duplicate values whose DIFF1 computation could result in a divisor of
zero.

Datetime Arguments

In general, NonStop SQL/MX does not allow division by a value of INTERVAL data
type. However, to permit use of the two-argument version of DIFF2 with times and

DIFF2 (column-expression-a [,column-expression-b])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-62

SQL/MX Functions and Expressions Examples of DIFF2
dates, NonStop SQL/MX relaxes this restriction and allows division by a value of
INTERVAL data type.

Examples of DIFF2

Suppose that SEQFCN has been created as:

CREATE TABLE mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by the TS
column:

 Retrieve the difference between the value of DIFF1(I1) in the current row and the
same result in the previous row:

SELECT DIFF2 (I1) AS DIFF2_I1
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF2_I1

 ?
 ?
 -31075
 -5345
 21830

--- 5 row(s) selected.

Note that the results are equal to the difference of DIFF1(I1) for the current row
and DIFF1(I1) of the previous row. For example, in the third row of the output of
this example, -31075 is equal to -9116 minus 21959. The value -9116 is the result
of DIFF1(I1) for the current row, and the value 21959 is the result of DIFF1(I1) for
the previous row. See Examples of DIFF1 on page 8-60.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

19058 TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-63

SQL/MX Functions and Expressions Examples of DIFF2
 Retrieve the difference in consecutive values of DIFF1(I1) divided by the difference
in consecutive values of TS:

SELECT DIFF2 (I1,TS) AS DIFF2_I1TS
FROM mining.seqfcn
SEQUENCE BY TS;

DIFF2_I1TS

 ?
 ?
 -.000231
 -.000031
 .000191

--- 5 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-64

SQL/MX Functions and Expressions EXP Function
EXP Function
This function returns the exponential value (to the base e) of a numeric value
expression.

EXP is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the EXP function. See Numeric Value Expressions on page 6-52.

The minimum input value must be between -744.4400719 and -744.4400720.

The maximum input value must be between 709.78271289338404 and
709.78271289338405.

Examples of EXP

 This function returns the value 3.49034295746184208E+000, or approximately
3.4903:

EXP (1.25)

 This function returns the value 2.0. The function EXP is the inverse of the function
LOG:

EXP (LOG(2.0))

EXP (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-65

SQL/MX Functions and Expressions EXPLAIN Function

M

M

EXPLAIN Function
Considerations for EXPLAIN
Examples of EXPLAIN

The EXPLAIN function is a table-valued stored function that generates a result table
describing an access plan for a SELECT, INSERT, DELETE, UPDATE, or CALL
statement. See Result of the EXPLAIN Function on page 8-67.

The EXPLAIN function can be specified as a table reference (table) in the FROM
clause of a SELECT statement if it is preceded by the keyword TABLE and surrounded
by parentheses.

The EXPLAIN function is an SQL/MX extension.

'module-name'

is a character string that specifies the full name of a prepared embedded SQL
module, including the catalog name, schema name, and any module management
attributes. See the MODULE Directive on page 3-70. For more information on
module management attributes, see the SQL/MX Programming Manual for C and
COBOL.

The module name is enclosed in single quotes and is case-sensitive. If a module
name is uppercase, the value you specify within single quotes must be uppercase.
For example, 'MYCAT.MYSCH.MYPROG'

NULL

explains statements prepared in the MXCI session.

'statement-pattern'

is a character string that specifies the pattern for searching for the names of SQL
statements within the given module. If the module is specified as NULL, the pattern
string is used to match statement names that have been used in PREPARE
statements within the current MXCI session.

A statement pattern is enclosed in single quotes and is case-sensitive. The
statement name must be in uppercase, unless you delimit the statement name in a
PREPARE statement. The pattern can include wild-card characters as in a LIKE
pattern. See LIKE Predicate on page 6-97.

EXPLAIN (module,'statement-pattern')

module is:
 'module-name'
| NULLXCI

XCI
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-66

SQL/MX Functions and Expressions Considerations for EXPLAIN
Considerations for EXPLAIN

Using a Statement Pattern

Using a statement pattern is analogous to using a LIKE pattern. For example, this
statement returns the EXPLAIN result for all statements prepared within the current
MXCI session:

SELECT * FROM TABLE (EXPLAIN (NULL,'%'))

This statement returns the EXPLAIN result for all statements prepared within the
embedded SQL module named MYCAT.MYSCH.MYPROG:

SELECT * FROM TABLE (EXPLAIN ('MYCAT.MYSCH.MYPROG','%'))

This statement returns the EXPLAIN result for all prepared statements whose names
begin with the uppercase letter 'S':

SELECT * FROM TABLE (EXPLAIN (NULL,'S%'))

If the statement pattern does not find any matching statement names, no rows are
returned as the result of the SELECT statement.

For more information about module names, see the SQL/MX Programming Manual for
C and COBOL.

Using EXPLAIN and EXPLAIN Statement

The result of the EXPLAIN function for a specific DML statement can be generated
either by using the EXPLAIN function or the EXPLAIN statement. Use the EXPLAIN
function only for prepared statements.

The EXPLAIN statement displays the result table of the EXPLAIN function with various
formatting options. If you want to display only some of the columns, you must use the
EXPLAIN function to return the intermediate result table that you then query with a
SELECT statement.

Result of the EXPLAIN Function

The result table of the EXPLAIN function describes the access plans for SELECT,
INSERT, DELETE, UPDATE, or CALL statements. Use the EXPLAIN function to
generate the result and the EXPLAIN statement to display the result.

See the EXPLAIN Function on page 8-66 and EXPLAIN Statement on page 2-208.

In this description of the result of the EXPLAIN function, an operator tree is a structure
that represents operators used in an access plan as nodes, with at most one parent
node for each node in the tree, and with only one root node.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-67

SQL/MX Functions and Expressions Considerations for EXPLAIN
A node of an operator tree is a point in the tree that represents an event (involving an
operator) in a plan. Each node might have subordinate nodes—that is, each event
might generate a subordinate event or events in the plan.

Column Name Data Type Description

MODULE_NAME CHAR(60) Module name as specified in the argument to the EXPLAIN
function; if NULL, it takes the name of the current module.
MODULE_NAME shows DYNAMICALLY COMPILED when a
query statement or prepared statement is supplied as the
argument to the EXPLAIN statement.

STATEMENT_
NAME

CHAR(60) Statement name after wild-card character expansion;
truncated on the right if longer than 60 characters.

PLAN_ID LARGEINT Unique system-generated plan ID automatically assigned
by NonStop SQL/MX; generated at compile time.

SEQ_NUM INT Sequence number of the current node in the operator tree;
indicates the sequence in which the operator tree is
generated.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-68

SQL/MX Functions and Expressions Considerations for EXPLAIN
OPERATOR CHAR(30) Current node type; one of these:

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-69

SQL/MX Functions and Expressions Considerations for EXPLAIN
Operator
CALL
CURSOR_DELETE
CURSOR_UPDATE
ESP_ACCESS

ESP_EXCHANGE
EXPLAIN
EXPR
FILE_SCAN
FILE_SCAN_UNIQUE
HASH_GROUPBY
HASH_PARTIAL_GR..._LEAF
HASH_PARTIAL_GR..._ROOT
HYBRID_HASH_JOIN
HYBRID_HASH_SEMI_JOIN
HYBRID_HASH_ANTI_SEMI_JOIN
INDEX_SCAN
INDEX_SCAN_UNIQUE
INSERT
INSERT_VSBB
LEFT_HYBRID_HASH_JOIN
LEFT_MERGE_JOIN
LEFT_NESTED_JOIN
LEFT_ORDERED_HASH_JOIN
MATERIALIZE
MERGE_ANTI_SEMI_JOIN
MERGE_JOIN
MERGE_SEMI_JOIN
MERGE_UNION
NESTED_ANTI_SEMI_JOIN
NESTED_JOIN
NESTED_SEMI_JOIN
NextValueFor

ORDERED_HASH_ANTI_SEMI_JOIN
ORDERED_HASH_JOIN
ORDERED_HASH_SEMI_JOIN
PACK
PARTITION_ACCESS
ROOT
SAMPLE
SEQUENCE
Sequence Generator

SHORTCUT_SCALAR_AGGR
SORT
SORT_GROUPBY

Group (if any)
UDR
DAM unique
DAM unique
Sequence
Generator
Exchange
Stored function
Tuple
DAM subset
DAM unique
Groupby
Groupby
Groupby
Join
Join
Join
DAM subset
DAM unique
Insert
Insert
Join
Join
Join
Join
Materialize
Join
Join
Join
Merge union
Join
Join
Join
Sequence
Generator
Join
Join
Join
Rowset
Exchange
Root
Data mining
Data mining
Sequence
Generator
Groupby
Sort
Groupby

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-70

SQL/MX Functions and Expressions Considerations for EXPLAIN
Operators are grouped together for purposes of display within the EXPLAIN statement.
For more information about the use of the result table of the EXPLAIN function, see the
SQL/MX Query Guide.

SORT_PARTIAL_AG..._LEAF
SORT_PARTIAL_AG..._ROOT
SORT_PARTIAL_GR..._LEAF
SORT_PARTIAL_GR..._ROOT
SORT_SCALAR_AGGR
SPLIT_TOP
SUBSET_DELETE
SUBSET_UPDATE
TRANSPOSE
TUPLE_FLOW
TUPLELIST
UNIQUE_DELETE
UNIQUE_UPDATE
UNPACK
VALUES

Groupby
Groupby
Groupby
Groupby
Groupby
Exchange
DAM subset
DAM subset
Data mining
Join
Tuple
DAM unique
DAM unique
Rowset
Tuple

LEFT_CHILD_
SEQ_NUM

INT Sequence number for the first child operator of the current
node (or operator); null if node has no child operators.

RIGHT_CHILD_
SEQ_NUM

INT Sequence number for the second child operator of the
current node (or operator); null if node does not have a
second child.

TNAME CHAR(60) For operators in scan group, full name of base table,
truncated on the right if too long for column. If correlation
name differs from table name, simple correlation name first
and then table name in parentheses.

CARDINALITY REAL Estimated number of rows that will be returned by the
current node.

OPERATOR_
COST

REAL Estimated cost associated with the current node to execute
the operator.

TOTAL_COST REAL Estimated cost associated with the current node to execute
the operator, including the cost of all subtrees in the
operator tree.

DETAIL_COST VARCHAR
(200)

Tokenized cost vector.

DESCRIPTION VARCHAR
(3000)

Additional information about the operation in the form of a
stream of token pairs.

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-71

SQL/MX Functions and Expressions Examples of EXPLAIN
Examples of EXPLAIN

 Use the EXPLAIN statement to construct and display all columns in the result table
of the EXPLAIN function for the specified prepared statement:

prepare xx from
select * from part where p_partkey = (select max(ps_partkey)
from partsupp);

explain options 'f' xx;

The EXPLAIN statement display for the prepared statement named xx is identical
to the EXPLAIN statement display shown under FC Command on page 4-30.

 Display the specified columns in the result table of the EXPLAIN function for the
same prepared statement FINDEMP:

SELECT SEQ_NUM, OPERATOR, OPERATOR_COST
FROM TABLE (EXPLAIN (NULL, 'FINDEMP'));

SEQ_NUM OPERATOR OPERATOR_COST
----------- ---------------------- --------------------
 1 FILE_SCAN 1.6196700E-001
 2 PARTITION_ACCESS 4.3732533E-003
 3 ROOT 1.0392011E-006

--- 3 row(s) selected.

The preceding example displays only part of the result table of the EXPLAIN
function. It first uses the EXPLAIN function to generate the table and then selects
the desired columns.

 Display the specified columns in the result table of the EXPLAIN function for the
same prepared statement but with two different plans. The first plan is the default
plan generated by the optimizer, and the second plan is forced by using the
CONTROL QUERY SHAPE statement.

This SET SHOWSHAPE command displays the plan generated by the optimizer:

SET SHOWSHAPE ON;

PREPARE FINDEMP1 FROM
 SELECT last_name, first_name, deptnum,
 employee.jobcode, jobdesc
 FROM employee, job
 WHERE deptnum = 3100 AND employee.jobcode = job.jobcode;

control query shape merge_join(sort(
partition_access(scan('EMPLOYEE',forward,
blocks_per_access 1 , mdam off))),
partition_access(scan('JOB', forward,
blocks_per_access 3 , mdam off)));

SELECT SEQ_NUM, OPERATOR, OPERATOR_COST, TOTAL_COST
FROM TABLE (EXPLAIN (NULL, 'FINDEMP1'));
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-72

SQL/MX Functions and Expressions Examples of EXPLAIN
SEQ_NUM OPERATOR OPERATOR_COST TOTAL_COST
------- ---------------- --------------- ---------------
 1 FILE_SCAN 1.6196700E-001 1.6196700E-001
 2 PARTITION_ACCESS 4.4135637E-003 1.6196700E-001
 3 SORT 1.9920971E-001 2.0409727E-001
 4 FILE_SCAN 1.6560700E-001 1.6560700E-001
 5 PARTITION_ACCESS 7.1685006E-003 1.6560700E-001
 6 MERGE_JOIN 2.0821783E-003 2.1525979E-001
 7 ROOT 2.7007004E-005 2.1528682E-001

--- 7 row(s) selected.

The second plan is forced by this CONTROL QUERY SHAPE statement:

control query shape nested_join(
partition_access(scan),
partition_access(scan('JOB')));

PREPARE FINDEMP2 FROM
 SELECT last_name, first_name, deptnum,
 employee.jobcode, jobdesc
 FROM employee, job
 WHERE deptnum = 3100 AND employee.jobcode = job.jobcode;

SELECT SEQ_NUM, OPERATOR, OPERATOR_COST, TOTAL_COST
FROM TABLE (EXPLAIN (NULL, 'FINDEMP2'));

SEQ_NUM OPERATOR OPERATOR_COST TOTAL_COST
------- ---------------- --------------- ---------------
 1 FILE_SCAN 1.6196700E-001 1.6196700E-001
 2 PARTITION_ACCESS 4.4135637E-003 1.6196700E-001
 4 FILE_SCAN_UNIQUE 2.0590099E-001 2.0590099E-001
 5 PARTITION_ACCESS 4.5211268E-003 2.0590099E-001
 6 NESTED_JOIN 1.7425649E-005 3.6786800E-001
 7 ROOT 2.7007004E-005 3.6786800E-001

--- 6 row(s) selected.

You can compare the two result tables of the EXPLAIN function to determine which
plan to use for this query. The total cost of the ROOT node indicates the total cost
of the plan. Therefore, if you compare the two costs, the plan generated by the
optimizer is the better plan, as reported by the EXPLAIN function.

 Display all columns in the result table of the EXPLAIN function for the CALL
operator:

>>prepare S from call samdbcat.sales.order_summary(?, ?);

--- SQL command prepared.
>>select description from table(explain(NULL, 'S')) where
operator = 'CALL';

DESCRIPTION

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-73

SQL/MX Functions and Expressions Examples of EXPLAIN
parameter_modes: I O
routine_name: SAMDBCAT.SALES.ORDER_SUMMARY
routine_label: \ALPINE.$SYSTEM.ZSDCR2C6.L1Z7NW00
sql_access_mode: READS SQL DATA external_name: orderSummary2
external_path: /usr/mydir/myclasses external_file: rs
signature:
(Ljava/lang/String;[J[Ljava/sql/ResultSet;[Ljava/sql/ResultSe
t;)V
language: Java runtime_options: OFF
runtime_option_delimiters: ' '
max_results: 2

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-74

SQL/MX Functions and Expressions EXTRACT Function
EXTRACT Function
The EXTRACT function extracts a datetime field from a datetime or interval value
expression. It returns an exact numeric value.

See Datetime Value Expressions on page 6-43 and Interval Value Expressions on
page 6-47.

Examples of EXTRACT

 Extract the year from a DATE value:

EXTRACT (YEAR FROM DATE '1996-09-28')

The result is 1996.

 Extract the year from an INTERVAL value:

EXTRACT (YEAR FROM INTERVAL '01-09' YEAR TO MONTH)

The result is 1.

EXTRACT (datetime-field FROM extract-source)

datetime-field is:
 YEAR | MONTH | DAY | HOUR | MINUTE | SECOND

extract-source is:
 datetime-expression | interval-expression
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-75

SQL/MX Functions and Expressions FEATURE_VERSION_INFO Function
FEATURE_VERSION_INFO Function
FEATURE_VERSION_INFO is a built-in table-valued function that returns feature
version information for all user objects with an object feature version (OFV) higher than
a given value, in a specified set of catalogs. Information is not returned for definition
schema tables or user metadata tables.

Input and Output Parameters

Table 8-1 shows the input and output parameters for FEATURE_VERSION_INFO.

feature_version_info ('E_TYPE', 'E_VALUE', 'E_VERSION')

Table 8-1. Input and Output Parameters for FEATURE_VERSION_INFO

Input/Output

Type Parameter Specification Description

Input
parameter

E_TYPE CHAR (32) NOT
NULL

The type of version information that
is desired.

Input
parameter

E_VALUE VARCHAR(518)
NOT NULL

The name of the entity for which
version information is desired. The
type of that entity is implied by
E_TYPE.

Input
parameter

E_VERSION INT NOT NULL The target feature version.

Output
column

E_TYPE CHAR (32) NOT
NULL

A copy of the actual value for the
E_TYPE input parameter.

Output
column

E_VALUE VARCHAR(518)
NOT NULL

A copy of the actual value for the
E_VALUE input parameter.

Output
column

E_VERSION INT NOT NULL A copy of the actual value for the
E_VALUE input parameter.

Output
column

OBJECT_NAM
E

VARCHAR(776)
NOT NULL

The fully qualified external format
ANSI name of a database object
with OFV higher than E_VERSION.

Output
column

OBJECT_TYPE CHAR(2) NOT
NULL

The two character object type for
the affected database object.

Output
column

FEATURE_VER
SION

INT NOT NULL The actual OFV of that database
object.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-76

SQL/MX Functions and Expressions Example of FEATURE_VERSION_INFO
Example of FEATURE_VERSION_INFO

select object_name, feature_version
 from table (feature_version_info ('CATALOG', 'CATX', 1200));

OBJECT_NAME FEATURE_VERSION
-- ---------------
CATX."schema x"."table with large key" 3000
CATX.SCHEMAY."table with bignum column" 3000
 ...

Note. Possible values for the E_TYPE input parameter are:

 CATALOG – The E_VALUE parameter specifies the external format ANSI name of a
catalog. Output rows are for objects in that catalog only.

 CATALOG_CASCADE – The E_VALUE parameter specifies the external format ANSI
name of a catalog. Output rows are for objects in that catalog and catalogs that are related
to it.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-77

SQL/MX Functions and Expressions FLOOR Function
FLOOR Function
The FLOOR function returns the largest integer, represented as a FLOAT data type,
less than or equal to a numeric value expression.

FLOOR is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the FLOOR function. See Numeric Value Expressions on page 6-52.

Examples of FLOOR

 This function returns the integer value 2.00000000000000040E+000, represented
as a FLOAT data type:

FLOOR (2.25)

FLOOR (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-78

SQL/MX Functions and Expressions HASHPARTFUNC Function
HASHPARTFUNC Function
HashPartFunc is the function NonStop SQL/MX uses to hash partition data.
HashPartFunc returns the number of the partition to which a row identified by the
specified partitioning key would belong if the table were hash partitioned.

HashPartFunc is an SQL/MX extension.

partitioning-key

is the prospective partitioning key value of a row from a partitioned or
nonpartitioned table. partitioning-key is a comma-separated list of values
that make up the partitioning key.

num-partitions

is the number of partitions that you might create in the future, not the number in the
table from which the rows are currently being read.

Considerations for HashPartFunc

Cast the partitioning key values to their declared types, because HashPartFunc is
sensitive to the data type.

HashPartFunc is evaluated based only on the variables you enter rather than the
underlying table. You can use this function on a nonpartitioned table to find out what
the data distribution would be if you were to hash partition the table in various ways;
that is, with different numbers of partitions and different partitioning keys.

You can also use HashPartFunc to preorder data for efficient insertion into a
hash-partitioned table with a specified number of partitions. The most efficient insertion
times usually are achieved when both of these conditions are met:

 All of the data rows destined for a particular partition are grouped together.

 Within each grouping, data rows are sorted by the clustering key of the destination
table. (The clustering key is typically the same as the primary key, but it might be
different if, for example, the destination table is created with a STORE BY key that
is different from the primary key.)

When you use HashPartFunc, partition numbers are mapped to the physical partitions
in the order in which the partitions will be added when the desired destination table is
created with the CREATE TABLE statement.

Examples of HashPartFunc

 HashPartFunc returns the partition number as a value between 0 and
(num-partitions - 1).

HashPartFunc(partitioning-key FOR num-partitions)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-79

SQL/MX Functions and Expressions Examples of HashPartFunc
 This example uses the EMPLOYEE table from the sample database to show the
partition number of each row based on the EMPNUM for four partitions and
ordered by partition and EMPNUM.

This example shows how HashPartFunc can reveal data skew. Because the
EMPLOYEE table has only 62 different EMPNUMs, when it is partitioned four
ways, the last partition is somewhat shorter than the others, because the number
of unique entry counts (UECs) from the partitioning key is not sufficiently greater
than the number of partitions.

>>SELECT empnum, HashPartFunc (empnum for 4)
+>FROM employee
+>ORDER by 2, empnum;

Employee/Number (EXPR)
--------------- ----------

 29 0
 43 0
 75 0
 109 0
 203 0
 208 0
 209 0
 219 0
 221 0
 224 0
 226 0
 229 0
 232 0
 235 0
 343 0
 557 0
 568 0
 991 0
 39 1
 89 1
 93 1
 201 1
 210 1
 217 1
 223 1
 225 1
 228 1
 230 1
 233 1
 321 1
 337 1
 990 1
 992 1
 994 1
 995 1
 1 2
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-80

SQL/MX Functions and Expressions Examples of HashPartFunc
 23 2
 32 2
 65 2
 87 2
 104 2
 178 2
 180 2
 202 2
 205 2
 207 2
 211 2
 212 2
 214 2
 215 2
 216 2
 218 2
 222 2
 227 2
 993 2
 72 3
 111 3
 206 3
 213 3
 220 3
 231 3
 234 3

--- 62 row(s) selected.

 This example shows the number of rows that will reside in each partition if you
create a new table that is hash-partitioned with four partitions, using the EMPNUM
column from the EMPLOYEE table. This query is based on the same data results
as the previous example, only grouped and ordered on the partition number.

 >>SELECT partitionNum, count(*)
 +>FROM (SELECT HashPartFunc (empnum for 4)
 +> FROM employee) as Tmp(partitionNum)
 +>GROUP BY partitionNum
 +>ORDER BY partitionNum;

 PARTITIONNUM (EXPR)
 ------------ --------------------

 0 18
 1 17
 2 20
 3 7

--- 4 row(s) selected.

 This example shows the number of rows that will reside in each partition if you
create a new table that is hash-partitioned with four partitions (using columns a and
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-81

SQL/MX Functions and Expressions Examples of HashPartFunc
b as the partitioning key) and populate it with the 1000 data rows that currently
reside in cat.sch.table1:

>>SELECT partitionNum, count(*)
+>FROM (SELECT HashPartFunc(CAST(a AS INT NOT NULL),
 CAST(b AS CHAR(3) NOT NULL) FOR 4)
+> FROM cat.sch.table1) AS Tmp(partitionNum)
+>GROUP BY partitionNum
+>ORDER BY partitionNum;

PARTITIONNUM (EXPR)
------------ --------------------

 0 264
 1 265
 2 230
 3 241

--- 4 row(s) selected.

 The HashPartFunc function supports null values. For example:

>>SELECT HashPartFunc(cast(null as INT) for 4) from
(values(0)) T;

 (EXPR)

 3

 --- 1 row(s) selected.

Normally, it is important to cast the values to the desired type, but in the case of
null values, the type does not matter. Every null value hashes to the same value.
However, there is no harm in keeping the cast for consistency. For example:

 >>SELECT HashPartFunc(cast(null as CHAR(10)) for 4) from
(values(0)) T;

 (EXPR)

 3

 --- 1 row(s) selected.

>>SELECT HashPartFunc(null for 4) from (values(0)) T;

 (EXPR)

 3

 --- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-82

SQL/MX Functions and Expressions HOUR Function
HOUR Function
The HOUR function converts a TIME or TIMESTAMP expression into an INTEGER
value in the range 0 through 23 that represents the corresponding hour of the day.

HOUR is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type TIME or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of HOUR

 Return an integer that represents the hour of the day from the SHIP_TIMESTAMP
column in the PROJECT table:

SELECT start_date, ship_timestamp, HOUR(ship_timestamp)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
1996-04-10 1996-04-21 08:15:00.000000 8

HOUR (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-83

SQL/MX Functions and Expressions INSERT Function
INSERT Function
The INSERT function returns a character string where a specified number of
characters within the character string have been deleted beginning at a specified start
position and then another character string has been inserted at the start position.

INSERT is an SQL/MX extension.

char-expr-1, char-expr-2

are SQL character value expressions (of data type CHAR or VARCHAR) that
specify two strings of characters. The character string char-expr-2 is inserted
into the character string char-expr-1. See Character Value Expressions on
page 6-41.

start

specifies the starting position start within char-expr-1 at which to start
deleting length number of characters. After the deletion, the character string
char-expr-2 is inserted into the character string char-expr-1, beginning at the
start position specified by the number start. The number start must be a value
greater than zero of exact numeric data type and with a scale of zero.

length

specifies the number of characters to delete from char-expr-1. The number
length must be a value greater than or equal to zero of exact numeric data type
and with a scale of zero. length must be less than or equal to the length of
char-expr-1.

Examples of INSERT

 Suppose that your JOB table includes an entry for a sales representative. Use the
INSERT function to change SALESREP to SALES REP:

UPDATE persnl.job
SET jobdesc = INSERT (jobdesc, 6, 3, ' REP')
WHERE jobdesc = 'SALESREP';

Now check the row you updated:

SELECT jobdesc FROM persnl.job
WHERE jobdesc = 'SALES REP';

Job Description

SALES REP

--- 1 row(s) selected.

INSERT (char-expr-1, start, length, char-expr-2)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-84

SQL/MX Functions and Expressions JULIANTIMESTAMP Function
JULIANTIMESTAMP Function
The JULIANTIMESTAMP function converts a datetime value into a 64-bit Julian
timestamp value that represents the number of microseconds that have elapsed
between 4713 B.C., January 1, 00:00, and the specified datetime value.
JULIANTIMESTAMP returns a value of data type LARGEINT.

JULIANTIMESTAMP is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a value of type DATE, TIME, or TIMESTAMP. If
datetime-expression does not contain all the fields from YEAR through
SECOND, NonStop SQL/MX extends the value before converting it to a Julian
timestamp. Datetime fields to the left of the specified datetime value are set to
current date fields. Datetime fields to the right of the specified datetime value are
set to zero. See Datetime Value Expressions on page 6-43.

Examples of JULIANTIMESTAMP

The PROJECT table consists of five columns using the data types NUMERIC,
VARCHAR, DATE, TIMESTAMP, and INTERVAL.

 Convert the TIMESTAMP value into a Julian timestamp representation:

SELECT ship_timestamp, JULIANTIMESTAMP (ship_timestamp)
FROM persnl.project
WHERE projcode = 1000;

SHIP_TIMESTAMP (EXPR)
-------------------------- --------------------
1996-04-21 08:15:00.000000 211696834500000000

--- 1 row(s) selected.

 Convert the DATE value into a Julian timestamp representation:

SELECT start_date, JULIANTIMESTAMP (start_date)
FROM persnl.project
WHERE projcode = 1000;

START_DATE (EXPR)
---------- --------------------
1996-04-10 211695854400000000

--- 1 row(s) selected.

JULIANTIMESTAMP (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-85

SQL/MX Functions and Expressions LASTNOTNULL Function
LASTNOTNULL Function
The LASTNOTNULL function is a sequence function that returns the last non-null value
of a column in an intermediate result table ordered by a SEQUENCE BY clause in a
SELECT statement. See SEQUENCE BY Clause on page 7-19.

LASTNOTNULL is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.
If only null values have been returned, LASTNOTNULL returns null.

Examples of LASTNOTNULL

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
(I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data sequenced by TS:

 Return the last non-null value of a column:

SELECT LASTNOTNULL (I1) AS LASTNOTNULL
FROM mining.seqfcn SEQUENCE BY TS;

LASTNOTNULL

 6215
 6215
 19058
 19058
 11966

--- 5 row(s) selected.

LASTNOTNULL (column-expression)

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

null TIMESTAMP '1951-02-15 14:35:49'

19058 TIMESTAMP '1955-05-18 08:40:10'

null TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-86

SQL/MX Functions and Expressions LCASE Function
LCASE Function
The LCASE function downshifts characters. LCASE can appear anywhere in a query
where a value can be used, such as in a select list, an ON clause, a WHERE clause, a
HAVING clause, a LIKE predicate, an expression, or as qualifying a new value in an
UPDATE or INSERT statement. The result returned by the LCASE function is equal to
the result returned by the LOWER function.

LCASE returns a string of either fixed-length or variable-length character data,
depending on the data type of the input string.

You cannot use the LCASE function on KANJI or KSC5601 operands.

LCASE is an SQL/MX extension.

character-expression

is an SQL character value expression that specifies a string of characters to
downshift. See Character Value Expressions on page 6-41.

Examples of LCASE

 Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select
the column CUSTNAME and return in uppercase and lowercase letters by using
the UCASE and LCASE functions:

SELECT custname,UCASE(custname),LCASE(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
Hotel Oregon HOTEL OREGON hotel oregon

--- 17 row(s) selected.

See UCASE Function on page 8-193.

LCASE (character-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-87

SQL/MX Functions and Expressions LEFT Function
LEFT Function
The LEFT function returns the leftmost specified number of characters from a
character expression.

LEFT is an SQL/MX extension.

character-expr

specifies the source string from which to return the leftmost specified number of
characters. The source string is an SQL character value expression. The operand
is the result of evaluating character-expr. See Character Value Expressions on
page 6-41.

count

specifies the number of characters to return from character-expr. The number
count must be a value of exact numeric data type greater than or equal to 0 with a
scale of zero.

Examples of LEFT

 Return 'Robert':

LEFT ('Robert John Smith', 6)

 Use the LEFT function to append the company name to the job descriptions:

UPDATE persnl.job
SET jobdesc = LEFT (jobdesc, 11) ||' COMNET';

SELECT jobdesc FROM persnl.job;

Job Description

MANAGER COMNET
PRODUCTION COMNET
ASSEMBLER COMNET
SALESREP COMNET
SYSTEM ANAL COMNET
ENGINEER COMNET
PROGRAMMER COMNET
ACCOUNTANT COMNET
ADMINISTRAT COMNET
SECRETARY COMNET

--- 10 row(s) selected.

LEFT (character-expr, count)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-88

SQL/MX Functions and Expressions LNNVL Function
LNNVL Function
The function takes condition as an argument, and when the condition is FALSE
or NULL, it returns TRUE, or when the condition is TRUE, it returns FALSE. This
function is only supported in the WHERE clause of the query.

The condition argument is a simple condition. The condition cannot be a
compound condition containing AND, OR, or BETWEEN.

The function is logically equivalent to

if ((condition = FALSE) OR (condition = NULL))

 return TRUE;

else

 return FALSE;

LNNVL(condition)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-89

SQL/MX Functions and Expressions Examples of LNNVL
Examples of LNNVL

create table tab1(colA int, colB int, colC int);

--- SQL operation complete.

insert into tab1(colA,colB) values(100,20);

-- 1 row(s) inserted.

insert into tab1 values(200,15,8);

--- 1 row(s) inserted.

insert into tab1 values(300,8,12);

-- 1 row(s) inserted.

insert into tab1 values(400,10,11);

--- 1 row(s) inserted.

insert into tab1 values(300,10,8);

--- 1 row(s) inserted.

insert into tab1 values(300,10,6);

-- 1 row(s) inserted.

Select * from tab1 where LNNVL(colB<=colC);

 COLA COLB COLC

----------- ----------- -----------

 100 20 ?

 200 15 8

 300 10 8

 300 10 6

--- 4 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-90

SQL/MX Functions and Expressions LOCATE Function
 In this example, LNNVL (colB > colC), SELECT statement selects the records from
the column where colB is not greater than colC including NULL values. The first
record has a NULL value for colC, hence LNNVL function returns TRUE for that
record.

Select * from tab1 where LNNVL(colB>colC);

COLA COLB COLC

---------- ----------- -----------
100 20 ?

300 8 12

400 0 11

--- 3 row(s) selected.

 The LNNVL (colC is NULL), SELECT statement selects the records where colC is
NOT NULL.

Select * from tab1 where LNNVL(colC is NULL);

 COLA COLB COLC

----------- ----------- -----------

 200 15 8

 300 8 12

 400 10 11

 300 10 8

 300 10 6

--- 5 row(s) selected.

LOCATE Function
The LOCATE function searches for a given substring in a character string. If the
substring is found, NonStop SQL/MX returns the character position of the substring
within the string. The result returned by the LOCATE function is equal to the result
returned by the POSITION function.

LOCATE is an SQL/MX extension.

substring-expression

is an SQL character value expression that specifies the substring to search for in
source-expression. The substring-expression cannot be NULL. See
Character Value Expressions on page 6-41.

LOCATE (substring-expression,source-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-91

SQL/MX Functions and Expressions Considerations for LOCATE
source-expression

is an SQL character value expression that specifies the source string. The
source-expression cannot be NULL. See Character Value Expressions on
page 6-41.

NonStop SQL/MX returns the result as a 2-byte signed integer with a scale of zero. If
substring-expression is not found in source-expression, NonStop SQL/MX
returns 0.

Considerations for LOCATE

Result of LOCATE

If the length of source-expression is zero and the length of substring-
expression is greater than zero, NonStop SQL/MX returns 0. If the length of
substring-expression is zero, NonStop SQL/MX returns 1.

If the length of substring-expression is greater than the length of source-
expression, NonStop SQL/MX returns 0. If source-expression is a null value,
NonStop SQL/MX returns a null value.

Using UCASE

To ignore the case in the search, use the UCASE function (or the LCASE function) for
both the substring-expression and the source-expression.

Examples of LOCATE

 Return the value 8 for the position of the substring ‘John’ within the string:

LOCATE ('John','Robert John Smith')

 Suppose that the EMPLOYEE table has an EMPNAME column that contains both
the first and last names. This SELECT statement returns all records in table
EMPLOYEE that contain the substring 'SMITH', regardless of whether the column
value is in uppercase or lowercase characters:

SELECT * FROM persnl.employee
 WHERE LOCATE ('SMITH',UCASE(empname)) > 0 ;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-92

SQL/MX Functions and Expressions LOG Function
LOG Function
The LOG function returns the natural logarithm of a numeric value expression.

LOG is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the LOG function. The value of the argument must be greater than zero. See
Numeric Value Expressions on page 6-52.

Examples of LOG

 This function returns the value 6.93147180559945504E-001, or approximately
0.69315:

LOG (2.0)

LOG10 Function
The LOG10 function returns the base 10 logarithm of a numeric value expression.

LOG10 is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the LOG10 function. The value of the argument must be greater than zero. See
Numeric Value Expressions on page 6-52.

Examples of LOG10

 This function returns the value 1.39794000867203792E+000, or approximately
1.3979:

LOG10 (25)

LOG (numeric-expression)

LOG10 (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-93

SQL/MX Functions and Expressions LOWER Function
LOWER Function
Considerations for LOWER
Examples of LOWER

The LOWER function downshifts characters. LOWER can appear anywhere in a query
where a value can be used, such as in a select list, an ON clause, a WHERE clause, a
HAVING clause, a LIKE predicate, an expression, or as qualifying a new value in an
UPDATE or INSERT statement. The result returned by the LOWER function is equal to
the result returned by the LCASE function.

For UCS2, the LOWER function downshifts all the uppercase or title case characters in
a given string to lowercase and returns a character string with the same data type and
character set as the argument.

A lower case character is a character that has the “alphabetic” property in Unicode
Standard 2 whose Unicode name includes lower. An uppercase character is a
character that has the “alphabetic” property in the Unicode Standard 2 and whose
Unicode name includes upper. A title case character is a character that has the
Unicode “alphabetic” property and whose Unicode name includes title.

You cannot use the LOWER function on KANJI or KSC5601 operands.

LOWER returns a string of either fixed-length or variable-length character data,
depending on the data type of the input string.

character-expression

is an SQL character value expression that specifies a string of characters to
downshift. See Character Value Expressions on page 6-41.

Considerations for LOWER

Table 8-2 lists all one-to-one mappings for the UCS2 character set.

LOWER (character-expression)

Table 8-2. One-to-One Uppercase and Titlecase to Lowercase
Mappings (page 1 of 4)

x L (x) x L(x) x L(x) x L(x) x L(x) x L(x)

0041 0061 017B 017C 03EC 03ED 0536 0566 1E5C 1E5D 1F6B 1F63

0042 0062 017D 017E 03EE 03EF 0537 0567 1E5E 1E5F 1F6C 1F64

0043 0063 0181 0253 0401 0451 0538 0568 1E60 1E61 1F6D 1F65

0044 0064 0182 0183 0402 0452 0539 0569 1E62 1E63 1F6E 1F66

0045 0065 0184 0185 0403 0453 053A 056A 1E64 1E65 1F6F 1F67

0046 0066 0186 0254 0404 0454 053B 056B 1E66 1E67 1F88 1F80

0047 0067 0187 0188 0405 0455 053C 056C 1E68 1E69 1F89 1F81

0048 0068 0189 0256 0406 0456 053D 056D 1E6A 1E6B 1F8A 1F82
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-94

SQL/MX Functions and Expressions Considerations for LOWER
0049 0069 018A 0257 0407 0457 053E 056E 1E6C 1E6D 1F8B 1F83

004A 006A 018B 018C 0408 0458 053F 056F 1E6E 1E6F 1F8C 1F84

004B 006B 018E 01DD 0409 0459 0540 0570 1E70 1E71 1F8D 1F85

004C 006C 018F 0259 040A 045A 0541 0571 1E72 1E73 1F8E 1F86

004D 006D 0190 025B 040B 045B 0542 0572 1E74 1E75 1F8F 1F87

004E 006E 0191 0192 040C 045C 0543 0573 1E76 1E77 1F98 1F90

004F 006F 0193 0260 040E 045E 0544 0574 1E78 1E79 1F99 1F91

0050 0070 0194 0263 040F 045F 0545 0575 1E7A 1E7B 1F9A 1F92

0051 0071 0196 0269 0410 0430 0546 0576 1E7C 1E7D 1F9B 1F93

0052 0072 0197 0268 0411 0431 0547 0577 1E7E 1E7F 1F9C 1F94

0053 0073 0198 0199 0412 0432 0548 0578 1E80 1E81 1F9D 1F95

0054 0074 019C 026F 0413 0433 0549 0579 1E82 1E83 1F9E 1F96

0055 0075 019D 0272 0414 0434 054A 057A 1E84 1E85 1F9F 1F97

0056 0076 019F 0275 0415 0435 054B 057B 1E86 1E87 1FA8 1FA0

0057 0077 01A0 01A1 0416 0436 054C 057C 1E88 1E89 1FA9 1FA1

0058 0078 01A2 01A3 0417 0437 054D 057D 1E8A 1E8B 1FAA 1FA2

0059 0079 01A4 01A5 0418 0438 054E 057E 1E8C 1E8D 1FAB 1FA3

005A 007A 01A6 0280 0419 0439 054F 057F 1E8E 1E8F 1FAC 1FA4

00C0 00E0 01A7 01A8 041A 043A 0550 0580 1E90 1E91 1FAD 1FA5

00C1 00E1 01A9 0283 041B 043B 0551 0581 1E92 1E93 1FAE 1FA6

00C2 00E2 01AC 01AD 041C 043C 0552 0582 1E94 1E95 1FAF 1FA7

00C3 00E3 01AE 0288 041D 043D 0553 0583 1EA0 1EA1 1FB8 1FB0

00C4 00E4 01AF 01B0 041E 043E 0554 0584 1EA2 1EA3 1FB9 1FB1

00C5 00E5 01B1 028A 041F 043F 0555 0585 1EA4 1EA5 1FBA 1F70

00C6 00E6 01B2 028B 0420 0440 0556 0586 1EA6 1EA7 1FBB 1F71

00C7 00E7 01B3 01B4 0421 0441 10A0 10D0 1EA8 1EA9 1FBC 1FB3

00C8 00E8 01B5 01B6 0422 0442 10A1 10D1 1EAA 1EAB 1FC8 1F72

00C9 00E9 01B7 0292 0423 0443 10A2 10D2 1EAC 1EAD 1FC9 1F73

00CA 00EA 01B8 01B9 0424 0444 10A3 10D3 1EAE 1EAF 1FCA 1F74

00CB 00EB 01BC 01BD 0425 0445 10A4 10D4 1EB0 1EB1 1FCB 1F75

00CC 00EC 01C4 01C6 0426 0446 10A5 10D5 1EB2 1EB3 1FCC 1FC3

00CD 00ED 01C5 01C6 0427 0447 10A6 10D6 1EB4 1EB5 1FD8 1FD0

00CE 00EE 01C7 01C9 0428 0448 10A7 10D7 1EB6 1EB7 1FD9 1FD1

00CF 00EF 01C8 01C9 0429 0449 10A8 10D8 1EB8 1EB9 1FDA 1F76

00D0 00F0 01CA 01CC 042A 044A 10A9 10D9 1EBA 1EBB 1FDB 1F77

00D1 00F1 01CB 01CC 042B 044B 10AA 10DA 1EBC 1EBD 1FE8 1FE0

00D2 00F2 01CD 01CE 042C 044C 10AB 10DB 1EBE 1EBF 1FE9 1FE1

00D3 00F3 01CF 01D0 042D 044D 10AC 10DC 1EC0 1EC1 1FEA 1F7A

Table 8-2. One-to-One Uppercase and Titlecase to Lowercase
Mappings (page 2 of 4)

x L (x) x L(x) x L(x) x L(x) x L(x) x L(x)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-95

SQL/MX Functions and Expressions Considerations for LOWER
00D4 00F4 01D1 01D2 042E 044E 10AD 10DD 1EC2 1EC3 1FEB 1F7B

00D5 00F5 01D3 01D4 042F 044F 10AE 10DE 1EC4 1EC5 1FEC 1FE5

00D6 00F6 01D5 01D6 0460 0461 10AF 10DF 1EC6 1EC7 1FF8 1F78

00D8 00F8 01D7 01D8 0462 0463 10B0 10E0 1EC8 1EC9 1FF9 1F79

00D9 00F9 01D9 01DA 0464 0465 10B1 10E1 1ECA 1ECB 1FFA 1F7C

00DA 00FA 01DB 01DC 0466 0467 10B2 10E2 1ECC 1ECD 1FFB 1F7D

00DB 00FB 01DE 01DF 0468 0469 10B3 10E3 1ECE 1ECF 1FFC 1FF3

00DC 00FC 01E0 01E1 046A 046B 10B4 10E4 1ED0 1ED1 2160 2170

00DD 00FD 01E2 01E3 046C 046D 10B5 10E5 1ED2 1ED3 2161 2171

00DE 00FE 01E4 01E5 046E 046F 10B6 10E6 1ED4 1ED5 2162 2172

0100 0101 01E6 01E7 0470 0471 10B7 10E7 1ED6 1ED7 2163 2173

0102 0103 01E8 01E9 0472 0473 10B8 10E8 1ED8 1ED9 2164 2174

0104 0105 01EA 01EB 0474 0475 10B9 10E9 1EDA 1EDB 2165 2175

0106 0107 01EC 01ED 0476 0477 10BA 10EA 1EDC 1EDD 2166 2176

0108 0109 01EE 01EF 0478 0479 10BB 10EB 1EDE 1EDF 2167 2177

010A 010B 01F1 01F3 047A 047B 10BC 10EC 1EE0 1EE1 2168 2178

010C 010D 01F2 01F3 047C 047D 10BD 10ED 1EE2 1EE3 2169 2179

010E 010F 01F4 01F5 047E 047F 10BE 10EE 1EE4 1EE5 216A 217A

0110 0111 01FA 01FB 0480 0481 10BF 10EF 1EE6 1EE7 216B 217B

0112 0113 01FC 01FD 0490 0491 10C0 10F0 1EE8 1EE9 216C 217C

0114 0115 01FE 01FF 0492 0493 10C1 10F1 1EEA 1EEB 216D 217D

0116 0117 0200 0201 0494 0495 10C2 10F2 1EEC 1EED 216E 217E

0118 0119 0202 0203 0496 0497 10C3 10F3 1EEE 1EEF 216F 217F

011A 011B 0204 0205 0498 0499 10C4 10F4 1EF0 1EF1 24B6 24D0

011C 011D 0206 0207 049A 049B 10C5 10F5 1EF2 1EF3 24B7 24D1

011E 011F 0208 0209 049C 049D 1E00 1E01 1EF4 1EF5 24B8 24D2

0120 0121 020A 020B 049E 049F 1E02 1E03 1EF6 1EF7 24B9 24D3

0122 0123 020C 020D 04A0 04A1 1E04 1E05 1EF8 1EF9 24BA 24D4

0124 0125 020E 020F 04A2 04A3 1E06 1E07 1F08 1F00 24BB 24D5

0126 0127 0210 0211 04A4 04A5 1E08 1E09 1F09 1F01 24BC 24D6

0128 0129 0212 0213 04A6 04A7 1E0A 1E0B 1F0A 1F02 24BD 24D7

012A 012B 0214 0215 04A8 04A9 1E0C 1E0D 1F0B 1F03 24BE 24D8

012C 012D 0216 0217 04AA 04AB 1E0E 1E0F 1F0C 1F04 24BF 24D9

012E 012F 0386 03AC 04AC 04AD 1E10 1E11 1F0D 1F05 24C0 24DA

0130 0069 0388 03AD 04AE 04AF 1E12 1E13 1F0E 1F06 24C1 24DB

0132 0133 0389 03AE 04B0 04B1 1E14 1E15 1F0F 1F07 24C2 24DC

0134 0135 038A 03AF 04B2 04B3 1E16 1E17 1F18 1F10 24C3 24DD

0136 0137 038C 03CC 04B4 04B5 1E18 1E19 1F19 1F11 24C4 24DE

Table 8-2. One-to-One Uppercase and Titlecase to Lowercase
Mappings (page 3 of 4)

x L (x) x L(x) x L(x) x L(x) x L(x) x L(x)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-96

SQL/MX Functions and Expressions Considerations for LOWER
0139 013A 038E 03CD 04B6 04B7 1E1A 1E1B 1F1A 1F12 24C5 24DF

013B 013C 038F 03CE 04B8 04B9 1E1C 1E1D 1F1B 1F13 24C6 24E0

013D 013E 0391 03B1 04BA 04BB 1E1E 1E1F 1F1C 1F14 24C7 24E1

013F 0140 0392 03B2 04BC 04BD 1E20 1E21 1F1D 1F15 24C8 24E2

0141 0142 0393 03B3 04BE 04BF 1E22 1E23 1F28 1F20 24C9 24E3

0143 0144 0394 03B4 04C1 04C2 1E24 1E25 1F29 1F21 24CA 24E4

0145 0146 0395 03B5 04C3 04C4 1E26 1E27 1F2A 1F22 24CB 24E5

0147 0148 0396 03B6 04C7 04C8 1E28 1E29 1F2B 1F23 24CC 24E6

014A 014B 0397 03B7 04CB 04CC 1E2A 1E2B 1F2C 1F24 24CD 24E7

014C 014D 0398 03B8 04D0 04D1 1E2C 1E2D 1F2D 1F25 24CE 24E8

014E 014F 0399 03B9 04D2 04D3 1E2E 1E2F 1F2E 1F26 24CF 24E9

0150 0151 039A 03BA 04D4 04D5 1E30 1E31 1F2F 1F27 FF21 FF41

0152 0153 039B 03BB 04D6 04D7 1E32 1E33 1F38 1F30 FF22 FF42

0154 0155 039C 03BC 04D8 04D9 1E34 1E35 1F39 1F31 FF23 FF43

0156 0157 039D 03BD 04DA 04DB 1E36 1E37 1F3A 1F32 FF24 FF44

0158 0159 039E 03BE 04DC 04DD 1E38 1E39 1F3B 1F33 FF25 FF45

015A 015B 039F 03BF 04DE 04DF 1E3A 1E3B 1F3C 1F34 FF26 FF46

015C 015D 03A0 03C0 04E0 04E1 1E3C 1E3D 1F3D 1F35 FF27 FF47

015E 015F 03A1 03C1 04E2 04E3 1E3E 1E3F 1F3E 1F36 FF28 FF48

0160 0161 03A3 03C3 04E4 04E5 1E40 1E41 1F3F 1F37 FF29 FF49

0162 0163 03A4 03C4 04E6 04E7 1E42 1E43 1F48 1F40 FF2A FF4A

0164 0165 03A5 03C5 04E8 04E9 1E44 1E45 1F49 1F41 FF2B FF4B

0166 0167 03A6 03C6 04EA 04EB 1E46 1E47 1F4A 1F42 FF2C FF4C

0168 0169 03A7 03C7 04EE 04EF 1E48 1E49 1F4B 1F43 FF2D FF4D

016A 016B 03A8 03C8 04F0 04F1 1E4A 1E4B 1F4C 1F44 FF2E FF4E

016C 016D 03A9 03C9 04F2 04F3 1E4C 1E4D 1F4D 1F45 FF2F FF4F

016E 016F 03AA 03CA 04F4 04F5 1E4E 1E4F 1F59 1F51 FF30 FF50

0170 0171 03AB 03CB 04F8 04F9 1E50 1E51 1F5B 1F53 FF31 FF51

0172 0173 03E2 03E3 0531 0561 1E52 1E53 1F5D 1F55 FF32 FF52

0174 0175 03E4 03E5 0532 0562 1E54 1E55 1F5F 1F57 FF33 FF53

0176 0177 03E6 03E7 0533 0563 1E56 1E57 1F68 1F60 FF34 FF54

0178 00FF 03E8 03E9 0534 0564 1E58 1E59 1F69 1F61 FF35 FF55

0179 017A 03EA 03EB 0535 0565 1E5A 1E5B 1F6A 1F62 FF36 FF56

FF37 FF57

FF38 FF58

FF39 FF59

FF3A FF5A

Table 8-2. One-to-One Uppercase and Titlecase to Lowercase
Mappings (page 4 of 4)

x L (x) x L(x) x L(x) x L(x) x L(x) x L(x)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-97

SQL/MX Functions and Expressions Examples of LOWER
Examples of LOWER

 Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select
the column CUSTNAME and return the result in uppercase and lowercase letters
by using the UPPER and LOWER functions:

SELECT custname,UPPER(custname),LOWER(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
Hotel Oregon HOTEL OREGON hotel oregon

--- 17 row(s) selected.

See UPPER Function on page 8-201.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-98

SQL/MX Functions and Expressions LPAD Function
LPAD Function
The LPAD function replaces the leftmost specified number of characters in a character
expression with a padding character or string. With the
ANSI_STRING_FUNCTIONALITY CQD set to ON, the function pads the left side of a
character expression with the specified string.

character-expr

is an SQL character value expression. The operand is the result of evaluating
character-expr. See Character Value Expressions on page 6-41.

count

specifies the number of characters. The count must be greater than or equal to
zero of exact numeric data type and with a scale of zero. For considerations of
count based on CQD ANSI_STRING_FUNCTIONALITY, see Examples of LPAD
on page 8-99.

pad-character

specifies the padding character or a string. If no pad-character is specified,
space is the padding character. For KANJI or KSC5601, the code value of
pad-character is hexadecimal 2020.

Examples of LPAD

The behavior of the LPAD function when the ANSI_STRING_FUNCTIONALITY CQD is
set to ON and the corresponding examples are described below.

The count specifies the number of characters to be returned. It is the length of the
result string.

If count is smaller than the length of the character-expr, the character-expr is
truncated. If count is equal to the length of the character-expr, the value of the
character-expr is retained. If count is greater than the length of the
character-expr, the character-expr is left-padded with the pad-character.

 The following LPAD function truncates the string 'kite' and returns two leftmost
characters 'ki':

LPAD('kite', 2)

 The following LPAD function truncates the string ‘Robert John Smith’ and
returns six leftmost characters 'Robert':

LPAD('Robert John Smith', 6);

LPAD (character-expr,count [,pad-character])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-99

SQL/MX Functions and Expressions Examples of LPAD
 The following LPAD function returns the original string 'go fly a kite' because
the count is equal to the length of the string:

LPAD('go fly a kite', 13, 'z')

 The following LPAD function returns a string of 10 characters ' Robert' by left
padding the string 'Robert' with four spaces:

LPAD('Robert',10)

 The following LPAD function returns a string of eight characters '0000kite' by left
padding the string 'kite' with four pad-characters '0':

LPAD('kite', 8, '0')

 The following LPAD function returns 'John,John, go fly a kite':

LPAD('go fly a kite', 23, 'John,')

The function left pads the string 'go fly a kite' with the string 'John,' such that
the length of the result string is 23 characters.

 The following LPAD function returns 'John,Jogo fly a kite':

LPAD('go fly a kite', 20, 'John,')

The function left pads the string 'go fly a kite' with the string 'John,' such that
the length of result string is 20 characters.

The default behavior of the LPAD function and the corresponding examples are
described below.

The count specifies the number of characters to be replaced. The count must be
less than or equal to the length of the character-expr. If count is smaller than or
equal to the length of the character-expr, the leftmost count characters of the
character-expr are replaced with the padding characters or string. If count is
greater than the length of the character-expr, an error is returned.

 The following LPAD function replaces two leftmost characters in the string 'kite'
with spaces and returns ' te':

LPAD('kite', 2)

 The following LPAD function replaces six leftmost characters in the string 'Robert
John Smith' with spaces and returns ' John Smith':

LPAD('Robert John Smith', 6);

 The following LPAD function replaces two leftmost characters 'go' with the string
'John,' twice and returns 'John,John, fly a kite':

LPAD('go fly a kite', 2, 'John,')

 The following LPAD function replaces 13 leftmost characters in the string 'go fly
a kite' with character 'z' and returns 'zzzzzzzzzzzzz'

LPAD('go fly a kite', 13, 'z')
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-100

SQL/MX Functions and Expressions Examples of LPAD
 The following LPAD functions return an error because the count is greater than
the string length:

LPAD('Robert',10)

LPAD('kite', 8, '0')

LPAD('go fly a kite', 23, 'John,')
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-101

SQL/MX Functions and Expressions LTRIM Function
LTRIM Function
The LTRIM function removes the specified trim characters from the left side of the
character string. If the trim characters are not specified, by default, the function
removes spaces.

srcstr

is a SQL character value expression from which spaces or trim_chrs are
removed from the left side. See Character Value Expressions on page 6-41.

trim_chrs

is the character or characters to be removed from the srcstr . The default is the
space character.

Considerations for LTRIM

Result of LTRIM

The result is always of type NON ANSI VARCHAR, with maximum length equal to the
fixed length or maximum variable length of srcstr.

Examples of LTRIM

 Return 'Robert ':

LTRIM (' Robert ')

See TRIM Function on page 8-192 and RTRIM Function on page 8-152.

 In this example, characters '1' and '0' are removed from the left side of the colA
value:

create table tab1(colA varchar(20), colB int);
insert into tab1 values('0101010101ten', 10);
insert into tab1 values('11001101nine', 9);
select ltrim(colA, '10'), colB from tab1;
(EXPR) COLB
-------------------- -----------
ten 10
nine 9

LTRIM(srcstr[, trim_chrs])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-102

SQL/MX Functions and Expressions MAX Function
MAX Function
MAX is an aggregate function that returns the maximum value within a set of values.
The data type of the result is the same as the data type of the argument.

ALL | DISTINCT

specifies whether duplicate values are included in the computation of the maximum
of the expression. The default option is ALL, which causes duplicate values to
be included. If you specify DISTINCT, duplicate values are eliminated before the
MAX function is applied.

expression

specifies an expression that determines the values to include in the computation of
the maximum. The expression cannot contain an aggregate function or a
subquery. The DISTINCT clause specifies that the MAX function operates on
distinct values from the one-column table derived from the evaluation of
expression. All nulls are eliminated before the function is applied to the set of
values. If the result table is empty, MAX returns NULL.

See Expressions on page 6-41.

Considerations for MAX

Operands of the Expression

The expression includes columns from the rows of the SELECT result table but cannot
include an aggregate function. These expressions are valid:

MAX (SALARY)
MAX (SALARY * 1.1)
MAX (PARTCOST * QTY_ORDERED)

Examples of MAX

 Display the maximum value in the SALARY column:

SELECT MAX (salary)
FROM persnl.employee;

(EXPR)

 175500.00

--- 1 row(s) selected.

MAX ([ALL | DISTINCT] expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-103

SQL/MX Functions and Expressions MIN Function
MIN Function
MIN is an aggregate function that returns the minimum value within a set of values.
The data type of the result is the same as the data type of the argument.

ALL | DISTINCT

specifies whether duplicate values are included in the computation of the minimum
of the expression. The default option is ALL, which causes duplicate values to
be included. If you specify DISTINCT, duplicate values are eliminated before the
MIN function is applied.

expression

specifies an expression that determines the values to include in the computation of
the minimum. The expression cannot contain an aggregate function or a
subquery. The DISTINCT clause specifies that the MIN function operates on
distinct values from the one-column table derived from the evaluation of
expression. All nulls are eliminated before the function is applied to the set of
values. If the result table is empty, MIN returns NULL.

See Expressions on page 6-41.

Considerations for MIN

Operands of the Expression

The expression includes columns from the rows of the SELECT result table—but
cannot include an aggregate function. These expressions are valid:

MIN (SALARY)
MIN (SALARY * 1.1)
MIN (PARTCOST * QTY_ORDERED)

Examples of MIN

 Display the minimum value in the SALARY column:

SELECT MIN (salary)
FROM persnl.employee;

(EXPR)

 17000.00

--- 1 row(s) selected.

MIN ([ALL | DISTINCT] expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-104

SQL/MX Functions and Expressions MINUTE Function
MINUTE Function
The MINUTE function converts a TIME or TIMESTAMP expression into an INTEGER
value, in the range 0 through 59, that represents the corresponding minute of the hour.

MINUTE is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type TIME or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of MINUTE

 Return an integer that represents the minute of the hour from the
SHIP_TIMESTAMP column in the PROJECT table:

SELECT start_date, ship_timestamp, MINUTE(ship_timestamp)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
1996-04-10 1996-04-21 08:15:00.000000 15

MINUTE (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-105

SQL/MX Functions and Expressions MOD Function
MOD Function
The MOD function returns the remainder (modulus) of an integer value expression
divided by an integer value expression.

MOD is an SQL/MX extension.

integer-expression-1

is an SQL numeric value expression of data type SMALLINT, INTEGER, or
LARGEINT that specifies the value for the dividend argument of the MOD function.

integer-expression-2

is an SQL numeric value expression of data type SMALLINT, INTEGER, or
LARGEINT that specifies the value for the divisor argument of the MOD function.
The divisor argument cannot be zero.

See Numeric Value Expressions on page 6-52.

Examples of MOD

 This function returns the value 2 as the remainder or modulus:

MOD (11,3)

MOD (integer-expression-1,integer-expression-2)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-106

SQL/MX Functions and Expressions MONTH Function
MONTH Function
The MONTH function converts a DATE or TIMESTAMP expression into an INTEGER
value in the range 1 through 12 that represents the corresponding month of the year.

MONTH is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of MONTH

 Return an integer that represents the month of the year from the START_DATE
column in the PROJECT table:

SELECT start_date, ship_timestamp, MONTH(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
1996-04-10 1996-04-21 08:15:00.000000 4

MONTH (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-107

SQL/MX Functions and Expressions MONTHNAME Function
MONTHNAME Function
The MONTHNAME function converts a DATE or TIMESTAMP expression into a
character literal that is the name of the month of the year (January, February, and so
on).

MONTHNAME is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of MONTHNAME

 Return a character literal that is the month of the year from the START_DATE
column in the PROJECT table:

SELECT start_date, ship_timestamp, MONTHNAME(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ---------
1996-04-10 1996-04-21 08:15:00.000000 April

MONTHNAME (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-108

SQL/MX Functions and Expressions MOVINGAVG Function
MOVINGAVG Function
The MOVINGAVG function is a sequence function that returns the average of non-null
values of a column in the current window of an intermediate result table ordered by a
SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY Clause on
page 7-19.

MOVINGAVG is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.

integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the current window. The current window is defined as the current row
and the previous (integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the maximum number of rows in the current window.

Note these considerations for the window size:

 The actual value for the window size is the minimum of integer-
expression and max-rows.

 If these conditions are met, MOVINGAVG returns the same result as
RUNNINGAVG:

 The integer-expression is out of range, and max-rows is not
specified. This condition includes the case in which both integer-
expression and max-rows are larger than the result table.

 The minimum of integer-expression and max-rows is out of range.
In this case, integer-expression could be within range, but max-rows
might be the minimum value of the two and be out of range (for example, a
negative number).

 The number of rows is out of range, if it is larger than the size of the result,
larger than DEF_MAX_HISTORY_ ROWS table, negative, or NULL.

MOVINGAVG (column-expression,integer-expression [,max-rows])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-109

SQL/MX Functions and Expressions Examples of MOVINGAVG
Examples of MOVINGAVG

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the average of non-null values of a column in the current window of three
rows:

SELECT MOVINGAVG (I1,3) AS MOVINGAVG3 FROM mining.seqfcn SEQUENCE BY TS;

MOVINGAVG3

 6215
17194
17194
16385
 8281

--- 5 row(s) selected

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'

Note.

1. The size the history buffer must not equal to the total result of the query. The required size
of the history buffer might be the largest window size for computing a MOVINGXXX
function, an OFFSET function or a ROWS SICE function.

2. Examining a large history buffer for a false condition will be an expensive operation. Such
operation cannot be parallelized, for example, the ROWS SINCE function.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-110

SQL/MX Functions and Expressions MOVINGCOUNT Function
MOVINGCOUNT Function
The MOVINGCOUNT function is a sequence function that returns the number of non-
null values of a column in the current window of an intermediate result table ordered by
a SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY Clause on
page 7-19.

MOVINGCOUNT is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.

integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the current window. The current window is defined as the current row
and the previous (integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the maximum number of rows in the current window.

Note these considerations for the window size:

 The actual value for the window size is the minimum of integer-
expression and max-rows.

 If these conditions are met, MOVINGCOUNT returns the same result as
RUNNINGCOUNT:

 The integer-expression is out of range, and max-rows is not
specified. This condition includes the case in which both integer-
expression and max-rows are larger than the result table.

 The minimum of integer-expression and max-rows is out of range.
In this case, integer-expression could be within range, but max-rows
might be the minimum value of the two and be out of range (for example, a
negative number).

 The number of rows is out of range if it is larger than the size of the result,
larger then table, negative, or NULL.

MOVINGCOUNT (column-expression,integer-expression
 [,max-rows])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-111

SQL/MX Functions and Expressions Considerations for MOVINGCOUNT
Considerations for MOVINGCOUNT

No DISTINCT Clause

The MOVINGCOUNT sequence function is defined differently from the COUNT
aggregate function. If you specify DISTINCT for the COUNT aggregate function,
duplicate values are eliminated before COUNT is applied. Note that you cannot specify
DISTINCT for the MOVINGCOUNT sequence function; duplicate values are counted.

