
HP NonStop SQL/MX Release 3.2.1 Guide
to Stored Procedures in Java

HP Part Number: 691166-003
Published: June 2013

© Copyright 2013 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Java is a U.S. trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The Open Group are trademarks of The Open
Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in connection with the furnishing, performance, or use
of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to which it relates are derived in part from
materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.

© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.

© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines
Corporation. © 1988, 1989 Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987,
1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun
Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution under license from The Regents of the University of
California. OSF acknowledges the following individuals and institutions for their role in its development: Kenneth C.R.C. Arnold, Gregory S. Couch,
Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents
of the University of California.

Printed in the US

Contents
About This Manual..7

Supported Release Version Updates (RVUs)..7
Audience...7
Related Documentation..7
New and Changed Information..9

Changes to the 540433-001 Manual...11
Document Organization..11
Examples in This Manual...11
Notation Conventions..12

Hypertext Links..12
General Syntax Notation..12
Notation for Messages...14
Notation for Management Programming Interfaces...15

Change Bar Notation..15
Publishing History...15
HP Encourages Your Comments..16

1 Introduction...17
What Is an SPJ?...17
How Do I Use SPJs?..18
Benefits of SPJs...19

Java Methods Callable From NonStop SQL/MX...19
Common Packaging Technique..20
Security..20
Increased Productivity...20
Portability...20

SPJs in NonStop SQL/MX..21
Effect of Registering an SPJ..21
Effect of Invoking an SPJ...22
Invoking Different Types of SPJs..23

The SPJ Environment..24
SQL/MX UDR Server Process...25
Multithreading in an SPJ Environment...27
Class Loaders in an SPJ Environment..28
Application Classes That an SPJ Can Access...29
Maintaining Class and JAR Files in an SPJ Environment...30

2 Getting Started..32
Software Requirements..32

NonStop Server for Java...33
JDBC/MX Driver..33

Verifying Software Versions..33
Verifying the SQL/MX UDR Server...33
Verifying the NonStop Server for Java...34
Verifying the JDBC/MX Driver..34

Configuring the SPJ Environment on Systems Running H-Series RVUs..35
JREHOME Setting for the NonStop Server for Java...35
Java Library Path for the JDBC/MX Native Library..35
UDR Extensions Class Path for the JDBC/MX JAR File..36

Controlling JVM Startup Options...36
JVM Startup Options for All Processes on a Node..36
JVM Startup Options for Each SPJ Caller...37

Contents 3

Using Multiple UDR_JAVA_OPTIONS Settings in One Application..39
Setting the JREHOME Location...40

Setting JREHOME by Using UDR_JAVA_OPTIONS..40
Setting the JREHOME Environment Variable...41

Setting the JDBC/MX Location..42
UDR Extensions Class Path..42
Setting the JDBC/MX Location by Using UDR_JAVA_OPTIONS..43

Setting the Class Path..43
Setting the Class Path by Using UDR_JAVA_OPTIONS..44
Setting the CLASSPATH Environment Variable..45

Setting the JVM extensions location...46
Setting the JVM extensions location by Using UDR_JAVA_OPITIONS...46

Installing JAR Files in NonStop SQL/MX..46
Establishing Java Security..46

Using UDR_JAVA_OPTIONS to Enable Java Security...47
SPJ Policy File and Required Permissions..47

3 Writing SPJ Methods...49
Guidelines for Writing SPJ Methods..49

Signature of the Java Method..49
Returning Output Values From the Java Method..50
Using the main() Method..52
Null Input and Output..52
Static Java Variables..52
Nested Java Method Invocations..53

Accessing SQL/MP and SQL/MX Databases...53
Use of java.sql.Connection Objects..53
JDBC/MX-Based Java Method...54
Referring to Database Objects in an SPJ Method..55
Exception Handling..56

Handling Java Exceptions..57
User-Defined Exceptions..57

Writing Data to a File or Terminal...57
Compiling Java Classes...58

4 Registering SPJs in NonStop SQL/MX...59
Creating an SPJ..59

Required Privileges for Creating an SPJ...59
Effect of Creating an SPJ...59

Using the CREATE PROCEDURE Statement...59
Naming the Stored Procedure..60
Specifying SQL Parameters..61
Specifying the Maximum Number of Result Sets...63
Specifying the SPJ Method..64
Specifying the External Path..66
Naming the Procedure Label...66
Specifying an SQL Access Mode...67

Dropping an SPJ...67
Required Privileges for Dropping an SPJ..67
Effect of Dropping an SPJ..67
Using the DROP PROCEDURE Statement...68

Altering an SPJ and Its Java Class...68
Changes to the External Path...68
Changes to the External Name..69
Changes to the Java Signature..70

4 Contents

5 Invoking SPJs in NonStop SQL/MX...71
Calling an SPJ..71

Required Privileges for Calling an SPJ...71
Effect of Calling an SPJ...71
Transaction Behavior..71

Using the CALL Statement..72
Specifying the Name of the SPJ...73
Listing the Arguments of the SPJ...73

Invoking SPJs in MXCI...74
Using MXCI Named Parameters...75
Using MXCI Unnamed Parameters..75
Using MXCI with SPJ RS..76

Invoking SPJs Statically in an Embedded SQL Program in C, C++, or COBOL................................76
Invoking SPJs Dynamically in an Embedded SQL Program in C, C++, or COBOL............................77

Input and Output Descriptors...77
Argument Lists...79

Invoking SPJs in a NonStop ODBC/MX Client..80
Invoking SPJs in a JDBC/MX Program...81
Invoking SPJs in a Trigger..81

6 Managing SPJs in NonStop SQL/MX..83
Granting Privileges for Invoking SPJs...83

Granting Privileges on an SPJ..83
Granting Privileges on Referenced Database Objects..84
Revoking Privileges on an SPJ..85

Displaying Information About SPJs..88
Listing the SPJs in a Catalog..88
Showing Privileges on the SPJs...89
Showing the Procedure Label...91
Showing the Syntax of an SPJ..92

Keeping SPJ Statements in OBEY Command Files..94
OBEY Command Files..94
Regenerating CREATE PROCEDURE Statements..96

Backing Up SPJs...97
Using SPJs in a Distributed Database Environment...98

Copying Java Classes to the Remote Node..98
Specifying the Node in the External Path...99
Distributing Application Classes...100

7 Performance and Troubleshooting...101
Troubleshooting SPJ Problems...101
Performance Tips..101
Displaying an Execution Plan for a CALL Statement...102

Using the DISPLAY_EXPLAIN Command..102
Using the EXPLAIN Function..102
Using the EXPLAIN function with SPJ RS..103

Displaying the Shape of a CALL Statement...103
CALL Statements Without a Shape...103
CALL Statements With a Shape..103

A Sample SPJs..105
Using Sample SPJs..105

Installing the SampleSPJs.jar File..105
Installing the SQL/MX Sample Database..105

Class Files and Java Methods...106
Sales Class...107

Contents 5

Payroll Class..109
Inventory Class..110

The createprocs.sql File...111
Examples of the Sample SPJs..113

LOWERPRICE Stored Procedure...113
DAILYORDERS Stored Procedure..115
MONTHLYORDERS Stored Procedure...115
TOTALPRICE Stored Procedure...116
ADJUSTSALARY Stored Procedure...117
EMPLOYEEJOB Stored Procedure...118
SUPPLIERINFO Stored Procedure..119
SUPPLYNUMBERS Stored Procedure...120
ORDERSUMMARY Stored Procedure...121

Index...123

6 Contents

About This Manual
This manual describes how to develop, deploy, and manage stored procedures in Java (SPJs) in
NonStop SQL/MX. NonStop SQL/MX is a relational database management system based on the
ANSI/ISO/IEC 9075:1999 SQL standard, commonly referred to as SQL:1999, for the HP NonStop
server.
Throughout this manual, references to NonStop SQL/MX Release 2.x indicate SQL/MX Release
2.0, 2.1, 2.2, and subsequent releases until otherwise indicated in a replacement publication.

Supported Release Version Updates (RVUs)
This publication supports J06.14 and all subsequent J-series RVUs and H06.25 and all subsequent
H-series RVUs, until otherwise indicated by its replacement publications.

Audience
This manual is intended for application programmers and database administrators who plan to
implement SPJs within an SQL/MX database. The reader should know:

• The Java programming language

• JDBC and the HP NonStop JDBC Driver for SQL/MX (JDBC/MX)

• Structured query language (SQL) and SQL/MX terms and concepts
Although not required, it helps to be familiar with the part of the ANSI SQL/Foundation standard
called SQL/JRT (Java Routines and Types).

Related Documentation
This manual is part of the HP NonStop SQL/MX library of manuals. The following table describes
the list of manuals:

Introductory Guides

Describes SQL differences between NonStop SQL/MP and
NonStop SQL/MX.

SQL/MX Comparison Guide for SQL/MP Users

Describes basic techniques for using SQL in the SQL/MX
conversational interface (MXCI). Includes information about
installing the sample database.

SQL/MX Quick Start

Reference Manuals

Describes the syntax of SQL/MX statements, MXCI
commands, functions, and other SQL/MX language
elements.

SQL/MX Reference Manual

Describes SQL/MX messages.SQL/MX Messages Manual

Defines SQL/MX terminology.SQL/MX Glossary

Installation Guides

Describes how to plan for, install, create, and upgrade a
SQL/MX database.

SQL/MX Installation and Upgrade Guide

Describes how to manage a SQL/MX database.SQL/MX Management Manual

Describes how to install NSM/web and troubleshoot
NSM/web installations.

NSM/web Installation Guide

Supported Release Version Updates (RVUs) 7

Connectivity Manuals

Describes how to install and manage the HP NonStop
SQL/MX Connectivity Service (MXCS), which enables

SQL/MX Connectivity Service Manual

applications developed for the Microsoft Open Database
Connectivity (ODBC) application programming interface
(API) and other connectivity APIs to use NonStop SQL/MX.

Describes the SQL/MX administrative command library
(MACL) available with the SQL/MX conversational interface
(MXCI).

SQL/MX Connectivity Service Administrative Command
Reference

Describes how to install and configure HP NonStop
ODBC/MX for Microsoft Windows, which enables

ODBC/MX Driver for Windows

applications developed for the ODBC API to use NonStop
SQL/MX.

Migration Guides

Describes how to migrate NonStop SQL/MX, NonStop
SQL/MP, and Enscribe databases and applications to HP
Integrity NonStop NS-series systems.

NonStop NS-Series Database Migration Guide

Data Management Guides

Describes the SQL/MX data structures and operations to
carry out the knowledge-discovery process.

SQL/MX Data Mining Guide

Describes how to produce formatted reports using data
from an SQL/MX database.

SQL/MX Report Writer Guide

Describes the features and functions of the DataLoader/MX
product, a tool to load SQL/MX databases.

DataLoader/MX Reference Manual

Application Development Guides

Describes how to embed SQL/MX statements in ANSI C
and COBOL programs.

SQL/MX Programming Manual for C and COBOL

Describes how to understand query execution plans and
write optimal queries for an SQL/MX database.

SQL/MX Query Guide

Describes how NonStop SQL/MX integrates transactional
queuing and publish/subscribe services into its database
infrastructure.

SQL/MX Queuing and Publish/Subscribe Services

Describes how to use stored procedures that are written in
Java within NonStop SQL/MX.

SQL/MX Guide to Stored Procedures in Java

Online Help

Overview and reference entries from the SQL/MX Reference
Manual.

Reference Help

Individual messages grouped by source from the SQL/MX
Messages Manual.

Messages Help

Terms and definitions from the SQL/MX Glossary.Glossary Help

Context-sensitive help topics that describe how to use the
NSM/web management tool.

NSM/web Help

Context-sensitive help topics that describe how to use the
Visual Query Planner graphical user interface.

Visual Query Planner Help

Contents and reference entries from the SQL/MX Database
Manager User Guide.

SQL/MX Database Manager Help

8

The NSM/web, SQL/MX Database Manager, and Visual Query Planner help systems are accessible
from their respective applications. You can download the Reference, Messages, and Glossary
online help from the HP Software Depot at http://www.software.hp.com. For more information
about downloading the online help, see the SQL/MX Release 3.2 Installation and Upgrade Guide.
These manuals are part of the SQL/MP library of manuals and are essential references for
information about SQL/MP Data Definition Language (DDL) and SQL/MP installation and
management:

Related SQL/MP Manuals

Describes the SQL/MP language elements, expressions,
predicates, functions, and statements.

SQL/MP Reference Manual

Describes how to plan, install, create, and manage an
SQL/MP database. Describes installation and management
commands and SQL/MP catalogs and files.

SQL/MP Installation and Management Guide

This documentation is helpful for understanding the concepts and terminology of this manual:

Other Related Documentation

Describes the HP NonStop Server for Java, a Java
environment that supports programs for the enterprise server.

NonStop Server for Java Programmer's Reference

Describes the JDBC Driver for NonStop SQL/MX
(JDBC/MX), a type 2 driver that enables applications

JDBC Driver for SQL/MX Programmer's Reference

developed for the JDBC application programming interface
(API) to use NonStop SQL/MX.

Describes SQL/JRT (Java Routines and Types), which
extends the ANSI SQL/Foundation standard.

International Standard Database Language SQL—Part 13:
SQL Routines and Types Using the Java™ Programming
Language (SQL/JRT) specification

Describes Java terminology at http://java.sun.com/docs/
glossary.html.

Glossary of Java Technology-Related Terms

New and Changed Information
Changes to the 691166-003 manual:

• Updated the section “SQL/MX UDR Server Process” (page 25).

• Updated the section “Multithreading in an SPJ Environment” (page 27).

• Removed the 'Relink' column from Table 1 (page 32) and the para below the table.

• Updated the reference to the latest manual in “Java Library Path for the JDBC/MX Native
Library” (page 35).

• Reference to connection pooling enabled by default is removed as it is no longer default.
Changes to the 691166-002 manual:

• Updated examples in the following sections:

“How Do I Use SPJs?” (page 18)◦
◦ “JDBC/MX-Based Java Method” (page 54)

◦ “Object Name Qualification Before NonStop SQL/MX Release 2.1.1” (page 55)

◦ “Object Name Qualification in NonStop SQL/MX Release 2.1.1 and Later” (page 55)

◦ “Sales Class” (page 107)

◦ “Payroll Class” (page 109)

New and Changed Information 9

http://www.software.hp.com.
http://java.sun.com/docs/glossary.html
http://java.sun.com/docs/glossary.html

◦ “Inventory Class” (page 110)

◦ “LOWERPRICE Stored Procedure” (page 113)

◦ “DAILYORDERS Stored Procedure” (page 115)

◦ “MONTHLYORDERS Stored Procedure” (page 115)

◦ “ADJUSTSALARY Stored Procedure” (page 117)

◦ “EMPLOYEEJOB Stored Procedure” (page 118)

◦ “SUPPLIERINFO Stored Procedure” (page 119)

◦ “SUPPLYNUMBERS Stored Procedure” (page 120)

• Removed a note from the section “Portability” (page 20).

• Updated the Table 1 (page 32).

• Updated the section “Verifying the SQL/MX UDR Server” (page 33).

• Updated the section “Verifying the NonStop Server for Java” (page 34).

• Updated the section “Verifying the JDBC/MX Driver” (page 34).

• Updated the section “JREHOME Setting for the NonStop Server for Java” (page 35).

• Updated the section “Java Library Path for the JDBC/MX Native Library” (page 35).

• Added the section “Setting the JVM extensions location” (page 46).

• Removed a note from the section “Establishing Java Security” (page 46).

• Updated examples in the section “Null Input and Output” (page 52).

• Updated the section “Use of java.sql.Connection Objects” (page 53).

• Added a note to the section “Invoking SPJs in a NonStop ODBC/MX Client” (page 80).
Changes to the 691166-001 manual:

• Updated the section Verifying the SQL/MX UDR Server (page 33).

• Updated the section Naming the Procedure Label (page 66).

• Updated the section Calling an SPJ (page 71).

• Updated the section Transaction Statements or Methods in an SPJ Method (page 71).

• Added a new section Invoking SPJs in a Trigger (page 81).

• Updated the section CREATE PROCEDURE Statement (page 114).

• Updated the section CALL Statement to Invoke the SPJ (page 114).
Changes to the H06.16/J06.05 manual:

• Supported release statements have been updated to include J-series RVUs.

• Updated VALIDATEROUTINE2 internal SPJ details in Effect of Registering an SPJ (page 21).

• Updated Table 1: Software Products Required for SPJs (page 32).

• Updated the section Stored Procedure Result Sets (page 51).

• Updated the section Use of java.sql.Connection Objects (page 53).

• Added the section Specifying the Maximum Number of Result Sets (page 63).

• Added the section Using MXCI with SPJ RS (page 76).

• Added the section Output of the SHOWDDL Command of an SPJ with Result Sets (page 94).

10

• Added the section Using the EXPLAIN function with SPJ RS (page 103).

• Added a sample ORDERSUMMARY Stored Procedure (page 121).

Changes to the 540433-001 Manual

New or Changed InformationSection

Updated Software Requirements (page 32) and Verifying
Software Versions (page 33) and added Configuring the

Chapter 2: Getting Started

SPJ Environment on Systems Running H-Series RVUs
(page 35)

Explained how to refer to the catalog and schema of
database objects in Referring to Database Objects in an
SPJ Method (page 55)

Chapter 3: Writing SPJ Methods

Removed information about migrating SPJs from SQL/MX
Release 1.8 to SQL/MX Release 2.x because SQL/MX

Chapter 6: Managing SPJs in NonStop SQL/MX

Release 1.8 is not supported on systems running H-series
RVUs.

Document Organization

Introduces SPJs in NonStop SQL/MX, describes steps for
using SPJs, describes the benefits of using SPJs, describes

Chapter 1: Introduction

the process of registering and invoking SPJs in NonStop
SQL/MX, and describes the SPJ environment.

Describes the software requirements and system
configuration for registering and invoking SPJs in NonStop
SQL/MX.

Chapter 2: Getting Started

Provides guidelines for writing and compiling a Java method
to be used as the body of an SPJ.

Chapter 3: Writing SPJ Methods

Explains how to create an SPJ, drop an SPJ, and alter an
SPJ in NonStop SQL/MX.

Chapter 4: Registering SPJs in NonStop SQL/MX

Explains how to execute an SPJ by using the CALL statement
in NonStop SQL/MX.

Chapter 5: Invoking SPJs in NonStop SQL/MX

Describes management tasks related to SPJs, such as
granting privileges for invoking SPJs, showing the SPJs that

Chapter 6: Managing SPJs in NonStop SQL/MX

exist in a database, and using SPJs in a distributed
database environment.

Describes how to improve and monitor the performance of
SPJs and provides guidelines for troubleshooting common
problems.

Chapter 7: Performance and Troubleshooting

Provides SPJ methods that demonstrate business logic in an
SQL/MX database.

Appendix A: Sample SPJs

Examples in This Manual
The examples and sample SPJs in this manual refer to the SQL/MX sample database. To install
the sample database, see the SQL/MX Quick Start. For information about the schema and tables
of the sample database, see the SQL/MX Reference Manual.
Most of the examples and sample SPJs can query both SQL/MP and SQL/MX tables of the SQL/MX
sample database. To query SQL/MP tables, use the NonStop SQL/MX Release 1.8 sample
database. To query SQL/MX tables, use the NonStop SQL/MX Release 2.x sample database.

NOTE: The SQL/MX Release 2.x sample database uses SQL/MX format tables. To install the
sample database, you must have a license to use SQL/MX DDL statements. To acquire this license,
purchase product T0394. Without this product, you cannot install the sample database. An error
message informs you that the system is not licensed.

Document Organization 11

For the entire set of sample SPJs, see Appendix A: Sample SPJs.

Notation Conventions

Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of text with a
blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk Drives

General Syntax Notation
The following list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS.
Uppercase letters indicate keywords and reserved words; enter these items exactly as shown. Items
not enclosed in brackets are required. For example:
MAXATTACH

lowercase italic letters.
Lowercase italic letters indicate variable items that you supply. Items not enclosed in brackets are
required. For example:
file-name

computer type. Computer type letters within text indicate C and Open System Services (OSS)
keywords and reserved words; enter these items exactly as shown. Items not enclosed in brackets
are required. For example:
myfile.c

italic computer type.
Italic computer type letters within text indicate C and Open System Services (OSS) variable
items that you supply. Items not enclosed in brackets are required. For example:
pathname

[] Brackets.
Brackets enclose optional syntax items. For example:
TERM [\system-name.]$ terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or none. The
items in the list may be arranged either vertically, with aligned brackets on each side of the list,
or horizontally, enclosed in a pair of brackets and separated by vertical lines. For example:
FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces.
A group of items enclosed in braces is a list from which you are required to choose one item. The
items in the list may be arranged either vertically, with aligned braces on each side of the list, or
horizontally, enclosed in a pair of braces and separated by vertical lines. For example:
LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line.
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces. For
example:

12

INSPECT { OFF | ON][SAVEABEND }

… Ellipsis.
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat the
enclosed sequence of syntax items any number of times. For example:
M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:
"s-char…"

Punctuation.
Parentheses, commas, semicolons, and other symbols not previously described must be entered as
shown. For example:
error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.# su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must enter as shown. For example:
"[" repetition-constant-list "]"

Item Spacing.
Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:
CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following example, there
are no spaces permitted between the period and any other items:
$process-name.#su-name

Line Spacing.
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:
ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o.
In procedure calls, the !i notation follows an input parameter (one that passes data to the called
procedure); the !o notation follows an output parameter (one that returns data to the calling
program). For example:
CALL CHECKRESIZESEGMENT (segment-id !i , error) ; !o

!i,o.
In procedure calls, the !i,o notation follows an input/output parameter (one that both passes data
to the called procedure and returns data to the calling program). For example:
error := COMPRESSEDIT (filenum) ; !i,o

!i:i.
In procedure calls, the !i:i notation follows an input string parameter that has a corresponding
parameter specifying the length of the string in bytes. For example:
error := FILENAME_COMPARE_ (filename1:length !i:i , filename2:length) ; !i:i

!o:i.
In procedure calls, the !o:i notation follows an output buffer parameter that has a corresponding
input parameter specifying the maximum length of the output buffer in bytes. For example:

Notation Conventions 13

error := FILE_GETINFO_ (filenum !i , [filename:maxlen]) ; !o:i

Notation for Messages
The following list summarizes the notation conventions for the presentation of displayed messages
in this manual.
Bold Text.
Bold text in an example indicates user input entered at the terminal. For example:
ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
Nonitalic text.
Nonitalic letters, numbers, and punctuation indicate text that is displayed or returned exactly as
shown. For example:
Backup Up.

lowercase italic letters.
Lowercase italic letters indicate variable items whose values are displayed or returned. For example:
p-register

process-name

[] Brackets.
Brackets enclose items that are sometimes, but not always, displayed. For example:
Event number=number [Subject=first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be displayed, of which
one or none might actually be displayed. The items in the list might be arranged either vertically,
with aligned brackets on each side of the list, or horizontally, enclosed in a pair of brackets and
separated by vertical lines. For example:
proc-name trapped [in SQL][in SQL file system]

{ } Braces.
A group of items enclosed in braces is a list of all possible items that can be displayed, of which
one is actually displayed. The items in the list might be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and separated by
vertical lines. For example:
obj-type obj-name state changed to state, caused by
{ Object][Operator][Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line.
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces. For
example:
Transfer status: { OK][Failed }

% Percent Sign.
A percent sign precedes a number that is not in decimal notation. The % notation precedes an
octal number. The %B notation precedes a binary number. The %H notation precedes a hexadecimal
number. For example:
%005400

%B101111

%H2F

14

P=%p-register E=% e-register

Notation for Management Programming Interfaces
The following list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.
UPPERCASE LETTERS.
Uppercase letters indicate names from definition files; enter these names exactly as shown. For
example:
ZCOM-TKN-SUBJ-SERV

lowercase letters.
Words in lowercase letters are words that are part of the notation, including Data Definition
Language (DDL) keywords. For example:
token-type

!r.
The !r notation following a token or field name indicates that the token or field is required. For
example:
ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o.
The !o notation following a token or field name indicates that the token or field is optional. For
example:
ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its preceding
version. Change bars are vertical rules placed in the right margin of changed portions of text,
figures, tables, examples, and so on. Change bars highlight new or revised information. For
example:
The message types specified in the REPORT clause are different in the COBOL85 environment and
the Common Run-Time Environment (CRE).
The CRE has many new message types and some new message type codes for old message types.
In the CRE, the message type SYSTEM includes all messages except LOGICAL-CLOSE and
LOGICAL-OPEN.

Publishing History
This guide supports HP NonStop SQL/MX Release 3.2.1 until otherwise indicated by its replacement
publication. The publication date and part number indicate the current edition of the document.