Examples of MOVINGCOUNT

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the number of non-null values of a column in the current window of three
rows:

SELECT MOVINGCOUNT (I1,3) AS MOVINGCOUNT3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGCOUNT3

 1
 2
 2
 2
 2

--- 5 row(s) selected.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-112

SQL/MX Functions and Expressions MOVINGMAX Function
MOVINGMAX Function
The MOVINGMAX function is a sequence function that returns the maximum of non-
null values of a column in the current window of an intermediate result table ordered by
a SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY Clause on
page 7-19.

MOVINGMAX is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.

integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the current window. The current window is defined as the current row
and the previous (integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the maximum number of rows in the current window.

Note these considerations for the window size:

 The actual value for the window size is the minimum of integer-
expression and max-rows.

 If these conditions are met, MOVINGMAX returns the same result as
RUNNINGMAX:

 The integer-expression is out of range, and max-rows is not
specified. This condition includes the case in which both integer-
expression and max-rows are larger than the result table.

 The minimum of integer-expression and max-rows is out of range.
In this case, integer-expression could be within range, but max-rows
might be the minimum value of the two and be out of range (for example, a
negative number).

 The number of rows is out of range if it is larger than the size of the result
table, negative, or NULL.

MOVINGMAX (column-expression,integer-expression [,max-rows])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-113

SQL/MX Functions and Expressions Examples of MOVINGMAX
Examples of MOVINGMAX

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the maximum of non-null values of a column in the current window of three
rows:

SELECT MOVINGMAX (I1,3) AS MOVINGMAX3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGMAX3

 6215
 28174
 28174
 28174
 11966

--- 5 row(s) selected.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-114

SQL/MX Functions and Expressions MOVINGMIN Function
MOVINGMIN Function
The MOVINGMIN function is a sequence function that returns the minimum of non-null
values of a column in the current window of an intermediate result table ordered by a
SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY Clause on
page 7-19.

MOVINGMIN is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.

integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the current window. The current window is defined as the current row
and the previous (integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the maximum number of rows in the current window.

Note these considerations for the window size:

 The actual value for the window size is the minimum of integer-
expression and max-rows.

 If these conditions are met, MOVINGMIN returns the same result as
RUNNINGMIN:

 The integer-expression is out of range, and max-rows is not
specified. This condition includes the case in which both integer-
expression and max-rows are larger than the result table.

 The minimum of integer-expression and max-rows is out of range.
In this case, integer-expression could be within range, but max-rows
might be the minimum value of the two and be out of range (for example, a
negative number).

 The number of rows is out of range if it is larger than the size of the result
table, negative, or NULL.

MOVINGMIN (column-expression,integer-expression [,max-rows])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-115

SQL/MX Functions and Expressions Examples of MOVINGMIN
Examples of MOVINGMIN

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the minimum of non-null values of a column in the current window of three
rows:

SELECT MOVINGMIN (I1,3) AS MOVINGMIN3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGMIN3

 6215
 6215
 6215
 4597
 4597

--- 5 row(s) selected.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-116

SQL/MX Functions and Expressions MOVINGSTDDEV Function
MOVINGSTDDEV Function
The MOVINGSTDDEV function is a sequence function that returns the standard
deviation of non-null values of a column in the current window of an intermediate result
table ordered by a SEQUENCE BY clause in a SELECT statement. See SEQUENCE
BY Clause on page 7-19.

MOVINGSTDDEV is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.

integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the current window. The current window is defined as the current row
and the previous (integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the maximum number of rows in the current window.

Note these considerations for the window size:

 The actual value for the window size is the minimum of integer-
expression and max-rows.

 If these conditions are met, MOVINGSTDDEV returns the same result as
RUNNINGSTDDEV:

 The integer-expression is out of range, and max-rows is not
specified. This condition includes the case in which both integer-
expression and max-rows are larger than the result table.

 The minimum of integer-expression and max-rows is out of range.
In this case, integer-expression could be within range, but max-rows
might be the minimum value of the two and be out of range (for example, a
negative number).

 The number of rows is out of range if it is larger than the size of the result
table, negative, or NULL.

MOVINGSTDDEV (column-expression,integer-expression
 [,max-rows])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-117

SQL/MX Functions and Expressions Examples of MOVINGSTDDEV
Examples of MOVINGSTDDEV

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the standard deviation of non-null values of a column in the current window
of three rows:

SELECT MOVINGSTDDEV (I1,3) AS MOVINGSTDDEV3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGSTDDEV3

 0.00000000000000000E+000
 1.55273578080753976E+004
 1.48020166531456112E+004
 1.51150124820766640E+004
 6.03627542446499008E+003

--- 5 row(s) selected.

Note that you can use the CAST function for display purposes. For example:

SELECT CAST(MOVINGSTDDEV (I1,3) AS DEC (18,3))
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR)

 .000
 15527.357
 14802.016
 15115.012
 6036.275

--- 5 row(s) selected.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-118

SQL/MX Functions and Expressions MOVINGSUM Function
MOVINGSUM Function
The MOVINGSUM function is a sequence function that returns the sum of non-null
values of a column in the current window of an intermediate result table ordered by a
SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY Clause on
page 7-19.

MOVINGSUM is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.

integer-expression

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the current window. The current window is defined as the current row
and the previous (integer-expression - 1) rows.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the maximum number of rows in the current window.

Note these considerations for the window size:

 The actual value for the window size is the minimum of integer-
expression and max-rows.

 If these conditions are met, MOVINGSUM returns the same result as
RUNNINGSUM:

 The integer-expression is out of range, and max-rows is not
specified. This condition includes the case in which both integer-
expression and max-rows are larger than the result table.

 The minimum of integer-expression and max-rows is out of range.
In this case, integer-expression could be within range, but max-rows
might be the minimum value of the two and be out of range (for example, a
negative number).

 The number of rows is out of range if it is larger than the size of the result
table, negative, or NULL.

MOVINGSUM (column-expression,integer-expression [,max-rows])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-119

SQL/MX Functions and Expressions Examples of MOVINGSUM
Examples of MOVINGSUM

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the sum of non-null values of a column in the current window of three rows:

SELECT MOVINGSUM (I1,3) AS MOVINGSUM3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGSUM3

 6215
 34389
 34389
 32771
 16563

--- 5 row(s) selected.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-120

SQL/MX Functions and Expressions MOVINGVARIANCE Function
MOVINGVARIANCE Function
 The MOVINGVARIANCE function is a sequence function that returns the

variance of non-null values of a column in the current window of an
intermediate result table ordered by a SEQUENCE BY clause in a SELECT
statement. See SEQUENCE BY Clause on page 7-18.

 MOVINGVARIANCE is an SQL/MX extension.

 MOVINGVARIANCE (column-expression,integer-expression

 [,max-rows])

 column-expression

 specifies a derived column determined by the evaluation of the column
expression.

 integer-expression

 is an SQL numeric value expression of signed data type SMALLINT or
INTEGER that specifies the current window. The current window is defined as
the current row and the previous (integer-expression - 1) rows.

 max-rows

 is an SQL numeric value expression of signed data type SMALLINT or
INTEGER that specifies the maximum number of rows in the current window.

 Note these considerations for the window size: The actual value for the window
size is the minimum of integer-expression and max-rows.

 If these conditions are met, MOVINGVARIANCE returns the same result as
RUNNINGVARIANCE:

 The integer-expression is out of range, and max-rows is not
specified. This condition includes the case in which both integer-
expression and max-rows are larger than the result table.

 The minimum of integer-expression and max-rows is out of range.
In this case, integer-expression could be within range, but max-rows
might be the minimum value of the two and be out of range (for example, a
negative number).

 The number of rows is out of range if it is larger than the size of the result
table, negative, or NULL.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-121

SQL/MX Functions and Expressions Examples of MOVINGVARIANCE
Examples of MOVINGVARIANCE

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the variance of non-null values of a column in the current window of three
rows:

SELECT MOVINGVARIANCE (I1,3) AS MOVINGVARIANCE3
FROM mining.seqfcn
SEQUENCE BY TS;

MOVINGVARIANCE3

 0.00000000000000000E+000
 2.41098840499999960E+008
 2.19099696999999968E+008
 2.28463602333333304E+008
 3.64366210000000016E+007

--- 5 row(s) selected.

Note that you can use the CAST function for display purposes. For example:

SELECT CAST(MOVINGVARIANCE (I1,3) AS DEC (18,3))
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR)

 .000
 241098840.500
 219099697.000
 228463602.333
 36436621.000

--- 5 row(s) selected.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-122

SQL/MX Functions and Expressions NVL Function
NVL Function
The NVL function returns expr2 if expr1 is NULL. Otherwise, the function returns
expr1.

expr1 and expr2 specify value expressions and must be of comparable data types.

The NVL function is logically equivalent to the following IF-ELSE expression:

if (expr1 is NULL)
 return expr2
else
 return expr1

Considerations

 If all the expressions in the argument list are fixed-length character types, the
return value is a fixed-length character string equal to the maximum size of all the
expression value types.

 If any of the expressions in the argument list are variable-length character types,
the return value is a variable-length character string with maximum size of all the
expression value types.

 If all the expressions in the argument list are integer types, the return value is of
the same data type as the largest integer type of all the possible return values.

 If all the expressions in the argument list are numeric types, and at least one is
REAL, FLOAT, or DOUBLE PRECISION, the return value is a DOUBLE
PRECISION type.

 If all the expressions in the argument list are numeric types, and none are REAL,
FLOAT, or DOUBLE PRECISION, and at least one is of type NUMERIC, the return
value is a NUMERIC type.

 If the expr1 is not NULL, the return value is the same data type as expr1.

 If the return value is of type NUMERIC or DECIMAL, it has a precision value equal
to the sum of:

 The maximum scale of all the return values.

 The maximum of precision minus scale value for all the return values.

However, the precision value must not exceed 18.

 If the return value is of type NUMERIC or DECIMAL, the scale of the return value
is the minimum of:

 The maximum scale of all the return values.

 18 - (the maximum of precision minus scale value for all the return values).

NVL(expr1,expr2)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-123

SQL/MX Functions and Expressions Example of NVL
Example of NVL

 This function replaces all NULL values with ‘two’.

create table tab1 (colA varchar(10), colB int);
insert into tab1 values('one',1);

-- The default value for colA is NULL.
insert into tab1(colB) values(2);

insert into tab1 values('three',3);
insert into tab1 values('four',4);

select colA, colB, NVL(colA, 'two') from tab1;

COLA COLB (EXPR)

---------- ----------- ----------

one 1 one

? 2 two

three 3 three

four 4 four

--- 4 row(s) selected.

Note. Existing NonStop SQL/MX conversions rules are applied to the above
rules.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-124

SQL/MX Functions and Expressions NVL2 Function
NVL2 Function
The NVL2 function returns expr2 if expr1 is NOT NULL and returns expr3 if expr1
is NULL.

expr1, expr2, expr3... are SQL value expressions.

The NVL2 function is logically equivalent to the following IF-ELSE expression:

if (expr1 is NOT NULL)
 return expr2
else
 return expr3

Considerations

The considerations of NVL2 are same as Considerations in NVL.

Examples of NVL2

 This function returns colB if colA is NOT NULL else returns integer ‘0’(third
argument of NVL2).

create table tab1(colA varchar(10), colB int);
--- SQL operation complete.

insert into tab1 values('one', 1);
--- 1 row(s) inserted.

-- Default values for colA is NULL
insert into tab1(colB) values(2);
--- 1 row(s) inserted.

NVL2 (expr1, expr2, expr3)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-125

SQL/MX Functions and Expressions OCTET_LENGTH Function
insert into tab1(colB) values(3);
--- 1 row(s) inserted.

insert into tab1 values('four',4);
--- 1 row(s) inserted.

select NVL2(colA,colB,0) as nvl2_value from tab1;

NVL2_VALUE

1

0

0

4

OCTET_LENGTH Function
The OCTET_LENGTH function returns the length of a character string in bytes.

string-value-expression

specifies the string value expression for which to return the length in bytes.
NonStop SQL/MX returns the result as a 2-byte signed integer with a scale of zero.
If string-value-expression is null, NonStop SQL/MX returns a length of zero.
See Character Value Expressions on page 6-41.

Considerations for OCTET_LENGTH

CHAR and VARCHAR Operands

For a column declared as fixed CHAR, NonStop SQL/MX returns the length of that
column as the maximum number of storage bytes. For a VARCHAR column,
NonStop SQL/MX returns the length of the string stored in that column as the actual
number of storage bytes.

Similarity to CHAR_LENGTH Function

The OCTET_LENGTH and CHAR_LENGTH functions are similar. The
OCTET_LENGTH function returns the number of bytes, rather than the number of
characters, in the string. This distinction is important for multibyte implementations. For
an example of selecting a double-byte column, see Similarity to OCTET_LENGTH
Function on page 8-24.

OCTET_LENGTH (string-value-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-126

SQL/MX Functions and Expressions Examples of OCTET_LENGTH
Examples of OCTET_LENGTH

 If a character string is stored as two bytes for each character, this function returns
the value 12. Otherwise, the function returns 6:

OCTET_LENGTH ('Robert')
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-127

SQL/MX Functions and Expressions OFFSET Function
OFFSET Function
The OFFSET function is a sequence function that retrieves columns from previous
rows of an intermediate result table ordered by a SEQUENCE BY clause in a SELECT
statement. See SEQUENCE BY Clause on page 7-19.

OFFSET is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.

number-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the offset as the number of rows from the current row. If the number
of rows exceeds max-rows, OFFSET returns OFFSET(column-
expression,max-rows). If the number of rows is out of range and max-rows is
not specified or is out of range, OFFSET returns null. The number of rows is out of
range if it is larger than the size of the result table, negative, or NULL.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the maximum number of rows of the offset.

Examples of OFFSET

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

OFFSET (column-expression,number-rows [,max-rows])

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

19058 TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-128

SQL/MX Functions and Expressions Examples of OFFSET
 Retrieve the I1 column offset by three rows:

SELECT OFFSET (I1,3) AS OFFSET3
FROM mining.seqfcn
SEQUENCE BY TS;

OFFSET3

 ?
 ?
 ?
 6215
 28174

--- 5 row(s) selected.

Note that the first three rows retrieved display null because the offset from the
current row does not fall within the result table.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-129

SQL/MX Functions and Expressions PI Function
PI Function
The PI function returns the constant value of pi as a floating-point value.

PI is an SQL/MX extension.

Examples of PI

 This constant function returns the value 3.14159260000000064E+000:

PI()

PI()
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-130

SQL/MX Functions and Expressions POSITION Function
POSITION Function
The POSITION function searches for a given substring in a character string. If the
substring is found, NonStop SQL/MX returns the character position of the substring
within the string. The result returned by the POSITION function is equal to the result
returned by the LOCATE function.

substring-expression

is an SQL character value expression that specifies the substring to search for in
source-expression. The substring-expression cannot be NULL. See
Character Value Expressions on page 6-41.

source-expression

is an SQL character value expression that specifies the source string. The
source-expression cannot be NULL. See Character Value Expressions on
page 6-41.

NonStop SQL/MX returns the result as a 2-byte signed integer with a scale of zero. If
substring-expression is not found in source-expression, NonStop SQL/MX
returns zero.

Considerations for POSITION

Result of POSITION

If the length of source-expression is zero and the length of
substring-expression is greater than zero, NonStop SQL/MX returns 0. If the
length of substring-expression is zero, NonStop SQL/MX returns 1.

If the length of substring-expression is greater than the length of
source-expression, NonStop SQL/MX returns zero. If source-expression is a
null value, NonStop SQL/MX returns a null value.

Using the UPSHIFT Function

To ignore case in the search, use the UPSHIFT function (or the LOWER function) for
both the substring-expression and the source-expression.

POSITION (substring-expression IN source-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-131

SQL/MX Functions and Expressions Examples of POSITION
Examples of POSITION

 This function returns the value 8 for the position of the substring ‘John’ within the
string:

POSITION ('John' IN 'Robert John Smith')

 Suppose that the EMPLOYEE table has an EMPNAME column that contains both
the first and last names. Return all records in table EMPLOYEE that contain the
substring 'Smith' regardless of whether the column value is in uppercase or
lowercase characters:

SELECT * FROM persnl.employee
 WHERE POSITION ('SMITH' IN UPSHIFT(empname)) > 0 ;

POWER Function
The POWER function returns the value of a numeric value expression raised to the
power of an integer value expression. You can also use the exponential operator **.

POWER is an SQL/MX extension.

numeric-expression-1,numeric-expression-2

are SQL numeric value expressions that specify the values for the base and
exponent arguments of the POWER function. See Numeric Value Expressions on
page 6-52.

If base numeric-expression-1 is zero, the exponent numeric-
expression-2 must be greater than zero, and the result is zero. If the exponent
is zero, the base cannot be 0, and the result is 1. If the base is negative, the
exponent must be a value with an exact numeric data type and a scale of zero.

Examples of POWER

 Return the value 15.625:

POWER (2.5,3)

 Return the value 27. The function POWER raised to the power of 2 is the inverse
of the function SQRT:

POWER (SQRT(27),2)

POWER (numeric-expression-1,numeric-expression-2)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-132

SQL/MX Functions and Expressions QUARTER Function
QUARTER Function
The QUARTER function converts a DATE or TIMESTAMP expression into an
INTEGER value in the range 1 through 4 that represents the corresponding quarter of
the year. Quarter 1 represents January 1 through March 31, and so on.

QUARTER is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of QUARTER

 Return an integer that represents the quarter of the year from the START_DATE
column in the PROJECT table:

SELECT start_date, ship_timestamp, QUARTER(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
1996-04-10 1996-04-21 08:15:00.000000 2

QUARTER (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-133

SQL/MX Functions and Expressions QUERYCACHE Function
QUERYCACHE Function
Considerations for QUERYCACHE
Examples of QUERYCACHE

The query plan cache automatically collects statistics regarding its use. When invoked,
the QUERYCACHE table-valued stored function collects and returns the current state
of these statistics in a single row table. The statistics are reinitialized when an mxcmp
session is started and each mxcmp session maintains an independent set of statistics.

The QUERYCACHE function is an SQL/MX extension.

The QUERYCACHE function can be specified as a table reference (table) in the
FROM clause of a SELECT statement if it is preceded by the keyword TABLE and
surrounded by parentheses. The syntax for the QUERYCACHE function has no
parameters.

In a dynamic environment (that is, MXCI, MXCS, JDBC, or dynamic SQL), the
QUERYCACHE function returns the statistics of the query plan cache of the mxcmp
associated with the dynamic session. In a static environment (that is, statically
compiled embedded SQL), the QUERYCACHE function returns zero rows because at
runtime there is no associated mxcmp.

Considerations for QUERYCACHE

Using QUERYCACHE and DISPLAY_QC

The result of the QUERYCACHE function can be generated and displayed either by
using the QUERYCACHE function or the DISPLAY_QC command. The DISPLAY_QC
command provides a subset of the information displayed by the QUERYCACHE
function. The output of the QUERYCACHE function and DISPLAY_QC command is
machine-readable format. See the DISPLAY_QC Command on page 4-19.

Result of the QUERYCACHE Function

The result table of the QUERYCACHE function describes the query plan caching
information for certain SELECT, INSERT, DELETE, UPDATE, or join statements. For

QUERYCACHE ()
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-134

SQL/MX Functions and Expressions Considerations for QUERYCACHE
more information about the types of statements that are appropriate candidates for
query plan caching, see the SQL/MX Query Guide.

Column Name Data Type Description

CURRENT_SIZE INT Current size of the text and template cache.

MAX_CACHE_SIZE INT Maximum cache size in KB.

MAX_NUM_VICTIMS INT Maximum number of template cache entries
that can be displaced from the cache to
make room for a new entry. This number is
the current
QUERY_CACHE_MAX_VICTIMS CQD
setting.

NUM_ENTRIES INT Number of template cache entries.

NUM_PINNED INT Total number of pinned entries.

NUM_COMPILES INT Number of complete SQL compile requests
(excludes DESCRIBE and SHOWSHAPE
requests).

NUM_RECOMPILES INT Number of recompilations.
Recompilation refreshes a stale cache entry.
Schema changes can cause cached queries
to become stale.

NUM_RETRIES INT Number of successful compiles that succeed
with caching off but fail with caching on.
Report any occurrence to HP support.

NUM_CACHEABLE_
PARSING

INT Number of compiled queries that mxcmp has
processed after parsing and before binding
of the query and that satisfy the conditions
for caching.

NUM_CACHEABLE_
BINDING

INT Number of compiled queries that mxcmp has
processed after binding and before
transformation of the query and that satisfy
the conditions for caching.

NUM_CACHE_HITS_
PARSING

INT Number of queries that mxcmp has compiled
as cache hits after parsing.

NUM_CACHE_HITS_
BINDING

INT Number of queries that mxcmp has compiled
as cache hits after binding.

NUM_CACHEABLE_TOO_
LARGE

INT Number of cacheable queries compiled by
mxcmp that satisfy the conditions for caching
but have plans that are too large to fit in the
cache or have displaced too many cache
entries (value >
QUERY_CACHE_MAX_VICTIMS).

NUM_DISPLACED INT Number of entries displaced by template
cache entries (to make room for new entries
or displaced as a result of resizing of the
cache).
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-135

SQL/MX Functions and Expressions Examples of QUERYCACHE
Examples of QUERYCACHE

 Display all query plan caching statistics for an mxcmp session. Note that the output
has been formatted for readability:

>>SET SCHEMA SAMDBCAT.PERSNL;

--- SQL operation complete.

>SELECT * FROM EMPLOYEE;

Employee/Number First Name Last Name Dept/Num Job/Code Salary
--------------- ------------ ----------------- -------- -------- ------
 1 ROGER GREEN 9000 100 175500.00
 23 JERRY HOWARD 1000 100 137000.10
 29 JANE RAYMOND 3000 100 136000.00
 32 THOMAS RUDLOFF 2000 100 138000.40
.
.
.
--- 62 row(s) selected.

>SELECT * FROM TABLE (QUERYCACHE ());

AVG_PLAN_SIZE 31
CURRENT_SIZE 35
MAX_CACHE_SIZE 1024
MAX_NUM_VICTIMS 10
NUM_ENTRIES 1
NUM_PINNED 0
NUM_COMPILES 21
NUM_RECOMPILES 0
NUM_RETRIES 0
NUM_CACHEABLE_PARSING 0
NUM_CACHEABLE_BINDING 1
NUM_CACHE_HITS_PARSING 0
NUM_CACHE_HITS_BINDING 0

OPTIMIZATION_LEVEL CHAR(10) The current desired level of query
optimization. Can be 0, 2, 3, or 5.

AVG_TEMPLATE_SIZE INT
UNSIGNED

Average template cache entry size in bytes.
The size of a shared plan object is counted
once.

TEXT_CACHE_HITS INT
UNSIGNED

Reserved for future use.

AVG_TEXT_SIZE INT
UNSIGNED

Reserved for future use.

TEXT_ENTRIES INT
UNSIGNED

Reserved for future use.

DISPLACED_TEXTS INT
UNSIGNED

Reserved for future use.

NUM_LOOKUPS INT
UNSIGNED

Reserved for future use.

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-136

SQL/MX Functions and Expressions Examples of QUERYCACHE
NUM_PIN_HITS_PARSING 0
NUM_PIN_HITS_BINDING 0

NUM_CACHEABLE_TOO_LARGE 0
NUM_DISPLACED 0
OPTIMIZATION_LEVEL 3
PINNING_STATEOFF

--- 1 row(s) selected.

 Display selected query plan caching statistics from the same query:

SELECT NUM_RETRIES, OPTIMIZATION_LEVEL FROM TABLE
 (QUERYCACHE ());

NUM_RETRIES OPTIMIZATION_LEVEL
---------- ------------------
 0 3

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-137

SQL/MX Functions and Expressions QUERYCACHEENTRIES Function
QUERYCACHEENTRIES Function
The query plan cache automatically collects statistics on each entry of the cache.
When invoked, the QUERYCACHEENTRIES table-valued function collects and returns
these statistics in a table with one row for each entry of the cache. The statistics are
reinitialized when an mxcmp session is started. Each mxcmp session maintains an
independent set of statistics.

The QUERYCACHEENTRIES function is an SQL/MX extension.

The QUERYCACHEENTRIES function can be specified as a table reference (table)
in the FROM clause of a SELECT statement if it is preceded by the keyword TABLE
and surrounded by parentheses. The syntax for the QUERYCACHEENTRIES function
has no parameters.

In a dynamic environment (that is, MXCI, MXCS, JDBC, or dynamic SQL), the
QUERYCACHEENTRIES function returns the statistics of each entry of the query plan
cache of the mxcmp associated with the dynamic session. In a static environment (that
is, statically compiled embedded SQL), the QUERYCACHEENTRIES function returns
zero rows because at runtime there is no associated mxcmp.

Considerations for QUERYCACHEENTRIES

Using QUERYCACHEENTRIES and DISPLAY_QC_ENTRIES

The result of the QUERYCACHEENTRIES function can be generated and displayed
either by using the QUERYCACHEENTRIES function or the DISPLAY_QC_ENTRIES
command. The DISPLAY_QC_ENTRIES command displays a subset of the
information contained in the QUERYCACHEENTRIES function. The output for the
QUERYCACHEENTRIES function and DISPLAY_QC_ENTRIES is machine-readable
format. See the DISPLAY_QC_ENTRIES Command on page 4-21.

QUERYCACHEENTRIES ()
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-138

SQL/MX Functions and Expressions Considerations for QUERYCACHEENTRIES
Result of the QUERYCACHEENTRIES Function

The result table of the QUERYCACHEENTRIES function describes the query plan
caching information for each entry in the query plan cache. For more information about
the types of statements that are appropriate candidates for query plan caching, see the
SQL/MX Query Guide.

Column Name Data Type Description

ROW_ID INT A zero-based sequential number. Entry number 0
is the most recently used entry. When a new entry
is cached or matches the query issued, it occupies
zero and all other cache entries not displaced are
increased by one.
Entry number 1 is the most recently used entry
after the most recent (0). Entries with the highest
row IDs are replaced; they are the least recently
used entries.

PLAN_ID LARGEINT Primary Key. System-generated timestamp stored
within each plan that uniquely identifies it. This
column appears in the EXPLAIN table and
enables joins between the two tables. Plan
sharing can be recognized when the same
PLAN_ID appears on multiple cache entries
whose PHASE column is BINDING.

TEXT CHAR(1024) Text of the original SQL statement.

ENTRY_SIZE INT Size in bytes of this entry, excluding the size of the
compiled plan with which this entry is associated.

NUM_HITS INT The total number of queries that have an identical
query template with this entry and have reused the
compiled plan.

PHASE CHAR(10) The mxcmp phase after when the plan associated
with this entry was cached (parsing or binding).
For template cache entries, the value is always
binding.

OPTIMIZATION_LEVEL CHAR(10) The desired level of code optimization at the time
the query was compiled. Can be 0, 2, 3, or 5.

CATALOG_NAME CHAR(40) Name of the default catalog under which the query
was compiled.

SCHEMA_NAME CHAR(40) Name of the default schema under which the
query was compiled.

NUM_PARAMS INT Number of constants in the query that were
changed internally into parameters during
compilation.

PARAM_TYPES CHAR(1024) Comma-separated list of the types of constants
that were changed into parameters. Blank, if none.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-139

SQL/MX Functions and Expressions Examples of QUERYCACHEENTRIES
Examples of QUERYCACHEENTRIES

 Display all information contained in the QUERYCACHEENTRIES table. Note that
the output has been formatted for readability.

>>SET SCHEMA SAMDBCAT.PERSNL;

--- SQL operation complete.

>SELECT * FROM EMPLOYEE;

Employee/Number First Name Last Name Dept/Num Job/Code Salary
-------------- -------------- -------------- -------- -------- ---------
 1 ROGER GREEN 9000 100 175500.00
 23 JERRY HOWARD 1000 100 137000.10
 29 JANE RAYMOND 3000 100 136000.00
.
.
.
--- 62 row(s) selected.

>SELECT * FROM DEPT;

PLAN_LENGTH INT Size in bytes of the compiled plan associated with
this entry.

COMPILATION_TIME INT Time in milliseconds it took to compile the query
associated with this entry.

AVERAGE_HIT_TIME INT Time in milliseconds it took on the average to
process a query as a cache hit against this entry.

SHAPE CHAR(1024) Required CONTROL QUERY SHAPE of the query
associated with this entry. Blank if no required
shape.

ISOLATION_LEVEL CHAR(20) Transaction isolation level associated with the
query. Can be READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ,
SERIALIZABLE, or NOT SPECIFIED.

ISOLATION_LEVEL_F
OR_UPDATES

CHAR (20) Transaction isolation level associated with the
DELETE or UPDATE part of this query (if any) or
with an INSERT statement. Can be
READ_COMMITTED, REPEATABLE READ, or
SERIALIZABLE.

ACCESS_MODE CHAR(20) Transaction access mode value associated with
the query. Can be READ ONLY, READ WRITE, or
NOT SPECIFIED.

AUTO_COMMIT CHAR(15) Transaction autocommit value associated with the
query. Can be ON, OFF, or NOT SPECIFIED.

ROLLBACK_MODE CHAR(15) Transaction rollback mode value associated with
the query. Can be WAITED, NO WAITED, or NOT
SPECIFIED.

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-140

SQL/MX Functions and Expressions Examples of QUERYCACHEENTRIES
Dept/Num Dept/Name Mgr Rpt/Dept Location
-------- ------------ ----- -------- ------------------
 1000 FINANCE 23 9000 CHICAGO
 1500 PERSONNEL 213 1000 CHICAGO
 2000 INVENTORY 32 9000 LOS ANGELES
.
.
.
--- 12 row(s) selected.

>SELECT * FROM JOB;

Job/Code Job Description
-------- ------------------

 100 MANAGER
 200 PRODUCTION SUPV
 250 ASSEMBLER
.
.
.
--- 10 row(s) selected.

>SELECT * FROM TABLE (QUERYCACHEENTRIES ());

ROW_ID PLAN_ID TEXT ENTRY_SIZE
------ ------------------ -------------------------- ----------
 0 211894097543468116 select * from employee; 32410
 1 211894097552547493 select * from job; 24968
 2 211894097548497817 select * from dept; 29730

NUM_HITS PHASE OPTIMIZATION_LEVEL CATALOG_NAME SCHEMA_NAME
-------- ---------- ---------------------- ------------ -----------
 1 BINDING 3 SAMDBCAT PERSNL
 0 BINDING 3 SAMDBCAT PERSNL
 0 BINDING 3 SAMDBCAT PERSNL

NUM_PARAMS PARAM_TYPES PLAN_LENGTH IS_PINNED COMPILATION_TIME
---------- ----------- ----------- --------- -----------------
 0 31752 OFF 334
 0 24504 OFF 54
 0 29144 OFF 96

AVERAGE_HIT_TIME SHAPE ISOLATION_LEVEL ACCESS_MODE AUTO_COMMIT
---------------- ------- --------------- ------------ -----------
41 READ COMMITTED READ/WRITE ON
0 READ COMMITTED READ/WRITE ON
0 READ COMMITTED READ/WRITE ON

ROLLBACK_MODE

NOT SPECIFIED
NOT SPECIFIED
NOT SPECIFIED

 Display selected columns of the QUERYCACHEENTRIES table using the same
cached queries:

>>SELECT PLAN_ID, NUM_HITS, IS_PINNED FROM TABLE
(QUERYCACHEENTRIES ());

PLAN_ID NUM_HITS IS_PINNED
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-141

SQL/MX Functions and Expressions Examples of QUERYCACHEENTRIES
------------------- ---------- ---------
211894097543468116 1 OFF
211894097552547493 0 OFF
211894097548497817 0 OFF

--- 3 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-142

SQL/MX Functions and Expressions RADIANS Function
RADIANS Function
The RADIANS function converts a numeric value expression expressed in degrees to
the number of radians.

RADIANS is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the RADIANS function. See Numeric Value Expressions on page 6-52.

Examples of RADIANS

 Return the value 7.85398150000000160E-001, or approximately 0.78540 in
degrees:

RADIANS (45)

 Return the value 45 in degrees. The function DEGREES is the inverse of the
function RADIANS.

DEGREES (RADIANS (45))

RADIANS (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-143

SQL/MX Functions and Expressions RELATEDNESS Function
RELATEDNESS Function
RELATEDNESS is a built-in table-valued function that returns relatedness information
for a single entity.

Table 8-3 shows the input and output parameters for RELATEDNESS.

ANSI names in the input value parameter must be fully qualified in external format.
Expand node names are case-insensitive. Both input parameters must be
character-valued expressions.

Example of RELATEDNESS

select * from table (relatedness ('SCHEMA', 'CAT.SCH'));

E_TYPE E_VALUE NAME
------- --------- ----------------------
SCHEMA CAT.SCH CAT.SCH
SCHEMA CAT.SCH OTHERCAT.OTHERSCH
SCHEMA CAT.SCH YET_ANOTHER_CAT.SCHEMAX

relatedness ('E_TYPE', 'E_VALUE')

Table 8-3. Input and Output Parameters for RELATEDNESS

Input/Output

Type Parameter Specification Description

Input
parameter

E_TYPE CHAR (32) NOT
NULL

The type of version information that
is requested.

Input
parameter

E_VALUE VARCHAR(517)
NOT NULL

The name of the entity for which
version information is requested.
The type of that entity is implied by
E_TYPE.

Output
column

E_TYPE CHAR (32) NOT
NULL

A copy of the actual value for the
E_TYPE input parameter.

Output
column

E_VALUE VARCHAR(517)
NOT NULL

A copy of the actual value for the
E_VALUE input parameter.

Output
column

NAME VARCHAR(517)
NOT NULL

The name of a related entity.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-144

SQL/MX Functions and Expressions REPEAT Function
REPEAT Function
The REPEAT function returns a character string composed of the evaluation of a
character expression repeated a specified number of times.

REPEAT is an SQL/MX extension.

character-expr

specifies the source string from which to return the specified number of repeated
strings. The source string is an SQL character value expression. The operand is
the result of evaluating character-expr. See Character Value Expressions on
page 6-41.

count

specifies the number of times the source string character-expr is to be
repeated. The number count must be a value greater than or equal to zero of
exact numeric data type and with a scale of zero.

Examples of REPEAT

 Return this quote from Act 5, Scene 3, of King Lear:

REPEAT ('Never,', 5)

Never,Never,Never,Never,Never,

REPEAT (character-expr, count)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-145

SQL/MX Functions and Expressions REPLACE Function
REPLACE Function
The REPLACE function returns a character string where all occurrences of a specified
character string in the original string are replaced with another character string.

REPLACE is an SQL/MX extension.

char-expr-1, char-expr-2, char-expr-3

are SQL character value expressions. The operands are the result of evaluating
the character expressions. All occurrences of char-expr-2 in char-expr-1
are replaced by char-expr-3. See Character Value Expressions on page 6-41.

Examples of REPLACE

 Use the REPLACE function to change job descriptions so that occurrences of the
company name are updated:

SELECT jobdesc FROM persnl.job;

Job Description

MANAGER COMNET
PRODUCTION COMNET
ASSEMBLER COMNET
SALESREP COMNET
SYSTEM ANAL COMNET
...

--- 10 row(s) selected.

UPDATE persnl.job
SET jobdesc = REPLACE (jobdesc, 'COMNET', 'TDMNET');

Job Description

MANAGER TDMNET
PRODUCTION TDMNET
ASSEMBLER TDMNET
SALESREP TDMNET
SYSTEM ANAL TDMNET
...

--- 10 row(s) selected.

REPLACE (char-expr-1, char-expr-2, char-expr-3)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-146

SQL/MX Functions and Expressions RIGHT Function
RIGHT Function
The RIGHT function returns the rightmost specified number of characters from a
character expression.

RIGHT is an SQL/MX extension.

character-expr

specifies the source string from which to return the rightmost specified number of
characters. The source string is an SQL character value expression. The operand
is the result of evaluating character-expr. See Character Value Expressions on
page 6-41.

count

specifies the number of characters to return from character-expr. The number
count must be a value of exact numeric data type with a scale of zero.

Examples of RIGHT

 Return 'Smith':

RIGHT ('Robert John Smith', 5)

 Suppose that a six-character company literal has been concatenated as the first
six characters to the job descriptions in the JOB table. Use the RIGHT function to
remove the company literal from the job descriptions:

UPDATE persnl.job
SET jobdesc = RIGHT (jobdesc, 12);

RIGHT (character-expr, count)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-147

SQL/MX Functions and Expressions ROWS SINCE Function
ROWS SINCE Function
The ROWS SINCE function is a sequence function that returns the number of rows
counted since the specified condition was last true in the intermediate result table
ordered by a SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY
Clause on page 7-19.

ROWS SINCE is an SQL/MX extension.

INCLUSIVE

specifies the current row is to be considered. If you specify INCLUSIVE, the
condition is evaluated in the current row. Otherwise, the condition is evaluated
beginning with the previous row. If you specify INCLUSIVE and the condition is
true in the current row, ROWS SINCE returns 0.

condition

specifies a condition to be considered for each row in the result table. Each column
in condition must be a column that exists in the result table. If the condition has
never been true for the result table, ROWS SINCE returns null.

max-rows

is an SQL numeric value expression of signed data type SMALLINT or INTEGER
that specifies the maximum number of rows from the current row to consider. If the
condition has never been true for max-rows from the current row, or if max-rows
is negative or null, ROWS SINCE returns null.

Considerations for ROWS SINCE

Counting the Rows

If you specify INCLUSIVE, the condition in each row of the result table is evaluated
starting with the current row as row 0 (zero) (up to the maximum number of rows or the
size of the result table). Otherwise, the condition is evaluated starting with the previous
row as row 1.

If a row is reached where the condition is true, ROWS SINCE returns the number of
rows counted so far. Otherwise, if the condition is never true within the result table
being considered, ROWS SINCE returns null. NonStop SQL/MX then goes to the next
row as the new current row.

ROWS SINCE [INCLUSIVE] (condition [,max-rows])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-148

SQL/MX Functions and Expressions Examples of ROWS SINCE
Examples of ROWS SINCE

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,I2 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1, I2, and TS with data that is sequenced by column
TS:

 Return the number of rows since the condition I1 IS NULL became true:

SELECT ROWS SINCE (I1 IS NULL) AS ROWS_SINCE_NULL
FROM mining.seqfcn
SEQUENCE BY TS;

ROWS_SINCE_NULL

 ?
 ?
 1
 2
 1

--- 5 row(s) selected.

 Return the number of rows since the condition I1 < I2 became true:

SELECT ROWS SINCE (I1<I2), ROWS SINCE INCLUSIVE (I1<I2)
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR) (EXPR)
--------------- ---------------
 ? 0
 1 1
 2 0
 1 1
 2 0

--- 5 row(s) selected.

I1 I2 TS

6215 7516 TIMESTAMP '1950-03-05 08:32:09'

null 497 TIMESTAMP '1951-02-15 14:35:49'

19058 26165 TIMESTAMP '1955-05-18 08:40:10'

null 9681 TIMESTAMP '1960-09-19 14:40:39'

11966 12356 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-149

SQL/MX Functions and Expressions RPAD Function
RPAD Function
The RPAD function replaces the rightmost specified number of characters in a
character expression with a padding character or string. With the
ANSI_STRING_FUNCTIONALITY CQD set to ON, the function pads the right side of a
character expression with the specified string.

character-expr

is an SQL character value expression. The operand is the result of evaluating
character-expr. See Character Value Expressions on page 6-41.

count

specifies the number of characters. The count must be greater than or equal to
zero of exact numeric data type and with a scale of zero. For considerations of
count based on CQD ANSI_STRING_FUNCTIONALITY, see Examples of RPAD
on page 8-150.

pad-character

specifies the padding character or a string. If no pad-character is specified,
spaces is the padding character. For KANJI or KSC5601, the code value of
pad-character is hexadecimal 2020.

Examples of RPAD

The behavior of the RPAD function when the ANSI_STRING_FUNCTIONALITY CQD
is set to ON and the corresponding examples are described below.

The count specifies the number of characters to be returned. It is the length of the
result string.

If count is smaller than the length of the character-expr, the character-expr is
truncated. If count is equal to the length of the character-expr, the value of the
character-expr is retained. If count is greater than the length of the
character-expr, the character-expr is right-padded with the pad-character.

 The following RPAD function truncates the string 'kite' because the specified
count is less than the string size and returns 'ki':

RPAD('kite', 2)

 The following RPAD function returns the original string 'go fly a kite' because
count is equal to length of the string:

RPAD('go fly a kite', 13, 'z')

RPAD (character-expr,count [,pad-character])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-150

SQL/MX Functions and Expressions Examples of RPAD
 The following RPAD function returns a string of seven characters 'kite '. The
string 'kite' is right-padded with three spaces.

RPAD('kite', 7)

 The following RPAD function returns a string of eight characters 'kite0000'. The
string 'kite' is right-padded with four pad-characters '0'.

RPAD('kite', 8, '0')

 The following RPAD function returns a string of 14 characters 'go fly a kitez'.
The string 'go fly a kite' is right-padded with one pad-character 'z'.

RPAD('go fly a kite', 14, 'z')

 The following RPAD function returns a string of 17 characters
'kitegoflygoflygof'. The string 'kite' is right-padded with string 'gofly' such
that the result string has 17 characters.

RPAD('kite', 17, 'gofly')

The default behavior of the RPAD function and the corresponding examples are
described below.

The count specifies the number of characters to be replaced. The count must be
less than or equal to the length of the character-expr. If count is smaller than or
equal to the length of the character-expr, the rightmost count characters of the
character-expr are replaced with the padding characters or string. If count is
greater than the length of the character-expr, an error is returned.

 The following RPAD function replaces two rightmost characters in the string 'kite'
with spaces and returns 'ki ':

RPAD('kite', 2)

 The following RPAD function replaces two rightmost characters 'Jo' with the string
'John,' twice and returns 'go fly a kite John,John,':

RPAD('go fly a kite Jo', 2, 'John,')

 The following RPAD function replaces 13 rightmost characters in the string 'go
fly a kite' with character 'z' and returns 'zzzzzzzzzzzzz':

RPAD('go fly a kite', 13, 'z')

 The following RPAD functions return an error because the count is greater than
the string length:

RPAD('kite', 7)

RPAD('kite', 8, '0')

RPAD('go fly a kite', 14, 'z')

RPAD('kite', 17, 'gofly')
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-151

SQL/MX Functions and Expressions RTRIM Function
RTRIM Function
The RTRIM function removes the specified trim characters from the right side of the
character string. If the trim characters are not specified, by default, the function
removes spaces.

srcstr

is a SQL character value expression from which spaces or trim_chrs are
removed from the right side. See Character Value Expressions on page 6-41.

trim_chrs

is the character or characters to be removed from the srcstr . The default is the
space character.

Considerations for RTRIM

Result of RTRIM

The result is always of type NON ANSI VARCHAR, with maximum length equal to the
fixed length or maximum variable length of srcstr.

Examples of RTRIM

 Return ' Robert':

RTRIM (' Robert ')

See TRIM Function on page 8-192 and LTRIM Function on page 8-102.

 In this example, characters '1' and '0' are removed from the right side of the colA
value:

create table tab1(colA varchar(20), colB int);
insert into tab1 values('ten0101010101', 10);
insert into tab1 values('nine11001101', 9);
select rtrim(colA,'10'), colB from tab1;
 (EXPR) COLB
-------------------- -----------
ten 10
nine 9

--- 2 row(s) selected

RTRIM(srcstr[, trim_chrs])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-152

SQL/MX Functions and Expressions RUNNINGAVG Function
RUNNINGAVG Function
The RUNNINGAVG function is a sequence function that returns the average of non-
null values of a column up to and including the current row of an intermediate result
table ordered by a SEQUENCE BY clause in a SELECT statement. See SEQUENCE
BY Clause on page 7-19.

RUNNINGAVG is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGAVG returns the average of non-null values of column-expression up
to and including the current row.

Considerations for RUNNINGAVG

Equivalent Result

The result of RUNNINGAVG is equivalent to:

RUNNINGSUM(column-expr) / RUNNINGCOUNT(*)

Examples of RUNNINGAVG

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

RUNNINGAVG (column-expression)

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-153

SQL/MX Functions and Expressions Examples of RUNNINGAVG
 Return the average of non-null values of I1 up to and including the current row:

SELECT RUNNINGAVG (I1) AS AVG_I1
FROM mining.seqfcn
SEQUENCE BY TS;

AVG_I1

 6215
 17194
 11463
 9746
 10190

--- 5 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-154

SQL/MX Functions and Expressions RUNNINGCOUNT Function
RUNNINGCOUNT Function
The RUNNINGCOUNT function is a sequence function that returns the number of rows
up to and including the current row of an intermediate result table ordered by a
SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY Clause on
page 7-19.

RUNNINGCOUNT is an SQL/MX extension.

*

as an argument causes RUNNINGCOUNT(*) to return the number of rows in the
intermediate result table up to and including the current row.

column-expression

specifies a derived column determined by the evaluation of the column expression.
If column-expression is the argument, RUNNINGCOUNT returns the number
of rows containing non-null values of column-expression in the intermediate
result table up to and including the current row.

Considerations for RUNNINGCOUNT

No DISTINCT Clause

The RUNNINGCOUNT sequence function is defined differently from the COUNT
aggregate function. If you specify DISTINCT for the COUNT aggregate function,
duplicate values are eliminated before COUNT is applied. Note that you cannot specify
DISTINCT for the RUNNINGCOUNT sequence function; duplicate values are counted.

Examples of RUNNINGCOUNT

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

RUNNINGCOUNT {(*) | (column-expression)}
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-155

SQL/MX Functions and Expressions Examples of RUNNINGCOUNT
The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the number of rows up to and including the current row:

SELECT RUNNINGCOUNT (*) AS COUNT_ROWS
FROM mining.seqfcn
SEQUENCE BY TS;

COUNT_ROWS

 1
 2
 3
 4
 5

--- 5 row(s) selected.

 Return the number of rows that include non-null values of I1 up to and including
the current row:

SELECT RUNNINGCOUNT (I1) AS COUNT_I1
FROM mining.seqfcn
SEQUENCE BY TS;

COUNT_I1

 1
 2
 2
 3
 4

--- 5 row(s) selected.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-156

SQL/MX Functions and Expressions RUNNINGMAX Function
RUNNINGMAX Function
The RUNNINGMAX function is a sequence function that returns the maximum of
values of a column up to and including the current row of an intermediate result table
ordered by a SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY
Clause on page 7-19.

RUNNINGMAX is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGMAX returns the maximum of values of column-expression up to
and including the current row.

Examples of RUNNINGMAX

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

RUNNINGMAX (column-expression)

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

19058 TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-157

SQL/MX Functions and Expressions Examples of RUNNINGMAX
 Return the maximum of values of I1 up to and including the current row:

SELECT RUNNINGMAX (I1) AS MAX_I1
FROM mining.seqfcn
SEQUENCE BY TS;

MAX_I1

 6215
 28174
 28174
 28174
 28174

--- 5 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-158

SQL/MX Functions and Expressions RUNNINGMIN Function
RUNNINGMIN Function
The RUNNINGMIN function is a sequence function that returns the minimum of values
of a column up to and including the current row of an intermediate result table ordered
by a SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY Clause on
page 7-19.

RUNNINGMIN is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGMIN returns the minimum of values of column-expression up to and
including the current row.

Examples of RUNNINGMIN

Suppose that SEQFCN has been created as:

CREATE $db.table mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

RUNNINGMIN (column-expression)

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

19058 TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-159

SQL/MX Functions and Expressions Examples of RUNNINGMIN
 Return the minimum of values of I1 up to and including the current row:

SELECT RUNNINGMIN (I1) AS MIN_I1
FROM mining.seqfcn
SEQUENCE BY TS;

MIN_I1

 6215
 6215
 6215
 4597
 4597

--- 5 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-160

SQL/MX Functions and Expressions RUNNINGSTDDEV Function
RUNNINGSTDDEV Function
The RUNNINGSTDDEV function is a sequence function that returns the standard
deviation of non-null values of a column up to and including the current row of an
intermediate result table ordered by a SEQUENCE BY clause in a SELECT statement.
See SEQUENCE BY Clause on page 7-19.

RUNNINGSTDDEV is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGSTDDEV returns the standard deviation of non-null values of column-
expression up to and including the current row.

Considerations for RUNNINGSTDDEV

Equivalent Result

The result of RUNNINGSTDDEV is equivalent to:

SQRT(RUNNINGVARIANCE(column-expression))

Examples of RUNNINGSTDDEV

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

RUNNINGSTDDEV (column-expression)

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-161

SQL/MX Functions and Expressions Examples of RUNNINGSTDDEV
 Return the standard deviation of non-null values of I1 up to and including the
current row:

SELECT RUNNINGSTDDEV (I1) AS STDDEV_I1
FROM mining.seqfcn
SEQUENCE BY TS;

STDDEV_I1

 0.00000000000000000E+000
 1.55273578080753976E+004
 1.48020166531456112E+004
 1.25639147428923072E+004
 1.09258501408357232E+004

--- 5 row(s) selected.

Note that you can use the CAST function for display purposes. For example:

SELECT CAST(RUNNINGSTDDEV (I1) AS DEC (18,3))
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR)

 .000
 15527.357
 14802.016
 12563.914
 10925.850

--- 5 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-162

SQL/MX Functions and Expressions RUNNINGSUM Function
RUNNINGSUM Function
The RUNNINGSUM function is a sequence function that returns the sum of non-null
values of a column up to and including the current row of an intermediate result table
ordered by a SEQUENCE BY clause in a SELECT statement. See SEQUENCE BY
Clause on page 7-19.

RUNNINGSUM is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGSUM returns the sum of non-null values of column-expression up to
and including the current row.

Examples of RUNNINGSUM

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

RUNNINGSUM (column-expression)

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-163

SQL/MX Functions and Expressions Examples of RUNNINGSUM
 Return the sum of non-null values of I1 up to and including the current row:

SELECT RUNNINGSUM (I1) AS SUM_I1
FROM mining.seqfcn
SEQUENCE BY TS;

SUM_I1

 6215
 34389
 34389
 38986
 50952

--- 5 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-164

SQL/MX Functions and Expressions RUNNINGVARIANCE Function
RUNNINGVARIANCE Function
The RUNNINGVARIANCE function is a sequence function that returns the variance of
non-null values of a column up to and including the current row of an intermediate
result table ordered by a SEQUENCE BY clause in a SELECT statement. See
SEQUENCE BY Clause on page 7-19.

RUNNINGVARIANCE is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.
RUNNINGVARIANCE returns the variance of non-null values of column-
expression up to and including the current row.

Examples of RUNNINGVARIANCE

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
 (I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

RUNNINGVARIANCE (column-expression)

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

null TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

11966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-165

SQL/MX Functions and Expressions Examples of RUNNINGVARIANCE
 Return the variance of non-null values of I1 up to and including the current row:

SELECT RUNNINGVARIANCE (I1) AS VARIANCE_I1
FROM mining.seqfcn
SEQUENCE BY TS;

VARIANCE_I1

 0.00000000000000000E+000
 2.41098840499999960E+008
 2.19099696999999968E+008
 1.57851953666666640E+008
 1.19374201299999980E+008

--- 5 row(s) selected.

Note that you can use the CAST function for display purposes. For example:

SELECT CAST(RUNNINGVARIANCE (I1) AS DEC (18,3))
FROM mining.seqfcn
SEQUENCE BY TS;

(EXPR)

 .000
 241098840.500
 219099697.000
 157851953.666
 119374201.299

--- 5 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-166

SQL/MX Functions and Expressions SECOND Function
SECOND Function
The SECOND function converts a TIME or TIMESTAMP expression into an INTEGER
value in the range 0 through 59 that represents the corresponding second of the hour.

SECOND is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type TIME or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of SECOND

 Return an integer that represents the second of the hour from the
SHIP_TIMESTAMP column:

SELECT start_date, ship_timestamp, SECOND(ship_timestamp)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- -----------
1996-04-10 1996-04-21 08:15:00.000000 .000000

SECOND (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-167

SQL/MX Functions and Expressions SESSION_USER Function
SESSION_USER Function
The SESSION_USER function returns the current Guardian user ID as variable-length
character data in the form group.name.

The SESSION_USER function is equivalent to the CURRENT_USER Function on
page 8-43 and the USER Function on page 8-203

Examples of SESSION_USER

 Use SESSION_USER to display the current session user:

SELECT SESSION_USER FROM logfile;

(EXPR)

DCS.TSHAW
...

--- 5 row(s) selected.

SIGN Function
The SIGN function returns an indicator of the sign of a numeric value expression. If the
value is less than zero, the function returns -1 as the indicator. If the value is zero, the
function returns 0. If the value is greater than zero, the function returns 1.

SIGN is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the SIGN function. See Numeric Value Expressions on page 6-52.

Examples of SIGN

 Return the value –1:

SIGN (-20 + 12)

 Return the value 0:

SIGN (-20 + 20)

 Return the value 1:

SIGN (-20 + 22)

SESSION_USER

SIGN (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-168

SQL/MX Functions and Expressions SIN Function
SIN Function
The SIN function returns the sine of a numeric value expression, where the expression
is an angle expressed in radians.

SIN is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the SIN function. See Numeric Value Expressions on page 6-52.

Examples of SIN

 This function returns the value 3.42052233254419920E-001, or approximately
0.3420, the sine of 0.3491 (which is 20 degrees):

SIN (0.3491)

SINH Function
The SINH function returns the hyperbolic sine of a numeric value expression, where
the expression is an angle expressed in radians.

SINH is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the SINH function. See Numeric Value Expressions on page 6-52.

Examples of SINH

 This function returns the value 1.60191908030082600E+000, or approximately
1.6019, the hyperbolic sine of 1.25:

SINH (1.25)

SIN (numeric-expression)

SINH (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-169

SQL/MX Functions and Expressions SPACE Function
SPACE Function
The SPACE function returns a character string consisting of a specified number of
spaces each of which is 0x20 (for the ISO88591 character set), 0x0020 (for the UCS2
character set), or 0x2020 (for the KANJI and KSC5601 character sets).

SPACE is an SQL/MX extension.

length

specifies the number of characters to be returned. The number count must be a
value greater than or equal to zero of exact numeric data type and with a scale of
zero. length cannot exceed 32768 for the ISO8859-1 character set or 16384 for
the UCS2, KANJI, and KSC5601 character sets.

char-set-name

can be ISO88591, KANJI, KSC5601, or UCS2. The default is ISO88591.

The returned character string will be of data type VARCHAR associated with the
character set specified by char-set-name.

Examples of SPACE

 Return 3 spaces:

SPACE (3)

SQRT Function
The SQRT function returns the square root of a numeric value expression.

SQRT is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the SQRT function. The value of the argument must not be a negative number.
See Numeric Value Expressions on page 6-52.

Examples of SQRT

 This function returns the value 5.19615242270663312E+000, or approximately
5.196:

SQRT (27)

SPACE (length [,char-set-name])

SQRT (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-170

SQL/MX Functions and Expressions STDDEV Function
STDDEV Function
Considerations for STDDEV
Examples of STDDEV

STDDEV is an aggregate function that returns the standard deviation of a set of
numbers.

STDDEV is an SQL/MX extension.

ALL | DISTINCT

specifies whether duplicate values are included in the computation of the STDDEV
of the expression. The default option is ALL, which causes duplicate values to
be included. If you specify DISTINCT, duplicate values are eliminated before the
STDDEV function is applied. If DISTINCT is specified, you cannot specify weight.

expression

specifies a numeric value expression that determines the values for which to
compute the standard deviation. The expression cannot contain an aggregate
function or a subquery. The DISTINCT clause specifies that the STDDEV function
operates on distinct values from the one-column table derived from the evaluation
of expression.

weight

specifies a numeric value expression that determines the weights of the values for
which to compute the standard deviation. weight cannot contain an aggregate
function or a subquery. weight is defined on the same table as expression. The
one-column table derived from the evaluation of expression and the one-column
table derived from the evaluation of weight must have the same cardinality.

Considerations for STDDEV

Definition of STDDEV

The standard deviation of a value expression is defined to be the square root of the
variance of the expression. See VARIANCE Function on page 8-207.

Because the definition of variance has N-1 in the denominator of the expression (if
weight is not specified), NonStop SQL/MX returns a system-defined default setting of
zero (and no error) if the number of rows in the table, or a group of the table, is equal
to 1.

STDDEV ([ALL | DISTINCT] expression [,weight])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-171

SQL/MX Functions and Expressions Examples of STDDEV
Data Type of the Result

The data type of the result is always DOUBLE PRECISION.

Operands of the Expression

The expression includes columns from the rows of the SELECT result table but cannot
include an aggregate function. These are valid:

STDDEV (SALARY)
STDDEV (SALARY * 1.1)
STDDEV (PARTCOST * QTY_ORDERED)

Nulls

STDDEV is evaluated after eliminating all nulls from the set. If the result table is empty,
STDDEV returns NULL.

FLOAT(54) and DOUBLE PRECISION Data

Avoid using large FLOAT(54) or DOUBLE PRECISION values as arguments to
STDDEV. If SUM(x * x) exceeds the value of 1.15792089237316192e77 during the
computation of STDDEV(x), a numeric overflow occurs.

Examples of STDDEV

 Compute the standard deviation of the salary of the current employees:

SELECT STDDEV(salary) AS StdDev_Salary
FROM persnl.employee;

STDDEV_SALARY

 3.57174062500000000E+004

--- 1 row(s) selected.

 Compute the standard deviation of the cost of parts in the current inventory:

SELECT STDDEV (price * qty_available)
FROM sales.parts;

(EXPR)

 7.13899499999999808E+006

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-172

SQL/MX Functions and Expressions Examples of STDDEV
 Suppose that your database includes a WEATHER table, which is created by using
SQLCI in this way:

CREATE TABLE $db.mining.weather
 (city VARCHAR (20) NO DEFAULT NOT NULL
 ,state CHAR (2) NO DEFAULT NOT NULL
 ,date_weather DATE NO DEFAULT NOT NULL
 ,temperature NUMERIC (3) SIGNED
 ,weight NUMERIC (2) UNSIGNED
 ,PRIMARY KEY (city, state, date_weather))
 CATALOG $db.mining
 ORGANIZATION KEY SEQUENCED;

After the table is created, you can insert the mapping into the OBJECTS table by
using MXCI in this way:

CREATE SQLMP ALIAS db.mining.weather $db.mining.weather;

Suppose that the WEATHER table contains these rows:

 Find the standard deviation of the TEMPERATURE column by STATE:

SELECT state, STDDEV (temperature)
 FROM weather GROUP BY state;

STATE (EXPR)
---------- --------------------
TX 1.88591308593750024E+001
CA 0.00000000000000000E+000

--- 2 row(s) selected.

CITY STATE DATE_WEATHER TEMPERATURE WEIGHT

Austin TX 1997-01-01 50 1

Austin TX 1997-01-02 40 1

Austin TX 1997-01-03 60 2

Austin TX 1997-01-04 84 2

Cupertino CA 1997-01-01 65 1

Cupertino CA 1997-01-02 65 2

Cupertino CA 1997-01-03 65 2

Cupertino CA 1997-01-04 65 1
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-173

SQL/MX Functions and Expressions SUBSTRING Function
SUBSTRING Function
The SUBSTRING function extracts a substring out of a given character expression. It
returns a character string of data type VARCHAR, with maximum length equal to the
fixed length or maximum variable length of the character expression.

character-expr

specifies the source string from which to extract the substring. The source string is
an SQL character value expression. The operand is the result of evaluating
character-expr. See Character Value Expressions on page 6-41.

start-position

specifies the starting position start-position within character-expr at
which to start extracting the substring. start-position must be a value with an
exact numeric data type and a scale of zero.

length

specifies the number of characters to extract from character-expr.length is
the length of the extracted substring and must be a value greater than or equal to
zero of exact numeric data type and with a scale of zero.

If you are using the FROM keyword, the length field is optional, therefore, if you
do not specify the substring length, all characters starting at start-position
and continuing until the end of the character expression are returned. If you are not
using the FROM and FOR keywords, the length field is required.

Considerations for SUBSTRING

Requirements for the Expression, Length, and Start Position

 The data types of the substring length and the start position must be numeric with
a scale of zero. Otherwise, an error is returned.

 If the sum of the start position and the substring length is greater than the length of
the character expression, the substring from the start position to the end of the
string is returned.

 If the start position is greater than the length of the character expression, an empty
string ('') is returned.

SUBSTRING (character-expr FROM start-position [FOR length])

or:

SUBSTRING (character-expr,start-position,length)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-174

SQL/MX Functions and Expressions Examples of SUBSTRING
 The resulting substring is always of type VARCHAR. If the source character string
is an upshifted CHAR or VARCHAR string, the result is an upshifted VARCHAR
type.

Examples of SUBSTRING

 Extract 'Ro':

SUBSTRING('Robert John Smith' FROM 0 FOR 3)

 Extract 'John':

SUBSTRING ('Robert John Smith' FROM 8 FOR 4)

 Extract 'John Smith':

SUBSTRING ('Robert John Smith' FROM 8)

 Extract 'Robert John Smith':

SUBSTRING ('Robert John Smith' FROM 1 FOR 17)

 Extract 'John Smith':

SUBSTRING ('Robert John Smith' FROM 8 FOR 15)

 Extract 'Ro':

SUBSTRING ('Robert John Smith' FROM -2 FOR 5)

 Extract an empty string '':

SUBSTRING ('Robert John Smith' FROM 8 FOR 0)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-175

SQL/MX Functions and Expressions SUM Function
SUM Function
SUM is an aggregate function that returns the sum of a set of numbers.

ALL | DISTINCT

specifies whether duplicate values are included in the computation of the SUM of
the expression. The default option is ALL, which causes duplicate values to be
included. If you specify DISTINCT, duplicate values are eliminated before the SUM
function is applied.

expression

specifies a numeric or interval value expression that determines the values to sum.
The expression cannot contain an aggregate function or a subquery. The
DISTINCT clause specifies that the SUM function operates on distinct values from
the one-column table derived from the evaluation of expression. All nulls are
eliminated before the function is applied to the set of values. If the result table is
empty, SUM returns NULL.

See Expressions on page 6-41.

Considerations for SUM

Data Type and Scale of the Result

The data type of the result depends on the data type of the argument. If the argument
is an exact numeric type, the result is LARGEINT. If the argument is an approximate
numeric type, the result is DOUBLE PRECISION. If the argument is INTERVAL data
type, the result is INTERVAL with the same precision as the argument. The scale of
the result is the same as the scale of the argument. If the argument has no scale, the
result is truncated.

Operands of the Expression

The expression includes columns from the rows of the SELECT result table—but
cannot include an aggregate function. The valid expressions are:

SUM (SALARY)
SUM (SALARY * 1.1)
SUM (PARTCOST * QTY_ORDERED)

SUM ([ALL | DISTINCT] expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-176

SQL/MX Functions and Expressions Examples of SUM
Examples of SUM

 Compute the total value of parts in the current inventory:

SELECT SUM (price * qty_available)
FROM sales.parts;

(EXPR)

 117683505.96

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-177

SQL/MX Functions and Expressions TAN Function
TAN Function
The TAN function returns the tangent of a numeric value expression, where the
expression is an angle expressed in radians.

TAN is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the TAN function. See Numeric Value Expressions on page 6-52.

Examples of TAN

 This function returns the value 3.64008908293626896E-001, or approximately
0.3640, the tangent of 0.3491 (which is 20 degrees):

TAN (0.3491)

TANH Function
The TANH function returns the hyperbolic tangent of a numeric value expression,
where the expression is an angle expressed in radians.

TANH is an SQL/MX extension.

numeric-expression

is an SQL numeric value expression that specifies the value for the argument of
the TANH function. See Numeric Value Expressions on page 6-52.

Examples of TANH

 This function returns the value 8.48283639957513088E-001 or approximately
0.8483, the hyperbolic tangent of 1.25:

TANH (1.25)

TAN (numeric-expression)

TANH (numeric-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-178

SQL/MX Functions and Expressions THIS Function
THIS Function
The THIS function is a sequence function that is used in the ROWS SINCE function to
distinguish between the value of the column in the current row and the value of the
column in previous rows (in an intermediate result table ordered by a SEQUENCE BY
clause in a SELECT statement). See ROWS SINCE Function on page 8-148.

THIS is an SQL/MX extension.

column-expression

specifies a derived column determined by the evaluation of the column expression.
If the value of the expression is null, THIS returns null.

Considerations for THIS

Counting the Rows

You can use the THIS function only within the ROWS SINCE function. For each row,
the ROWS SINCE condition is evaluated in two steps:

1. The expression for THIS is evaluated for the current row. This value becomes a
constant.

2. The condition is evaluated for the result table, using a combination of the THIS
constant and the data for each row in the result table, starting with the previous row
as row 1 (up to the maximum number of rows or the size of the result table).

If a row is reached where the condition is true, ROWS SINCE returns the number of
rows counted so far. Otherwise, if the condition is never true within the result table
being considered, ROWS SINCE returns null. NonStop SQL/MX then goes to the next
row as the new current row and the THIS constant is reevaluated.

Example of THIS

Suppose that SEQFCN has been created as:

CREATE TABLE $db.mining.seqfcn
(I1 INTEGER,TS TIMESTAMP);

Within MXCI, the ANSI alias name has been mapped as:

CREATE SQLMP ALIAS db.mining.seqfcn $db.mining.seqfcn;

THIS (column-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-179

SQL/MX Functions and Expressions Example of THIS
The table SEQFCN has columns I1 and TS with data that is sequenced by column TS:

 Return the number of rows since the condition I1 less than a previous row became
true:

SELECT ROWS SINCE (THIS(I1) < I1) AS ROWS_SINCE_THIS
FROM mining.seqfcn
SEQUENCE BY TS;

ROWS_SINCE_THIS

 ?
 ?
 1
 1
 ?

--- 5 row(s) selected.

I1 TS

6215 TIMESTAMP '1950-03-05 08:32:09'

28174 TIMESTAMP '1951-02-15 14:35:49'

19058 TIMESTAMP '1955-05-18 08:40:10'

4597 TIMESTAMP '1960-09-19 14:40:39'

31966 TIMESTAMP '1964-05-01 16:41:02'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-180

SQL/MX Functions and Expressions TO_CHAR(<NUMERIC>) Function
TO_CHAR(<NUMERIC>) Function
The TO_CHAR(<numeric>)function converts numeric data to formatted string. The
result string is VARCHAR type.

The following is the function syntax:

numeric-expression

is an SQL numeric value expression. Numeric data type can be NUMERIC(P,S),
SMALLINT, INT[EGER], LARGEINT, DEC[IMAL], REAL, FLOAT, or DOUBLE
PRECISION. NULL or dynamic parameter cannot be used as numeric-
expressions.

format-value

is a constant string that defines the output format. NULL, column name, expression, or
dynamic parameter cannot be defined as format-value. The following table lists all
the numeric elements that can be used to construct the numeric format-value.

TO_CHAR(numeric-expression, format-value)

Element Description

numeric-
expressi
on

format-
value Output

9 Specifies the number of digits in
the output format.

1234 9999 ‘ 1234’

0 Returns the value with leading
zeroes.

1 0999 ‘ 0001’

.(period)
D

Specifies the position of the
decimal point in the output
format.

Restriction: A decimal point can
occur only once within a format-
value.

12.34 99.99

99D99

‘ 12.34’

‘ 12.34’

,(comma)

G

Returns ‘,’ in the specified
position.

Restriction: You cannot specify
this element at the beginning or
after the decimal point.

1234 9,999

9G99

‘ 1,234’

‘ 1,234’

$ Returns a leading dollar sign.

Restriction: If you specify the
dollar sign at any position in the
format-value, the output
displays a leading $ sign.

1234 $9999 ‘ $1234’
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-181

SQL/MX Functions and Expressions TO_CHAR(<NUMERIC>) Function
C Returns ISO currency symbol;
USD.

Restriction: You can specify the
ISO currency symbol only at the
beginning or end of the
format-value.

12 C999 ‘ USD12’

L Returns local currency symbol

Restriction: You can specify the
local currency symbol only at
the beginning or end of the
format-value. The $
(dollar) is the only supported
local currency symbol.

1234 L9999 ‘ $1234’

MI Returns leading or trailing
minus sign(-).

Restriction: You can specify the
MI only at the beginning or end
of the format-value.

-1234 9999MI ‘1234-’

PR Returns negative value in <>
brackets and positive value with
leading and trailing blank
spaces

Restriction: You can specify the
PR only at the end of the
format-value.

-1234 9999PR ‘<1234>”

RN

rn

Converts numeric-
expression to Roman
numerals in uppercase or
lowercase.

Restriction: You cannot include
other elements with RN or rn.

485 RN

rn

‘CDLXXXV’

‘cdlxxxv’

S Returns a leading or trailing
plus or minus sign.

Restriction: You can specify S
element only at the beginning or
end of the format-value.

-1245

1266

S9999

S9999

‘-1245’

‘+1266’

Element Description

numeric-
expressi
on

format-
value Output
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-182

SQL/MX Functions and Expressions Considerations
Considerations

 The length of the numeric format-value must not exceed 128 characters.

 The format-value causes the numeric-expression to be truncated (not
rounded) to the specified number of significant digits, for example:

 TO_CHAR(14.426, ‘99.99’) produces the truncated output value, 14.42.

 The elements D, FM, G, L, MI, PR, S, V, and U are case-insensitive.

 If the value has more significant digits to the left of the decimal point than in the
specified format-value , the output is hash (#) sign, for example:

TO_CHAR(1254, ‘999’) produces an output ####.

 All negative values have a leading negative sign (-) except when format-value
contains MI, S, or PR elements, for example:

 TO_CHAR(-1234, ‘9999’) produces an output of ‘-1234’. Notice the leading
negative sign and the output does not contain MI, S, or PR

 TO_CHAR(-1234, ‘9999S’) produces an output of ‘1234-’. Notice the negative
sign at the end of the output for element S

 TO_CHAR(-1234, ‘9999MI’) produces an output of ‘1234-’. Notice the negative
sign at the end of the output for element MI

 The elements MI, S, C, and L can appear either at the beginning or end of the
format-value, for example:

 TO_CHAR(12, ‘C99’) has a valid format-value

 TO_CHAR(12,‘9C9’) has an invalid format-value as the element C is
neither at the beginning nor at the end of the format-value

U Returns Euro or other dual
currency symbol.

Restriction: You can specify this
symbol only at the end of the
format-value. The $
(dollar) is the only supported
currency symbol.

12 9999U ‘ $12’

V Multiplies the specified
numeric-expression by
10^n, where n specifies the
number of 9s after V.

12 99V999 ‘ 12000’

FM Controls blank padding. 12 FM99 ‘12’

Element Description

numeric-
expressi
on

format-
value Output
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-183

SQL/MX Functions and Expressions Considerations
 All positive values have a leading space, for example:

 TO_CHAR(12, ‘99’) has a leading space in the output, ‘ 12’.

 V multiplies the input values by 10^n, where n is the number of 9s following V. For
example, if the input is 12 and the format-value is 99V999, the output is
‘ 12000’.

 The PR element must appear at the end of the format-value , for example:

 TO_CHAR(-12, ‘99PR’) has a valid format-value

 TO_CHAR(-12, ‘PR99’) has an invalid format-value as the element PR
does not appear at the end of the format-value

 The elements S, MI, or PR must precede the elements C, L, or U at the beginning
and must succeed at the end in the format-value , for example:

 TO_CHAR(12, ‘SC99’) or TO_CHAR(12, ‘99CS’) has a valid format-value

 TO_CHAR(12, ‘CS9’) or TO_CHAR(12, ‘99SC’) has an invalid format-value

 The RN element converts numbers from 1 through 3999 to roman numerals. All
other values will have the output of # sign, for example:

 TO_CHAR(12, ‘RN’) produces the output ‘XII’

 TO_CHAR(-12, ‘RN’) produces the output '###############'

 TO_CHAR(2585, ‘rn’) produces the output ‘mmdlxxxv’

 A FM (Fill-Mode) modifier can be applied to a format-value to control blank
padding, for example:

 TO_CHAR(32, ‘FM9999’) has the output, ‘32’ with no leading space.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-184

SQL/MX Functions and Expressions Examples of TO_CHAR(<NUMERIC>)
Examples of TO_CHAR(<NUMERIC>)

TO_CHAR(<DATETIME>) Function
The TO_CHAR(<DATETIME>)function converts datetime data to formatted string. The
result string is VARCHAR type.

The following is the function syntax:

datetime-expression

is an expression of datetime value which can be DATE or TIMESTAMP.NULL or
dynamic parameter cannot be used for datetime-expressions.

format-value

Expression Result

TO_CHAR(-12.24, '99.99MI') ‘12.24-’

TO_CHAR(250, 'RN') ‘CCL’

TO_CHAR(25, 'FM009999') ‘000025’

TO_CHAR(-25, 'FM009999PR') ‘<000025>’

TO_CHAR(156.25, 'FML9999.99') ‘$156.25’

TO_CHAR(156.25, 'S9999.99') ‘+156.25’

TO_CHAR(148.5, '999D999S') ‘148.500+’

TO_CHAR(12, '99V999') ‘ 12000’

TO_CHAR(12.4, '99V999') ‘ 12400’

TO_CHAR(12.54, '99V9') ‘ 125’

TO_CHAR(datetime-expression, format-value)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-185

SQL/MX Functions and Expressions TO_CHAR(<DATETIME>) Function
is a constant string that defines the output format. NULL, column name, expression, or
dynamic parameter cannot be specified as format-value . The following table lists
all the datetime elements that can be used to construct the datetime format-values.

Element Description
datetime-
expression

format-
value Output

-

/

,

.

;

:

“text”

Returns datetime
field separator or
punctuation in the
output format. The
text inside the
quotation marks (“ ”)
is reproduced
without any change
after removing the
quotes.

31-MAR-11
05.02.31.123457 AM

‘DD/MM/YY
YY’

‘31/03/2011’

AD

A.D.

BC

B.C.

Returns Anno
Domini or Before
Christ indicator with
or without periods.

31-MAR-11
05.02.31.123457 AM

‘YYYY AD’ ‘2011 AD’

AM

A.M.

PM

P.M.

Returns Ante
Meridian or Post
Meridian indicator
with or without
periods.

31-MAR-11
05.02.31.123457 AM

‘HH:M1 AM’ ‘05:02 AM’

CC

SCC

Returns Century 31-MAR-11
05.02.31.123457 AM

‘CC’ ‘21’

D Returns the day of
week (1-7)

Sunday = 1

31-MAR-11
05.02.31.123457 AM

‘D’ ‘5’

DAY

day

Day

Returns the name of
day in uppercase,
lower case, or
capitalized based
on the case of the
element, padded
with blanks to
display width of the
widest name of the
day.

31-MAR-11
05.02.31.123457 AM

‘DAY’

‘day’

’Day’

‘THURSDA
Y’

‘thursday’

‘Thursday’

DD Returns the day
(date) of month (1-
31)

31-MAR-11
05.02.31.123457 AM

‘DD’ ‘31’

DDD Returns the day of
year (1-366)

31-MAR-11
05.02.31.123457 AM

‘DDD’ ‘090’
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-186

SQL/MX Functions and Expressions TO_CHAR(<DATETIME>) Function
DY

dy

Dy

Returns the
abbreviated name of
the day in
uppercase,
lowercase, or
capitalized based on
case of the element.

31-MAR-11
05.02.31.123457 AM

‘DY’

‘dy’

‘Dy’

‘THU’

‘thu’

‘Thu’

FF[1..9] Returns fractional
seconds; the
numbers 1 through
9 can be used after
FF to specify the
number of digits in
fractional seconds.
The default value is
6.

31-MAR-11
05.02.31.123457 AM

‘FF’

‘FF2’

‘FF4’

‘123457’

‘12’

‘1234’

FM Fill-mode modifier is
used to remove
leading or trailing
blanks.

31-MAR-11
05.02.31.123457 AM

‘FMMONTH’ ‘MARCH’

HH

HH12

Returns the hour of
the day (1-12)

31-MAR-11
05.02.31.123457 AM

‘HH’ ‘05’

HH24 Returns the hour of
the day (0-23)

31-MAR-11
05.02.31.123457 AM

‘HH24’ ‘05’

IW Returns the week of
the year (1-52 or 1-
53) based on the
ISO standard.

31-MAR-11
05.02.31.123457 AM

‘IW’ ‘13’

IYYY

IYY

IY

I

Returns last 4, 3, 2
or 1 digits of the ISO
year.

31-MAR-11
05.02.31.123457 AM

‘IYYY’ ‘011’

YEAR

year

Year

SYEAR

Syear

SYear

Spell out year in
uppercase,
lowercase, or
capitalized based on
the case of the
element.

31-MAR-11
05.02.31.123457 AM

‘YEAR’

‘year’

‘Year’

‘TWENTY
ELEVEN

‘twenty
eleven’

‘Twenty
Eleven’

Element Description
datetime-
expression

format-
value Output
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-187

SQL/MX Functions and Expressions TO_CHAR(<DATETIME>) Function
J Returns Julian day;
the number of days
since January 1,
4712 BC.

31-MAR-11
05.02.31.123457 AM

‘J’ ‘2455652’

MI Returns minutes (0-
59)

31-MAR-11
05.02.31.123457 AM

‘MI’ ‘02’

MM Returns month (01-
12; January = 01)

31-MAR-11
05.02.31.123457 AM

‘MM’ ‘03’

MON

mon

Mon

Returns the
abbreviated name of
month in uppercase,
lowercase, or
capitalized based on
the case of the
element.

31-MAR-11
05.02.31.123457 AM

‘MON’

‘mon’

‘Mon’

‘MAR’

‘mar’

‘Mar’

MONTH

month

Month

Returns the name of
month month in
uppercase,
lowercase, or
capitalized based on
the case of the
element, padded
with blanks to
display width of the
widest name of a
month.

31-MAR-11
05.02.31.123457 AM

‘MONTH’

‘month’

‘Month’

‘MARCH’

‘march’

‘March

RM Returns the month
in roman numerals (I
to XII).

31-MAR-11
05.02.31.123457 AM

‘RM’ ‘III’

RR

RRRR

Returns the last two
or four digits of the
year.

31-MAR-11
05.02.31.123457 AM

‘RR’

‘RRRR’

‘11’

‘2011’

SS Returns seconds (0-
59)

31-MAR-11
05.02.31.123457 AM

‘SS’ ‘31’

SSSSS Returns seconds
past midnight (0-
86399).

31-MAR-11
05.02.31.123457 AM

‘SSSSS’ ‘18151’

X Returns the local
radix character. The
‘.’ (dot) is the only
supported local
radix character.

31-MAR-11
05.02.31.123457 AM

‘HH:MM:SS
XFF’

‘05:03:31.12
3457’

Element Description
datetime-
expression

format-
value Output
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-188

SQL/MX Functions and Expressions Considerations
Considerations

 The length of the datetime format-value must not exceed 74 characters.

 For elements whose output can be produced in uppercase, lowercase, or
capitalized (the first character in uppercase and rest in lowercase), the output is
based on the case of the element, for example:

 TO_CHAR(timestamp‘2011-03-31 05.02.31.123457’, ‘DAY’) produces an
output ‘THURSDAY ’.

 TO_CHAR(timestamp‘2011-03-31 05.02.31.123457’, ‘day’) produces an output
‘thursday ’.

 TO_CHAR(timestamp‘2011-03-31 05.02.31.123457, ‘Day’) produces an output
‘Thursday ’.

 The space character is used to fill the output value of an element to a constant
width equal to the largest element for the relevant format-value , for example:
WEDNESDAY has the maximum number of characters. Therefore, all the DAY

Y,YYY Returns the year
with a comma at the
specified position.

31-MAR-11
05.02.31.123457 AM

‘Y,YYY’ ‘2,011’

YYYY

SYYYY

Returns four digits
year; S prefixes BC
dates with a minus
sign.

31-MAR-11
05.02.31.123457 AM

‘YYYY’ ‘2011’

YYY

YY

Y

Returns the last
three digits; two
digits; or last digit of
the year.

31-MAR-11
05.02.31.123457 AM

‘YY’ ‘11’

WW Returns the week of
the year (1-53)

31-MAR-11
05.02.31.123457 AM

‘WW’ ‘13’

W Returns the week of
the month (1-5)

31-MAR-11
05.02.31.123457 AM

‘W’ ‘5’

th Adds the suffix
st/nd/th to the
numeric output
format.

Note: The ‘th’ suffix
can be added to any
element; the suffix
st/nd/th will be
ignored for non-
numeric output
value.

31-MAR-11
05.02.31.123457 AM

‘DDth’

‘DYth’

‘31st’

‘THU’

Element Description
datetime-
expression

format-
value Output
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-189

SQL/MX Functions and Expressions Examples of TO_CHAR(<DATETIME>)
output formats will include 9 characters. If the output value is Tuesday, two space
characters are padded to the right (‘TUESDAY ’).

 Fill Mode (FM) modifiers are used to control blank padding, for example:
TO_CHAR(timestamp‘2011-03-31 05.02.31.123457’, ‘FMDay’) produces the output
‘THURSDAY’.

 The elements CC, DDD, DD, D, HH24, HH12, HH, IW, IYYY, IYY, IY, I, J, MI, MM,
SSSSS, SS, WW, W, Y, YYYY, YYY, YY, Y, SCC, FF[1..9], RRRR, RR, SYYYY, and
X are case-insensitive.

 The suffix element ‘th’ is ignored for non-numeric output, for example:

 TO_CHAR(timestamp‘2011-09-28 15:15:10.599494’, ‘DDth’) produces 28th as
output.

 TO_CHAR(timestamp‘2011-09-28 15:15:10.599494’, ‘Dayth’) produces
‘Wednesday’ as output. Notice that ‘th’ is ignored.

Examples of TO_CHAR(<DATETIME>)

TRANSLATE Function
The TRANSLATE function translates a character string from a source character set to
a target character set.

character-value-expression

is a character string.

Expression Result

TO_CHAR(timestamp‘2011-09-28 15:15:10.599494’, ‘Day,
DD HH12:MI:SS’)

‘Wednesday, 28 03:15:10’

TO_CHAR(timestamp‘2011-09-28 15:15:10.599494’,
‘“Day:”Day’)

‘Day:Wednesday’

TO_CHAR(timestamp‘2011-09-28 15:15:10.599494’, ‘DAY’) ‘WEDNESDAY’

TO_CHAR(timestamp‘2011-09-28 15:15:10.599494’, ‘DD-
MM-YY’)

‘28-09-2011’

TO_CHAR(timestamp‘2011-09-28 15:15:10.599494’,
‘HH:MI AM’)

‘03:15 PM’

TRANSLATE(character-value-expression USING translation-name)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-190

SQL/MX Functions and Expressions TRANSLATE Function
translation-name

is one of these translation names:

translation name identifies the translation, source and target character set.
When you translate to the UCS2 character set no data loss is possible. However,
when NonStop SQL/MX translates a character-value-expression from
UCS2, certain characters encoded in UTF16 cannot be converted to the target
character set. NonStop SQL/MX displays an error in this case.

NonStop SQL/MX returns a variable-length character string with character
repertoire equal to the character repertoire of the target character set of the
translation and the maximum length equal to the fix length or maximum variable
length of the source character-value-expression.

If you enter an illegal translation-name, NonStop SQL/MX returns an error.

If the character set for character-value-expression is different from the
source character set as specified in the translation-name, NonStop SQL/MX
returns an error.

Translation Name Source
Character Set

Target
Character Set

Comments

ISO8859XToUCS2
(X in 1)

ISO8859X UCS2 No data loss is possible.

UCS2ToISO8859X
(X in 1)

UCS2 ISO8859X No data loss is possible.
NonStop SQL/MX will
display error 8413 if it
encounters a Unicode
character that cannot be
converted to the target
character set.

KANJITOISO88591 KANJI ISO88591 Convert a KANJI source
to a multibyte ISO88591
target. Every character is
copied as is. No check on
the source data. No data
loss is possible.

KSC5601TOISO88591 KSC5601 ISO88591 Convert a KSC5601
source to a multibyte
ISO88591 target. Every
character is copied as is.
No check on the source
data. No data loss is
possible.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-191

SQL/MX Functions and Expressions TRIM Function
TRIM Function
The TRIM function removes the specified characters from the left side, the right side,
or both sides of a character string.

trim-type

specifies whether characters are to be trimmed from the left side (LEADING), right
side (TRAILING), or both sides (BOTH) of srcstr. If you omit the trim-type,
the default is BOTH.

trim_chrs

is the character or characters to be removed from the srcstr. The default is the
space character.

srcstr

is a SQL character value expression from which spaces or trim characters are
removed. See Character Value Expressions on page 6-41.

Considerations for TRIM

Result of TRIM

The result is always of type NON ANSI VARCHAR, with maximum length equal to the
fixed length or maximum variable length of srcstr. If the source character string is an
upshifts CHAR or VARCHAR string, the result is an upshifts VARCHAR type.

Examples of TRIM

 Return 'Robert':

TRIM (' Robert ')

 The EMPLOYEE table defines FIRST_NAME as CHAR(15) and LAST_NAME as
CHAR(20). This expression uses the TRIM function to return the value 'Robert
Smith' without extra blanks:

TRIM (first_name) || ' ' || TRIM (last_name)

 In this example, characters '1' and '0' are removed from both sides of the colA
value:

create table tab1(colA varchar(20), colB int);
insert into tab1 values('0101010101ten0101010101', 10);

TRIM ([[trim-type] [trim-chrs] FROM] srcstr)

trim-type is:
 LEADING | TRAILING | BOTH
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-192

SQL/MX Functions and Expressions UCASE Function
insert into tab1 values('11001101nine11001101', 9);
select trim(BOTH '10' from cola), colb from tab01;

(EXPR) COLB

-------------------- -----------

ten 10

nine 9

UCASE Function
Considerations for UCASE
Examples of UCASE

The UCASE function upshifts characters. UCASE can appear anywhere in a query
where a value can be used, such as in a select list, an ON clause, a WHERE clause, a
HAVING clause, a LIKE predicate, an expression, or as qualifying a new value in an
UPDATE or INSERT statement. The result returned by the UCASE function is equal to
the result returned by the UPPER or UPSHIFT function.

For UCS2 character-expression, the UCASE function upshifts all lowercase or title
case characters to uppercase and returns a character string. If the argument is of type
CHAR(n) or VARCHAR(n), the result is of type VARCHAR(min(3n, 2048)).

A lowercase character is a character that has the “alphabetic” property in Unicode
Standard 2 and whose Unicode name includes lower. An upper case character is a
character that has the “alphabetic” property and whose Unicode name includes upper.
A title case character is a character that has the Unicode “alphabetic” property and
whose Unicode name includes title.

UCASE returns a string of either fixed-length or variable-length character data,
depending on the data type of the input string.

You cannot use the UCASE function on KANJI or KSC5601 operands.

UCASE is an SQL/MX extension.

character-expression

is an SQL character value expression that specifies a string of characters to
upshift. See Character Value Expressions on page 6-41.

Considerations for UCASE

Table 8-4 lists all one-to-one mappings for the UCS2 character set. In addition, it is
possible for the result string to be longer than that of the source because some of the
title case characters can be mapped to multiple characters.

UCASE (character-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-193

SQL/MX Functions and Expressions Considerations for UCASE
Table 8-5 lists UCS2 characters with two-character uppercase mapping.

Table 8-6 lists UCS2 characters with three-character uppercase mapping.

Characters not listed in these tables use themselves as their uppercase mappings.

Table 8-4. One-to-One UCS2 Mappings (page 1 of 4)

x U (x) x U(x) x U(x) x U(x) x U(x) x U(x)

0061 0041 0173 0172 03C9 03A9 04D5 04D4 1E75 1E74 1F72 1FC8

0062 0042 0175 0174 03CA 03AA 04D7 04D6 1E77 1E76 1F73 1FC9

0063 0043 0177 0176 03CB 03AB 04D9 04D8 1E79 1E78 1F74 1FCA

0064 0044 017A 0179 03CC 038C 04DB 04DA 1E7B 1E7A 1F75 1FCB

0065 0045 017C 017B 03CD 038E 04DD 04DC 1E7D 1E7C 1F76 1FDA

0066 0046 017E 017D 03CE 038F 04DF 04DE 1E7F 1E7E 1F77 1FDB

0067 0047 017F 0053 03D0 0392 04E1 04E0 1E81 1E80 1F78 1FF8

0068 0048 0183 0182 03D1 0398 04E3 04E2 1E83 1E82 1F79 1FF9

0069 0049 0185 0184 03D5 03A6 04E5 04E4 1E85 1E84 1F7A 1FEA

006A 004A 0188 0187 03D6 03A0 04E7 04E6 1E87 1E86 1F7B 1FEB

006B 004B 018C 018B 03E3 03E2 04E9 04E8 1E89 1E88 1F7C 1FFA

006C 004C 0192 0191 03E5 03E4 04EB 04EA 1E8B 1E8A 1F7D 1FFB

006D 004D 0199 0198 03E7 03E6 04EF 04EE 1E8D 1E8C 1F80 1F88

006E 004E 01A1 01A0 03E9 03E8 04F1 04F0 1E8F 1E8E 1F81 1F89

006F 004F 01A3 01A2 03EB 03EA 04F3 04F2 1E91 1E90 1F82 1F8A

0070 0050 01A5 01A4 03ED 03EC 04F5 04F4 1E93 1E92 1F83 1F8B

0071 0051 01A8 01A7 03EF 03EE 04F9 04F8 1E95 1E94 1F84 1F8C

0072 0052 01AD 01AC 03F0 039A 0561 0531 1E9B 1E60 1F85 1F8D

0073 0053 01B0 01AF 03F1 03A1 0562 0532 1EA1 1EA0 1F86 1F8E

0074 0054 01B4 01B3 03F2 03A3 0563 0533 1EA3 1EA2 1F87 1F8F

0075 0055 01B6 01B5 0430 0410 0564 0534 1EA5 1EA4 1F90 1F98

0076 0056 01B9 01B8 0431 0411 0565 0535 1EA7 1EA6 1F91 1F99

0077 0057 01BD 01BC 0432 0412 0566 0536 1EA9 1EA8 1F92 1F9A

0078 0058 01C5 01C4 0433 0413 0567 0537 1EAB 1EAA 1F93 1F9B

0079 0059 01C6 01C4 0434 0414 0568 0538 1EAD 1EAC 1F94 1F9C

007A 005A 01C8 01C7 0435 0415 0569 0539 1EAF 1EAE 1F95 1F9D

00E0 00C0 01C9 01C7 0436 0416 056A 053A 1EB1 1EB0 1F96 1F9E

00E1 00C1 01CB 01CA 0437 0417 056B 053B 1EB3 1EB2 1F97 1F9F

00E2 00C2 01CC 01CA 0438 0418 056C 053C 1EB5 1EB4 1FA0 1FA8

00E3 00C3 01CE 01CD 0439 0419 056D 053D 1EB7 1EB6 1FA1 1FA9

00E4 00C4 01D0 01CF 043A 041A 056E 053E 1EB9 1EB8 1FA2 1FAA

00E5 00C5 01D2 01D1 043B 041B 056F 053F 1EBB 1EBA 1FA3 1FAB

00E6 00C6 01D4 01D3 043C 041C 0570 0540 1EBD 1EBC 1FA4 1FAC

00E7 00C7 01D6 01D5 043D 041D 0571 0541 1EBF 1EBE 1FA5 1FAD
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-194

SQL/MX Functions and Expressions Considerations for UCASE
00E8 00C8 01D8 01D7 043E 041E 0572 0542 1EC1 1EC0 1FA6 1FAE

00E9 00C9 01DA 01D9 043F 041F 0573 0543 1EC3 1EC2 1FA7 1FAF

00EA 00CA 01DC 01DB 0440 0420 0574 0544 1EC5 1EC4 1FB0 1FB8

00EB 00CB 01DD 018E 0441 0421 0575 0545 1EC7 1EC6 1FB1 1FB9

00EC 00CC 01DF 01DE 0442 0422 0576 0546 1EC9 1EC8 1FB3 1FBC

00ED 00CD 01E1 01E0 0443 0423 0577 0547 1ECB 1ECA 1FBE 0399

00EE 00CE 01E3 01E2 0444 0424 0578 0548 1ECD 1ECC 1FC3 1FCC

00EF 00CF 01E5 01E4 0445 0425 0579 0549 1ECF 1ECE 1FD0 1FD8

00F0 00D0 01E7 01E6 0446 0426 057A 054A 1ED1 1ED0 1FD1 1FD9

00F1 00D1 01E9 01E8 0447 0427 057B 054B 1ED3 1ED2 1FE0 1FE8

00F2 00D2 01EB 01EA 0448 0428 057C 054C 1ED5 1ED4 1FE1 1FE9

00F3 00D3 01ED 01EC 0449 0429 057D 054D 1ED7 1ED6 1FE5 1FEC

00F4 00D4 01EF 01EE 044A 042A 057E 054E 1ED9 1ED8 1FF3 1FFC

00F5 00D5 01F2 01F1 044B 042B 057F 054F 1EDB 1EDA 2170 2160

00F6 00D6 01F3 01F1 044C 042C 0580 0550 1EDD 1EDC 2171 2161

00F8 00D8 01F5 01F4 044D 042D 0581 0551 1EDF 1EDE 2172 2162

00F9 00D9 01FB 01FA 044E 042E 0582 0552 1EE1 1EE0 2173 2163

00FA 00DA 01FD 01FC 044F 042F 0583 0553 1EE3 1EE2 2174 2164

00FB 00DB 01FF 01FE 0451 0401 0584 0554 1EE5 1EE4 2175 2165

00FC 00DC 0201 0200 0452 0402 0585 0555 1EE7 1EE6 2176 2166

00FD 00DD 0203 0202 0453 0403 0586 0556 1EE9 1EE8 2177 2167

00FE 00DE 0205 0204 0454 0404 1E01 1E00 1EEB 1EEA 2178 2168

00FF 0178 0207 0206 0455 0405 1E03 1E02 1EED 1EEC 2179 2169

0101 0100 0209 0208 0456 0406 1E05 1E04 1EEF 1EEE 217A 216A

0103 0102 020B 020A 0457 0407 1E07 1E06 1EF1 1EF0 217B 216B

0105 0104 020D 020C 0458 0408 1E09 1E08 1EF3 1EF2 217C 216C

0107 0106 020F 020E 0459 0409 1E0B 1E0A 1EF5 1EF4 217D 216D

0109 0108 0211 0210 045A 040A 1E0D 1E0C 1EF7 1EF6 217E 216E

010B 010A 0213 0212 045B 040B 1E0F 1E0E 1EF9 1EF8 217F 216F

010D 010C 0215 0214 045C 040C 1E11 1E10 1F00 1F08 24D0 24B6

010F 010E 0217 0216 045E 040E 1E13 1E12 1F01 1F09 24D1 24B7

0111 0110 0253 0181 045F 040F 1E15 1E14 1F02 1F0A 24D2 24B8

0113 0112 0254 0186 0461 0460 1E17 1E16 1F03 1F0B 24D3 24B9

0115 0114 0256 0189 0463 0462 1E19 1E18 1F04 1F0C 24D4 24BA

0117 0116 0257 018A 0465 0464 1E1B 1E1A 1F05 1F0D 24D5 24BB

0119 0118 0259 018F 0467 0466 1E1D 1E1C 1F06 1F0E 24D6 24BC

011B 011A 025B 0190 0469 0468 1E1F 1E1E 1F07 1F0F 24D7 24BD

011D 011C 0260 0193 046B 046A 1E21 1E20 1F10 1F18 24D8 24BE

011F 011E 0263 0194 046D 046C 1E23 1E22 1F11 1F19 24D9 24BF

Table 8-4. One-to-One UCS2 Mappings (page 2 of 4)

x U (x) x U(x) x U(x) x U(x) x U(x) x U(x)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-195

SQL/MX Functions and Expressions Considerations for UCASE
0121 0120 0268 0197 046F 046E 1E25 1E24 1F12 1F1A 24DA 24C0

0123 0122 0269 0196 0471 0470 1E27 1E26 1F13 1F1B 24DB 24C1

0125 0124 026F 019C 0473 0472 1E29 1E28 1F14 1F1C 24DC 24C2

0127 0126 0272 019D 0475 0474 1E2B 1E2A 1F15 1F1D 24DD 24C3

0129 0128 0275 019F 0477 0476 1E2D 1E2C 1F20 1F28 24DE 24C4

012B 012A 0280 01A6 0479 0478 1E2F 1E2E 1F21 1F29 24DF 24C5

012D 012C 0283 01A9 047B 047A 1E31 1E30 1F22 1F2A 24E0 24C6

012F 012E 0288 01AE 047D 047C 1E33 1E32 1F23 1F2B 24E1 24C7

0131 0049 028A 01B1 047F 047E 1E35 1E34 1F24 1F2C 24E2 24C8

0133 0132 028B 01B2 0481 0480 1E37 1E36 1F25 1F2D 24E3 24C9

0135 0134 0292 01B7 0491 0490 1E39 1E38 1F26 1F2E 24E4 24CA

0137 0136 0345 0399 0493 0492 1E3B 1E3A 1F27 1F2F 24E5 24CB

013A 0139 03AC 0386 0495 0494 1E3D 1E3C 1F30 1F38 24E6 24CC

013C 013B 03AD 0388 0497 0496 1E3F 1E3E 1F31 1F39 24E7 24CD

013E 013D 03AE 0389 0499 0498 1E41 1E40 1F32 1F3A 24E8 24CE

0140 013F 03AF 038A 049B 049A 1E43 1E42 1F33 1F3B 24E9 24CF

0142 0141 03B1 0391 049D 049C 1E45 1E44 1F34 1F3C FF41 FF21

0144 0143 03B2 0392 049F 049E 1E47 1E46 1F35 1F3D FF42 FF22

0146 0145 03B3 0393 04A1 04A0 1E49 1E48 1F36 1F3E FF43 FF23

0148 0147 03B4 0394 04A3 04A2 1E4B 1E4A 1F37 1F3F FF44 FF24

014B 014A 03B5 0395 04A5 04A4 1E4D 1E4C 1F40 1F48 FF45 FF25

014D 014C 03B6 0396 04A7 04A6 1E4F 1E4E 1F41 1F49 FF46 FF26

014F 014E 03B7 0397 04A9 04A8 1E51 1E50 1F42 1F4A FF47 FF27

0151 0150 03B8 0398 04AB 04AA 1E53 1E52 1F43 1F4B FF48 FF28

0153 0152 03B9 0399 04AD 04AC 1E55 1E54 1F44 1F4C FF49 FF29

0155 0154 03BA 039A 04AF 04AE 1E57 1E56 1F45 1F4D FF4A FF2A

0157 0156 03BB 039B 04B1 04B0 1E59 1E58 1F51 1F59 FF4B FF2B

0159 0158 03BC 039C 04B3 04B2 1E5B 1E5A 1F53 1F5B FF4C FF2C

015B 015A 03BD 039D 04B5 04B4 1E5D 1E5C 1F55 1F5D FF4D FF2D

015D 015C 03BE 039E 04B7 04B6 1E5F 1E5E 1F57 1F5F FF4E FF2E

015F 015E 03BF 039F 04B9 04B8 1E61 1E60 1F60 1F68 FF4F FF2F

0161 0160 03C0 03A0 04BB 04BA 1E63 1E62 1F61 1F69 FF50 FF30

0163 0162 03C1 03A1 04BD 04BC 1E65 1E64 1F62 1F6A FF51 FF31

0165 0164 03C2 03A3 04BF 04BE 1E67 1E66 1F63 1F6B FF52 FF32

0167 0166 03C3 03A3 04C2 04C1 1E69 1E68 1F64 1F6C FF53 FF33

0169 0168 03C4 03A4 04C4 04C3 1E6B 1E6A 1F65 1F6D FF54 FF34

016B 016A 03C5 03A5 04C8 04C7 1E6D 1E6C 1F66 1F6E FF55 FF35

016D 016C 03C6 03A6 04CC 04CB 1E6F 1E6E 1F67 1F6F FF56 FF36

016F 016E 03C7 03A7 04D1 04D0 1E71 1E70 1F70 1FBA FF57 FF37

Table 8-4. One-to-One UCS2 Mappings (page 3 of 4)

x U (x) x U(x) x U(x) x U(x) x U(x) x U(x)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-196

SQL/MX Functions and Expressions Considerations for UCASE
0171 0170 03C8 03A8 04D3 04D2 1E73 1E72 1F71 1FBB FF58 FF38

FF59 FF39

FF5A FF3A

Table 8-5. Two-Character UCS2 Mapping (page 1 of 3)

Titlecase characters Two-character uppercase expansions

0x00DF 0x0053 0x0053

0x0149 0x02BC 0x004E

0x01F0 0x004A 0x030C

0x0587 0x0535 0x0552

0x1E96 0x0048 0x0331

0x1E97 0x0054 0x0308

0x1E98 0x0057 0x030A

0x1E99 0x0059 0x030A

0x1E9A 0x0041 0x02BE

0x1F50 0x03A5 0x0313

0x1F80 0x1F08 0x0399

0x1F81 0x1F09 0x0399

0x1F82 0x1F0A 0x0399

0x1F83 0x1F0B 0x0399

0x1F84 0x1F0C 0x0399

0x1F85 0x1F0D 0x0399

0x1F86 0x1F0E 0x0399

0x1F87 0x1F0F 0x0399

0x1F88 0x1F08 0x0399

0x1F89 0x1F09 0x0399

0x1F8A 0x1F0A 0x0399

0x1F8B 0x1F0B 0x0399

0x1F8C 0x1F0C 0x0399

0x1F8D 0x1F0D 0x0399

0x1F8E 0x1F0E 0x0399

0x1F8F 0x1F0F 0x0399

0x1F90 0x1F28 0x0399

0x1F91 0x1F29 0x0399

Table 8-4. One-to-One UCS2 Mappings (page 4 of 4)

x U (x) x U(x) x U(x) x U(x) x U(x) x U(x)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-197

SQL/MX Functions and Expressions Considerations for UCASE
0x1F92 0x1F2A 0x0399

0x1F93 0x1F2B 0x0399

0x1F94 0x1F2C 0x0399

0x1F95 0x1F2D 0x0399

0x1F96 0x1F2E 0x0399

0x1F97 0x1F2F 0x0399

0x1F98 0x1F28 0x0399

0x1F99 0x1F29 0x0399

0x1F9A 0x1F2A 0x0399

0x1F9B 0x1F2B 0x0399

0x1F9C 0x1F2C 0x0399

0x1F9D 0x1F2D 0x0399

0x1F9E 0x1F2E 0x0399

0x1F9F 0x1F2F 0x0399

0x1FA0 0x1F68 0x0399

0x1FA1 0x1F69 0x0399

0x1FA2 0x1F6A 0x0399

0x1FA3 0x1F6B 0x0399

0x1FA4 0x1F6C 0x0399

0x1FA5 0x1F6D 0x0399

0x1FA6 0x1F6E 0x0399

0x1FA7 0x1F6F 0x0399

0x1FA8 0x1F68 0x0399

0x1FA9 0x1F69 0x0399

0x1FAA 0x1F6A 0x0399

0x1FAB 0x1F6B 0x0399

0x1FAC 0x1F6C 0x0399

0x1FAD 0x1F6D 0x0399

0x1FAE 0x1F6E 0x0399

0x1FAF 0x1F6F 0x0399

0x1FB2 0x1FBA 0x0399

0x1FB3 0x0391 0x0399

0x1FB4 0x0386 0x0399

0x1FB6 0x0391 0x0342

Table 8-5. Two-Character UCS2 Mapping (page 2 of 3)

Titlecase characters Two-character uppercase expansions
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-198

SQL/MX Functions and Expressions Considerations for UCASE
0x1FBC 0x0391 0x0399

0x1FC2 0x1FCA 0x0399

0x1FC3 0x0397 0x0399

0x1FC4 0x0389 0x0399

0x1FC6 0x0397 0x0342

0x1FCC 0x0397 0x0399

0x1FD6 0x0399 0x0342

0x1FE4 0x03A1 0x0313

0x1FE6 0x03A5 0x0342

0x1FF2 0x1FFA 0x0399

0x1FF3 0x03A9 0x0399

0x1FF4 0x038F 0x0399

0x1FF6 0x03A9 0x0342

0x1FFC 0x03A9 0x0399

0xFB00 0x0046 0x0046

0xFB01 0x0046 0x0049

0xFB02 0x0046 0x004C

0xFB05 0x0053 0x0054

0xFB06 0x0053 0x0054

0xFB13 0x0544 0x0546

0xFB14 0x0544 0x0535

0xFB15 0x0544 0x053B

0xFB16 0x054E 0x0546

0xFB17 0x0544 0x053D

Table 8-6. Three-Character UCS2 Mapping (page 1 of 2)

Titlecase characters Three-Character Uppercase Expansions

0x0390 0x0399 0x0308 0x0301

0x03B0 0x03A5 0x0308 0x0301

0x1F52 0x03A5 0x0313 0x0300

0x1F54 0x03A5 0x0313 0x0301

0x1F56 0x03A5 0x0313 0x0342

0x1FB7 0x0391 0x0342 0x0399

Table 8-5. Two-Character UCS2 Mapping (page 3 of 3)

Titlecase characters Two-character uppercase expansions
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-199

SQL/MX Functions and Expressions Examples of UCASE
Examples of UCASE

 Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select
the column CUSTNAME and return in uppercase and lowercase letters by using
the UCASE and LCASE functions:

SELECT custname,UCASE(custname),LCASE(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
Hotel Oregon HOTEL OREGON hotel oregon

--- 17 row(s) selected.

See LCASE Function on page 8-87.

For more examples of when to use the UCASE function, see UPSHIFT Function
on page 8-202.

0x1FC7 0x0397 0x0342 0x0399

0x1FD2 0x0399 0x0308 0x0300

0x1FD3 0x0399 0x0308 0x0301

0x1FD7 0x0399 0x0308 0x0342

0x1FE2 0x03A5 0x0308 0x0300

0x1FE3 0x03A5 0x0308 0x0301

0x1FE7 0x03A5 0x0308 0x0342

0x1FF7 0x03A9 0x0342 0x0399

0xFB03 0x0046 0x0046 0x0049

Table 8-6. Three-Character UCS2 Mapping (page 2 of 2)

Titlecase characters Three-Character Uppercase Expansions
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-200

SQL/MX Functions and Expressions UPPER Function
UPPER Function
The UPPER function upshifts characters. UPPER can appear anywhere in a query
where a value can be used, such as in a select list, an ON clause, a WHERE clause, a
HAVING clause, a LIKE predicate, an expression, or as qualifying a new value in an
UPDATE or INSERT statement. The result returned by the UPPER function is equal to
the result returned by the UPSHIFT or UCASE function.

UPPER returns a string of either fixed-length or variable-length character data,
depending on the data type of the input string.

You cannot use the UPPER function on KANJI or KSC5601 operands.

character-expression

is an SQL character value expression that specifies a string of characters to
upshift. See Character Value Expressions on page 6-41.

Examples of UPPER

 Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select
the column CUSTNAME and return in uppercase and lowercase letters by using
the UPPER and LOWER functions:

SELECT custname,UPPER(custname),LOWER(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
Hotel Oregon HOTEL OREGON hotel oregon

--- 17 row(s) selected.

See LOWER Function on page 8-94.

For examples of when to use the UPPER function, see UPSHIFT Function on
page 8-202.

UPPER (character-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-201

SQL/MX Functions and Expressions UPSHIFT Function
UPSHIFT Function
The UPSHIFT function upshifts characters. UPSHIFT can appear anywhere in a query
where a value can be used, such as in a select list, an ON clause, a WHERE clause, a
HAVING clause, a LIKE predicate, an expression, or as qualifying a new value in an
UPDATE or INSERT statement. The result returned by the UPSHIFT function is equal
to the result returned by the UPPER or UCASE function.

UPSHIFT returns a string of either fixed-length or variable-length character data,
depending on the data type of the input string.

You cannot use the UPSHIFT function on KANJI or KSC5601 operands.

UPSHIFT is an SQL/MX extension.

character-expression

is an SQL character value expression that specifies a string of characters to
upshift. See Character Value Expressions on page 6-41.

Examples of UPSHIFT

 Suppose that your CUSTOMER table includes an entry for Hotel Oregon. Select
the column CUSTNAME and return a result in uppercase and lowercase letters by
using the UPSHIFT, UPPER, and LOWER functions:

SELECT UPSHIFT(custname),UPPER(custname),UCASE(custname)
FROM sales.customer;

(EXPR) (EXPR) (EXPR)
----------------- ------------------- ------------------
...
HOTEL OREGON HOTEL OREGON HOTEL OREGON

--- 17 row(s) selected.

 Perform a case-insensitive search for the DataSpeed customer:

SELECT *
FROM sales.customer
WHERE UPSHIFT (custname) = 'DATASPEED';

CUSTNUM CUSTNAME STREET CITY ...
------- ---------- -------------------- --------- ...
 1234 DataSpeed 300 SAN GABRIEL WAY NEW YORK ...

--- 1 row(s) selected.

In the table, the name can be in lowercase, uppercase, or mixed case letters.

UPSHIFT (character-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-202

SQL/MX Functions and Expressions USER Function
 Suppose that your database includes two department tables: DEPT1 and DEPT2.
Return all rows from the two tables in which the department names have the same
value regardless of case:

SELECT * FROM persnl.dept1 D1, persnl.dept2 D2
WHERE UPSHIFT(D1.deptname) = UPSHIFT(D2.deptname);

USER Function
The USER function returns the current Guardian user ID as variable-length character
data in the form group.name.

The USER function is equivalent to the CURRENT_USER Function on page 8-43 and
the SESSION_USER Function on page 8-168.

Examples of USER

 Retrieve the user name value for the current user:

SELECT USER FROM logfile;

(EXPR)
--
DCS.TSHAW
...

--- 5 row(s) selected.

USER
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-203

SQL/MX Functions and Expressions VERSION_INFO Function
VERSION_INFO Function
VERSION_INFO is a built-in table-valued function that returns version information for a
single entity.

Table 8-7 shows the input and output parameters for VERSION_INFO.

 Table 8-8 specifies the valid values for the E_TYPE and E_VALUE parameters. For all
E_TYPE values, the NODE_NAME and MXV specify Expand node name and MXV of
a node that is related to the corresponding entity.

version_info ('E_TYPE', 'E_VALUE')

Table 8-7. Input and Output Parameters for VERSION_INFO

Input/Output

Type Parameter Specification Description

Input
parameter

E_TYPE CHAR (32) NOT
NULL

The type of version information that
is requested.

Input
parameter

E_VALUE VARCHAR(776)
NOT NULL

The name of the entity for which
version information is requested.
The type of that entity is implied by
E_TYPE.

Output
column

E_TYPE CHAR (32) NOT
NULL

A copy of the actual value for the
E_TYPE input parameter.

Output
column

E_VALUE VARCHAR(776)
NOT NULL

A copy of the actual value for the
E_VALUE input parameter.

Output
column

VERSION INT NOT NULL The version of the specified entity.

Output
column

NODE_NAME CHAR(8) NOT
NULL

The Expand node name of a node
where the named entity is defined.

Output
column

MXV INT NOT NULL The SQL/MX Software Version
(MXV) of the Expand node specified
by NODE_NAME. The artificial
value 999999 indicates that the
node is unavailable and the MXV
could not be obtained. In that case,
warning 25420 (node could not
be accessed) is also returned,
once per node that is unavailable.
These warnings are returned when
the cursor to read the result set is
opened. Individual fetch operations
do not return warning 25420.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-204

SQL/MX Functions and Expressions VERSION_INFO Function

Table 8-8 shows the VERSION output column values for the E_TYPE and E_VALUE
parameters.

Table 8-8. Values for the E_TYPE and E_VALUE Parameters

Value for the E_TYPE and
E_VALUE Parameters Description

SYSTEM_SCHEMA The specified node.

SCHEMA All nodes where the catalog of the schema is visible. By
default, this includes the local node.

TABLE All nodes where partitions of that table reside, and the local
node.

TABLE_ALL All nodes where partitions of that table reside.

All nodes where partitions of indexes on that table reside.

All nodes where partitions of an associated trigger temp
table reside, and the local node.

INDEX All nodes where partitions of that index reside and the local
node.

INDEX_TABLE The union of TABLE for the base table of the index and
INDEX for the index itself.

VIEW All nodes where replicas for that view reside and the local
node.

PROCEDURE All nodes where replicas for that procedure reside and the
local node.

MPALIAS The node of the target SQL/MP partition and the local node.

CONSTRAINT, MODULE,
and TRIGGER

The local node.

Table 8-9. VERSION Output Column Values E_TYPE and E_VALUE
Parameters (page 1 of 2)

E_TYPE E_VALUE VERSION

SYSTEM_SCHEMA Expand node name. Use local
node if spaces.

System schema version for
actual node

SCHEMA ANSI name of schema or
database object

Schema version

TABLE

TABLE_ALL

ANSI name of table OFV of table

INDEX

INDEX_TABLE

ANSI name of index OFV of index

VIEW ANSI name of view OFV of view
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-205

SQL/MX Functions and Expressions Example of VERSION_INFO
ANSI names in the input value parameter must be fully qualified, in external format.
Expand node names are case-insensitive. Both input parameters must be
character-valued expressions.

Example of VERSION_INFO

select * from table (version_info ('SCHEMA', 'CAT.SCH'));

E_TYPE E_VALUE VERSION NODE_NAME MXV___
------- -------- ------- --------- ----
SCHEMA CAT.SCH 1200 \REMOTE 1200
SCHEMA CAT.SCH 1200 \XYZZY 1400
 ...

CONSTRAINT ANSI name of constraint OFV of constraint

TRIGGER ANSI name of trigger OFV of trigger

PROCEDURE ANSI name of procedure OFV of procedure

MPALIAS ANSI name of mpalias OFV of mpalias

MODULE ANSI name of module Module version

Table 8-9. VERSION Output Column Values E_TYPE and E_VALUE
Parameters (page 2 of 2)

E_TYPE E_VALUE VERSION
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-206

SQL/MX Functions and Expressions VARIANCE Function
VARIANCE Function
Considerations for VARIANCE
Examples of VARIANCE

VARIANCE is an aggregate function that returns the statistical variance of a set of
numbers.

VARIANCE is an SQL/MX extension.

ALL | DISTINCT

specifies whether duplicate values are included in the computation of the
VARIANCE of the expression. The default option is ALL, which causes duplicate
values to be included. If you specify DISTINCT, duplicate values are eliminated
before the VARIANCE function is applied. If DISTINCT is specified, you cannot
specify weight.

expression

specifies a numeric value expression that determines the values for which to
compute the variance. expression cannot contain an aggregate function or a
subquery. The DISTINCT clause specifies that the VARIANCE function operates
on distinct values from the one-column table derived from the evaluation of
expression.

weight

specifies a numeric value expression that determines the weights of the values for
which to compute the variance. weight cannot contain an aggregate function or a
subquery. weight is defined on the same table as expression. The one-column
table derived from the evaluation of expression and the one-column table
derived from the evaluation of weight must have the same cardinality.

Considerations for VARIANCE

Definition of VARIANCE

Suppose that vi are the values in the one-column table derived from the evaluation of
expression. N is the cardinality of this one-column table that is the result of applying
the expression to each row of the source table and eliminating rows that are null.

If weight is specified, wi are the values derived from the evaluation of weight. N is
the cardinality of the two-column table that is the result of applying the expression
and weight to each row of the source table and eliminating rows that have nulls in
either column.

VARIANCE ([ALL | DISTINCT] expression [,weight])
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-207

SQL/MX Functions and Expressions Considerations for VARIANCE
Definition When Weight Is Not Specified

If weight is not specified, the statistical variance of the values in the one-column
result table is defined as:

where vi is the i-th value of expression, v is the average value expressed in the
common data type, and N is the cardinality of the result table.

Because the definition of variance has N-1 in the denominator of the expression (when
weight is not specified), NonStop SQL/MX returns a default value of zero (and no error)
if the number of rows in the table, or a group of the table, is equal to 1.

Definition When Weight Is Specified

If weight is specified, the statistical variance of the values in the two-column result
table is defined as:

where vi is the i-th value of expression, wi is the i-th value of weight, vw is the
weighted average value expressed in the common data type, and N is the cardinality of
the result table.

1

)(
1

2

N

vv
N

i
i

N

i

N

i
i

i

i

w

wvwv

1

1

2

1

)(
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-208

SQL/MX Functions and Expressions Considerations for VARIANCE
Weighted Average

The weighted average vw of vi and wi is defined as:

where vi is the i-th value of expression, wi is the i-th value of weight, and N is the
cardinality of the result table.

Data Type of the Result

The data type of the result is always DOUBLE PRECISION.

Operands of the Expression

The expression includes columns from the rows of the SELECT result table—but
cannot include an aggregate function. These expressions are valid:

VARIANCE (SALARY)
VARIANCE (SALARY * 1.1)
VARIANCE (PARTCOST * QTY_ORDERED)

Nulls

VARIANCE is evaluated after eliminating all nulls from the set. If the result table is
empty, VARIANCE returns NULL.

FLOAT(54) and DOUBLE PRECISION Data

Avoid using large FLOAT(54) or DOUBLE PRECISION values as arguments to
VARIANCE. If SUM(x * x) exceeds the value of 1.15792089237316192e77 during the
computation of VARIANCE(x), then a numeric overflow occurs.

N

i

N

i
i

i

i

w

wv

1

1

HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-209

SQL/MX Functions and Expressions Examples of VARIANCE
Examples of VARIANCE

 Compute the variance of the salary of the current employees:

SELECT VARIANCE(salary) AS Variance_Salary
FROM persnl.employee;

VARIANCE_SALARY

 1.27573263588496116E+009

--- 1 row(s) selected.

 Compute the variance of the cost of parts in the current inventory:

SELECT VARIANCE (price * qty_available)
FROM sales.parts;

(EXPR)

 5.09652410092950336E+013

--- 1 row(s) selected.

 Suppose that your database includes a WEATHER table, which is created by using
SQLCI in this way:

CREATE TABLE $db.mining.weather
 (city VARCHAR (20) NO DEFAULT NOT NULL
 ,state CHAR (2) NO DEFAULT NOT NULL
 ,date_weather DATE NO DEFAULT NOT NULL
 ,temperature NUMERIC (3) SIGNED
 ,weight NUMERIC (2) UNSIGNED
 ,PRIMARY KEY (city, state, date_weather))
 CATALOG $db.mining
 ORGANIZATION KEY SEQUENCED;

After the table is created, you can insert the mapping into the OBJECTS table by
using MXCI in this way:

CREATE SQLMP ALIAS db.mining.weather $db.mining.weather;

For these examples, the WEATHER table contains these rows:

CITY STATE DATE_WEATHER TEMPERATURE WEIGHT

Austin TX 1997-01-01 50 1

Austin TX 1997-01-02 40 1

Austin TX 1997-01-03 60 2

Austin TX 1997-01-04 84 2

Cupertino CA 1997-01-01 65 1

Cupertino CA 1997-01-02 65 2

Cupertino CA 1997-01-03 65 2

Cupertino CA 1997-01-04 65 1
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-210

SQL/MX Functions and Expressions Examples of VARIANCE
 Find the variance of the TEMPERATURE column:

SELECT VARIANCE(temperature) FROM weather;

(EXPR)

 1.64500000000000024E+002

--- 1 row(s) selected.

 Find the variance of the TEMPERATURE column by CITY:

SELECT city, VARIANCE (temperature)
 FROM weather GROUP BY city;

CITY (EXPR)
---------- -------------------------
Austin 3.55666666666666720E+002
Cupertino 0.00000000000000000E+000

--- 2 row(s) selected.

 Find the weighted variance of the TEMPERATURE column:

SELECT VARIANCE (temperature, weight) FROM weather;

(EXPR)

 1.46363636363636384E+002

--- 1 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-211

SQL/MX Functions and Expressions WEEK Function
WEEK Function
The WEEK function converts a DATE or TIMESTAMP expression into an INTEGER
value in the range 1 through 54 that represents the corresponding week of the year.

WEEK is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of WEEK

 Return an integer that represents the week of the year from the START_DATE
column in the PROJECT table:

SELECT start_date, ship_timestamp, WEEK(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- --------------
1996-04-10 1996-04-21 08:15:00.000000 15

WEEK (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-212

SQL/MX Functions and Expressions YEAR Function
YEAR Function
The YEAR function converts a DATE or TIMESTAMP expression into an INTEGER
value that represents the year.

YEAR is an SQL/MX extension.

datetime-expression

is an expression that evaluates to a datetime value of type DATE or TIMESTAMP.
See Datetime Value Expressions on page 6-43.

Examples of YEAR

 Return an integer that represents the year from the START_DATE column in the
PROJECT table:

SELECT start_date, ship_timestamp, YEAR(start_date)
FROM persnl.project
WHERE projcode = 1000;

Start/Date Time/Shipped (EXPR)
---------- -------------------------- ------
1996-04-10 1996-04-21 08:15:00.000000 1996

YEAR (datetime-expression)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-213

SQL/MX Functions and Expressions Examples of YEAR
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
8-214

9 SQL/MX File Attributes

The ATTRIBUTE file option describes physical characteristics of files (including files
that contain tables, indexes, or partitions) that can affect the performance of
applications that use the files.

File attributes are set when a file (or an object that resides in a file) is created. If you do
not specify ATTRIBUTE values in the statement that creates an object (such as
CREATE TABLE or CREATE INDEX), NonStop SQL/MX uses default values for file
attributes.

Many file attributes can be changed later (with statements such as ALTER TABLE or
ALTER INDEX), some file attributes remain in effect for the life of the object, and a few
file attributes can change as a side effect of a command or a change to some other
attribute.

This section describes file attributes for SQL/MX objects:

For more information, see the separate entry for a specific attribute.

ALLOCATE/DEALLOCATE
on page 9-2

Reserves or frees disk space for a file.

AUDITCOMPRESS on
page 9-3

Controls whether unchanged columns are included in audit
records.

BLOCKSIZE on page 9-4 Sets size of data blocks. Default is 4096.

CLEARONPURGE on
page 9-5

Controls disk erasure when file is dropped.

EXTENT on page 9-6 Controls the size of extents.

MAXEXTENTS on
page 9-7

Controls the number of extents.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
9-1

SQL/MX File Attributes ALLOCATE/DEALLOCATE
ALLOCATE/DEALLOCATE
ALLOCATE is a Guardian file attribute that reserves disk space for a file.
DEALLOCATE frees disk space previously reserved for the file that does not contain
data. ALLOCATE applies to tables and indexes. Allocate disk space in advance to
ensure that space is available when needed and to avoid processing errors caused by
full or fragmented disks during normal allocation-on-demand.

You set the ALLOCATE attribute for a table with CREATE TABLE or ALTER TABLE.
You set the attribute for an index with CREATE INDEX or ALTER INDEX. You set the
DEALLOCATE attribute with ALTER TABLE or ALTER INDEX.

The default is ALLOCATE 0. You cannot allocate extents during table or index creation
unless you specify the ALLOCATE attribute.

ALLOCATE num-extents

is the number of extents to allocate in advance. The number must be an integer
between 0 and the current value of the MAXEXTENTS file attribute. If the object
contains partitions, the number of extents to allocate cannot be greater than the
MAXEXTENTS partition attribute for any of the partitions.

Depending on your file configuration, you might not be able to allocate the full
number of MAXEXTENTS. For ALTER TABLE or ALTER INDEX, ALLOCATE
allocates new extents until the total of new and existing extents equals the
specified number.

DEALLOCATE

frees all unused allocated extents (that is, all allocated extents beyond the extent
that contains the end-of-file).

Considerations for ALLOCATE

ALLOCATE and DEALLOCATE apply to all partitions of the specified file.

ALLOCATE affects the number of extents, but not the size of the extents. The EXTENT
file attribute determines the extent size.

If the number of extents to allocate is less than or equal to the current number of
extents allocated, the ALLOCATE operation does nothing. To decrease the number of
extents allocated, you must perform a DEALLOCATE operation to deallocate any
unused extents, followed by an ALLOCATE operation to allocate the desired number of
extents.

ALLOCATE num-extents | DEALLOCATE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
9-2

SQL/MX File Attributes AUDITCOMPRESS
AUDITCOMPRESS
The AUDITCOMPRESS file attribute controls whether TMF audit records for the file
are compressed. Compressed audit records omit unchanged columns from the before
and after images of updated rows. Uncompressed audit records allow you to read
complete rows in the audit trail but require more space.

You set the AUDITCOMPRESS attribute for a table with CREATE TABLE or ALTER
TABLE. You set the AUDITCOMPRESS attribute for an index with CREATE INDEX or
ALTER INDEX.

The table default is AUDITCOMPRESS. The index default is the table value at index
creation.

Considerations for AUDITCOMPRESS

Index Default

By default, the AUDITCOMPRESS attribute is automatically set for an index to match
that of the associated base table. If the AUDITCOMPRESS file attribute is changed on
the base table, that change is automatically propagated to the index.

Difference Between Compressed and Uncompressed Row
Images

Audit records of uncompressed files contain entire before and after images of changed
rows. Audit records of compressed files generally contain only changed columns and
columns of the clustering key. Other columns are occasionally included to improve
performance, such as when a single unchanged column physically occurs between
several changed columns.

AUDITCOMPRESS | NO AUDITCOMPRESS
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
9-3

SQL/MX File Attributes BLOCKSIZE
BLOCKSIZE
The BLOCKSIZE file attribute specifies the number of bytes in a block.

Set the BLOCKSIZE attribute for a table or index with CREATE TABLE or CREATE
INDEX statements. You cannot change the BLOCKSIZE attribute of an existing table or
index.

The default is BLOCKSIZE 4096.

number-bytes

is an integer that specifies the number of bytes in a block. Block size must be 4096
or 32768 bytes. If you specify a different block size, an error is returned.

For information on large block support and rollback of large block, see the SQL/MX
Installation and Management Guide.

BLOCKSIZE number-bytes
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
9-4

SQL/MX File Attributes CLEARONPURGE
CLEARONPURGE
The CLEARONPURGE file attribute controls erasure of data from the disk when a file
is deleted.

You set the CLEARONPURGE attribute for an SQL/MX table with CREATE TABLE or
ALTER TABLE. You set the CLEARONPURGE attribute for an SQL/MX index with
CREATE INDEX or ALTER INDEX.

The table default is NO CLEARONPURGE. The index default for the
CLEARONPURGE attribute is the table value at index creation. If the
CLEARONPURGE file attribute is changed on the base table, that change is
automatically propagated to the index.

Considerations for CLEARONPURGE

Purpose of CLEARONPURGE

When you drop or purge a table or index with NO CLEARONPURGE,
NonStop SQL/MX deallocates disk space but does not physically destroy the data in
that disk space. This implementation improves performance by reducing writes to the
disk, but when the disk space is allocated to a new file, other users might be able to
read data left by the object that used the space previously.

CLEARONPURGE increases security for sensitive data by causing the system to
overwrite deallocated disk space.

Effect Within Transactions

If you drop or purge a file with the CLEARONPURGE attribute from within a TMF
transaction, the data is not physically erased from the disk until after the transaction
commits.