Publication DateProduct VersionPart Number

June 2005NonStop SQL/MX Releases 2.0 and 2.1523727-003

February 2006NonStop SQL/MX Releases 2.0, 2.1, and
2.2

540433-001

November 2008NonStop SQL/MX Releases 2.0, 2.1, 2.2,
and 2.3

540433-003

August 2012NonStop SQL/MX Release 3.2691166-001

February 2013NonStop SQL/MX Release 3.2.1691166-002

June 2013NonStop SQL/MX Release 3.2.1691166-003

Change Bar Notation 15

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.
Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

16

1 Introduction
This section introduces stored procedures in Java (SPJs) in NonStop SQL/MX and covers these
topics:

• What Is an SPJ? (page 17)

• How Do I Use SPJs? (page 18)

• Benefits of SPJs (page 19)

• SPJs in NonStop SQL/MX (page 21)

• The SPJ Environment (page 24)

What Is an SPJ?
A stored procedure is a type of user-defined routine (UDR) that operates within a database server.
The database server contains the metadata of stored procedures and controls their execution. A
stored procedure, which can perform SQL operations on a database, is invoked by a client
application using an SQL CALL statement. Unlike a user-defined function, a stored procedure does
not return a value directly to its caller. Instead, a stored procedure returns each output value to a
host variable or dynamic parameter in its parameter list.
NonStop SQL/MX supports stored procedures written in the Java programming language. A stored
procedure in Java (SPJ) is a Java method contained in a Java class, registered in SQL/MX system
metadata tables, and invoked by NonStop SQL/MX when an application issues a CALL statement:

The body of a stored procedure consists of a public, static Java method that returns void.
These methods, called SPJ methods, are contained in class files in the HP NonStop Open System
Services (OSS) file system, and a group of class files or packages can be stored in a Java archive
(JAR) file. The SQL statement, CREATE PROCEDURE, registers a Java method as a stored procedure
in the database by storing its name, parameter types, location, and other metadata in SQL/MX
system metadata tables. An SPJ method must be registered in NonStop SQL/MX before an SQL/MX
application can call it. For more information about how SPJs operate in NonStop SQL/MX, see
SPJs in NonStop SQL/MX (page 21).

NOTE: The SQL/MX implementation of SPJs complies mostly, unless otherwise specified, with
SQL/JRT (Java Routines and Types), which extends the ANSI SQL/Foundation standard.

What Is an SPJ? 17

How Do I Use SPJs?
To create and invoke SPJs in NonStop SQL/MX:
1. Verify that you have the required software products installed on your HP NonStop system. See

Verifying Software Versions (page 33).
2. Write and compile a static Java method to be used as an SPJ:

public class Payroll {

 public static void adjustSalary(BigDecimal empNum,
 double percent,
 BigDecimal[] newSalary)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement setSalary =
 conn.prepareStatement("UPDATE samdbcat.persnl.employee " +
 "SET salary = salary * (1 + (? / 100)) " +
 "WHERE empnum = ?");

 PreparedStatement getSalary =
 conn.prepareStatement("SELECT salary " +
 "FROM samdbcat.persnl.employee " +
 "WHERE empnum = ?");

 setSalary.setDouble(1, percent);
 setSalary.setBigDecimal(2, empNum);
 setSalary.executeUpdate();

 getSalary.setBigDecimal(1, empNum);
 ResultSet rs = getSalary.executeQuery();
 rs.next();
 newSalary[0] = rs.getBigDecimal(1);
 rs.close();

 conn.close();
 }
}

Compile the Java source file that contains the method to produce a class file:
javac Payroll.java

For details, see Chapter 3: Writing SPJ Methods.
3. Configure the SPJ environment before registering or invoking SPJs:

• If you installed the NonStop Server for Java in a nonstandard location, set the JREHOME
location. See Setting the JREHOME Location (page 40).

• If you installed the JDBC/MX driver in a nonstandard location, set the UDR extensions
class path. See Setting the JDBC/MX Location (page 42).

• If the SPJ methods refer to application classes outside their external paths, set those
locations in the class path. See Setting the Class Path (page 43).

• If necessary, set other JVM startup options for the SPJ environment. See Controlling JVM
Startup Options (page 36).

• If necessary, configure Java security for the SPJ environment. See Establishing Java Security
(page 46).

4. As the super ID or schema owner, register each SPJ in NonStop SQL/MX by using the CREATE
PROCEDURE statement:

CREATE PROCEDURE samdbcat.persnl.adju stsalary(IN empnum NUMERIC(4),
 IN percent FLOAT,
 OUT newsalary NUMERIC(8,2))
 EXTERNAL NAME 'Payroll.adjustSalary'
 EXTERNAL PATH '/usr/mydir/myclasses'

18 Introduction

 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA;

For details, see Chapter 4: Registering SPJs in NonStop SQL/MX.
5. Grant privileges to users for invoking each SPJ:

GRANT EXECUTE
 ON PROCEDURE samdbcat.persnl.adjustsalary
 TO "HR.MGRNA", "HR.MGREU"
 WITH GRANT OPTION;

GRANT SELECT, UPDATE (salary)
 ON TABLE samdbcat.persnl.employee
 TO "HR.MGRNA", "HR.MGREU"
 WITH GRANT OPTION;

For details, see Granting Privileges for Invoking SPJs (page 83).
6. Invoke each SPJ by using the CALL statement:

CALL samdbcat.persnl.adjustsalary(29,2.5, ?);

NEWSALARY

 139400.00

--- SQL operation complete.

For details, see Chapter 5: Invoking SPJs in NonStop SQL/MX.
7. Maintain privileges and manage the metadata of SPJs in the database environment. See

Chapter 6: Managing SPJs in NonStop SQL/MX.
8. Monitor the performance of SPJs and resolve common problems with SPJs in NonStop SQL/MX.

See Chapter 7: Performance and Troubleshooting.

Benefits of SPJs
SPJs provide an efficient and secure way to implement business logic in an SQL/MX database.
SPJs offer the advantages discussed next.

Java Methods Callable From NonStop SQL/MX
With support for SPJs, Java methods are callable from any SQL/MX application on a NonStop
system. For example, you can invoke the same SPJ method from embedded SQL programs in C,
C++, or COBOL and from HP NonStop ODBC/MX clients. By using NonStop SQL/MX to invoke
Java methods, you can extend the functionality of an SQL/MX database and share business logic
among different applications.

Benefits of SPJs 19

Figure 1 Different Applications Calling the Same SPJ

For more information, see Chapter 5: Invoking SPJs in NonStop SQL/MX.

Common Packaging Technique
Different applications can invoke the same SPJ to perform a common business function. By
encapsulating business logic in an SPJ, you can maintain consistent database operations and avoid
duplicating code in applications.
Applications that call SPJs are not required to know the structure of the tables that the SPJ methods
access. If the table structure changes, you must change the SPJ methods but not necessarily the
CALL statements within each application.

Security
By using SPJs, you can conceal sensitive business logic inside SPJ methods instead of exposing it
in client applications. You can also grant privileges to execute an SPJ to specific users and restrict
the privileges of other users. For more information, see Granting Privileges for Invoking SPJs
(page 83).

Increased Productivity
Use SPJs to reduce the time and cost of developing and maintaining SQL/MX applications. By
having several applications call the same SPJ, you need only change the SPJ method once when
business rules or table structures change instead of changing every application that calls the SPJ.
Using the Java language to implement stored procedures increases development productivity.
Given the popularity of the Java language, you can leverage the existing skill set of Java
programmers to develop SPJs. The portability of the Java language enables you to write and
compile Java class files for SPJs once and deploy them anywhere.

Portability
Because SPJ methods are written in Java, and SPJs conform to the ANSI SQL standard, SPJs are
portable across different database servers. With minimal changes to SPJ methods, you can port
existing Java classes from another database server to a NonStop server and register the methods
as SPJs in NonStop SQL/MX. You can also port existing applications that call SPJs from other
databases to NonStop SQL/MX with minimal changes to the CALL statements in the application.

20 Introduction

SPJs in NonStop SQL/MX
This subsection explains the process and effect of registering and invoking SPJs in NonStop SQL/MX:

• Effect of Registering an SPJ (page 21)

• Effect of Invoking an SPJ (page 22)

• Invoking Different Types of SPJs (page 23)

Effect of Registering an SPJ
When you register an SPJ by using a CREATE PROCEDURE statement, NonStop SQL/MX verifies
that the specified Java method exists and that its signature matches the SQL parameters of the
stored procedure. After verifying the SPJ, NonStop SQL/MX stores information about the SPJ
method, such as its name, location, and parameter types, in the system metadata tables. After you
register an SPJ in NonStop SQL/MX, any SQL/MX application or interface with the appropriate
permissions can call the SPJ to execute the SPJ method.
Figure 2 shows how NonStop SQL/MX processes a CREATE PROCEDURE statement.

Figure 2 Registering an SPJ

1. The CREATE PROCEDURE statement that the application issues is processed by an SQL/MX
compiler (MXCMP) process.

2. The catalog manager within the MXCMP process invokes aninternal SPJ named VALIDAT
EROUTINE2, which is in SYSTEM_SQLJ_SCHEMA, and passes information from the CREATE
PROCEDURE statement to it.

3. VALIDATEROUTINE2 validates the Java class and method specified in the CREATE PROCEDURE
statement within an SQL/MX UDR server process (shown as the MXUDR executable in Figure 2).
VALIDATEROUTINE2 uses the embedded Java virtual machine (JVM) within the SQL/MX UDR
server process to verify that the Java method exists in the specified class and that its signature
maps to the SQL parameters specified in the CREATE PROCEDURE statement. If the method
exists and its signature maps to the SQL parameters, the SQL/MX UDR server returns a condition
indicating success to the MXCMP process. Otherwise, the SQL/MX UDR server returns an
error condition, and 4 do not complete.

SPJs in NonStop SQL/MX 21

NOTE: Systems running on J06.04 and earlier J-series RVUs or H06.15 and earlier H-series
RVUs have VAILDATEROUTINE internal SPJ only, whereas systems running on J06.05 and
later J-series RVUs or H06.16 and later H-series RVUs have both VALIDATEROUTINE and
VALIDATEROUTINE2 internal SPJs.
Additionally, MXCMP released in H06.16 and later RVUs invokes internal SPJ
VALIDATEROUTINE2 while MXCMP released in H06.15 or earlier RVUs invoke the
VAILDATEROUTINE internal SPJ.

4. The catalog manager inserts information about the SPJ into the system metadata tables:
• The ALL_UIDS table associates the SPJ with a unique identifier (UID).

• The OBJECTS table contains information about each SPJ, such as its object name, unique
identifier (UID), creation time, and ownership.

• The ROUTINES table contains the attributes, such as external name and path, of each
SPJ that is created in a catalog.

• The COLS table contains the attributes of the individual parameters of an SPJ, one row
per parameter.

• The TEXT table contains the text of the Java encoded signature of an SPJ.

• The TBL_PRIVILEGES table contains the ownership and granted privileges for each SPJ in
a catalog.

• The REPLICAS table contains information about the procedure label of an SPJ.
For more information about these system metadata tables, see the SQL/MX Reference Manual.

5. The catalog manager also creates a procedure label owned by the user who issues the CREATE
PROCEDURE statement.
The procedure label is used internally by NonStop SQL/MX to track privileges on an SPJ. For
more information, see Showing the Procedure Label (page 91).

Effect of Invoking an SPJ
When an application issues a CALL statement, the Java method of the invoked SPJ executes inside
a JVM in an SQL/MX UDR server process. Figure 3 shows how SQL/MX processes a CALL statement.

22 Introduction

Figure 3 Invoking an SPJ

1. An SQL/MX application invokes an SPJ by issuing a CALL statement. The SQL/MX executor
reads the compiled SQL plan for the CALL statement.

2. The SQL/MX executor checks the procedure label to verify that the caller has permission to
invoke the SPJ.

3. If the caller has permission to invoke the SPJ, the SQL/MX executor starts sending messages
to the SQL/MX UDR server (shown as the MXUDR executable in Figure 3) to execute the SPJ.
The SQL/MX executor sends any input parameters that the application passes to the SPJ to
the SQL/MX UDR server.

4. Inside the SQL/MX UDR server process, an SPJ class loader loads the class specified by the
SPJ and executes the SPJ method.

5. The SQL/MX UDR server returns the output parameters of the SPJ to the SQL/MX executor,
and the SQL/MX executor returns the output to the application. If exceptions occur during the
execution of the Java method, the SQL/MX UDR server returns them to the SQL/MX executor
as SQL diagnostics.

Invoking Different Types of SPJs
The next subsections show the layers of code within an SQL/MX UDR server process and how
these layers interact when an application issues CALL statements that invoke different types of SPJ
methods.

Pure Java Method
An SPJ can be based on a Java method from a pure Java program (that is, one that does not
contain JDBC/MX method calls or SQLJ statements). A pure Java method does not directly perform
database access operations. This type of SPJ method is loaded into the SPJ environment and
executes its application logic by referring to its own class, other application classes, and Java
system and extension classes:

SPJs in NonStop SQL/MX 23

JDBC/MX-Based Java Method
An SPJ method can be from a class file that uses standard JDBC method calls to access a NonStop
SQL database. The pure Java and native layers of the JDBC/MX driver work together to process
database requests issued by the SPJ method:

The SPJ Environment
NonStop SQL/MX processes CALL statements in an SPJ environment, which is hosted within an
SQL/MX UDR server process. The SPJ environment includes an embedded JVM inside of which
SPJ methods, invoked by CALL statements, execute, as shown in Figure 4.

24 Introduction

Figure 4 SPJ Environment in NonStop SQL/MX

This subsection explains some of the ways in which the SPJ environment in NonStop SQL/MX
differs from a typical Java environment:

• SQL/MX UDR Server Process (page 25)

• Multithreading in an SPJ Environment (page 27)

• Class Loaders in an SPJ Environment (page 28)

• Application Classes That an SPJ Can Access (page 29)

• Maintaining Class and JAR Files in an SPJ Environment (page 30)

SQL/MX UDR Server Process
The SQL/MX UDR server is a program executable named MXUDR in $SYSTEM.SYSTEM. When
NonStop SQL/MX processes the first CALL statement of an application, it starts an SQL/MX UDR
server process. An SQL/MX UDR server process hosts one SPJ environment and services one or
more CALL statements of an SQL/MX application during its execution. When an application
terminates, its SQL/MX UDR server processes also terminate.
For an SQL/MX application, the SQL/MX UDR server process that services the application can be
single or multiple per connection to the database.

Single SQL/MX UDR Server Process Per Connection
An SQL/MX application that uses a single connection to the database has only one SQL/MX UDR
server process service the application. All the CALL statements in such an application are processed
in one SPJ environment.

Multiple SQL/MX UDR Server Processes Per Connection
An SQL/MX application that switches user identities or that uses different UDR_JAVA_OPTIONS
settings has multiple SQL/MX UDR server processes service the application. The CALL statements
in such an application are processed in multiple SPJ environments, with each CALL statement being
processed in one SPJ environment.
Whenever there is a change in the user identity or in the UDR_JAVA_OPTIONS setting, a new
SQL/MX UDR server process is launched. A different SPJ environment is created and the subsequent
procedure calls are serviced using this new SQL/MX UDR process. See Figure 5 (page 27)

The SPJ Environment 25

Applications that initiate multiple SQL/MX UDR server processes include NonStop ODBC/MX and
JDBC/MX applications. NonStop ODBC/MX clients often switch user identities. Multithreaded
JDBC/MX applications can use different UDR_JAVA_OPTIONS settings for different threads.
For these types of applications, new SQL/MX UDR server processes are started as needed, and
stop when all the connections that were serviced by the SQL/MX UDR server process end. For
more information, see Conditions Causing Initialization of an SPJ Environment (page 26).
The UDR_JAVA_OPTIONS default attribute controls the JVM startup options in an SPJ environment.
For more information, see Controlling JVM Startup Options (page 36).

Conditions Causing Initialization of an SPJ Environment
When an application issues a CALL statement (that is, invokes an SPJ), the SQL/MX executor starts
a new SQL/MX UDR server process and initializes a new SPJ environment if any of these conditions
are met:

• An SPJ environment is not currently servicing the application (that is, the CALL statement is the
first one executed by the application).

• The SPJ environments that are currently servicing the application are not associated with the
current user identity.

• The CALL statement has a UDR_JAVA_OPTIONS setting (other than ANYTHING) that is different
from the UDR_JAVA_OPTIONS setting in the SPJ environments that are servicing the application
under the current user identity.
See Determining the Uniqueness of UDR_JAVA_OPTIONS Settings (page 39).

Conditions Preventing Initialization of an SPJ Environment
The execution of a CALL statement does not start a new SQL/MX UDR server process and initialize
a new SPJ environment if one of these conditions is met:

• The CALL statement has a UDR_JAVA_OPTIONS setting (other than ANYTHING) that is the
same as the UDR_JAVA_OPTIONS setting in one or more SPJ environments that are servicing
the application under the current user identity.
See Determining the Uniqueness of UDR_JAVA_OPTIONS Settings (page 39).

• The CALL statement has a UDR_JAVA_OPTIONS setting of ANYTHING, and one or more SPJ
environments are currently servicing the application under the current user identity.

Figure 5 shows how SQL/MX UDR server processes and SPJ environments are initialized for an
application.

26 Introduction

Figure 5 Initialization of SQL/MX UDR Server Processes

Reinitialization of the SPJ Environment
In rare cases, the SQL/MX UDR server might crash unpredictably because of internal system errors
or the application code. In such cases, the SPJ environment is reinitialized when a CALL statement
is issued following the crash.

Multithreading in an SPJ Environment
Within an SPJ environment, NonStop SQL/MX manages a single thread of execution, even for
multithreaded Java applications. The CALL statements in a multithreaded application can execute
in a nonblocking manner, but the SPJ methods underlying those CALL statements execute serially
within a given SPJ environment.
In SQL/MX Release 2.0 ABJ SPRs and later releases, the SQL/MX UDR server sets the default
behavior to blocking mode. The blocking mode decreases CPU path length and improves
performance in the SPJ environment. You can enable or disable nonblocking JDBC/MX in the SPJ
environment by specifying JVM startup options. To specify JVM startup options in the SPJ
environment, see Controlling JVM Startup Options (page 36).
For information about nonblocking JDBC/MX, see the JDBC Type 2 Driver Programmer's Reference
for SQL/MX.
To support parallelism of CALL statements issued from a multithreaded application, use different
UDR_JAVA_OPTIONS settings for each CALL statement. The execution of a CALL statement with a
different UDR_JAVA_OPTIONS setting initiates a separate SQL/MX UDR server process with its
own SPJ environment. These SPJ environments can process requests in parallel from a multithreaded

The SPJ Environment 27

application. For information about setting the UDR_JAVA_OPTIONS default attribute, see Controlling
JVM Startup Options (page 36).

CAUTION: NonStop SQL/MX does not prevent SPJ methods from spawning other threads. Doing
so is not advised and can lead to unpredictable results.

Class Loaders in an SPJ Environment
For system and extension classes, class loading in the SPJ environment is the same as other Java
environments. By default, SPJ classes, like other Java programs, use the bootstrap class loader to
load system classes, which are typically contained in the rt.jar file and are the Java core API.
SPJ classes use the extension class loader to load classes from standard extension JAR files in the
jre/lib/ext directory.
Class loading in the SPJ environment differs from other Java environments in that the SQL/MX UDR
server manages certain aspects of class loading. The SQL/MX UDR server directs the system class
loader, which typically manages an application's class path, to load classes in the SQL/MX
language manager (mxlangman.jar), and in the JDBC/MX product file (jdbcMx.jar), and in
the HP NonStop SQLJ product file (sqlj.jar), as needed.
The SQL/MX UDR server also creates and assigns one SPJ class loader for each distinct external
path location, which you specify in the EXTERNAL PATH clause of a CREATE PROCEDURE statement
when registering an SPJ. The SPJ class loader assigned to an external path becomes responsible
for loading all SPJ classes in a directory or JAR file specified by that external path and for loading
all application classes that are used by those SPJ classes. The SPJ class loader, instead of the system
class loader, loads application classes from directories and JAR files specified in the class path.
In Figure 6, an SPJ method named myMethod3() in the /usr/myapps/myJar.jar external
path accesses an application class named other.class in the /usr/otherapps class path.
The SPJ class loader for the /usr/myapps/myJar.jar external path loads a copy of
other.class in addition to the class file containing the SPJ method myMethod3().

28 Introduction

Figure 6 SPJ Class Loaders in an SQL/MX UDR Server Process

Application Classes That an SPJ Can Access
A Java method that you register as an SPJ might need to access, either directly or indirectly, other
Java classes to operate properly, as shown in Figure 7.

Figure 7 Java Classes That an SPJ Can Access

To enable an SPJ method to refer to application classes, either put the application classes in the
same external path as the SPJ class or specify the locations of the application classes in the class
path.

The SPJ Environment 29

Accessing Application Classes in the External Path
An SPJ method can access by default all application classes within its external path location, which
you specify in the EXTERNAL PATH clause of a CREATE PROCEDURE statement when registering
an SPJ. The external path is either an OSS directory or a JAR file path that contains the SPJ class
file. See Specifying the External Path (page 66) .
If the external path is an OSS directory, only class files in the specified directory (or within packages
in the specified directory) are considered to be in the external path. JAR files within the specified
directory are not considered to be part of the external path.
If the external path is a JAR file path, only class files within the JAR file are considered to be in the
external path. For example, if an SPJ class named myClass is contained in a JAR file named
myJar.jar, the external path is the JAR file path, /usr/myapps/myJar.jar. All classes stored
in the same JAR file as myClass are accessible by default to the SPJ method, myMethod().

Accessing Application Classes Outside the External Path
For an SPJ method to access an application class outside its external path, you must set a search
path in the SPJ environment called the class path. A class path can contain multiple directories and
JAR file paths, which an SPJ class loader uses to search for referenced application classes.
During the execution of a CALL statement, if an SPJ method refers to an application class, an SPJ
class loader first searches the external path for the class and, if the class is not found, it searches
the class path.
For more information, see Setting the Class Path (page 43).

Maintaining Class and JAR Files in an SPJ Environment
You should not modify class and JAR files that are used by SPJs while active SPJ environments exist.
If you update the SPJ classes or referenced application classes on disk, those changes might not
be reflected in currently active SPJ environments, leading to unpredictable and undesirable behavior
of CALL statements.

CAUTION: To prevent unpredictable and undesirable behavior of CALL statements, do not change
SPJ classes or referenced application classes while SPJ environments are active. To update a class
file or a JAR file that contains classes, stop the calling application, which ends the active SQL/MX
UDR server process, install the updated class or JAR file, and then restart the application.

Consider the maintenance implications described next.

Updating the Java Class Files of an SPJ Method
Suppose that you change an SPJ class while an SPJ environment remains active. After you change
the Java class, subsequent calls to the SPJ in the same SPJ environment will cause NonStop SQL/MX
to try to execute the old SPJ method, usually resulting in an error. Although you changed the Java
class file on disk, the old class of the SPJ method remains cached in the JVM of the SPJ environment.
After a class loader loads a class file, it does not reload the same class file unless garbage collection
occurs.
Before installing an updated class file, or a JAR file that contains an updated class file, and before
issuing a CREATE PROCEDURE statement, always stop the calling application, which ends the
active SQL/MX UDR server process. For more information, see Altering an SPJ and Its Java Class
(page 68).

Updating the Java Class Files of a Referenced Application Class
Suppose that two SPJs, each with a different external path location, depend on the same application
class outside the external path but within the class path. Because the SPJ class loaders for each
external path operate independently and do not share information, each loads its own copy of
the application class at different times in the SPJ environment. Each time one of the SPJ class loaders

30 Introduction

loads an application class, the class loader creates and manages a new copy of the application
class and its static variables. For an example, see Figure 8 (page 31).

Figure 8 Copies of Java Classes in SPJ Class Loaders

If an application class does not change on disk during an active SPJ environment, identical copies
of the application class exist in memory and could waste resources. To conserve system resources,
design your Java classes and directory structure so that fewer SPJ methods in different external
paths rely on the same application class.
If an application class changes on disk during an active SPJ environment, copies of old and new
versions of the application class could be in memory at the same time, leading to unpredictable
and undesirable behavior of CALL statements. To prevent this problem, stop the calling application,
which ends the SQL/MX UDR server process, install the updated class or JAR file, and then restart
the application.

The SPJ Environment 31

2 Getting Started
Before you can use SPJs in NonStop SQL/MX:

• Verify that your system meets software requirements.

• Install necessary software products.

• Configure the SPJ environment.
This section covers these topics:

• Software Requirements (page 32)

• Verifying Software Versions (page 33)

• Configuring the SPJ Environment on Systems Running H-Series RVUs (page 35)

• Controlling JVM Startup Options (page 36)

• Setting the JREHOME Location (page 40)

• Setting the JDBC/MX Location (page 42)

• Setting the Class Path (page 43)

• Installing JAR Files in NonStop SQL/MX (page 46)

• Establishing Java Security (page 46)

Software Requirements
To use SPJs according to the instructions in this manual, you must have NonStop SQL/MX Release
3.x installed on a NonStop system. For detailed software requirements and installation instructions
for NonStop SQL/MX, see the SQL/MX Installation and Upgrade Guide.
Table 1 lists the software products that you must install on a NonStop system to use SPJs in NonStop
SQL/MX and whether you must relink the SQL/MX UDR server (the MXUDR executable) after
installing those products.