CLEARONPURGE | NO CLEARONPURGE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
9-5

SQL/MX File Attributes EXTENT
EXTENT
EXTENT is a Guardian file attribute that sets the size of the extents (units of
contiguous disk space) that will be allocated for a file or partition of a file. EXTENT
applies to tables and indexes and is set when a file or partition is created.

The default is 16 pages for the primary extent and 64 pages for each secondary extent.
A page consists of 2048 bytes.

integer

is an integer that specifies the number of pages in the extent. The ranges allowed
are from 0 pages to the number of pages that will fit on a disk. The only limit is the
physical amount of storage available.

Each partition of a partitioned file has its own EXTENT attribute that can differ from
the EXTENT attribute for other partitions of the file. You can specify a single
EXTENT size for each extent in the file or partition, or you can specify one size for
the primary (first) extent and another size for the secondary extents.

If you enter only one value, with or without parentheses, it will be used for both the
primary and secondary extent sizes. If you enter two values, they will be used for
primary and secondary extent sizes.

Considerations for EXTENT

 A file's extent size must be at least as large as its block size and must be a multiple
of the block size and a multiple of page size (2048 bytes). If you specify extent
sizes that do not meet these conditions, NonStop SQL/MX uses the next block size
or the next full page size. For example, 0 PAGE rounds up to 2 PAGEs.

A file (or partition of a partitioned file) must fit on a disk, so the size of the primary
extent plus the total size of all secondary extents must not exceed the disk size.

 A primary extent should be large enough to hold the file at the initial load, and
secondary extents should be large enough to accommodate growth. The faster the
growth, the larger the secondary extents should be.

To ensure adequate space for your file, choose extent sizes and a MAXEXTENTS
value large enough to accommodate the amount of data you expect to store in the
file.

Using large extents can improve performance by reducing the number of seeks.
The disadvantage of large extents is that an entire extent is allocated
simultaneously, leaving allocated but unused space on the disk while the extent

EXTENT ext-size | (pri-ext-size [, sec-ext-size])

ext-size, pri-ext-size, sec-ext-size is:
 integer [PAGE[S]]
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
9-6

SQL/MX File Attributes MAXEXTENTS
contains only a small amount of data. You can maximize the use of disk space by
specifying smaller extent sizes if performance is not an issue.

MAXEXTENTS
MAXEXTENTS is a file attribute that specifies the maximum number of extents that
you can allocate for an unpartitioned file or for each partition of a partitioned file.
MAXEXTENTS applies to tables and to indexes.

You set the MAXEXTENTS attribute for a table with CREATE TABLE or ALTER
TABLE. You set the attribute for an index with CREATE INDEX or ALTER INDEX.
You use the PARTITION clause with CREATE TABLE or CREATE INDEX to set
the MAXEXTENTS attribute for a partition.

Unlike the NonStop SQL/MP form of these statements, the SQL/MX’s ALTER
TABLE and ALTER INDEX statements have no PARTONLY clause. When you
supply a new value for attributes, these statements modify the value of the attribute
on all partitions of the table or index.

num-extents

is an integer from 1 to 768 (but not less than the number of extents currently
allocated for the file) that specifies the maximum number of extents that you can
allocate. The default is 160.

Considerations for MAXEXTENTS

It is generally not efficient to have partitions with hundreds of extents, so keep
MAXEXTENTS well below the allowed maximum value. If necessary, increase the
number of partitions.

MAXEXTENTS num-extents
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
9-7

SQL/MX File Attributes Considerations for MAXEXTENTS
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
9-8

10 Metadata Tables

This section describes:

 SQL/MX Metadata Catalogs on page 10-2

 SQL/MX Metadata Schemas and Tables on page 10-3

 System Schema Tables on page 10-8

 System Security Schema Tables on page 10-11

 Definition Schema Tables on page 10-12

 System Defaults Table on page 10-37

 User Metadata Tables (UMD): Histogram Tables on page 10-85

 MXCS Metadata Tables on page 10-95

NonStop SQL/MX stores system metadata for all objects in SQL/MX tables,
automatically creating and maintaining metadata as users create, alter, drop, or update
statistics for SQL/MX objects.

User tables are the tables you typically create as a user. You can modify data in and
alter or drop user tables, and you can grant privileges so that others can access and
change data in your user tables.

NonStop SQL/MX user metadata for histograms is stored in HISTOGRAMS and
HISTOGRAM_INTERVALS SQL/MX tables in each user schema. SQL/MP user
metadata for histograms is stored in the SQL/MP tables HISTOGRM and HISTINTS.
For more information about histograms, see User Metadata Tables (UMD): Histogram
Tables on page 10-85.

User metadata that specifies system default settings for options when you execute
SQL queries are stored in the SYSTEM_DEFAULTS table in schema
SYSTEM_DEFAULTS_SCHEMA. You can modify data in user metadata tables and
grant privileges on user metadata tables. You cannot alter or drop these tables.

System metadata about objects is stored in numerous tables in system schemas. You
cannot modify data directly in the system metadata tables, but they are secured for
PUBLIC SELECT access so that you can query them. The actual owner of the
metadata schemas is an authorization ID specified at the time NonStop SQL/MX is
installed.

In each of the table descriptions that follow:

 An asterisk preceding a column number indicates that the column is part of the
clustering key, which is also called as primary key. Unless otherwise stated, the
primary key is in column number sequence.

 Unless otherwise stated, timestamps are Julian timestamps.

 Unless otherwise stated, character data is stored in uppercase letters except for
character columns that contain delimited identifiers, which are stored as is, but
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-1

Metadata Tables SQL/MX Metadata Catalogs
without the surrounding double quotes, and with two consecutive double quotes
collapsed into one double quote.

 Unless otherwise stated, CHAR(n) in the data type field without a character set
qualifier is associated with the ISO88591 character set. All character types are
searched or sorted with the DEFAULT (binary) collation with the PAD SPACE
characteristic.

For SQL/MX Release 3.2.1, these tables are visible but are not supported and are
reserved for future use:
 EXCEPTION_USAGE
 HISTOGRAM_FREQ_VALS
 MVGROUPS
 MVS
 MVS_COLS
 MVS_JOIN_COLS
 MVS_TABLE_INFO
 MVS_USED
 MVS_TABLE_INFO_UMD
 MVS_USED_UMD
 SCH_PRIVILEGES
 SYNONYM_USAGE

SQL/MX Metadata Catalogs
There is one system catalog per node where NonStop SQL/MX has been initialized.
The system catalog name is NONSTOP_SQLMX_nodename. All metadata tables in
the system catalog are stored on the volume specified as the system metadata volume
during installation. There are six schemas in the system catalog:

 DEFINITION_SCHEMA_VERSION_vernum.
 MXCS_SCHEMA
 SYSTEM_DEFAULTS_SCHEMA
 SYSTEM_SCHEMA
 SYSTEM_SECURITY_SCHEMA
 SYSTEM_SQLJ_SCHEMA

You can create as many user catalogs as you wish on a node. Each will contain a
DEFINITION_SCHEMA_VERSION_vernum schema.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-2

Metadata Tables SQL/MX Metadata Schemas and Tables
SQL/MX Metadata Schemas and Tables

System Schema Tables: Schema SYSTEM_SCHEMA

System metadata to resolve object names is stored in schema, SYSTEM_SCHEMA in
the system catalog NONSTOP_SQLMX_nodename.

There is one system catalog per node where NonStop SQL/MX has been initialized.

This table lists the metadata tables in the system schema:

Definition Schema Tables: Schema
DEFINITION_SCHEMA_VERSION_vernum

Additional system metadata for each object is stored in schema
DEFINITION_SCHEMA_VERSION_vernum in the catalog that contains the object.

NonStop SQL/MX automatically creates this schema and all its tables when you
execute the first CREATE SCHEMA statement for that catalog.

Within system metadata tables, each catalog, schema or object is identified by a
unique ID (UID). A UID is a 64-bit number generated and assigned to the catalog,
schema, or object at the time of creation. A catalog UID is unique within the set of
nodes where that catalog is visible. A schema UID is unique among the set of schemas
in the same catalog. An object UID is unique among the set of objects in the same
catalog.

Note. See the diagrammatic representation of the SQL/MX metadata tables in the SQL/MX
Installation and Management Guide that is applicable for SQL/MX Release 3.2.

1ALL_UIDS Table on page 10-8 UIDs for all objects that have metadata on node

CATSYS Table on page 10-9 Catalogs visible from node

CAT_REFERENCES Table on
page 10-9

Catalog reference information for catalogs visible from
node

SCHEMATA Table on
page 10-10

Schemas in catalog visible from node

SCHEMA_REPLICAS Table on
page 10-11

Replica information for schemas with definitions on node

1. The ALL_UIDS table is present in version 1200 system schema only.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-3

Metadata Tables Definition Schema Tables: Schema
DEFINITION_SCHEMA_VERSION_vernum
This table lists definition schema tables in schema
DEFINITION_SCHEMA_VERSION_vernum of each catalog:

ACCESS_PATHS Table on
page 10-12

Physical instances (a table, index, or a partition) of data
in the catalog

ACCESS_PATH_COLS Table
on page 10-14

Columns in physical instances of data

CK_COL_USAGE Table on
page 10-15

Columns referenced in search conditions of check
constraints

CK_TBL_USAGE Table on
page 10-15

Tables referenced in search conditions of check
constraints

COLS Table on page 10-15 Columns in tables and views

COL_PRIVILEGES Table on
page 10-20

Grant information for columns

DDL_LOCKS Table on
page 10-21

Lock information for controlling concurrent DDL
operations on an object

DDL_PARTITION_LOCKS on
page 10-21

DDL locks being held on partitions

KEY_COL_USAGE Table on
page 10-22

Constraints on key columns

MP_PARTITIONS Table on
page 10-22

Partition names of SQL/MP tables with SQL/MX aliases

OBJECTS Table on page 10-22 Tables, views, indexes, and constraints

PARTITIONS Table on
page 10-24

Partitions in the catalog

REF_CONSTRAINTS Table on
page 10-25

Referential constraints on tables in the catalog

REPLICAS Table on page 10-26 Location of replicas in the catalog

RI_UNIQUE_USAGE Table on
page 10-26

Unique constraints and their referential constraints

ROUTINES Table on
page 10-27

User-defined stored procedures

SEQUENCE_GENERATORS
Table on page 10-28

Contains the Sequence Generator attributes.

SG_USAGE Table on
page 10-29

Represents the usage of Sequence Generator objects by
other objects

TBL_CONSTRAINTS Table on
page 10-29

Constraints on a table

TBL_PRIVILEGES Table on
page 10-30

Grant information for tables

TEXT Table on page 10-32 Text associated with objects

TRIGGERS Table on
page 10-32

Information about triggers
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-4

Metadata Tables System Defaults Tables (User Metadata Tables):
Schema SYSTEM_DEFAULTS_SCHEMA
System Defaults Tables (User Metadata Tables): Schema
SYSTEM_DEFAULTS_SCHEMA

User metadata that specifies system default settings for options and other attributes
when you execute SQL queries are stored in the SYSTEM_DEFAULTS table in the
schema SYSTEM_DEFAULTS_SCHEMA of catalog NONSTOP_SQLMX_nodename.

The InstallSqlmx script automatically creates the SYSTEM_DEFAULTS table with
the system catalog when you install NonStop SQL/MX. For more information, see the
SQL/MX Installation and Management Guide. Although this user metadata table is in a
schema in the system catalog, it is not a system metadata table but rather a user
metadata table with the security of the user who installs NonStop SQL/MX (normally
the Super ID).

This table lists system defaults tables (user metadata tables) in
NONSTOP_SQLMX_nodename.SYSTEM_DEFAULTS_SCHEMA:

MXCS Metadata Tables: Schema MXCS_SCHEMA

This table lists MXCS tables in the MXCS_SCHEMA:

TRIGGERS_CAT_USAGE
Table on page 10-34

How triggers use objects in other catalogs

TRIGGER_USED Table on
page 10-34

Describes how triggers use objects

VWS Table on page 10-35 Views in the catalog

VW_COL_TBL_COLS Table on
page 10-36

Base table columns used in views

VW_COL_USAGE Table on
page 10-36

Columns used in views

VW_TBL_USAGE Table on
page 10-36

Tables referenced by views

System Defaults Table on
page 10-37

Default settings for system options for SQL queries and
SQLCI commands run through MXCI or through an
application.

ASSOC2DS Table on
page 10-95

Associates MXCS service to a data source

DATASOURCES Table on
page 10-96

Data source information

ENVIRONMENTVALUES Table
on page 10-97

Sets, controls and defines environment values
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-5

Metadata Tables Histogram Tables
Histogram Tables

These tables contain histograms that show how data is distributed with respect to a
column or a group of columns within a table. These statistics enable the optimizer to
create efficient access plans.

SQL/MX HISTOGRAM_INTERVALS and HISTOGRAMS tables are created when a
user schema is created. The UPDATE STATISTICS statement inserts data into these
tables. These files are also called user metadata (UMD) tables.

This table lists SQL/MX user metadata tables (UMD) in each user schema:

If you are using SQL/MP tables for your data, there are histogram tables on the
SQL/MP system. SQL/MP HISTOGRM and HISTINTS tables are automatically created
in the same user catalog as the primary partition of the table you specify when you run
the SQL/MX UPDATE STATISTICS statement. They are kept in SQL/MP files. For
more information about SQL/MP metadata, see the SQL/MP Reference Manual.

This table lists SQL/MP histogram tables:

For detailed descriptions of histogram tables, see User Metadata Tables (UMD):
Histogram Tables on page 10-85.

VALIDATEROUTINE: Schema SYSTEM_SQLJ_SCHEMA

This schema contains two stored procedures, VALIDATEROUTINE and
VALIDATEROUTINE2, which are for internal use.

NAME2ID Table on page 10-97 Associates service or data source name to ID

RESOURCEPOLICIES Table
on page 10-98

Governing information

HISTOGRAMS Table on
page 10-87

Columns, interval count, total number of rows and unique
rows, and the low and high values of column distribution
for the table for which the histogram is created

HISTOGRAM_INTERVALS
Table on page 10-89

For each interval of the table for which the histogram is
created, the number of rows and unique rows and the
value of the upper boundary

HISTOGRM Table on
page 10-90

Columns, interval count, total number of rows and unique
rows, and the low and high values of column distribution for
the table for which the histogram is created

HISTINTS Table on
page 10-91

For each interval of the table for which the histogram is
created, the number of rows and unique rows and the value
of the interval upper boundary
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-6

Metadata Tables Security Schema Tables: Schema
SYSTEM_SECURITY_SCHEMA
Security Schema Tables: Schema
SYSTEM_SECURITY_SCHEMA

The SYSTEM_SECURITY_SCHEMA contains system metadata that holds node-wide
security related information.

There is one system security schema per node where NonStop SQL/MX has been
initialized or upgraded with schema version 3100 or later.

This table lists system security schema tables in the NONSTOP_SQLMX_nodename.
SYSTEM_SECURITY_SCHEMA:

MGM_PRIVILEGE
S on page 10-11

Contains information about system and catalog wide privileges.

PRIVILEGED_USE
RS TABLE on
page 10-11

Contains information about the users who are members of security
administrators group.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-7

Metadata Tables System Schema Tables
System Schema Tables

ALL_UIDS Table

ALL_UIDS is a metadata table in NONSTOP_SQLMX_nodename.SYSTEM_SCHEMA
that lists UIDs for all objects that have metadata on the node:

An ALL_UIDS table contains one row per UID that is present in an OBJECTS table on
the local node. Object names that are regular identifiers are stored in uppercase
letters. Object names that are delimited identifiers are stored as is, without surrounding
quotation marks.

All other character columns store letters in uppercase.

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of object

2 SCHEMA_UID LARGEINT UID of schema; link to SCHEMATA

3 OBJECT_NAME CHAR(128) Simple object name

4 OBJECT_NAME_SPACE CHAR(2) Object namespace:
CN Constraint
IX Index
LK Lock
TA Table value object (table, view,
 stored procedure, SQL/MP
 alias)
TR Trigger
TT Trigger temp table

* Indicates primary key

Note. The ALL_UIDS table is not present in schema version 3000 and newer system
schemas.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-8

Metadata Tables CATSYS Table
CATSYS Table

CATSYS is a metadata table in NONSTOP_SQLMX_nodename.SYSTEM_SCHEMA
that describes all catalogs visible from the node:

Catalog names that are regular identifiers are stored in uppercase letters. Catalog
names that are delimited identifiers are stored as is, without surrounding quotation
marks.

All other character columns store letters in uppercase.

CAT_REFERENCES Table

CAT_REFERENCES is a metadata table in
NONSTOP_SQLMX_nodename.SYSTEM_SCHEMA that describes the locations of
catalog references for catalogs visible from the node:

Column Name Data Type Description

*1 CAT_NAME CHAR(128) Catalog name

2 CAT_UID LARGEINT UID for catalog; link to SCHEMATA
and CAT_REFERENCES

3 REPLICATION_RULE CHAR(2) A if automatic schema replication rule
M if manual schema replication rule

4 LOCAL_SMD_VOLUME CHAR(8) Volume where SMD and UMD tables
in this catalog reside on the local
node, including leading “$” sign.

5 LOCAL_USER_SCHEMA_COUNT INT Reserved for future use

6 CAT_OWNER INT Catalog owner’s user ID

* Indicates primary key

Column Name Data Type Description

*1CAT_UID LARGEINT UID for catalog; link to CATSYS

*2 NODE_NAME CHAR(8) Expand node name of node where
the catalog is visible, including
leading “\” (backslash)

3 SMD_VOLUME CHAR(8) Volume where SMD tables reside on
the node, including leading “$”
(dollar sign)

4 REPLICATION_RULE CHAR(2) A if automatic schema replication
rule
M if manual schema replication rule
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-9

Metadata Tables SCHEMATA Table
SCHEMATA Table

SCHEMATA is a metadata table in
NONSTOP_SQLMX_nodename.SYSTEM_SCHEMA that lists all schemas in all
catalogs that are visible on the node.

Column Name Data Type Description

*1 CAT_UID LARGEINT UID of catalog for schema; link to CATSYS

*2 SCHEMA_NAME CHAR(128) Schema name

3 SCHEMA_UID LARGEINT UID of schema; link to OBJECTS

4 SCHEMA_OWNER INT Owner's user ID

5 SCHEMA_VERSION INT Version of schema:

1200 for R2.x
3000 for R3.0
3100 for R3.1
3200 for R3.2

6 SCHEMA_SUBVOLUME CHAR(8) Name of Guardian subvolume where objects
from schema are stored.

7 CURRENT_OPERATION CHAR(2) Specifies if a schema level operation is active
for the schema. Possible values are:
spaces (no operation)
CO a change ownership operation
DC a DOWNGRADE ALL METADATA IN
CATALOG operation
DG a DOWNGRADE ALL METADATA
operation
UC an UPGRADE ALL METADATA IN
CATALOG operation
UG an UPGRADE ALL METADATA operation

8 SOURCE_VERSION INT The version of the schema before the
execution of the operation indicated by the
CURRENT_OPERATION column. Possible
values are:
0 (if no operation is in progress)
1200 for R2.0
3000 for R3.0
3100 for R3.1
3200 for R3.2

9 TARGET_VERSION INT The target version of the operation indicated
by the CURRENT_OPERATION column.
Possible values are:
0 (if no operation is in progress)
3000 for R3.0
1200 for R2.0
3100 for R3.1
3200 for R3.2

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-10

Metadata Tables SCHEMA_REPLICAS Table
Schema names that are regular identifiers are stored in uppercase letters. Schema
names that are delimited identifiers are stored as is, without surrounding quotation
marks.

SCHEMA_REPLICAS Table

SCHEMA_REPLICAS is a metadata table in
NONSTOP_SQLMX_nodename.SYSTEM_SCHEMA that lists locations of all replicas
for all schemas that have definitions on the node.

System Security Schema Tables

MGM_PRIVILEGES

The MGM_PRIVILEGES is a metadata table, introduced in version 3100, stores node-
wide user privileges.

PRIVILEGED_USERS TABLE

The PRIVILEGED_USERS metadata table, introduced in version 3100, consists of
rows of GRANTEE user IDs that are designated as members of a privileged user class

Column Name Data Type Description

*1 SCHEMA_UID LARGEINT UID of schema; link to SCHEMATA

*2 NODE_NAME CHAR(8) Expand node name of node where
replica resides, including leading “\”
(backslash)

* Indicates primary key

Column Name Data Type Description

1 GRANTOR INT Security ID of the grantor.

2 GRANTOR_TYPE CHAR(2) O if grantor is a catalog owner

U if grantor is a Security Administrator

*3 GRANTEE INT Security ID of the grantee.

4 GRANTEE_TYPE CHAR(2) U if user grant.

*5 PRIVILEGE_TYPE CHAR(2) CC if Create Catalog

CS if Create Schema

* 6 TARGET_UID LARGEINT -1 when the privilege type is CC

UID of target catalog, when the privilege type
is CS

7 GRANT_TIMESTAMP LARGEINT Specifies the time when the GRANTOR
granted the privilege to the GRANTEE.

8 IS_GRANTABLE CHAR(2) Reserved for future use.

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-11

Metadata Tables Definition Schema Tables
by the GRANTOR user ID. The timestamp (GRANT_TIME) indicates the date and time
when the GRANTEE was granted the designation contained in the USER_CLASS
column. The set of user IDs in the GRANTEE column can modify the
PRIVILEGED_USERS table. If the table is empty, then the Super ID can modify the
PRIVILEGED_USERS table.

Definition Schema Tables

ACCESS_PATHS Table

ACCESS_PATHS is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that describes physical instances of data in the catalog. Base tables and indexes have
physical instances. The actual locations of the physical instances are described in the
PARTITIONS table.

Column Name Data Type Description

*1 GRANTEE INT User ID of the user belonging to the user class.

*2 GRANTEE_TYPE CHAR(2) U = User

*3 USER CLASS CHAR(2) Denotes the user class.

SA = Security Administrator

4 GRANTOR INT User ID of the user that designated the
GRANTEE as a member of the user class.

5 GRANTOR_TYPE CHAR(2) U = User

6 IS_GRANTABLE CHAR(2) N = Not grantable

7 GRANT_TIME LARGEINT Specifies the Julian timestamp when the
GRANTOR designated (granted) the
GRANTEE as a member of the user class.
This attribute is useful for security auditing pur-
poses.

* Indicates primary key

Column Name Data Type Description

*1 TABLE_UID LARGEINT UID of base table; link to OBJECTS

*2 ACCESS_PATH_UID LARGEINT If path is index, UID of index;
otherwise, UID of base table; link to
PARTITIONS

3 ACCESS_PATH_TYPE CHAR(2) BT Base Table
IX Index

4 COLUMN_COUNT INT Number of rows in table
ACCESS_PATH_COLUMNS directly
associated with this access path
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-12

Metadata Tables ACCESS_PATHS Table
5 UNIQUE_COLUMN_COUNT INT Number of rows in table
ACCESS_PATH_COLUMNS in
unique key for this access path

6 VALID_DATA CHAR(2) Y if valid data
N if not

7 RECORD_SIZE INT Number of bytes in each logical
record

8 UNIQUES CHAR(2) Y if each row in this access path is
 unique
N if not

9 EXPLICIT CHAR(2) Y if user-created index
N if not

10 CLUSTERING_SCHEME CHAR(2) Physical organization of this access
path:
KS if by key

11 PARTITIONING_SCHEME CHAR(2) Partitioning method for this access
path:
N Not partitioned
RP Range partitioned by first key
HP Hash-1 partitioned

12 BLOCK_SIZE INT Number of bytes for disk blocks on
this access path

13 KEY_LENGTH INT Number of bytes in key

14 PARTITIONING_KEY_LENGTH INT Number of bytes in partitioning key

15 LOCK_LENGTH INT Reserved for future use

16 AUDITED CHAR(2) Y if this path is audited
N if not

17 AUDIT_COMPRESS CHAR(2) Y if audit is compressed
N if not

18 CLEAR_ON_PURGE CHAR(2) Y if deleted records are cleared
N if not

19 BUFFERED CHAR(2) Reserved for future use

20 RECORD_PACKED CHAR(2) Reserved for future use

21 DATA_COMPRESSED CHAR(2) Reserved for future use

22 INDEX_COMPRESSED CHAR(2) Y if index blocks are compressed
N if not

23 PACKING_SCHEME INT Reserved for future use

24 PACKING_FACTOR INT Reserved for future use

25 ALL_COLUMNS_INCLUDED CHAR(2) Y if all columns included
N if not

26 ROW_FORMAT CHAR(2) Reserved for future use

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-13

Metadata Tables ACCESS_PATH_COLS Table
In version 1200 schemas, the primary key consists of the ACCESS_PATH_UID
column. In version 3000 and higher version schemas, the primary key consists of the
columns in the following order:

1. TABLE_UID

2. ACCESS_PATH_UID

ACCESS_PATH_COLS Table

ACCESS_PATH_COLS is a metadata table in
DEFINITION_SCHEMA_VERSION_vernum that describes columns within each
access paths for the catalog:

27 INSERT_MODE CHAR(2) Reserved for future use

28 MAX_TABLE_SIZE INT Reserved for future use

29 RESERVED_FILLER_INT INT Reserved for future use

30 RESERVED_FILLER_CHAR CHAR(20) Reserved for future use

31 DISK_POOL INT Reserved for future use

32 NUM_DISK_POOL INT Reserved for future use

* Indicates primary key

Column Name Data Type Description

*1 ACCESS_PATH_UID LARGEINT UID of access path

*2 POSITION_IN_ROW INT Ordinal of column within access path
(first position is 0)

3 COLUMN_NUMBER INT Position within row of base table
(first column is 0)

4 ORDERING CHAR(2) A if ascending order
D if descending order

5 PART_KEY_SEQ_NUM INT Order in partitioning key (0 if not in
key)

6 CLUSTERING_KEY_SEQ_NUM INT Order in clustering key (0 if not in
key)

7 SYSTEM_ADDED_COLUMN CHAR(2) Y if system added the column
N if user added the column

* Indicates primary key

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-14

Metadata Tables CK_COL_USAGE Table
CK_COL_USAGE Table

CK_COL_USAGE is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that lists columns referenced by search conditions of check constraints in the catalog.

CK_TBL_USAGE Table

CK_TBL_USAGE is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that lists tables referenced by search conditions of check constraints in the catalog.

COLS Table

COLS is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that
describes columns in tables and views in the catalog. The COLS table also contains
attributes of the individual parameters of an SPJ, one row per parameter.

Column Name Data Type Description

*1 CONSTRAINT_UID LARGEINT UID of constraint

*2 TABLE_UID LARGEINT UID of table with referenced column

*3 COLUMN_NUMBER INT Column position in table (first column is 0)

4 SELECTS CHAR(2) Y if column is subject of a SELECT query in
 constraint definition
N if not

* Indicates primary key

Column Name Data Type Description

*1 CONSTRAINT_UID LARGEINT UID of constraint

*2 TABLE_UID LARGEINT UID of table with referenced column

* Indicates primary key

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of table, view or stored
procedure

*2 COLUMN_NUMBER INT Logical position within row (first
column is 0)

3 DIRECTION CHAR(2) I if input parameter to stored
 procedure
O if OUTPUT parameter to stored
 procedure
N if INPUT/OUTPUT parameter to
 stored procedure

4 COLUMN_CLASS CHAR(2) S if system-defined
U if user-defined
A if user-defined added column

5 COLUMN_NAME CHAR(128) Column name

6 COLUMN_SIZE LARGEINT Data bytes in column
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-15

Metadata Tables COLS Table
7 SQL_DATA_TYPE CHAR(18) One of these SQL data types:
CHARACTER
DATE
DATETIME
SIGNED DECIMAL
UNSIGNED DECIMAL
DOUBLE
FLOAT
SIGNED INTEGER
INTERVAL
UNSIGNED BP INT
UNSIGNED INTEGER
SIGNED LARGEINT
SIGNED NUMERIC
UNSIGNED NUMERIC
REAL
SIGNED SMALLINT
UNSIGNED SMALLINT
TIME
TIMESTAMP
VARCHAR
LONG VARCHAR

8 CHARACTER_SET CHAR(40) Character set

9 ENCODING CHAR (40) Internal representation of columns
with character data types.

10 COLLATION_SEQUENCE CHAR(40) Collation

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-16

Metadata Tables COLS Table
11 FS_DATA_TYPE INT File system data type. Values are:
0 fixed length ASCII string
64 variable length ASCII string
66 variable length double byte
CHAR
70 MXCS long VARCHAR
130 16 bit signed
131 16 bit unsigned
132 32 bit signed
133 32 bit unsigned
134 64 bit signed
142 32 bit floating-point (IEEE
format)
143 64 bit floating-point (IEEE
format)
150 unsigned decimal
152 leading sign embedded
155 unsigned Bignum (unsigned
numeric > 18 digits>
156 signed Bignum (signed numeric
> 18 digits)
195 years
196 months
197 years and months
198 days
199 hours
200 days and hours
201 minutes
202 hours and minutes
203 days, hours, and minutes
204 seconds
205 minutes and seconds
206 hours, minutes, and seconds
207 days, hours, minutes, and
seconds
208 fractional seconds

12 COL_SCALE INT Scale if numeric; fractional seconds
if datetime or INTERVAL

13 COL_PRECISION INT If numeric, number of digits
If FLOAT, number of digits of binary
precision
If INTERVAL, first field

14 UPSHIFTED CHAR(2) Y if type is CHAR, VARCHAR or PIC
 with UPSHIFT clause
N if not

15 NULL_HEADER_SIZE INT Length of NULL indicator header

16 VARLEN_HEADER_SIZE INT Length of VARCHAR header

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-17

Metadata Tables COLS Table
17 DEFAULT_CLASS CHAR(2) Default defined by:
Blank No default
CD Current default
ND Null default
UD User default
IA Identity Always
ID Identity by default

If CD, the value of the column
depends on its data type:
DATE Current date
TIME Current time
TIMESTAMP Current timestamp

18 LOGGABLE CHAR(2) Reserved for future use

19 DATETIME_START_
FIELD

INT First field if type datetime or
INTERVAL:
1 if year
2 if month
3 if day
4 if hour
5 if minute
6 if second

20 DATETIME_END_FIELD INT Last field if type DATE or INTERVAL;
6 if TIME or TIMESTAMP

21 DATETIME_LEADING_
PRECISION

INT Precision in digits of first field if
INTERVAL

22 DATETIME_TRAILING_
PRECISION

INT Number of digits in fraction (of a
second) if TIME, TIMESTAMP, or
INTERVAL when last field is second

23 DATETIME_QUALIFIER VARCHAR(28) If datetime, text for start and end
fields; blank for other types

24 DEFAULT_VALUE VARNCHAR (240)
CHARACTER SET
UCS2

Column default value. Stored as
Unicode characters.

25 HEADING_TEXT VARCHAR(128) Heading for column.

26 PICTURE_TEXT VARCHAR(64) PIC text if defined by COBOL85 PIC;
blank if datetime or real

27
COLUMN_VALUE_DRIFT_PE
R_DAY

VARCHAR(128) Reserved for future use

28 DATE_DISPLAY_FORMAT VARCHAR(64) Reserved for future use

29
CASE_SENSITIVE_COMPARI
SON

CHAR(2) Case-sensitive comparison, if
character type column.

Y case-sensitive
N case-insensitive

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-18

Metadata Tables COLS Table
Column names that are regular identifiers are stored in uppercase letters. Column
names that are delimited identifiers are stored as is, without surrounding quotation
marks.

All other character columns except DEFAULT_VALUE and HEADING_TEXT store
letters in uppercase.

An IDENTITY column is defined as a part of the DEFAULT clause of column-
definition. Depending on the type of the IDENTITY column either of the following
two values can be present in the DEFAULT_CLASS column:

 IA - Identity Always, system automatically generates the values. User specified
values are not accepted.

 ID - Identity by Default, either the system automatically generates the values, or
the user specifies a value.

30 DISPLAY_DATA_TYPE VARCHAR(128) Reserved for future use

31 RESERVED_FILLER_INT INT Reserved for future use

32
RESERVED_FILLER_CHAR

CHAR(20) Reserved for future use

* Indicates primary key

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-19

Metadata Tables COL_PRIVILEGES Table
COL_PRIVILEGES Table

COL_PRIVILEGES is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that stores grant information for columns in the catalog:

Grant information for all tables is stored separately in the TBL_PRIVILEGES table.

Column Name Data Type Description

*1 TABLE_UID LARGEINT UID of table

*2 COLUMN_NUMBER INT Position within table (first column is 0)

*3 GRANTOR INT Security ID of grantor (or of owner if grantor
is super ID acting for owner)

*4 GRANTOR_TYPE CHAR(2) S if system grant
U if user grant
O if granted as schema owner

*5 GRANTEE INT If GRANTEE_TYPE is U, security ID of
grantee and link to TABLE_PRIVILEGES;
no meaning otherwise

*6 GRANTEE_TYPE CHAR(2) P if public grant
U if user grant
O if granted as schema owner

* 7 PRIVILEGE_TYPE CHAR(2) Privilege type:
S SELECT
I INSERT
D DELETE
U UPDATE
R REFERENCES

8 IS_GRANTABLE CHAR(2) Y if granted with grant option
N if not

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-20

Metadata Tables DDL_LOCKS Table
DDL_LOCKS Table

DDL_LOCKS is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that
is used for control locking of an object so that utility operations in progress are
protected against conflicting DDL or utility operations:

DDL_PARTITION_LOCKS

The DDL_PARTITION_LOCKS table stores information about DDL locks being held on
partitions.

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of lock

2 BASE_OBJECT_UID LARGEINT UID of locked object

3 TIME_LOCK_REQUESTED LARGEINT Lock creation time

4 TIME_LOCK_ALTERED LARGEINT Time when the lock was last altered

5 OPERATION CHAR(2) Utility operation requesting the lock:
CR Concurrent Restore
DP Dup
IM Import
MT Modify table
MI Modify index
PI Populate index
PD PURGEDATA
RC Recover
RS Restore
UM Upgrade all metadata
FS FASTCOPY Source object
FT FASTCOPY Target object
DM Downgrade all metadata

6 STATUS INT Step in the operation

7 PERCENT_COMPLETE INT Reserved for future use

8 PROCESS_CREATE_TIME LARGEINT Time when process was created

9 PROCESS_ID VARCHAR(100) ID of process that requested the
lock

* Indicates primary key

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of a lock.

*2 SYSTEM_NAME CHAR(8) Name of a node. The node name includes the
leading '\' sign.

*3 DATA_SOURCE CHAR(8) Name of a volume. The volume name includes
the leading '$' sign.

*4 FILE_SUFFIX CHAR(18) Subvol and simple name.

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-21

Metadata Tables KEY_COL_USAGE Table
KEY_COL_USAGE Table

KEY_COL_USAGE is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that lists columns on key constraints in the catalog. KEY_COL_USAGE contains one or
more rows for each unique, primary key, or foreign key constraint in the
TBL_CONSTRAINTS table:

MP_PARTITIONS Table

MP_PARTITIONS is a metadata table in DEFINITION_SCHEMA that stores partition
names of SQL/MP tables that have SQL/MX aliases:

OBJECTS Table

OBJECTS is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that
describes tables, views, indexes, constraints, triggers, MP aliases, stored procedures,
locks, and trigger temporary tables.

Column Name Data Type Description

*1 CONSTRAINT_UID LARGEINT UID of constraint

*2 COLUMN_NUMBER INT Position within table (first column is 0)

3 ORDINAL_POSITION INT Position within key (first column is 0)

* Indicates primary key

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of table; link to OBJECTS

2 MPPARTITION_NAME CHAR(36) Name of NonStop SQL/MP partition
system.volume.subvolume.name

* Indicates primary key

Column Name Data Type Description

*1 SCHEMA_UID LARGEINT UID of schema; link to SCHEMATA

*2 OBJECT_NAME CHAR(128) Simple object name

*3 OBJECT_NAME_SPACE CHAR(2) Object namespace:
CN Constraint
IX Index
LK Lock
SG Internal Sequence Generator
TA Table value object (table, view,
 stored procedure, SQL/MP alias)
TR Trigger
TT Trigger temp table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-22

Metadata Tables OBJECTS Table
4 OBJECT_TYPE CHAR(2) Object type:
BT Base table
CC Check constraint
IX Index
LK Lock
MP SQL/MP alias
PV SQL/MP alias to an MP protection
 view
SV SQL/MP alias to an MP shorthand
 view
NN Not null constraint
PK Primary key constraint
RC Referential constraint
TR Trigger object
UC Unique constraint
UR User-defined routine (for
 example, a stored procedure)
VI View

5 OBJECT_UID LARGEINT UID of object

6 CREATE_TIME LARGEINT Julian timestamp of creation time

7 REDEF_TIME LARGEINT Julian timestamp of redefinition time

8 CACHE_TIME LARGEINT Julian timestamp of cache time

9 OBJECT_FEATURE_VERSION INT Feature version of the object.
Starting with SQL/MX Release 3.2, the
value is 3200 for all objects that use
3200 features

10 VALID_DEF CHAR(2) Y if definition valid
N if not

11 OBJECT_SECURITY_CLASS CHAR(2) UM User metadata table
UT User-defined table
SM System metadata table

12 OBJECT_OWNER INT The integer representation of the
owner's authorization ID

13 RESERVED_FILLER_INT INT Reserved for future use

14 RESERVED_FILLER_CHAR CHAR(20) Reserved for future use

15 DROPPABLE CHAR(2) Reserved for future use

16 RCB_VERSION INT The version of the object's Record
Control Block (RCB)

* Indicates primary key

Note. In the definition schema version 3000 and later versions, a unique index called OBJIDX
is defined on the OBJECT_UID column.

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-23

Metadata Tables PARTITIONS Table
Object names that are regular identifiers are stored in uppercase letters. Object names
that are delimited identifiers are stored as is, without surrounding quotation marks.

PARTITIONS Table

PARTITIONS is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that
describes partitions in the catalog. The columns INDEX_LEVEL,
NON_EMPTY_BLOCK_COUNT, and EOF are updated by the UPDATE STATISTICS
statement.

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of partitioned object

*2 SYSTEM_NAME CHAR(8) Name of node with partition
including leading “\” (backslash)

*3 DATA_SOURCE CHAR(8) Name of volume with partition
including leading “$” (dollar sign)

*4 FILE_SUFFIX CHAR(18) Subvolume and simple name of
name of file with partition

5 PARTITION_NAME VARCHAR(128) Name associated with a partition.

6 MAX_SIZE LARGEINT The value of MAXSIZE for the
partition

7 PRI_EXT LARGEINT Primary extent size

8 SEC_EXT LARGEINT Secondary extent size

9 MAX_EXT LARGEINT Maximum extent size

10 INDEX_LEVEL INT Index level of last UPDATE
STATISTICS

11 NON_EMPTY_BLOCK_COUNT INT Number of nonempty blocks at
last UPDATE STATISTICS

12 EOF LARGEINT End of file indication at last
UPDATE STATISTICS

13 PARTITION_STATUS CHAR(2) Status defined by:
AV Available
UO Unavailable, offline
UC Unavailable, corrupt
UD Unavailable, dropped
UR Unavailable, re-created

14 DDL_IN_PROGRESS CHAR(2) Reserved for future use

15 FIRST_KEY VARCHAR(28670) User-specified first key in
normalized form; otherwise,
zero-length. If hash partitioned, a
logical partition number.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-24

Metadata Tables REF_CONSTRAINTS Table
All character columns store letters in uppercase except PARTITION_NAME and
FIRST_KEY.

REF_CONSTRAINTS Table

REF_CONSTRAINTS is a metadata table in
DEFINITION_SCHEMA_VERSION_vernum that describes referential constraints on
tables in the catalog. It links each referential constraint to a unique constraint for the
referenced table.

16 ENCODED_KEY VARCHAR(2732) Internal encoded value of first
key for the partition

17 PARTITION_DROP_TIME LARGEINT Julian timestamp of when the
partition was dropped.

* Indicates primary key

Column Name Data Type Description

*1 CONSTRAINT_UID LARGEINT UID of constraint, link to
TBL_CONSTRAINTS

2 UNIQUE_CONSTRAINT_CAT_UID LARGEINT UID of catalog with referenced
unique constraint

3 UNIQUE_CONSTRAINT_SCH_UID LARGEINT UID of schema with referenced
unique constraint

4 UNIQUE_CONSTRAINT_UID LARGEINT UID of referenced unique
constraint

5 MATCH_OPTION CHAR(2) Reserved for future use

6 UPDATE_RULE CHAR(2) CA CASCADE
RE RESTRICT
NA NO ACTION
SD SET DEFAULT
SN SET NULL

7 DELETE_RULE CHAR(2) CA CASCADE
RE RESTRICT
NA NO ACTION
SD SET DEFAULT
SN SET NULL

* Indicates primary key

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-25

Metadata Tables REPLICAS Table
REPLICAS Table

REPLICAS is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that
stores the locations of views and stored procedures in the catalog.

SYSTEM_NAME, DATA_SOURCE, and FILE_SUFFIX are stored in uppercase letters.

RI_UNIQUE_USAGE Table

RI_UNIQUE_USAGE is a metadata table in
DEFINITION_SCHEMA_VERSION_vernum that links unique constraints in the
catalog with referential constraints that reference them:

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of view

*2 SYSTEM_NAME CHAR(8) Name of node with view label, including
leading “\” (backslash)

*3 DATA_SOURCE CHAR(8) Name of volume with view label,
including leading “$” (dollar sign)

*4 FILE_SUFFIX CHAR(18) Subvolume and simple name of name of
file with view label

* Indicates primary key

Column Name Data Type Description

*1 UNIQUE_CONSTRAINT_UID LARGEINT UID of unique constraint

*2 FOREIGN_KEY_CATALOG_UID LARGEINT UID of referencing catalog

*3 FOREIGN_KEY_SCHEMA_UID LARGEINT UID of referencing schema

*4 FOREIGN_KEY_UID LARGEINT UID of referential constraint

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-26

Metadata Tables ROUTINES Table
ROUTINES Table

ROUTINES is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that
contains SPJ-level attributes, one row for each stored procedure in Java (SPJ) created
in this catalog.

VARCHAR columns store letters as is (not converted to uppercase).

Column Name Data Type Description

*1 UDR_UID LARGEINT UID of procedure object

2 UDR_TYPE CHAR(2) P for procedure

3 LANGUAGE_TYPE CHAR(2) J for Java

4 DETERMINISTIC_BOOL CHAR(2) Y if deterministic
N if not

5 SQL_ACCESS CHAR(2) M=MODIFIES SQL DATA
N=NO SQL
C=CONTAINS SQL
R=READS SQL DATA

6 CALL_ON_NULL CHAR(2) Y (call the SPJ if a parameter
passed to it is null)

7 ISOLATE_BOOL CHAR(2) Y (run in separate process)

8 PARAM_STYLE CHAR(2) J for Java

9 EXTRA_CALL CHAR(2) N (no extra calls)

10 TRANSACTION_ATTRIBUTES CHAR(2) Always RQ (Reserved for future
use)

11 MAX_RESULTS INT Positive values in the range 0–255
appear with SPJ result sets

12 STATE_AREA_SIZE INT Reserved for future use

13 UDR_ATTRIBUTES VARCHAR(128) Reserved for future use

14 EXTERNAL_PATH VARCHAR(256) Value of specified EXTERNAL PATH

15 EXTERNAL_FILE VARCHAR(256) Name of the Java class, possibly
prefixed by a package name

16 EXTERNAL_NAME VARCHAR(128) Simple name of the Java method

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-27

Metadata Tables SEQUENCE_GENERATORS Table
SEQUENCE_GENERATORS Table

SEQUENCE_GENERATORS is a metadata table in
DEFINITION_SCHEMA_VERSION_vernum that contains sequence generator
attributes.

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of sequence generator object

2 SG_TYPE CHAR(2) Sequence generator type:

I - Internal sequence generator

E - External sequence generator

**3 START_VALUE NUMERIC(128,0) Sequence generator start value

**4 INCREMENT NUMERIC(128,0) Increment value for the sequence
generator

5 SQL_DATA_TYPE CHAR(18) SQL data type, same as for the
COLS table

6 FS_DATA_TYPE INTEGER File system data type, same as
for the COLS table

**7 MAX_VALUE NUMERIC(128,0) The maximum value for the
sequence generator

**8 MIN_VALUE NUMERIC(128,0) The minimum value for the
sequence generator

9 CYCLE_OPTION CHAR(2) Y/N indication if the CYCLE
option is used

10 CACHE NUMERIC(128,0) Reserved for future use

11 SG_ORDER CHAR(2) Reserved for future use

12 EXTENDED_PRECISION INTEGER Numeric precision, used inter-
nally when generating sequence
numbers. The possible values are
in the range 18-28

* Indicates primary key

** In versions prior to
SQL/MX Release 3.2, the
data type is LARGEINT
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-28

Metadata Tables SG_USAGE Table
SG_USAGE Table

SG_USAGE is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that
represents the usage of Sequence Generator objects by other objects.

Each SG_USAGE row links a base table with an IDENTITY column to the associated
internal Sequence Generator.

TBL_CONSTRAINTS Table

TBL_CONSTRAINTS is a metadata table in
DEFINITION_SCHEMA_VERSION_vernum that contains one entry for each unique,
primary key, foreign, or check constraint on a table in the catalog:

Column number Column Name Data Type Description

*1 SG_OBJECT_UID LARGEINT Object UID of used SG
object

*2 USING_OBJECT_OB
J_UID

LARGEINT Object UID of using object

*3 SG_CAT_UID LARGEINT Catalog UID of used SG
object

*4 USING_OBJECT_CA
T_UID

LARGEINT Catalog UID of using
object

5 SG_SCH_UID LARGEINT Schema UID of used SG
object

6 USING_OBJECT_SC
H_UID

LARGEINT Schema UID of using
object

* Indicates primary key

Column Name Data Type Description

*1 CONSTRAINT_UID LARGEINT UID of constraint

*2 CONSTRAINT_TYPE CHAR(2) Constraint type:
C Check
F Foreign
P Primary key
U Unique

*3 TABLE_UID LARGEINT UID of table

4 DISABLED CHAR(2) Y if not enforced
N if enforced

5 DROPPABLE CHAR(2) Y if user can drop
N if user cannot drop

6 IS_DEFERRABLE CHAR(2) Reserved for future use

7 INITIALLY_DEFERRABLE CHAR(2) Reserved for future use

8 INDEX_UID LARGEINT If an index supports this constraint, UID
of index; otherwise 0 (zero)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-29

Metadata Tables TBL_PRIVILEGES Table
In version 1200 schemas, the primary key consists of the columns in the following
order:

1. CONSTRAINT_UID

2. CONSTRAINT_TYPE

3. TABLE_UID

In version 3000 and later schemas, the primary key consists of the columns in the
following order:

1. TABLE_UID

2. CONSTRAINT_UID

3. CONSTRAINT_TYPE

TBL_PRIVILEGES Table

TBL_PRIVILEGES is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that stores grant information for tables in the catalog:

9 ENFORCED CHAR(2) Reserved for future use.

10 VALIDATED CHAR(2) Reserved for future use.

11 LAST_VALIDATED LARGEINT Reserved for future use.

* Indicates primary key

Column Name Data Type Description

*1 GRANTOR INT Security ID of grantor (or of owner if grantor
is the super ID acting for owner)

*2 GRANTOR_TYPE CHAR(2) S if system grant
U if user grant
O if granted as schema owner

*3 GRANTEE INT If GRANTEE_TYPE is U, security ID of
grantee and link to COL_PRIVILEGES; no
meaning otherwise

*4 GRANTEE_TYPE CHAR(2) P if public grant
U if user grant
O if grantee is schema owner

*5 TABLE_UID LARGEINT UID of table

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-30

Metadata Tables TBL_PRIVILEGES Table
Grant information for individual columns is stored separately in the COL_PRIVILEGES
table.

All character columns store letters in uppercase except for GRANTOR and GRANTEE.

In version 1200 schemas, the primary key consists of the columns in the following
order:

1. GRANTOR

2. GRANTOR_TYPE

3. GRANTEE

4. GRANTEE_TYPE

5. TABLE_UID

6. PRIVILEGE_TYPE

In version 3000 and later version schemas, the primary key consists of the columns in
the following order:

1. TABLE_UID

2. GRANTOR

3. GRANTOR_TYPE

4. GRANTEE

5. GRANTEE_TYPE

6. PRIVILEGE_TYPE

*6 PRIVILEGE_TYPE CHAR(2) Privilege type:
S SELECT
I INSERT
D DELETE
U UPDATE
R REFERENCES
E EXECUTE (for stored procedures)

7 IS_GRANTABLE CHAR(2) Y if granted with grant option
N if not

* Indicates primary key

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-31

Metadata Tables TEXT Table
TEXT Table

TEXT is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that stores
text for objects in the catalog:

The TEXT table stores text for objects in the catalog such as check constraint text,
view text, or the Java signature of stored procedures in Java (SPJ). The text is stored
in increments of up to 3000 bytes. Text with more than 3000 bytes has multiple entries,
ordered as indicated by the SEQUENCE_NUM column.

The format of a compressed Java signature differs when a stored procedure returns
result sets because the Java parameters representing result sets do not map with any
of the procedure’s SQL parameters.

TRIGGERS Table

TRIGGERS is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that
describes triggers:

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID for object.

*2 OBJECT_SUB_ID INT Value to differentiate between text items
associated with the same object

*3 SEQUENCE_NUM INT 0 if part 1 of text, 1 if part 2 of text, 2 if part
3, and so on

4 TEXT VARCHAR (3000) Text associated with object.

* Indicates primary key

Column Name Data Type Description

*1 TRIGGER_UID LARGEINT UID of trigger object

2 SUBJECT_CATALOG_UID LARGEINT UID of the catalog of the subject
table

3 SUBJECT_SCHEMA_UID LARGEINT UID of the schema of the subject
table

4 SUBJECT_UID LARGEINT UID of the table on which the trigger
is defined

5 ACTIVATION_TIME CHAR(2) Activation time:
B Before
A After

6 OPERATION CHAR(2) Operation that fires the trigger:
I INSERT
D DELETE
U UPDATE

7 GRANULARITY CHAR(2) Granularity:
R Row
S Statement
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-32

Metadata Tables TRIGGERS Table
8 COLUMNS_IMPLICIT CHAR(2) Relevant only for UPDATE trigger:
Y Yes
N No

9 ENABLED CHAR(2) Current status of trigger:
Y if enabled
N if not

10 TRIGGER_CREATED LARGEINT Timestamp of creation of the trigger

* Indicates primary key

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-33

Metadata Tables TRIGGERS_CAT_USAGE Table
TRIGGERS_CAT_USAGE Table

TRIGGERS_CAT_USAGE is a metadata table in
DEFINITION_SCHEMA_VERSION_vernum that describes a trigger's use of objects in
other catalogs (primarily needed for the DROP TRIGGER statement). Triggers can
access objects in different (“foreign”) catalogs than the catalog of the trigger itself.

The primary key consists of the columns in the following order:

1. TRIGGER_UID

2. OTHER_SCHEMA_UID

TRIGGER_USED Table

TRIGGER_USED is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that contains Information on how triggers use objects. It serves three purposes:

 Given a table, return all the triggers of a certain operation that are defined on that
table. Those triggers might be in other catalogs.

 For every local object (table or view), check if a trigger anywhere is using it. This
query also describes how the trigger is using the object (for example, SELECT),
and might be needed to determine if and how a table has been used or modified.

 For an UPDATE trigger on explicit columns in the subject table, only the
TRIGGER_USED table keeps the list of those columns (a row for each column).

Column Name Data Type Description

*1 TRIGGER_UID LARGEINT UID of trigger object

2 OTHER_CATALOG_UID LARGEINT UID of the foreign catalog containing
schemas containing objects used by
this trigger

*3 OTHER_SCHEMA_UID LARGEINT UID of the foreign schema
containing objects used by this
trigger

* Indicates primary key

Column Name Data Type Description

1 TRIGGER_CATALOG_UID LARGEINT UID of trigger's catalog

2 TRIGGER_SCHEMA_UID LARGEINT UID of trigger's schema

*3 TRIGGER_UID LARGEINT UID of trigger object

*4 USED_OBJECT_UID LARGEINT UID of the local object used by the
trigger

*5 USED_COL_NUM INT The column number in
USED_OBJECT_UID. When there
is no specific column, the value is 1.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-34

Metadata Tables VWS Table
The primary key consists of the columns in the following order:

1. USED_OBJECT_UID

2. USED_COL_NUM

3. OPERATION

4. IS_SUBJECT_TABLE

5. TRIGGER_UID

VWS Table

VWS is a metadata table in DEFINITION_SCHEMA_VERSION_vernum that lists
views in the catalog:

Text for views is stored separately in the TEXT table.

Location for views is stored separately in the REPLICAS table.

*6 OPERATION CHAR(2) Operation that fires the trigger
U UPDATE
I INSERT
D DELETE
For the used-object only, the
operation performed on the used
object
S SELECT
R ROUTINE

*7 IS_SUBJECT_TABLE CHAR(2) Y if the USED_OBJECT_UID is the
 subject table of this trigger
N if the USED_OBJECT_UID is
 used only by this trigger

* Indicates primary key

Column Name Data Type Description

*1 OBJECT_UID LARGEINT UID of view

2 CHECK_OPTION CHAR(2) C if CASCADE
L if LOCAL
N if None

3 IS_UPDATABLE CHAR(2) Y if updating allowed
N if not

4 IS_INSERTABLE CHAR(2) Y if inserting allowed
N if not

5 SIMILARITY_CHECK CHAR(2) Y if Similarity Check is enabled

N if not

* Indicates primary key

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-35

Metadata Tables VW_COL_TBL_COLS Table
VW_COL_TBL_COLS Table

VW_COL_TBL_COLS is a metadata table in
DEFINITION_SCHEMA_VERSION_vernum that records the base table columns
referenced by each column of a view in the catalog:

VW_COL_USAGE Table

VW_COL_USAGE is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that records references in views in the catalog to columns of tables or views:

VW_TBL_USAGE Table

VW_TBL_USAGE is a metadata table in DEFINITION_SCHEMA_VERSION_vernum
that records references by views in the catalog to tables or other views:

Column Name Data Type Description

*1 VIEW_UID LARGEINT UID of referencing view

*2 VIEW_COL_NUM INT Column number of referencing column
(first is 0)

*3 UNDERLYING_CAT_UID LARGEINT UID of catalog of referenced table

*4 UNDERLYING_SCH_UID LARGEINT UID of schema of referenced table

*5 UNDERLYING_OBJ_UID LARGEINT UID of referenced table

*6 UNDERLYING_COL_NUM INT Column number of referenced column
(first is 0)

* Indicates primary key

Column Name Data Type Description

*1 USING_VIEW_UID LARGEINT UID of referencing view

*2 USED_CAT_UID LARGEINT UID of catalog of referenced column

*3 USED_SCH_UID LARGEINT UID of schema of referenced column

*4 USED_OBJ_UID LARGEINT UID of object with referenced column

*5 COLUMN_NUMBER INT Column number within object (first is 0)

* Indicates primary key

Column Name Data Type Description

*1 USING_VIEW_UID LARGEINT UID of referencing view

*2 USED_OBJ_UID LARGEINT UID of referenced object

*3 VIEW_CATALOG_UID LARGEINT UID of catalog of referencing view

*4 USED_OBJ_CATALOG_UID LARGEINT UID of catalog of referenced object

5 VIEW_SCHEMA_UID LARGEINT UID of schema of referencing view

6 USED_OBJ_SCHEMA_UID LARGEINT UID of schema of referenced object

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-36

Metadata Tables System Defaults Table
System Defaults Table
SYSTEM_DEFAULTS Table
Overriding System-Defined Default Settings
Default Attributes
Examples of SYSTEM_DEFAULTS Table

SYSTEM_DEFAULTS is a metadata table in the SYSTEM_DEFAULTS_SCHEMA of
catalog NONSTOP_SQLMX_nodename. that you use to store system-level default
settings that override some of the system-defined default settings. NonStop SQL/MX
uses system-defined default settings for attributes that are associated with compiling
and executing queries. The system-defined default settings, which are hard-coded
settings, are optimal under most circumstances. However, in some circumstances, you
might want to override specific system-defined default settings.

To update the SYSTEM_DEFAULTS table, you must be the super ID or a user to
whom the super ID has granted UPDATE privileges. All other users have SELECT
privileges on this table.

SYSTEM_DEFAULTS Table

The SYSTEM_DEFAULTS table remains empty until you insert rows that contain
default settings. This table shows the columns of the SYSTEM_DEFAULTS table:

Overriding System-Defined Default Settings

The values that you insert into the SYSTEM_DEFAULTS table override the
system-defined default settings. The default settings in the SYSTEM_DEFAULTS table
are considered to be system-level default settings because they persist for all sessions
that use that SYSTEM_DEFAULTS table.

You can override a system-defined default setting or a default setting in the
SYSTEM_DEFAULTS table for the current process, or session, by issuing a
CONTROL QUERY DEFAULT statement or a CONTROL TABLE statement.

Column Name Data Type Description

*1 SUBSYSTEM VARCHAR(30) Subsystem name, default SQLMX. This
value must be SQLMX because only this
subsystem is supported in NonStop
SQL/MX.

*2 ATTRIBUTE VARCHAR(100) Attribute name.

3 ATTR_VALUE VARCHAR(1000) Attribute value.

4 ATTR_COMMENT VARCHAR(1000) Comment.

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-37

Metadata Tables Overriding System-Defined Default Settings
For some attributes, you can override a default setting by specifying an option within a
statement or command. For example, you can set the transaction isolation level with
the SELECT statement. If you do not enter an option when entering a command or do
not provide some attribute associated with the execution of queries, NonStop SQL/MX
uses a default setting.

This table shows the lowest (1) to highest (6) order of precedence for different methods
of specifying default settings:

Inserting Values Into the SYSTEM_DEFAULTS Table

The insertions do not affect your current session. You must exit and then reenter the
MXCI session for these values to take effect as system-level default settings. In
addition, the insertions do not affect previously compiled modules. You must recompile
these modules for the values to take effect.

Changes you make through the SYSTEM_DEFAULTS table are permanent until
changed by another UPDATE statement or overridden by a CONTROL QUERY
DEFAULT, CONTROL TABLE, SQL statement, or SET TABLE TIMEOUT statement, as
noted in the previous table.

Using the CONTROL QUERY DEFAULT Statement

Execution of the CONTROL QUERY DEFAULT statement does not change the
contents of the SYSTEM_DEFAULTS table and, therefore, affects only the current
session. See CONTROL QUERY DEFAULT Statement on page 2-60.

If an attribute has a value in the SYSTEM_DEFAULTS table and a CONTROL QUERY
DEFAULT statement is issued for that attribute, the value specified by CONTROL
QUERY DEFAULT takes precedence over the value in the SYSTEM_DEFAULTS table
for the current process.

Method of Specifying Default Settings Scope of the Setting When Applied

1. System-defined default settings
(hard-coded)

System-wide Installation

2. Default settings in
SYSTEM_DEFAULTS table

System-wide Compile time or by
reentering the MXCI
session

3. CONTROL QUERY DEFAULT
statement

Current process Compile time or
immediately in the
MXCI session

4. CONTROL TABLE statement Current process Compile time or
immediately in the
MXCI session

5. SQL statement option Current process Compile time or
immediately in the
MXCI session

6. SET TABLE TIMEOUT statement Current process Run time
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-38

Metadata Tables Default Attributes
Default Attributes

Default attributes control these activities:
Character Set
Constraint Droppable Options
Data Types
Function Control
Histograms
Isolation Level
Locking
Local Autonomy
Metadata Management
Module Management
Nonaudited Tables
Object Naming
Partition Management
Query Optimization and Performance
Query Plan Caching
Referential Action
Row Maintenance
Scratch Disk Management
Sequence Functions
Statement Atomicity
Statement Recompilation
Stored Procedures in Java
Stream Access
Table Management
Trigger Management
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-39

Metadata Tables Default Attributes
This table provides a quick reference to the attributes you can set or override with the
SYSTEM_DEFAULTS table:

Attribute (page 1 of 9) Description Category

ALLOW_DP2_ROW_SAMPLING Determines whether the
sampling is done by the
DP2 or the SQL/MX
Executor.

Query Optimization and
Performance on
page 10-66

ANSI_STRING_FUNCTIONALITY Determines the behavior
of the LPAD and RPAD
functions. A value set to
ON will pad the string with
the specified characters.
A value set to OFF will
replace the string with the
specified characters. For
more information, see
Examples of LPAD and
Examples of RPAD.

Function Control on
page 10-52

ATTEMPT_ASYNCHRONOUS_
ACCESS

Controls no-wait access
for partitions.

Query Optimization and
Performance on
page 10-66

ATTEMPT_ESP_PARALLELISM Controls whether the
optimizer generates and
costs plans that use ESP
parallelism.

Query Optimization and
Performance on
page 10-66

AUTOMATIC_ RECOMPILATION Determines whether a
statement is recompiled if
its access plan is no
longer valid at run time.

Statement
Recompilation on
page 10-78

CACHE_HISTOGRAMS Controls whether the
optimizer caches
histograms.

Histograms on
page 10-52

CACHE_HISTOGRAMS_
REFRESH_INTERVAL

Controls interval at which
histograms are refreshed.

Histograms on
page 10-52

CATALOG Default ANSI catalog
name.

Object Naming on
page 10-60

CHECK_CONSTRAINT_PRUNING Controls the check
constraints pruning
optimization.

Query Optimization and
Performance on
page 10-66

CREATE_DEFINITION_SCHEMA_V
ERSION

Assigns schema version
to new schemas.

Metadata Management
on page 10-59

CROSS_PRODUCT_CONTROL Determines whether plans
are eliminated that contain
unnecessary
cross-products.

Query Optimization and
Performance on
page 10-66
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-40

Metadata Tables Default Attributes
DATA_FLOW_OPTIMIZATION Controls whether query
plans are considered that
have high data flow rates.

Query Optimization and
Performance on
page 10-66

DDL_DEFAULT_ LOCATIONS Specifies the physical
location of the primary
partition to be created by
CREATE statements that
do not specify a
LOCATION clause.

Partition Management
on page 10-63

DDL_VIEW_SIMILARITY_CHECK Specifies whether views
by default are created with
Similarity Check enabled
or disabled.

Query Optimization and
Performance on
page 10-66

DEF_MAX_HISTORY_ ROWS Default for number of
rows the SEQUENCE BY
operator keeps in its
history buffer.

Sequence Functions on
page 10-77

DEFAULT_BLOCKSIZE on
page 10-81

enables you to change the
default behavior when
database objects are
created that do not specify
a BLOCKSIZE.

Table Management on
page 10-81

DOOM_USERTRANSACTION Controls whether NonStop
SQL/MX dooms a
transaction when it
encounters an
unrecoverable error.

Statement Atomicity on
page 10-78

DP2_CACHE_4096_BLOCKS Specifies blocks allocated
for disk cache.

Query Optimization and
Performance on
page 10-66

DYNAMIC_HISTOGRAM_
COMPRESSION

Reduces the number of
histogram intervals for
histograms of base table
columns when those
histograms are read from
disk.

Histograms on
page 10-52

FFDC_DIALOUTS_FOR_MXCMP Controls whether FFDC
dial-outs should occur
when the compiler
terminates abnormally or
detects an internal error.

Query Optimization and
Performance on
page 10-66

FLOATTYPE Controls whether the
output of FLOAT data
types should be treated as
Tandem FLOAT or IEEE
FLOAT.

Data Types on
page 10-51

Attribute (page 2 of 9) Description Category
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-41

Metadata Tables Default Attributes
GENERATE_EXPLAIN Controls whether
EXPLAIN output is
generated.

Query Optimization and
Performance on
page 10-66

GEN_EIDR_BUFFER_SIZE Buffer size for partition
access.

Query Optimization and
Performance on
page 10-66

GEN_MAX_NUM_PART_
DISK_ENTRIES

Controls the size of a
partition list prepared by
the compiler and used by
the executor.

Partition Management
on page 10-63

GEN_MAX_NUM_PART_
NODE_ENTRIES

Controls the size of a
partition list prepared by
the compiler and used by
the executor.

Partition Management
on page 10-63

GEN_PA_BUFFER_SIZE Buffer size for partition
access.

Query Optimization and
Performance on
page 10-66

HIST_DEFAULT_SEL_FOR_
LIKE_WILDCARD

Specifies the selectivity
factor used by the
optimizer for LIKE
predicates where the
matched pattern starts
with a wildcard.

Histograms on
page 10-52

HIST_DEFAULT_SEL_FOR_
PRED_RANGE

Specifies the selectivity
factor used by the
optimizer for range
predicates when current
histogram statistics do not
exist.

Histograms on
page 10-52

HIST_JOIN_CARD_ LOWBOUND Controls join cardinality. Histograms on
page 10-52

HIST_NO_STATS_REFRESH_
INTERVAL

Controls the interval at
which default statistics are
refreshed.

Histograms on
page 10-52

HIST_NO_STATS_ROWCOUNT Estimated row count when
histogram statistics do not
exist.

Histograms on
page 10-52

HIST_NO_STATS_UEC Estimated unique entry
count (UEC) when
histogram statistics do not
exist.

Histograms on
page 10-52

HIST_PREFETCH Determines if histograms
are prefetched for
caching.

Histograms on
page 10-52

Attribute (page 3 of 9) Description Category
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-42

Metadata Tables Default Attributes
HIST_ROWCOUNT_
REQUIRING_STATS

Minimum row count that
determines when
warnings are issued to
update statistics.

Histograms on
page 10-52

HIST_SAME_TABLE_PRED_
REDUCTION

Controls overlap amount
in predicate selectivity
when multicolumn
predicates are used.

Histograms on
page 10-52

HIST_SCRATCH_VOL Sets the physical volume
for UPDATE STATISTICS
temporary tables.

Histograms on
page 10-52

HIST_SECURITY_WARNINGS Controls whether
warnings on histogram
tables are displayed.

Histograms on
page 10-52

INDEX_ELIMINATION_LEVEL Indicates the degree of
heuristic elimination of
indexes consideration by
the optimizer.

Query Optimization and
Performance on
page 10-66

 INFER_CHARSET Enable character set
inference for ODBC 2.X.

Character Set on
page 10-49

INSERT_VSBB Controls method of
inserting rows into a table.

Row Maintenance on
page 10-75

INTERACTIVE_ACCESS Determines whether the
compiler selects index-
based access plans.

Statement
Recompilation on
page 10-78

ISOLATION_LEVEL Default transaction
isolation level.

Isolation Level on
page 10-56

IUD_NONAUDITED_
INDEX_MAINT

Controls whether NonStop
SQL/MX allows insert/
update/delete operations
on nonaudited tables that
require index
maintenance.

Nonaudited Tables on
page 10-60

JOIN_ORDER_BY_USER Enables or disables join
order you specify in the
FROM clause of a query.

Query Optimization and
Performance on
page 10-66

MATERIALIZE Default for whether inner
tables of join operations
with streams are
materialized.

Stream Access on
page 10-80

MAX_ESPS_PER_CPU_PER_OP Maximum number of
ESPs the optimizer
considers starting for each
CPU for a given operator.

Query Optimization and
Performance on
page 10-66

Attribute (page 4 of 9) Description Category
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-43

Metadata Tables Default Attributes
MAX_ROWS_LOCKED_
FOR_STABLE_ACCESS

Maximum number of rows
that are locked in STABLE
ACCESS mode.

Locking on page 10-57

MDAM_SCAN_METHOD Enables or disables the
MultiDimensional Access
Method.

Query Optimization and
Performance on
page 10-66

MEMORY_USAGE_SAFETY_NET Specifies the MXCMP
memory threshold in
megabyte.

Query Optimization and
Performance on
page 10-66

MIN_MAX_OPTIMIZATION Enables or disables MIN-
MAX optimization.

Query Optimization and
Performance on
page 10-66

MP_SUBVOLUME Default NonStop operating
system Guardian
subvolume.

Object Naming on
page 10-60

MP_SYSTEM Default NonStop operating
system Guardian system
name.

Object Naming on
page 10-60

MP_VOLUME Default NonStop operating
system Guardian volume.

Object Naming on
page 10-60

MSCF_ET_REMOTE_MSG_
TRANSFER

Factors in the cost of
transferring messages to
and from a remote node.

Query Optimization and
Performance on
page 10-66

MULTIUNION Controls the MultiUnion
operator.

Query Optimization and
Performance on
page 10-66

MXCMP_PLACES_LOCAL_
MODULES

Determines where
globally placed modules
are generated.

Module Management
on page 10-59

NAMETYPE Default for the use of
three-part logical names
(ANSI) or four-part
Guardian names (NSK).

Object Naming on
page 10-60

NATIONAL_CHARSET Default character set for
the use of NCHAR.

Character Set on
page 10-49

NOT_NULL_CONSTRAINT_
DROPPABLE_OPTION

Default for DROPPABLE
(ON) or NOT
DROPPABLE for NOT
NULL constraint.

Constraint Droppable
Options on page 10-50

NUMBER_OF_USERS Number of users that can
run concurrent queries
that use large amounts of
memory.

Query Optimization and
Performance on
page 10-66

Attribute (page 5 of 9) Description Category
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-44

Metadata Tables Default Attributes
OLT_QUERY_OPT Enables a fast path
evaluation method for
certain simple SQL
queries.

Query Optimization and
Performance on
page 10-66

OPTIMIZATION_LEVEL Controls increasing effort
in optimizing queries.

Query Optimization and
Performance on
page 10-66

OPTS_PUSH_DOWN_DAM Controls whether NonStop
SQL/MX considers push-
down plans.

Query Optimization and
Performance on
page 10-66

PARALLEL_NUM_ESPS Maximum number of
parallel ESPs that work on
a particular type of
operator, like a join.

Query Optimization and
Performance on
page 10-66

PM_OFFLINE_ TRANSACTION_
GRANULARITY

Number of rows to be
copied in an offline
MODIFY transaction.

Partition Management
on page 10-63

PM_ONLINE_ TRANSACTION_
GRANULARITY

Number of rows to be
copied in an online
MODIFY transaction.

Partition Management
on page 10-63

POS_LOCATIONS Controls location of
partitions to be
automatically created.

Partition Management
on page 10-63

POS_NUM_OF_PARTNS Controls number of
partitions to be
automatically created.

Partition Management
on page 10-63

POS_RAISE_ERROR Determines whether error
should be displayed.

Partition Management
on page 10-63

PREFERRED_PROBING_
ORDER_FOR_NESTED_JOIN

Controls whether rows of
the inner table must be
read in key order of the
access path.

Query Optimization and
Performance on
page 10-66

PRESERVE_MIN_SCALE Allows you to preserve
minimum scale in a result
when the precision
exceeds 18.

Function Control on
page 10-52

PRIMARY_KEY_CONSTRAINT_
DROPPABLE_OPTION

Default for DROPPABLE
(ON) or NOT
DROPPABLE for
PRIMARY KEY constraint.

Constraint Droppable
Options on page 10-50

Attribute (page 6 of 9) Description Category
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-45

Metadata Tables Default Attributes
QUERY_CACHE Controls the maximum
amount of memory that
the SQL/MX compiler is
allowed to use for holding
the cached plans of
previously compiled
queries.

Query Plan Caching on
page 10-73

QUERY_CACHE_MAX_VICTIMS Limits the number of
entries that an unusually
large query plan is
allowed to displace from
the cache.

Query Plan Caching on
page 10-73

QUERY_CACHE_REQUIRED_
PREFIX_KEYS

Determines how many
and which columns of a
composite primary or
partition key are required
for an equality key
predicate to be
considered cacheable.

Query Plan Caching on
page 10-73

QUERY_CACHE_STATEMENT_
PINNING

Controls the pinning and
unpinning of query cache
entries.

Query Plan Caching on
page 10-73

READONLY_CURSOR Controls whether FOR
UPDATE is required for
cursor declarations for
columns to be updatable.

Row Maintenance on
page 10-75

RECOMPILE_ON_
PLANVERSION_ERROR

Determines whether a
statement is recompiled if
its access plan is no
longer valid at run time
due to versioning errors.

Statement
Recompilation on
page 10-78

RECOMPILATION_ WARNINGS Determines whether a
warning is returned when
a statement is dynamically
recompiled.

Statement
Recompilation on
page 10-78

REF_CONSTRAINT_NO_
ACTION_LIKE_RESTRICT

Determines how NonStop
SQL/MX handles
referential action in
ALTER TABLE and
CREATE TABLE
statements.

Referential Action on
page 10-75

REMOTE_ESP_ALLOCATION Identifies the scope the
optimizer considers when
determining the active
systems.

Query Optimization and
Performance on
page 10-66

Attribute (page 7 of 9) Description Category
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-46

Metadata Tables Default Attributes
SAVE_DROPPED_TABLE _DDL Controls whether
definitions of dropped
tables or partitions are
saved, to enable them to
be recovered.

Table Management on
page 10-81

SCHEMA Default ANSI schema
name.

Object Naming on
page 10-60

SCRATCH_DISKS Restricts scratch disks for
sort operations to the
volumes specified.

Scratch Disk
Management on
page 10-76

SCRATCH_DISKS_ EXCLUDED Excludes certain volumes
from being used as
scratch disks for sort
operations.

Scratch Disk
Management on
page 10-76

SCRATCH_DISKS_ PREFERRED Volumes preferred as
scratch disks for sort
operations.

Scratch Disk
Management on
page 10-76

SCRATCH_FREESPACE_
THRESHOLD_PERCENT

Amount of scratch space
left on disks as a
threshold.

Scratch Disk
Management on
page 10-76

SIMILARITY_CHECK Determines whether
similarity checks are
made to either keep or
recompile an access plan.

Statement
Recompilation on
page 10-78

SKIP_UNAVAILABLE_PARTITION controls whether SQL
continues to process a
query when a partition
required by the access
plan of the query is
unavailable.

Local Autonomy on
page 10-58

SORT_MAX_HEAP_SIZE_MB Allocates a default value
to the heap memory size
for operations involving
the sort operator.

Query Optimization and
Performance on
page 10-66

STREAM_TIMEOUT Default time for a fetch
operation using stream
access to wait for more
rows before timing out.

Stream Access on
page 10-80

TABLELOCK Default when table locks
are used.

Locking on page 10-57

TEMPORARY_TABLE_
HASH_PARTITIONS

Specifies partitioning for
trigger temporary tables.

Trigger Management on
page 10-83

Attribute (page 8 of 9) Description Category
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-47

Metadata Tables Default Attributes
For more information, see the description for the individual attribute.

TIMEOUT Default time to wait for a
lock before NonStop
SQL/MX returns a timeout
error.

Locking on page 10-57

UNION_TRANSITIVE_PREDICATE
S

Controls the union
transitive predicates.

Query Optimization and
Performance on
page 10-66

UDR_JAVA_OPTIONS Specifies JVM startup
options for the Java
environment of an SPJ.

Stored Procedures in
Java on page 10-80

UPD_ORDERED Controls whether rows
must be inserted,
updated, or deleted in
clustering key order.

Query Optimization and
Performance on
page 10-66

UPD_ABORT_ON_ERROR Controls whether an
update, insert, or delete
function is aborted if an
error occurs.

Statement Atomicity on
page 10-78

UPD_SAVEPOINT_ON_ERROR Controls whether DP2
savepoints should be
used and if the transaction
should be aborted in case
of an error.

Statement Atomicity on
page 10-78

VARCHAR_PARAM_
DEFAULT_SIZE

Controls the allowable
length of an untyped
parameter, which is typed
as VARCHAR during the
compilation of a query.

Table Management on
page 10-81

ZIG_ZAG_TREES Enables or disables the
optimizer to consider zig-
zag trees in addition to
linear trees.

Query Optimization and
Performance on
page 10-66

Attribute (page 9 of 9) Description Category
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-48

Metadata Tables Character Set
Character Set

This attribute determines the default for the character set:

Attribute Setting

INFER_CHARSET When set to ON, the parser does not consider the
character set of literals. However, the binder decides
the character set depending on the context. The default
value for this attribute is OFF for MXCI and ON for
ODBC/MX and JDBC/MX.

For example:

>>create table infchar(i CHAR(10)
character set ucs2);
--- SQL operation complete.

>>insert into infchar values('abc');

 *** ERROR[4039] Column I is of type
CHAR(10) CHARACTER SET UCS2,
incompatible with the value's type,
CHAR(3) CHARACTER SET ISO88591.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-49

Metadata Tables Constraint Droppable Options
Constraint Droppable Options

These table entries describe settings that enable NonStop SQL/MX to ensure that the
defaults for certain constraints are set to NOT DROPPABLE:

 *** ERROR[8822] The statement was not
prepared.

>>control query default infer_charset
'on';

--- SQL operation complete.

>>insert into infchar values('abc');

--- 1 row(s) inserted.

NATIONAL_CHARSET Displays the national character set ISO88591, UCS2,
KANJI, or KSC5601 used in NCHAR and NCHAR
VARYING columns. The national character set also
governs the interpretation of the character string literal
N'string'.

You select the national character set when you install
NonStop SQL/MX by using the -n option of the
InstallSqlmx script. If you specify KANJI or
KSC5601 and later attempt to create an SQL/MX table
with an NCHAR column, you will receive an error
message because SQL/MX tables do not support the
KANJI or KSC5601 character sets. If you do not specify
a value for the -n option, the national character set
defaults to UCS2.

For more information about setting the national
character set from the InstallSqlmx script, see the
SQL/MX Installation and Management Guide.

For more information about the use of the N'string'
literal, see Character String Literals on page 6-64.

For more information about the use of the NCHAR
keyword, see Character String Data Types on
page 6-22.

Attribute Setting

NOT_NULL_CONSTRAINT_
DROPPABLE_OPTION

Set to ON (DROPPABLE) or OFF (NOT DROPPABLE).
This option is used if DROPPABLE or NOT
DROPPABLE does not appear in the definition of a NOT
NULL column constraint.
The default is OFF.

PRIMARY_KEY_CONSTRAINT_
DROPPABLE_OPTION

Set to ON (DROPPABLE) or OFF (NOT DROPPABLE).
This option is used if DROPPABLE or NOT
DROPPABLE does not appear in the definition of a
PRIMARY KEY constraint.
The default is OFF.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-50

Metadata Tables Data Types
These settings affect the way NonStop SQL/MX processes NOT NULL and PRIMARY
KEY constraints, as follows:

 If a column is defined with the NOT NULL NOT DROPPABLE constraint, the
executor does not check for null—thereby improving performance of updates and
inserts. The NOT NULL NOT DROPPABLE constraint also eliminates the need for
a null indicator, which reduces space requirements.

 If a column or a column list within a table is defined with the PRIMARY KEY NOT
DROPPABLE constraint, the primary key column or column list can be used as a
storage key—the most efficient method for partitioning by values of a unique key.
In this case, a separate index is not required for the primary key.

Data Types

This attribute controls whether the output of dynamic SELECT statements and dynamic
parameters that are FLOAT data types should be treated as Tandem FLOAT format or
IEEE FLOAT format:

Attribute Setting

FLOATTYPE Set to IEEE or TANDEM.
The default is TANDEM.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-51

Metadata Tables Function Control
Function Control

This attribute controls how NonStop SQL/MX handles functions:

Histograms

These attributes enable NonStop SQL/MX to improve performance of query execution
by ensuring defaults for histogram statistics:

Attribute Setting

PRESERVE_MIN_SCALE An arithmetic operation on numeric columns might
give a wrong result. If the result value exceeds the
allowed numeric limit, the precision is truncated to
18.
PRESERVE_MIN_SCALE allows you to preserve
minimum scale in a result when the precision
exceeds 18.
Allowable values: 0 to 18
The default is 0.

ANSI_STRING_FUNCTIONALITY This CQD determines whether the behavior of SQL
string functions is in accordance with the ANSI
standards.

When set to ON, the SQL string functionality is in
accordance with ANSI standards. When set to OFF,
the SQL string functionality might not be according to
ANSI standards.

This CQD is applicable only for the LPAD and RPAD
string functions. For more information about these
functions, see LPAD Function on page 8-99 and
RPAD Function on page 8-150.

The default is OFF.

Attribute Setting

CACHE_HISTOGRAMS Set to ON or OFF. When set to ON, NonStop SQL/MX
caches the histogram so that it can be retrieved from the
cache rather than from the disk for future queries on the
same table. Histogram caching provides faster access to
histograms. This attribute significantly reduces compile
time for less complex queries.
If OFF, histograms cached previously are flushed from
cache, and histograms for every query are loaded from
the disk. When CACHE_HISTOGRAMS is turned ON
again, histograms are reloaded, and NonStop SQL/MX
caches them again.
The attribute HIST_PREFETCH on page 10-54 also
relates to histogram caching.
The default is ON.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-52

Metadata Tables Histograms
CACHE_HISTOGRAMS_
REFRESH_INTERVAL

Controls the time interval, in seconds, at which
histograms in the histogram cache are refreshed. This is
the maximum time a histogram in the cache can be out
of date.
Allowable values: 0 through 4294967295.
The default value is 3600 seconds.

DYNAMIC_HISTOGRAM_
COMPRESSION

Set to ON or OFF. When set to ON, NonStop SQL/MX
reduces compile time by reducing the number of
histogram intervals. Histogram interval reduction has
more affect on complex queries, especially if the
underlying data distribution is evenly distributed.
The compiler reduces the number of histogram intervals
for columns containing numeric data types and
nonnumeric data type columns only if there is no join or
range predicate.
The default is ON.

HIST_DEFAULT_SEL_FOR_
LIKE_WILDCARD

Specifies the selectivity factor used by the optimizer for
LIKE predicates where the matched pattern starts with a
wildcard, for example, the predicate (user_email LIKE
'%.net'). The value is expressed as a percentage so that
.10 is 10 percent and .333 is 33.3 percent.
Allowable values: 0 through 1.
The default value is 0.10.

HIST_DEFAULT_SEL_FOR_
PRED_RANGE

Specifies the selectivity factor used by the optimizer for
range predicates when current histogram statistics do not
exist. This default is also used for the selectivity of range
predicates involving host variables or parameters, for
example, the predicate (quantity > ?p1). The value is
expressed as a percentage so that .333 is 30 percent.
Allowable values: 0 through 1.
The default value is 0.333.

HIST_JOIN_CARD_
LOWBOUND

NonStop SQL/MX uses certain assumptions about the
relationship between columns from different tables that
are involved in a join. In case of insufficient multicolumn
statistics, these assumptions might result in
underestimating the join cardinality result. The estimated
cardinality of the join should not be less than a
percentage of the cardinality of the smallest table
involved in the join. This default specifies this percentage
or fraction value.
Allowable values: 0 through 1.
The default value of 1.0 corresponds to a join cardinality
lower bound equal to 100 percent of the cardinality of the
smallest table in the join.
A value of 0 means that there is no lower bound limit
applied to the join cardinality.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-53

Metadata Tables Histograms
HIST_NO_STATS_REFRESH_
INTERVAL

Specifies the time interval, in seconds, at which default
statistics are refreshed. Default statistics are compiler
generated statistics for tables for which no UPDATE
STATISTICS has been performed.
You can change the value of
HIST_NO_STATS_REFRESH_INTERVAL if you do
frequent inserts and deletes on such tables, for example,
a temporary table. If you set this value to 0, default
statistics are never cached, and new default statistics are
generated by the compiler for every statement, based on
the current tables' sizes.
Allowable values: 0 through 4294967295.
The default value is 3600 seconds.

HIST_NO_STATS_ROWCOUNT Estimated row count when current histogram statistics do
not exist for a table. Used with HIST_NO_STATS_UEC.
Adjust these settings when the query execution plan
shows that costing values are incorrect because of a lack
of statistics on a table involved in the query.
Allowable values: 1 through 3.402823466E+38.
The default is 100 rows.

HIST_NO_STATS_UEC Estimated unique entry count (UEC) when current
histogram statistics do not exist. Used with
HIST_NO_STATS_ROWCOUNT.
HIST_NO_STATS_UEC must be less than or equal to
HIST_NO_STATS_ROWCOUNT.
Allowable values: 1 through 3.402823466E+38.
The default value is 2.

HIST_PREFETCH Set to ON or OFF. When set to ON, NonStop SQL/MX
determines if histograms are prefetched for caching. The
compiler fetches histograms for all the columns of a table
and places them in the cache to improve optimizer
performance. The CACHE_HISTOGRAMS attribute must
be set to ON for histograms to be prefetched.
If OFF, histograms are cached only for columns of a table
that is involved in a statement.
The default setting is ON.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-54

Metadata Tables Histograms
HIST_ROWCOUNT_
REQUIRING_STATS

Row count that determines when SQLCODE 6007/6008
warnings are issued, which mean statistics have not
been updated for all table columns in a query. Only
columns from tables that have more rows than this count
force these warnings. To avoid these warnings, set this
value to a very large number, provided no tables exist
with that number of rows in the database.
If a file is fragmented, NonStop SQL/MX cannot estimate
an accurate row count, and you can receive warning
6008 even if you have set this value to a very large
number. You should execute UPDATE STATISTICS to
make its histogram information current.
The default is 50000 rows. Allowable values: 1 to
3.402823466E+38.

HIST_SAME_TABLE_PRED_
REDUCTION

Controls the amount of overlap in predicate selectivity.
Set to a value between 0 (no overlap) and 1 (complete
overlap). Affects plans that have multiple predicates on
the same table, where multicolumn statistics are not
available for the columns in the predicates.
The default is 0.0. Allowable values: 0 to 1.

HIST_SCRATCH_VOL Sets the physical volumes used tor UPDATE
STATISTICS temporary files, specified as ‘$volume’
with the volume name or names enclosed in single
quotes.You may specify multiple locations separated by
commas. Every volume specified in the list must be
unique.
NonStop SQL/MX will calculate how many partitions are
needed based on the sample set retrieved by the
SAMPLE option. If NonStop SQL/MX determines that it
needs more disks than you specified in that option, it will
use all the disks you list for this attribute.

You may create as many partitions as there are CPUs on
the local node.

You should distribute the partitions evenly across the
CPUs on the local node. That is, specify volumes so that
the first volume in the list is controlled by CPU0, the
second volume is controlled by CPU1, the third volume is
controlled by CPU2, the fourth volume is controlled by
CPU3, and so on.

Only SQL/MX temporary tables may be hash partitioned.
If you specify more than one volume for a SQL/MP
temporary table, only the first volume will be used.

The default is a blank. If you do not set this value,
NonStop SQL/MX uses the default volume specified by
the _DEFAULTS define for SQL/MX tables, and the
volume of the table’s primary partition for SQL/MP tables.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-55

Metadata Tables Isolation Level
For more information about histogram statistics, see the SQL/MX Query Guide.

Isolation Level

This attribute determines how NonStop SQL/MX assigns transaction isolation levels:

Transaction isolation levels are determined according to rules applied in this order:

1. If you specify an access option explicitly in a DML statement, the SQL/MX compiler
compiles the statement with the access option. This access option overrides the
isolation level of any containing transactions.

2. If there are no individual statement access options and you issue a SET
TRANSACTION ISOLATION LEVEL statement, the SQL/MX compiler uses the
setting determined by this SET TRANSACTION statement as the isolation level for
the next transaction. See SET TRANSACTION Statement on page 2-376.

3. If you do not specify a SET TRANSACTION statement and you issue a CONTROL
QUERY DEFAULT ISOLATION_LEVEL statement, the CONTROL QUERY
DEFAULT statement determines the isolation level.

4. If you do not issue a CONTROL QUERY DEFAULT ISOLATION_LEVEL
statement, NonStop SQL/MX uses the ISOLATION_LEVEL setting in the
SYSTEM_DEFAULTS table if it exists.

5. If you do not specify isolation-level settings, NonStop SQL/MX uses the system-
defined isolation level, which is READ COMMITTED.

HIST_SECURITY_WARNINGS Controls whether MXCMP displays a warning if the user
does not have access permissions to statistics tables and
the user table's estimated rowcount is greater than the
HIST_ROWCOUNT_REQUIRING_STATS value.
If set to ON, the compiler reports this warning.
If set to OFF, the compiler does not report a warning.
The default is ON.

Attribute Setting

ISOLATION_LEVEL The isolation level for a transaction. Set to:

READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

The default is READ COMMITTED. See Transaction Isolation
Levels on page 1-23.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-56

Metadata Tables Locking
Locking

These attributes determine how NonStop SQL/MX locks objects:

If you issue a CONTROL TABLE statement for the TABLELOCK or TIMEOUT option,
the specified control table value overrides the system-defined default setting. See
CONTROL TABLE Statement on page 2-74.

Attribute Setting

MAX_ROWS_LOCKED_
FOR_STABLE_ACCESS

The maximum number of rows locked by DP2 in STABLE
ACCESS mode before the buffer is returned to the file system.
The number of rows which are actually locked depends on this
number and the size of the buffer. To increase concurrency, you
can decrease this value so that more messages are used to
return the same amount of data.
The default value is 1.

TABLELOCK Set to SYSTEM, ON, or OFF to indicate whether the system
determines when table locks are to be used for accessing the
table or view (SYSTEM), table locks are always used (ON), or
table locks are not used (OFF).

The default is SYSTEM.

For more information on table locks, see Database Integrity and
Locking on page 1-11.

TIMEOUT The time in hundredths of seconds to wait for a lock before
returning an error. The range of values you can enter is from -1 to
2147483647. The value -1 directs NonStop SQL/MX not to time
out. The value 0 directs NonStop SQL/MX not to wait for a table
lock. If the lock cannot be acquired, an error is returned
immediately.

The default is 6000 in hundredths of seconds, which is equivalent
to 60 seconds.

This default is valid for compile-time timeout. For run-time
timeout, see the SET TABLE TIMEOUT Statement on
page 2-372.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-57

Metadata Tables Local Autonomy
Local Autonomy

This attribute controls how SQL/MX handles local autonomy:

Attribute Setting

SKIP_UNAVAILABLE_PARTITIO
N

This attribute provides local autonomy for certain
situations by directing SQL/MX to continue processing a
query even if partitions required for the access plan of
the query are not available. This attribute applies to
partitioned tables, but affects only the main query in a
SELECT statement without INTO clause. (SQL always
stops processing and returns an error when a required
partition is unavailable for a SELECT statement in the
search condition of UPDATE or DELETE statement, or
any other DDL or DML statement.)

If set to ON, SQL/MX continues processing the query
even if one or more partitions required for the query
plan are not available. A warning message is displayed
for each partition that is unavailable. For certain simple
SQL queries, such as, single table unique select,
SQL/MX enables Online Transaction (OLT) optimization.
In such cases, this CQD has no impact. For more
information about OLT optimization, see the SQL/MX
query guide.

If set to OFF, an error is displayed indicating that
partition is not available.

The default setting is OFF.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-58

Metadata Tables Metadata Management
Metadata Management

This attribute enables NonStop SQL/MX to manage metadata:

Module Management

This attribute determines where globally placed modules are generated:

Attribute Setting

CREATE_DEFINITION_SCHEM
A_VERSION

Assigns a schema version to new schemas during
schema creation time. For SQL/MX 3.0, the valid
schema versions are SYSTEM, 1200, and 3000.

The default value is SYSTEM.

The following scenarios explain how the schema
version is assigned:

 When CREATE_DEFINITION_SCHEMA_VERSION
is set to SYSTEM:

 if no user schemas exist in the affected catalog,
the new schema will use the current schema
version

 if user schemas exist in the affected catalog,
the new schema will use the version of the
existing schemas.

 When CREATE_DEFINITION_SCHEMA_VERSION
is set to any other value:

 if that value differs from the version of the
existing schemas in a catalog at the schema
creation time, error 25221 is raised.

 If that value is not a valid schema version, error
25222 is raised at the schema creation time.

Attribute Setting

MXCMP_PLACES_LOCAL_
MODULES

Set to ON or OFF.
If OFF, NonStop SQL/MX generates global modules in
the USERMODULES directory.
If ON and you do not specify
mxcmp -g moduleLocal=OSS-dir
on the command line, compiled modules are placed in
the current OSS directory.
If ON and you specify
mxcmp -g moduleLocal=OSS-dir
on the command line, compiled modules are placed in
the OSS-dir directory.
The default is OFF.
For more information about module management, see
the SQL/MX Programming Manual for C and COBOL.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-59

Metadata Tables Nonaudited Tables
Nonaudited Tables

This attribute enables NonStop SQL/MX to handle inserts, updates, and deletes
against nonaudited SQL/MP tables:

For more information about the differences between NonStop SQL/MP and
NonStop SQL/MX relating to DML operations against nonaudited tables, see the
SQL/MX Comparison Guide for SQL/MP Users.

Object Naming

These attributes determine how NonStop SQL/MX assigns object names:

Caution. If the IUD_NONAUDITED_INDEX_MAINT is set to ON, NonStop SQL/MX allows
DML operations on nonaudited tables without error or warning. Before you set this attribute,
see the SQL/MX Comparison Guide for SQL/MP Users to understand index maintenance of
nonaudited tables.

Attribute Setting

IUD_NONAUDITED_
INDEX_MAINT

Set to ON, OFF, or WARN. Specifies whether NonStop SQL/MX
allows insert/update/delete operations on nonaudited SQL/MP tables
that require index maintenance. If OFF, DML operations on
nonaudited tables are not allowed when the tables require index
maintenance. Any effort to prepare or compile such a statement
results in an error. If WARN, NonStop SQL/MX allows the DML
operation when the tables require index maintenance; however, a
warning is given. If ON, NonStop SQL/MX allows the operations
without error or warning.
The default is OFF.
SQL/MX tables must be audited.

Attribute Setting

NAMETYPE Set to ANSI or NSK to indicate whether the system uses three-part
logical names (ANSI) or four-part physical Guardian names (NSK) to
refer to database objects in statements. The NSK setting applies to
the resolution of unqualified SQL/MP object names.
The default is ANSI.

CATALOG Default catalog name, used if no first part is specified in a three-part
logical name. If not set, the group name of the current user becomes
the default first part of the logical name.
In SQL/MX Release 2.0, the three-part name is an ANSI name. The
parts catalog and schema denote the ANSI-defined catalog and
schema.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-60

Metadata Tables Object Naming
The three-part logical name of the form catalog.schema.object is an ANSI name.
The parts catalog and schema denote the ANSI-defined catalog and schema.

To be compliant with ANSI SQL:1999, NonStop SQL/MX provides support for ANSI
three-part object names. By using these names, you can develop ANSI applications
that access all SQL/MP objects. You must create an alias for SQL/MP objects. See
CREATE SQLMP ALIAS Statement on page 2-104 and ALTER SEQUENCE Statement
on page 2-13 for more information.

NAMETYPE Attribute

The NAMETYPE attribute determines the precedence rules for object naming
according to whether the value of the attribute is ANSI or NSK. The value of the
NAMETYPE attribute is determined according to rules applied in this order:

1. The SET NAMETYPE statement and CONTROL QUERY DEFAULT statement
have the same precedence:

 If you issue a SET NAMETYPE statement, the compiler uses the setting
determined by this statement as the value of the attribute.

Use the SET NAMETYPE statement in MXCI. For embedded SQL, the SET
NAMETYPE statement affects only dynamic embedded SQL. The DECLARE
NAMETYPE statement affects only static embedded SQL.

 For SQL statements issued through MXCI and embedded SQL, the compiler
uses the NAMETYPE value set by the CONTROL QUERY DEFAULT
statement (if issued).

SCHEMA Default schema (without catalog) name, used if no second part
is specified in a three-part logical name. The schema name can
be qualified by a catalog name, in which case this catalog name
supersedes any settings for the CATALOG attribute. If not set,
the user name of the current user becomes the default second
part of the logical name.
In SQL/MX Release 2.0, the three-part name is an ANSI name.
The parts catalog and schema denote the ANSI-defined catalog
and schema.

MP_SUBVOLUME Default physical subvolume, used if no subvolume is specified
in the Guardian name. If not set, the default subvolume is
specified by the =_DEFAULTS define.

MP_SYSTEM Default system name, used if no system is specified in the NSK
name. If not set, the default system is specified by the
=_DEFAULTS define.

MP_VOLUME Default physical volume, used if no volume is specified in the
NSK name. If not set, the default volume is specified by the
=_DEFAULTS define.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-61

Metadata Tables Object Naming
2. For SQL statements issued through MXCI and embedded SQL, the compiler uses
the SYSTEM_DEFAULTS table entry (if it exists).

3. For SQL statements issued through MXCI and embedded SQL, if these values are
not set, the system-defined default setting for the NAMETYPE attribute is ANSI.

Attribute Value ANSI for Logical Names

If the NAMETYPE attribute is ANSI or is not specified, object names are determined
according to rules applied in this order:

1. If you specify a fully qualified three-part logical name explicitly in your SQL
statement, the SQL/MX compiler compiles the statement by using the three parts
of this name.

2. The SET CATALOG statement, SET SCHEMA statement, and CONTROL QUERY
DEFAULT statement have the same precedence:

 If you do not specify a fully qualified logical name and you issue a SET
CATALOG or SET SCHEMA statement, the compiler uses the setting
determined by these statements as the current catalog (the first part) or
schema (the second part).

Use the SET CATALOG and SET SCHEMA statements in MXCI. For
embedded SQL, the SET CATALOG and SET SCHEMA statements affect only
dynamic embedded SQL. The DECLARE CATALOG and DECLARE SCHEMA
statements affect only static embedded SQL.

 For SQL statements issued through MXCI and embedded SQL, the compiler
uses the CATALOG or SCHEMA values set by CONTROL QUERY DEFAULT
statements (if issued).

3. For SQL statements issued through MXCI and embedded SQL, the compiler uses
the CATALOG or SCHEMA values in the SYSTEM_DEFAULTS table (if they exist).

4. For SQL statements issued through MXCI and embedded SQL, if these values are
not set, the system-defined default setting for catalog.schema is group.user,
which is the current user ID.

Attribute Value NSK for Guardian Names and Guardian Name Resolution

If the NAMETYPE attribute is set to NSK, object names are determined according to
rules applied in this order:

1. If you specify a fully qualified physical name explicitly in your SQL statement, the
SQL/MX compiler compiles the statement by using the four parts of this name: the
physical system, volume, subvolume, and file names.

2. The SET MPLOC statement and CONTROL QUERY DEFAULT statement have
the same precedence:

 If you do not specify a fully qualified object name and you issue a SET MPLOC
statement, the compiler uses the setting determined by these statements as
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-62

Metadata Tables Partition Management
the current physical location. SET MPLOC changes the values for default
attributes MP_SYSTEM, MP_VOLUME and MP_SUBVOLUME.

Use the SET MPLOC statement in MXCI. For embedded SQL, the SET
MPLOC statement affects only dynamic embedded SQL. The DECLARE
MPLOC statement affects only static embedded SQL.

 For SQL statements issued through MXCI and embedded SQL, the compiler
uses the MP_SYSTEM, MP_VOLUME or MP_SUBVOLUME values set by
CONTROL QUERY DEFAULT statements (if issued).

3. For SQL statements issued through MXCI and embedded SQL, the compiler uses
the MP_SYSTEM, MP_VOLUME or MP_SUBVOLUME values in the
SYSTEM_DEFAULTS table (if they exist).

4. For SQL statements issued through MXCI and embedded SQL, if these values are
not set, the system-defined default setting for $volume.subvol is specified by
the =_DEFAULTS define.

The TACL command INFO DEFINE =_DEFAULTS can be used to look at the
default volume and subvolume for the current TACL session. For more information
on the =_DEFAULTS define, see the Guardian Programmer’s Guide.

Partition Management

These attributes are used by NonStop SQL/MX for partition management:

Attribute Setting

DDL_DEFAULT_
LOCATIONS

Physical location of the primary range partition to be created
by CREATE statements that do not specify a LOCATION
clause, specified as [\node.]$volume. You can specify
multiple locations separated by commas.
If you enter a CREATE TABLE or CREATE INDEX or
CREATE PROCEDURE statement without specifying a
LOCATION clause and you have specified this default, the
location is determined by picking one volume from the
specified list.
If the statement does not have a LOCATION clause and you
do not specify this default or set it to space (" "), NonStop
SQL/MX uses the value of the =_DEFAULTS environment
variable (the default volume) for the partition location.
If you enter a CREATE CATALOG statement without
specifying a LOCATION clause and you have specified this
default, the location of the catalog's metadata is determined
by picking one volume from the specified list.
The default is no specification.

Note: This attribute is available only to systems running
NonStop SQL/MX Release 2.1 or later.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-63

Metadata Tables Partition Management
GEN_MAX_NUM_PART_
DISK_ENTRIES

When a statically compiled statement references partitioned
objects, this default is used to control the size of a partition list
prepared by the compiler and is used by the executor when it
first opens the object, to support node and disk autonomy. If
some of the nodes and volumes across which an object is
partitioned are offline, the executor can attempt to open a
partition on another node and volume given by an entry in the
partition list. This default specifically controls the maximum
number of volumes per node for which there will be an entry
in the list. You can limit the number of partitions that the
executor attempts to open per node by setting this default to a
low value.
Allowable values: 0 through 4294967295, SYSTEM.
The default is 3.

GEN_MAX_NUM_PART_
NODE_ENTRIES

When a statically compiled statement references partitioned
objects, this default is used to control the size of a partition list
prepared by the compiler and used by the executor when it
first opens the object, to support node and disk autonomy. If
some of the nodes and volumes across which an object is
partitioned are offline, the executor can attempt to open a
partition on another node and volume given by an entry in the
partition list. This default specifically controls the maximum
number of nodes for which there will be one or more entry in
the list. You can limit the number of nodes on which the
executor attempts to find an available partition, by setting this
default to a low value.
Allowable values: 0 - 4294967295, SYSTEM.
The default is 255.

PM_OFFLINE_
TRANSACTION_
GRANULARITY

Number of rows to be copied in an offline MODIFY
transaction. This attribute enables partition operations, which
can involve large amounts of data, to be done in many
separate, smaller transactions.
Allowable values: 50 to 4194303, inclusively.
The default is 5000.

PM_ONLINE_
TRANSACTION_
GRANULARITY

Number of rows to be copied in an online MODIFY
transaction. This attribute enables partition operations, which
can involve large amounts of data, to be done in many
separate, smaller transactions.
Allowable values: 50 to 4194303, inclusively.
The default is 400.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-64

Metadata Tables Partition Management
POS_LOCATIONS Physical locations of nonprimary partitions to be automatically
created, specified as [\node.]$volume. You can specify
multiple locations separated by commas.
If you enter a space (“ “), NonStop SQL/MX chooses the
locations of the second through last partitions at random.
NonStop SQL/MX does not place partitions on these types of
disks: audit trail volumes, nonaudited disks, optical disks,
phantom disks, or SMS virtual disks.
See Creating Partitions Automatically on page 2-127.
The default is no specification.

POS_NUM_OF_PARTNS Number of partitions to be automatically created. If the value
is greater than 1, NonStop SQL/MX creates that many
partitions, including the primary partition.
A value of 1 or 0 indicates that Partition Overlay Support
(POS) is disabled.
See Creating Partitions Automatically on page 2-127 for
details.
The default is 1.

POS_RAISE_ERROR Determines whether an error should be raised when the POS
feature cannot generate location names for the partitions to
be created or if a warning should be raised indicating that the
POS feature was not applied, and a simple table is created
without partitions. When set to OFF (the default value,) a
warning is displayed indicating that POS was not applied, and
a simple table is created without partitions. When set to ON,
an error is displayed indicating that location names could not
be generated.
The default is OFF.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-65

Metadata Tables Query Optimization and Performance
Query Optimization and Performance

These attributes enable NonStop SQL/MX to optimize query execution:

Attribute Setting

ALLOW_DP2_ROW_SAMPLING Set to SYSTEM, ON, or OFF. When a SQL/MX
query contains a SAMPLE clause, this attribute
determines whether the sampling operation should
be done by DP2 or by the SQL/MX Executor. When
set to SYSTEM, the sampling is done by DP2 for
sample percentages of up to 5%. When set to ON,
the sampling is done by DP2 for sample
percentages of up to 50%. When set to OFF, the
sampling is done by the SQL/MX Executor and not
by the DP2.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is SYSTEM.

ATTEMPT_ASYNCHRONOUS_
ACCESS

Set to ON or OFF. When set to ON, the optimizer
generates plans that access multiple partitions
asynchronously (that is, at the same time). With
asynchronous access, the optimizer does not use
ESPs to access the partitions in parallel.
This setting also affects whether stream access to a
table with partitions is allowed. See Stream Access
Restrictions on page 2-348.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is ON.

ATTEMPT_ESP_PARALLELISM Set to ON, OFF, or SYSTEM. If ON, the optimizer
generates and considers plans that use ESP
parallelism for all operators that can use ESP
parallelism. If OFF, the optimizer never generates
and considers plans that use ESP parallelism. If
SYSTEM, the optimizer determines on an operator-
by-operator basis when to generate and consider
plans that use ESP parallelism.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is SYSTEM.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-66

Metadata Tables Query Optimization and Performance
CHECK_CONSTRAINT_PRUNING Set to ON, OFF, RESET, or SYSTEM. The default is
ON. If OFF, the constraint based query pruning
optimization will not be tried on the subsequent
queries. The CQD value RESET or SYSTEM sets
the value of CQD back to the default value. The
constraint based pruning uses the Constant Range
Predicate Folding (CRPF) feature. The CRPF uses
EncodedValue objects to store the actual values as
double datatype with up to 15 digit of precision. For
datatypes that have precision more than 15 digits
(such as largeint), this conversion of actual value
from more precision to double, causes
comparisons to go wrong. Hence,constraint pruning
is not applied when the value for comparison
happens to have more than 15 digit of precision.
For information on check constraint pruning feature,
see the SQL/MX Query Guide.

CROSS_PRODUCT_CONTROL Set to ON or OFF. ON reduces compile time by
eliminating query plans that include unnecessary
and expensive cross-products (joins without join
predicates).
For additional information about this setting, see the
SQL/MX Query Guide.
The default is ON.

DATA_FLOW_OPTIMIZATION Set to ON or OFF. Reduces compile time by not
considering some query plans that have relatively
high data flow rates.
The default is ON, resulting in improvement in
compile time without impacting plan quality.

DDL_VIEW_SIMILARITY_CHECK Specifies whether views by default are created with
Similarity Check enabled or disabled. If specified,
the SIMILARITY CHECK clauses in CREATE VIEW
and ALTER VIEW statements take precedence over
this CQD setting. The Similarity Check is not
supported for Nested Views and views with VALUES
clause. The CQD settings determine if an error is
returned for these views. The following are the CQD
settings and behavior:

If set to ENABLE/SYSTEM, Similarity Check is
enabled for supported view definitions, otherwise
Similarity Check is disabled.

If set to ON, Similarity Check is enabled for
supported view definitions, otherwise the view is not
created and an error is returned.

DISABLE/OFF - Similarity Check is disabled.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-67

Metadata Tables Query Optimization and Performance
DP2_CACHE_4096_BLOCKS Specifies the number of 4 KB blocks allocated for
the disk cache. This value is used by the compiler to
determine the cost of a table/index scan operator.
You should set the value of this attribute to the
average value of 4 KB block disk cache settings for
all volumes in the system. The current value for the
number of 4 KB blocks allocated to a disk cache can
be determined by using SCF. See the SCF
Reference Manual for G-Series RVUs for details on
that product.
Allowed values: 1 through 1,4294967295.
The default is 1024.

FFDC_DIALOUTS_FOR_MXCMP Set to ON or OFF. Controls whether FFDC dial-outs
should occur when the compiler terminates
abnormally or detects an internal error.
The default is OFF, disallowing dial-outs.

GENERATE_EXPLAIN Enables generation of EXPLAIN information at
compile time.
For MXCI, the default is automatically turned on by a
CONTROL QUERY DEFAULT
GENERATE_EXPLAIN 'ON' command issued by
MXCI at startup time. For performance testing in
MXCI, you might want to turn off
GENERATE_EXPLAIN.
You must explicitly turn off GENERATE_EXPLAIN if
you do not want to include explain generation time
while preparing statements from MXCI or while
analyzing performance testing in MXCI.
You must explicitly turn on GENERATE_EXPLAIN
for NonStop MXCS and other embedded dynamic
queries if you want to look at access plan or
EXPLAIN information.
The default setting is ON for embedded static
queries and OFF for dynamic queries (from
embedded programs or MXCS).

GEN_EIDR_BUFFER_SIZE Combined with GEN_PA_BUFFER_SIZE,
determines the buffer size for partition access
operations. The two default settings must be equal.
Each partition has one partition access operator and,
by default, each partition access operator has 7
buffers associated with it. For OLTP applications,
reducing buffer size to 4 KB can improve
performance by reducing memory usage. For DSS
applications, use the default.
For additional information about this setting, see the
SQL/MX Query Guide.
The default buffer size is 31 KB.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-68

Metadata Tables Query Optimization and Performance
GEN_PA_BUFFER_SIZE Combined with GEN_EIDR_BUFFER_SIZE,
determines the buffer size for partition access
operations. The two default settings must be equal.
For OLTP applications, reducing buffer size to 4 KB
can improve performance by reducing memory
usage. For DSS applications, use the default.
For additional information about this setting, see the
SQL/MX Query Guide.
The default buffer size is 31 KB.

INDEX_ELIMINATION_LEVEL Set to MINIMUM, MEDIUM, or MAXIMUM to
indicate the degree of heuristic elimination of
indexes consideration by the optimizer. Elimination
of less promising indexes results in improvement in
compile time. MINIMUM value implies no
elimination, and MAXIMUM implies maximum
elimination.
The default value is MAXIMUM.

JOIN_ORDER_BY_USER Enables (ON) or disables (OFF) the join order
specified you specify in the FROM clause of a query.
When set to ON, the optimizer considers only
execution plans that have the join order you specify.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is OFF.

MAX_ESPS_PER_CPU_PER_OP Set to the maximum number of ESPs the optimizer
considers starting for each CPU for a given operator.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is 1, which limits the optimizer to plans
with only one ESP per CPU for a given operator.
Allowable values: 1, >1.

MDAM_SCAN_METHOD Enables (ON) or disables (OFF) the
MultiDimensional Access Method (MDAM). In certain
situations, the optimizer might choose MDAM
inappropriately, causing poor performance.
SQL/MP Considerations: SQL/MP users know this
attribute as CONTROL TABLE MDAM ENABLE.
The default is ON.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-69

Metadata Tables Query Optimization and Performance
MEMORY_USAGE_SAFETY_NET Specifies the SQL/MX compiler memory threshold
used for generating optimal query plan in megabytes
(MB). For complex queries, when the optimizer
memory reaches this threshold, plans are pruned to
reduce the memory growth. Setting this attribute too
low can result in sub-optimal plans. The actual
memory available to a process on the NonStop
operating system is limited to approximately 1.4 GB.
Therefore, setting this value greater than 1.4 GB
does not imply that the process will have memory
larger than the system limit. Memory size is confined
to the limits of the underlying operating system.
When the optimizer reaches the set threshold, a
warning 6020 is displayed and the query compiles
successfully. The generated plan might not be
optimal and execution might be slow.

This attribute can have a value in the range 800
through 4096. The default value is OFF, which
implies optimizer can use the maximum available
memory.

MIN_MAX_OPTIMIZATION Set to ON or OFF. This performance optimization
enables the compiler to read only the result row or a
select number of rows to answer minimum (MIN) or
maximum (MAX) aggregate expressions. The
compiler can perform this type of optimization only
when the rows are naturally ordered on the MIN-
MAX column. If OFF, this type of optimization is
disabled.
The default is ON.

MSCF_ET_REMOTE_MSG_
TRANSFER

The value of this default is used to factor in the cost
of transferring messages to and from a remote node.
It reflects the bandwidth of the physical
communication link. You should set it to a value
greater than the cost factor of transferring messages
to or from a local node, which is 0.000046.
Allowable values: 1.175494351e-38 through
3.402823466e+038.
The default value is 0.00005.

MULTIUNION Set to ON, OFF, RESET, or SYSTEM. The default is
ON. When set to ON, NonStop SQL/MX generates a
MultiUnion node. When set to OFF, NonStop
SQL/MX does not generate a MultiUnion node.
When set to RESET or SYSTEM, the default value
is reset.

For information on the MultiUnion operator, see the
SQL/MX Query Guide.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-70

Metadata Tables Query Optimization and Performance
NUMBER_OF_USERS Set to the number of users that can run concurrent
queries that use large amounts of memory. For
these queries, the optimizer uses this number to limit
the amount of memory available for one user. The
larger the number, the less memory available for
operators (such as hash join) that use much
memory.
Allowed values: 1 through 1,4294967295.
The default setting is 1, which means that all
available memory can be assigned to one query.

OLT_QUERY_OPT Set to ON or OFF. When set to ON, the NonStop
SQL/MX enables a fast path evaluation method for
certain simple SQL queries, such as a single table
unique select.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is ON.

OPTIMIZATION_LEVEL Set to 0, 2, 3, or 5 to indicate increasing effort in
optimizing SQL queries. Values 1 and 4 are reserved
for future use.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is 3.

OPTS_PUSH_DOWN_DAM Set to ON (1) or OFF (0). When set to ON, the
system considers pushing down a plan to DAM for
compound statements or nested joins. When set to
OFF, the system does not consider this option.
When pushing a plan down to DAM is possible (the
value is ON), NonStop SQL/MX might not select the
push-down plan because of its cost.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is OFF.

PARALLEL_NUM_ESPS Set to the keyword SYSTEM or to the maximum
number of ESPs (an unsigned positive integer) that
should be used for a particular operator.
If set to SYSTEM, NonStop SQL/MX calculates the
value.
If set to a number, the value must be less than the
number of CPUs in the cluster.
For additional information about this setting, see the
SQL/MX Query Guide.
Allowable values: 1 through 2147483647.
The default is SYSTEM (no maximum).

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-71

Metadata Tables Query Optimization and Performance
PREFERRED_PROBING_
ORDER_FOR_NESTED_JOIN

Set to ON or OFF. If ON, the optimizer generates
and considers plans where the rows of the inner
table must be read in the key order of the access
path. If OFF, the optimizer does not generate plans
where the rows must be read in the key order of the
access path.
The default is OFF.

REMOTE_ESP_ALLOCATION Set to ON, OFF, or SYSTEM. If ON, NonStop
SQL/MX is forced to bring up ESPs on all the
systems that are in the scope of the specific query
and all target systems become active systems. If
OFF, NonStop SQL/MX is forced to bring up all
ESPs on the local system only. If SYSTEM, NonStop
SQL/MX decides which target systems should be
used for ESP placement. In this case, systems
chosen as active are a subset of the target systems.
The SYSTEM setting is the preferred setting for
REMOTE_ESP_ALLOCATION.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is SYSTEM.

SORT_MAX_HEAP_SIZE_MB The default value is used for allocating the heap
memory size for operations involving the sort
operator. The minimum and maximum values are 0
and 1024 respectively.
The default value is 20.

UNION_TRANSITIVE_PREDICATES Set to ON, OFF, RESET, or SYSTEM. When set to
ON, NonStop SQL/MX generates transitive
predicates for join on unions. When set to OFF,
NonStop SQL/MX does not generate transitive
predicates for join on unions. The default is ON.

UPD_ORDERED Set to ON or OFF. If ON, the optimizer generates
and considers plans where the rows must be
inserted, updated, or deleted in clustering key order.
If OFF, the optimizer does not generate plans where
the rows must be inserted, updated, or deleted in
clustering key order.
The default is ON.

ZIG_ZAG_TREES Set to ON or OFF. Enables (ON) or disables (OFF)
the optimizer to consider zigzag trees in addition to
linear trees.
For additional information about this setting, see the
SQL/MX Query Guide.
The default is OFF.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-72

Metadata Tables Query Plan Caching
For more information about query optimization, see the SQL/MX Query Guide.

Query Plan Caching

These attributes enable NonStop SQL/MX to cache query plans:

Note. The CHECK_CONSTRAINT_PRUNING, MULTIUNION, and

UNION_TRANSITIVE_PREDICATES CQDs are available only on systems running J06.08 and
later J-series RVUs and H06.19 and later H-series RVUs.

Attribute Setting

QUERY_CACHE Set to a value between 0 to 4194303. Indicates the size
in kilobytes to which the cache is allowed to grow.
The default setting is 1024, which activates a query
cache that can grow to 1024 KB in the current session.
To deactivate the query cache in the current session,
set QUERY_CACHE to 0. If a query cache was
allocated, this setting frees it.
For additional information about this setting, see the
SQL/MX Query Guide.

QUERY_CACHE_MAX_VICTIMS Set to a value between 0 and 4194303. Indicates the
maximum number of cache entries that can be
displaced to accommodate a new entry and stay within
the size limit of the cache. Setting this attribute to a very
large value means that all the cache entries could be
displaced to accommodate one very large query.
Setting this attribute to 0 means that, when the cache
becomes full, no cache entries (pinned or unpinned)
can be displaced, and no new entries can be entered
into the cache.
For additional information about this setting, see the
SQL/MX Query Guide.
The default setting is 10 cache entries.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-73

Metadata Tables Query Plan Caching
For a full discussion of query plan caching, see the SQL/MX Query Guide.

QUERY_CACHE_REQUIRED_
PREFIX_KEYS

Set to a value between 0 and 255. Specifies how many
and which columns of a composite primary or partition
key are required for an equality predicate to be
considered cacheable. If the attribute is set to a value
greater than the number of columns in a composite key,
all columns of the key are required.
The value 0 means that the presence of any one
column of a composite primary or partition key in an
equality key predicate is sufficient to make that
predicate cacheable. A value n that is greater than 0
(zero) but less than the number of columns in the key
indicates that the first n columns of the key must be
present in a key predicate for that predicate to be
considered cacheable.
For additional information about this setting, see the
SQL/MX Query Guide.
The default setting is 255, which means that only
complete primary or partition key equality predicates
are cacheable. To avoid compromising query plan
quality, You should keep the system-defined default
setting of 255.

QUERY_CACHE_STATEMENT_
PINNING

Set to ON, OFF, or CLEAR. Controls whether queries
are entered into the cache as pinned or unpinned. You
might have important, compile-time critical queries that
you want to ensure are in the cache when needed.
When a query is pinned in the cache, it usually cannot
be displaced from the cache unless the cache becomes
full of pinned queries. In this case, the least recently
used pinned entries also become displaceable.
The value CLEAR means that all subsequent query
cache entries are unpinned, and all pinned entries in
the cache are also unpinned.
The value ON means that all subsequent query cache
entries into the cache are pinned.
The default setting, OFF, means that all subsequent
query entries into the cache are unpinned.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-74

Metadata Tables Referential Action
Referential Action

This attribute determines how NonStop SQL/MX handles referential action in ALTER
TABLE and CREATE TABLE statements:

Row Maintenance

These attributes determine how NonStop SQL/MX maintains rows in tables:

Attribute Setting

REF_CONSTRAINT_NO_
ACTION_LIKE_RESTRICT

Controls how NO ACTION referential action is
treated. Set to OFF, SYSTEM, or ON.
OFF means that SQL issues error 1301
SYSTEM means that SQL issues warning 1302 saying that it
behaves like RESTRICT.
ON means that NO ACTION behaves like RESTRICT,
without warning or errors.
SYSTEM is the default value.

Attribute Setting

INSERT_VSBB Method of inserting rows into a table. Set to:
OFF for simple inserts
SYSTEM for DAM to determine the method
USER to use VSBB
LOADNODUP to insert with no check for duplicates
The default is SYSTEM.

READONLY_CURSOR Set to TRUE or FALSE.
If set to TRUE, you must declare cursors with the FOR UPDATE
clause for the named columns or all columns to be updatable. This
setting improves cursor performance.
If set to FALSE and the declarations omit FOR UPDATE or FOR
READ ONLY, all columns are updatable. In SQL/MX, DELETE
WHERE CURRENT OF does not work without the FOR UPDATE
clause if READONLY_CURSOR is set to true.
SQL/MP Consideration: DELETE WHERE CURRENT OF works
without the FOR UPDATE clause.
The default is TRUE.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-75

Metadata Tables Scratch Disk Management
Scratch Disk Management

These attributes determine how NonStop SQL/MX manages scratch disks for the sort
operation:

About SQL/MX Scratch Disks

NonStop SQL/MX selects a disk to be used for a scratch file from the pool of available
disks. The pool initially consists of the set of all suitable disks. Disks such as optical
disks, phantom disks, and SMS virtual disks are not considered suitable. The disks
specified by the SCRATCH_DISKS_EXCLUDED control are removed. If the
SCRATCH_DISKS control is specified, the disks that are not specified in the
SCRATCH_DISKS control are removed from the pool. From this disk pool, a disk is
selected based on this criteria:

 The amount of used space on the disk. (rank * 30)
 The number of scratch files on the disk. (rank * 70)
 The number of fragments on the disk. (rank * 20)
 The biggest available fragment on the disk. (inverted rank * 80)
 Is the disk a preferred disk? (10000)
 Is the disk the primary disk of the CPU of this process? (100000)

Attribute Setting

SCRATCH_DISKS Set to a list of scratch disk volumes, where each item in the list
has the form [\node.]$volume, and the items in the list are
separated by a comma (,). Use this default to restrict scratch
disks to the volumes specified.
If none of the three scratch disk defaults are set, the system
determines the scratch disk volumes to be used.

SCRATCH_DISKS_
EXCLUDED

Set to a list of scratch disk volumes, where each item in the list
has the form [\node.]$volume, and the items in the list are
separated by a comma (,). Use this default to exclude certain
volumes from being used for scratch disks.
If none of the three scratch disk defaults are set, the system
determines the scratch disk volumes to be used.

SCRATCH_DISKS_
PREFERRED

Set to a list of scratch disk volumes, where each item in the list
has the form [\node.]$volume, and the items in the list are
separated by a comma (,). Use this default to indicate
preference for volumes to be used for scratch disks.
If none of the three scratch disk defaults are set, the system
determines the scratch disk volumes to be used.

SCRATCH_FREESPACE_
THRESHOLD_PERCENT

Indicates how much free space, as a percentage, is left on a
disk as a threshold. When that threshold is reached, hash or
sort operations will use a different disk. If all disks reach their
threshold, NonStop SQL/MX displays an error.
The default value is 10. When disk usage reaches the point
where only 10 percent of the space remains, hash or sort or
operations stop using that disk.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-76

Metadata Tables Sequence Functions
The value in parentheses indicates the weighting of that criterion. The rank is the
ordinal rank of that disk among all the disks in the pool based on the criterion. The
inverted rank is the inverted ordinal rank. In the case of the biggest available fragment
criterion, if the pool contains 20 disks, the disk with the biggest available fragment
would have an inverted rank of 20. The weights are summed for all the disks in the
pool, and the disk with the biggest weight is selected. As can be seen, the primary disk
of the current CPU is given a large weight.

In NonStop SQL/MX, a scratch file can overflow to another disk. So, if a scratch file
becomes full or if the disk becomes full, the operation does not necessarily fail. An
additional scratch file on another disk is selected (using the criterion procedure). As a
result, there is no 2 GB limit on scratch space.

In NonStop SQL/MX, the operations that can create scratch files are sort, hash join,
and hash groupby. They all use the criterion procedure to determine which scratch disk
to use.

NonStop SQL/MX does not manage swap file space directly. Instead, SQL/MX
processes rely on the Kernel-Managed Swap Facility (KMSF), which is set up in the
NonStop operating system with the NSKCOM tool. Each CPU has an associated swap
file.

Sequence Functions

This attribute enables NonStop SQL/MX to optimize the execution of sequence
functions:

Attribute Setting

DEF_MAX_HISTORY_
ROWS

Number of rows the SEQUENCE BY operator keeps in its
history buffer. This value affects sequence functions that
examine a maximum number of rows and overrides any larger
maximum specified as a sequence function argument.
Allowed values: 1 through 2147483647.
The default is 1024.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-77

Metadata Tables Statement Atomicity
Statement Atomicity

These attributes affect NonStop SQL/MX’s ability to undo the effects of an insert,
update, or delete operation, when an error occurs during the operation, without having
to abort the entire transaction:

Statement Recompilation

These attributes affect statement recompilation at execution time:

Attribute Setting

DOOM_USERTRANSACTION Controls whether NonStop SQL/MX dooms a transaction
when it encounters an unrecoverable error and the
transaction cannot be rolled back to a savepoint. When a
transaction is doomed by TMF, it is marked for abort and
has to be aborted explicitly. A new transaction is started
before the user can proceed.
When set to ON and NonStop SQL/MX cannot roll back
to a savepoint, it dooms the transaction.
When set to OFF, NonStop SQL/MX dooms the
transaction if it inherits the transaction from the user
application or the JDBC or ODBC drivers. NonStop
SQL/MX aborts the transaction if it started the
transaction.
The default is OFF.

UPD_ABORT_ON_ERROR Controls whether an error that occurs during the
performance of an insert, update, or delete causes an
abort.
ON means that NonStop SQL/MX will abort a user
transaction after an error in an IUD statement. This
behavior is similar to that of SQL/MX Release 1.8.
OFF means that NonStop SQL/MX will not abort a user
transaction after an error in an IUD statement.
The default is OFF.

UPD_SAVEPOINT_ON_ERROR Controls whether DP2 savepoints are to be used and
whether the transaction is aborted in case of an error
during an IUD statement.
ON means that DP2 savepoints are used, if possible.
OFF means that DP2 savepoints are not used and that
the transaction will be aborted in case of an error.
The default is ON.

Attribute Setting

AUTOMATIC_
RECOMPILATION

Set to ON or OFF. If set to ON, an SQL statement is
automatically recompiled at run time, depending on the
outcome of various factors. If OFF, NonStop SQL/MX
does not recompile the statement and returns an error if
various comparisons fail.
The default is ON.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-78

Metadata Tables Statement Recompilation
If you issue a CONTROL TABLE statement for the SIMILARITY_CHECK option, the
specified control table value overrides the system-defined default setting. See
CONTROL TABLE Statement on page 2-74.

For more information about late name resolution, similarity checks, and automatic
recompilation, see the SQL/MX Programming Manual for C and COBOL.

INTERACTIVE_ACCESS Set to ON or OFF. If set to ON, the compiler selects the
most appropriate index-based access plan. If OFF, the
compiler follows normal behavior and does not
emphasize index-based access plans.
The default is OFF.

RECOMPILE_ON_
PLANVERSION_ERROR

Set to ON or OFF. If set to ON, a SQL statement is
automatically recompiled at run time in case of versioning
errors. If OFF, NonStop SQL/MX does not recompile the
statement and returns error 25302 or 25303.
The default is ON.

RECOMPILATION_
WARNINGS

Set to ON or OFF. If set to ON, when a statement is
automatically recompiled in an application (because of
various factors), NonStop SQL/MX returns a warning
message. A warning is also returned when a similarity
check passes. Set this default to ON only to direct
warning messages to an application when automatic
recompilation take place or to notify it if a similarity check
has passed. When automatic recompilation occurs,
NonStop SQL/MX always logs an EMS event regardless
of the setting of this CQD.
The default is OFF.