Table 1 Software Products Required for SPJs

JDBC/MX Driver*NonStop Server for Java*Minimum Supported RVUSQL/MX Product Version

T1275H10 (equivalent to
T1225V32)

T006H10 (SDK 1.4.2)H06.03NonStop SQL/MX Release
2.0

T1275H10 (equivalent to
T1225V32)

T006H10 (SDK 1.4.2)H06.04NonStop SQL/MX Release
2.1

T1275H10 AAA (equivalent
to T1225V32)

T006H10 (SDK 1.4.2)H06.04NonStop SQL/MX Release
2.2

T1275H50 AAJT2766 H50 (SDK 1.5.0)H06.16NonStop SQL/MX Release
2.3

T1275H30T2766 H50/T2766 H60H06.22NonStop SQL/MX Release
3.0

T1275H31T2766 H50/T2766 H60H06.24NonStop SQL/MX Release
3.1

T1275H32T2766 H50/T2766 H60H06.25NonStop SQL/MX Release
3.2

T1275H32 AMUT2766 H70 (NSJ7)***H06.26NonStop SQL/MX Release
3.2.1**

*The product numbers are minimum versions on systems running H-series RVUs. See the README file on the NonStop
Server for Java CD for installation instructions and the latest version requirements.

32 Getting Started

Table 1 Software Products Required for SPJs (continued)

JDBC/MX Driver*NonStop Server for Java*Minimum Supported RVUSQL/MX Product Version

**Starting from NonStop SQL/MX Release 3.2.1, only NSJ7 or later versions of Java are supported.
***Distributed GC feature in NSJ7 is not supported for the SPJ.

NonStop Server for Java
To create and execute SPJs in NonStop SQL/MX, you must install the NonStop Server for Java on
a NonStop system. Use the NonStop Server for Java to compile and execute Java applications.
For details about this product, see the NonStop Server for Java Programmer's Reference. For
installation instructions, see the README file on the product CD. If you install the NonStop Server
for Java in a nonstandard location, see Setting the JREHOME Location (page 40). For version
requirements, see Table 1.

JDBC/MX Driver
To create and execute SPJs in NonStop SQL/MX, you must install the JDBC/MX driver on a NonStop
system. The JDBC/MX driver enables a Java application to use NonStop SQL/MX to access an
SQL/MP or SQL/MX database. For details about this product, see the JDBC Driver for SQL/MX
Programmer's Reference. For installation instructions, see the README file on the NonStop Server
for Java product CD. If you install the JDBC/MX driver in a nonstandard location, see Setting the
JDBC/MX Location (page 42). For version requirements, see Table 1.

Verifying Software Versions
Verify that you have compatible product versions of these necessary software products on a NonStop
system:

• Verifying the SQL/MX UDR Server (page 33)

• Verifying the NonStop Server for Java (page 34)

• Verifying the JDBC/MX Driver (page 34)

Verifying the SQL/MX UDR Server
To display the product version of the SQL/MX UDR server, enter this vproc command at an OSS
prompt:
vproc /G/system/system/mxudr

The command displays output similar to:

VPROC - T9617H01 - (01 FEB 2009) SYSTEM \YOSDEV1 Date 28 NOV 2012,
14:39:37
Copyright 2004 Hewlett-Packard Development Company, L.P.

/G/system/system/mxudr
 Binder timestamp: 26OCT2012 02:40:56
 Version procedure: T6520H02_01MAY2005_TFDS_SH_H02
 Version procedure: T1230H32_14FEB2013_APB_321_1025
 Version procedure: T8432H04_17FEB2012_CCPLMAIN
 Version procedure: T1231H32_14FEB2013_APB_321_1025
 Version procedure: T6520H02_01MAY2005_TFDSAPI_14JUN05_H02
 TNS/E Native Mode: runnable file

Compare the output of the command with the product version in the T1230 SOFTDOC file. If you
have an incompatible product version of the SQL/MX UDR server on your system, see the SQL/MX
Installation and Upgrade Guide for instructions about installing the correct release of NonStop
SQL/MX. For version compatibility, See Table 1 (page 32).

Verifying Software Versions 33

On systems running H-series RVUs, notice that the NonStop Server for Java and JDBC/MX driver
are not bound into the SQL/MX UDR server.

Verifying the NonStop Server for Java
To display the product version of the NonStop Server for Java in the Java environment of a NonStop
system, enter this vproc command at an OSS prompt:
vproc /usr/tandem/nssjava/jdk170_h70/bin/java

If you have set the JREHOME environment variable for a nonstandard location of the NonStop
Server for Java, enter:
vproc $JREHOME/../bin/java

The command displays output similar to:

VPROC - T9617H01 - (01 FEB 2009) SYSTEM \YOSDEV1 Date 28 NOV 2012,
14:47:37
Copyright 2004 Hewlett-Packard Development Company, L.P.

/usr/tandem/nssjava/jdk170_h70/bin/java
 Binder timestamp: 23OCT2012 20:04:54
 Version procedure: T2766H70_17FEB2013_jdk170_23Oct2012
 Version procedure: T8432H04_17FEB2012_CCPLMAIN
 TNS/E Native Mode: runnable file

Look for the product number of the JDK in the displayed output to determine the product version
of the NonStop Server for Java that is installed on the system in the specified location.
Compare the output of the command with the product version in the README or SOFTDOC file of
the NonStop Server for Java. If you have an incompatible product version of the NonStop Server
for Java, obtain the correct version of the product and follow the installation instructions in the
README file on the product CD. See also.
For version compatibility, See Table 1 (page 32)

Verifying the JDBC/MX Driver
To display the product version of the JDBC/MX driver in the Java environment of a NonStop system,
enter this java command at an OSS prompt:
java -cp /usr/tandem/jdbcMx/current/lib/jdbcMx.jar JdbcMx
-version

The -cp option specifies the class path of the JDBC/MX driver, which, in this example, represents
the standard location of the JDBC/MX driver. The location (standard or nonstandard) of the
JDBC/MX driver must be specified in either the -cp option or the CLASSPATH environment variable.
If you have already set the class path of the JDBC/MX driver in the session, enter:
java JdbcMx -version

The command displays output similar to:

HP JDBC driver for NonStop(TM) SQL/MX Version T1275R32_20FEB2013_JDBCMXAMU_1029

The JDBCMX information indicates the product version of the JDBC/MX driver that is installed on
the system in the specified location.
Compare the output of the command with the product version in the README or SOFTDOC file of
the JDBC/MX driver. If you have an incompatible product version of JDBC/MX, obtain the correct
version of the product and follow the installation instructions in the README file on the NonStop
Server for Java product CD.
For version compatibility, See Table 1 (page 32)

34 Getting Started

Configuring the SPJ Environment on Systems Running H-Series RVUs
On systems running H-series RVUs, the libraries of the NonStop Server for Java and the JDBC/MX
driver are not statically bound into the SQL/MX UDR server. Therefore, the SQL/MX UDR server
depends on these settings to use the correct versions of the NonStop Server for Java and the
JDBC/MX driver:

• JREHOME Setting for the NonStop Server for Java (page 35)

• Java Library Path for the JDBC/MX Native Library (page 35)

• UDR Extensions Class Path for the JDBC/MX JAR File (page 36)

JREHOME Setting for the NonStop Server for Java
To specify the location of the NonStop Server for Java for the SQL/MX UDR server, set the JREHOME
location by using one of these methods, listed in order of precedence from highest to lowest:
1. In the UDR_JAVA_OPTIONS default attribute, set -Dsqlmx.udr.jrehome to the location

of the NonStop Server for Java.
2. Set the JREHOME environment variable to the location of the NonStop Server for Java.
3. Let the SQL/MX UDR server use the location /usr/tandem/java/jre.

NOTE:
• Installation of NSJ7 does not automatically create the softlink /usr/tandem/java. If you

have migrated all applications to NSJ7, then HP recommends you to create a softlink manually
to point to the NSJ7 JDK/JRE installation (/usr/tandem/nssjava/jdk170_h70). Create
the softlink /usr/tandem/java to point to the NSJ7 home directory as follows:
$ ln -s /usr/tandem/nssjava/jdk170_h70 /usr/tandem/java

After creating this softlink, applications that rely on the softlink might fail if they are not migrated
to NSJ7.

• SPJs can be created through the NSM/web, and since the installation of NSJ7 does not
automatically create the softlink /usr/tandem/java, you must use the method 1 or 3.
Method 2 is not supported for NSM/web.

To use the JREHOME location, see Setting the JREHOME Location (page 40).

Java Library Path for the JDBC/MX Native Library
To load a native library, the JVM requires the directory of a native library to be specified in the
java.library.path property. The same requirement applies to the JVM of the SQL/MX UDR
server, which requires the directory of the JDBC/MX native library, libjdbcMx.so, to be in the
java.library.path. The SQL/MX UDR server always appends the standard location of the
JDBC/MX native library, /usr/tandem/jdbcMx/current/lib, to the end of the
java.library.path.
To specify the location of the JDBC/MX native library, set the library path by using one of these
methods, listed in order of precedence from highest to lowest:
1. In the UDR_JAVA_OPTIONS default attribute, set -Djava.library.path to the location

of the JDBC/MX native library. The JVM of the SQL/MX UDR server uses this setting as the
java.library.path property.

2. Set the _RLD_LIB_PATH environment variable to the location of the JDBC/MX native library.
The JVM of the SQL/MX UDR server uses this setting as the java.library.path property.

3. Let the JVM of the SQL/MX UDR server use the standard location of the JDBC/MX native
library, which the SQL/MX UDR server automatically appends to the java.library.path
property.

Configuring the SPJ Environment on Systems Running H-Series RVUs 35

To use UDR_JAVA_OPTIONS, see Controlling JVM Startup Options (page 36). To use the
_RLD_LIB_PATH environment variable, see the NonStop Server for Java 7.0 Programmer’s Reference.

UDR Extensions Class Path for the JDBC/MX JAR File
By default, NonStop SQL/MX loads the jdbcMx.jar file of JDBC/MX from the standard location
of /usr/tandem/jdbcMx/current/lib into the SPJ environment. To use jdbcMx.jar in a
nonstandard location, set the UDR extensions class path as you would on systems running G-series
RVUs. For more information, see Setting the JDBC/MX Location (page 42).

Controlling JVM Startup Options
JVM startup options are passed to the Java application launcher (java) and influence the Java
run-time environment. To specify JVM startup options for an SPJ environment, set the
UDR_JAVA_OPTIONS default attribute. Use the UDR_JAVA_OPTIONS default attribute to:

• Override the NonStop Server for Java and JDBC/MX driver that are configured in the Java
environment.

• Set class paths for an application that calls SPJs.

• Set Java system properties for an application that calls SPJs.

• Control the Java heap size of the SPJ environment.

• Troubleshoot the SPJ environment.
This subsection covers these topics:

• JVM Startup Options for All Processes on a Node (page 36)

• JVM Startup Options for Each SPJ Caller (page 37)

• Using Multiple UDR_JAVA_OPTIONS Settings in One Application (page 39)
For more information about the UDR_JAVA_OPTIONS default attribute, see the SQL/MX Reference
Manual.

JVM Startup Options for All Processes on a Node
To set JVM startup options for all SPJ environments on a node, insert the UDR_JAVA_OPTIONS
default attribute as a row in the SYSTEM_DEFAULTS table:
SET SCHEMA NONSTOP_SQLMX_node.SYSTEM_DEFAULTS_SCHEMA;

INSERT INTO SYSTEM_DEFAULTS
 (ATTRIBUTE, ATTR_VALUE)
 VALUES ('UDR_JAVA_OPTIONS',
 '-Djava.class.path=/usr/myclasses -Xmx32M');

The UDR_JAVA_OPTIONS setting in the SYSTEM_DEFAULTS table overrides the system-defined
default setting, which is OFF. For more information, see the SQL/MX Reference Manual.

Scope of JVM Startup Options in the SYSTEM_DEFAULTS Table
A UDR_JAVA_OPTIONS setting in the SYSTEM_DEFAULTS table persists for all processes (or
sessions) that run on the same node as the SYSTEM_DEFAULTS table. The insertion of the
UDR_JAVA_OPTIONS setting into the SYSTEM_DEFAULTS table does not affect the current process.
You must end and restart the process for the setting to take effect. In addition, the insertion does
not affect previously compiled modules of an SQL/MX application unless you recompile those
modules.

Precedence of JVM Startup Options
A UDR_JAVA_OPTIONS setting in a CONTROL QUERY DEFAULT statement takes precedence over
the setting in the SYSTEM_DEFAULTS table. See JVM Startup Options for Each SPJ Caller (page 37).

36 Getting Started

Displaying the UDR_JAVA_OPTIONS in Effect for a Node
To show the UDR_JAVA_OPTIONS setting in effect for the system, enter the SHOWCONTROL ALL
command in an MXCI session. For more information about SHOWCONTROL, see the SQL/MX
Reference Manual.

JVM Startup Options for Each SPJ Caller
To set JVM startup options for each caller of an SPJ, use a CONTROL QUERY DEFAULT statement.
A UDR_JAVA_OPTIONS setting in a CONTROL QUERY DEFAULT statement takes precedence over
the system-defined default setting, which is OFF, and settings in the SYSTEM_DEFAULTS table.
For the effect of the UDR_JAVA_OPTIONS setting on different callers, see:

• Scope of JVM Startup Options in an SPJ Method (page 37)

• Scope of JVM Startup Options in Statically Compiled Applications (page 37)

• Scope of JVM Startup Options in Dynamically Compiled Applications (page 38)

• Scope of JVM Startup Options in an MXCI Session (page 39)
For information about the syntax of the CONTROL QUERY DEFAULT statement, see the SQL/MX
Reference Manual.

Scope of JVM Startup Options in an SPJ Method
A UDR_JAVA_OPTIONS setting within an SPJ method does not affect the SPJ environment in which
the SPJ is executing. It affects only the SPJ environment of CALL statements that the SPJ method
executes. In general, avoid nesting CALL statements in an SPJ. For more information, see Nested
Java Method Invocations (page 53).

Scope of JVM Startup Options in Statically Compiled Applications
The UDR_JAVA_OPTIONS setting in a statically compiled CONTROL QUERY DEFAULT statement
affects statically compiled CALL statements in the line order scope of the application.
For example, this CONTROL QUERY DEFAULT statement in an embedded SQL program in C affects
the maximum Java heap size of the SPJ environment in which the next statically compiled CALL
statement executes:
/* Set application-specific system properties for
/* the SPJ environment. */
EXEC SQL CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS '-Xmx32M';

/* Call the stored procedure. */
EXEC SQL CALL samdbcat.sales.lowerprice();

/* Turn off the application-specific system properties for
/* the SPJ environment. */
EXEC SQL CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS 'OFF';

/* Call the stored procedure. */
EXEC SQL CALL samdbcat.sales.lowerprice();
...

CALL statements that are statically compiled after the CONTROL QUERY DEFAULT statement turns
off the UDR_JAVA_OPTIONS setting execute in an SPJ environment without application-specific
startup options.
For more information about the semantics of static CONTROL statements in embedded SQL
programs, see the SQL/MX Programming Manual for C and COBOL or the SQL/MX Programming
Manual for Java.

Controlling JVM Startup Options 37

Scope of JVM Startup Options in Dynamically Compiled Applications
The UDR_JAVA_OPTIONS setting in a dynamically executed CONTROL QUERY DEFAULT statement
affects CALL statements that are dynamically prepared after the CONTROL QUERY DEFAULT
statement has executed.
For example, this CONTROL QUERY DEFAULT statement in an embedded SQL program in C sets
application-specific system properties for the SPJ environment of the dynamically prepared CALL
statement named sqlstmt1:
/* Build CALL statements in char buffers. */
strcpy(hv_sql_stmt1, "CALL samdbcat.sales.monthlyorders(?,?)");
 /* IN, OUT */
strcpy(hv_sql_stmt2, "CALL samdbcat.persnl.adjustsalary(?,?,?)"
 /* IN, IN, OUT */

for (i = 1; i <= 3; i++)
{
 /* Set application-specific system properties for
 /* the SPJ environment. */
 strcpy(hv_ctrl_stmt, "CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS '");
 printf("\nEnter JVM startup options: ");
 gets(attrval);
 strcat(hv_crtl_stmt, attrval);
 strcat(hv_ctrl_stmt, "'");

 /* Prepare and execute the CONTROL QUERY DEFAULT statement. */
 EXEC SQL EXECUTE IMMEDIATE :hv_ctrl_stmt;

 /* Prepare a CALL statement. */
 EXEC SQL PREPARE sqlstmt1 FROM :hv_sql_stmt1;

 printf("\nEnter a number for the month: ");
 scanf("%d", &hv_month_param1);

 /* Call the stored procedure. */
 EXEC SQL EXECUTE sqlstmt1
 USING :hv_month_param1 /* IN */
 INTO :hv_ordernum_param2; /* OUT */

 printf("\nThe number of orders during that month is %d.\n");

 /* Turn off the application-specific system properties for
 /* the SPJ environment. */
 strcpy(hv_ctrl_stmt, "CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS 'OFF'");
}

/* Prepare another CALL statement. */
EXEC SQL PREPARE sqlstmt2 FROM :hv_sql_stmt2;
...
/* Call the stored procedure. */
EXEC SQL EXECUTE sqlstmt2
 USING :hv_empnum_param1, :hv_percent_param2 /* IN, IN */
 INTO :hv_newsalary_param3; /* OUT */

Dynamic CALL statements that are prepared outside of the loop, after the CONTROL QUERY
DEFAULT statement turns off the UDR_JAVA_OPTIONS setting, execute in an SPJ environment
without application-specific startup options.
For more information about the semantics of dynamic CONTROL statements in embedded SQL
programs, see the SQL/MX Programming Manual for C and COBOL or the SQL/MX Programming
Manual for Java.

38 Getting Started

Scope of JVM Startup Options in an MXCI Session
During an MXCI session, you can issue a CONTROL QUERY DEFAULT statement that sets the
UDR_JAVA_OPTIONS default attribute. This setting applies only to CALL statements that you issue
in MXCI after you issue the CONTROL QUERY DEFAULT statement.
For example, the first CONTROL QUERY DEFAULT statement sets the class path for the SPJ
environment of subsequent CALL statements that you issue in MXCI. When you call the LOWERPRICE
procedure after issuing the CONTROL QUERY DEFAULT statement, the JVM uses the
/usr/otherclasses class path to search for and load classes that are not in the external path
of that SPJ. The second CONTROL QUERY DEFAULT statement resets the UDR_JAVA_OPTIONS
setting to the class path in effect, if any, at the start of the current MXCI session:
>>CALL samdbcat.sales.monthlyorders(1,?);

NUMBER

 1

--- SQL operation complete.

>>CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Djava.class.path=/usr/myclasses';

--- SQL operation complete.

>>CALL samdbcat.sales.lowerprice();

--- SQL operation complete.

>>CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS RESET;

--- SQL operation complete.

For more information about MXCI, see the SQL/MX Reference Manual.

Displaying the UDR_JAVA_OPTIONS in Effect for an MXCI Session
To show the UDR_JAVA_OPTIONS setting in effect for a CONTROL QUERY DEFAULT statement
issued in MXCI, enter the SHOWCONTROL command in the current MXCI session. For more
information about SHOWCONTROL, see the SQL/MX Reference Manual.

Using Multiple UDR_JAVA_OPTIONS Settings in One Application
In the same application, you can set multiple UDR_JAVA_OPTIONS, each of which controls the
JVM startup options in an SPJ environment. Two or more UDR_JAVA_OPTIONS settings are
considered different or identical, depending on how you specify them in CONTROL QUERY
DEFAULT statements. See Determining the Uniqueness of UDR_JAVA_OPTIONS Settings (page 39).
If you specify different UDR_JAVA_OPTIONS settings in the same application, be aware of the
Performance Considerations of Using Multiple UDR_JAVA_OPTIONS Settings (page 40).

Determining the Uniqueness of UDR_JAVA_OPTIONS Settings
Two or more UDR_JAVA_OPTIONS settings are considered to be different when their character
string literals do not match during a case-sensitive string comparison. The case, white space, and
order in which the options appear within each character string literal must be the same for
UDR_JAVA_OPTIONS settings to be considered identical.
For example, these UDR_JAVA_OPTIONS settings in separate CONTROL QUERY DEFAULT
statements are considered to be the same:
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Xmx32M -Djava.class.path=/usr/otherclasses';

Controlling JVM Startup Options 39

CALL...
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Xmx32M -Djava.class.path=/usr/otherclasses';
CALL...

However, each of these UDR_JAVA_OPTIONS settings is different because of the different order
of the options:
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Xmx32M -Djava.class.path=/usr/otherclasses';
CALL...
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Djava.class.path=/usr/otherclasses -Xmx32M';
CALL...

These UDR_JAVA_OPTIONS settings are considered different because of differences in white space:
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 ' -Xmx32M -Djava.class.path=/usr/otherclasses ';
CALL...
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Xmx32M -Djava.class.path=/usr/otherclasses';
CALL...

Performance Considerations of Using Multiple UDR_JAVA_OPTIONS Settings
When an SQL/MX application executes CALL statements under different UDR_JAVA_OPTIONS
settings, multiple SQL/MX UDR server processes service the application. NonStop SQL/MX maintains
an SQL/MX UDR server process for each different set of UDR_JAVA_OPTIONS in an application.
Each SQL/MX UDR server process contains its own embedded JVM.

CAUTION: The existence of multiple SQL/MX UDR server processes might significantly affect
system performance. Therefore, use UDR_JAVA_OPTIONS settings in your application only when
necessary.

For more information, see SQL/MX UDR Server Process (page 25).

Setting the JREHOME Location
By default, NonStop SQL/MX loads Java components from the standard location of the NonStop
Server for Java into the SPJ environment. If you install the NonStop Server for Java in a nonstandard
location, you must set the JREHOME location to the current installation directory of the NonStop
Server for Java.
When an SQL/MX application starts with a JREHOME setting, NonStop SQL/MX loads the Java
components from that JREHOME location into an SPJ environment created for the application.
To set the JREHOME location, use one of these approaches:

• Setting JREHOME by Using UDR_JAVA_OPTIONS (page 40)

• Setting the JREHOME Environment Variable (page 41)
Each approach has a different scope and influence on CALL or CREATE PROCEDURE statements.

Setting JREHOME by Using UDR_JAVA_OPTIONS
Use the UDR_JAVA_OPTIONS default attribute to set the JREHOME location in an SPJ environment
for an application or for all processes running on the node. The UDR_JAVA_OPTIONS default
attribute is particularly useful for NonStop ODBC/MX applications, which cannot use environment
variables set in the OSS or Guardian environment.
To set the JREHOME location by using the UDR_JAVA_OPTIONS default attribute, use this attribute
value:

'-Dsqlmx.udr.jrehome= java-installation-directory/jre'

40 Getting Started

The java-installation-directory is the path of the installation directory of the NonStop
Server for Java.

CAUTION: NonStop SQL/MX maintains an SQL/MX UDR server process for each different set
of UDR_JAVA_OPTIONS in an application. The existence of multiple SQL/MX UDR server processes
might significantly affect system performance. Therefore, use UDR_JAVA_OPTIONS settings in your
application only when necessary. For more information, see SQL/MX UDR Server Process (page 25).

Scope of JREHOME in UDR_JAVA_OPTIONS
A JREHOME location set by a CONTROL QUERY DEFAULT statement affects the SPJ environment
of subsequent CALL or CREATE PROCEDURE statements. This JREHOME location setting persists
until the SQL/MX UDR server process, which hosts the SPJ environment, ends. For more information,
see SQL/MX UDR Server Process (page 25). For example, use a CONTROL QUERY DEFAULT
statement to set the JREHOME location before a CALL statement in an application:
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Dsqlmx.udr.jrehome=/usr/myjavadir/jre';
CALL...

A JREHOME setting inserted into the SYSTEM_DEFAULTS table affects all CALL or CREATE
PROCEDURE statements that run on the system. This JREHOME setting persists until someone updates
the UDR_JAVA_OPTIONS attribute in the SYSTEM_DEFAULTS table. For example, insert a row in
the SYSTEM_DEFAULTS table to set the JREHOME location for all CREATE PROCEDURE statements
that are registered on the system:
SET SCHEMA NONSTOP_SQLMX_node.SYSTEM_DEFAULTS_SCHEMA;

INSERT INTO SYSTEM_DEFAULTS
 (ATTRIBUTE, ATTR_VALUE)
 VALUES ('UDR_JAVA_OPTIONS',
 '-Dsqlmx.udr.jrehome=/usr/myjavadir/jre');

For more information about the scope of the UDR_JAVA_OPTIONS setting, see Controlling JVM
Startup Options (page 36).

Precedence of JREHOME in UDR_JAVA_OPTIONS
The CONTROL QUERY DEFAULT setting overrides the UDR_JAVA_OPTIONS setting in the
SYSTEM_DEFAULTS table. Both types of UDR_JAVA_OPTIONS settings take precedence over the
JREHOME environment variable. See Setting the JREHOME Environment Variable (page 41).

Setting the JREHOME Environment Variable
Use the JREHOME environment variable to set the JREHOME location in an SPJ environment for a
session in which applications that call or create SPJs run. Set the JREHOME environment variable
in either the OSS or Guardian environment, depending on where you run applications that issue
CALL or CREATE PROCEDURE statements.

NOTE: NonStop ODBC/MX applications cannot use environment variables set in the OSS or
Guardian environment. See Setting JREHOME by Using UDR_JAVA_OPTIONS (page 40).

Scope of the JREHOME Environment Variable
The setting of the JREHOME environment variable persists for the current OSS or Guardian session
and applies to all applications running in the current session.

Precedence of the JREHOME Environment Variable
The UDR_JAVA_OPTIONS setting takes precedence over the JREHOME environment variable. See
Setting JREHOME by Using UDR_JAVA_OPTIONS (page 40).

Setting the JREHOME Location 41

Setting JREHOME in the OSS Environment
To set the JREHOME environment variable in the OSS environment, enter this command at an OSS
prompt:

export JREHOME=java-installation-directory/jre

The java-installation-directory is the path of the installation directory of the NonStop
Server for Java.
For example, this command sets the JREHOME location for SPJs invoked in the current OSS session:
export JREHOME=/usr/myjavadir/jre

For more information about the export command, see the Open System Services Shell and Utilities
Reference Manual.

Setting JREHOME in the Guardian Environment
To set the JREHOME environment variable in the Guardian environment, enter this PARAM command
at a Guardian prompt:

PARAM JREHOME java-installation-directory/jre

The java-installation-directory is the path of the installation directory of the NonStop
Server for Java.
For example, this command sets the JREHOME location for SPJs invoked from embedded SQL
programs in C, C++, or COBOL that will run in the current Guardian session:
PARAM JREHOME /usr/myjavadir/jre

For more information about the PARAM command, see the TACL Reference Manual.

Setting the JDBC/MX Location
By default, NonStop SQL/MX loads the jdbcMx.jar file of JDBC/MX from the standard location
of /usr/tandem/jdbcMx/current/lib into the SPJ environment. In some cases, you might
want to use another version of JDBC/MX that is compatible with NonStop SQL/MX but that is not
installed in the standard location. To use jdbcMx.jar in a nonstandard location, you must set
the UDR extensions class path to the JAR file path of jdbcMx.jar.
When an SQL/MX application starts with a UDR extensions class path setting for the JDBC/MX
location, NonStop SQL/MX loads jdbcMx.jar from the specified location into an SPJ environment
created for the application.

UDR Extensions Class Path
Before setting the JDBC/MX location, consider that:

• The UDR extensions include jdbcMx.jar and are not the same as the JVM extensions, which
are typically located in $JREHOME/lib/ext.

• The SQL/MX UDR server has its own search path for UDR extensions, called the UDR extensions
class path, and this class path contains a standard location for jdbcMx.jar.

• The UDR extensions class path is not the same as the class path. Do not use the class path to
specify the location of a JDBC/MX driver in the SPJ environment. For more information about
the class path, see Setting the Class Path (page 43).

• The -Dsqlmx.udr.extensions option adds a class path to the beginning of the search
path of the SQL/MX UDR server. The -Dsqlmx.udr.extensions setting takes precedence
over but does not override the search path.

42 Getting Started

NOTE: If you specify an alternate JDBC/MX location by using the -Dsqlmx.udr.extensions
option and jdbcMx.jar does not exist at that location, NonStop SQL/MX uses the standard
location for jdbcMx.jar.

Setting the JDBC/MX Location by Using UDR_JAVA_OPTIONS
Use the UDR_JAVA_OPTIONS default attribute to set the JDBC/MX location in an SPJ environment
for an application or for all processes running on the node.
To set the JDBC/MX location by using the UDR_JAVA_OPTIONS default attribute, use this attribute
value:

'-Dsqlmx.udr.extensions= jdbcmx-jar-filepath'

The jdbcmx-jar-filepath is the JAR file path of jdbcMx.jar.

CAUTION: NonStop SQL/MX maintains an SQL/MX UDR server process for each different set
of UDR_JAVA_OPTIONS in an application. The existence of multiple SQL/MX UDR server processes
might significantly affect system performance. Therefore, use UDR_JAVA_OPTIONS settings in your
application only when necessary. For more information, see SQL/MX UDR Server Process (page 25).

Scope of the JDBC/MX Location in UDR_JAVA_OPTIONS
A JDBC/MX location set by a CONTROL QUERY DEFAULT statement affects the SPJ environment
of subsequent CALL or CREATE PROCEDURE statements. This JDBC/MX location setting persists
until the SQL/MX UDR server process, which hosts the SPJ environment, ends. For more information,
see SQL/MX UDR Server Process (page 25). For example, use a CONTROL QUERY DEFAULT
statement to set the JDBC/MX location before a CALL statement in an application:
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Dsqlmx.udr.extensions=/usr/tandem/jdbcMx/T1225V311/lib/jdbcMx.jar';

CALL...

A JDBC/MX setting inserted into the SYSTEM_DEFAULTS table affects all CALL or CREATE
PROCEDURE statements that run on the system. This JDBC/MX setting persists until someone updates
the UDR_JAVA_OPTIONS attribute in the SYSTEM_DEFAULTS table. For example, insert a row in
the SYSTEM_DEFAULTS table to set the JDBC/MX location for all CREATE PROCEDURE statements
that are registered on the system:
SET SCHEMA NONSTOP_SQLMX_node.SYSTEM_DEFAULTS_SCHEMA;

INSERT INTO SYSTEM_DEFAULTS
 (ATTRIBUTE, ATTR_VALUE)
 VALUES ('UDR_JAVA_OPTIONS',
 '-Dsqlmx.udr.extensions=/usr/tandem/jdbcMx/T1225V311/lib/jdbcMx.jar');

For more information about the scope of the UDR_JAVA_OPTIONS setting, see Controlling JVM
Startup Options (page 36).

Precedence of the JDBC/MX Location in UDR_JAVA_OPTIONS
The CONTROL QUERY DEFAULT setting overrides the UDR_JAVA_OPTIONS setting in the
SYSTEM_DEFAULTS table.

Setting the Class Path
The class path contains an ordered list of directories and JAR files in which to search for Java class
files. If an SPJ method refers to another application class (for example, loads a class, creates an
object of a class, or invokes a method of another class), the other class must either be in the same
external path location as the SPJ class or have its location specified in the class path.

Setting the Class Path 43

When an SQL/MX application issues a CALL statement, a class loader in the SPJ environment uses
the class path to locate and load Java classes outside the external path of the SPJ method. For
more information, see Class Loaders in an SPJ Environment (page 28).
When an SQL/MX application issues a CREATE PROCEDURE statement, the JVM resolves references
to other Java classes in the signature of the SPJ method but not inside the body of the SPJ method.
For example, the JVM might encounter a user-defined exception class in the throws clause of the
signature, as shown:
public static void lowerPrice()
 throws pkg.subpkg.myException

If the user-defined exception class exists outside the external path, the location of the exception
class must be listed in the class path.
To set the class path in an SPJ environment, use these approaches:

• Setting the Class Path by Using UDR_JAVA_OPTIONS (page 44)

• Setting the CLASSPATH Environment Variable (page 45)
Each approach has a different scope and influence on CALL or CREATE PROCEDURE statements.

NOTE: To specify a nonstandard location of the JDBC/MX driver in the SPJ environment, use the
UDR extensions class path instead of the class path. Set the UDR extensions class path by using
the -Dsqlmx.udr.extensions option in the UDR_JAVA_OPTIONS default attribute. See Setting
the JDBC/MX Location (page 42).

Setting the Class Path by Using UDR_JAVA_OPTIONS
Use the UDR_JAVA_OPTIONS default attribute to set the class path in an SPJ environment for an
application or for all processes running on the node. The UDR_JAVA_OPTIONS default attribute
is particularly useful forNonStop ODBC/MX applications, which cannot use environment variables
set in the OSS or Guardian environment.
To set the class path by using the UDR_JAVA_OPTIONS default attribute, use this attribute value:

'-Djava.class.path=path1[{:path2}...]'

path1 and path2 are paths to JAR files or top-level directories where Java classes or package
directories exist. The paths must not include the package name.

CAUTION: NonStop SQL/MX maintains an SQL/MX UDR server process for each different set
of UDR_JAVA_OPTIONS in an application. The existence of multiple SQL/MX UDR server processes
might significantly affect system performance. Therefore, use UDR_JAVA_OPTIONS settings in your
application only when necessary. For more information, see SQL/MX UDR Server Process (page 25).

Scope of the Class Path in UDR_JAVA_OPTIONS
A class path set by a CONTROL QUERY DEFAULT statement affects the SPJ environment of
subsequent CALL or CREATE PROCEDURE statements. This class path setting persists until the
SQL/MX UDR server process, which hosts the SPJ environment, ends. For more information, see
SQL/MX UDR Server Process (page 25). For example, use a CONTROL QUERY DEFAULT statement
to set the class path before a CALL statement in an application:
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Djava.class.path=/usr/otherclasses:/usr/otherapps/myJar.jar';
CALL...

A class path inserted into the SYSTEM_DEFAULTS table affects all CALL or CREATE PROCEDURE
statements that run on the system. This class path setting persists until someone updates the
UDR_JAVA_OPTIONS attribute in the SYSTEM_DEFAULTS table. For example, insert a row in the

44 Getting Started

SYSTEM_DEFAULTS table to set the class path for all CREATE PROCEDURE statements that are
registered on the system:
SET SCHEMA NONSTOP_SQLMX_node.SYSTEM_DEFAULTS_SCHEMA;

INSERT INTO SYSTEM_DEFAULTS
 (ATTRIBUTE, ATTR_VALUE)
 VALUES ('UDR_JAVA_OPTIONS',
 '-Djava.class.path=/usr/otherclasses:/usr/otherapps/myJar.jar');

For more information about the scope of the UDR_JAVA_OPTIONS setting, see Controlling JVM
Startup Options (page 36).

Precedence of the Class Path in UDR_JAVA_OPTIONS
The CONTROL QUERY DEFAULT setting overrides the UDR_JAVA_OPTIONS setting in the
SYSTEM_DEFAULTS table. Both types of UDR_JAVA_OPTIONS settings take precedence over the
CLASSPATH environment variable. See Setting the CLASSPATH Environment Variable (page 45).

Setting the CLASSPATH Environment Variable
Use the CLASSPATH environment variable to set the class path in an SPJ environment for a session
in which applications that call or create SPJs run. Set the CLASSPATH environment variable in
either the OSS or Guardian environment, depending on where you run applications that issue
CALL or CREATE PROCEDURE statements.

NOTE: NonStop ODBC/MX applications cannot use environment variables set in the OSS or
Guardian environment. See Setting the Class Path by Using UDR_JAVA_OPTIONS (page 44).

Scope of the CLASSPATH Environment Variable
The setting of the CLASSPATH environment variable persists for the current OSS or Guardian
session and applies to all applications running in the current session.

Precedence of the CLASSPATH Environment Variable
The UDR_JAVA_OPTIONS setting takes precedence over the CLASSPATH environment variable.
See Setting the Class Path by Using UDR_JAVA_OPTIONS (page 44).

Setting CLASSPATH in the OSS Environment
To set the CLASSPATH environment variable in the OSS environment, enter this command at an
OSS prompt:

export CLASSPATH=["][$CLASSPATH:]path1[{:path2}...]["]

path1 and path2 are paths to JAR files or top-level directories where Java classes or package
directories exist. The paths must not include the package name.
For example, this command sets the class path for SPJs invoked in the current OSS session:
export CLASSPATH="$CLASSPATH:/usr/otherapps/myJar.jar:
 /usr/otherclasses"

For more information about the export command, see the Open System Services Shell and Utilities
Reference Manual.

Setting CLASSPATH in the Guardian Environment
To set the CLASSPATH environment variable in the Guardian environment, enter this PARAM
command at a Guardian prompt:

PARAM CLASSPATH path1[{: path2}...]

Setting the Class Path 45

path1 and path2 are paths to JAR files or top-level directories where Java classes or package
directories exist. The paths must not include the package name.
For example, this command sets the class path for SPJs invoked from embedded SQL programs in
C, C++, or COBOL that will run in the current Guardian session:
PARAM CLASSPATH /usr/otherapps/myJar.jar:/usr/otherclasses

For more information about the PARAM command, see the TACL Reference Manual.

Setting the JVM extensions location
JRE supports the use of optional packages through its "extension mechanism". An optional package,
also known as JVM extensions, is a group of packages combined in one or more JAR files. These
JAR files implement an API that extends the Java platform. The virtual machine can find and load
optional package classes without them being on the class path.
Java platform extensions are typically located in $JREHOME/lib/ext. If the optional packages
are not present in this standard location, then include the location of the optional packages that
are referred by the core Java API using the UDR extensions class path. SQL/MX UDR server uses
the UDR extensions class path to search for JVM extensions.

NOTE: The class path 'java.class.path' cannot be used for setting the location of optional
packages.

Setting the JVM extensions location by Using UDR_JAVA_OPITIONS
Use the UDR_JAVA_OPTIONS default attribute to set the UDR extensions location in an SPJ
environment for an application or for all processes running on the node.

'-Dsqlmx.udr.extensions=jvm-extensions-path'

The jvm-extensions-path is the JAR file path of the optional extension package.

Installing JAR Files in NonStop SQL/MX
NonStop SQL/MX supports SPJ methods that are packaged in JAR files but does not support the
INSTALL_JAR, REMOVE_JAR, REPLACE_JAR, and ALTER_JAR_PATH procedures from SQL/JRT of
the ANSI SQL/Foundation standard.
To use a Java method in a JAR file as the body of an SPJ:
1. Place the JAR file in an OSS directory where you want to register the SPJ.

For example, this OSS command copies the myJar.jar file from a private location of
/usr/myfiles to the public location of /usr/spjfiles:
cp /E/DEV/usr/mydir/myJar.jar \
 /E/PROD/usr/spjfiles/myJar.jar

2. Issue a CREATE PROCEDURE statement to register the SPJ, using the full OSS path of the JAR
file in the EXTERNAL PATH clause:
CREATE PROCEDURE samdbcat.sales.lowerprice()
 EXTERNAL NAME 'pkg.subpkg.Sales.lowerPrice'
 EXTERNAL PATH '/usr/spjfiles/myJar.jar'
 ...

For more information, see Creating an SPJ (page 59).

Establishing Java Security
Java has built-in security features, such as the Java security manager, that protect against
unauthorized use of or access to the system. With Java security enabled, the Java security manager
protects the SPJ environment by restricting access to system resources.

46 Getting Started

By using a policy file, you can configure the Java security manager so that specific Java classes
and methods can perform restricted operations, such as accessing a directory or network address.

Using UDR_JAVA_OPTIONS to Enable Java Security
By default, Java security is disabled in the SPJ environment of an SQL/MX UDR server process. To
enable Java security in the SPJ environment, use this UDR_JAVA_OPTIONS attribute value:

'-Djava.security.manager-Djava.security.policy=
 /usr/tandem/sqlmx/udr/mxlangman.policy'

For example, set the UDR_JAVA_OPTIONS default attribute in a CONTROL QUERY DEFAULT
statement as:
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Djava.security.manager -Djava.security.policy=
 /usr/tandem/sqlmx/udr/mxlangman.policy';

For other ways of setting the UDR_JAVA_OPTIONS default attribute, see Controlling JVM Startup
Options (page 36).
The UDR_JAVA_OPTIONS setting enables a Java security manager in the SPJ environment. The
Java security manager first loads the default, system-wide Java policy file,
java-installation-directory/jre/lib/security/java.policy, and then loads the
SPJ policy file specified by -Djava.security.policy. Java security remains enabled for the
duration of the SPJ environment until the SQL/MX UDR server process, which hosts the SPJ
environment, ends.
You should specify only one SPJ policy file in a UDR_JAVA_OPTIONS setting. Otherwise, the last
policy file listed takes effect. In this example, the mypolicy.policy file takes precedence over
the mxlangman.policy file:
CONTROL QUERY DEFAULT UDR_JAVA_OPTIONS
 '-Djava.security.manager -Djava.security.policy=
 /usr/tandem/sqlmx/udr/mxlangman.policy
 -Djava.security.policy=/usr/myfiles/mypolicy.policy';

SPJ Policy File and Required Permissions
The default SPJ policy file, mxlangman.policy in the /usr/tandem/sqlmx/udr directory,
contains these permissions:

grant codeBase "file:/usr/tandem/sqlmx/udr/mxlangman.jar" {
 permission java.security.AllPermission;
};
grant codeBase
 "file:/usr/tandem/jdbcMx/current/lib/jdbcMx.jar" {
 permission java.security.AllPermission;
};

You can use the default SPJ policy file, mxlangman.policy, as is, reconfigure it, or use your
own policy file. The policy file that you specify must contain certain permissions for SPJs to operate
properly in the SPJ environment. Details are discussed next.

Permissions for the SQL/MX Language Manager
The SQL/MX language manager is a key component because it loads, invokes, and unloads SPJs
in an SQL/MX UDR server process. The mxlangman.jar file contains Java bytecode that
implements part of the SQL/MX language manager.
You must grant these permissions in the SPJ policy file for the SQL/MX language manager to
operate properly:

Establishing Java Security 47

grant codeBase "file:/usr/tandem/sqlmx/udr/mxlangman.jar" {
 permission java.security.AllPermission;
};

If the SPJ policy file does not contain these permissions, all CALL statements fail and return errors
that describe a security-related problem with the SQL/MX language manager.

Permissions for the JDBC/MX Driver
If you plan to call SPJs that access a database (that is, JDBC/MX-based SPJs), you must grant these
permissions in the SPJ policy file for JDBC/MX product to operate properly:
grant codeBase
 "file:/usr/tandem/jdbcMx/current/lib/jdbcMx.jar" {
 permission java.security.AllPermission;
};

Specify the standard location (/usr/tandem/jdbcMx/current/lib/ jdbcMx.jar) or a
nonstandard location that you specify in the UDR extensions class path. For more information, see
Setting the JDBC/MX Location (page 42).
For more information about JDBC/MX, see the JDBC Driver for SQL/MX Programmer's Reference.

Permissions for the Java System and Extension Classes
Java system classes, such as Java core API classes, and standard extension packages are granted
permissions by the default, system-wide Java policy file, java.policy, not the SPJ policy file.
The Java core API classes in the NonStop Server for Java are always granted all permissions.
Extension packages in java-installation-directory/jre/lib/ext are typically granted
all permissions.
For information about java.policy, see the Java documentation.

Permissions for the SPJ Method
To allow an SPJ method, or any application class on which the SPJ method depends, to perform
a restricted operation when Java security is enabled in the SPJ environment, you must grant the
appropriate permissions to the codebase of that Java method. The codebase identifies the location
of the class or JAR file that contains the Java method. If you do not grant the appropriate permissions
in the SPJ policy file, the invoked SPJ does not behave as desired, or the CALL statement fails to
execute.
For example, suppose that you want to invoke an SPJ that consists of an SPJ method that reads
OSS files. If you rely on the default permissions in the SPJ policy file, mxlangman.policy, the
CALL statement that invokes the SPJ fails and returns an error because reading a file is a restricted
operation when Java security is enabled. To allow the SPJ method to read OSS files while Java
security is enabled, add this grant statement to the SPJ policy file:
grant codeBase "file:/usr/mydir/myJar.jar" {
 permission java.io.FilePermission "/usr/ossfiles",
 "read,write";
};

In the example, the SPJ method that reads the OSS files is packaged in a JAR file, myJar.jar,
within the /usr/mydir directory. To grant this permission to all the classes in the /usr/mydir
directory, including the JAR file, add this grant statement to the SPJ policy file:
grant codeBase "file:/usr/mydir/*" {
 permission java.io.FilePermission "/usr/ossfiles",
 "read,write";
};

For information about policy file syntax and Java security, see the Java documentation.

48 Getting Started

3 Writing SPJ Methods
Before you can create an SPJ in NonStop SQL/MX, you must write and compile the Java method
to be used as the body of the SPJ. The Java methods that you use for the body of an SPJ are called
SPJ methods.
This section requires a familiarity with writing and compiling Java programs and covers these
topics:

• Guidelines for Writing SPJ Methods (page 49)

• Accessing SQL/MP and SQL/MX Databases (page 53)

• Handling Java Exceptions (page 57)

• Writing Data to a File or Terminal (page 57)

• Compiling Java Classes (page 58)

Guidelines for Writing SPJ Methods
Follow these guidelines when you write SPJ methods to be used as SPJs in NonStop SQL/MX:

• Signature of the Java Method (page 49)

• Returning Output Values From the Java Method (page 50)

• Using the main() Method (page 52)

• Null Input and Output (page 52)

• Static Java Variables (page 52)

• Nested Java Method Invocations (page 53)

Signature of the Java Method
A Java method that you use as an SPJ must have this general signature:
public static void myMethodName (java-parameter-list)

Public Access and Static Modifiers
The Java method must be defined as public and static. If a method is private or protected,
NonStop SQL/MX is unable to find the Java method specified by the CREATE PROCEDURE statement
and returns an error. The Java method must be defined as static so that the method can be
invoked without having to instantiate its class.

Void Return Type
The return type of the Java method must be void. The method must not return a value directly to
the caller.

Java Parameters
The parameter types in the Java signature must correspond to the SQL parameters of the stored
procedure that you are planning to create. For type mappings, Table 2.

Table 2 Mapping of Java Data Types to SQL/MX Data Types

Maps to SQL/MX Data Type...Java D ata Type

CHAR[ACTER]CHAR[ACTER]
VARYINGVARCHARPIC[TURE] XNCHAR NCHAR

java.lang.String

Guidelines for Writing SPJ Methods 49

Table 2 Mapping of Java Data Types to SQL/MX Data Types (continued)

Maps to SQL/MX Data Type...Java D ata Type

VARYING NATIONAL CHAR[ACTER] NATIONAL
CHAR[ACTER] VARYING

DATEjava.sql.Date

TIMEjava.sql.Time

TIMESTAMPjava.sql.Timestamp

NUMERICDEC[IMAL]PIC[TURE] S9java.math.BigDecimal

SMALLINTshort

INT[EGER]int or java.lang.Integer*

LARGEINTlong or java.lang.Long*

FLOATdouble or java.lang.Double*

REALfloat or java.lang.Float*

DOUBLE PRECISIONdouble or java.lang.Double*

* Choose a Java wrapper class if you plan to pass null values as arguments to or from the method. See Null Input and
Output (page 52).

Output parameters in the Java signature must be arrays (for example, int[] or String[]) that
accept only one value in the first element of the array at index 0. For more information, see Returning
Output Values From the Java Method.

Returning Output Values From the Java Method
Output parameters in the Java signature must be parameter arrays that accept one value in the
first element of the array at index 0. This subsection covers these topics related to output parameters:

• Using Arrays for Output Parameters (page 50)

• Type Mapping of Output Parameters (page 51)

• Stored Procedure Result Sets (page 51)

Using Arrays for Output Parameters
You must use arrays for the output parameters of a Java method because of how Java handles the
arguments of a method. Java supports arguments that are passed by value to a method and does
not support arguments that are passed by reference. As a result, Java primitive types can be passed
only to a method, not out of a method. Because a Java array is an object, its reference is passed
by value to a method, and changes to the array are visible to the caller of the method. Therefore,
arrays must be used for output parameters in a Java method.
An output parameter accepts only one value in the first element of the array at index 0. Any attempt
to return more than one value to an output parameter results in a Java exception.
For each output parameter, specify the Java type followed by empty square brackets ([]) to indicate
that the type is an array. For example, specify an int type as int[] for an output parameter in
the Java signature.
To return multiple values from a Java method, use an output parameter for each returned value.
For example, the supplierInfo() method returns a supplier's name, address, city, state, and
post code, each as a single string in an output parameter:
public static void supplierInfo(BigDecimal suppNum,
 String[] suppName,
 String[] streetAddr,
 String[] cityName,

50 Writing SPJ Methods

 String[] stateName,
 String[] postCode)
 throws SQLException
{
...

The supplyQuantities() method returns an average quantity, a minimum quantity, and a
maximum quantity to separate output parameters of the integer type:
public static void supplyQuantities(int[] avgQty,
 int[] minQty,
 int[] maxQty)
 throws SQLException
{
...

For more information about the SPJ examples, see Appendix A: Sample SPJs.

Type Mapping of Output Parameters
When writing an SPJ method, consider how the output of the SPJ will be used in the calling
application. For output parameters, the Java data type of the SPJ method must map to an SQL/MX
data type. See Table 2 The SQL/MX data type must then map to a compatible data type in the
calling application. See Chapter 5: Invoking SPJs in NonStop SQL/MX, for the client application
programming interfaces (APIs) that support SPJs and for cross-references to the appropriate manuals
for type mappings between NonStop SQL/MX and the API.

Stored Procedure Result Sets
SQL/MX supports SPJs that return stored procedure result sets. A stored procedure result set is a
cursor that is left open after the SPJ method executes (that is, after the CALL statement executes
successfully). After the CALL statement executes successfully, the calling application can issue
requests to open and then retrieve multiple rows of data from the returned result sets.
An SPJ method returns an ordered collection of result sets to the calling application by executing
SELECT statements and placing each returned ResultSet object into a one-element Java array of
type java.sql.ResultSet[]. The java.sql.ResultSet[] array is part of the Java method's signature and
is recognized by SQL/MX as a container for a single stored procedure result set.
Place the java.sql.ResultSet[] parameters after the other Java parameters, if any, in the Java
signature. If you do not place the java.sql.ResultSet[] parameters after the other parameters in the
signature, SQL/MX prevents you from creating an SPJ using that Java method.

NOTE: Stored procedures in Java that return Result Sets are supported on systems running J06.05
and later J-series RVUs and H06.16 and later H-series RVUs.