SIMILARITY_CHECK Set to ON or OFF. If set to ON, NonStop SQL/MX
compares whether two tables used in an SQL statement
(the previous compile-time table and the new run-time
table) are sufficiently similar so that the previous access
plan can be used for the new table. If OFF, NonStop
SQL/MX automatically recompiles the statement,
depending on the outcome of late name resolution,
timestamp comparison, or table redefinition.
The default is ON.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-79

Metadata Tables Stored Procedures in Java
Stored Procedures in Java

This attribute specifies the Java Virtual Machine (JVM) startup options for the Java
environment of a stored procedure in Java (SPJ):

For more information on the supported Java options, see the NonStop Server for Java
Tools Reference Pages. For more information on how to use the
UDR_JAVA_OPTIONS default attribute, see the SQL/MX Guide to Stored Procedures
in Java.

Stream Access

These attributes enable NonStop SQL/MX to implement the queuing and
publish/subscribe services:

Attribute Setting

UDR_JAVA_OPTIONS Set the attribute value to one or more Java options within single
quotes (for example, 'java-option1 java-option2'). Each
Java option can be any Java option supported by the HP NonStop
Server for Java. The Java options must conform to Java syntax,
contain no embedded white space, and have a single space
separating each option. If the same option is specified more than
once, the JVM allows the last occurrence in the string to take
precedence. CALL statements compiled with this setting are
serviced in an SPJ environment that uses the specified JVM
startup options.

Set to OFF to specify no application-specific JVM startup options in
the SPJ environment. CALL statements compiled with this setting
are serviced in an SPJ environment that does not use
application-specific JVM startup options.

Set to ANYTHING to enable NonStop SQL/MX to chose the JVM
startup options for an SPJ environment. NonStop SQL/MX does
not guarantee the types of JVM startup options that are used in a
particular SPJ environment. CALL statements compiled with this
setting are serviced in an SPJ environment chosen by NonStop
SQL/MX.

The default is OFF.

Attribute Setting

MATERIALIZE Controls whether inner tables (the non-streamed tables) of join
operations between streams and base tables are materialized. Set to
ON, OFF, or SYSTEM to direct the SQL compiler to materialize inner
tables for join operations (ON), not materialize inner tables (OFF), or
allow the system to determine whether to materialize inner tables
(SYSTEM).
If you want changes to the inner table that are made while the stream
is active to be visible in the join, set this value to OFF. The default is
SYSTEM.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-80

Metadata Tables Table Management
For more information about these defaults, see SQL/MX Queuing and
Publish/Subscribe Services.

Table Management

These attributes enable NonStop SQL/MX to manage tables:

STREAM_TIMEOUT The time in hundredths of seconds for a cursor fetch operation using
stream access to wait for more rows before timing out. Setting this
default directs NonStop SQL/MX to not wait for more rows beyond
the specified time but to return with error code 8006.
This default is valid for compile-time stream timeout. For run-time
stream timeout, see SET TABLE TIMEOUT Statement on
page 2-372.
Using a low value can result in a timeout before all rows are returned
(due to delays between processes). If you use a low value (for
example, 300), the application unblocks and either closes the cursor
to not wait any longer or retrieves the fetch.
Any value < 0 directs NonStop SQL/MX to wait indefinitely until there
are no more rows to return. Setting it to RESET changes it back to
the value in effect at the start of the session.
Allowable values: -2147483648 through 2147483647.
The default is -1.

Attribute Setting

DEFAULT_BLOCKSIZE Enables you to specify the default behavior when database
objects are created that do not specify a BLOCKSIZE.

Valid values are:

 4096— for database objects created without explicitly
stating the BLOCKSIZE attribute, the block size will be 4
KB. This is the system default value.

 32768— for database objects created without explicitly
stating the BLOCKSIZE attribute, the block size will be 32
KB.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-81

Metadata Tables Table Management
SAVE_DROPPED_TABLE
_DDL

Controls whether definitions of dropped tables are saved to
enable them to be recovered.
If set to ON, DDL information for a dropped table is saved to a
file called catalog.schema.tablename-yyyymmdd-
timestamp.ddl in the OSS directory /usr/tandem/sqlmx/ddl.
For example, if a table called CAT.SCH.T123 is dropped at
12:53:31 PM on July 29, 2003, the full OSS path name of the
saved DDL file would be:

/usr/tandem/sqlmx/ddl/CAT.SCH.T123-20030729-
125331.ddl

To drop the table you must have write access to this directory
or you receive error 1232:
*** ERROR[1232] A file error occurred when saving dropped
table DDL for table table to /usr/tandem/sqlmx/ddl.
If the table name contains a delimited identifier, characters that
are not permitted in OSS file names are replaced by
underscores. Quotes delimiting the identifier are removed.
For example, if the table CAT."S&C%H"."T*A*B?01" is dropped
at 12:57:15 am on April 24, 2003, the saved DDL file would be:

/usr/tandem/sqlmx/ddl/CAT.S_C_H.T_A_B_01-
20030424-215715.ddl

If the 3-part ANSI name exceeds the maximum OSS file name
length of 248, it is truncated to 248 characters.
Despite similarities in the resulting file names because of
character replacement or file name truncation, the files are
always distinguishable by the trailing timestamp portion of the
name and the contents of the file, which always indicates the
full ANSI name of the table.

NonStop SQL/MX does not remove saved DDL files. You must
remove unwanted files from this location. If you do not
periodically remove these files, the OSS directory will become
full and DROP TABLE will no longer succeed. Database
administrators should monitor the saved DDL location
/usr/tandem/sqlmx/ddl for the accumulation of unneeded files.
Here is an example of a script that will delete DDL files every
seven days:

find /usr/tandem/sqlmx/ddl -mtime +7
-print | grep "/ddl/" | sed "s/./rm &/"
| sh

In development and testing environments where tables are
frequently created and dropped it is recommended that this
value be set to OFF.
The default is ON.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-82

Metadata Tables Trigger Management
Trigger Management

This attribute enables NonStop SQL/MX to manage trigger temporary tables:

Examples of SYSTEM_DEFAULTS Table

 Insert a row into the SYSTEM_DEFAULTS table to set the current default setting
for the transaction isolation level:

INSERT INTO SYSTEM_DEFAULTS
 (ATTRIBUTE, ATTR_VALUE)
 VALUES ('ISOLATION_LEVEL', 'SERIALIZABLE');

VARCHAR_PARAM_
DEFAULT_SIZE

Depending on context, untyped parameters might be converted
to the VARCHAR type during compilation of a query. The
default length for this type is 255 characters. This CQD allows
you to change the default length.
Allowable values: 1 to 32768.
The default is 255 characters.

Attribute Setting

TEMPORARY_TABLE_
HASH_PARTITIONS

Describes the partitioning scheme for trigger temporary tables
by listing volumes across which the temporary tables can be
hash partitioned, specified as [\node.]$volume, enclosed in
single quotes. You can specify multiple locations separated by
commas or colons. These examples are all valid:
Control query default
TEMPORARY_TABLE_HASH_PARTITIONS
'$data01,$data02,$data03';
Control query default
TEMPORARY_TABLE_HASH_PARTITIONS
'$data01:$data02:$data03';

Control query default
TEMPORARY_TABLE_HASH_PARTITIONS
'$data01,$data02:$data03';

If you specify more than one volume, the temporary table is
hash partitioned over all those partitions. Range partitioning is
not supported.
If no system default is specified, NonStop SQL/MX uses the
default location of the creator of the first trigger. If the default is
changed, the change affects temporary tables created after the
change. Previously created temporary tables will retain the
previous setting. The partitioning scheme of the trigger subject
table is unrelated to the temporary table.

Attribute Setting
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-83

Metadata Tables Examples of SYSTEM_DEFAULTS Table
 Query the SYSTEM_DEFAULTS table to obtain the current default setting for the
transaction isolation level:

SELECT ATTRIBUTE, ATTR_VALUE FROM SYSTEM_DEFAULTS
 WHERE ATTRIBUTE = 'ISOLATION_LEVEL';

 Set a new value for the transaction isolation level:

UPDATE SYSTEM_DEFAULTS
 SET ATTR_VALUE = 'READ COMMITTED'
 WHERE ATTRIBUTE = 'ISOLATION_LEVEL';

 Set the level of optimization for the next query to be executed. The CONTROL
QUERY DEFAULT statement does not change the settings of the
SYSTEM_DEFAULTS table.

CONTROL QUERY DEFAULT OPTIMIZATION_LEVEL '0';
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-84

Metadata Tables User Metadata Tables (UMD): Histogram Tables
User Metadata Tables (UMD): Histogram Tables
HISTOGRAMS Table
HISTOGRAM_INTERVALS Table
HISTOGRM Table
HISTINTS Table
Examples of Histogram Tables

A histogram is a representation of a relationship in which each value of some
dependent variable corresponds to a range of values of the associated independent
variable or variables. For example, a histogram might be a chart showing the number
of people in New York in various age ranges.

NonStop SQL/MX provides a method for generating histograms that show how data is
distributed with respect to a column or a group of columns within a table. The purpose
of generating these statistics is to enable the optimizer to create efficient access plans.

When generating a histogram for a table, NonStop SQL/MX divides the range of
specified column values of the table into some number of intervals, distributing the
rows evenly within these intervals. It computes statistics associated with each interval
and then uses the statistics to devise optimized plans.

You can use the statistics in the histogram tables as a basis for partitioning large
tables. For example, if the employee number (the EMPNUM column, which is the
primary key) in the EMPLOYEE table has a nonuniform distribution, use the histogram
statistics to divide the range of employee numbers into partitions that distribute rows
evenly. See Examples of Histogram Tables on page 10-92.

Creating Histogram Tables

 NonStop SQL/MX automatically creates histogram tables when a schema is created:
HISTOGRAMS and HISTOGRAM_INTERVALS for SQL/MX tables. HISTINTS and
HISTOGRM SQL/MP tables are automatically created and registered in the catalog of
the primary partition of the user table you specify in the UPDATE STATISTICS
statement, if they do not already exist for that table.

Before you drop the SQL/MP catalog that contains the histogram tables, you must
explicitly drop both of the tables.

You cannot update statistics on system metadata tables, including tables residing in
the DEFINITION_SCHEMA, MXCS_SCHEMA, SYSTEM_DEFAULTS_SCHEMA, and
SYSTEM_SCHEMA.

Generating Histogram Statistics

The UPDATE STATISTICS statement generates logical (table and column level)
statistics that are stored in histogram user tables. To examine the current statistics, use
the SELECT statement. The histograms for user tables registered in the same catalog
reside in the same HISTOGRAMS and HISTOGRAM_INTERVAL or HISTINTS and
HISTOGRM tables.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-85

Metadata Tables Creating Histogram Tables
You can specify the number of intervals for the table statistics in the UPDATE
STATISTICS statement. If you do not specify the number of intervals,
NonStop SQL/MX provides a default number based on the table size and other factors.

The histogram tables are not automatically updated when you alter a table for which
statistics are stored. Therefore, after you alter a table, you should execute UPDATE
STATISTICS again for the table to keep its histogram statistics current.

If you drop an SQL/MP user table with DROP TABLE, the obsolete histograms for that
table are not immediately deleted in the histogram tables. You can use the CLEAR
option in UPDATE STATISTICS to delete all histograms for that table before you drop
the table. See UPDATE STATISTICS Statement on page 2-402. Obsolete rows in
SQL/MX histogram tables are automatically deleted.

Before you update statistics you can estimate the size of SQL/MX and SQL/MP
temporary tables, in rows, based on the base tables size in rows. For example, if the
base table has 12 million rows and you request a 2% sample, the temporary table will
have approximately 240,000 rows.

Histogram Table Properties
SQL/MX Objects SQL/MP Objects

Histogram
tables

Registered in the same
catalog.schema as the table.

Registered in the catalog of the primary
partition of the table.

Located in the same
catalog.schema as the table.

Located in the same \node.$vol.subvol as
the catalog.

File names:
catalog.schema.HISTOGRAMS
catalog.schema.HISTOGRAM
_INTERVALS

File names:
\node.$vol.subvol.HISTOGRM
\node.$vol.subvol.HISTINTS

Temporary
tables

Registered in the same
catalog.schema as the table.

Registered in the catalog of the primary
partition of the table.

Located in a volume randomly
chosen by NonStop SQL/MX from
the list specified by
HIST_SCRATCH_VOL, or in the
volume specified in the
_DEFAULTS define.
If multiple volumes are specified
with HIST_SCRATCH_VOL and
the table does not contain a
system generated key (SYSKEY),
hash partitioning is performed over
all specified volumes.
May be audited or non-audited.

Located in a volume randomly chosen by
NonStop SQL/MP from the list specified
by HIST_SCRATCH_VOL, or in the same
\node.$vol as the primary partition, in the
ZZMXTEMP subvolume.
Single partition.
May be audited or non-audited.

File name:
catalog.schema.SQLMX
_tablename

File name:
\node.$vol.ZZMXTEMP.tablename
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-86

Metadata Tables HISTOGRAMS Table
HISTOGRAMS Table

The SQL/MX HISTOGRAMS table describes columns, interval count, total number of
rows and number of unique rows, and the low and high values of column distribution
for a table:

Size limits:
Because files are always format 2,
the temporary table is limited to 1
TB or the amount of available
space on each volume.

Size limits:
File format is determined by format of the
base table’s primary partition.
If it is format 1, the temporary table is
limited to 2 GB.
If it is format 2, the temporary table is
limited to 1 TB or the amount of available
space on the disk volume.

Column Name Data Type Description

*1 TABLE_UID LARGEINT The UID of the table for which this histogram is
generated.

*2 HISTOGRAM_ID INT UNSIGNED System-generated ID for the histogram. Each
HISTOGRAM_ID has a corresponding ID in the
HISTOGRAM_INTERVALS table.

*3 COL_POSITION INT Column position in a column group for which the
histogram is generated.

4 COLUMN_NUMBER INT Table column number for which this histogram is
generated.

5 COLCOUNT INT Number of columns in the column group.

6 INTERVAL_COUNT SMALLINT Number of intervals in the histogram. If the
value is n, there are n+1 corresponding rows in
the HISTOGRAM_INTERVALS table with the
same HISTOGRAM_ID.

7 ROWCOUNT LARGEINT Total number of rows in the table.

8 TOTAL_UEC LARGEINT Total number of unique entries in the table.

9 STATS_TIME TIMESTAMP(0) Start time of statistics generation, expressed as
Greenwich mean time.

10 LOW_VALUE VARCHAR(250)
CHARACTER
SET UCS2

Low value of column distribution (for the entire
table).

11 HIGH_VALUE VARCHAR(250)
CHARACTER
SET UCS2

High value of column distribution (for the entire
table).

12 READ_TIME TIMESTAMP(0) A recent time for which this histogram is read.

13 READ_COUNT SMALLINT The number of times READ_TIME is updated
since this histogram was last generated.

SQL/MX Objects SQL/MP Objects
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-87

Metadata Tables HISTOGRAMS Table
14 SAMPLE_SECS LARGEINT Number of seconds required to create and
populate sample table in seconds with the
minimum value being 1 sec. If sampling is not
used, this column is set to 0.

15 COL_SECS LARGEINT Number of seconds required to create statistics
from column data for histogram. This column
does not include sample time.

16
SAMPLE_PERCENT

SMALLINT The SAMPLE_PERCENT is calculated using
the following formula:
value_given_by_user X 100
The value can range from 0-10000.

17 CV FLOAT The coefficient of variation. This is a value >=0
that represents the distribution of three
occurrences of each distinct value.

18 REASON CHAR(1) Indicates why this histogram was last created.

M created via manual run of update statistics
I automatic initial creation based on request by
 optimizer
N automatic regeneration, recently required by
 optimizer

' ' histogram is not generated

19 V1 LARGEINT Reserved for future use

20 V2 LARGEINT Reserved for future use

21 V3 LARGEINT Reserved for future use

22 V4 LARGEINT Reserved for future use

23 V5 VARCHAR(250)
CHARACTER
SET UCS2

Reserved for future use

24 V6 VARCHAR(250)
CHARACTER
SET UCS2

Reserved for future use

* Indicates primary key

Column Name Data Type Description
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-88

Metadata Tables HISTOGRAM_INTERVALS Table
HISTOGRAM_INTERVALS Table

The SQL/MX HISTOGRAM_INTERVALS table describes for each interval, the number
of rows and number of unique rows in the interval and the value of the upper boundary
for the interval:

Column Name Data Type Description

*1 TABLE_UID LARGEINT The UID of the table for which this
histogram is generated.

*2 HISTOGRAM_ID INT UNSIGNED System-generated ID for the histogram.
Each HISTOGRAM_ID has a
corresponding ID in the HISTOGRAMS
table.

*3 INTERVAL_NUMBER SMALLINT Sequence number for this interval.

4 INTERVAL_ROWCOUNT LARGEINT Number of rows in this interval.

5 INTERVAL_UEC LARGEINT Number of unique entries in this interval.

6 INTERVAL_BOUNDARY VARCHAR(250)
CHARACTER
SET UCS2\

The value of the upper boundary for this
interval.

7 STD_DEV_OF_FREQ NUMERIC(12,3) The standard deviation of F, where F is the
set of {f1, … fn}, fi is the # of occurrences of
value i in the interval, and n is the UEC of
the interval

8 V1 LARGEINT Reserved for future use

9 V2 LARGEINT Reserved for future use

10 V3 LARGEINT Reserved for future use

11 V4 LARGEINT Reserved for future use

12 V5 VARCHAR(250)
UCS2
COLLATE

Reserved for future use

13 V6 VARCHAR(250)
UCS2
COLLATE

Reserved for future use

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-89

Metadata Tables HISTOGRM Table
HISTOGRM Table

The SQL/MP HISTOGRM table is a user table registered in the catalog of the primary
partition of the table specified in the UPDATE STATISTICS statement that created the
histogram tables. It describes columns, interval count, total number of rows and unique
rows, and the low and high values of column distribution for the table for which the
histogram is created.

Caution. HISTOGRM is an SQL/MP user table with the security of the user who runs the
UPDATE STATISTICS command on the user tables of a particular SQL/MP catalog. It does not
have the same protection as the SQL/MP catalog tables, which can be modified by licensed
processes only. As such, system users who have write access to the table could enter invalid
data, which could affect the performance or operation of NonStop SQL/MX. Therefore, you
should secure access to the HISTOGRM table to a restricted group of users.

Column Name Data Type Description

*1 TABLE_UID LARGEINT The UID of the table for which this histogram
is generated.

*2 HISTOGRAM_ID INT
UNSIGNED

System-generated ID for the histogram.
Each HISTOGRAM_ID has a corresponding
ID in the HISTINTS table.

*3 COL_POSITION INT Column position in a column group for which
the histogram is generated. For example,
columns in the group (a, b, c) have the
corresponding positions of 0, 1, and 2.

4 COLUMN_NUMBER INT Table column number for which this
histogram is generated.

5 COLCOUNT INT Number of columns in the column group.

6 INTERVAL_COUNT SMALLINT Number of intervals in the histogram. If the
value is n, there are n +1 corresponding
rows in the HISTINTS table with the same
HISTOGRAM_ID.

7 ROWCOUNT LARGEINT Total number of rows in the table.

8 TOTAL_UEC LARGEINT Total number of unique entries in the table.

9 STATS_TIME TIMESTAMP(0) Start time of statistics generation (expressed
as Greenwich mean time).

10 LOW_VALUE VARCHAR(500) Low value of column distribution (for the
entire table).

11 HIGH_VALUE VARCHAR(500) High value of column distribution (for the
entire table).

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-90

Metadata Tables HISTINTS Table
HISTINTS Table

The SQL/MP table HISTINTS table is a user table registered in the catalog of the
primary partition of the table specified in the UPDATE STATISTICS statement that
created the histogram tables. It describes, for each interval of the table for which the
histogram is created, the number of rows and unique rows in the interval and the value
of the interval upper boundary.

Caution. HISTINTS is an SQL/MP user table with the security of the user who runs the
UPDATE STATISTICS command on the user tables of a particular SQL/MP catalog. It does not
have the same protection as the SQL/MP catalog tables, which can be modified by licensed
processes only. As such, system users who have write access to the table could enter invalid
data, which could affect the performance or operation of NonStop SQL/MX. Therefore, you
should secure access to the HISTINTS table to a restricted group of users.

Column Name Data Type Description

*1 TABLE_UID LARGEINT The UID of the table for which this
histogram is generated.

*2 HISTOGRAM_ID INT UNSIGNED System-generated ID for the histogram.
Each HISTOGRAM_ID has a
corresponding ID in the HISTOGRM
table.

*3 INTERVAL_NUMBER SMALLINT Sequence number for this interval.

4 INTERVAL_ROWCOUNT LARGEINT Number of rows in this interval.

5 INTERVAL_UEC LARGEINT Number of unique entries in this
interval.

6 INTERVAL_BOUNDARY VARCHAR(500) The value of the upper boundary for this
interval.

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-91

Metadata Tables Examples of Histogram Tables
Examples of Histogram Tables

 Update the histogram statistics on the EMPNUM column for the EMPLOYEE table:

UPDATE STATISTICS FOR TABLE persnl.employee ON (empnum);

--- SQL operation complete.

 Use the SELECT statement to retrieve the statistics in the SQL/MX HISTOGRAMS
table generated by the UPDATE STATISTICS statement, based on table and
column names:

SELECT O.OBJECT_NAME
 TABLE_UID,
 C.COLUMN_NAME,
 H.HISTOGRAM_ID,
 H.INTERVAL_COUNT,
 H.ROWCOUNT,
 H.TOTAL_UEC,
 LOW_VALUE,
 HIGH_VALUE
 FROM cat.DEFINITION_SCHEMA_VERSION_1200.OBJECTS O,
 cat.DEFINITION_SCHEMA_VERSION_1200.COLS C,
 cat.sch.HISTOGRAMS H
 WHERE O.OBJECT_UID = H.TABLE_UID
 AND O.OBJECT_UID = C.OBJECT_UID
 AND C.COLUMN_NUMBER = H.COLUMN_NUMBER;

 Use the SELECT statement to retrieve the statistics in the SQL/MP HISTOGRM
table generated by the preceding UPDATE STATISTICS statement, based on table
and column names:

SELECT T.TABLENAME,
 H.TABLE_UID,
 C.COLNAME,
 H.HISTOGRAM_ID,
 H.INTERVAL_COUNT,
 H.ROWCOUNT,
 H.TOTAL_UEC,
 H.LOW_VALUE,
 H.HIGH_VALUE
 FROM $data06.mycat.TABLES T,
 $data06.mycat.COLUMNS C,
 $data06.mycat.HISTOGRM H
 WHERE T.CREATETIME = H.TABLE_UID
 AND T.TABLENAME = C.TABLENAME
 AND H.COLUMN_NUMBER = C.COLNUMBER;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-92

Metadata Tables Examples of Histogram Tables
 Use the SELECT statement to retrieve the statistics in the HISTINTS table
generated by the preceding UPDATE STATISTICS statement (the columns are
arranged horizontally):

SELECT * FROM HISTINTS;

TABLE_UID HISTOGRAM_ID INTERVAL_NUMBER
INTERVAL_ROWCOUNT INTERVAL_UEC INTERVAL_BOUNDARY
-------------------- ------------ ------------
-------------------- -------------------- ---------------
 211813264440965573 10036622 0
 0 0 (1)
 211813264440965573 10036622 1
 4 4 (32)
 211813264440965573 10036622 2
 4 4 (72)
 211813264440965573 10036622 3
 3 3 (89)
 211813264440965573 10036622 4
 3 3 (109)
 211813264440965573 10036622 5
 3 3 (180)
 211813264440965573 10036622 6
 3 3 (203)
 211813264440965573 10036622 7
 3 3 (207)
 211813264440965573 10036622 8
 3 3 (210)
 211813264440965573 10036622 9
 3 3 (213)
 211813264440965573 10036622 10
 3 3 (216)
 211813264440965573 10036622 11
 3 3 (219)
 211813264440965573 10036622 12
 3 3 (222)
 211813264440965573 10036622 13
 3 3 (225)
 211813264440965573 10036622 14
 3 3 (228)
 211813264440965573 10036622 15
 3 3 (231)
 211813264440965573 10036622 16
 3 3 (234)
 211813264440965573 10036622 17
 3 3 (337)
 211813264440965573 10036622 18
 3 3 (568)
 211813264440965573 10036622 19
 3 3 (992)
 211813264440965573 10036622 20
 3 3 (995)

--- 21 row(s) selected.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-93

Metadata Tables Examples of Histogram Tables
The data in the EMPLOYEE table is not distributed evenly with respect to the
primary key because most of the rows in this table are in the EMPNUM equal to
200 range. The SQL/MX optimizer uses the histogram statistics, which divide the
rows into intervals with approximately the same number of rows, to devise plans
for efficient data access. You can use the boundary and row count information in
the histogram tables to specify boundaries for physical partitions of large tables.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-94

Metadata Tables MXCS Metadata Tables
MXCS Metadata Tables

ASSOC2DS Table

ASSOC2DS is a metadata table in NONSTOP_SQL_nodename.MXCS_SCHEMA that
associates the MXCS service to a data source:

Column Name Data Type Description

*1 ASSOC_ID INT Unique identifier for association
service description.

*2 DS_ID INT Unique identifier for datasource
description.

3 AUTOMATION SMALLINT 0 data source is started manually.
1 data source is started
automatically.

4 CURRENT_STATUS SMALLINT Current state of a data source
defined for this association
services: 0 STOPPED
1 STOPPING
2 STARTING
3 STARTED

5 DEFAULT_TYPE SMALLINT System default MXCS service.

6 LAST_STATUS_CHANGE TIMESTAMP(6) Julian timestamp of last time
change to the data source status.

7 LAST_UPDATED TIMESTAMP(6) Julian timestamp of the last update
to this description.

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-95

Metadata Tables DATASOURCES Table
DATASOURCES Table

DATASOURCES is a metadata table in NONSTOP_SQL_nodename.MXCS_SCHEMA
that contains data source information:

Column Name Data Type Description

*1 DS_ID INT Unique identifier for this datasource
description.

2 MAX_SRVR_CNT INT Maximum number of server
instances that must be kept
available for association requests.

3 AVAIL_SRVR_CNT INT Minimum number of server
instances that must be kept
available for association requests.

4 INIT_SRVR_CNT INT Minimum number of server
instances that must be kept
available for association requests.

5 START_AHEAD INT Number of server instances that are
started ahead each time the number
of available servers is less than the
AVAIL_SRVR_CNT.

6 SRVR_IDLE_TIMEOUT LARGEINT Count in seconds indicating the
length of time a server is allowed to
sit idle (no client activity) before the
server initiates disconnect.

7 CONN_IDLE_TIMEOUT LARGEINT Length of time in seconds that a
connection request is allowed to
wait before completing the
connection:
-1 wait forever.
0 do not wait. If a server instance
is not immediately available, refuse
connection requests.

8 REFRESH_RATE LARGEINT Frequency in seconds at which
accumulated statistics are written to
the permanent SQL statistics
table(s).

9 LAST_UPDATED TIMESTAMP(6) Julian timestamp of last update to
this description.

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-96

Metadata Tables ENVIRONMENTVALUES Table
ENVIRONMENTVALUES Table

ENVIRONMENTVALUES is a metadata table in
NONSTOP_SQL_nodename.MXCS_SCHEMA that sets, controls, and defines
environment data:

NAME2ID Table

NAME2ID is a metadata table in NONSTOP_SQL_nodename.MXCS_SCHEMA that
associates service or data source names to an ID:

Column Name Data Type Description

*1 ENV_ID INT Identifier providing link to a parent
object (data source, user or profile)

*2 VARIABLE_SEQUENCE SMALLINT Sort of environment variable based
on type

*3 VARIABLE_TYPE SMALLINT Type of the environment variable:
0 SET
1 CONTROL
2 DEFINE

4 VARIABLE_VALUE VARCHAR(3900) Value of environment variable

5 LAST_UPDATED TIMESTAMP(6) Julian timestamp of last update to
this description

* Indicates primary key

Column Name Data Type Description

*1 OBJ_ID INT Unique identifier

2 OBJ_TYPE SMALLINT Unique identifier

3 OBJ_NAME VARCHAR(128) SQLl_identifier, logical reference to
object

4 VARIABLE_VALUE VARCHAR(390
0)

Reserved for future use

5 LAST_UPDATED TIMESTAMP(6) Julian timestamp of last update to
this description

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-97

Metadata Tables RESOURCEPOLICIES Table
RESOURCEPOLICIES Table

RESOURCEPOLICIES is a metadata table in
NONSTOP_SQL_nodename.MXCS_SCHEMA that contains governing information.

Column Name Data Type Description

*1 RES_ID INT Identifier providing link to a parent
object (datasource, user or profile)

2 ATTRIBUTE_NAME VARCHAR(128) Governed resource

3 LIMIT_VALUE LARGEINT Resource attribute test limit value

4 ACTION_ID LARGEINT Action to be taken when limit is
reached

5 SETTABLE SMALLINT 0 User’s preference values cannot
override configured values
1 User's preference values can
override configured values

6 LAST_UPDATED TIMESTAMP(6) Julian timestamp of last update to
this status record

* Indicates primary key
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
10-98

A Quick Reference

This appendix provides a quick, alphabetic reference to commands, statements, and
utilities. For other topics, see the Index.

A

ADD DEFINE Command on page 4-4

ALLOCATE CURSOR Statement on page 3-3

ALLOCATE DESCRIPTOR Statement on page 3-6

ALTER DEFINE Command on page 4-6

ALTER INDEX Statement on page 2-11

ALTER SEQUENCE Statement on page 2-13

ALTER TABLE Statement on page 2-19

ALTER TRIGGER Statement on page 2-48

B

BEGIN DECLARE SECTION Declaration on page 3-9

BEGIN WORK Statement on page 2-52

C

CALL Statement on page 2-54

CD Command on page 4-8

CLOSE Statement on page 3-11

COMMIT WORK Statement on page 2-57

CONTROL QUERY DEFAULT Statement on page 2-60

CONTROL QUERY SHAPE Statement on page 2-62

CONTROL TABLE Statement on page 2-74

CREATE CATALOG Statement on page 2-78

CREATE INDEX Statement on page 2-80

CREATE PROCEDURE Statement on page 2-88

CREATE SCHEMA Statement on page 2-96

CREATE SQLMP ALIAS Statement on page 2-104

CREATE TABLE Statement on page 2-107

CREATE TRIGGER Statement on page 2-144
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
A-1

Quick Reference D
CREATE VIEW Statement on page 2-154

D

DEALLOCATE DESCRIPTOR Statement on page 3-16

DEALLOCATE PREPARE Statement on page 3-18

DECLARE CATALOG Declaration on page 3-21

DECLARE CURSOR Declaration on page 3-22

DECLARE MPLOC Declaration on page 3-29

DECLARE NAMETYPE Declaration on page 3-32

DECLARE SCHEMA Declaration on page 3-33

DELETE DEFINE Command on page 4-9

DELETE Statement on page 2-162

DESCRIBE Statement on page 3-34

DISPLAY STATISTICS Command on page 4-23

DISPLAY USE OF Command on page 4-10

DISPLAY_QC Command on page 4-19

DISPLAY_QC_ENTRIES Command on page 4-21

DISPLAY STATISTICS Command on page 4-23

DOWNGRADE Utility on page 2-175

DROP CATALOG Statement on page 2-180

DROP INDEX Statement on page 2-181

DROP PROCEDURE Statement on page 2-182

DROP SCHEMA Statement on page 2-183

DROP SQL Statement on page 2-187

DROP SQLMP ALIAS Statement on page 2-188

DROP TABLE Statement on page 2-190

DROP TRIGGER Statement on page 2-192

DROP VIEW Statement on page 2-193

DUP Utility on page 2-194

E

ENV Command on page 4-25

ERROR Command on page 4-27
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
A-2

Quick Reference F
EXEC SQL Directive on page 3-38

EXECUTE IMMEDIATE Statement on page 3-39

EXECUTE Statement on page 2-201

EXIT Command on page 4-29

EXPLAIN Statement on page 2-208

mxexportddl Utility on page 5-55

F

FC Command on page 4-30

FETCH Statement on page 3-40

FIXUP Operation on page 5-8

G

GET ALL SECURITY_ADMINS Statement on page 2-234

GET DESCRIPTOR Statement on page 3-46

GET DIAGNOSTICS Statement on page 3-55

GET NAMES OF RELATED NODES Command on page 4-34

GET NAMES OF RELATED SCHEMAS Command on page 4-35

GET NAMES OF RELATED CATALOGS on page 4-36

GET VERSION OF SYSTEM on page 4-37

GET VERSION OF SCHEMA Command on page 4-38

GET VERSION OF SYSTEM SCHEMA Command on page 4-39

GET VERSION OF Object Command on page 4-40

GET VERSION OF MODULE Command on page 4-41

GET VERSION OF PROCEDURE Command on page 4-42

GET VERSION OF STATEMENT Command on page 4-43

GIVE CATALOG Statement on page 2-236

GIVE Object Statement on page 2-237

GIVE SCHEMA Operation on page 2-239

GOAWAY Operation on page 5-13

GRANT CREATE CATALOG Statement on page 2-244

GRANT CREATE SCHEMA Statement on page 2-245

GRANT EXECUTE Statement on page 2-246
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
A-3

Quick Reference H
Examples of REVOKE SECURITY_ADMIN on page 2-326

GTACL Command on page 4-32

H

HISTORY Command on page 4-44

I

IF Statement on page 3-61

import Utility on page 5-18

INFO DEFINE Command on page 4-45

INFO Operation on page 5-53

INITIALIZE SQL Statement on page 2-251

INSERT Statement on page 2-252

INVOKE Command on page 4-46

INVOKE Directive on page 3-64

L

LOCK TABLE Statement on page 2-268

LOG Command on page 4-47

LS Command on page 4-51

M

MODIFY Utility on page 2-271

MODIFY Utility on page 2-271

MODULE Directive on page 3-70

MXCI Command on page 4-55

MXGNAMES Utility on page 5-59

mximportddl Utility on page 5-67

O

OBEY Command on page 4-57

OPEN Statement on page 3-72

P

POPULATE INDEX Utility on page 2-304
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
A-4

Quick Reference R
An operation is a postfix merge if the range of data ends at the bottom of the
partition. You can specify only the TO NEXT PARTITION clause. The split
partition cannot be the last partition (the rightmost partition in the list). on
page 2-279

PURGEDATA Utility on page 2-307

PURGEDATA Utility on page 2-307

R

RECOVER Utility on page 2-311

RECOVER SCHEMA Operation on page 2-312

REGISTER CATALOG Statement on page 2-315

REPEAT Command on page 4-59

RESET PARAM Command on page 4-60

REVOKE Statement on page 2-317

REVOKE CREATE CATALOG Statement on page 2-320

REVOKE CREATE SCHEMA Statement on page 2-321

REVOKE EXECUTE Statement on page 2-323

REVOKE SECURITY_ADMIN Statement on page 2-326

ROLLBACK WORK Statement on page 2-328

S

SELECT Statement on page 2-330

SET Statement on page 2-365

SET CATALOG Statement on page 2-366

SET (Assignment) Statement on page 3-76

SET DESCRIPTOR Statement on page 3-78

SET LIST_COUNT Command on page 4-62

SET MPLOC Statement on page 2-368

SET NAMETYPE Statement on page 2-369

SET PARAM Command on page 4-63

SET SCHEMA Statement on page 2-370

SET SHOWSHAPE Command on page 4-66

SET STATISTICS Command on page 4-69

SET TABLE TIMEOUT Statement on page 2-372
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
A-5

Quick Reference T
SET TRANSACTION Statement on page 2-376

SET WARNINGS Command on page 4-71

SH Command on page 4-72

SHOW PARAM Command on page 4-73

SHOW PREPARED Command on page 4-74

SHOW SESSION Command on page 4-75

SHOWCONTROL Command on page 4-77

SHOWDDL Command on page 4-83

SHOWLABEL Command on page 4-99

SHOWSHAPE Command on page 4-110

SIGNAL SQLSTATE Statement on page 2-381

T

TABLE Statement on page 2-382

U

UNLOCK TABLE Statement on page 2-383

UNREGISTER CATALOG Statement on page 2-384

UPDATE Statement on page 2-385

UPDATE STATISTICS Statement on page 2-402

UPGRADE Utility on page 2-412

V

VALUES Statement on page 2-417

VERIFY Operation on page 5-79

W

WHENEVER Declaration on page 3-86
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
A-6

B Reserved Words

The words listed in this appendix are reserved for use by NonStop SQL/MX. To prevent
syntax errors, avoid using these words as identifiers in NonStop SQL/MP and in
NonStop SQL/MX. In NonStop SQL/MX, if a Guardian name contains a reserved word,
you must enclose the reserved word in double quotes (") to access that column or
object. See Using SQL/MX Reserved Words in SQL/MP Names on page 6-57.

In these lists, an asterisk (*) indicates reserved words that are SQL/MX extensions.
Words reserved by the ANSI standard are not marked.

Reserved SQL/MX and SQL/MP Identifiers
SQL/MX treats these words as reserved when they are part of SQL/MX text or
SQL/MP stored text. They cannot be used as identifiers unless you enclose them in
double quotes. SQL/MP stored text is SQL text that NonStop SQL/MX retrieves from
the SQL/MP catalog while processing SQL/MX text. SQL/MP stored text includes
views, constraints, column defaults, first keys, clustering keys, and partitioning keys.

Note. In SQL/MX Release 2.x, ABSOLUTE, DATA, EVERY, INITIALIZE, OPERATION, PATH,
STATE, STATEMENT, STATIC, and START are not reserved words.

Table B-1. Reserved SQL/MX and SQL/MP Identifiers (page 1 of 4)

ACTION FOR PROTOTYPE*

ADD FOREIGN PUBLIC

ADMIN FOUND READ

AFTER FRACTION* READS

AGGREGATE FREE REAL

ALIAS FROM RECURSIVE

ALL FULL REF

ALLOCATE FUNCTION REFERENCES

ALTER GENERAL REFERENCING

AND GET RELATIVE

ANY GLOBAL REPLACE*

ARE GO RESIGNAL*

ARRAY GOTO RESTRICT

AS GRANT RESULT

ASC GROUP RETURN

ASSERTION GROUPING RETURNS

ASYNC* HAVING REVOKE

AT HOST* RIGHT
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
B-1

Reserved Words Reserved SQL/MX and SQL/MP Identifiers
AUTHORIZATION HOUR ROLE

AVG IDENTITY ROLLBACK

BEFORE IF* ROLLUP

BEGIN IGNORE ROUTINE

BETWEEN IMMEDIATE ROW

BINARY IN ROWS

BIT INDICATOR SAVEPOINT

BIT_LENGTH INITIALLY SCHEMA

BLOB* INNER SCOPE

BOOLEAN INOUT SCROLL

BOTH INPUT SEARCH

BREADTH INSENSITIVE SECOND

BY INSERT SECTION

CALL* INT SELECT

CASE INTEGER SENSITIVE*

CASCADE INTERSECT SESSION

SEQUENCE

CASCADED INTERVAL SESSION_USER

CAST INTO SET

CATALOG IS SETS

CHAR ISOLATION SIGNAL*

CHAR_LENGTH ITERATE SIMILAR*

CHARACTER JOIN SIZE

CHARACTER_LENGTH KEY SMALLINT

CHECK LANGUAGE SOME

CLASS LARGE SPACE

CLOB LAST SPECIFIC

CLOSE LATERAL SPECIFICTYPE

COALESCE LEADING SQL

COLLATE LEAVE* SQL_CHAR*

COLLATION LEFT SQL_DATE*

COLUMN LESS SQL_DECIMAL*

COMMIT LEVEL SQL_DOUBLE*

COMPLETION LIKE SQL_FLOAT*

CONNECT LIMIT SQL_INT*

Table B-1. Reserved SQL/MX and SQL/MP Identifiers (page 2 of 4)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
B-2

Reserved Words Reserved SQL/MX and SQL/MP Identifiers
CONNECTION LOCAL SQL_INTEGER*

CONSTRAINT LOCALTIME SQL_REAL*

CONSTRAINTS LOCALTIMESTAMP SQL_SMALLINT*

CONSTRUCTOR LOCATOR SQL_TIME*

CONTINUE LOOP* SQL_TIMESTAMP*

CONVERT LOWER SQL_VARCHAR*

CORRESPONDING MAP SQLCODE

COUNT MATCH SQLERROR

CREATE MAX SQLEXCEPTION

CROSS MIN SQLSTATE

CUBE MINUTE SQLWARNING

CURRENT MODIFIES STRUCTURE

CURRENT_DATE MODIFY SUBSTRING

CURRENT_PATH MODULE SUM

CURRENT_ROLE MONTH SYSTEM_USER

CURRENT_TIME NAMES TABLE

CURRENT_TIMESTAMP NATIONAL TEMPORARY

CURRENT_USER NATURAL TERMINATE

CURSOR NCHAR TEST*

CYCLE NCLOB THAN*

DATE NEW THEN

DATETIME* NEXT THERE*

DAY NO TIME

DEALLOCATE NONE TIMESTAMP

DEC NOT TIMEZONE_HOUR

DECIMAL NULL TIMEZONE_MINUTE

DECLARE NULLIF TO

DEFAULT NUMERIC TRAILING

DEFERRABLE OBJECT TRANSACTION

DEFERRED OCTET_LENGTH TRANSLATE

DELETE OF TRANSLATION

DEPTH OFF TRANSPOSE*

DEREF OID* TREAT

DESC OLD TRIGGER

DESCRIBE ON TRIM

Table B-1. Reserved SQL/MX and SQL/MP Identifiers (page 3 of 4)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
B-3

Reserved Words Reserved SQL/MX and SQL/MP Identifiers

DESCRIPTOR ONLY TRUE

DESTROY OPEN UNDER

DESTRUCTOR OPERATORS* UNION

DETERMINISTIC OPTION UNIQUE

DIAGNOSTICS OR UNKNOWN

DISTINCT ORDER UNNEST

DICTIONARY ORDINALITY UPDATE

DISCONNECT OTHERS* UPPER

DOMAIN OUT UPSHIFT*

DOUBLE OUTER USAGE

DROP OUTPUT USER

DYNAMIC OVERLAPS USING

EACH PAD VALUE

ELSE PARAMETER VALUES

ELSEIF* PARAMETERS VARCHAR

END PARTIAL VARIABLE

END-EXEC PENDANT* VARYING

EQUALS POSITION VIEW

ESCAPE POSTFIX VIRTUAL*

EXCEPT PRECISION VISIBLE*

EXCEPTION PREFIX WAIT*

EXEC PREORDER WHEN

EXECUTE PREPARE WHENEVER

EXISTS PRESERVE WHERE

EXTERNAL PRIMARY WHILE*

EXTRACT PRIOR WITH

FALSE PRIVATE* WITHOUT

FETCH PRIVILEGES WORK

FIRST PROCEDURE WRITE

FLOAT PROTECTED* YEAR

ZONE

Table B-1. Reserved SQL/MX and SQL/MP Identifiers (page 4 of 4)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
B-4

Reserved Words SQL/MP Identifiers to Avoid
SQL/MP Identifiers to Avoid
Words in this list are not reserved in NonStop SQL/MP; however, NonStop SQL/MX
considers these words to be reserved in SQL/MX text and in SQL/MP stored text. To
prevent problems accessing or manipulating data, avoid using these words as
identifiers for SQL/MP objects.

BOTH DAY LEADING SECOND UNION

CASE DEFAULT MINUTE THEN WHEN

COLLATE FRACTION MONTH TIME YEAR

DATE HOUR ON TIMESTAMP

DATETIME INTERVAL RIGHT TRAILING
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
B-5

Reserved Words SQL/MP Identifiers to Avoid
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
B-6

C Limits

This appendix lists limits for various parts of NonStop SQL/MX:

Catalog names 128 characters in length.

Column names 128 characters in length.

Constraints The maximum combined length of the columns for a
REFERENCE, PRIMARY KEY, or UNIQUE constraint
depends on the block size. For 4K blocks, the maximum
length is 2010 bytes. For 32K blocks, the maximum
length is 2048 bytes.

DROP SCHEMA
CASCADE transactions

You might need to increase the number of locks per
volume, or DROP SCHEMA CASCADE can fail.

EXTENTS Limited only by size of disk.

FROM clause of the
SELECT statement

NonStop SQL/MX typically generates good plans up to
16 tables and tries to generate plans with acceptable
performance for queries up to 40 tables. Beyond that
limit, the queries require some tuning to compile and
run.

IN predicate 1900 expressions are allowed.

Indexes The maximum combined length of the columns for an
index depends on the block size. For 4K blocks, the
maximum length is 2010 bytes. For 32K blocks, the
maximum length is 2048 bytes.

There is no restriction on the number of indexes per
table but creating many indexes on a table will affect
performance.

There are no restrictions on the number of partitions an
index supports, but beyond 512, performance and
memory issues may occur.

Joins 40 tables can be joined, including base tables of views,
but joining more tables affects performance.

MAXEXTENTS size 768 (compare with 919 for NonStop SQL/MP)

Partitions There are no restrictions on the number of partitions an
table can support, but beyond 512, performance and
memory issues may occur.
Partitions can be on the same physical disk as the main
file (SQL/MP partitions must be on a different disk.)

PFS usage PFS usage is decreased in the file system. This issue
affects the number of opens.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
C-1

Limits
Referential constraints A table can have an unlimited number of referential
constraints, and you can specify the same foreign key in
more than one referential constraint, but you must
define each referential constraint separately.

Schema names 128 characters in length.

Tables ANSI names are three-part name of the form
catalog.schema.object, where each part can be up
to 128 characters long.

The maximum length of a row is 4036 bytes for 4K
blocks and 32708 bytes for 32K blocks, but not all of
that is available. Depending on data types you use,
NonStop SQL/MX might use some bytes for internal
use.

The clustering key for a table cannot be longer than
2010 bytes for 4K blocks and 2048 bytes for 32K
blocks.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
C-2

D Sample Database

To help you become familiar with its features, NonStop SQL/MX includes a sample
database, which you can access by using SQL/MX statements. The sample database
is used as the basis for many examples in this manual and other SQL/MX manuals.
The DDL statements in the sample database use SQL/MX tables. If you are using
SQL/MP tables, you need to use the SQL/MX Release 1.8 sample database, which
uses SQL/MP tables.

This appendix describes:

 Object Names in Sample Database
 Sample Database Entity-Relationship Diagram
 DDL Statements for the Sample Database

For more information on how to install the sample database, see the SQL/MX Quick
Start.

Object Names in Sample Database
The catalog name for the sample database is samdbcat by default, and the catalog
contains three schemas—PERSNL, SALES, and INVENT.

The DML examples in this manual use three-part logical names,
catalog.schema.name, because ANSI SQL:1999 applications use logical names.

Note. The SQL/MX Release 2.x sample database uses SQL/MX format tables. To install the
sample database, you must have a license to use SQL/MX DDL statements. To acquire this
license, purchase product T0394. Without this product, you cannot install the sample database;
an error message informs you that the system is not licensed.

PERSNL Contains the EMPLOYEE Table, JOB Table, DEPT Table, and
PROJECT Table, which are used to store personnel data.

SALES Contains the CUSTOMER Table, ORDERS Table, ODETAIL Table,
and PARTS Table, which are used to store order data.

INVENT Contains the SUPPLIER Table, PARTSUPP Table, and PARTLOC
Table, which are used to store inventory data.
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-1

Sample Database Sample Database Entity-Relationship Diagram
Sample Database Entity-Relationship Diagram
Figure D-1 shows the names of columns and tables and the relationships between the
tables in the sample database.

Figure D-1. Sample Database Tables

empnum

first_name

last_name

deptnum

jobcode

salary

custnum

custname

street

city

state

postcode

credit

suppnum

suppname

street

city

state

postcode

deptnum

deptname

manager

rptdept

location

ordernum

order_date

deliv_date

salesrep

custnum

PERSNL Schema SALES Schema INVENT Schema

EMPLOYEE Table CUSTOMER Table SUPPLIER Table

DEPT Table ORDERS Table

JOB Table

ODETAIL Table PARTSUPP Table

PARTLOC TablePARTS TablePROJECT Table

ordernum

partnum

unit_price

qty_ordered

partnum

partdesc

price

qty_available

loc_code

partnum

qty_on_hand

partnum

suppnum

partcost

qty_received

jobcode

jobdesc

projcode

empnum

projdesc

start_date

ship_timestamp

est_complete

Legend

One to one

One to many VST002.vsd
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-2

Sample Database DDL Statements for the Sample Database
DDL Statements for the Sample Database
The data definition language statements that create sample database objects are listed
next. For more information on the setmxdb script and how to install the sample
database, see the SQL/MX Quick Start.

EMPLOYEE Table

This statement creates the EMPLOYEE table:

CREATE TABLE samdbcat.persnl.employee
 (empnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Employee/Number'
 ,first_name CHARACTER (15)
 DEFAULT ' '
 NOT NULL NOT DROPPABLE
 HEADING 'First Name'
 ,last_name CHARACTER (20)
 DEFAULT ' '
 NOT NULL NOT DROPPABLE
 HEADING 'Last Name'
 ,deptnum NUMERIC (4)
 UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Dept/Num'
 ,jobcode NUMERIC (4) UNSIGNED
 DEFAULT NULL
 HEADING 'Job/Code'
 ,salary NUMERIC (8, 2) UNSIGNED
 DEFAULT NULL
 HEADING 'Salary'
 ,PRIMARY KEY (empnum) NOT DROPPABLE
);

This statement creates the EMPNUM_CONSTRNT constraint:

ALTER TABLE employee
 ADD CONSTRAINT empnum_constrnt
 CHECK (empnum BETWEEN 0001 and 9999);

This statement creates the XEMPNAME index:

CREATE INDEX xempname
 ON employee (
 last_name
 , first_name
);

This statement creates the XEMPDEPT index:

CREATE INDEX xempdept
 ON employee (
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-3

Sample Database DEPT Table
 deptnum
);

This statement creates the EMPLIST view:

CREATE VIEW emplist
 AS SELECT
 empnum
 , first_name
 , last_name
 , deptnum
 , jobcode
 FROM employee;

DEPT Table

This statement creates the DEPT table:

CREATE TABLE samdbcat.persnl.dept
 (deptnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Dept/Num'
 ,deptname CHARACTER (12)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Dept/Name'
 ,manager NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Mgr'
 ,rptdept NUMERIC (4) UNSIGNED
 DEFAULT 0
 NOT NULL NOT DROPPABLE
 HEADING 'Rpt/Dept'
 ,location VARCHAR (18)
 DEFAULT 0
 NOT NULL NOT DROPPABLE
 HEADING 'Location'
 ,PRIMARY KEY (deptnum) NOT DROPPABLE
);

This statement creates the MGRNUM_CONSTRNT constraint:

ALTER TABLE dept
 ADD CONSTRAINT mgrnum_constrnt
 CHECK (manager BETWEEN 0000 AND 9999);

This statement creates the DEPTNUM_CONSTRNT constraint:

ALTER TABLE dept
 ADD CONSTRAINT deptnum_constrnt
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-4

Sample Database JOB Table
 CHECK (deptnum IN (
 1000
 ,1500
 ,2000
 ,2500
 ,3000
 ,3100
 ,3200
 ,3300
 ,3500
 ,4000
 ,4100
 ,9000
));

This statement creates the XDEPTMGR index:

CREATE INDEX xdeptmgr
 ON dept (
 manager
);

This statement creates the XDEPTRPT index:

CREATE INDEX xdeptrpt
 ON dept (
 rptdept
);

This statement creates the MGRLIST view:

CREATE VIEW mgrlist (
 first_name
 ,last_name
 ,department
)
 AS SELECT
 first_name
 ,last_name
 ,deptname
 FROM
 dept
 ,employee
 WHERE
 dept.manager = employee.empnum;

JOB Table

This statement creates the JOB table:

CREATE TABLE samdbcat.persnl.job
 (jobcode NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Job/Code'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-5

Sample Database PROJECT Table
 ,jobdesc VARCHAR (18)
 DEFAULT '0'
 NOT NULL NOT DROPPABLE
 HEADING 'Job Description'
 ,PRIMARY KEY (jobcode) NOT DROPPABLE
);

PROJECT Table

This statement creates the PROJECT table:

CREATE TABLE samdbcat.persnl.project
 (projcode NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Project/Code'
 ,empnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Employee/Number'
 ,projdesc VARCHAR (18)
 DEFAULT '0'
 NOT NULL NOT DROPPABLE
 HEADING 'Project/Description'
 ,start_date DATE
 DEFAULT DATE '2002-07-01'
 NOT NULL NOT DROPPABLE
 HEADING 'Start/Date'
 ,ship_timestamp TIMESTAMP
 DEFAULT TIMESTAMP '2002-08-01:12:00:00.000000'
 NOT NULL NOT DROPPABLE
 HEADING 'Timestamp/Shipped'
 ,est_complete INTERVAL DAY
 DEFAULT INTERVAL '30' DAY
 NOT NULL NOT DROPPABLE
 HEADING 'Estimated/Completion'
 ,PRIMARY KEY (projcode) NOT DROPPABLE
);

CUSTOMER Table

This statement creates the CUSTOMER table:

CREATE TABLE samdbcat.sales.customer
 (custnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Cust/Num'
 ,custname CHARACTER (18)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Customer Name'
 ,street CHARACTER (22)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Street
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-6

Sample Database ORDERS Table
 ,city CHARACTER (14)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'City'
 ,state CHARACTER (12)
 DEFAULT 0
 NOT NULL NOT DROPPABLE
 HEADING 'State'
 ,postcode CHARACTER (10)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Post Code'
 ,credit CHARACTER (2)
 DEFAULT 'C1'
 NOT NULL NOT DROPPABLE
 HEADING 'CR'
 ,PRIMARY KEY (custnum) NOT DROPPABLE
);

This statement creates the XCUSTNAM index:

CREATE INDEX xcustnam
 ON customer (
 custname
);

This statement creates the CUSTLIST view:

CREATE VIEW custlist
 AS SELECT
 custnum
 ,custname
 ,street
 ,city
 ,state
 ,postcode
 FROM customer;

ORDERS Table

This statement creates the ORDERS table:

CREATE TABLE samdbcat.sales.orders
 (ordernum NUMERIC (6) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Order/Num'
 ,order_date DATE
 DEFAULT DATE '2002-07-01'
 NOT NULL NOT DROPPABLE
 HEADING 'Order/Date'
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-7

Sample Database DATE_CONSTRNT Constraint
 ,deliv_date DATE
 DEFAULT DATE '2002-08-01'
 NOT NULL NOT DROPPABLE
 HEADING 'Deliv/Date'
 ,salesrep NUMERIC (4) UNSIGNED
 DEFAULT 0
 NOT NULL NOT DROPPABLE
 HEADING 'Sales/Rep'
 ,custnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Cust/Num'
 ,PRIMARY KEY (ordernum) NOT DROPPABLE
);

DATE_CONSTRNT Constraint

This statement creates the DATE_CONSTRNT constraint:

ALTER TABLE orders
 ADD CONSTRAINT date_constrnt
 CHECK (deliv_date >= order_date);

This statement creates the XORDREP index:

CREATE INDEX xordrep
 ON orders (
 salesrep
);

This statement creates the XORDCUS index:

CREATE INDEX xordcus
 ON orders (
 custnum
);

This statement creates the ORDREP view:

CREATE VIEW ordrep
 AS SELECT empnum
 ,last_name
 ,ordernum
 ,o.custnum
 FROM
 samdbcat.persnl.employee e
 ,samdbcat.sales.orders o
 ,samdbcat.sales.customer c
 WHERE
 e.empnum = o.salesrep
 AND
 o.custnum = C.custnum;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-8

Sample Database ODETAIL Table
ODETAIL Table

This statement creates the ODETAIL table:

CREATE TABLE samdbcat.sales.odetail
 (ordernum NUMERIC (6) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Order/Num'
 ,partnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Part/Num'
 ,unit_price NUMERIC (8, 2)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Unit/Price'
 ,qty_ordered NUMERIC (5) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Qty/Ord'
 ,PRIMARY KEY (ordernum,partnum) NOT DROPPABLE
);

PARTS Table

This statement creates the PARTS table:

CREATE TABLE samdbcat.sales.parts
 (partnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Part/Num'
 ,partdesc CHARACTER (18)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Part Description'
 ,price NUMERIC (8, 2)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Price'
 ,qty_available NUMERIC (5)
 DEFAULT 0
 NOT NULL NOT DROPPABLE
 HEADING 'Qty/Avail'
 ,PRIMARY KEY (partnum) NOT DROPPABLE
);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-9

Sample Database SUPPLIER Table
This statement creates the XPARTDES index:

CREATE INDEX xpartdes
 ON parts (
 partdesc
);

SUPPLIER Table

This statement creates the SUPPLIER table:

CREATE TABLE samdbcat.invent.supplier
 (suppnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Supp/Num'
 ,suppname CHARACTER (18)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Supplier Name'
 ,street CHARACTER (22)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Street'
 ,city CHARACTER (14)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'City'
 ,state CHARACTER (12)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'State'
 ,postcode CHARACTER (10)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Post Code'
 ,PRIMARY KEY (suppnum) NOT DROPPABLE
);

This statement creates the XSUPPNAM index:

CREATE INDEX xsuppnam
 ON supplier (
 suppname
);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-10

Sample Database PARTSUPP Table
PARTSUPP Table

This statement creates the PARTSUPP table:

CREATE TABLE samdbcat.invent.partsupp
 (partnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Part/Num'
 ,suppnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Supp/Num'
 ,partcost NUMERIC (8, 2)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Part/Cost'
 ,qty_received NUMERIC (5) UNSIGNED
 DEFAULT 0
 NOT NULL NOT DROPPABLE
 HEADING 'Qty/Rec'
 ,PRIMARY KEY (partnum,suppnum) NOT DROPPABLE
);

This statement creates the XSUPORD index:

CREATE INDEX xsupord
 ON partsupp (
 suppnum
);

This statement creates the VIEW207 view:

CREATE VIEW view207 (
 partnumber
 ,partdescrpt
 ,suppnumber
 ,supplrname
 ,partprice
 ,qtyreceived
)
 AS SELECT
 x.partnum
 ,partdesc
 ,x.suppnum
 ,suppname
 ,partcost
 ,qty_received
 FROM
 samdbcat.invent.partsupp x
 ,samdbcat.sales.parts p
 ,samdbcat.invent.supplier s
 WHERE
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-11

Sample Database PARTSUPP Table
 x.partnum = p.partnum
 AND
 x.suppnum = s.suppnum;

This statement creates the VIEW207N view:

CREATE VIEW view207n (
 partnumber
 ,partdescrpt
 ,suppnumber
 ,supplrname
 ,partprice
 ,qtyreceived
)
 AS SELECT
 x.partnum
 ,p.partdesc
 ,s.suppnum
 ,s.suppname
 ,x.partcost
 ,x.qty_received
 FROM
 samdbcat.invent.supplier s LEFT JOIN
 samdbcat.invent.partsupp x
 ON s.suppnum = x.suppnum
 LEFT JOIN samdbcat.sales.parts p
 ON x.partnum = p.partnum;

This statement creates the VIEWCUST view:

CREATE VIEW viewcust (
 custnumber
 ,cusname
 ,ordernum
)
 AS SELECT
 c.custnum
 ,c.custname
 ,o.ordernum
 FROM
 samdbcat.sales.customer c LEFT JOIN
 samdbcat.salesorders o
 ON c.custnum = o.custnum;

This statement creates the VIEWCS view:

CREATE VIEW samdbcat.invent.viewcs
 AS SELECT
 custname
 FROM samdbcat.sales.customer
 UNION
 SELECT
 suppname
 FROM samdbcat.invent.supplier;
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-12

Sample Database PARTLOC Table
PARTLOC Table

When you install the sample database, you can choose to partition the PARTLOC. If
you do not specify partitions when you run setmxdb, the unpartitioned PARTLOC table
is created:

CREATE TABLE samdbcat.invent.partloc
 (loc_code CHARACTER (3)
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Loc/Code'
 ,partnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL NOT DROPPABLE
 HEADING 'Part/Num'
 ,qty_on_hand NUMERIC (7)
 DEFAULT 0
 NOT NULL NOT DROPPABLE
 HEADING 'Qty/On/Hand'
 ,PRIMARY KEY (loc_code,partnum) NOT DROPPABLE
);

If you specify partitions when you run setmxdb, this statement creates the partitioned
PARTLOC table:

CREATE TABLE samdbcat.invent.partloc
 (loc_code CHARACTER (3)
 NO DEFAULT
 NOT NULL
 HEADING 'Loc/Code'
 ,partnum NUMERIC (4) UNSIGNED
 NO DEFAULT
 NOT NULL
 HEADING 'Part/Num'
 ,qty_on_hand NUMERIC (7)
 DEFAULT 0
 HEADING 'Qty/On/Hand'
 ,PRIMARY KEY (loc_code,partnum))
 LOCATION $PART1VOL
 PARTITION (ADD FIRST KEY 'P00'
 LOCATION $PART2VOL
);
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-13

Sample Database PARTLOC Table
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
D-14

E Standard SQL and SQL/MX

This appendix describes NonStop SQL/MX conformance to the SQL standards
established by the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO). It describes:

 ANSI SQL Standards on page E-1
 ISO Standards on page E-2
 SQL/MX Compliance on page E-2
 SQL/MX Extensions to Standard SQL on page E-6
 Character Set Support on page E-7

This appendix documents NonStop SQL/MX conformance with the standards criteria
for SQL:1999, which replaced ANSI SQL-92. The mandatory portion of SQL:1999 is
referred to as Core SQL:1999 and is found in SQL:1999 Part 2 (Foundation) and Part 5
(Bindings). Core SQL:1999 contains all Entry SQL-92, much of Intermediate SQL-92,
and some of Full SQL-92, including some new SQL:1999 features.

Annex F of Part 2 in the table “SQL/Foundation feature taxonomy and definition for
Core SQL” describes Foundation features. Annex F of Part 5 in the table
“SQL/Bindings feature taxonomy and definition for Core SQL” describes Bindings
features.