The following example shows the declaration of SPJ method orderSummary for the sample stored
procedure SALES.ORDER_SUMMARY. This Java method can return a maximum of two result sets.
public static void orderSummary(java.lang.String onOrAfter,
 long[] numOrders,
 java.sql.ResultSet[] orders,
 java.sql.ResultSet[] detail)

The following code fragment shows how the SALES.ORDER_SUMMARY SPJ method returns one
of its result sets by executing a SELECT statement and assigning the acquired java.sql.ResultSet
object to a java.sql.ResultSet[] output array.
// Open a result set for <order num, order info> rows
s = " SELECT AMOUNTS.*, ORDERS.order_date, EMPS.last_name " +
" FROM (select o.ordernum, count(d.partnum)as num_parts, " +
" sum(d.unit_price * d.qty_ordered) as amount " +
" from sales.orders o, sales.odetail d " +
" where o.ordernum = d.ordernum " +
" and o.order_date >= cast(? as date) " +
" group by o.ordernum) AMOUNTS, " +

Guidelines for Writing SPJ Methods 51

" sales.orders ORDERS, persnl.employee EMPS " +
" WHERE AMOUNTS.ordernum = ORDERS.ordernum " +
" AND ORDERS.salesrep = EMPS.empnum " +
" ORDER BY ORDERS.ordernum ";
PreparedStatement ps2 = c.prepareStatement(s);
ps2.setString(1, onOrAfter);
// Assign the returned result set object to the first element of a
// java.sql.ResultSet[] output array
orders[0] = ps2.executeQuery();

For the complete example, see the ORDERSUMMARY Stored Procedure (page 121).

CAUTION: In an SPJ method that returns result sets, do not explicitly close the default connection
or the statement object. SQL/MX closes the connection used to return result sets after it finishes
processing the result sets. If you close the connection on which the result sets are being returned,
those result sets will be lost, and the calling application will not be able to process them.

Using the main() Method
You can use the main() method of a Java class file as an SPJ method. The main() method is
different from other Java methods because it accepts input values in an array of
java.lang.String objects and does not return any values in its array parameter.
For example, you can register this main() method as an SPJ:
public static void main (java.lang.String [] args) {
 ...
}

When you register a main() method as an SPJ, the CREATE PROCEDURE statement can contain
zero or more SQL parameters, even though the underlying main() method has only one array
parameter. All the SQL parameters of the SPJ must have the character string data type, CHAR or
VARCHAR, and be declared with the IN mode.
If you specify the optional Java signature in the EXTERNAL NAME clause of the CREATE PROCEDURE
statement, the signature must be (java.lang.String []). For more information about creating
an SPJ, see the Using the CREATE PROCEDURE Statement (page 59).

Null Input and Output
You can pass a null value as input to or output from an SPJ method, provided that the Java data
type of the parameter supports nulls. Java primitive data types do not support nulls. However, Java
wrapper classes that correspond to primitive data types do support nulls. If a null is input or output
for a parameter that does not support nulls, NonStop SQL/MX raises an error condition.
To anticipate null input or output for your SPJ, use Java wrapper classes instead of primitive data
types in the method signature.
For example, this Java method uses a Java primitive data type in its signature where no null values
are expected:
public static void employeeJob(int empNum)

This Java method also uses a Java wrapper class in its signature to anticipate a possible returned
null value:
public static void employeeJob(Integer[] jobCode)

Static Java Variables
To ensure that your SPJ method is portable, you should avoid declaring static variables in the
method. NonStop SQL/MX does not ensure the scope and persistence of static Java variables.

52 Writing SPJ Methods

Consider these drawbacks to using static variables in your SPJ method:

• If an SQL/MX UDR server crashes, the calling application receives a new SQL/MX UDR server
and a new SPJ environment, including new copies of all static variables initialized in that
server. For more information, see SQL/MX UDR Server Process (page 25).

• When application classes contain static variables, NonStop SQL/MX does not ensure that
exactly one copy of those static variables is in a given SQL/MX UDR server process or SPJ
environment. For more information, see Class Loaders in an SPJ Environment (page 28) .

Nested Java Method Invocations
An SPJ that invokes another SPJ by issuing a CALL statement causes an additional SQL/MX UDR
server process to be created. Nesting SQL/MX UDR server processes in this way wastes resources
and diminishes performance. If you want an SPJ method to call another SPJ method, invoke the
other Java method directly through Java instead of using a CALL statement.

Accessing SQL/MP and SQL/MX Databases
SPJ methods that access an SQL/MP or SQL/MX database must be from a Java class that uses
JDBC/MX method calls.

• Use of java.sql.Connection Objects (page 53)

• JDBC/MX-Based Java Method (page 54)

• Referring to Database Objects in an SPJ Method (page 55)

• Exception Handling (page 56)

Use of java.sql.Connection Objects
NonStop SQL/MX supports a default connection in an SPJ execution environment, which has a
data source URL of "jdbc:default:connection". For example:
Connection conn = DriverManager.getConnection("jdbc:default:connection");

java.sql.Connection objects that use the "jdbc:default:connection" URL are portable
to the NonStop SQL/MX platform from other database management systems (DBMSs).
NonStop SQL/MX controls default connections in the SPJ environment and closes default connections
when they are no longer needed. Therefore, you do not need to use the close() method in an
SPJ method to explicitly close a default connection when the connection is no longer needed. In
fact, if an SPJ method returns result sets, you should not explicitly close the default connection.
NonStop SQL/MX closes the connection used to return result sets after it finishes processing the
result sets. If an SPJ method closes the connection on which the result sets are being returned, those
result sets will be lost, and the calling application will not be able to process them.
A default connection that is acquired when an SPJ method executes is not guaranteed to remain
open for future invocations of the SPJ method. Therefore, do not store default connections in static
variables for future use.
The default connection URL, "jdbc:default:connection", is invalid outside a DBMS, such
as when you execute a Java method in an application. To write an SPJ method that operates in a
DBMS, in an application, or both, without having to change and recompile the code, use the
sqlj.defaultconnection system property:
String s = System.property("sqlj.defaultconnection");
if (s == null) {
s = other-url;
}
Connection c = DriverManager.getConnection(s);

The value of sqlj.defaultconnection is "jdbc:default:connection" in a DBMS and
null outside a DBMS.

Accessing SQL/MP and SQL/MX Databases 53

The SPJ environment sets the initial connection pool size to 1, but it does not limit the number of
connections an SPJ method can make. The SPJ environment also sets the minimum connection pool
size to 1 so that there is always at least one connection available in the pool. The default settings
in the SPJ environment are:

• maxPoolSize=0

• minPoolSize=1

• initialPoolSize=1

To change these settings, use the properties parameter of the
DriverManager.getConnection() method as shown below:
java.util.Properties props = new Properties();
props.setProperty("maxPoolSize", "10");
props.setProperty("minPoolSize", "5");
props.setProperty("initialPoolSize", "5");
Connection conn =
DriverManager.getConnection("jdbc:default:connection", props);

For more information on JDBC Type 2 driver properties, see the JDBC Type 2 Driver Programmer's
Reference for SQL/MX Release 3.2.

JDBC/MX-Based Java Method
A JDBC/MX-based Java method is from a Java program that contains SQL/MX statements in
JDBC/MX method calls. You can use this type of method to create an SPJ that performs SQL
operations on an SQL/MP or SQL/MX database.
For example, the adjustSalary() method in the Payroll class adjusts an employee's salary
in the EMPLOYEE table:
public class Payroll {

 public static void adjustSalary(BigDecimal empNum,
 double percent,
 BigDecimal[] newSalary)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement setSalary =
 conn.prepareStatement("UPDATE samdbcat.persnl.employee " +
 "SET salary = salary * (1 + (? / 100)) " +
 "WHERE empnum = ?");

 PreparedStatement getSalary =
 conn.prepareStatement("SELECT salary " +
 "FROM samdbcat.persnl.employee " +
 "WHERE empnum = ?");

 setSalary.setDouble(1, percent);
 setSalary.setBigDecimal(2, empNum);
 setSalary.executeUpdate();

 getSalary.setBigDecimal(1, empNum);
 ResultSet rs = getSalary.executeQuery();
 rs.next();
 newSalary[0] = rs.getBigDecimal(1);
 rs.close();

 conn.close();
 }
}

You do not have to explicitly load the JDBC/MX driver before establishing a connection to the
database. The SQL/MX UDR server automatically loads the JDBC/MX driver when the SPJ is called.

54 Writing SPJ Methods

To register this method as an SPJ in NonStop SQL/MX, use a CREATE PROCEDURE statement. For
details, see Chapter 4: Registering SPJs in NonStop SQL/MX.
For other examples of JDBC/MX-based SPJs, see Appendix A: Sample SPJs.
For information about JDBC/MX, see the JDBC Driver for SQL/MX Programmer's Reference.

Referring to Database Objects in an SPJ Method
In an SPJ method, you can refer to both SQL/MP and SQL/MX database objects as you would in
other SQL/MX applications. SQL/MX database objects have three-part ANSI names that include
the catalog, schema, and object name. SQL/MP database objects have Guardian file names that
include the node, volume, subvolume, and file name. Typically, SQL/MP aliases, which are
three-part logical names, are used to refer to SQL/MP database objects. For more information
about database object names, see the SQL/MX Reference Manual.
How you qualify three-part object names in an SPJ method depends on the SQL/MX release that
you are using:

• Object Name Qualification Before NonStop SQL/MX Release 2.1.1 (page 55)

• Object Name Qualification in NonStop SQL/MX Release 2.1.1 and Later (page 55)

Object Name Qualification Before NonStop SQL/MX Release 2.1.1
Before SQL/MX Release 2.1.1 (ABX SPRs), the catalog and schema values of referenced database
objects are not set in the SPJ environment. As a result, you must fully qualify database objects that
are referenced in SPJ methods. This SPJ method uses the fully qualified object name,
SAMDBCAT.SALES.ORDERS:
public static void numDailyOrders(Date date,
 int[] numOrders)
 throws SQLException
{
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getNumOrders =
 conn.prepareStatement("SELECT COUNT(order_date) " +
 "FROM samdbcat.sales.orders " +
 "WHERE order_date = ?");

 getNumOrders.setDate(1, date);
 ResultSet rs = getNumOrders.executeQuery();
 rs.next();
 numOrders[0] = rs.getInt(1);
 rs.close();

 conn.close();
}

Using fully qualified object names in SPJ methods makes the SPJ methods less portable from one
system to another, where catalog and schema names might differ. However, if you do not fully
qualify the database object names, the default catalog and schema values will be the same as
those in the SYSTEM_DEFAULTS table.

Object Name Qualification in NonStop SQL/MX Release 2.1.1 and Later
In SQL/MX Release 2.1.1 and later, the SQL/MX UDR server propagates the values of the catalog
and schema where the SPJ is registered to the SPJ environment. By default, database connections
created in the SPJ method are associated with those catalog and schema values, meaning that
partially qualified objects with one- or two-part names in the SPJ method are qualified with the
same catalog and schema values as the SPJ. For example, this SPJ method, which is registered as
an SPJ in the SAMDBCAT.SALES schema, refers to the unqualified database object, ORDERS:
public static void numDailyOrders(Date date,
 int[] numOrders)
 throws SQLException

Accessing SQL/MP and SQL/MX Databases 55

{
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getNumOrders =
 conn.prepareStatement("SELECT COUNT(order_date) " +
 "FROM orders " +
 "WHERE order_date = ?");

 getNumOrders.setDate(1, date);
 ResultSet rs = getNumOrders.executeQuery();
 rs.next();
 numOrders[0] = rs.getInt(1);
 rs.close();

 conn.close();
}

In the SPJ environment, the ORDERS table is qualified by default with the same catalog and schema,
SAMDBCAT.SALES, as the SPJ.
The default behavior takes effect only when getConnection() and UDR_JAVA_OPTIONS do
not contain catalog or schema properties. Catalog and schema property values specified in
UDR_JAVA_OPTIONS have higher precedence over the default behavior. Catalog and schema
property values in getConnection() have higher precedence over both the default behavior
and UDR_JAVA_OPTIONS.
To override the default catalog and schema values and associate a database connection in an SPJ
method with a different catalog or schema, specify the catalog or schema properties during
connection creation. For example, getConnection() in this SPJ method specifies the catalog,
CAT, which overrides the default catalog, SAMDBCAT, while the default schema remains SALES:
public static void numDailyOrders(Date date,
 int[] numOrders)
 throws SQLException
{
 Properties prop = new Properties();
 prop.setProperty("catalog","CAT");

 Connection conn = DriverManager.getConnection("jdbc:default:connection", prop);

 PreparedStatement getNumOrders =
 conn.prepareStatement("SELECT COUNT(order_date) " +
 "FROM orders " +
 "WHERE order_date = ?");

 getNumOrders.setDate(1, date);
 ResultSet rs = getNumOrders.executeQuery();
 rs.next();
 numOrders[0] = rs.getInt(1);
 rs.close();

 conn.close();
}

Be aware that overriding the default values by using getConnection() or UDR_JAVA_OPTIONS
requires you to hard-code the catalog and schema values and might make SPJ methods less portable
across systems.

Exception Handling
For SPJ methods that access an SQL/MP or SQL/MX database, no special code is necessary for
handling exceptions. If an SQL operation fails inside the SPJ, the error message associated with
the failure is returned to the application that issues the CALL statement.

56 Writing SPJ Methods

Handling Java Exceptions
If an SPJ method returns an uncaught Java exception or an uncaught chain of java.sql.
SQLException objects, NonStop SQL/MX converts each Java exception object into an SQL/MX
error condition, and the CALL statement fails. Each SQL/MX error condition contains the message
text associated with one Java exception object.
If an SPJ method catches and handles exceptions itself, those exceptions do not affect SQL/MX
processing.

User-Defined Exceptions
The SQLSTATE values 38001 to 38999 are reserved for you to define your own error conditions
that SPJ methods can return. By coding your SPJ method to throw a java.sql.SQLException
object, you cause the CALL statement to fail with a specific user-defined SQLSTATE value and your
own error message text.
If you define the SQLSTATE to be outside the range of 38001 to 38999, NonStop SQL/MX raises
SQLSTATE 39001, external routine invocation exception.
This example uses the throw statement in the SPJ method named numMonthlyOrders() to raise
a user-defined error condition when an invalid argument value is entered for the month:
public static void numMonthlyOrders(int month,
 int[] numOrders)
 throws java.sql.SQLException
{
 if (month < 1 || month > 12)
 {
 throw new java.sql.SQLException (
 "Invalid value for month. "
 + "Retry the CALL statement using a number "
 + "from 1 to 12 to represent the month.", "38001");
 }

}

For more information about the numMonthlyOrders() method, see the Sales Class (page 107).
For information about specific SQL/MX errors, see the SQL/MX Messages Manual, which lists the
SQLCODE, SQLSTATE, message text, and cause-effect-recovery information for all SQL/MX errors.

Writing Data to a File or Terminal
Within the SPJ environment, data sent to the System.out and System.err output streams goes
nowhere by default because the SQL/MX UDR server runs without a terminal. You can add code
to your SPJ methods to write data or debugging information to an OSS file. You can also map one
or both of the System.out and System.err streams to a file.
Because terminal devices have OSS path names, you can route output from an SPJ method to a
terminal device if you know the OSS name of that device. The tty command in OSS writes the
full path name of your terminal device to standard output.
This example enables an SPJ method to write a message into a file:
public static void adjustSalary(BigDecimal empNum,
 double percent,
 BigDecimal[] newSalary)
 throws SQLException
{
 ...
 String outputFileName = "/usr/mydir/spj.output";
 FileOutputStream fileStream =
 new FileOutputStream(outputFileName);
 PrintStream printStream =
 new PrintStream(fileStream, true);

Handling Java Exceptions 57

 ...
 printStream.println("The salary was updated for employee "
 + empnum);
 ...
}

Suppose that an employee number of 202 is passed to the SPJ. When a CALL statement invokes
this SPJ method, the text "The salary was updated for employee 202" is written to the
file /usr/mydir/spj.output.
You can also redirect one or both System streams to an output stream of your choice. This example
extends the code from the previous example for stream redirection:
public static void adjustSalary(BigDecimal empNum,
 double percent,
 BigDecimal[] newSalary)
 throws SQLException
{
 ...
 String outputFileName = "/usr/mydir/spj.output";
 FileOutputStream fileStream =
 new FileOutputStream(outputFileName);
 PrintStream printStream =
 new PrintStream(fileStream, true);

System.setOut(printStream);
System.setErr(printStream);

 ...

 // This message goes to the output stream.
 System.out.println("The salary was updated for employee "
 + empnum);
 // This message goes to the error stream.
 System.err.println("The salary was not updated for employee "
 + empnum);
 ...
}

When a CALL statement invokes the SPJ method, a message is written to the file
/usr/mydir/spj.output. If the invocation succeeds, this message is written to the file:
The salary was updated for employee 202

If the invocation fails, this message is written to the file:
The salary was not updated for employee 202

Compiling Java Classes
Before registering a Java method as an SPJ, you must compile your Java source file into Java
bytecode by using the Java programming language compiler (javac). To compile a class file, see
the NonStop Server for Java Programmer's Reference or the NonStop Server for Java Tools Reference
Pages.

58 Writing SPJ Methods

4 Registering SPJs in NonStop SQL/MX
This section covers these topics:

• Creating an SPJ (page 59)

• Using the CREATE PROCEDURE Statement (page 59)

• Dropping an SPJ (page 67)

• Altering an SPJ and Its Java Class (page 68)
This section assumes that you have already written and compiled the SPJ methods. For more
information, see Chapter 3: Writing SPJ Methods.

Creating an SPJ
The CREATE PROCEDURE statement registers an existing Java method as an SPJ within an SQL/MX
database. Registration of an SPJ enables any SQL/MX application or interface to execute the SPJ
method by using a CALL statement.
You can issue a CREATE PROCEDURE statement from any application or interface that calls NonStop
SQL/MX, such as:

• SQL/MX conversational interface (MXCI)

• Embedded SQL programs in C, C++, or COBOL

• JDBC/MX programs

• NonStop ODBC/MX clients

• NSM/web

NOTE: The catalog and schema of the SPJ must exist when you run the CREATE PROCEDURE
statement.

Required Privileges for Creating an SPJ
To issue a CREATE PROCEDURE statement, you must be the owner of the schema, or the super ID
(that is, super.super), and have read access to the Java class file or JAR file that contains the SPJ
method.

Effect of Creating an SPJ
When you execute a CREATE PROCEDURE statement, the identified Java method is verified to exist
in the Java class file and to have attributes that are consistent with those specified in the CREATE
PROCEDURE statement.
Successful execution of the CREATE PROCEDURE statement updates rows in the system metadata
tables and creates aprocedure label for the SPJ. If the CREATE PROCEDURE statement fails to
execute, NonStop SQL/MX does not update system metadata tables and does not create a
procedure label.
For more information, see the Effect of Registering an SPJ (page 21).

Using the CREATE PROCEDURE Statement
This subsection explains how to write a CREATE PROCEDURE statement, as shown in this example:

Creating an SPJ 59

To construct a CREATE PROCEDURE statement, see:

• Naming the Stored Procedure (page 60)

• Specifying SQL Parameters (page 61)

• Specifying the SPJ Method (page 64)

• Specifying the External Path (page 66)

• Naming the Procedure Label (page 66)

• Specifying an SQL Access Mode (page 67)
The examples in this subsection are based on the SPJ methods in Appendix A: Sample SPJs.
For the syntax of the CREATE PROCEDURE statement, see the SQL/MX Reference Manual.

Naming the Stored Procedure
Choose the name of the procedure and specify it in the form of an ANSI logical name, as shown:
CREATE PROCEDURE samdbcat.persnl.adjustsalary ...

The procedure name you select is used in the CALL statements that invoke the SPJ and identifies
the underlying SPJ method.
When selecting a procedure name:

• Choose a meaningful and unique name that does not already exist for a procedure, table,
view, or SQL/MP alias in the same schema.
For example, use the procedure name ADJUSTSALARY for a Java method named
adjustSalary() that adjusts an employee's salary in the EMPLOYEE table.

• Use delimited identifiers sparingly. The procedure name is upshifted for interpretation except
for the parts that you specify as delimited identifiers.
For example, if you specify a procedure name of AdjustSalary in the CREATE PROCEDURE
statement, the interpreted name is ADJUSTSALARY. To call this SPJ, you can use lowercase
or uppercase for the procedure name, as shown:
CALL samdbcat.persnl.adjustsalary(202, 5.5, ?);

If you specify a procedure name of "AdjustSalary" in the CREATE PROCEDURE statement,
the interpreted name is "AdjustSalary". To call this SPJ, you must delimit the case-sensitive
part of the procedure name in double quotes, as shown:
CALL samdbcat.persnl."AdjustSalary"(202, 5.5, ?);

For information about delimited identifiers, see the SQL/MX Reference Manual.

60 Registering SPJs in NonStop SQL/MX

• Qualify the procedure name with an existing catalog and schema. If you do not fully qualify
the procedure name, NonStop SQL/MX qualifies it according to the current settings of
CATALOG and SCHEMA in the SYSTEM_DEFAULTS table. If the NAMETYPE attribute is set
to NSK instead of ANSI and you do not fully qualify the procedure name, NonStop SQL/MX
returns an error. For more information, see the SQL/MX Reference Manual.

• Note that NonStop SQL/MX does not support the overloading of procedure names and
disallows the use of the same procedure name with different signatures. That is, you cannot
register the same procedure name more than once with different underlying SPJ methods.

Specifying SQL Parameters
If the SPJ method does not accept arguments, like the lowerPrice() method, specify the procedure
name with empty parentheses, as shown:
samdbcat.sales.lowerprice()

If the SPJ method accepts arguments, specify the corresponding SQL parameters. Each SQL
parameter consists of a parameter mode, an optional SQL identifier, and an SQL data type, as
shown:

Parameter Mode
The parameter mode specifies the input and output mode of an SQL parameter:

• IN specifies a parameter that passes a single value to an SPJ.

• INOUT specifies a parameter that passes a single value to and accepts a single value from
an SPJ.

• OUT specifies a parameter that accepts a single value from an SPJ.
The default mode is IN if you do not specify the parameter mode. For a parameter mode of OUT
or INOUT, you must explicitly specify the parameter mode for the SQL parameter.
In this example, all three parameters pass data to the SPJ, and the last parameter accepts data
from the SPJ:
samdbcat.sales.totalprice(IN qty NUMERIC(18),

IN rate VARCHAR(10),
INOUT price NUMERIC(18,2))

SQL Identifier
The SQL identifier is an optional name you can use to describe each SQL parameter and to enhance
the readability of the CREATE PROCEDURE statement. For example, these identifiers describe the
SQL parameters of the ADJUSTSALARY procedure:
samdbcat.persnl.adjustsalary(IN empnum NUMERIC(4),
 IN percent FLOAT,
 OUT newsalary NUMERIC(8,2))

The identifier conforms to the syntax of other SQL identifiers. For information about identifiers, see
the SQL/MX Reference Manual.

Using the CREATE PROCEDURE Statement 61

SQL Data Type
The SQL data types must correspond with the underlying Java data types of the SPJ method, as
shown:

Because the Java signature of the SPJ method in this example is (BigDecimal, double,
BigDecimal[]), you should specify these SQL data types, or similar ones, for the procedure:
(NUMERIC, FLOAT, NUMERIC). Recall that all output parameters (OUT and INOUT) of a Java
method must be arrays that accept a single value. (See Returning Output Values From the Java
Method (page 50).) In this example, the type of the output parameter, BigDecimal[], corresponds
with the SQL type, NUMERIC.
For mappings between SQL/MX and Java data types, see Table 3 (page 62)

Table 3 Mapping of SQL/MX Data Types to Java Data Types

Maps to Java Data Type...SQL/MX Data Type

java.lang.StringCHAR[ACTER]*
CHAR[ACTER] VARYING *
VARCHAR*

* PIC[TURE] X *
NCHAR

NCHAR VARYING

NATIONAL CHAR[ACTER]

NATIONAL CHAR[ACTER] VARYING

java.sql.DateDATE

java.sql.TimeTIME

java.sql.TimestampTIMESTAMP

java.math.BigDecimalNUMERIC**

DEC[IMAL]**

PIC[TURE] S9

shortSMALLINT**

int (or java.lang.Integer if specified)***INT[EGER]**

long (or java.lang.Long if specified)***LARGEINT

double (or java.lang.Double if specified)***FLOAT

float (or java.lang.Float if specified)***REAL

62 Registering SPJs in NonStop SQL/MX

Table 3 Mapping of SQL/MX Data Types to Java Data Types (continued)

Maps to Java Data Type...SQL/MX Data Type

double (or java.lang.Double if specified)***DOUBLE PRECISION

* The character set for character string data types can be ISO88591 or UCS2.
** Numeric data types must be SIGNED, which is the default in NonStop SQL/MX.
*** By default, the SQL/MX data type maps to a Java primitive data type. The SQL/MX data type maps to a Java
wrapper class only if you specify the wrapper class in the Java signature of the EXTERNAL NAME clause. See the Java
Method Signature (page 64).

This icon indicates an SQL data type that is an SQL/MX extension to the ANSI standard. All other SQL data
types in this table conform to the ANSI standard.

For information about SQL/MX data types, see the SQL/MX Reference Manual. For cross-references
to appropriate manuals for mappings of SQL/MX data types to compatible data types in calling
applications, see Chapter 5: Invoking SPJs in NonStop SQL/MX.

Character String Parameters and Character Sets
For SQL parameters that have character string data types, you can specify either ISO88591 or
UCS2 (Unicode) for the character set. This example uses UCS2 as the character set of the SQL
parameter named lastname:
(IN empnum INT, OUT lastname CHAR(25) CHARACTER SET UCS2)

If you do not specify a character set, the default is ISO88591:
(IN empnum INT, OUT lastname CHAR(25))

If the SPJ method passes character string values to or from an SQL/MP table that has a KANJI
(Japanese) or KSC5601 (Korean) column, use the ISO88591 character set for the SQL parameter.
For more information, see character sets in the SQL/MX Reference Manual.

Specifying the Maximum Number of Result Sets
You can specify the maximum number of result sets that the SPJ can return using the following
syntax:

SPJ RS supports values of max - result - sets from zero up to and including 255. If the DYNAMIC
RESULT SETS clause is omitted, DYNAMIC RESULT SETS 0 is implicit.

NOTE: Note The values ranging from zero to 255 are supported only on systems running J06.05
and later J-series RVUs or on systems running H06.16 and later H-series RVUs. On systems running
J06.04 and earlier J-series RVUs or H06.15 and earlier H-series RVUs, SQL/MX throws an error
if the value for max-result-sets is not zero.

The actual number of result sets returned from a CALL statement and the column structure for those
result sets are not known to SQL/MX until the stored procedure body executes.
When max - result - sets is a positive value, the Java method named in the CREATE PROCEDURE
statement must have one or more "not necessarily max-result-sets" trailing parameters of type
java.sql.ResultSet[]. The trailing Java parameters for result sets must follow the Java parameters
(if any) associated with the procedure's declared SQL parameters.

Using the CREATE PROCEDURE Statement 63

If more than one matching Java method exists, by default SQL/MX does not attempt to resolve the
ambiguity and an error is raised. This can happen when two or more methods in the specified
Java class have the same overloaded method name but differ only in the number of trailing
java.sql.ResultSet[] parameters. When a CREATE PROCEDURE statement can potentially map to
more than one Java method, users must provide a full Java method signature in the EXTERNAL
NAME clause to resolve the ambiguity.

Specifying the SPJ Method
Specify the external Java method to be used as the SPJ method in the EXTERNAL NAME clause,
as shown:

The Java method that you specify in the EXTERNAL NAME clause must be defined as public and
static and have a return type of void. For more information, see Guidelines for Writing SPJ
Methods (page 49).
NonStop SQL/MX does not allow JAR file names to be specified in the EXTERNAL NAME clause.
Instead, use the EXTERNAL PATH clause to specify the location of a JAR file that contains the Java
class. See Specifying the External Path (page 66).

CAUTION: NonStop SQL/MX does not maintain the Java class file that contains the SPJ method.
NonStop SQL/MX records only a reference to the location of the Java class file in system metadata.
Subsequent changes to the Java class file after you register the SPJ might result in run-time errors
when you try to execute the SPJ. For guidelines on how to alter an SPJ, see Altering an SPJ and Its
Java Class (page 68).

Java Method Name
The Java method name consists of the case-sensitive names of the method and the Java class that
contains the method. For example, the Java method named adjustSalary() is prefixed with
the name of its class, Payroll:
'Payroll.adjustSalary'

If the class is stored in a package, you must also specify the package name. In this example, the
package and subpackage names of the class file are pkg.subpkg:
'pkg.subpkg. Payroll.adjustSalary'

If you do not specify the class name and package, if it exists, in the EXTERNAL NAME clause, the
CREATE PROCEDURE statement fails to register the SPJ.

Java Method Signature
Specifying the Java signature is necessary only when an SQL parameter of the SPJ does not map
by default to a Java wrapper class and when the SPJ method uses a Java wrapper class instead
of a Java primitive data type in its Java signature. See Table 3: Mapping of SQL/MX Data Types
to Java Data Types (page 62)
Usually, if you do not specify the Java signature, the SQL data types map by default to the correct
Java data types. For example, this EXTERNAL NAME clause omits the Java signature because the
SQL parameters (NUMERIC and FLOAT) map by default to the same Java data types
(java.math.BigDecimal and double) as the parameters of the underlying Java method:
EXTERNAL NAME 'Payroll.adjustSalary'

64 Registering SPJs in NonStop SQL/MX

However, if you specify INT for an SQL parameter and the underlying SPJ method uses
java.lang.Integer, you must specify the Java signature in the EXTERNAL NAME clause, as
shown:

The Java signature is case-sensitive and must be placed within parentheses. The signature must
specify each of the parameter data types in the order that they appear in the Java method definition
within the class file. Each Java data type that corresponds to an OUT or INOUT parameter must
be followed by empty square brackets ([]) to indicate that it is an array parameter:
CREATE PROCEDURE samdbcat.persnl.employeejob(IN empnum INT,
 OUT jobcode INT)
 EXTERNAL NAME 'Payroll.employeeJob(int,
 java.lang.Integer [])'

An SPJ returns only one value to the first element of the array at index 0. An SPJ cannot return an
array of values to an OUT or INOUT parameter. For more information, see Returning Output Values
From the Java Method (page 50).
If you specify a Java signature string, NonStop SQL/MX verifies that the signature is a valid
mapping of the parameters of the specified method into Java data types. If the signature is invalid,
NonStop SQL/MX returns an error.
Even if you do not specify a Java signature string, NonStop SQL/MX generates a compressed
representation of the Java method signature and stores it in the TEXT metadata table. The compressed
signature conforms to the internal type signature emitted by the javap tool and the -s option (for
example, javap -sclassfile). NonStop SQL/MX returns an error if the compressed signature
exceeds 8192 characters. For more information about javap, see the NonStop Server for Java
Tools Reference Pages.
For example, consider the SPJ method, adjustSalary():
public static void adjustSalary(BigDecimal empNum,
 double percent,
 BigDecimal[] newSalary)
...

The Java signature of this method in the CREATE PROCEDURE statement, if you choose to specify
it, is:
(java.math.BigDecimal, double, java.math.BigDecimal[])

After you register the SPJ (that is, issue the CREATE PROCEDURE statement), you can display the
compressed Java signature in the TEXT metadata table. Issue this query:
SELECT SUBSTRING(TEXT,1,100) AS "Compressed Signature"
FROM samdbcat.definition_schema_version_vernum.text t,
 nonstop_sqlmx_node.system_schema.all_uids u,
 nonstop_sqlmx_node.system_schema.schemata s
WHERE t.object_uid = u.object_uid
 AND u.object_name = 'ADJUSTSALARY'
 AND u.schema_uid = s.schema_uid
 AND s.schema_name = 'PERSNL';

The schema version number vernum for NonStop SQL/MX Releases 2.0, 2.1, and 2.2 is 1200.

Using the CREATE PROCEDURE Statement 65

The query displays the compressed Java signature of the ADJUSTSALARY procedure:

Compressed Signature
--

(Ljava/math/BigDecimal;D[Ljava/math/BigDecimal;)V

For more information about the TEXT metadata table, see the SQL/MX Reference Manual.

Specifying the External Path
The external path specifies the location of the Java class file that contains the SPJ method. The
external path is a case-sensitive string identifying the OSS directory or JAR file path where the Java
class file (for example, Payroll.class) resides.

Package Consideration
Do not specify the package name in the EXTERNAL PATH clause. Instead, specify the package
name in the EXTERNAL NAME clause. See Java Method Name (page 64).

Example of a Class File Path
For example, consider the /usr/mydir/myclasses/Payroll.java source file:
package pkg.subpkg;

public class Payroll
{
 public static void adjustSalary(BigDecimal empNum,
 double percent,
 BigDecimal[] newSalary)
 ...

The Java compiler generates this class file from the Java source file:
/usr/mydir/myclasses/pkg/subpkg/Payroll.class

The correct CREATE PROCEDURE clauses that refer to the adjustSalary() method in the class
file are:
EXTERNAL NAME 'pkg.subpkg.Payroll.adjustSalary'
EXTERNAL PATH '/usr/mydir/myclasses'

Example of a JAR File Path
Suppose that the Payroll.java source file is compiled, and the class file is packaged in a JAR
file, myJar.jar, which resides in the /usr/mydir directory:
/usr/mydir/myJar.jar

The correct CREATE PROCEDURE clauses that refer to the adjustSalary() method in the JAR
file are:
EXTERNAL NAME 'pkg.subpkg.Payroll.adjustSalary'
EXTERNAL PATH '/usr/mydir/myJar.jar'

Naming the Procedure Label
The procedure label is used internally by NonStop SQL/MX to track privileges on an SPJ. Because
the procedure label is used internally by NonStop SQL/MX, it is unnecessary to specify a Guardian
name and location for it.
If you do not specify the LOCATION clause, NonStop SQL/MX generates a system-defined file
with the volume name as specified in the DDL_DEFAULT_LOCATIONS default and subvolume as
the schema of the SPJ, as shown:
\KINGPIN.$TX0115.ZSDX7KT4.SL9FSB00

66 Registering SPJs in NonStop SQL/MX

If DDL_DEFAULT_LOCATIONS default is not set, then the volume name of the SPJ is retrieved from
the =_DEFAULTS define.
If you want to control the location of the procedure label, particularly in a distributed database
environment, specify the LOCATION clause, as shown:
LOCATION \REMOTENODE.$DISKVOL.SUBVOL.PROCLABEL

You can create the procedure label only on a node where the catalog of the SPJ is visible. For
information about registering a catalog on a remote node, see the SQL/MX Installation and
Upgrade Guide andSQL/MX Management Manual.
You can also use the LOCATION clause to specify only the volume of the procedure label:
LOCATION $DISKVOL

In this case, the node is the same node where the SPJ is registered, the subvolume is the same as
the schema of the SPJ, and the file name is system generated.
For information about naming rules for the LOCATION clause, see the SQL/MX Reference Manual.

Specifying an SQL Access Mode
The SQL access mode indicates whether an SPJ performs SQL operations. Specifying the SQL
access mode for an SPJ is entirely optional. If you do not specify the access mode in the CREATE
PROCEDURE statement, the default is CONTAINS SQL, and the capability of the SPJ is MODIFIES
SQL DATA.
If the SPJ does not perform SQL operations, specify the optional NO SQL clause. Even if the SPJ
method does not perform SQL operations and the access mode is CONTAINS SQL, the SPJ still
executes successfully. However, if you specify NO SQL for an SPJ method that performs SQL
operations, NonStop SQL/MX returns an error when you try to invoke the SPJ.
To describe the types of SQL operations that an SPJ performs, specify one of these optional clauses:
CONTAINS SQL, MODIFIES SQL DATA, or READS SQL DATA. All these options have the same
capabilities as MODIFIES SQL DATA. Specify one of these options when registering a method that
contains SQL statements and that is part of the class file of a JDBC/MX program. For information
about JDBC/MX, see the JDBC Driver for SQL/MX Programmer's Reference.

Dropping an SPJ
The DROP PROCEDURE statement removes an SPJ from NonStop SQL/MX. You can issue a DROP
PROCEDURE statement from any application or interface that calls NonStop SQL/MX, such as:

• SQL/MX conversational interface (MXCI)

• Embedded SQL programs in C, C++ or COBOL

• JDBC/MX programs

• NonStop ODBC/MX clients

• NSM/web

Required Privileges for Dropping an SPJ
To issue a DROP PROCEDURE statement, you must own the SPJ or be the super ID. To determine
the ownership of an SPJ, see Showing Privileges on the SPJs (page 89).

Effect of Dropping an SPJ
Successful execution of the DROP PROCEDURE statement removes the SPJ attributes from system
metadata tables and drops the procedure label of the SPJ. The underlying Java method and any
dependent SPJ that refers to this SPJ are not affected by the DROP PROCEDURE statement. If the
DROP PROCEDURE statement fails to execute, NonStop SQL/MX does not modify system metadata
tables and does not drop the procedure label.

Dropping an SPJ 67

Using the DROP PROCEDURE Statement
To drop an SPJ, specify the name of the SPJ in the DROP PROCEDURE statement, as shown:
DROP PROCEDURE samdbcat.persnl.adjustsalary;

Do not specify the SQL parameters along with the procedure name. Each procedure name represents
a unique SPJ in the database because NonStop SQL/MX does not support the overloading of
procedure names.
For the syntax of the DROP PROCEDURE statement, see the SQL/MX Reference Manual.

Altering an SPJ and Its Java Class
To alter an SPJ, you must first drop the SPJ from system metadata by using the DROP PROCEDURE
statement and then re-create the SPJ by using the CREATE PROCEDURE statement.

NOTE: NonStop SQL/MX does not support the ALTER_JAVA_PATH procedure from SQL/JRT of
the ANSI SQL/Foundation standard.

To change the SPJ or the Java class of the SPJ method:
1. End all current SQL/MX UDR server processes that might have loaded the SPJ method that

you want to change.
For example, if you were calling the SPJ in an MXCI session, end that MXCI session. If you
were calling the SPJ from an SQL/MX application, terminate that application.

2. Drop the SPJ from system metadata by using the DROP PROCEDURE statement. See Dropping
an SPJ (page 67).

NOTE: 2 is required only if you move the Java class of the SPJ method or change its external
name or Java signature.

3. If desired, move the Java class file to another OSS directory, or change the source code of
the SPJ method and recompile the Java class.

4. Re-create the SPJ by using the CREATE PROCEDURE statement. See Creating an SPJ (page 59).

NOTE: 4 is required only if you move the Java class of the SPJ method or change its external
name or Java signature.

5. Restart the application and call the SPJ in a new SQL/MX UDR server process.

CAUTION: To prevent unpredictable and undesirable behavior of CALL statements, do not change
SPJ classes or referenced application classes while SPJ environments are active. For more
information, see Maintaining Class and JAR Files in an SPJ Environment (page 30).

Typical scenarios that require an SPJ to be altered are discussed next:

• Changes to the External Path (page 68)

• Changes to the External Name (page 69)

• Changes to the Java Signature (page 70)

Changes to the External Path
The external path is the OSS directory or JAR file path of the Java class file that contains the SPJ
method. If you change the external path of the underlying SPJ method, you must drop the associated
SPJ and re-create it.
For example, suppose that you move the class, Sales.class, which contains the SPJ method,
numMonthlyOrders(), from the /usr/mydir/myclasses directory into a JAR file, myJar.jar.
The SPJ was originally registered in system metadata as:

68 Registering SPJs in NonStop SQL/MX

CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT,
 OUT number INT)
 EXTERNAL NAME 'pkg.subpkg.Sales.numMonthlyOrders'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

To drop the SPJ, issue this DROP PROCEDURE statement:
DROP PROCEDURE samdbcat.sales.monthlyorders;

To re-create the SPJ, issue this CREATE PROCEDURE statement:
CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT,
 OUT number INT)
 EXTERNAL NAME 'pkg.subpkg.Sales.numMonthlyOrders'
 EXTERNAL PATH '/usr/myapps/myJar.jar'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

If a statically compiled program calls this SPJ, you should explicitly recompile the module of that
application. If you do not, NonStop SQL/MX tries to automatically recompile the SQL plan of the
CALL statement at run time.
You can now successfully execute the relocated SPJ method by issuing the existing CALL statements.

Changes to the External Name
The external name identifies the SPJ method that is registered as an SPJ. A change to the external
name of an SPJ suggests either a reassignment of the SPJ method or a fundamental change to the
underlying Java class of the existing SPJ method.
For example, suppose that you reassign the SPJ named MONTHLYORDERS from the SPJ method
numMonthlyOrders() to another SPJ method named numMonthlyOrders2(), which has the
same Java signature.
The SPJ named MONTHLYORDERS was originally registered in system metadata as:
CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT,
 OUT number INT)
 EXTERNAL NAME 'pkg.subpkg.Sales.numMonthlyOrders'
 EXTERNAL PATH '/usr/myapps/myJar.jar'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

To drop the SPJ, issue this DROP PROCEDURE statement:
DROP PROCEDURE samdbcat.sales.monthlyorders;

To re-create the SPJ, issue this CREATE PROCEDURE statement:
CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT,
 OUT number INT)
 EXTERNAL NAME 'pkg.subpkg.Sales.numMonthlyOrders2'
 EXTERNAL PATH '/usr/myapps/myJar.jar'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

If a statically compiled program calls this SPJ, you should explicitly recompile the module of that
application. If you do not, NonStop SQL/MX tries to automatically recompile the SQL plan of the
CALL statement at run time.
You can now successfully execute the new SPJ method by issuing the existing CALL statements.

Altering an SPJ and Its Java Class 69

Changes to the Java Signature
The Java signature specifies each of the parameter data types in the Java method definition. A
change to the Java signature of an SPJ suggests a fundamental change to the underlying Java class
of the existing SPJ method.
For example, suppose that you reassign the SPJ named MONTHLYORDERS from the SPJ method
named numMonthlyOrders() to another SPJ method named numMonthlyOrders2(), which
has a different Java signature.
The SPJ named MONTHLYORDERS was originally registered in system metadata as:
CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT,
 OUT number INT)
 EXTERNAL NAME 'pkg.subpkg.Sales.numMonthlyOrders'
 EXTERNAL PATH '/usr/myapps/myJar.jar'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

To drop the SPJ, issue this DROP PROCEDURE statement:
DROP PROCEDURE samdbcat.sales.monthlyorders;

To re-create the SPJ, issue this CREATE PROCEDURE statement:
CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT,

IN partnum NUMERIC(4),
 OUT number INT)
 EXTERNAL NAME 'pkg.subpkg.Sales.numMonthlyOrders2'
 EXTERNAL PATH '/usr/myapps/myJar.jar'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

You must update the CALL statements in the source code of the calling applications so that the
arguments match the new parameters of the SPJ. If the application is statically compiled, you must
recompile the entire application. You can now successfully execute the new SPJ method by issuing
the updated CALL statements.

70 Registering SPJs in NonStop SQL/MX

5 Invoking SPJs in NonStop SQL/MX
This section describes how to execute SPJs and assumes that you have already registered the SPJs
in NonStop SQL/MX. For information about registering an SPJ, see Chapter 4: Registering SPJs
in NonStop SQL/MX.
This section covers these topics:

• Calling an SPJ (page 71)

• Using the CALL Statement (page 72)

• Invoking SPJs in MXCI (page 74)

• Invoking SPJs Statically in an Embedded SQL Program in C, C++, or COBOL (page 76)

• Invoking SPJs Dynamically in an Embedded SQL Program in C, C++, or COBOL (page 77)

• Invoking SPJs in a NonStop ODBC/MX Client (page 80)

• Invoking SPJs in a JDBC/MX Program (page 81)

Calling an SPJ
The CALL statement invokes an SPJ in NonStop SQL/MX. You can issue the CALL statement from
any of these applications or interfaces that call NonStop SQL/MX:

• SQL/MX conversational interface (MXCI)

• JDBC/MX programs

• Embedded SQL programs in C, C++, or COBOL

• NonStop ODBC/MX clients
You can use the CALL statement only as a stand-alone SQL statement. You cannot use the CALL
statement inside a compound statement or with rowsets.

Required Privileges for Calling an SPJ
To execute the CALL statement, you must have the EXECUTE privilege on the procedure. For more
information, see Granting Privileges for Invoking SPJs (page 83).

Effect of Calling an SPJ
When you issue a CALL statement, the SPJ method of the invoked SPJ executes inside a JVM within
an SPJ environment. For more information, see the Effect of Invoking an SPJ (page 22).

CAUTION: NonStop SQL/MX does not maintain the Java class file that contains the SPJ method.
NonStop SQL/MX records only a reference to the location of the Java class file in system metadata.
Subsequent changes to the Java class file after you register an SPJ might result in run-time errors
when you try to execute it. For guidelines on how to alter an SPJ, see Altering an SPJ and Its Java
Class (page 68).

Transaction Behavior
A CALL statement automatically initiates a transaction if there is no active transaction. An SPJ
method invoked by a CALL statement usually inherits the transaction from its caller, except when
jdbcmx.transactonMode is set to internal. For more information, see the Effect of the
jdbcmx.transactionMode Property (page 72).

Transaction Statements or Methods in an SPJ Method
You can start transactions within a stored procedure by performing the following steps:

Calling an SPJ 71

1. Suspend the current transaction (if supported by the API).
2. Start a new transaction.
3. Complete the work.
4. End the new transaction.
5. Resume the current transaction (if suspended).
You must ensure that the transactions started within the stored procedure are cleaned up properly.
Some of the Java APIs do not support the ability to suspend and resume transactions. In this case,
TMF marks the newly started transaction as the current transaction even though original transaction
is still active, because an SPJ will be executed in a multi-threaded environment.

NOTE: SPJs that return data via result sets are not allowed to use transactions started within an
SPJ for statements that populate the result set.

Committing or Rolling Back a Transaction
In an application, the failure of a CALL statement does not always automatically abort a transaction:

• When AUTOCOMMIT is ON during a system-initiated transaction, errors that occur during
the execution of a CALL statement cause NonStop SQL/MX to roll back the transaction
automatically, including database operations performed by the SPJ method, at the end of
statement execution.

• When AUTOCOMMIT is OFF during a system-initiated or user-defined transaction, errors that
occur during the execution of a CALL statement do not cause NonStop SQL/MX to roll back
the transaction automatically.

To ensure an atomic unit of work in a user-defined transaction or when autocommit is OFF during
a system-defined transaction, you should explicitly commit the transaction in the calling application
when the transaction is successful and roll back the transaction in the calling application when an
error occurs. For more information about transaction management, see the SQL/MX Reference
Manual.

Effect of the jdbcmx.transactionMode Property
If you set the jdbcmx.transactionMode property in a UDR_JAVA_OPTIONS attribute, you
might affect the transaction behavior of an SPJ. By default, an SPJ method runs in the default mixed
transaction mode. The mixed and external transaction modes do not interfere with transaction
behavior of the calling application.
However, if you set jdbcmx.transactionMode to internal in a UDR_JAVA_OPTIONS
attribute, the external transaction of the calling application will be suspended, and the SQL
operations of the SPJ method will be executed in an internal JDBC-managed transaction. The
internal transaction mode prevents an SPJ method from inheriting a transaction from its caller
and prevents the calling application from determining the outcome of an internal JDBC-managed
transaction. For those reasons, do not use the internal transaction mode in an SPJ environment.
For information about jdbcmx.transactionMode, see the JDBC Driver for SQL/MX Programmer's
Reference.

Using the CALL Statement
To invoke a stored procedure, specify the name of the stored procedure and its arguments in a
CALL statement, as shown:

72 Invoking SPJs in NonStop SQL/MX

For the syntax of the CALL statement, see the SQL/MX Reference Manual.

Specifying the Name of the SPJ
In the CALL statement, specify the name of an SPJ that you have already registered in NonStop
SQL/MX. Qualify the procedure name with the same catalog and schema that you specified in
the CREATE PROCEDURE statement. For example:
SET SCHEMA samdbcat.persnl;
CALL adjustsalary(202, 5.5, ?);

If you do not fully qualify the procedure name, NonStop SQL/MX qualifies it according to the
current settings of CATALOG and SCHEMA in the SYSTEM_DEFAULTS table. For more information,
see the SQL/MX Reference Manual.

Listing the Arguments of the SPJ
Each argument that you list in the CALL statement must correspond with the SQL parameter that
you specified in the CREATE PROCEDURE statement.
For example, if you registered the stored procedure with three SQL parameters (two IN parameters
and one OUT parameter), you must list three formal parameters, separated by commas, in the
CALL statement:
CALL samdbcat.persnl.adjustsalary(202, 5, ?);

If the SPJ does not accept arguments, you must specify empty parentheses, as shown:
CALL samdbcat.sales.lowerprice();

Data Conversion of Parameter Arguments
NonStop SQL/MX performs an implicit data conversion when the data type of a parameter argument
is compatible with but does not match the formal data type of the stored procedure. For stored
procedure input values, the conversion is from the actual argument value to the formal parameter
type. For stored procedure output values, the conversion is from the actual output value, which has
the data type of the formal parameter, to the declared type of the host variable or dynamic
parameter.

Input Parameter Arguments
To pass data to an IN or INOUT parameter of an SPJ, specify an SQL expression that evaluates
to a character, date-time, or numeric value. The SQL expression can evaluate to NULL provided
that the underlying Java parameter supports null values. For more information, see Null Input and
Output (page 52).

Using the CALL Statement 73

For an IN parameter argument, use one of these SQL expressions:

ExamplesType of Argument

CALL adjustsalary(202, 5.5, ?);
CALL dailyorders(DATE '2003-03-19', ?);
CALL totalprice(23,'nextday', ?param);

Literal

CALL dailyorders(CURRENT_DATE, ?);SQL function
(including CASE and CAST
expressions)

CALL adjustsalary(202,:percent * 0.25, :OUT newsalary);Arithmetic expression

CALL totalprice(23,'next' || 'day', ?param);Concatenation operation

CALL totalprice((SELECT qty_ordered
 FROM odetail

Scalar subquery

 WHERE ordernum=100210
 AND partnum=5100),
 'nextday', ?param);

CALL adjustsalary(:empnum, :percent,
 :OUT newsalary);

Host variable

CALL adjustsalary(?, ?, ?);
CALL adjustsalary(?param1, ?param2, ?param3);

Dynamic parameter

Because an INOUT parameter passes a single value to and accepts a single value from an SPJ,
you can specify only host variables or dynamic parameters for INOUT parameter arguments in a
CALL statement.