ANSI SQL Standards
These ANSI documents govern SQL:

 ANSI/ISO/IEC 9075-1:1999, Information technology—Database languages—
SQL—Part 1: Framework (SQL/Framework)

 ANSI/ISO/IEC 9075-1:1999/Amd.1:2000

 ANSI/ISO/IEC 9075-2:1999, Information technology—Database languages—
SQL—Part 2: Foundation (SQL/Foundation)

 ANSI/ISO/IEC 9075-5:1999, Information technology—Database languages—
SQL—Part 5: Host Language Bindings (SQL/Bindings)

To obtain copies of the ANSI standards, refer to the ANSI eStandards Store at:

http://webstore.ansi.org/ansidocstore/default.asp

The X3 or INCITS standards offer a subset of the ANSI standards that include the SQL
standard. To obtain copies, see the International Committee for Information Technology
Standards at:

http://www.cssinfo.com/ncitsgate.html
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
E-1

Standard SQL and SQL/MX ISO Standards
ISO Standards
These ISO documents govern SQL:

 ISO/IEC 9075-1:1999, Information technology—Database languages—SQL—Part
1: Framework (SQL/Framework)

 ISO/IEC 9075-1:1999/Amd.1:2000

 ISO/IEC 9075-2:1999, Information technology—Database languages—SQL—Part
2: Foundation (SQL/Foundation)

 ISO/IEC 9075-5:1999, Information technology—Database languages—SQL—Part
5: Host Language Bindings (SQL/Bindings)

For more information about ISO standards, see:

 ISO Web site: http://www.iso.ch/

 ISO Store Web site: http://www.iso.org/iso/en/prods-services/ISOstore/store.html

SQL/MX Compliance
The ANSI and ISO SQL standards require conformance claims to state the type of
conformance and the implemented facilities. SQL/MX products provide full or partial
conformance. This table lists the Core SQL:1999 features for which NonStop SQL/MX
offers full conformance:

ID Feature

E011 Numeric data types

E021 Character data types

E031 Identifiers

E051 Basic query specification

E061 Basic predicates and search conditions

E081 Basic privileges

E091 Set functions

E101 Basic data manipulation

E111 Single row SELECT statement

E131 Null value support (nulls in lieu of values)

E151 Transaction support

E152 Basic SET TRANSACTION statement

E171 SQLSTATE support

F031 Basic schema manipulation

F041 Basic joined table

F131 Grouped operations
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
E-2

Standard SQL and SQL/MX SQL/MX Compliance
This table lists the Core SQL:1999 features for which NonStop SQL/MX offers partial
support:

F181 Multiple module support

F201 CAST function

F471 Scalar subquery values

F481 Expanded NULL predicate

B012 Embedded C

B013 Embedded COBOL

ID, Feature Level of Support

E071 Basic query
expressions

NonStop SQL/MX fully supports this subfeature:

E071-02 UNION ALL table operator

NonStop SQL/MX partially supports these subfeatures:

E071-01 UNION [DISTINCT] table operator (NonStop
SQL/MX does not support explicitly specifying DISTINCT)

E071-05 Columns combined by table operators need not
have exactly the same type (NonStop SQL/MX has rules for
determining result types that are not identical to SQL '99
rules)

E071-06 table operators in subqueries (NonStop SQL/MX
allows only UNION in subqueries)

NonStop SQL/MX does not support this subfeature:

E071-03 EXCEPT [DISTINCT] table operator

E121 Basic cursor
support

NonStop SQL/MX fully supports these subfeatures:

E121-01 DECLARE CURSOR

E121-02 ORDER BY columns need not be in select list

E121-06 Positioned UPDATE statement

E121-07 Positioned DELETE statement

E121-08 CLOSE statement

NonStop SQL/MX partially supports these subfeatures:

E121-04 OPEN statement (SQL/MX syntax does not match
that of SQL '99)

E121-10 FETCH statement, implicit NEXT (SQL/MX syntax
does not match that of SQL '99)

E121-17 WITH HOLD cursors (supported only for SELECT
statements that use stream access mode or an embedded
UPDATE or embedded DELETE)

ID Feature
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
E-3

Standard SQL and SQL/MX SQL/MX Compliance
NonStop SQL/MX does not support this subfeature:

E121-03 Value expressions in ORDER BY clause

E141 Basic integrity
constraints

NonStop SQL/MX fully supports these subfeatures:

E141-01 NOT NULL constraints

E141-02 UNIQUE constraint of NOT NULL columns

E141-03 PRIMARY KEY constraints

E141-06 CHECK constraints

NonStop SQL/MX partially supports these subfeatures:

E141-04 Basic FOREIGN KEY constraint with the NO
ACTION default for referential delete and update action(s)
(NonStop SQL/MX has the limitation that the “referenced-table
cannot be the same as table”)

E141-07 Column defaults (NonStop SQL/MX specifies a
subset of datetime value functions that Core '99
allows to be specified. NonStop SQL/MX does not enforce the
conformance rule that “Without Feature F411 “Time zone
specification”, CURRENT_TIME and
CURRENT_TIMESTAMP shall not be specified.”)

NonStop SQL/MX does not support these subfeatures:

E141-08 NOT NULL inferred on PRIMARY KEY (NOT NULL
is not required to be inferred on UNIQUE constraints)

E141-10 Names in a foreign key can be specified in any order
(The column in the column list associated with
REFERENCES must be in the same order as the column in
the column list associated with FOREIGN KEY)

E161 SQL comments
using leading double
minus

MXCI does not properly process SQL comments when they are
issued from the NonStop Manager

F051 Basic date and
time

NonStop SQL/MX fully supports these subfeatures:

F051-01 DATE data type (and literal)

F051-02 TIME data type (and literal) with fractional seconds
precision of at least 0

F051-03 TIMESTAMP data type (and literal) with fractional
seconds precision of at least 0 and 6

F051-04 Comparison predicate for DATE, TIME, and TIME-
STAMP data types

F051-05 Explicit CAST between datetime types and character
types

F051-06 CURRENT_DATE

ID, Feature Level of Support
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
E-4

Standard SQL and SQL/MX SQL/MX Compliance
NonStop SQL/MX does not support these subfeatures:

F051-07 LOCALTIME (equivalent to CAST (CURRENT_TIME
AS TIME WITHOUT TIME ZONE))

F051-08 LOCALTIMESTAMP (equivalent to
CAST(CURRENT_TIMESTAMP AS TIMESTAMP WITHOUT
TIME ZONE))

F081 UNION and
EXCEPT in views

NonStop SQL/MX supports UNION but not EXCEPT in views

F221 Explicit defaults NonStop SQL/MX supports use of DEFAULT in INSERT, but not
in UPDATE

F261 CASE
expressions

NonStop SQL/MX supports these subfeatures:

F261-01 Simple CASE

F261-02 Searched CASE

NonStop SQL/MX does not support these subfeatures:

F261-03 NULLIF

F261-04 COALESCE

F311 Schema definition
statement

NonStop SQL/MX partially supports these subfeatures:

F311-01 CREATE SCHEMA (NonStop SQL/MX does not
support creation of a schema and its contents in a single
statement. Objects must be created in a particular order,
dependent objects first.)

F311-02 CREATE TABLE for persistent base tables
(NonStop SQL/MX does not support creation of a schema and
its contents in a single statement. Objects must be created in
a particular order, dependent objects first.)

F311-03 CREATE VIEW (without WITH CHECK OPTION and
without Feature F081 “UNION and EXCEPT in views”
SQL/MX views cannot refer to tables created in the same
CREATE SCHEMA)

F311-04 CREATE VIEW: WITH CHECK OPTION (Without
support for Feature F081 “UNION and EXCEPT in views”
SQL/MX views cannot refer to tables created in the same
CREATE SCHEMA)

F311-05 GRANT statement (NonStop SQL/MX does not
support creation of a schema and its contents in a single
statement, including performing grant operations. Objects
must be created in a particular order, dependent objects first.)

T321 Basic
SQL-invoked routines

NonStop SQL/MX fully supports this subfeature:

T321-04 CALL statement

ID, Feature Level of Support
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
E-5

Standard SQL and SQL/MX SQL/MX Extensions to Standard SQL
NonStop SQL/MX does not support these Core SQL:1999 features:

NonStop SQL/MX supports embedded language. NonStop SQL/MX does not support
E182, module language. Even though this feature is listed in Table 31 in the standard,
Core SQL:1999 allows a choice between module language and embedded language.
Module language and embedded language are identical in capability. They differ only
in how SQL statements are associated with the host programming language.

SQL/MX Extensions to Standard SQL
NonStop SQL/MX provides many features that enhance or supplement the functionality
of standard SQL. In your SQL/MX applications, you can use these extensions just as
you can use Core SQL:1999. This table shows the Non-Core extensions that NonStop
SQL/MX supports:

ID Feature

E153 Updatable queries with subqueries

F021 Basic information schema

F501 Features and conformance views

F812 Basic flagging

S011 Distinct data types

ID Feature

B021 Direct SQL

B031 Basic dynamic SQL

B032 Extended dynamic SQL

F111 Isolation levels other than SERIALIZABLE

F121 Basic diagnostics management

F171 Multiple schemas per user

F222 INSERT statement: DEFAULT VALUES clause

F281 LIKE enhancements

F321 User authorization (no support for SYSTEM_USER)

F381-02 ALTER TABLE statement: ADD CONSTRAINT clause

F381-03 ALTER TABLE statement: DROP CONSTRAINT clause

F401-01 NATURAL JOIN

F401-04 CROSS JOIN

F461 Named character sets

F491 Constraint management

F561 Full value expressions

F651 Catalog name qualifiers

T171 LIKE clause in table definition (not exact Core SQL:1999 syntax)
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
E-6

Standard SQL and SQL/MX Character Set Support
Character Set Support
NonStop SQL/MX supports a limited number of national, international, and
vendor-specific encoded character set standards: ISO88591, UCS2, KANJI and
KSC5601.

Unicode is a universal encoded character set that lets you store information from any
language using a single character set. Modern standards, such as XML, Java, Java
Script, and LDAP, require Unicode. Unicode complies with ISO/IEC standard 10646. To
obtain a copy of ISO/IEC standard 10646, see the Web sites listed under ISO
Standards on page E-2.

SQL/MX Release 2.x complies fully with the Unicode 2.1 standard. For more
information about this standard, see the Web site of the Unicode Consortium:

http://www.unicode.org

NonStop SQL/MX uses UTF-16BE (16-bit) encoding for the Unicode (UCS2) character
set. The full range of UTF-16 characters is allowed, but surrogate pairs are not
recognized as characters. NonStop SQL/MX uses single-byte encoding for ISO88591
character set and permits wide-character KANJI and KSC5601 character set host
variables in embedded applications that query SQL/MP tables.

NonStop SQL/MX relaxes SQL:1999's data type matching rule for UCS2 character set
host variables for ease of use and better performance. A UCS2 host variable is
assignment and comparison compatible with an ISO88591 value expression.

NonStop SQL/MX allows various SQL:1999's NATIONAL CHARACTER syntax to
denote a predesignated character set. The default NATIONAL character set is UCS2.
You can specify a different default character set during SQL/MX installation.

NonStop SQL/MX uses binary collation (that is, comparison of binary code values) to
compare character strings.

NonStop SQL/MX complies fully with SQL:1999 for these character data type
subfeatures: character string data type declaration, character value expression, search
condition, string functions and predicates, string literals and host variables in C/COBOL
embedded programs.

T211 Basic trigger capability (except for T211-07 Trigger privilege)

T212 Enhanced trigger capability

T441 ABS and MOD functions

T621 Enhanced numeric functions

Note. KANJI and KSC5601 are valid character sets for SQL/MP tables but not SQL/MX tables.
If you attempt to create an SQL/MX table with KANJI, KSC5601, or other unsupported
character sets, you get an SQL error and the operation fails.

ID Feature
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
E-7

Standard SQL and SQL/MX Character Set Support
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
E-8

Index

Numbers
14139

H1 heading

DEGREES Function 8-55

36781
H1 heading

POSITION Function 8-89

A
ABS function

examples of 8-10

syntax diagram of 8-10

Access options
summary of 1-8

DELETE statement use of 2-165

DML statements use of 1-8

INSERT statement use of 2-252

READ COMMITTED 1-9

READ UNCOMMITTED 1-9

REPEATABLE READ 1-9

SELECT statement use of 2-344

SERIALIZABLE 1-9, 1-11, 1-24

SKIP CONFLICT 1-9

SQL/MP considerations 1-32

STABLE 1-10

UPDATE statement use of 2-389

Access privileges
ALL PRIVILEGES 2-241

DELETE 2-241

INSERT 2-241

REFERENCES 2-241

SELECT 2-241

tables 2-3, 2-240

UPDATE 2-241

views 2-3, 2-240, 2-244

ACCESS_PATHS metadata table 10-12

ACCESS_PATH_COLS metadata
table 10-14
ACOS function

examples of 8-10

syntax diagram of 8-10

ADD DEFINE command
examples of 4-5

syntax diagram of 4-4

AFTER LAST ROW clause 2-336
Aggregate functions

summary of 8-1

AVG 8-14

COUNT 8-38

DISTINCT clause 2-349, 8-2

MAX 8-103

MIN 8-104

STDDEV 8-171

SUM 8-176

VARIANCE 8-207

Aliases
ALTER SQLMP ALIAS statement 2-17

catalogs 10-61

CREATE SQLMP ALIAS
statement 2-104

description of 6-112

DROP SQLMP ALIAS statement 2-188

OBJECTS table 6-15

schemas 6-107

ALL PRIVILEGES access privilege 2-241,
2-318
ALLOCATE CURSOR statement

C examples of 3-4

COBOL examples of 3-5

naming cursor 3-4

syntax diagram of 3-3

WITH HOLD clause 3-3

WITH HOLD limitations 3-4

ALLOCATE DESCRIPTOR statement
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-1

Index A
C examples of 3-7

COBOL examples of 3-8

defining values in SQL descriptor
area 3-7

naming SQL descriptor area 3-7

specifying size of SQL descriptor
area 3-6

syntax diagram of 3-6

ALLOCATE file attribute 9-2
ALLOW_DP2_ROW_SAMPLING
default 10-66
ALL_UIDS metadata table 10-8
ALTER DEFINE command

examples of 4-7

syntax diagram of 4-6

ALTER INDEX statement
ALLOCATE within 9-2

authorization and availability
requirements 2-12

CLEARONPURGE within 9-5

DEALLOCATE within 9-2

examples of 2-13, 2-16

file attributes 2-12

MAXEXTENTS within 9-7

syntax diagram of 2-11

ALTER SQLMP ALIAS statement
examples of 2-18

syntax diagram of 2-17

ALTER TABLE statement
ALLOCATE within 9-2

AUDITCOMPRESS within 9-3

authorization and availability
requirements 2-32

CLEARONPURGE within 9-5

constraints implemented with
indexes 2-32

DEALLOCATE within 9-2

DEFAULT clause 7-2

examples of 2-42

MAXEXTENTS within 9-7

syntax diagram of 2-19

ALTER TRIGGER statement
authorization and availability
requirements 2-48

syntax diagram of 2-48

ANSI
compliance, default settings 1-34

compliance, description of 1-34

SQL standards E-1

standards, SQL/MX compliance E-2

ANSI names
alias mappings 1-27

ALTER SQLMP ALIAS statement 2-17

CREATE SQLMP ALIAS
statement 2-104

displaying with INFO 5-53

DROP SQLMP ALIAS statement 2-188

object naming 10-60

schemas 6-107

SQL/MP aliases 6-112

SQL/MP databases 1-25

SQL/MP objects 6-14, 6-16

SQL/MX objects 6-13

verifying with VERIFY 5-79

ANSI_STRING_FUNCTIONALITY
default 10-52
ASCII function

examples of 8-11

syntax diagram of 8-11

ASIN function
examples of 8-12

syntax diagram of 8-12

Assignment statement
examples of 3-77

syntax diagram of 3-76

ASSOC2DS metadata table 10-95
ATAN function

examples of 8-13

syntax diagram of 8-13

ATAN2 function
examples of 8-13
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-2

Index B
syntax diagram of 8-13

ATTEMPT_ASYNCHRONOUS_ACCESS
default 10-66
ATTEMPT_ESP_PARALLELISM
default 10-66
AUDITCOMPRESS file attribute

ALTER TABLE use of 9-3

CREATE TABLE use of 9-3

syntax diagram of 9-3

Audited tables
CREATE TABLE considerations 2-126

DELETE considerations 2-169

INSERT considerations 2-260

transaction management 1-16

UPDATE considerations 2-393

Authorization ID 1-5
AUTOMATIC_RECOMPILATION
default 10-78
AVG function

DISTINCT clause use of 8-14

examples of 8-15

operand requirements 8-14

syntax diagram of 8-14

B
BEGIN DECLARE SECTION

C examples of 3-9

COBOL examples of 3-10

C++ examples of 3-9

BEGIN WORK statement
audited tables, effect on 2-52

C examples of 2-53

COBOL examples of 2-53

MXCI examples of 2-52

syntax diagram of 2-52

BETWEEN predicate
examples of 6-87

logical equivalents 6-86

operand requirements 6-86

syntax diagram of 6-86

BLOCKSIZE file attribute
size recommendations 9-4

syntax diagram of 9-4

Boolean operators
NOT, AND, OR 6-108

search condition use of 6-108

Break key 1-5, 4-58
BROWSE access 1-8, 1-32

C
CACHE_HISTOGRAMS default 10-52
CACHE_HISTOGRAMS_REFRESH_INTE
RVALS default 10-52
CALL statement

examples of 2-56

syntax diagram of 2-54

CASE expression
data type of 8-17

examples of 8-18

searched CASE form 8-16

simple CASE form 8-16

syntax diagram of 8-16

CAST expression
data type conversion 8-20

examples of 8-21

syntax diagram of 8-20

valid type combinations 8-20

CATALOG default 10-60
Catalogs

CREATE CATALOG statement 2-78

DECLARE CATALOG declaration 3-21

DROP CATALOG statement 2-180

SET CATALOG statement 2-366

SQL/MP 6-3

SQL/MX 6-3

CATSYS metadata table 10-15
CAT_REFERENCES metadata table 10-9
CD command

examples of 4-8

path name within 4-8
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-3

Index C
syntax diagram of 4-8

CEILING function
examples of 8-22

syntax diagram of 8-22

CHAR data type 6-23
CHAR function

examples of 8-23

syntax diagram of 8-23

CHAR VARYING data type 6-23
Character set

default attribute 10-49

Character sets
description of 6-4

ISO88591 6-4

KANJI 6-4

KSC5601 6-4

setting default 6-64, 6-65, 6-66, 10-78

support standards E-7

UCS2 6-4

Character string data types
CHAR and VARCHAR,
differences 6-23

examples of literals 6-67

maximum storage lengths 6-24

Character string functions
summary of 8-2

ASCII 8-11

CHAR 8-23

CHAR_LENGTH 8-24

CODE_VALUE 8-27

CONCAT 8-34

INSERT 8-84

LCASE 8-87

LEFT 8-88

LOCATE 8-91

LOWER 8-94

LPAD 8-99

LTRIM 8-102

OCTET_LENGTH 8-126

POSITION 8-131

REPEAT 8-145

REPLACE 8-146

RIGHT 8-147

RPAD 8-150

RTRIM 8-152

SESSION_USER 8-168

SPACE 8-170

SUBSTRING 8-174

TRANSLATE 8-181

TRIM 8-192

UCASE 8-193

UPPER 8-201

UPSHIFT 8-202

Character string literals 6-64
Character value expression

examples of 6-42

syntax diagram of 6-41

CHAR_LENGTH function
examples of 8-25

OCTET_LENGTH similarity to 8-24

syntax diagram of 8-24

CHECK constraint 6-9
CK_COL_USAGE metadata table 10-15
CK_TBL_USAGE metadata table 10-15
Clauses

DEFAULT 7-2

PARTITION 7-6

SAMPLE 7-9

SEQUENCE BY 7-19

STORE BY 7-23

TRANSPOSE 7-26

CLEARONPURGE file attribute
ALTER INDEX use of 9-5

CREATE INDEX use of 9-5

purpose of 9-5

syntax diagram of 9-5

CLOSE statement
C examples of 3-12

COBOL examples of 3-13

effect on locks 3-12
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-4

Index C
scope of 3-11, 3-24

static and dynamic forms 3-11

syntax diagram of 3-11

Cluster sampling 7-11
Clustering key

description of 6-60

limits C-2

NONDROPPABLE PRIMARY KEY
specification 2-114

STORE BY clause 7-23

STORE BY clause, CREATE
TABLE 2-118

system-defined SYSKEY 6-63

COALESCE 8-27
COALESCE Function 8-27
CODE_VALUE function, syntax diagram
of 8-30
Collations

description of 6-6

SQL/MP considerations 1-33

COLS metadata table 10-15
Columns

column reference 6-7

default values 6-8

qualified name 6-7

COL_PRIVILEGES metadata table 10-20
Comment (--), examples of 1-4
Comments, host language 3-38
COMMIT WORK statement

C examples of 2-58

COBOL examples of 2-59

constraints check 2-57

MXCI examples of 2-57

syntax diagram of 2-57

Comparable data types 2-259, 6-17
Comparison predicates

comparison operators 6-88

data conversions 6-89

examples of 6-90

operand requirements 6-88

syntax diagram of 6-88

Compatible data types 2-259, 6-17
COMPILERCONTROLS function

examples of 8-32

syntax diagram of 8-31

Compound statements
BEGIN...END statement 3-14

IF statement 3-61

SET (assignment) statement 3-76

CONCAT function
examples of 8-35

syntax diagram of 8-34

Concatenation operator (||)
description of 8-34

examples of 8-25, 8-35

Concurrency
DDL_LOCKS metadata table 10-21

DELETE statement 2-165, 2-168

description of 1-16

import utility 5-28

INSERT statement 2-256, 2-258

MAX_ROWS_LOCKED_FOR_STABLE
_ACCESS default 10-57

MODIFY utility 2-294

MXCI sessions 4-48

NUMBER_OF_USERS default 10-71

SELECT statement 2-345, 2-347

SET TRANSACTION statement 2-376,
2-379

UPDATE statement 2-389, 2-391

VERIFY utility 5-81

Considerations 2-50
Considerations for DATEADD 8-45
Considerations for GRANT CREATE
CATALOG 2-245
Considerations for GRANT CREATE
SCHEMA 2-246
Considerations for GRANT
SECURITY_ADMIN 2-249
Considerations for REVOKE CREATE
CATALOG 2-320
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-5

Index C
Considerations for REVOKE CREATE
SCHEMA 2-321
Considerations for REVOKE
SECURITY_ADMIN 2-326
Considerations of GET ALL
SECURITY_ADMINS 2-234
Constraints

ALTER TABLE use of 2-19

CHECK 6-9

description of 6-9

implemented with indexes 2-33

limits C-1

NOT NULL 6-9

PRIMARY KEY 6-9

privileges 2-32

references column 2-25, 2-29, 6-9

REFERENTIAL INTEGRITY 6-9

UNIQUE 6-9

CONTROL QUERY DEFAULT statement
attributes 10-39

examples of 2-61

syntax diagram of 2-60

CONTROL QUERY SHAPE statement
examples of 2-69

syntax diagram of 2-62

CONTROL TABLE statement
examples of 2-77

syntax diagram of 2-74

CONVERTTIMESTAMP function
examples of 8-36

JULIANTIMESTAMP inverse
relationship to 8-36

syntax diagram of 8-36

Correlation names
examples of 6-11

purpose of 6-11

table reference use of 6-11

COS function
examples of 8-37

syntax diagram of 8-37

COSH function
examples of 8-37

syntax diagram of 8-37

COUNT function
DISTINCT clause within 8-38

examples of 8-39

syntax diagram of 8-38

CREATE CATALOG statement
authorization requirements 2-78

examples of 2-79

syntax diagram of 2-78

CREATE INDEX statement
ALLOCATE within 9-2

AUDITCOMPRESS within 9-3

authorization and availability
requirements 2-85

BLOCKSIZE within 9-4

CLEARONPURGE within 9-5

examples of 2-86

limits on indexes 2-86, C-1

MAXEXTENTS within 9-7

populating index 2-85

syntax diagram of 2-80

CREATE PROCEDURE statement
examples of 2-93

syntax diagram of 2-88

CREATE SCHEMA statement
authorization and availability
requirements 2-98

examples of 2-99

syntax diagram of 2-96

CREATE SQLMP ALIAS statement
examples of 2-106

syntax diagram of 2-104

usage restrictions 2-105

CREATE TABLE statement
ALLOCATE within 9-2

AUDITCOMPRESS within 9-3

authorization and availability
requirements 2-124, 2-136
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-6

Index D
BLOCKSIZE within 9-4

CLEARONPURGE within 9-5

DEFAULT clause 7-2

examples of 2-137

LIKE specification 2-124

MAXEXTENTS within 9-7

reducing space 2-126

syntax diagram of 2-107

CREATE TRIGGER statement
authorization and availability
requirements 2-147

syntax diagram of 2-144

CREATE VIEW statement
authorization and availability
requirements 2-158

examples of 2-160

LOCATION file option within 2-157

syntax diagram of 2-154

updatability requirements 2-160

WITH CHECK OPTION within 2-158

CROSS join, description of 2-339
CROSS_PRODUCT_CONTROL
default 10-67
Ctrl-c, effect on queries 1-5
Ctrl-Y, effect on MXCI session 4-29
CURRENT_DATE function

examples of 8-41

syntax diagram of 8-41

CURRENT_TIME function
examples of 8-42

precision specification within 8-42

syntax diagram of 8-42

CURRENT_TIMESTAMP function
examples of 8-40, 8-43

precision specification within 8-40, 8-43

syntax diagram of 8-40, 8-43

CURRENT_USER function
examples of 8-43

syntax diagram of 8-43

Cursor position

DELETE statement use of 2-166

UPDATE statement use of 2-390

Cursors
allocating extended 3-3

specifying read-only 3-23

specifying updatable 3-23

D
Data Definition Language (DDL) statements

summary of 2-1

ALTER INDEX 2-11

ALTER SQLMP ALIAS 2-13

ALTER TABLE 2-19

ALTER TRIGGER 2-48

CREATE CATALOG 2-78

CREATE INDEX 2-80

CREATE SCHEMA 2-96

CREATE SQLMP ALIAS 2-104

CREATE TABLE 2-107

CREATE TRIGGER 2-144

CREATE VIEW 2-154

DROP CATALOG 2-180

DROP INDEX 2-181

DROP PROCEDURE 2-182

DROP SCHEMA 2-183

DROP SQL 2-187

DROP SQLMP ALIAS 2-188

DROP TABLE 2-190

DROP TRIGGER 2-192

DROP VIEW 2-193

GRANT 2-240

GRANT EXECUTE 2-246

INITIALIZE SQL 2-251

REVOKE 2-317

REVOKE EXECUTE 2-323

SET 2-365

SIGNAL SQLSTATE 2-381

Data Manipulation Language (DML)
statements
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-7

Index D
summary of 2-4

DELETE statement 2-162

INSERT statement 2-252

SELECT statement 2-330

UPDATE statement 2-385

Data type conversion, CAST
expression 8-20
Data types

and SPJ methods 2-90

approximate numeric

descriptions of 6-35

DOUBLE PRECISION 6-37

FLOAT 6-36

REAL 6-37

character 6-22

comparable and compatible 6-17

datetime

DATE 6-26

TIME 6-26

TIMESTAMP 6-26

exact numeric

DECIMAL 6-36

descriptions of 6-35

INTEGER 6-35

LARGEINT 6-36

NUMERIC 6-35

PICTURE 6-36

SMALLINT 6-35

extended numeric precision 6-18

fixed length character

CHAR 6-23

NATIONAL CHAR 6-23

NCHAR 6-23

PIC 6-23

interval 6-31

Java 2-90

literals, examples of

character string literals 6-67

datetime literals 6-70

interval literals 6-75

numeric literals 6-76

varying-length character

CHAR VARYING 6-23

NATIONAL CHAR VARYING 6-23

NCHAR VARYING 6-23

VARCHAR 6-23

Database object names 6-13
Database object namespace 6-15
Database objects 6-12
Database sample tables D-1
DATASOURCES metadata table 10-96
DATA_FLOW_OPTIMIZATION
default 10-67
DATEDIFF Function 8-46
DATEFORMAT function

examples of 8-48

syntax diagram of 8-48

Datetime data types
DATE 6-26

description of 6-26

examples of literals 6-70

MP DATETIME data 6-29

TIME 6-26

TIMESTAMP 6-26

Datetime functions
summary of 8-4

CONVERTTIMESTAMP 8-36

CURRENT_DATE 8-41

CURRENT_TIME 8-42

CURRENT_TIMESTAMP 8-43

DATEFORMAT 8-48

DAY 8-50

DAYNAME 8-51

DAYOFMONTH 8-52

DAYOFWEEK 8-53

DAYOFYEAR 8-54

EXTRACT 8-75

HOUR 8-83

JULIANTIMESTAMP 8-85
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-8

Index D
MINUTE 8-105

MONTH 8-107

MONTHNAME 8-108

QUARTER 8-133

SECOND 8-167

WEEK 8-212

YEAR 8-213

Datetime literals
description of 6-68

inserting into SQL/MP columns 6-69

selecting from SQL/MP tables 6-28

Datetime value expression
examples of 6-44

syntax diagram of 6-43

DAY function
examples of 8-50

syntax diagram of 8-50

DAYNAME function
examples of 8-51

syntax diagram of 8-51

DAYOFMONTH function
examples of 8-52

syntax diagram of 8-52

DAYOFWEEK function
examples of 8-53

syntax diagram of 8-53

DAYOFYEAR function
examples of 8-54

syntax diagram of 8-54

DDL statements
See Data Definition Language (DDL)
statements

DDL_DEFAULT_LOCATIONS
default 10-63, 10-67
DDL_LOCKS metadata table 10-21
DDL_PARTITION_LOCKS metadata
table 10-21
DEALLOCATE DESCRIPTOR statement

examples of 3-17

syntax diagram of 3-16

DEALLOCATE file attribute 9-2
DEALLOCATE PREPARE statement

C examples of 3-19

COBOL examples of 3-20

syntax diagram of 3-18

DECIMAL data type 6-36
DECLARE CATALOG declaration

C examples of 3-21

COBOL examples of 3-21

scope of 3-21

syntax diagram of 3-21

DECLARE CURSOR declaration
C examples of 3-25

COBOL examples of 3-26

default for updatability 3-24

Publish/Subscribe examples of 3-5,
3-28

query expression within 3-23

specifying read-only cursor 3-23

specifying updatable cursor 3-23

static and dynamic forms 3-22

syntax diagram of 3-22

WITH HOLD clause 3-23

WITH HOLD limitations 3-25

DECLARE MPLOC declaration
C examples of 3-30

COBOL examples of 3-31

scope of 3-30

syntax diagram of 3-29

DECLARE NAMETYPE declaration
C examples of 3-32

COBOL examples of 3-32

scope of 3-32

syntax diagram of 3-32

DECLARE SCHEMA declaration
C examples of 3-33

COBOL examples of 3-33

scope of 3-33

syntax diagram of 3-33

DEFAULT clause
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-9

Index D
ALTER TABLE use of 2-22

CREATE TABLE use of 2-111, 7-2

default value 7-3

examples of 7-4

syntax diagram of 7-2

Default settings
ALLOW_DP2_ROW_SAMPLING 10-6
6

ANSI compliance 1-34

ANSI_STRING_FUNCTIONALITY 10-5
2

ATTEMPT_ASYNCHRONOUS_ACCES
S 10-66

ATTEMPT_ESP_PARALLELISM 10-66

AUTOMATIC_RECOMPILATION 10-78

CACHE_HISTOGRAMS 10-52

CACHE_HISTOGRAMS_REFRESH_IN
TERVALS 10-53

CATALOG 10-60

CROSS_PRODUCT_CONTROL 10-67

DATA_FLOW_OPTIMIZATION 10-67

DDL_DEFAULT_LOCATIONS 10-63,
10-67

DEFAULT_BLOCKSIZE 10-81

DEF_MAX_HISTORY_ROWS 10-77

DOOM_USERTRANSACTION 10-78

DP2_CACHE_4096_BLOCKS 10-68

DYNAMIC_HISTOGRAM_COMPRESS
ION 10-53

FFDC_DIALOUTS_FOR_MXCMP 10-6
8

FLOATTYPE 10-51

GENERATE_EXPLAIN 10-68

GEN_EIDR_BUFFER_SIZE 10-68

GEN_MAX_NUM_PART_DISK_ENTRI
ES 10-64

GEN_MAX_NUM_PART_NODE_ENTR
IES 10-64

GEN_PA_BUFFER_SIZE 10-69

HIST_DEFAULT_SEL_FOR_LIKE_WIL
DCARD 10-53

HIST_DEFAULT_SEL_FOR_PRED_RA
NGE 10-53

HIST_JOIN_CARD_LOWBOUND 10-5
3

HIST_NO_STATS_REFRESH_INTERV
AL 10-54

HIST_NO_STATS_ROWCOUNT 10-54

HIST_NO_STATS_UEC 10-54

HIST_PREFETCH 10-54

HIST_ROWCOUNT_REQUIRING_STA
TS 10-55

HIST_SAME_TABLE_PRED_REDUCTI
ON 10-55

HIST_SCRATCH_VOL 10-55

HIST_SECURITY_WARNINGS 10-56

INDEX_ELIMINATION_LEVEL 10-69

INFER_CHARSET 10-49

INSERT_VSBB 10-75

INTERACTIVE_ACCESS 10-79

ISOLATION_LEVEL 10-56

IUD_NONAUDITED_INDEX_MAINT 1
0-60

JOIN_ORDER_BY_USER 10-69

MATERIALIZE 10-80

MAX_ESPS_PER_CPU_PER_OP 10-
69

MAX_ROWS_LOCKED_FOR_STABLE
_ACCESS 10-57

MDAM_SCAN_METHOD 10-69

MEMORY_USAGE_SAFETY_NET 10-
70

MIN_MAX_OPTIMIZATION 10-70

MP_SUBVOLUME 10-61

MP_SYSTEM 10-61

MP_VOLUME 10-61

MSCF_ET_REMOTE_MSG_TRANSFE
R 10-70

MXCMP_PLACES_LOCAL_MODULES
10-58, 10-59

NAMETYPE 10-60
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-10

Index D
NOT_NULL_CONSTRAINT_DROPPAB
LE_OPTION 10-50

NUMBER_OF_USERS 10-71

OLT_QUERY_OPT 10-71

OPTIMIZATION_LEVEL 10-71

OPTS_PUSH_DOWN_DAM 10-71

PARALLEL_NUM_ESPS 10-71

PM_OFFLINE_TRANSACTION_GRAN
ULARITY 10-64

PM_ONLINE_TRANSACTION_GRANU
LARITY 10-64

POS_LOCATIONS 10-65

POS_NUM_OF_PARTNS 10-65

POS_RAISE_ERROR 10-65

PREFERRED_PROBING_ORDER_FO
R_NESTED_JOIN 10-72

PRESERVE_MIN_SCALE 10-52

PRIMARY_KEY_CONSTRAINT_DROP
PABLE_OPTION 10-50

QUERY_CACHE 10-73

QUERY_CACHE_MAX_VICTIMS 10-7
3

QUERY_CACHE_REQUIRED_PREFIX
_KEYS 10-74

QUERY_CACHE_STATEMENT_PINNI
NG 10-74

READONLY_CURSOR 10-75

RECOMPILATION_WARNINGS 10-79

RECOMPILE_ON_PLANVERSION_ER
ROR 10-79

REF_CONSTRAINT_NO_ACTION_LIK
E_RESTRICT 10-75

REMOTE_ESP_ALLOCATION 10-72

SAVE_DROPPED_TABLE_DDL 10-82

SCHEMA 10-61

SCRATCH_DISKS 10-76

SCRATCH_DISKS_EXCLUDED 10-76

SCRATCH_DISKS_PREFERRED 10-7
6

SCRATCH_FREESPACE_THRESHOL
D_PERCENT 10-76

SIMILARITY_CHECK 10-79

SORT_MAX_HEAP_SIZE_MB 10-72

STREAM_TIMEOUT 10-81

TABLELOCK 10-57

TEMPORARY_TABLE_HASH_PARTITI
ONS 10-83

TIMEOUT 10-57

UDR_JAVA_OPTIONS 10-80

UPD_ABORT_ON_ERROR 10-78

UPD_ORDERED 10-72

UPD_SAVEPOINT_ON_ERROR 10-78

VARCHAR_PARAM_DEFAULT_SIZE 1
0-83

ZIG_ZAG_TREES 10-72

DEFAULT value, using 2-256, 2-388
DEFAULTS table

See SYSTEM_DEFAULT table

DEFAULT_BLOCKSIZE default 10-81
DEFINE names

ADD DEFINE command 4-4

SQL/MP objects 6-14

DEFINEs
description of 6-38

in INVOKE in Windows NT 3-66

DEFINITION_SCHEMA_VERSION_vernum
schema

description of 10-3

tables 10-4

DEF_MAX_HISTORY_ROWS
default 10-77
DEGREES function

examples of 8-57

syntax diagram of 8-57

DELETE access privilege 2-241, 2-317
DELETE DEFINE command

examples of 4-9

syntax diagram of 4-9

DELETE statement
access options 2-165

file organization requirement 2-164
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-11

Index D
MXCI examples of 2-169

Publish/Subscribe examples of 2-173

SET ON ROLLBACK clause 2-164

SET ROLLBACK clause 2-164

SKIP CONFLICT access 2-165

STREAM clause 2-164, 2-386

syntax diagram of 2-162

WHERE clause 2-165

DELETE statement (embedded)
C examples of 2-172

COBOL examples of 2-172

positioned form 2-162

searched form 2-162

Delimited identifiers 6-56
Derived column names

examples of 6-8

syntax of 6-7

DESCRIBE statement
C examples of 3-35

COBOL examples of 3-36

INPUT form 3-34

OUTPUT form 3-34

scope of 3-35

syntax diagram of 3-34

DETAIL_COST in EXPLAIN output
CPU_TIME 2-211

IDELTIME 2-211

IP_TIME 2-211

MSG_TIME 2-211

PROBES 2-211

DIFF1 function
equivalent definitions 8-59

examples of 8-60

syntax diagram of 8-59

DIFF2 function
equivalent definitions 8-62

examples of 8-63

syntax diagram of 8-62

DISPLAY STATISTICS command

examples of 4-24

syntax diagram of 4-23

DISPLAY USE OF command
examples of 4-12

syntax diagram 4-10

DISPLAY_QC command
examples of 4-20

purpose of 4-19

QUERYCACHE function and 4-19

syntax diagram of 4-19

DISPLAY_QC_ENTRIES command
examples of 4-22

purpose of 4-21

QUERYCACHE function and 4-21

syntax diagram of 4-21

DISTINCT clause
aggregate functions 2-349, 8-2

AVG function use of 8-14

COUNT function use of 8-38

MAX function use of 8-103

MIN function use of 8-104

STDDEV function use of 8-171

SUM function use of 8-176

VARIANCE function use of 8-207

DML statements
See Data Manipulation Language
(DML) statements

DOOM_USERTRANSACTION
default 10-78
DOUBLE PRECISION data type 6-37
DOWNGRADE utility 2-175

considerations for 2-176

example of 2-178

output options for 2-176

DP2_CACHE_4096_BLOCKS
default 10-68
DROP CATALOG statement

authorization and availability
requirements 2-180

examples of 2-180
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-12

Index E
syntax diagram of 2-180

DROP INDEX statement
authorization and availability
requirements 2-181

examples of 2-182

supporting a constraint 2-181

syntax diagram of 2-181

DROP PROCEDURE statement
examples of 2-183

syntax diagram of 2-182

DROP SCHEMA statement
authorization and availability
requirements 2-183

examples of 2-185

limits C-1

syntax diagram of 2-183

DROP SQL statement
authorization and availability
requirements 2-187

examples of 2-186, 2-187

syntax diagram of 2-187

DROP SQLMP ALIAS statement
examples of 2-188

syntax diagram of 2-188

usage restrictions 2-188

DROP TABLE statement
authorization and availability
requirements 2-190

examples of 2-191

syntax diagram of 2-190

DROP TRIGGER statement
authorization and availability
requirements 2-192

syntax diagram of 2-192

DROP VIEW statement
authorization and availability
requirements 2-193

examples of 2-193

syntax diagram of 2-193

Dynamic SQL, parameter restrictions 2-300

DYNAMIC_HISTOGRAM_COMPRESSION
default 10-53

E
Embedded SQL data manipulation
statements

CLOSE 3-11

FETCH 3-40

OPEN 3-72

Embedded SQL declarations
BEGIN DECLARE SECTION 3-9

DECLARE CATALOG 3-21

DECLARE CURSOR 3-22

DECLARE MPLOC 3-29

DECLARE NAMETYPE 3-32

DECLARE SCHEMA 3-33

END DECLARE SECTION 3-37

MODULE 3-70

WHENEVER 3-86

Embedded SQL diagnostics statement,
GET DIAGNOSTICS 3-55
Embedded SQL dynamic statements

ALLOCATE DESCRIPTOR 3-6

DEALLOCATE DESCRIPTOR 3-16

DEALLOCATE PREPARE 3-18

DESCRIBE 3-34

EXECUTE IMMEDIATE 3-39

SET DESCRIPTOR 3-78

END DECLARE SECTION
C examples of 3-37

COBOL examples of 3-37

C++ examples of 3-37

syntax diagram of 3-37

Entry-sequenced table 1-33
ENV command

attributes displayed by 4-25

examples of 4-26

syntax diagram of 4-25

ENVIRONMENTVALUES metadata
table 10-97
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-13

Index F
ERROR command
examples of 4-27

syntax diagram of 4-27

Error messages 1-37
Example for GRANT CREATE
SCHEMA 2-246
Example of GIVE CATALOG 2-236
Examples for REVOKE CREATE
CATALOG 2-321
Examples of ALTER VIEW 2-50
Examples of DATEADD 8-47
Examples of GET ALL
SECURITY_ADMINS 2-234
Examples of GRANT
SECURITY_ADMIN 2-250
Examples of MODIFY 2-296
Examples of REVOKE
SECURITY_ADMIN 2-326
Exclamation point (!) command

examples of 4-28

syntax diagram of 4-28

EXCLUSIVE lock mode 1-12
EXEC SQL directive

examples of 3-38

syntax diagram of 3-38

terminating with END-EXEC in
COBOL 3-38

terminating with semicolon in C 3-38

EXECUTE IMMEDIATE statement
C examples of 3-39

COBOL examples of 3-39

syntax diagram of 3-39

EXECUTE statement
C examples of 2-205

COBOL examples of 2-206

MXCI examples of 2-204

scope of 2-202, 2-204

syntax diagram of 2-201

EXISTS predicate
correlated subquery within 6-92

examples of 6-92

syntax diagram of 6-92

EXIT command
active transaction, effect on 4-29

examples of 2-211, 4-29

syntax diagram of 4-29

EXP function
examples of 8-65

syntax diagram of 8-65

EXPLAIN function
columns in result 8-67

examples of 8-72

operator tree 8-67

syntax diagram of 8-66

EXPLAIN statement
examples of 2-211

operators 2-209

OPTIONS ’m’ considerations 2-210

syntax diagram of 2-208

Expression
character (or string) value 6-41

datetime value 6-43, 6-45, 6-50

description of 6-41

interval value 6-45, 6-50

numeric value 6-52

Extended numeric precision 6-18
Extensions

reserved words B-1

statements 1-35

EXTENT file attribute
limits C-1

MAXEXTENTS relationship 9-6

syntax diagram of 9-6

EXTRACT function
examples of 8-75

syntax diagram of 8-75

F
FASTCOPY 5-7
FASTCOPY INDEX command
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-14

Index G
syntax diagram of 2-227

FASTCOPY TABLE command
syntax diagram of 2-226

FC command
editing commands using 4-30

examples of 4-31

syntax diagram of 4-30

FEATURE_VERSION_INFO function
example of 8-77

syntax diagram of 8-76

FETCH statement
C examples of 3-43

COBOL examples of 3-44

scope of 3-41

syntax diagram of 3-40

using host variables 3-41

FFDC_DIALOUTS_FOR_MXCMP
default 10-68
File attributes

summary of 9-1

ALTER INDEX use of 9-1

ALTER TABLE use of 9-1

AUDITCOMPRESS 9-3

BLOCKSIZE 9-4

CLEARONPURGE 9-5

CREATE INDEX use of 9-1

CREATE TABLE use of 9-1

description of 9-1

EXTENT 9-6

MAXEXTENTS 9-7

File options
CREATE INDEX use of 2-80

CREATE TABLE use of 2-107

STORE BY 2-118, 7-23

File organizations
entry-sequenced 1-33

key-sequenced 1-33

relative 1-33

restrictions on 1-33

First (partition) keys 6-61

Fixed-length character column 6-23
FIXRCB operation 5-7
FIXUP operation 5-8
FLOAT data type 6-36
Floating-point data, description of 6-20
FLOATTYPE default 10-51
FLOOR function

examples of 8-78

syntax diagram of 8-78

Foreign key, ALTER TABLE statement 2-25
Functions, ANSI compliant 1-36

G
GENERATE_EXPLAIN default 10-68
GEN_EIDR_BUFFER_SIZE default 10-68
GEN_MAX_NUM_PART_DISK_ENTRIES
default 10-64
GEN_MAX_NUM_PART_NODE_ENTRIES
default 10-64
GEN_PA_BUFFER_SIZE default 10-69
GET DESCRIPTOR statement

C examples of 3-53

COBOL examples of 3-54

retrieving item count and values 3-47

syntax diagram of 3-46

GET DIAGNOSTICS statement
C examples of 3-59

COBOL examples of 3-60

getting condition information 3-56

getting statement information 3-56

syntax diagram of 3-55

GET NAMES OF RELATED CATALOGS
command

example of 4-36

syntax diagram of 4-36

GET NAMES OF RELATED NODES
command

example of 4-34

syntax diagram of 4-34

GET NAMES OF RELATED SCHEMAS
command
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-15

Index H
example of 4-35

syntax diagram of 4-35

GET VERSION OF MODULE command
example of 4-41

syntax diagram of 4-41

GET VERSION OF Object command
example of 4-40

syntax diagram of 4-40

GET VERSION OF PROCEDURE
command

example of 4-42

syntax diagram of 4-42

GET VERSION OF SCHEMA command
examples of 4-38

syntax diagram of 4-38

GET VERSION OF STATEMENT command
example of 4-43

syntax diagram of 4-43

GET VERSION OF SYSTEM command
example of 4-37

syntax diagram of 4-37

GET VERSION OF SYSTEM SCHEMA
command

example of 4-39

syntax diagram of 4-39

GIVECATALOG 2-236
GOAWAY operation 5-13
GRANT EXECUTE statement

authorization and availability
requirements 2-247

examples of 2-248

security 2-247

syntax diagram of 2-246

GRANT SECURITY_ADMIN 2-250
GRANT statement

authorization and availability
requirements 2-243

examples of 2-244

security 2-243

syntax diagram of 2-240

GRANT USAGE Statement 2-250

GTACL command
examples of 4-32

syntax of 4-32

Guardian name resolution 10-62
Guardian physical name 6-13

H
Hash groupby, scratch files 10-77
Hash join

performance 2-66

scratch files 10-77

Hash partitioning
description of 6-83

MODIFY utility 2-281

HashPartFunc function
examples of 8-79

syntax diagram of 8-79

HISTINTS metadata table 10-91
Histogram tables

creating 10-85

dropping 10-85

examples of 10-92

HISTINTS 10-91

HISTOGRM 10-90

maintaining 10-86

purpose of 10-85

UPDATE STATISTICS use of 2-403

Histograms
clearing 2-403, 2-410

controls 10-52

generating 2-402

HISTOGRAMS metadata table 10-87
HISTOGRAM_INTERVALS metadata
table 10-89
HISTOGRM metadata table 10-90
HISTORY command

examples of 4-32, 4-44

syntax diagram of 4-32, 4-44

HIST_DEFAULT_SEL_FOR_LIKE_WILDC
ARD default 10-53
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-16

Index I
HIST_DEFAULT_SEL_FOR_PRED_RANG
E default 10-53
HIST_JOIN_CARD_LOWBOUND
default 10-53
HIST_NO_STATS_REFRESH_INTERVAL
default 10-54
HIST_NO_STATS_ROWCOUNT
default 10-54
HIST_NO_STATS_UEC default 10-54
HIST_PREFETCH default 10-54
HIST_ROWCOUNT_REQUIRING_STATS
default 10-55
HIST_SAME_TABLE_PRED_REDUCTION
default 10-55
HIST_SCRATCH_VOL default 10-55
HIST_SECURITY_WARNINGS
default 10-56
Host variable arrays, INSERT
statement 2-255
Host variables, INSERT statement 2-258
HOUR function

examples of 8-83

syntax diagram of 8-83

I
Identifiers 6-56
IF statement

examples of 3-62, 3-63

syntax diagram of 3-61

import utility 5-18
IN predicate

examples of 6-96

limits C-1

logical equivalent using ANY 6-95

operand requirements 6-95

syntax diagram of 6-94

Index keys 6-62
Indexes

ALTER INDEX statement 2-11

CREATE INDEX statement 2-80

description of 6-59

limits C-1

populating 2-85

INDEXJOIN 2-66
INDEX_ELIMINATION_LEVEL
default 10-69
INFER_CHARSET default 10-49
INFO DEFINE command

examples of 4-45

syntax diagram of 4-45

INFO operation 5-53
INITIALIZE SQL statement

authorization and availability
requirements 2-251

examples of 2-251

purpose of 2-251

syntax diagram of 2-251

INSERT access privilege 2-241, 2-317
INSERT function

examples of 8-84

syntax diagram of 8-84

INSERT statement
access options 2-256

compatible data types 2-259

considerations 2-257

DEFAULT values 2-256

lock modes 2-256

MXCI examples of 2-262

ORDER BY clause 2-255

query expression within 2-254

syntax diagram of 2-252

target column list 2-254

using host variables 2-258

VALUES specification within 2-258

INSERT statement (embedded)
C examples of 2-267

COBOL examples of 2-267

Insertable views 2-160
INSERT_VSBB default 10-75
INTEGER data type 6-35
INTERACTIVE_ACCESS default 10-79
INTERVAL data
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-17

Index J
inserting into SQL/MP columns 6-73

selecting from SQL/MP tables 6-33

Interval data type
description of 6-31

examples of literals 6-75

Interval literals
description of 6-71

examples of 6-75

Interval value expression
examples of 6-49

syntax diagram of 6-47

INVOKE command
examples of 4-46

syntax diagram of 4-46

INVOKE directive
examples of 3-67

syntax diagram of 3-64

whether preprocessor preserves or
overrides 3-30, 3-66

ISO standards E-2
ISO88591 character set 6-4
Isolation levels

READ COMMITTED 1-24

READ UNCOMMITTED 1-23

REPEATABLE READ 1-24

SERIALIZABLE 1-9, 1-11, 1-24

ISOLATION_LEVEL default 10-56
IUD_NONAUDITED_INDEX_MAINT
default 10-60

J
Java data types 2-90
Join

CONTROL QUERY SHAPE
statement 2-66

CROSS 2-339

INDEXJOIN 2-66

JOIN ON 2-339

join predicate 2-356

LEFT 2-339

limits 2-348, C-1

NATURAL 2-339

NATURAL LEFT 2-339

NATURAL RIGHT 2-339

optional specifications 2-338

RIGHT 2-340

types 2-338

JOIN ON join, description of 2-339
JOIN_ORDER_BY_USER default 10-69
JULIANTIMESTAMP function

examples of 8-85

syntax diagram of 8-85

K
KANJI character set 6-4
Keys

clustering 6-60

first (partition) 6-61

index 6-62

primary 6-63

SYSKEY 6-63

Key-sequenced table 1-33
KEY_COL_USAGE metadata table 10-22
KSC5601 character set 6-4

L
LARGINT data type 6-36
LASTNOTNULL function

examples of 8-86

syntax diagram of 8-86

LCASE function
examples of 8-87

syntax diagram of 8-87

LEFT function
examples of 8-88

syntax diagram of 8-88

LEFT join, description of 2-339
LIKE predicate

CREATE TABLE 2-124
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-18

Index L
escape character within 6-98

examples of 6-99

NOT within 6-97

syntax diagram of 6-97

wild-card characters within 6-98

Limits
constraints C-1

DROP SCHEMA C-1

extents C-1

IN predicate 6-95, C-1

indexes 2-86, C-1

joins 2-348, C-1

MAXEXTENTS C-1

partitions C-1

referential constraints 2-29, C-2

SELECT statement, FROM clause C-1

tables 2-127, C-2

Literals
character string, examples of 6-67

datetime, examples of 6-70

description of 6-64

examples of 6-64

interval, examples of 6-75

numeric, examples of 6-76

LOCATE function
examples of 8-92

result of 8-92

syntax diagram of 8-91

LOCATION file option
CREATE CATALOG use of 2-78

CREATE INDEX use of 2-82

CREATE VIEW use of 2-157

Lock escalation
description of 1-11

DISPLAY STATISTICS statement 4-23

import utility 5-23

Lock granularity 1-11
Lock modes

LOCK TABLE effect on 2-268

SELECT statement use of 2-256,
2-345

types of 2-256, 2-345

using 2-347

LOCK TABLE statement
examples of 2-269

EXCLUSIVE mode 2-268

SHARE mode 2-268

syntax diagram of 2-268

Lock timeout
dynamic, SET TABLE TIMEOUT
statement setting 2-372

static

CONTROL TABLE statement
setting 2-75

SYSTEM_DEFAULTS table 10-57

Lock waits
DISPLAY STATISTICS statement 4-23

Locking
duration 1-11

EXCLUSIVE lock mode 1-12

granularity 1-11

holder 1-12

lock escalation 1-11, 4-23

LOCK TABLE statement

lock duration 1-11

lock mode 1-12

syntax description of 2-268

modes 1-12

release of 1-12

SELECT statement 1-12

SERIALIZABLE access option 1-9,
1-11, 1-24

SHARE lock mode 1-12

LOG command
concurrent MXCI sessions 4-48

examples of 4-48

log file, contents of 4-48

syntax diagram of 4-47

Log file 4-48
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-19

Index M
LOG function
examples of 8-93

syntax diagram of 8-93

LOG10 function
examples of 8-93

syntax diagram of 8-93

Logical name
SQL/MP objects 6-14

SQL/MX objects 6-13

Logical operators
NOT, AND, OR 6-108

search condition use of 6-108

LOWER function
examples of 8-98

syntax diagram of 8-94

LPAD function
examples of 8-99

syntax diagram of 8-99

LS command
examples of 4-52

options 4-51

LTRIM function
examples of 8-102

syntax diagram of 8-102

M
Magnitude 6-53
Management statements, summary
of 8-103
MATERIALIZE default 10-80
Math functions

summary of 8-5

ABS 8-10

ACOS 8-10

ASIN 8-12

ATAN 8-13

ATAN2 8-13

CEILING 8-22

COS 8-37

COSH 8-37

DEGREES 8-57

EXP 8-65

FLOOR 8-78

LOG 8-93

LOG10 8-93

MOD 8-106

PI 8-130

POWER 8-132

RADIANS 8-143

SIGN 8-168

SIN 8-169

SINH 8-169

SQRT 8-170

TAN 8-178

TANH 8-178

MAX function
DISTINCT clause within 8-103

examples of 8-103

syntax diagram of 8-103

MAXEXTENTS file attribute
considerations of 9-7

limits C-1

syntax diagram of 9-7

MAX_ESPS_PER_CPU_PER_OP
default 10-69
MAX_ROWS_LOCKED_FOR_STABLE_AC
CESS default 10-57
MDAM_SCAN_METHOD default 10-69
MEMORY_USAGE_SAFETY_NET
default 10-70
Metadata schemas

DEFINITION_SCHEMA_VERSION_ver
num 10-3

MXCS_SCHEMA 10-5

SYSTEM_DEFAULTS_SCHEMA 10-5

SYSTEM_SCHEMA 10-3

SYSTEM_SQLJ_SCHEMA 10-6

Metadata tables
ACCESS_PATHS 10-12

ACCESS_PATH_COLS 10-14
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-20

Index M
ALL_UIDS 10-8

ASSOC2DS 10-95

CATSYS 10-9

CAT_REFERENCES 10-9

CK_COL_USAGE 10-15

CK_TBL_USAGE 10-15

COLS 10-15

COL_PRIVILEGES 10-20

DATASOURCES 10-96

DDL_LOCKS 10-21

DDL_PARTITION_LOCKS 10-21

ENVIRONMENTVALUES 10-97

HISTINTS 10-91

HISTOGRAMS_nodename 10-87

HISTOGRAM_INTERVALS 10-89

HISTOGRM 10-90

KEY_COL_USAGE 10-22

MP_PARTITIONS 10-22

NAME2ID 10-97

OBJECTS 10-22

PARTITIONS 10-24

REF_CONSTRAINTS 10-25

REPLICAS 10-26

RESOURCEPOLICIES 10-98

RI_UNIQUE_USAGE 10-26

ROUTINES 10-27

SCHEMATA 10-10

SCHEMA_REPLICAS 10-11

SYSTEM_DEFAULTS 10-37

TBL_CONSTRAINTS 10-29

TBL_PRIVILEGES 10-30

TEXT 10-32

TRIGGERS 10-32

TRIGGERS_CAT_USAGE 10-34

TRIGGERS_USED 10-34

UID identifier 10-3

VWS 10-35

VW_COL_TBL_COLS 10-36

VW_COL_USAGE 10-36

VW_TBL_USAGE 10-36

MGM_PRIVILEGES 10-11
MIN function

DISTINCT clause within 8-104

examples of 8-104

syntax diagram of 8-104

MINUTE function
examples of 8-105

syntax diagram of 8-105

MIN_MAX_OPTIMIZATION default 10-70
MOD function

examples of 8-106

syntax diagram of 8-106

MODE command, syntax diagram of 4-54
MODIFY utility

hash partitioning 2-281

range partitioning 2-274

reuse range partitions 2-271

system-clustered tables 2-286

MODULE directive
C examples of 3-71

COBOL examples of 3-71

preprocessor use of 3-70

syntax diagram of 3-70

Module management, default
attribute 10-59
MONTH function

examples of 8-107

syntax diagram of 8-107

MONTHNAME function
examples of 8-108

syntax diagram of 8-108

MOVINGAVG function
examples of 8-110

syntax diagram of 8-109

MOVINGCOUNT function
examples of 8-112

syntax diagram of 8-111

MOVINGMAX function
examples of 8-114
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-21

Index N
syntax diagram of 8-113

MOVINGMIN function
examples of 8-116

syntax diagram of 8-115

MOVINGSTDDEV function
examples of 8-118

syntax diagram of 8-117

MOVINGSUM function
examples of 8-120

syntax diagram of 8-119

MOVINGVARIANCE function
examples of 8-122

MP_PARTITIONS metadata table 10-22
MP_SUBVOLUME default 10-61
MP_SYSTEM default 10-61
MP_VOLUME default 10-61
MSCF_ET_REMOTE_MSG_TRANSFER
default 10-70
MXCI

break key 1-5, 4-58

description of 1-2

parameters 6-77

statement length 1-3

MXCI command
examples of 4-55

syntax diagram of 4-55

MXCMP_PLACES_LOCAL_MODULES
default 10-58, 10-59
MXCS metadata tables

ASSOC2DS 10-95

DATASOURCES 10-96

ENVIRONMENTVALUES 10-97

NAME2ID 10-97

RESOURCEPOLICIES 10-98

MXCS_SCHEMA 10-5
mxexportddl utility 5-55
MXGNAMES utility

examples of 5-61

syntax diagram 5-59

mximportddl utility 5-67

mxrpm tool 5-75
mxtool utility

description of 5-78

operations

FIXRCB 5-7

FIXUP 5-8

GOAWAY 5-13

INFO 5-53

VERIFY 5-79

N
N string literals

character string literals 6-64

hexadecimal 6-65

Name resolution 10-62
NAME2ID metadata table 10-97
Namespace 6-15
NAMETYPE default 10-60
NATIONAL CHAR data type 6-23
NATIONAL CHAR VARYING data
type 6-23
National character set

default attribute 10-50

N string literals 6-64, 6-65

NATURAL join, description of 2-339
NATURAL LEFT join, description of 2-339
NATURAL RIGHT join, description of 2-339
NCHAR data

inserting into SQL/MP columns 6-66,
6-67

selecting from SQL/MP tables 6-25

NCHAR data type
associated character sets 6-5

description of 6-23

SQL/MP considerations 1-31, 6-25,
6-66

NCHAR VARYING data type 6-23
Nonaudited tables

CREATE TABLE considerations 2-126

DELETE considerations 2-169
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-22

Index O
transaction management 1-16

NONSTOP_SQLMX_nodename.SYSTEM_
SCHEMA schema 10-7
NOT NULL constraint 6-9
NOT_NULL_CONSTRAINT_DROPPABLE_
OPTION default 10-50
NULL predicate

examples of 6-100

syntax diagram of 6-99

Null symbol 6-80
NULL, using 2-388
NUMBER_OF_USERS default 10-71
NUMERIC data type 6-35
Numeric data types

approximate numeric 6-35

exact numeric 6-35

extended numeric 6-18

literals, examples of 6-76

Numeric literals
approximate 6-76

exact 6-76

examples of 6-76

Numeric value expression
evaluation order 6-53

examples of 6-55

syntax diagram of 6-52

NVL 8-123
NVL2 Function 8-125

O
OBEY command

examples of 4-58

syntax diagram of 4-57

OBEY command file 4-57
Object names 6-13
Object namespace 6-15
Objects

DEFINE names 6-14

description of 6-13

logical names 6-13, 6-14

name types

default 6-16

mixing 6-16

naming 10-60

physical names 6-13

OBJECTS metadata table 10-22
OCTET_LENGTH function

CHAR_LENGTH similarity to 8-126

examples of 8-127

syntax diagram of 8-126

OFFSET function
examples of 8-128

syntax diagram of 8-128

OLT optimization
See Online transaction optimization

OLT_QUERY_OPT default 10-71
Online transaction optimization (OLT)

OLT_QUERY_OPT 10-71

OPEN statement
C examples of 3-74

COBOL examples of 3-75

scope of 3-72

static and dynamic forms 3-72

syntax diagram of 3-72

OPTIMIZATION_LEVEL default 10-71
OPTS_PUSH_DOWN_DAM default 10-71

P
PARALLEL_NUM_ESPS default 10-71
Parameter specification

examples of 6-79

names 6-78

type assignments 6-77

Parameters in dynamic SQL, restrictions on
use 2-300
PARTITION clause

examples 7-8

syntax diagram of 7-6

Partition Overlay Specification (POS)
default attributes 10-63
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-23

Index P
description of 2-127

Partitioning key
CREATE INDEX, FIRST KEY
specification 2-83

CREATE TABLE, FIRST KEY
specification 2-121

Partitions
automatic creation 2-127

description of 6-83

hash 6-83

hash, MODIFY utility 2-281

limits C-1

managing 2-271

range 6-83

range, MODIFY utility 2-271, 2-274

PARTITIONS metadata table 10-24
Path name, CD command use of 4-8
Performance

buffer size 10-68, 10-69

character string data types 6-24

CLEARONPURGE file attribute 9-5

compound statements 3-14

constraint droppable options 10-51

constraints 2-33

CONTROL TABLE statement 2-74

CREATE TABLE and
DROPPABLE 2-113

DECLARE CURSOR statement 3-25

extent sizes 9-6

hash join 2-66

import utility 5-38

MODIFY utility 2-293

online transaction optimization 10-71

ORDER BY clause 2-351

query execution, histograms 10-52

query optimization 10-66

row maintenance 10-75

SAMPLE statement, cluster
sampling 7-12

STORE BY clause 7-24

Physical name 6-13
PI function

examples of 8-130

syntax diagram of 8-130

PICTURE data type, character string 6-23
PICTURE data type, numeric 6-36
PM_OFFLINE_TRANSACTION_GRANULA
RITY default 10-64
PM_ONLINE_TRANSACTION_GRANULA
RITY default 10-64
POPULATE INDEX utility

examples of 2-306

syntax description 2-304

Populating indexes 2-85
POS

See Partition Overlay Specification

POSITION function
examples of 8-132

result of 8-131

syntax diagram of 8-131

POS_LOCATIONS default 10-65
POS_NUM_OF_PARTNS default 10-65
POS_RAISE_ERROR default 10-65
POWER function

examples of 8-132

syntax diagram of 8-132

Precision, description of 6-53
Predicates

summary of 6-85, 6-105

BETWEEN 6-86

comparison 6-88

description of 6-85

EXISTS 6-92

IN 6-94

LIKE 6-97

NULL 6-99

quantified comparison 6-101

PREFERRED_PROBING_ORDER_FOR_N
ESTED_JOIN default 10-72
PREPARE statement

availability 2-300
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-24

Index Q
C examples of 2-302

COBOL examples of 2-303

MXCI examples of 2-301

naming statements 2-301

scope of 2-300

syntax diagram of 2-299

Prepared SQL, statements for 2-4
PRESERVE_MIN_SCALE default 10-52
Primary key

ALTER TABLE statement 2-24

description of 6-63

Primary key constraint 6-9
PRIMARY_KEY_CONSTRAINT_DROPPA
BLE_OPTION default 10-50
PRIVILEGED_USERS 10-25
PRIVILEGED_USERS TABLE 10-11
Privileges