Output Parameter Arguments
An SPJ returns values in OUT and INOUT parameters. Each OUT or INOUT parameter accepts
only one value from an SPJ. Any attempt to return more than one value to an output parameter
results in a Java exception. See Returning Output Values From the Java Method (page 50).
Specify OUT and INOUT parameter arguments as either host variables in a static CALL statement
(for example, :hostvar) or dynamic parameters in a dynamic CALL statement (for example, ?
or ?param).
The parameter arguments that you specify in a CALL statement depend on the application or
interface that calls the SPJ. For information about how to invoke SPJs in different applications, see:

• Invoking SPJs in MXCI (page 74)

• Invoking SPJs Statically in an Embedded SQL Program in C, C++, or COBOL (page 76)

• Invoking SPJs Dynamically in an Embedded SQL Program in C, C++, or COBOL (page 77)

• Invoking SPJs in a NonStop ODBC/MX Client (page 80)

• Invoking SPJs in a JDBC/MX Program (page 81)

Invoking SPJs in MXCI
In MXCI, you can invoke an SPJ by issuing a CALL statement directly or by preparing and executing
a CALL statement.
Use MXCI named or unnamed parameters anywhere in the argument list of an SPJ invoked in
MXCI. An MXCI named parameter is set by the SET PARAM command, and an MXCI unnamed
parameter is set by the USING clause of the EXECUTE statement.
You must use an MXCI parameter for an OUT or INOUT parameter argument. MXCI displays all
output parameter values after you issue the CALL statement. The procedure call does not change
the value of an MXCI named parameter that you use as an OUT or INOUT parameter.

74 Invoking SPJs in NonStop SQL/MX

For more information about MXCI parameters, see the SQL/MX Reference Manual.

Using MXCI Named Parameters
In an MXCI session, invoke the SPJ named TOTALPRICE, which has two IN parameters and one
INOUT parameter. This SPJ accepts the quantity, shipping speed, and price of an item, calculates
the total price, including tax and shipping charges, and returns the total price. For more information,
see the Sales Class (page 107).
Set the input value for the INOUT parameter by entering a SET PARAM command before calling
the SPJ:
SET PARAM ?p 10;
CALL samdbcat.sales.totalprice(23, 'standard', ?p);

The CALL statement returns the total price of the item:

PRICE

 253.96

--- SQL operation complete.

The value of the MXCI named parameter, ?p, remains 10.

Using MXCI Unnamed Parameters
In an MXCI session, invoke the SPJ named TOTALPRICE by preparing and executing a CALL
statement. The INOUT parameter accepts a value that is set by the USING clause of the EXECUTE
statement and returns the total price:
SET SCHEMA samdbcat.sales;
PREPARE stmt1 FROM CALL totalprice(50,'nextday',?);
EXECUTE stmt1 USING 2.25;

The output of the prepared CALL statement is:

PRICE

 136.77

--- SQL operation complete.

In an MXCI session, invoke the SPJ named TOTALPRICE again by preparing and executing a CALL
statement in which all three parameters accept values that are set by the USING clause of the
EXECUTE statement. The INOUT parameter returns the total price:
PREPARE stmt2 FROM CALL totalprice(?,?,?);
EXECUTE stmt2 USING 3, 'economy', 16.99;

The output of the prepared CALL statement is:

PRICE

 57.12

--- SQL operation complete.

Invoking SPJs in MXCI 75

Using MXCI with SPJ RS
In an MXCI session, invoking the SPJ named ORDERSUMMARY returns one LARGEINT value as
an output parameter and returns a maximum of two result sets. The output parameter row (which
in this case contains one column named NUM_ORDERS) is displayed first followed by two stored
procedure result sets. Prepare and run the following CALL statement:
CALL samdbcat.sales.order_summary('01/01/2001', ?);

The output of the prepared call statement is:

NUM_ORDERS

 13

ORDERNUM NUM_PARTS AMOUNT Order/Date Last Name
---------- -------------- --------------- ---------- -----------------
-
 100210 4 19020.00 2003-04-10 HUGHES
 100250 4 22625.00 2003-01-23 HUGHES
 101220 4 45525.00 2003-07-21 SCHNABL
 200300 3 52000.00 2003-02-06 SCHAEFFER
 200320 4 9195.00 2003-02-17 KARAJAN
 200490 2 1065.00 2003-03-19 WEIGL
 .
 .
 .
--- 13 row(s) selected.

Order/Num Part/Num Unit/Price Qty/Ord Part Description
---------- -------- ------------ ---------- ------------------
 100210 2001 1100.00 3 GRAPHIC PRINTER,M1
 100210 2403 620.00 6 DAISY PRINTER,T2
 100210 244 3500.00 3 PC GOLD, 30 MB
 100210 5100 150.00 10 MONITOR BW, TYPE 1
 100250 6500 95.00 10 DISK CONTROLLER
 100250 6301 245.00 15 GRAPHIC CARD, HR
 .
 .
 .
--- 70 row(s) selected.
--- SQL operation complete.

For more information, see ORDERSUMMARY Stored Procedure (page 121).

NOTE: The SPJ RS feature is supported on systems running J06.05 and later J-series RVUs or
H06.16 and later H-series RVUs.

Invoking SPJs Statically in an Embedded SQL Program in C, C++, or
COBOL

In an embedded SQL program in C, C++, or COBOL, you can invoke an SPJ in a statically compiled
CALL statement. Place a statically compiled CALL statement within an EXEC SQL directive:

EXEC SQL CALL procedure-name
 ([parameter [{, parameter}...]]);

EXEC SQL CALL procedure-name
 ([parameter [{, parameter}...]]) END-EXEC

For statically compiled CALL statements, which have static actual parameters, the embedded
program does not explicitly refer to input or output descriptors.

76 Invoking SPJs in NonStop SQL/MX

In this example of an embedded SQL program in C, the static CALL statement has an IN parameter
argument consisting of a host variable, an IN parameter argument of 5.5, and an OUT parameter
argument consisting of another host variable:
EXEC SQL BEGIN DECLARE SECTION;
 NUMERIC(4) hv_empnum_param1;
 double hv_percent_param2;
 NUMERIC(8,2) hv_newsalary_param3;
EXEC SQL END DECLARE SECTION;

/* Set the IN arguments. */
hv_empnum_param1 = 202;
hv_percent_param2 = 5.5;

/* Call the stored procedure.
 * Parameter modes are IN, IN, OUT */
EXEC SQL CALL samdbcat.persnl.adjustsalary(:hv_empnum_param1,
 :hv_percent_param2,,
 :hv_newsalary_param3);

/* Print the OUT parameter value. */
printf("\nThe new salary is %ld.\n", hv_newsalary_param3);

For information about writing embedded SQL programs in C, C++, or COBOL, see the SQL/MX
Programming Manual for C and COBOL.

Invoking SPJs Dynamically in an Embedded SQL Program in C, C++, or
COBOL

In an embedded SQL program in C, C++, or COBOL, you can invoke an SPJ in a dynamically
executed CALL statement. For dynamic CALL statements, supply dynamic input data either through
an SQL descriptor area or by using host variables. Similarly, you can place dynamic output data
either into an SQL descriptor area or directly into host variables. For more information, see:

• Input and Output Descriptors (page 77)

• Argument Lists (page 79)

Input and Output Descriptors
You can use SQL descriptor areas to store and retrieve information about the input and output
parameters of a dynamic CALL statement.

Formal and Actual Parameters
A formal parameter is one of the parameters in the formal procedure signature of a CREATE
PROCEDURE statement, and an actual parameter is one of the parameter arguments in the procedure
call of a CALL statement. More than one actual parameter can map to one formal parameter, so
the number of actual parameters might be more than the number of formal parameters.

• Suppose that an SPJ is defined to accept three parameter arguments with PARAMETER_MODE
IN, OUT, and IN in this order:
CALL myproc(?w /*IN*/, ?x /*OUT*/, ?y + ?z /*IN*/);

This CALL statement has three formal parameters (w, x, and y+z) and four actual parameters
(w, x, y, and z). The PARAMETER_ORDINAL_POSITION of the parameters is (1, 2, 3, 3).

• Suppose that this CALL statement uses a duplicate actual parameter:
CALL myproc(?w /*IN*/, ?x /*OUT*/, ?w + ?y /*IN*/);

In this case, there are three actual parameters (w, x, and y). The
PARAMETER_ORDINAL_POSITION of the parameters is (1, 2, 3).

Invoking SPJs Dynamically in an Embedded SQL Program in C, C++, or COBOL 77

Number of Entries in Input and Output Descriptors
In dynamic SQL, the input descriptor has n entries, where n is the number of actual parameters
that map to formal IN and INOUT parameters. n is not necessarily the same as the number of
formal IN and INOUT parameters.
Conversely, the output descriptor has m entries, where m is the number of actual parameters that
map to formal OUT and INOUT parameters. m is the same as the number of formal OUT and
INOUT parameters because each output parameter must be represented by a single dynamic
parameter in the CALL statement.

Example of Using Input and Output Descriptors
To code an embedded SQL program to use a dynamic CALL statement with SQL descriptor areas:
1. Allocate input and output SQL descriptor areas.

Allocate an input SQL descriptor area for dynamic input parameters associated with the IN
or INOUT mode, and allocate an output descriptor area for dynamic output parameters
associated with the OUT or INOUT mode:
EXEC SQL ALLOCATE DESCRIPTOR 'in_sda';
EXEC SQL ALLOCATE DESCRIPTOR 'out_sda';

For the syntax of the ALLOCATE DESCRIPTOR statement, see the SQL/MX Reference Manual.
2. Prepare the CALL statement.

Store the CALL statement in a host variable and then prepare the CALL statement. The PREPARE
statement checks the statement syntax, determines the data types of parameters, compiles the
CALL statement, and associates the CALL statement with a statement name that you can use
in a subsequent EXECUTE statement:
/* Build the CALL statement in a char buffer. */
strcpy(hv_sql_stmt,
 "CALL samdbcat.persnl.adjustsalary(?,?,?)");
 /* IN, IN, OUT */

/* Prepare the statement. */
EXEC SQL PREPARE sqlstmt FROM :hv_sql_stmt;

For the syntax of the PREPARE statement, see the SQL/MX Reference Manual.
3. Describe the input and output parameters.

The DESCRIBE statement stores information about the dynamic input or output parameters of
a prepared CALL statement in an SQL descriptor area. Use these DESCRIBE statements to
populate the SQL input and output descriptor areas:
• DESCRIBE INPUT initializes the input SQL descriptor area based on the dynamic input

parameters (associated with the IN or INOUT mode) for a prepared CALL statement:
EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sda';

• DESCRIBE OUTPUT stores descriptions in the output SQL descriptor area of dynamic
output parameters (associated with the OUT or INOUT mode) from a prepared CALL
statement:
EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sda';

For the syntax of the DESCRIBE statement, see the SQL/MX Reference Manual.

For the syntax of the DESCRIBE statement, see the SQL/MX Reference Manual.
4. Set the input parameter values by using SET DESCRIPTOR.

Use the SET DESCRIPTOR statement to set information explicitly in the input SQL descriptor
area for the individual input parameters:

78 Invoking SPJs in NonStop SQL/MX

/* Set the input values of the two IN parameters in
 * ordinal positions 1 and 2, which are the only entries
 * in the input descriptor. */
printf("\nEnter the employee number: ";
scanf("%ld", &hv_empnum_param1);
hv_i = 1;
EXEC SQL SET DESCRIPTOR 'in_sda' VALUE :hv_i
 VARIABLE_DATA = :hv_empnum_param1;

printf("\nEnter the percentage adjustment: ";
scanf("%f", &hv_percent_param2);
hv_i = 2;
EXEC SQL SET DESCRIPTOR 'in_sda' VALUE :hv_i
 VARIABLE_DATA = :hv_percent_param2;

For the syntax of the SET DESCRIPTOR statement, see the SQL/MX Reference Manual.

NOTE: You cannot modify the PARAMETER_ORDINAL_POSITION and PARAMETER_MODE
descriptor items.

5. Execute the prepared CALL statement.
Issue an EXECUTE statement that has an input USING clause for the input SQL descriptor area
and an output INTO clause for the output SQL descriptor area:
EXEC SQL EXECUTE sqlstmt
 USING SQL DESCRIPTOR 'in_sda'
 INTO SQL DESCRIPTOR 'out_sda';

For the syntax of the EXECUTE statement, see the SQL/MX Reference Manual.
6. Retrieve the output parameter value by using GET DESCRIPTOR.

Use the GET DESCRIPTOR statement to retrieve information for the output parameter from the
output SQL descriptor area:
hv_i = 1;
EXEC SQL GET DESCRIPTOR 'out_sda' VALUE :hv_i
 VARIABLE_DATA = :hv_newsalary_param3;
printf("\nThe new salary is %ld.\n", hv_newsalary_param3);

For the syntax of the GET DESCRIPTOR statement, see the SQL/MX Reference Manual.
7. Retrieve parameter descriptor information by using GET DESCRIPTOR.

Aside from obtaining data about the output dynamic parameters, you can also use the GET
DESCRIPTOR statement to retrieve the PARAMETER_MODE and
PARAMETER_ORDINAL_POSITION descriptor items for dynamic parameters.
In this example, the GET DESCRIPTOR statement stores the PARAMETER_MODE and
PARAMETER_ORDINAL_POSITION information in designated host variables for the OUT
parameter:
hv_i = 1;
EXEC SQL GET DESCRIPTOR 'out_sda' VALUE :hv_i
 VARIABLE_DATA = :hv_newsalary_param3
 PARAMETER_MODE = :pm_newsalary_param3
 PARAMETER_ORDINAL_POSITION = :pop_newsalary_param3;

For more information about descriptor items, see the SQL/MX Reference Manual.

For more information about writing embedded SQL programs in C, C++, or COBOL, see the
SQL/MX Programming Manual for C and COBOL.

Argument Lists
You can execute an embedded dynamic CALL statement without input or output descriptors. Instead,
pass two argument lists in the input USING clause and the output INTO clause directly to the
EXECUTE statement.

Invoking SPJs Dynamically in an Embedded SQL Program in C, C++, or COBOL 79

In this example, an embedded dynamic CALL statement uses argument lists:
EXEC SQL BEGIN DECLARE SECTION;
 NUMERIC(4) hv_empnum_param1;
 double hv_percent_param2;
 NUMERIC(8,2) hv_newsalary_param3;
 CHAR hv_sql_stmt[64];
EXEC SQL END DECLARE SECTION;

/* Build the CALL statement in a char buffer. */
strcpy(hv_sql_stmt, "CALL samdbcat.persnl.adjustsalary(?,?,?)");
 /* IN, IN, OUT */

/* Prepare the statement. */
EXEC SQL PREPARE sqlstmt FROM :hv_sql_stmt;

/* Set the input values of the two IN parameters in
 * ordinal positions 1 and 2.
printf("\nEnter the employee number: ";
scanf("%ld", &hv_empnum_param1);
printf("\nEnter the percentage adjustment: ";
scanf("%f", &hv_percent_param2);

/* Call the stored procedure. */
EXEC SQL EXECUTE sqlstmt
 USING :hv_empnum_param1, :hv_percent_param2 /* IN, IN */
 INTO :hv_newsalary_param3; /* OUT */

printf("\nThe new salary is %ld.\n", hv_newsalary_param3);

For more information about writing embedded SQL programs in C, C++, or COBOL, see the
SQL/MX Programming Manual for C and COBOL.

Invoking SPJs in a NonStop ODBC/MX Client
You can execute a CALL statement in a NonStop ODBC/MX client. Microsoft ODBC requires that
you put the CALL statement in an escape clause:

{call procedure-name ([parameter][,parameter]]...)}

For IN or INOUT parameters, use a literal or a parameter marker (?).

NOTE: You cannot use an empty string as an IN or INOUT parameter in the argument list.

If you specify a literal for an INOUT parameter, the driver discards the output value.
For OUT parameters, you can use only a parameter marker (?). You must bind all parameter
markers with the SQLBindParameter function before you can execute the CALL statement.
In this example, a CALL statement is executed from a NonStop ODBC/MX client:
/* Declare variables. */
SQLHSTMT hstmt;
SQL_NUMERIC_STRUCT salary;
SDWORD cbParam = SQL_NTS;

/* Bind the parameter markers. */
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_NUMERIC, SQL_NUMERIC,
4, 0, 202, 0, &cbParam);

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_FLOAT, SQL_FLOAT,
0, 0, 5.5, 0, &cbParam);

SQLBindParameter(hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_NUMERIC, SQL_NUMERIC,
8, 2, &salary, 0, &cbParam);

80 Invoking SPJs in NonStop SQL/MX

/* Execute the CALL statement. */
SQLExecDirect(hstmt, "{call adjustsalary(?,?,?)}", SQL_NTS);

NOTE: Nonstop ODBC/MX Client does not support SQLExecDirect API for Stored Procedure in
Java with Result Sets (SPJ RS).

For more information about NonStop ODBC/MX clients, see the ODBC/MX Driver for Windows
Manual.

Invoking SPJs in a JDBC/MX Program
You can execute a CALL statement in a JDBC/MX program by using the JDBC
CallableStatement interface. JDBC/MX requires that you put the CALL statement in an escape
clause:

{call procedure-name([parameter[{, parameter}...]])}

Set input values for IN and INOUT parameters by using the settype() methods of the
CallableStatement interface.
Retrieve output values from OUT and INOUT parameters by using the gettype() methods of the
CallableStatement interface.
If the parameter mode is OUT or INOUT, you must register the parameter as an output parameter
by using the registerOutParameter() method of the CallableStatement interface before
executing the CALL statement.
In this example, a CALL statement is executed from a JDBC/MX program:
CallableStatement stmt =
 con.prepareCall("{call adjustsalary(?,?,?)}");

stmt.setBigDecimal(1,202); // x = 202
stmt.setDouble(2,5.5); // y = 5.5
stmt.registerOutParameter(3, java.sql.Types.NUMERIC);

stmt.execute();

int z = stmt.getBigDecimal(3); // Retrieve the value of the
 // OUT parameter

For more information about JDBC/MX and mappings of SQL/MX to JDBC d ata types, see the
JDBC Driver for SQL/MX Programmer's Reference.

Invoking SPJs in a Trigger
A trigger is a mechanism in the database that enables the database engine to perform certain
actions when a specified event occurs. SPJs are useful as triggered actions, because they can help
you encapsulate and enforce rules in the database. For more information about the benefits of
using SPJs, see Benefits of SPJs (page 19). Nonstop SQL/MX supports a CALL statement in a trigger,
provided that the SPJ in the CALL statement does not have any OUT or INOUT parameters or return
any result sets. For information about OUT and INOUT parameters, see Returning Output Values
From the Java Method (page 50) and Output Parameter Arguments (page 74). For more information
about result sets, see Stored Procedure Result Sets (page 51).
Example
Consider a library environment, where each time a member borrows a book, the member is charged
a fee. If the fees exceeds the credit limit, the student is blocked. The Database Administrator (DBA)
needs to update the dues and block the students who have crossed the limit of credit. Also, DBA
needs to be informed if a user has been blocked by some external means. One might think that a
SIGNAL statement can be used for this task to emit a message to the console for the same. The

Invoking SPJs in a JDBC/MX Program 81

problem with using SIGNAL statement in this case is that the encompassing transaction is aborted,
and therefore the dues will not be updated properly. DBA wants to update the dues but at the same
time, flag the member as being blocked. One solution is to use a CALL statement and delegate the
implementation of the external notification to a member-defined routine.
Consider a stored procedure called INFORM_DBA_FUNC, that writes a message to a file or sends
an e-mail to the DBA with the list of members who have been blocked (member names are sent as
an argument to the routine).
CREATE TRIGGER INFORM_DBA AFTER UPDATE OF (ISBLOCKED)
ON MEMBER
REFERENCING NEW AS NEWR
FOR EACH ROW
WHEN (NEWR.BLOCK <> 0)
CALL INFORM_DBA_FUNC (NEWR.MEMBERNAME);

For information about the CREATE TRIGGER syntax, see the HP Nonstop SQL/MX Release 3.2
Reference Manual.

82 Invoking SPJs in NonStop SQL/MX

6 Managing SPJs in NonStop SQL/MX
This section covers management tasks related to SPJs in NonStop SQL/MX:

• Granting Privileges for Invoking SPJs (page 83)

• Displaying Information About SPJs (page 88)

• Keeping SPJ Statements in OBEY Command Files (page 94)

• Backing Up SPJs (page 97)

• Using SPJs in a Distributed Database Environment (page 98)

Granting Privileges for Invoking SPJs
Security for SPJs is implemented by the schema ownership rules and by granting privileges to
specified users.
The schema in which an SPJ is registered is the unit of ownership. The person who creates the
schema is the owner of that schema and all objects associated with it. In NonStop SQL/MX, the
schema owner and the super ID automatically have these privileges:

• Ability to create and drop SPJs in the schema

• EXECUTE and WITH GRANT OPTION privileges on the SPJs in the schema
To create or drop an SPJ, you must be either the owner of its schema or the super ID. To invoke
an SPJ, you must have the EXECUTE privilege on the SPJ. The EXECUTE privilege allows a user to
invoke an SPJ by issuing a CALL statement. The WITH GRANT OPTION privilege allows a user to
grant the EXECUTE and WITH GRANT OPTION privileges to other users. For more information,
see:

• Granting Privileges on an SPJ (page 83)

• Granting Privileges on Referenced Database Objects (page 84)

• Revoking Privileges on an SPJ (page 85)
To display the current ownership and privileges, see Showing Privileges on the SPJs (page 89).

Granting Privileges on an SPJ
Use the GRANT EXECUTE or GRANT statement to assign the EXECUTE and WITH GRANT OPTION
privileges on an SPJ to specific users. In a GRANT statement, specify ALL PRIVILEGES to grant the
EXECUTE privilege on an SPJ. For the syntax of the GRANT EXECUTE and GRANT statements, see
the SQL/MX Reference Manual.
If you own the SPJ, or are the super ID acting on behalf of the object owner, you can grant the
EXECUTE and WITH GRANT OPTION privileges on the SPJ to any user. If you are not the owner
of the SPJ or the super ID, you must have been granted the WITH GRANT OPTION privilege to
grant privileges to other users.
As the owner of an SPJ, or the super ID acting on behalf of a user with the WITH GRANT OPTION
privilege, you can selectively grant the EXECUTE and WITH GRANT OPTION privileges to specified
users. For some SPJs, particularly ones that handle sensitive information or modify data, you should
grant the EXECUTE and WITH GRANT OPTION privileges to a restricted number of users.
For example, the SPJ named ADJUSTSALARY changes an employee's salary in the database.
Therefore, only specific users should be allowed to invoke this SPJ. In this example, the database
administrator (the super ID), acting on behalf of the SPJ owner, grants the EXECUTE and WITH
GRANT OPTION privileges on ADJUSTSALARY to the regional HR directors. The HR directors grant
the EXECUTE privilege on ADJUSTSALARY to the department managers:

Granting Privileges for Invoking SPJs 83

In some cases, all users of a database system might need to invoke an SPJ. For example, the SPJ
named MONTHLYORDERS determines the number of product orders during a given month. This
SPJ does not handle sensitive information or modify data and might be useful to anyone within the
company. Therefore, the database administrator (the super ID), acting on behalf of the SPJ owner,
grants the EXECUTE privilege on MONTHLYORDERS to PUBLIC, meaning all present and future
user IDs:
GRANT EXECUTE
 ON samdbcat.sales.monthlyorders
 TO PUBLIC;

After granting the EXECUTE privilege to PUBLIC, you cannot revoke the privilege from a subset of
users. You must revoke the privilege from PUBLIC and then grant the privilege to specific users,
excluding users who should not have the privilege.

Granting Privileges on Referenced Database Objects
If the SPJ operates on a database object, the user ID that invokes the SPJ must have the appropriate
privileges on that database object.
For example, users with the EXECUTE privilege on the SPJ named ADJUSTSALARY, which selects
data from and updates a table, must have the SELECT and UPDATE privileges on the SQL/MX
table named EMPLOYEE. The database administrator (the super ID), acting on behalf of the object
owner, grants these access privileges to regional HR directors:
GRANT SELECT, UPDATE (salary)
 ON TABLE samdbcat.persnl.employee
 TO "HR.MGRNA", "HR.MGREU"
 WITH GRANT OPTION;

The HR director of North America then grants these access privileges to department managers:
GRANT SELECT, UPDATE (salary)
 ON TABLE samdbcat.persnl.employee
 TO "MKG.RAYMOND", "RD.MCKAY", "CORP.GREEN";

84 Managing SPJs in NonStop SQL/MX

All users with the EXECUTE privilege on the SPJ named MONTHLYORDERS must have the SELECT
privilege on the ORDERS table:
GRANT SELECT
 ON TABLE samdbcat.sales.orders
 TO PUBLIC;

The types of SQL statements in the underlying SPJ method, such as SELECT, UPDATE, DELETE, and
INSERT, should indicate which privileges, such as SELECT, UPDATE, DELETE, and INSERT, are
required for the referenced database objects.
For the syntax of the GRANT statement, see the SQL/MX Reference Manual. For more information
about granting privileges on SQL/MX database objects, see the SQL/MX Installation and Upgrade
Guide and SQL/MX Management Manual. For information about securing SQL/MP database
objects, see the SQL/MP Installation and Management Guide.