ALL PRIVILEGES 2-241

DELETE 2-241

GRANT EXECUTE statement 2-247

GRANT statement use of 2-3, 2-240

INSERT 2-241

REFERENCES 2-241

required to execute utilities 5-2

REVOKE EXECUTE statement 2-323

REVOKE statement use of 2-317

SELECT 2-241

tables 2-241

UPDATE 2-241

Prompts, MXCI 1-2
Protection view 6-116

Q
Quantified comparison predicates

ALL, ANY, SOME 6-101

examples of 6-102

operand requirements 6-102

result of 6-102

syntax diagram of 6-101

QUARTER function

examples of 8-133

syntax diagram of 8-133

Query expression
DECLARE CURSOR use of 3-22

INSERT statement use of 2-254

SELECT statement use of 2-336

syntax diagram of 2-155, 2-252

Query specification
SELECT statement use of 2-340

simple table, form of 2-340

QUERYCACHE function
DISPLAY_QC command 8-134

examples of 8-136

result of 8-134

syntax diagram of 8-134

QUERYCACHEENTRIES function
DISPLAY_QC_ENTRIES
command 8-138

examples of 8-140

result of 8-139

syntax diagram of 8-138

Query, interruption of 1-5
QUERY_CACHE default 10-73
QUERY_CACHE_MAX_VICTIMS
default 10-73
QUERY_CACHE_REQUIRED_PREFIX_KE
YS default 10-74
QUERY_CACHE_STATEMENT_PINNING
default 10-74
Quick reference A-1

R
RADIANS function

examples of 8-143

syntax diagram of 8-143

Range partitioning
description of 6-83

MODIFY utility 2-271, 2-274

READ COMMITTED 1-8
READ UNCOMMITTED 1-8
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-25

Index R
READONLY_CURSOR default 10-75
REAL data type 6-37
RECOMPILATION_WARNINGS
default 10-79
RECOMPILE_ON_PLANVERSION_ERRO
R default 10-79
RECOVER utility 2-311
REFERENCES access privilege 2-241,
2-318
References column constraint, ALTER
TABLE statement 2-25, 2-29
References column constraint, description
of 6-9
Referential constraints, limits C-2
Referential integrity constraint 6-9
Referential integrity, ALTER TABLE
statement 2-25
REF_CONSTRAINTS metadata
table 10-25
REF_CONSTRAINT_NO_ACTION_LIKE_R
ESTRICT default 10-75
REGISTER CATALOG command

examples of 2-315

syntax diagram of 2-315

RELATEDNESS function
example of 8-144

syntax diagram of 8-144

Relative table 1-33
REMOTE_ESP_ALLOCATION
default 10-72
Rename 2-294
REPEAT command

examples of 4-59

syntax diagram of 4-59

REPEAT function
examples of 8-145

syntax diagram of 8-145

REPEATABLE READ
and SERIALIZABLE 1-8

description of 1-24

SQL/MP applications 1-32

SQL/MP keywords 1-8

REPLACE function
examples of 8-146

syntax diagram of 8-146

REPLICAS metadata table 10-26
Reserved words

in Guardian names 6-57

SQL/MP considerations 1-27, B-1

SQL/MX B-1

RESET PARAM command
examples of 4-60

syntax diagram of 4-60

Resource control, statements for 2-5
RESOURCEPOLICIES metadata
table 10-98
REVOKE 2-326
REVOKE EXECUTE statement

examples of 2-325

syntax diagram of 2-323

REVOKE SECURITY_ADMIN 2-326
REVOKE statement

authorization and availability
requirements 2-319

examples of 2-320

syntax diagram of 2-317

WITH GRANT OPTION 2-317

RIGHT function
examples of 8-147

syntax diagram of 8-147

RIGHT join, description of 2-340
RI_UNIQUE_USAGE metadata table 10-26
ROLLBACK WORK statement

C examples of 2-329

COBOL examples of 2-329

MXCI examples of 2-328

syntax diagram of 2-328

ROUTINES metadata table 10-27
Row value constructor

BETWEEN predicate use of 6-86

comparison predicates use of 6-88

IN predicate use of 6-94
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-26

Index S
NULL predicate use of 6-99

quantified comparison predicates use
of 6-101

ROWS SINCE function
examples of 8-149

syntax diagram of 8-148

Rowsets
DELETE statement 2-163, 2-165

expressions 6-55

GET DESCRIPTOR items 3-50

INSERT statement 2-253, 2-255

predicates 6-104

search condition 6-110

SELECT statement

FROM clause 2-340

HAVING clause 2-344

host variables 2-335

ROWSET FOR clause 2-333

search condition 2-341

size 2-340

SET DESCRIPTOR items 3-80

default 3-80

triggers 2-150, 2-152

UPDATE statement 2-386/2-387, 2-389

RPAD function
examples of 8-150

syntax diagram of 8-150

RTRIM function
examples of 8-152

syntax diagram of 8-152

RUNNINGAVG function
equivalent definition 8-153

examples of 8-153

syntax diagram of 8-153

RUNNINGCOUNT function
examples of 8-155

syntax diagram of 8-155

RUNNINGMAX function
examples of 8-157

syntax diagram of 8-157

RUNNINGMIN function
examples of 8-159

syntax diagram of 8-159

RUNNINGSTDDEV function
equivalent definition 8-161

examples of 8-161

syntax diagram of 8-161

RUNNINGSUM function
examples of 8-163

syntax diagram of 8-163

RUNNINGVARIANCE function
examples of 8-165

syntax diagram of 8-165

S
SAMPLE clause

cluster sampling 7-11

examples of 7-12

SELECT statement use of 7-9

syntax diagram of 7-9

Sample database
description of D-1

entity/relationship diagram D-2

table schema D-3

Sampling, clusters 7-11
Savepoints

DELETE statement 2-166

description of 1-14

UPD_SAVEPOINT_ON_ERROR
default 10-78

SAVE_DROPPED_TABLE_DDL
default 10-82
Scale 6-53
SCHEMA default 10-61
Schemas, description of 6-105
SCHEMATA metadata table 10-10
SCHEMA_REPLICAS metadata
table 10-11
Scope

ALLOCATE CURSOR use of 3-3
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-27

Index S
ALLOCATE DESCRIPTOR use of 3-6

CLOSE use of 3-11

DEALLOCATE DESCRIPTOR use
of 3-16

DEALLOCATE PREPARE use of 3-18

DECLARE CURSOR use of 3-24

DESCRIBE use of 3-35

EXECUTE use of 2-202

FETCH use of 3-41

OPEN use of 3-72

PREPARE use of 2-300

SCRATCH_DISKS default 10-76
SCRATCH_DISKS_EXCLUDED
default 10-76
SCRATCH_DISKS_PREFERRED
default 10-76
SCRATCH_FREESPACE_THRESHOLD_P
ERCENT default 10-76
Search condition

Boolean operators within 6-108

CASE expression use of 8-17

DELETE statement use of 2-165

description of 6-112

examples of 6-109

predicate within 6-108

syntax diagram of 6-108

UPDATE statement use of 2-389

SECOND function
examples of 8-167

syntax diagram of 8-167

SELECT access privilege 2-241, 2-317
SELECT ROW COUNT statement

considerations 2-363

examples of 2-364

limitations of 2-363

syntax diagram of 2-363

SELECT statement
access options 2-344

authorization requirements 2-347

compound statements 3-15

DISTINCT clause 2-334

embedded delete 2-337

embedded update 2-337

FROM clause 2-335

FROM clause, limits C-1

GROUP BY clause 2-343, 2-351

HAVING clause 2-344

joined table within 2-338

lock modes 2-345

MXCI examples of 2-355

ORDER BY clause 2-346, 2-351

Publish/Subscribe examples of 2-361

RETURN list 2-337

select list elements 2-334

SEQUENCE BY clause 2-343

simple table within 2-340

SKIP CONFLICT access 2-345

stream access limitations 2-348

STREAM clause 2-336

syntax diagram of 2-330

table reference within 2-335

TRANSPOSE clause 2-342

union operation within 2-345, 2-351

views and 2-347

WHERE clause 2-341

SELECT statement (embedded)
C examples of 2-360

COBOL examples of 2-361

INTO clause 2-334

syntax diagram of 2-330

table reference within 2-334

SEQUENCE 10-28
SEQUENCE BY clause

examples of 7-21

SELECT statement use of 7-19

syntax diagram of 7-19

Sequence functions
summary of 8-7

DIFF1 8-59
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-28

Index S
DIFF2 8-62

LASTNOTNULL 8-86

MOVINGAVG 8-109

MOVINGCOUNT 8-111

MOVINGMAX 8-113

MOVINGMIN 8-115

MOVINGSTDDEV 8-117

MOVINGSUM 8-119

MOVINGVARIANCE 8-121

OFFSET 8-128

ROWS SINCE 8-148

RUNNINGAVG 8-153

RUNNINGCOUNT 8-155

RUNNINGMAX 8-157

RUNNINGMIN 8-159

RUNNINGSTDDEV 8-161

RUNNINGSUM 8-163

RUNNINGVARIANCE 8-165

THIS 8-179

SERIALIZABLE 1-9, 1-11, 1-24
SESSION_USER function

examples of 8-168

syntax diagram of 8-168

SET CATALOG statement
C examples of 2-367

COBOL examples of 2-367

MXCI examples of 2-366

scope of 2-366

syntax diagram of 2-366, 2-369

SET DESCRIPTOR statement
C examples of 3-84

COBOL examples of 3-85

syntax diagram of 3-78

Set functions 8-1
SET LIST_COUNT command

examples of 4-62

syntax diagram of 4-62

SET MPLOC statement
examples of 2-368

scope of 2-368

syntax diagram of 2-368

SET NAMETYPE statement
examples of 2-369

scope of 2-369

SET ON ROLLBACK clause
DELETE description of 2-164

UPDATE description of 2-388

SET PARAM command
examples of 4-64

syntax diagram of 4-63

SET SCHEMA statement
C examples of 2-371

COBOL examples of 2-371

MXCI examples of 2-371

scope of 2-370

syntax diagram of 2-370

SET SHOWSHAPE command
default setting 4-66

examples of 4-67

syntax diagram of 4-66

SET statement
considerations 2-365

syntax diagram of 2-365

SET STATISTICS command
default setting 4-69

examples of 4-69

syntax diagram of 4-69

SET TABLE TIMEOUT statement
C examples of 2-375

MXCI examples of 2-374

syntax diagram of 2-372

SET TERMINAL_CHARSET command
syntax diagram of 4-70

SET TRANSACTION statement
C examples of 2-380

COBOL examples of 2-380

MXCI examples of 2-380

syntax diagram of 2-376

transaction modes set by 2-377
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-29

Index S
SET WARNINGS command
examples of 4-71

syntax diagram of 4-71

SH command
examples of 4-72

syntax diagram of 4-72

SHARE lock mode 1-12
Shorthand view 6-116
SHOW PARAM command

examples of 4-73

syntax diagram of 4-73

SHOW PREPARED command
examples of 4-74

syntax diagram of 4-74

SHOW SESSION command
attributes displayed by 4-75

examples of 4-76

syntax diagram of 4-75

SHOWCONTROL command
examples of 4-78

syntax diagram of 4-77

SHOWDDL command
examples of 4-90

syntax diagram of 4-83

SHOWLABEL command
examples of 4-102

syntax diagram of 4-99

SHOWSHAPE command
default CQS 4-110

examples of 4-110

syntax diagram of 4-110

SIGN function
examples of 8-168

syntax diagram of 8-168

SIGNAL SQLSTATE statement
considerations 2-381

syntax diagram of 2-381

Similarity checking
CONTROL TABLE statement 2-76

FIXUP operation 5-11

SIMILARITY_CHECK default 10-79

VERIFY operation 5-81

SIMILARITY_CHECK default 10-79
Simple table, in SELECT statement 2-340
SIN function

examples of 8-169

syntax diagram of 8-169

SINH function
examples of 8-169

syntax diagram of 8-169

SKIP CONFLICT
publish/subscribe 1-9

SELECT statement 2-345

SMALLINT data type 6-35
Sort, scratch files 10-77
SORT_MAX_HEAP_SIZE_MB
default 10-72
SPACE function

examples of 8-170

syntax diagram of 8-170

SQL descriptor area
allocating 3-6

deallocating 3-16

DESCRIBE statement use of 3-35

EXECUTE statement use of 2-203

OPEN statement use of 3-73

SET DESCRIPTOR statement use
of 3-79

specifying size 3-6

SQL statement names, specifying with
comment 2-300
SQL statements

ANSI compliant 1-34

interruption of 1-5

SQL/MX extensions 1-35

SQL value expression 6-41
SQLCODE, using ERROR command 1-37
SQLMP objects, logical names 6-14
SQLMX objects, logical names 6-13
SQLSTATE, in SQL/MX messages 1-37
SQL/MP aliases
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-30

Index S
ALTER SQLMP ALIAS statement 2-17

catalogs 10-61

CREATE SQLMP ALIAS
statement 2-104

description of 6-112

DROP SQLMP ALIAS statement 2-188

OBJECTS table 6-15

schemas 6-107

SQL/MP catalogs 6-3
SQL/MP considerations

access options 1-32

catalogs 6-3

collations 1-33

datetime literals data

inserting 6-69

selecting 6-28

embedded statements 3-1

INTERVAL data

inserting 6-73

selecting 6-33

NCHAR data

inserting 6-66, 6-67

selecting 6-25

reserved words 1-27, B-1

stored text 1-32

views 1-32

SQL/MP objects, define names 6-14
SQL/MX catalogs 6-3
SQL/MX data types, and SPJ
methods 2-90
SQL/MX extensions E-6

reserved words B-1

statements 1-34

SQRT function
examples of 8-170

syntax diagram of 8-170

STABLE access
description of 1-8

locking 10-57

SELECT statement 2-345

SQL/MP 1-8, 1-32

Standards
ANSI conformance 1-34

ANSI SQL E-1

character set support E-7

ISO E-2

SQL/MX extensions E-6

Statement atomicity
automatic 1-14

control query defaults 10-78

description of 1-14

implicit abort 1-14

Statements, SQL
ANSI compliant 1-34

interruption of 1-5

SQL/MX extensions 1-35

Statistics
clearing 2-403

DISPLAY STATISTICS command

example of 2-301, 4-24

syntax diagram 4-23

HISINTS SQL/MP table 10-91

Histogram attributes in
SYSTEM_DEFAULTS table 10-52

HISTOGRAMS_nodename table 10-87

HISTOGRAM_INTERVALS table 10-89

HISTOGRM table 10-90

LS command 4-51

query cache 4-19

query plan 4-21

QUERYCACHE function 8-134

QUERYCACHEENTRIES
function 8-138

SET STATISTICS command 4-69

SQL/MP histogram tables 10-84

stored in PARTITIONS table 10-24

UPDATE STATISTICS statement

considerations 2-406

examples of 2-410

syntax diagram 2-402
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-31

Index S
STDDEV function
DISTINCT clause within 8-171

examples of 8-172

statistical definition of 8-171

syntax diagram of 8-171

STORE BY clause, syntax description 7-23
Stored procedure statements

CALL 2-53

CREATE PROCEDURE 2-88

DROP PROCEDURE 2-182

Stored text
reserved words B-1

SQL/MP restrictions 1-32

Stream timeout
dynamic, SET TABLE TIMEOUT
statement setting 2-372

static

CONTROL QUERY DEFAULT
statement setting 2-60

SYSTEM_DEFAULTS table 10-81

STREAM_TIMEOUT default 10-81
String literals 6-64
String value expression

examples of 6-42

syntax diagram of 6-41

struct 3-67
Subquery

correlated 6-92, 6-114

description of 6-112

inner query 6-113

outer query 6-113

outer reference 6-114

row

BETWEEN predicate 6-86

comparison predicate 6-88

IN predicate 6-94

NULL predicate 6-99

quantified comparison
predicate 6-101

scalar

BETWEEN predicate 6-86

comparison predicate 6-88

DELETE statement 2-165, 2-388

IN predicate 6-94

NULL predicate 6-99

quantified comparison
predicate 6-101

UPDATE statement 2-387

table 6-94

SUBSTRING function
examples of 8-175

operand requirements 8-174

syntax diagram of 8-174

SUM function
DISTINCT clause within 8-176

examples of 8-177

syntax diagram of 8-176

Super ID, privileges for executing
utilities 5-2
SYSKEY

description of 6-63

INVOKE statement 3-66

system-clustered tables 2-286

SYSKEY column, from INVOKE
directive 3-66
SYSKEY, column 2-350
System 10-11
System-clustered tables 2-286
SYSTEM_DEFAULTS metadata
table 10-37
SYSTEM_DEFAULTS table

character set 10-60

constraint droppable option 10-50

data types 10-51, 10-52

examples of 10-83

histograms 10-52

isolation level 10-56

locking 10-57

nonaudited tables 10-60

object naming 10-60
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-32

Index T
partition management 10-63

query optimization and
performance 10-66

query plan caching 10-73

referential action 10-75

row maintenance 10-75

scratch disk management 10-76

sequence functions 10-77

statement atomicity 10-78

statement recompilation 10-78

stored procedures in Java 10-80

stream access 10-80

table management 10-81

SYSTEM_SQLJ_SCHEMA schema 10-6

T
Table reference

description of 2-336

SELECT statement use of 2-334,
2-335

TABLE statement
examples of 2-382

relationship to SELECT 2-382

syntax diagram of 2-382

Table subquery 6-94
Table value constructor

description of 2-340

simple table, form of 2-340

TABLELOCK default 10-57
Tables, description of 6-114
Tables, limits C-2
Table-Valued Stored Functions

FEATURE_VERSION_INFO 8-76

RELATEDNESS 8-144

VERSION_INFO 8-204

TAN function
examples of 8-178

syntax diagram of 8-178

TANH function
examples of 8-178

syntax diagram of 8-178

TBL 10-29
TBL_CONSTRAINTS metadata
table 10-29
TBL_PRIVILEGES metadata table 10-30
TEMPORARY_TABLE_HASH_PARTITION
S default 10-83
TEXT metadata table 10-32
The following is the syntax to remove SA
designation from a Guardian user

REVOKE SECURITY_ADMIN from
"USER" where

USER is either USERNAME or
USERID USERNAME is a Guardian
user name USERID is numeric
Guardian USERID An SA can issue
a REVOKE statement to 2-326

THIS function
examples of 8-179

syntax diagram of 8-179

TIMEOUT attribute 10-57
TIMEOUT default 10-57
Timeout values

dynamic 2-372

static

lock timeout 2-75, 10-57

stream timeout 2-60, 10-81

TO 8-181, 8-185
TO_CHAR Function 8-181
Transaction access modes 1-23
Transaction control, statements for 2-4
Transaction isolation levels

READ COMMITTED 1-24

READ UNCOMMITTED 1-23

REPEATABLE READ 1-24

SERIALIZABLE 1-24

Transaction management
AUTOCOMMIT, effect of 1-16, 2-269

MODIFY TABLE use of 1-16

rules for DML statements 1-16

Transaction Management Facility
(TMF) 1-13
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-33

Index U
Transaction management statements
BEGIN WORK 2-52

COMMIT WORK 2-57

ROLLBACK WORK 2-328

SET TRANSACTION statement 2-376

Transactions 1-15
TRANSLATE function, syntax diagram
of 8-190
TRANSPOSE clause

cardinality of result 7-29

degree of result 7-28

examples of 7-30

SELECT statement use of 7-26

syntax diagram of 7-26

Triggers
ALTER TRIGGER statement 2-48

considerations 2-146

CREATE TABLE LIKE statement 2-124

CREATE TRIGGER statement 2-144

description 6-115

DROP TRIGGER statement 2-192

DUP utility 2-198

import utility 5-19

privileges 2-244

SET statement 2-365

SIGNAL SQLSTATE statement 2-381

TRIGGERS metadata table 10-32
TRIGGERS_CAT_USAGE metadata
table 10-34
TRIGGER_USED metadata table 10-34
TRIM function

examples of 8-192

typedef 3-67

U
UCASE 8-193
UCASE function

examples of 8-200

syntax diagram of 8-193

UCS2 character set 6-4

UDR_JAVA_OPTIONS default 10-80
UID 10-3
Union operation

associative, UNION ALL 2-353

columns, characteristics of 2-351

ORDER BY clause restriction 2-353

SELECT statement use of 2-345

UNIQUE constraint 6-9
UNLOCK TABLE statement

examples of 2-383

nonaudited tables and 2-383

syntax diagram of 2-383

UNREGISTER CATALOG command
examples of 2-384

syntax diagram of 2-384

Updatable view, requirements for 2-160
UPDATE access privilege

GRANT EXECUTE statement 2-247

GRANT statement 2-241

REVOKE EXECUTE statement 2-323

REVOKE statement 2-317

UPDATE statement
authorization requirements 2-390

conflicting updates 2-391

MXCI examples of 2-396

Publish/Subscribe examples of 2-401

SET clause 2-386

SET ON ROLLBACK clause 2-388

SET ROLLBACK clause 2-388

SKIP CONFLICT access 2-389

syntax diagram of 2-385

WHERE clause 2-389

UPDATE statement (embedded)
C examples of 2-400

COBOL examples of 2-400

positioned form 2-385

searched form 2-385

UPDATE STATISTICS statement
column groups 2-403

column lists 2-403
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-34

Index V
examples of 2-410

histogram tables 2-403

row distribution 2-404

sample size 2-405

syntax diagram of 2-402

table row count 2-406

UPD_ABORT_ON_ERROR default 10-78
UPD_ORDERED default 10-72
UPD_SAVEPOINT_ON_ERROR
default 10-78
UPGRADE utility

considerations for 2-413

example of 2-415

output options for 2-413

UPPER function
examples of 8-201

syntax diagram of 8-201

UPSHIFT function
examples of 8-202

syntax diagram of 8-202

USER function
examples of 8-203

syntax diagram of 8-203

Utilities
DOWNGRADE 2-175

FASTCOPY 5-7

FIXRCB 5-7

FIXUP 5-8

GOAWAY 5-13

import 5-18

INFO 5-53

mxexportddl 5-55

MXGNAMES 5-59

mximportddl 5-67

privileges required to execute 5-2

RECOVER 2-311

VERIFY 5-79

V
Value expression 6-41
Value expressions

summary of 8-8

CASE (Conditional) expression 8-16

CAST expression 8-20

CURRENT_USER function 8-43

SESSION_USER function 8-168

USER function 8-203

VALUES statement
examples of 2-417

relationship to SELECT 2-417

syntax diagram of 2-417

VARCHAR data type 6-23
VARCHAR_PARAM_DEFAULT_SIZE
default 10-83
Variable-length character column 6-24
VARIANCE function

DISTINCT clause within 8-207

examples of 8-210

statistical definition of 8-207

syntax diagram of 8-207

VERIFY operation 5-79
VERSION_INFO function

example of 8-206

syntax diagram of 8-204

Views
CREATE VIEW statement 2-154

description of 6-115

DROP VIEW statement 2-193

insertable 2-160

relationship to tables 6-115

SQL/MP considerations 1-32

updatability requirements 2-160

VWS metadata table 10-35
VW_COL_TBL_COLS metadata
table 10-36
VW_COL_USAGE metadata table 10-36
VW_TBL_USAGE metadata table 10-36
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-35

Index W
W
WEEK function

examples of 8-212

syntax diagram of 8-212

WHENEVER declaration
actions within 3-87

C examples of 3-88

COBOL examples of 3-88

conditions within 3-86

syntax diagram of 3-86

Y
YEAR function

examples of 8-213

syntax diagram of 8-213

Z
ZIG_ZAG_TREES default 10-72

Special Characters
=_DEFAULTS define 10-61, 10-63
HP NonStop SQL/MX Release 3.2.1 Reference Manual—691117-004
Index-36

	HP NonStop SQL/MX Release 3.2.1 Reference Manual
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to 691117-004 manual:
	Changes to 691117-003 manual:
	Changes to 691117-002 manual:
	Changes to 691117-001 manual:

	About This Manual
	Audience
	Organization
	Related Documentation
	Notation Conventions
	Icons
	Hypertext Links
	General Syntax Notation
	Change Bar Notation

	HP Encourages Your Comments

	1 Introduction
	SQL/MX Language
	MXCI SQL/MX Conversational Interface
	MXCI Session
	Session Attributes
	Entering a Command
	SQL Comments
	Transactions in MXCI
	Query Interruption and Termination in MXCI

	Security
	The Super ID
	Guardian User ID
	Guardian Super ID
	Security Administrator
	Security Administrator's Group
	With Grant Option
	Owner-Derived Grant
	Derived Privilege
	Derived WGO
	Security Administrator Grant

	Data Consistency and Access Options
	SQL/MP Considerations
	READ UNCOMMITTED
	READ COMMITTED
	SERIALIZABLE or REPEATABLE READ
	SKIP CONFLICT
	STABLE

	Database Integrity and Locking
	Lock Duration
	Lock Granularity
	Lock Mode
	Lock Holder

	Transaction Management
	Statement Atomicity
	User-Defined and System-Defined Transactions
	Rules for DML Statements
	Effect of AUTOCOMMIT Option
	Concurrency
	Transaction Access Modes
	Transaction Isolation Levels

	Partition Management
	Internationalization
	Using NonStop SQL/MX to Access SQL/MP Databases
	Naming Objects
	Delimiting Reserved Words in Guardian Names
	Selecting or Changing Data
	Accessing Views
	Access Options
	SQL/MP Stored Text
	SQL/MP File Organizations
	Collations

	ANSI Compliance and SQL/MX Extensions
	Default Settings for ANSI Compliance
	ANSI-Compliant Statements
	Statements That Are SQL/MX Extensions
	ANSI-Compliant Functions

	SQL/MX Error Messages

	2 SQL/MX Statements
	Categories
	Data Definition Language (DDL) Statements
	Data Manipulation Language (DML) Statements
	Transaction Control Statements
	Prepared SQL Statements
	Embedded-Only SQL/MX Statements
	Resource Control and Optimization Statements
	Control Statements
	Object Naming Statements
	Alias Statements
	Stored Procedure Statements
	Trigger Statements
	Utilities

	ALTER INDEX Statement
	Syntax Description of ALTER INDEX
	Considerations for ALTER INDEX
	Examples of ALTER INDEX

	ALTER SEQUENCE Statement
	Syntax Description of ALTER SEQUENCE
	Considerations for ALTER SEQUENCE
	Examples of ALTER SEQUENCE

	ALTER SQLMP ALIAS Statement
	Syntax Description of ALTER SQLMP ALIAS
	Considerations for ALTER SQLMP ALIAS
	Examples of ALTER SQLMP ALIAS

	ALTER TABLE Statement
	Syntax Description of ALTER TABLE
	Considerations for ALTER TABLE
	Examples of ALTER TABLE

	ALTER TRIGGER Statement
	Syntax Description of ALTER TRIGGER
	Considerations for ALTER TRIGGER

	ALTER VIEW Statement
	Considerations for ALTER VIEW
	Example of ALTER VIEW

	BEGIN WORK Statement
	Considerations for BEGIN WORK
	MXCI Examples of BEGIN WORK
	C Examples of BEGIN WORK
	COBOL Examples of BEGIN WORK

	CALL Statement
	Considerations for CALL
	Examples of CALL

	COMMIT WORK Statement
	Considerations for COMMIT WORK
	MXCI Examples of COMMIT WORK
	C Examples of COMMIT WORK
	COBOL Examples of COMMIT WORK

	CONTROL QUERY DEFAULT Statement
	Considerations for CONTROL QUERY DEFAULT
	Examples of CONTROL QUERY DEFAULT

	CONTROL QUERY SHAPE Statement
	Considerations for CONTROL QUERY SHAPE
	Examples of CONTROL QUERY SHAPE

	CONTROL TABLE Statement
	Considerations for CONTROL TABLE
	Examples of CONTROL TABLE

	CREATE CATALOG Statement
	Syntax Description of CREATE CATALOG
	Considerations for CREATE CATALOG
	Examples of CREATE CATALOG

	CREATE INDEX Statement
	Syntax Description of CREATE INDEX
	Considerations for CREATE INDEX
	Examples of CREATE INDEX

	CREATE PROCEDURE Statement
	Considerations for CREATE PROCEDURE
	Examples of CREATE PROCEDURE

	CREATE SCHEMA Statement
	Syntax Description of CREATE SCHEMA
	Considerations for CREATE SCHEMA
	Examples of CREATE SCHEMA

	CREATE SEQUENCE Statement
	Considerations for CREATE SEQUENCE
	Examples of CREATE SEQUENCE

	CREATE SQLMP ALIAS Statement
	Considerations for CREATE SQLMP ALIAS
	Examples of CREATE SQLMP ALIAS

	CREATE TABLE Statement
	Syntax Description of CREATE TABLE
	Considerations for CREATE TABLE
	Examples of CREATE TABLE

	CREATE TRIGGER Statement
	Syntax Description of CREATE TRIGGER
	Considerations for CREATE TRIGGER
	Examples of CREATE TRIGGER

	CREATE VIEW Statement
	Syntax Description of CREATE VIEW
	Considerations for CREATE VIEW
	Examples of CREATE VIEW

	DELETE Statement
	Considerations for DELETE
	Multi Commit Delete
	MXCI Examples of DELETE
	C Examples of DELETE
	COBOL Examples of DELETE
	Publish/Subscribe Examples of DELETE

	DOWNGRADE Utility
	Considerations for DOWNGRADE
	Example of DOWNGRADE

	DROP CATALOG Statement
	Syntax Description of DROP CATALOG
	Considerations for DROP CATALOG
	Examples of DROP CATALOG

	DROP INDEX Statement
	Syntax Description of DROP INDEX
	Considerations for DROP INDEX
	Examples of DROP INDEX

	DROP PROCEDURE Statement
	Considerations for DROP PROCEDURE
	Example of DROP PROCEDURE

	DROP SCHEMA Statement
	Syntax Description of DROP SCHEMA
	Considerations for DROP SCHEMA
	Examples of DROP SCHEMA

	DROP SEQUENCE Statement
	Syntax Description of DROP SEQUENCE
	Considerations for DROP SEQUENCE
	Examples of DROP SEQUENCE

	DROP SQL Statement
	Considerations for DROP SQL
	Examples of DROP SQL

	DROP SQLMP ALIAS Statement
	Considerations for DROP SQLMP ALIAS
	Examples of DROP SQLMP ALIAS

	DROP TABLE Statement
	Syntax Description of DROP TABLE
	Considerations for DROP TABLE
	Examples of DROP TABLE

	DROP TRIGGER Statement
	Syntax Description of DROP TRIGGER
	Considerations for DROP TRIGGER
	Examples of DROP TRIGGER

	DROP VIEW Statement
	Syntax Description of DROP VIEW
	Considerations for DROP VIEW
	Examples of DROP VIEW

	DUP Utility
	Syntax Description of DUP
	Considerations for DUP
	Examples of DUP

	EXECUTE Statement
	Considerations for EXECUTE
	MXCI Examples of EXECUTE
	C Examples of EXECUTE
	COBOL Examples of EXECUTE

	EXPLAIN Statement
	Considerations for EXPLAIN
	Examples of EXPLAIN

	FASTCOPY Utility
	FASTCOPY TABLE Command
	FASTCOPY INDEX Command
	Considerations for FASTCOPY
	Examples of FASTCOPY

	GET ALL SECURITY_ADMINS Statement
	Considerations for GET ALL SECURITY_ADMINS
	Examples of GET ALL SECURITY_ADMINS

	GIVE CATALOG Statement
	Considerations for GIVE CATALOG
	Example of GIVE CATALOG

	GIVE Object Statement
	Considerations for GIVE Object
	Examples of GIVE Object

	GIVE SCHEMA Operation
	Considerations for GIVE SCHEMA
	Examples of GIVE SCHEMA

	GRANT Statement
	Syntax Description of GRANT
	Considerations for GRANT
	Examples of GRANT

	GRANT CREATE CATALOG Statement
	Considerations for GRANT CREATE CATALOG
	Examples for GRANT CREATE CATALOG

	GRANT CREATE SCHEMA Statement
	Considerations for GRANT CREATE SCHEMA
	Example for GRANT CREATE SCHEMA

	GRANT EXECUTE Statement
	Considerations for GRANT EXECUTE
	Examples of GRANT EXECUTE

	GRANT SECURITY_ADMIN Statement
	Considerations for GRANT SECURITY_ADMIN
	Examples of GRANT SECURITY_ADMIN

	INITIALIZE SQL Statement
	Considerations for INITIALIZE SQL
	Examples of INITIALIZE SQL

	INSERT Statement
	Considerations for INSERT
	Considerations for self-referencing inserts
	MXCI Examples of INSERT
	C Examples of INSERT
	COBOL Examples of INSERT

	LOCK TABLE Statement
	Considerations for LOCK TABLE
	Examples of LOCK TABLE

	MODIFY Utility
	Reuse an Existing Partition of a Range Partitioned Table
	Manage Partitions of Range Partitioned Tables and Indexes
	Manage Partitions of Hash Partitioned Tables and Indexes
	Manage System-Clustered Tables
	Managing a Sequence Generator
	Renaming Guardian Location of Partitions of Tables, Indexes or Sequence Generators
	Considerations for MODIFY
	Examples of MODIFY

	PREPARE Statement
	Considerations for PREPARE
	MXCI Examples of PREPARE
	C Examples of PREPARE
	COBOL Examples of PREPARE

	POPULATE INDEX Utility
	Syntax Description of POPULATE INDEX
	Considerations for POPULATE INDEX
	Examples of POPULATE INDEX

	PURGEDATA Utility
	Syntax Description of PURGEDATA
	Considerations for PURGEDATA
	Examples of PURGEDATA

	RECOVER Utility
	Syntax Description of RECOVER
	Considerations for RECOVER
	Examples of RECOVER

	RECOVER SCHEMA Operation
	Considerations for RECOVER SCHEMA
	Examples of RECOVER SCHEMA

	REGISTER CATALOG Statement
	Considerations for REGISTER CATALOG
	Examples of REGISTER CATALOG

	REVOKE Statement
	Syntax Description of REVOKE
	Considerations for REVOKE
	Examples of REVOKE

	REVOKE CREATE CATALOG Statement
	Considerations for REVOKE CREATE CATALOG
	Examples for REVOKE CREATE CATALOG

	REVOKE CREATE SCHEMA Statement
	Considerations for REVOKE CREATE SCHEMA
	Example for REVOKE CREATE SCHEMA

	REVOKE EXECUTE Statement
	Considerations for REVOKE EXECUTE
	Examples of REVOKE EXECUTE

	REVOKE SECURITY_ADMIN Statement
	Considerations for REVOKE SECURITY_ADMIN
	Examples of REVOKE SECURITY_ADMIN

	ROLLBACK WORK Statement
	Considerations for ROLLBACK WORK
	MXCI Examples of ROLLBACK WORK
	C Examples of ROLLBACK WORK
	COBOL Examples of ROLLBACK WORK

	SELECT Statement
	Considerations for SELECT
	Considerations for Select List
	Considerations for SEQUENCE BY
	Considerations for GROUP BY
	Considerations for ORDER BY
	Considerations for UNION
	MXCI Examples of SELECT
	C Examples of SELECT
	COBOL Examples of SELECT
	Publish/Subscribe Examples of SELECT

	SELECT ROW COUNT Statement
	Considerations for SELECT ROW COUNT
	Limitations of SELECT ROW COUNT
	Example of SELECT ROW COUNT

	SET Statement
	Considerations for SET Statement

	SET CATALOG Statement
	Considerations for SET CATALOG
	MXCI Examples of SET CATALOG
	C Example of SET CATALOG
	COBOL Example of SET CATALOG

	SET MPLOC Statement
	Considerations for SET MPLOC
	Examples of SET MPLOC

	SET NAMETYPE Statement
	Considerations for SET NAMETYPE
	Examples of SET NAMETYPE

	SET SCHEMA Statement
	Considerations for SET SCHEMA
	MXCI Examples of SET SCHEMA
	C Example of SET SCHEMA
	COBOL Example of SET SCHEMA

	SET TABLE TIMEOUT Statement
	Considerations for SET TABLE TIMEOUT
	MXCI Examples of SET TABLE TIMEOUT
	C Examples of SET TABLE TIMEOUT

	SET TRANSACTION Statement
	Considerations for SET TRANSACTION
	MXCI Examples of SET TRANSACTION
	C Examples of SET TRANSACTION
	COBOL Examples of SET TRANSACTION

	SIGNAL SQLSTATE Statement
	Considerations for SIGNAL SQLSTATE

	TABLE Statement
	Considerations for TABLE
	Examples of TABLE

	UNLOCK TABLE Statement
	Considerations for UNLOCK TABLE
	Examples of UNLOCK TABLE

	UNREGISTER CATALOG Statement
	Considerations for UNREGISTER CATALOG
	Example of UNREGISTER CATALOG

	UPDATE Statement
	Considerations for UPDATE
	MXCI Examples of UPDATE
	C Examples of UPDATE
	COBOL Examples of UPDATE
	Publish/Subscribe Examples of UPDATE

	UPDATE STATISTICS Statement
	Considerations for UPDATE STATISTICS
	Examples of UPDATE STATISTICS

	UPGRADE Utility
	Considerations for UPGRADE
	Example of UPGRADE

	VALUES Statement
	Considerations for VALUES
	Examples of VALUES

	3 Embedded-Only SQL/MX Statements
	ALLOCATE CURSOR Statement
	Considerations for ALLOCATE CURSOR
	C Examples of ALLOCATE CURSOR
	COBOL Examples of ALLOCATE CURSOR
	Publish/Subscribe Examples of ALLOCATE CURSOR

	ALLOCATE DESCRIPTOR Statement
	Considerations for ALLOCATE DESCRIPTOR
	C Examples of ALLOCATE DESCRIPTOR
	COBOL Examples of ALLOCATE DESCRIPTOR

	BEGIN DECLARE SECTION Declaration
	C Examples of BEGIN DECLARE SECTION
	C++ Examples of BEGIN DECLARE SECTION
	COBOL Examples of BEGIN DECLARE SECTION

	CLOSE Statement
	Considerations for CLOSE
	C Examples of CLOSE
	COBOL Examples of CLOSE

	Compound (BEGIN...END) Statement
	Considerations for Compound Statement
	C Examples of Compound Statement

	DEALLOCATE DESCRIPTOR Statement
	C Examples of DEALLOCATE DESCRIPTOR
	COBOL Examples of DEALLOCATE DESCRIPTOR

	DEALLOCATE PREPARE Statement
	Considerations for DEALLOCATE PREPARE
	C Examples of DEALLOCATE PREPARE
	COBOL Examples of DEALLOCATE PREPARE

	DECLARE CATALOG Declaration
	Considerations for DECLARE CATALOG
	C Examples of DECLARE CATALOG
	COBOL Examples of DECLARE CATALOG

	DECLARE CURSOR Declaration
	Considerations for DECLARE CURSOR
	C Examples of DECLARE CURSOR
	COBOL Examples of DECLARE CURSOR
	Publish/Subscribe Examples of DECLARE CURSOR

	DECLARE MPLOC Declaration
	Considerations for DECLARE MPLOC
	C Examples of DECLARE MPLOC
	COBOL Examples of DECLARE MPLOC

	DECLARE NAMETYPE Declaration
	Considerations for DECLARE NAMETYPE
	C Examples of DECLARE NAMETYPE
	COBOL Examples of DECLARE NAMETYPE

	DECLARE SCHEMA Declaration
	Considerations for DECLARE SCHEMA
	C Examples of DECLARE SCHEMA
	COBOL Examples of DECLARE SCHEMA

	DESCRIBE Statement
	C Examples of DESCRIBE
	COBOL Examples of DESCRIBE

	END DECLARE SECTION Declaration
	C Examples of END DECLARE SECTION
	C++ Examples of END DECLARE SECTION
	COBOL Examples of END DECLARE SECTION

	EXEC SQL Directive
	Considerations for EXEC SQL
	Examples of EXEC SQL

	EXECUTE IMMEDIATE Statement
	Considerations for EXECUTE IMMEDIATE
	C Examples of EXECUTE IMMEDIATE
	COBOL Examples of EXECUTE IMMEDIATE

	FETCH Statement
	Considerations for FETCH
	C Examples of FETCH
	COBOL Examples of FETCH

	GET DESCRIPTOR Statement
	SQL Item Descriptor Area of GET DESCRIPTOR
	SQL Descriptor Area Data Type Declarations of GET DESCRIPTOR
	Considerations for GET DESCRIPTOR
	C Examples of GET DESCRIPTOR
	COBOL Examples of GET DESCRIPTOR

	GET DIAGNOSTICS Statement
	Statement Items of GET DIAGNOSTICS
	Condition Items of GET DIAGNOSTICS
	Considerations for GET DIAGNOSTICS
	C Examples of GET DIAGNOSTICS
	COBOL Examples of GET DIAGNOSTICS

	IF Statement
	Considerations for IF Statement
	C Example of IF Statement
	COBOL Example of IF Statement

	INVOKE Directive
	Considerations for INVOKE
	C Examples of INVOKE
	COBOL Examples of INVOKE

	MODULE Directive
	Considerations for MODULE
	C Examples of MODULE
	COBOL Examples of MODULE

	OPEN Statement
	Considerations for OPEN
	C Examples of OPEN
	COBOL Examples of OPEN

	SET (Assignment) Statement
	C Examples of Assignment Statement

	SET DESCRIPTOR Statement
	SQL Item Descriptor Area of SET DESCRIPTOR
	Considerations for SET DESCRIPTOR
	C Examples of SET DESCRIPTOR
	COBOL Examples of SET DESCRIPTOR

	WHENEVER Declaration
	Considerations for WHENEVER
	C Examples of WHENEVER
	COBOL Examples of WHENEVER

	4 MXCI Commands
	ADD DEFINE Command
	Considerations for ADD DEFINE
	Examples of ADD DEFINE

	ALTER DEFINE Command
	Considerations for ALTER DEFINE
	Examples of ALTER DEFINE

	CD Command
	Considerations for CD
	Examples of CD

	DELETE DEFINE Command
	Considerations for DELETE DEFINE
	Examples of DELETE DEFINE

	DISPLAY USE OF Command
	Considerations for DISPLAY USE OF
	Examples of DISPLAY USE OF

	DISPLAY USE OF SOURCE
	Examples of DISPLAY USE OF Source

	DISPLAY USE OF ALL | INVALID MODULES
	Considerations for DISPLAY USE OF ALL | INVALID MODULES
	Examples of ALL | INVALID MODULES

	DISPLAY_QC Command
	Considerations for DISPLAY_QC
	Examples of DISPLAY_QC

	DISPLAY_QC_ENTRIES Command
	Considerations for DISPLAY_QC_ENTRIES
	Examples of DISPLAY_QC_ENTRIES

	DISPLAY STATISTICS Command
	Considerations for DISPLAY STATISTICS
	Examples of DISPLAY STATISTICS

	ENV Command
	Examples of ENV

	ERROR Command
	Examples of ERROR

	Exclamation Point (!) Command
	Examples of !

	EXIT Command
	Considerations for EXIT
	Examples of EXIT

	FC Command
	Examples of FC

	GTACL Command
	Considerations for GTACL
	Examples of GTACL

	GET NAMES OF RELATED NODES Command
	Error Conditions for GET NAMES OF RELATED NODES
	Example of GET NAMES OF RELATED NODES

	GET NAMES OF RELATED SCHEMAS Command
	Error Conditions for GET NAMES OF RELATED SCHEMAS
	Example of GET NAMES OF RELATED SCHEMAS

	GET NAMES OF RELATED CATALOGS
	Error Conditions for GET NAMES OF RELATED CATALOGS
	Example of GET NAMES OF RELATED CATALOGS

	GET VERSION OF SYSTEM
	Error Conditions for GET VERSION OF SYSTEM
	Example of GET VERSION OF SYSTEM

	GET VERSION OF SCHEMA Command
	Error Conditions for GET VERSION OF SCHEMA
	Examples of GET VERSION OF SCHEMA

	GET VERSION OF SYSTEM SCHEMA Command
	Error Conditions for GET VERSION OF SYSTEM SCHEMA
	Example of GET VERSION OF SYSTEM SCHEMA

	GET VERSION OF Object Command
	Error Conditions for GET VERSION OF Object
	Example of GET VERSION OF Object

	GET VERSION OF MODULE Command
	Error Conditions for GET VERSION OF MODULE
	Example of GET VERSION OF MODULE

	GET VERSION OF PROCEDURE Command
	Error Conditions for GET VERSION OF PROCEDURE
	Example of GET VERSION OF PROCEDURE

	GET VERSION OF STATEMENT Command
	Error Conditions for GET VERSION OF STATEMENT
	Example of GET VERSION OF STATEMENT

	HISTORY Command
	Examples of HISTORY

	INFO DEFINE Command
	Examples of INFO DEFINE

	INVOKE Command
	Examples of INVOKE

	LOG Command
	Considerations for LOG
	Examples of LOG

	LS Command
	Considerations for LS
	Examples of LS

	MODE Command
	MXCI Command
	Examples of MXCI Command

	OBEY Command
	Considerations for OBEY
	Examples of OBEY

	REPEAT Command
	Examples of REPEAT

	RESET PARAM Command
	Examples of RESET PARAM

	SET LIST_COUNT Command
	Considerations for SET LIST_COUNT
	Examples of SET LIST_COUNT

	SET PARAM Command
	Considerations for SET PARAM
	Examples of SET PARAM

	SET SHOWSHAPE Command
	Considerations for SET SHOWSHAPE
	Examples of SET SHOWSHAPE

	SET STATISTICS Command
	Examples of SET STATISTICS

	SET TERMINAL_CHARSET Command
	Considerations for SET TERMINAL_CHARSET

	SET WARNINGS Command
	Examples of SET WARNINGS

	SH Command
	Examples of SH

	SHOW PARAM Command
	Examples of SHOW PARAM

	SHOW PREPARED Command
	Examples of SHOW PREPARED

	SHOW SESSION Command
	Examples of SHOW SESSION

	SHOWCONTROL Command
	Examples of SHOWCONTROL

	SHOWDDL Command
	Considerations for SHOWDDL
	Examples of SHOWDDL

	SHOWLABEL Command
	Considerations for SHOWLABEL
	Examples of SHOWLABEL

	SHOWSHAPE Command
	Considerations for SHOWSHAPE
	Examples of SHOWSHAPE

	SHOWSTATS Command
	Consideration for SHOWSTATS
	Examples of SHOWSTATS

	5 SQL/MX Utilities
	Privileges Required to Execute Utilities
	CLEANUP Operation
	Considerations
	Restrictions
	Examples

	FIXRCB Operation
	Error Conditions
	Example of FIXRCB Operation

	FIXUP Operation
	Considerations for FIXUP Operation
	Examples of FIXUP Operation

	GOAWAY Operation
	Syntax Description of GOAWAY
	Considerations for GOAWAY
	Examples of GOAWAY

	import Utility
	Considerations for import
	Programmatic Interfaces
	Output File Consideration
	Examples of import

	INFO Operation
	Considerations for INFO
	Examples of INFO

	mxexportddl Utility
	Considerations for mxexportddl
	Examples of mxexportddl

	MXGNAMES Utility
	Considerations for MXGNAMES
	Examples of MXGNAMES

	mximportddl Utility
	Considerations for mximportddl
	Examples of mximportddl

	MXRPM tool
	Guidelines for map-file
	Guidelines for module-list-input-file
	Guidelines for log-file
	Considerations

	mxtool Utility
	VERIFY Operation
	Considerations for VERIFY
	Examples of VERIFY

	6 SQL/MX Language Elements
	Catalogs
	SQL/MX Catalogs
	SQL/MP Catalogs

	Character Sets
	Restrictions on Using Character Set Data

	Collations
	Columns
	Column References
	Derived Column Names
	Column Default Settings
	Examples of Derived Column Names

	Constraints
	Creating, Adding, and Dropping Constraints on SQL/MX Tables
	Creating and Dropping Constraints on SQL/MP Tables

	Correlation Names
	Explicit Correlation Names
	Implicit Correlation Names
	Examples of Correlation Names

	Database Objects
	Ownership

	Database Object Names
	Logical Names for SQL/MX Objects
	Physical Names for SQL/MP Objects
	Logical Names for SQL/MP Objects
	DEFINE Names for SQL/MP Objects
	SQL/MX Object Namespaces
	Considerations for Database Object Names

	Data Types
	Comparable and Compatible Data Types
	Character String Data Types
	Datetime Data Types
	Interval Data Types
	Numeric Data Types

	DEFINEs
	Using DEFINEs
	Using DEFINEs From MXCI
	DEFINEs of Class MAP

	Expressions
	Character Value Expressions
	Datetime Value Expressions
	Interval Value Expressions
	Numeric Value Expressions
	Rowset Expressions

	Identifiers
	Regular Identifiers
	Delimited Identifiers
	SQL/MP Considerations for Identifiers
	Examples of Identifiers

	Indexes
	SQL/MP Indexes
	SQL/MX Indexes

	Keys
	Clustering Keys
	First (Partition) Keys
	Index Keys
	Primary Keys
	SYSKEYs

	Literals
	Character String Literals
	Datetime Literals
	Interval Literals
	Numeric Literals

	MXCI Parameters
	MXCI Named Parameters
	MXCI Unnamed Parameters
	Type Assignment for Parameters
	Working With MXCI Parameters
	Use of Parameter Names
	Examples of MXCI Parameters

	Null
	Using Null Versus Default Values
	Defining Columns That Allow or Prohibit Null

	Partitions
	SQL/MP Tables
	SQL/MX Tables

	Predicates
	BETWEEN Predicate
	Comparison Predicates
	EXISTS Predicate
	IN Predicate
	LIKE Predicate
	NULL Predicate
	Quantified Comparison Predicates
	Rowset Predicates

	Pseudocolumns
	Considerations for Pseudocolumns

	Schemas
	Search Condition
	Considerations for Search Condition
	Examples of Search Condition
	Rowset Search Condition

	Sequence Generators
	SQL/MP Aliases
	Stored Procedures
	Subquery
	Tables
	Triggers
	Views
	SQL/MX Views
	SQL/MP Views

	7 SQL/MX Clauses
	DEFAULT Clause
	Syntax Description of DEFAULT
	Considerations for DEFAULT
	Examples of DEFAULT

	PARTITION Clause
	Considerations for PARTITION
	Examples of Partitions

	SAMPLE Clause
	Considerations for SAMPLE
	Examples of SAMPLE

	SEQUENCE BY Clause
	Considerations for SEQUENCE BY
	Examples of SEQUENCE BY

	STORE BY Clause
	Considerations for STORE BY
	Effect of Storage Order on Partitioning

	TRANSPOSE Clause
	Considerations for TRANSPOSE
	Examples of TRANSPOSE

	ABS Function
	Examples of ABS

	ACOS Function
	Examples of ACOS

	8 SQL/MX Functions and Expressions
	Categories
	Aggregate (Set) Functions
	Character String Functions
	Datetime Functions
	Mathematical Functions
	Sequence Functions
	Other Functions and Expressions
	Table-Valued Stored Functions

	ABS Function
	Examples of ABS

	ACOS Function
	Examples of ACOS

	ASCII Function
	Examples of ASCII

	ASIN Function
	Examples of ASIN

	ATAN Function
	Examples of ATAN

	ATAN2 Function
	Examples of ATAN2

	AVG Function
	Considerations for AVG
	Examples of AVG

	CASE (Conditional) Expression
	Considerations for CASE
	Examples of CASE

	CAST Expression
	Considerations for CAST
	Valid Conversions for CAST
	Examples of CAST

	CEILING Function
	Examples of CEILING

	CHAR Function
	Examples of CHAR

	CHAR_LENGTH Function
	Considerations for CHAR_LENGTH
	SQL/MP Considerations for CHAR_LENGTH
	Examples of CHAR_LENGTH

	COALESCE Function
	Considerations
	Examples of COALESCE

	CODE_VALUE Function
	Considerations for CODE_VALUE Function

	COMPILERCONTROLS Function
	Considerations for COMPILERCONTROLS
	Examples of COMPILERCONTROLS

	CONCAT Function
	Concatenation Operator (||)
	Considerations for CONCAT
	Examples of CONCAT

	CONVERTTIMESTAMP Function
	Considerations for CONVERTTIMESTAMP
	Examples of CONVERTTIMESTAMP

	COS Function
	Examples of COS

	COSH Function
	Examples of COSH

	COUNT Function
	Considerations for COUNT
	Examples of COUNT

	CURRENT Function
	Examples of CURRENT

	CURRENT_DATE Function
	Examples of CURRENT_DATE

	CURRENT_TIME Function
	Examples of CURRENT_TIME

	CURRENT_TIMESTAMP Function
	Examples of CURRENT_TIMESTAMP

	CURRENT_USER Function
	Examples of CURRENT_USER

	DATE_ADD Function
	Return type
	Examples of DATE_ADD

	DATEADD Function
	Considerations for DATEADD
	Return type
	Examples of DATEADD

	DATEDIFF Function
	Considerations for DATEDIFF
	Return type
	Examples of DATEDIFF

	DATEFORMAT Function
	Examples of DATEFORMAT

	DATE_SUB Function
	Considerations for DATE_SUB
	Return type
	Examples of DATE_SUB

	DAY Function
	Examples of DAY

	DAYNAME Function
	Examples of DAYNAME

	DAYOFMONTH Function
	Examples of DAYOFMONTH

	DAYOFWEEK Function
	Examples of DAYOFWEEK

	DAYOFYEAR Function
	Examples of DAYOFYEAR

	DECODE Function
	Considerations
	Examples of DECODE

	DEGREES Function
	Examples of DEGREES

	DIFF1 Function
	Considerations for DIFF1
	Examples of DIFF1

	DIFF2 Function
	Considerations for DIFF2
	Examples of DIFF2

	EXP Function
	Examples of EXP

	EXPLAIN Function
	Considerations for EXPLAIN
	Examples of EXPLAIN

	EXTRACT Function
	Examples of EXTRACT

	FEATURE_VERSION_INFO Function
	Input and Output Parameters
	Example of FEATURE_VERSION_INFO

	FLOOR Function
	Examples of FLOOR

	HASHPARTFUNC Function
	Considerations for HashPartFunc
	Examples of HashPartFunc

	HOUR Function
	Examples of HOUR

	INSERT Function
	Examples of INSERT

	JULIANTIMESTAMP Function
	Examples of JULIANTIMESTAMP

	LASTNOTNULL Function
	Examples of LASTNOTNULL

	LCASE Function
	Examples of LCASE

	LEFT Function
	Examples of LEFT

	LNNVL Function
	Examples of LNNVL

	LOCATE Function
	Considerations for LOCATE
	Examples of LOCATE

	LOG Function
	Examples of LOG

	LOG10 Function
	Examples of LOG10

	LOWER Function
	Considerations for LOWER
	Examples of LOWER

	LPAD Function
	Examples of LPAD

	LTRIM Function
	Considerations for LTRIM
	Examples of LTRIM

	MAX Function
	Considerations for MAX
	Examples of MAX

	MIN Function
	Considerations for MIN
	Examples of MIN

	MINUTE Function
	Examples of MINUTE

	MOD Function
	Examples of MOD

	MONTH Function
	Examples of MONTH

	MONTHNAME Function
	Examples of MONTHNAME

	MOVINGAVG Function
	Examples of MOVINGAVG

	MOVINGCOUNT Function
	Considerations for MOVINGCOUNT
	Examples of MOVINGCOUNT

	MOVINGMAX Function
	Examples of MOVINGMAX

	MOVINGMIN Function
	Examples of MOVINGMIN

	MOVINGSTDDEV Function
	Examples of MOVINGSTDDEV

	MOVINGSUM Function
	Examples of MOVINGSUM

	MOVINGVARIANCE Function
	Examples of MOVINGVARIANCE

	NVL Function
	Considerations
	Example of NVL

	NVL2 Function
	Considerations
	Examples of NVL2

	OCTET_LENGTH Function
	Considerations for OCTET_LENGTH
	Examples of OCTET_LENGTH

	OFFSET Function
	Examples of OFFSET

	PI Function
	Examples of PI

	POSITION Function
	Considerations for POSITION
	Examples of POSITION

	POWER Function
	Examples of POWER

	QUARTER Function
	Examples of QUARTER

	QUERYCACHE Function
	Considerations for QUERYCACHE
	Examples of QUERYCACHE

	QUERYCACHEENTRIES Function
	Considerations for QUERYCACHEENTRIES
	Examples of QUERYCACHEENTRIES

	RADIANS Function
	Examples of RADIANS

	RELATEDNESS Function
	Example of RELATEDNESS

	REPEAT Function
	Examples of REPEAT

	REPLACE Function
	Examples of REPLACE

	RIGHT Function
	Examples of RIGHT

	ROWS SINCE Function
	Considerations for ROWS SINCE
	Examples of ROWS SINCE

	RPAD Function
	Examples of RPAD

	RTRIM Function
	Considerations for RTRIM
	Examples of RTRIM

	RUNNINGAVG Function
	Considerations for RUNNINGAVG
	Examples of RUNNINGAVG

	RUNNINGCOUNT Function
	Considerations for RUNNINGCOUNT
	Examples of RUNNINGCOUNT

	RUNNINGMAX Function
	Examples of RUNNINGMAX

	RUNNINGMIN Function
	Examples of RUNNINGMIN

	RUNNINGSTDDEV Function
	Considerations for RUNNINGSTDDEV
	Examples of RUNNINGSTDDEV

	RUNNINGSUM Function
	Examples of RUNNINGSUM

	RUNNINGVARIANCE Function
	Examples of RUNNINGVARIANCE

	SECOND Function
	Examples of SECOND

	SESSION_USER Function
	Examples of SESSION_USER

	SIGN Function
	Examples of SIGN

	SIN Function
	Examples of SIN

	SINH Function
	Examples of SINH

	SPACE Function
	Examples of SPACE

	SQRT Function
	Examples of SQRT

	STDDEV Function
	Considerations for STDDEV
	Examples of STDDEV

	SUBSTRING Function
	Considerations for SUBSTRING
	Examples of SUBSTRING

	SUM Function
	Considerations for SUM
	Examples of SUM

	TAN Function
	Examples of TAN

	TANH Function
	Examples of TANH

	THIS Function
	Considerations for THIS
	Example of THIS

	TO_CHAR(<NUMERIC>) Function
	Considerations
	Examples of TO_CHAR(<NUMERIC>)

	TO_CHAR(<DATETIME>) Function
	Considerations
	Examples of TO_CHAR(<DATETIME>)

	TRANSLATE Function
	TRIM Function
	Considerations for TRIM
	Examples of TRIM

	UCASE Function
	Considerations for UCASE
	Examples of UCASE

	UPPER Function
	Examples of UPPER

	UPSHIFT Function
	Examples of UPSHIFT

	USER Function
	Examples of USER

	VERSION_INFO Function
	Example of VERSION_INFO

	VARIANCE Function
	Considerations for VARIANCE
	Examples of VARIANCE

	WEEK Function
	Examples of WEEK

	YEAR Function
	Examples of YEAR

	9 SQL/MX File Attributes
	ALLOCATE/DEALLOCATE
	Considerations for ALLOCATE

	AUDITCOMPRESS
	Considerations for AUDITCOMPRESS

	BLOCKSIZE
	CLEARONPURGE
	Considerations for CLEARONPURGE

	EXTENT
	Considerations for EXTENT

	MAXEXTENTS
	Considerations for MAXEXTENTS

	10 Metadata Tables
	SQL/MX Metadata Catalogs
	SQL/MX Metadata Schemas and Tables
	System Schema Tables: Schema SYSTEM_SCHEMA
	Definition Schema Tables: Schema DEFINITION_SCHEMA_VERSION_vernum
	System Defaults Tables (User Metadata Tables): Schema SYSTEM_DEFAULTS_SCHEMA
	MXCS Metadata Tables: Schema MXCS_SCHEMA
	Histogram Tables
	VALIDATEROUTINE: Schema SYSTEM_SQLJ_SCHEMA
	Security Schema Tables: Schema SYSTEM_SECURITY_SCHEMA

	System Schema Tables
	ALL_UIDS Table
	CATSYS Table
	CAT_REFERENCES Table
	SCHEMATA Table
	SCHEMA_REPLICAS Table

	System Security Schema Tables
	MGM_PRIVILEGES
	PRIVILEGED_USERS TABLE

	Definition Schema Tables
	ACCESS_PATHS Table
	ACCESS_PATH_COLS Table
	CK_COL_USAGE Table
	CK_TBL_USAGE Table
	COLS Table
	COL_PRIVILEGES Table
	DDL_LOCKS Table
	DDL_PARTITION_LOCKS
	KEY_COL_USAGE Table
	MP_PARTITIONS Table
	OBJECTS Table
	PARTITIONS Table
	REF_CONSTRAINTS Table
	REPLICAS Table
	RI_UNIQUE_USAGE Table
	ROUTINES Table
	SEQUENCE_GENERATORS Table
	SG_USAGE Table
	TBL_CONSTRAINTS Table
	TBL_PRIVILEGES Table
	TEXT Table
	TRIGGERS Table
	TRIGGERS_CAT_USAGE Table
	TRIGGER_USED Table
	VWS Table
	VW_COL_TBL_COLS Table
	VW_COL_USAGE Table
	VW_TBL_USAGE Table

	System Defaults Table
	SYSTEM_DEFAULTS Table
	Overriding System-Defined Default Settings
	Default Attributes
	Character Set
	Constraint Droppable Options
	Data Types
	Function Control
	Histograms
	Isolation Level
	Locking
	Local Autonomy
	Metadata Management
	Module Management
	Nonaudited Tables
	Object Naming
	Partition Management
	Query Optimization and Performance
	Query Plan Caching
	Referential Action
	Row Maintenance
	Scratch Disk Management
	Sequence Functions
	Statement Atomicity
	Statement Recompilation
	Stored Procedures in Java
	Stream Access
	Table Management
	Trigger Management
	Examples of SYSTEM_DEFAULTS Table

	User Metadata Tables (UMD): Histogram Tables
	Creating Histogram Tables
	HISTOGRAMS Table
	HISTOGRAM_INTERVALS Table
	HISTOGRM Table
	HISTINTS Table
	Examples of Histogram Tables

	MXCS Metadata Tables
	ASSOC2DS Table
	DATASOURCES Table
	ENVIRONMENTVALUES Table
	NAME2ID Table
	RESOURCEPOLICIES Table

	A Quick Reference
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

	B Reserved Words
	Reserved SQL/MX and SQL/MP Identifiers
	SQL/MP Identifiers to Avoid

	C Limits
	D Sample Database
	Object Names in Sample Database
	Sample Database Entity-Relationship Diagram
	DDL Statements for the Sample Database
	EMPLOYEE Table
	DEPT Table
	JOB Table
	PROJECT Table
	CUSTOMER Table
	ORDERS Table
	DATE_CONSTRNT Constraint
	ODETAIL Table
	PARTS Table
	SUPPLIER Table
	PARTSUPP Table
	PARTLOC Table

	E Standard SQL and SQL/MX
	ANSI SQL Standards
	ISO Standards
	SQL/MX Compliance
	SQL/MX Extensions to Standard SQL
	Character Set Support

	Index