Revoking Privileges on an SPJ
Use the REVOKE EXECUTE or REVOKE statement to remove the EXECUTE or WITH GRANT OPTION
privilege on an SPJ from specific users. In a REVOKE statement, specify ALL PRIVILEGES to revoke
the EXECUTE privilege on an SPJ. For the syntax of the REVOKE EXECUTE and REVOKE statements,
see the SQL/MX Reference Manual.
If you own the SPJ, you can revoke the EXECUTE and WITH GRANT OPTION privileges on the
SPJ from any user to whom you granted those privileges. If you are the super ID acting on behalf
of a grantor, you can revoke the EXECUTE and WITH GRANT OPTION privileges on the SPJ from
any user to whom the grantor granted those privileges. If you are not the owner of the SPJ or the
super ID, you must have been granted the WITH GRANT OPTION privilege to revoke privileges
from other users, and you can revoke privileges only from other users to whom you have granted
privileges.
For example, the HR director of North America can revoke the EXECUTE privilege on ADJUSTSALARY
from one or more of the department managers to whom the director granted privileges. In this
example, the HR director revokes the EXECUTE privilege from the Marketing Department manager:

Granting Privileges for Invoking SPJs 85

The HR director of North America cannot revoke the EXECUTE or WITH GRANT OPTION privilege
from the HR director of Europe because it was the database administrator who granted the privileges
on behalf of the SPJ owner.
The database administrator (the super ID), acting on behalf of the grantor of the privilege, can
revoke the WITH GRANT OPTION privilege on ADJUSTSALARY from any user with this privilege.
In this example, the database administrator, acting on behalf of the SPJ owner, revokes the WITH
GRANT OPTION privilege from the HR director of North America:

86 Managing SPJs in NonStop SQL/MX

The database administrator, acting on behalf of the grantor of the privilege, can also revoke the
EXECUTE privilege from any user with this privilege and from any dependent privileges by using
the CASCADE option. In this example, the database administrator, acting on behalf of the SPJ
owner, revokes the EXECUTE privilege from the HR director of North America and from the
department managers to whom the HR director granted privileges:

Granting Privileges for Invoking SPJs 87

For SPJs on which all users (that is, PUBLIC) have privileges, you can revoke privileges from PUBLIC
but not from one or more specific users. For example, this statement revokes the EXECUTE privilege
on the SPJ named MONTHLYORDERS from all users (that is, PUBLIC):
REVOKE EXECUTE
 ON PROCEDURE samdbcat.sales.monthlyorders
 FROM PUBLIC;

Displaying Information About SPJs
To manage SPJs in NonStop SQL/MX, you might need to gather information about the SPJs that
are already registered in the database. For more information, see:

• Listing the SPJs in a Catalog (page 88)

• Showing Privileges on the SPJs (page 89)

• Showing the Procedure Labels of All SPJs in a Catalog (page 92)

• Showing the Syntax of an SPJ (page 92)
The first three topics suggest querying SQL/MX system metadata. For information about system
metadata tables, see the SQL/MX Reference Manual.

Listing the SPJs in a Catalog
To display the names of all SPJs in a user catalog of the database, query the OBJECTS, SCHEMATA,
and CATSYS system metadata tables and store the results in a log file, if desired.
For example:
1. In an MXCI session, enter the LOG command so that MXCI writes the output of the query to

a log file:

88 Managing SPJs in NonStop SQL/MX

LOG spj_list.txt;

2. In the same MXCI session, enter this query to list all the SPJs in a catalog of the database:
SELECT SUBSTRING(cat_name,1,25) AS "CATALOG",
 SUBSTRING(schema_name,1,25) AS "SCHEMA",
 SUBSTRING(object_name,1,25) AS "PROCEDURE"
 FROM catalog.definition_schema_version_vernum.objects ot,
 nonstop_sqlmx_node.system_schema.schemat ast,
 nonstop_sqlmx_node.system_schema.catsys ct
 WHERE ot.object_type = 'UR'
 AND ot.schema_uid = st.schema_uid
 AND st.cat_uid = ct.cat_uid;

The schema version number vernum for NonStop SQL/MX Releases 2.0, 2.1, and 2.2 is
1200.

3. To end logging, enter the LOG command without the name of the log file:
LOG;

The query returns the catalog, schema, and procedure names of all the SPJs in the catalog, as
shown:

CATALOG SCHEMA PROCEDURE
------------------------- ------------------------- --------------------

SAMDBCAT PERSNL ADJUSTSALARY
SAMDBCAT SALES DAILYORDERS
SAMDBCAT SALES LOWERPRICE
SAMDBCAT SALES MONTHLYORDERS
SAMDBCAT SALES TOTALPRICE

--- 5 row(s) selected.

Showing Privileges on the SPJs
To display the ownership and privileges for all the SPJs in a user catalog of the database, query
the TBL_PRIVILEGES, OBJECTS, and SCHEMATA system metadata tables and store the results in
a log file, if desired.
For example:
1. In an MXCI session, enter the LOG command so that MXCI writes the output of the query to

a log file:
LOG spj_prvlgs.txt;

2. In the same MXCI session, enter this query to return ownership and grantor information for
the SPJs in a catalog of the database:
SELECT SUBSTRING(schema_name,1,8) AS "SCHEMA",
 SUBSTRING(object_name,1,15) AS "PROCEDURE",
 object_owner, grantor, grantor_type, grantee
 FROM catalog.definition_schema_version_vernum.objects ot,
 nonstop_sqlmx_node.system_schema.schemata st,

catalog.definition_schema_version_vernum.tbl_privileges pr
 WHERE ot.object_type = 'UR'
 AND ot.schema_uid = st.schema_uid
 AND ot.object_uid = pr.table_uid;

The schema version number vernum for NonStop SQL/MX Releases 2.0, 2.1, and 2.2 is
1200.
For the output, see Interpreting Ownership and Grantor Informationntor Information (page 90).

3. Enter this query to return the privileges that grantees have on the SPJs in a catalog of the
database:

Displaying Information About SPJs 89

SELECT SUBSTRING(schema_name,1,8) AS "SCHEMA",
 SUBSTRING(object_name,1,15) AS "PROCEDURE",
 grantee, grantee_type, privilege_type, is_grantable
 FROM catalog.definition_schema_version_vernum.objects ot,
 nonstop_sqlmx_node.system_schema.schematast,

catalog.definition_schema_version_vernum.tbl_privileges pr
 WHERE ot.object_type = 'UR'
 AND ot.schema_uid = st.schema_uid
 AND ot.object_uid = pr.table_uid;

The schema version number vernum for NonStop SQL/MX Releases 2.0, 2.1, and 2.2 is
1200.
For the output, see Interpreting Privileges Information (page 90).

4. To end logging, enter the LOG command without the name of the log file:
LOG;

Interpreting Ownership and Grantor Informationntor Information
The first query in 2 returns the owners, grantors of privileges, and grantees for all SPJs in a catalog,
as shown:

SCHEMA PROCEDURE OBJECT_OWNER GRANTOR GRANTOR_TYPE GRANTEE
-------- --------------- ------------ ----------- ------------ ------
PERSNL ADJUSTSALARY 2053 -2 S 2053
PERSNL ADJUSTSALARY 2053 2054 U 2069
PERSNL ADJUSTSALARY 2053 2054 U 2068
PERSNL ADJUSTSALARY 2053 2054 U 2055
PERSNL ADJUSTSALARY 2053 2053 U 2054
PERSNL ADJUSTSALARY 2053 2053 U 2051
SALES DAILYORDERS 2053 -2 S 2053
SALES LOWERPRICE 2053 -2 S 2053
SALES MONTHLYORDERS 2053 -2 S 2053
SALES MONTHLYORDERS 2053 2053 U -1
SALES TOTALPRICE 2053 -2 S 2053

--- 11 row(s) selected.

The owners, grantors, and grantees are represented by user ID numbers. Use the USER_GETINFO_
procedure to return the user name associated with the user ID number. For more information, see
the Guardian Procedure Calls Reference Manual.
By default, the system (represented by -2 in the GRANTOR column) grants ownership privileges to
the creator of each schema and its SPJs, who happens to be user ID 2053 in this case, as shown
in the OBJECT_OWNER column. The GRANTOR_TYPE column shows whether the system (S) or a
user (U) was responsible for granting privileges to other users.
In the example, the super ID (65535), acting on behalf of the object owner (2053), granted
privileges on the MONTHLYORDERS procedure to PUBLIC (represented by -1 in the GRANTEE
column). The super ID, acting on behalf of the object owner (2053), also granted privileges on
the ADJUSTSALARY procedure to HR.MGRNA (2054) and HR.MGREU (2051). The user named
HR.MGRNA (2054) granted privileges to MKG.RAYMOND (2069), RD.MCKAY (2068), and
CORP.GREEN (2055), as shown in the highlighted rows.

Interpreting Privileges Information
The second query in 3 returns the grantees and the privileges they have on each SPJ in a catalog,
as shown:

SCHEMA PROCEDURE GRANTEE GRANTEE_TYPE PRIVILEGE_TYPE IS_GRANTABLE
-------- -------------- -------- ------------ -------------- ------------

90 Managing SPJs in NonStop SQL/MX

PERSNL ADJUSTSALARY 2053 U E Y
PERSNL ADJUSTSALARY 2069 U E N
PERSNL ADJUSTSALARY 2068 U E N
PERSNL ADJUSTSALARY 2055 U E N
PERSNL ADJUSTSALARY 2054 U E Y
PERSNL ADJUSTSALARY 2051 U E Y
SALES DAILYORDERS 2053 U E Y
SALES LOWERPRICE 2053 U E Y
SALES MONTHLYORDERS 2053 U E Y
SALES MONTHLYORDERS -1 P E N
SALES TOTALPRICE 2053 U E Y

--- 11 row(s) selected.

The grantees are represented by user ID numbers. Use the USER_GETINFO_ procedure to return
the user name associated with the user ID number. For more information, see the Guardian Procedure
Calls Reference Manual.
By default, the owner of each SPJ (which is 2053 in this case) has these privileges:

• EXECUTE privilege, represented by E in the PRIVILEGE_TYPE column

• WITH GRANT OPTION privilege, represented by Y in the IS_GRANTABLE column
In the example, these users have the EXECUTE (E) and WITH GRANT OPTION (Y) privileges on
the ADJUSTSALARY procedure:

• SPJ owner (2053)

• The super ID (65535)

• HR.MGRNA (2054)

• HR.MGREU (2051)
These users have the EXECUTE (E) privilege but not the WITH GRANT OPTION (N) privilege on
the ADJUSTSALARY procedure:

• MKG.RAYMOND (2069)

• RD.MCKAY (2068)

• CORP.GREEN (2055)
As shown in the highlighted row, all users of the system (that is, PUBLIC users) have the EXECUTE
(E) privilege on the MONTHLYORDERS procedure. The GRANTEE_TYPE column shows whether
the grantee is a public grant (P) or a user grant (U).

Showing the Procedure Label
The procedure label is used internally by NonStop SQL/MX to track privileges on an SPJ. NonStop
SQL/MX creates one procedure label for each SPJ. The procedure label must exist and be available
for an SPJ to be invoked successfully. Knowing the locations of the procedure labels is particularly
important when you are using SPJs in a distributed database environment. For more information,
see Using SPJs in a Distributed Database Environment (page 98).

Showing the Procedure Label of One SPJ
To show the location of the procedure label for a specific SPJ, use the SHOWDDL command. For
example, enter this command in MXCI:
SHOWDDL PROCEDURE samdbcat.sales.lowerprice;

The SHOWDDL command returns information about the procedure label in the LOCATION clause:

CREATE PROCEDURE SAMDBCAT.SALES.LOWERPRICE
 (
)
 EXTERNAL NAME 'Sales.lowerPrice ()'

Displaying Information About SPJs 91

 EXTERNAL PATH '/usr/mydir/myclasses'
LOCATION \KINGPIN.$TX0115.ZSDX7KT4.SL9FSB00

 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA
 NOT DETERMINISTIC
 ISOLATE
 ;

--- SQL operation complete.

For more information about the SHOWDDL command, see Showing the Syntax of an SPJ (page 92).

Showing the Procedure Labels of All SPJs in a Catalog
To show the locations of procedure labels for all SPJs in a user catalog of the database, query the
OBJECTS, SCHEMATA, and REPLICAS metadata tables:
SELECT SUBSTRING(schema_name,1,8) AS "SCHEMA",
 SUBSTRING(object_name,1,15) AS "PROCEDURE",
 system_name, data_source, file_suffix
 FROM catalog.definition_schema_version_vernum.objects ot,
 nonstop_sqlmx_node.system_schema.schemata st,

catalog.definition_schema_version_vernum.replicas rt
 WHERE ot.object_type = 'UR'
 AND ot.schema_uid = st.schema_uid
 AND ot.object_uid = rt.object_uid;

The schema version number vernum for NonStop SQL/MX Releases 2.0, 2.1, and 2.2 is 1200.
The query returns the names of the schema, procedure, node (SYSTEM_NAME), volume
(DATA_SOURCE), and the subvolume and file (FILE_SUFFIX), as shown:

SCHEMA PROCEDURE SYSTEM_NAME DATA_SOURCE FILE_SUFFIX
-------- --------------- ----------- ----------- ------------------

PERSNL ADJUSTSALARY \KINGPIN $TX0115 ZSDPK4GV.Q85DXB00
SALES DAILYORDERS \KINGPIN $TX0115 ZSDX7KT4.N71HTB00
SALES LOWERPRICE \KINGPIN $TX0115 ZSDX7KT4.SL9FSB00
SALES MONTHLYORDERS \KINGPIN $TX0115 ZSDX7KT4.G13HVB00
SALES TOTALPRICE \KINGPIN $TX0115 ZSDX7KT4.T4BGWB00

--- 5 row(s) selected.

Showing the Syntax of an SPJ
To show the CREATE PROCEDURE syntax of an SPJ as it exists in system metadata, use the
SHOWDDL command. The SHOWDDL command generates a description of the metadata for an
SPJ and displays it in an MXCI session.
Use the SHOWDDL command to display information about SPJs that you have migrated to the
system from an earlier release of NonStop SQL/MX. For more information, see the SQL/MX
Database and Application Migration Guide.
You can also use the SHOWDDL command to create a replica of an SPJ. For more information,
see Regenerating CREATE PROCEDURE Statements (page 96).

Using the SHOWDDL Command
To display information about the SPJ named ADJUSTSALARY, for example, enter this SHOWDDL
command in an MXCI session:
SHOWDDL PROCEDURE samdbcat.persnl.adjustsalary;

For the syntax of the SHOWDDL command, see the SQL/MX Reference Manual.

92 Managing SPJs in NonStop SQL/MX

Output of the SHOWDDL Command
The SHOWDDL command displays information about an SPJ in this format:

CREATE PROCEDURE catalog-name.
schema-name.procedure-name
 (

[sql-parameter
[{, sql-parameter}...]]
)
 EXTERNAL NAME 'java-method-name (
java-signature)'
 EXTERNAL PATH 'class-or-JAR-file-path'
 LOCATION procedure-label
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 {NO SQL | MODIFIES SQL DATA | READS SQL DATA
 | CONTAINS SQL}
 {DETERMINISTIC | NOT DETERMINISTIC}
 {NO ISOLATE | ISOLATE}
 ;

The output of the SHOWDDL command does not exactly match the original CREATE PROCEDURE
statement in these ways:

• The SHOWDDL command does not omit the optional clauses, such as LOCATION, CONTAINS
SQL, NOT DETERMINISTIC, and ISOLATE.

• The SHOWDDL command always generates a Java signature for the SPJ.

• The SHOWDDL command displays DECIMAL or NUMERIC data types instead of PIC S9,
when PIC S9 is specified for an SQL parameter, because NonStop SQL/MX stores PIC S9 as
one of these data types.

• The SHOWDDL command displays CHARACTER data types instead of PIC X, when PIC X is
specified for an SQL parameter, because NonStop SQL/MX stores PIC X as a CHAR data
type.

• The SHOWDDL command displays the NCHAR data type as a CHAR type with UCS2 (or
ISO88591, KANJI, or KSC5601) as the CHARACTER SET modifier.

• All ANSI names are fully qualified.

• All physical location names are fully expanded.
The SHOWDDL command for an SPJ named ADJUSTSALARY returns this output:

CREATE PROCEDURE SAMDBCAT.PERSNL.ADJUSTSALARY
 (
 IN EMPNUM NUMERIC(4)
 , IN PERCENT DOUBLE PRECISION
 , OUT NEWSALARY NUMERIC(8,2)
)
 EXTERNAL NAME 'Payroll.adjustSalary
(java.math.BigDecimal,double,java.math.BigDecimal[])'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LOCATION \KINGPIN.$TX0115.ZSDPK4GV.Q85DXB00
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA
 NOT DETERMINISTIC
 ISOLATE
 ;

--- SQL operation complete.

Displaying Information About SPJs 93

For more information about ADJUSTSALARY and its underlying SPJ method, adjustSalary(),
see Appendix A: Sample SPJs.

Output of the SHOWDDL Command of an SPJ with Result Sets
To display information about an SPJ that returns result sets (in this example, ORDER_SUMMARY),
enter this SHOWDDL command in an MXCI session:
SHOWDDL PROCEDURE samdbcat.sales.order_summary;

The SHOWDDL command for the ORDER_SUMMARY SPJ returns this output:

CREATE PROCEDURE SAMDBCAT.SALES.ORDER_SUMMARY
(
IN ON_OR_AFTER_DATE VARCHAR(20) CHARACTER SET ISO88591
, OUT NUM_ORDERS LARGEINT
)
EXTERNAL NAME 'SPJMethods.orderSummary
(java.lang.String,long[],java.sql.ResultSet[],java.sql.ResultSet[])'
EXTERNAL PATH '/usr/mydir/myclasses'
LOCATION \ALPINE.$SYSTEM.ZSDCR2C6.L1Z7NW00
LANGUAGE JAVA
PARAMETER STYLE JAVA
READS SQL DATA
DYNAMIC RESULT SETS 2
NOT DETERMINISTIC
ISOLATE
;
--- SQL operation complete.

For more information about ORDER_SUMMARY and its underlying SPJ method, orderSummary(),
see Appendix A: Sample SPJs.

Keeping SPJ Statements in OBEY Command Files
Consider keeping your SPJ statements in OBEY command files. That way, you can quickly and
easily create, drop, or reregister SPJs and grant or revoke privileges to the SPJs, as needed. For
more information, see:

• OBEY Command Files (page 94)

• Regenerating CREATE PROCEDURE Statements (page 96)

OBEY Command Files
An OBEY command file is either an OSS text file (odd-unstructured file, type 180) or a Guardian
EDIT file (type 101). For more information about the OBEY command, see the SQL/MX Reference
Manual.

CREATE PROCEDURE Statements in an OBEY Command File
For example, the OBEY command file, createprocs.sql, contains a series of CREATE
PROCEDURE statements:

?SECTION "CREATE SALES SPJs"

 CREATE PROCEDURE samdbcat.sales.lowerprice()
 EXTERNAL NAME 'Sales.lowerPrice'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA;
...

?SECTION "CREATE PERSNL SPJs"

94 Managing SPJs in NonStop SQL/MX

 CREATE PROCEDURE samdbcat.persnl.adjustsalary(IN empnum NUMERIC(4),
 IN percent FLOAT,
 OUT newsalary NUMERIC(8,2))
 EXTERNAL NAME 'Payroll.adjustSalary'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA;
...

To create SPJs from an OBEY command file, issue the OBEY command in MXCI:
OBEY createprocs.sql;

NOTE: The SPJ class must exist on the disk for the CREATE PROCEDURE statements to run
successfully.

DROP PROCEDURE Statements in an OBEY Command File
You can use another or the same OBEY command file to drop a series of SPJs. For example, the
OBEY command file, dropprocs.sql, contains a series of DROP PROCEDURE statements:

?SECTION "DROP SALES SPJs"

 DROP PROCEDURE samdbcat.sales.lowerprice;
 DROP PROCEDURE samdbcat.sales.dailyorders;
 DROP PROCEDURE samdbcat.sales.monthlyorders;
 DROP PROCEDURE samdbcat.sales.totalprice;

?SECTION "DROP PERSNL SPJs"

 DROP PROCEDURE samdbcat.persnl.adjustsalary;

To drop SPJs, issue the OBEY command in MXCI:
OBEY dropprocs.sql "DROP SALES SPJs";

GRANT EXECUTE Statements in an OBEY Command File
You can use another or the same OBEY command file to grant privileges on a series of SPJs. For
example, the OBEY command file, grantprocs.sql, contains a series of GRANT EXECUTE
statements:

?SECTION "GRANT SALES SPJs"

 GRANT EXECUTE
 ON samdbcat.sales.monthlyorders
 TO PUBLIC;

 GRANT SELECT
 ON TABLE samdbcat.sales.orders
 TO PUBLIC;

?SECTION "GRANT PERSNL SPJs"

 GRANT EXECUTE
 ON PROCEDURE samdbcat.persnl.adjustsalary
 TO "HR.MGRNA", "HR.MGREU"
 WITH GRANT OPTION;

 GRANT SELECT, UPDATE(salary)
 ON TABLE samdbcat.persnl.employee

Keeping SPJ Statements in OBEY Command Files 95

 TO "HR.MGRNA", "HR.MGREU"
 WITH GRANT OPTION;

To grant privileges on the SPJs, issue the OBEY command in MXCI:
OBEY grantprocs.sql "GRANT SALES SPJs";

REVOKE EXECUTE Statements in an OBEY Command File
You can use another or the same OBEY command file to revoke privileges on a series of SPJs. For
example, the OBEY command file, revokeprocs.sql, contains a series of REVOKE EXECUTE
statements:

?SECTION "REVOKE SALES SPJs"

 REVOKE EXECUTE
 ON PROCEDURE samdbcat.sales.monthlyorders
 FROM PUBLIC;

 REVOKE SELECT
 ON TABLE samdbcat.sales.orders
 FROM PUBLIC;

?SECTION "REVOKE PERSNL SPJs"

 REVOKE GRANT OPTION FOR EXECUTE
 ON PROCEDURE samdbcat.persnl.adjustsalary
 FROM "HR.MGRNA", "HR.MGREU"
 CASCADE;

 REVOKE EXECUTE
 ON PROCEDURE samdbcat.persnl.adjustsalary
 FROM "HR.MGRNA", "HR.MGREU"
 CASCADE;

 REVOKE SELECT, UPDATE(salary)
 ON TABLE samdbcat.persnl.employee
 FROM "HR.MGRNA", "HR.MGREU"
 CASCADE;

To revoke privileges on the SPJs, issue the OBEY command in MXCI:
OBEY revokeprocs.sql "REVOKE SALES SPJs";

Regenerating CREATE PROCEDURE Statements
Use the SHOWDDL command to regenerate the CREATE PROCEDURE statements of registered
SPJs in a new or existing OBEY command file:
1. In an MXCI session, enter the LOG command so that MXCI writes the output of the SHOWDDL

command to a log file:
LOG createprocs.sql;

2. In the same MXCI session, enter the SHOWDDL command for specific SPJs in the database:
SHOWDDL PROCEDURE samdbcat.sales.dailyorders;
SHOWDDL PROCEDURE samdbcat.sales.monthlyorders;
...

For the syntax of the SHOWDDL command, see the SQL/MX Reference Manual.
3. To end logging, enter the LOG command without the name of the log file:

96 Managing SPJs in NonStop SQL/MX

LOG;

4. Edit the log file by removing the SHOWDDL commands and by revising the CREATE
PROCEDURE statements if necessary.
In this example, you must remove the text in boldface from the log file. The output of the
SHOWDDL command does not exactly match the original CREATE PROCEDURE statement.
For more information, see the Output of the SHOWDDL Command (page 93).

>>showddl
procedure samdbcat.sales.dailyorders;

CREATE PROCEDURE SAMDBCAT.SALES.DAILYORDERS
 (
 IN DATE
 , OUT NUMBER INTEGER
)
 EXTERNAL NAME 'Sales.numDailyOrders (java.sql.Date,int[])'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LOCATION \KINGPIN.$TX0115.ZSDX7KT4.N71HTB00
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA
 NOT DETERMINISTIC
 ISOLATE
 ;

--- SQL operation complete.
>>showddl procedure samdbcat.sales.monthlyorders;

CREATE PROCEDURE SAMDBCAT.SALES.MONTHLYORDERS
 (
 IN INTEGER
 , OUT NUMBER INTEGER
)
 EXTERNAL NAME 'Sales.numMonthlyOrders (int,int[])'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LOCATION \KINGPIN.$TX0115.ZSDX7KT4.G13HVB00
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA
 NOT DETERMINISTIC
 ISOLATE
 ;

--- SQL operation complete.
>>log;

As you can with any OBEY command file, you can use the edited log file to re-create the SPJs if
necessary. For more information, see CREATE PROCEDURE Statements in an OBEY Command File
(page 94).

Backing Up SPJs
Backing up SPJs should be part of a backup and recovery strategy for the entire database. This
strategy should involve periodically storing copies of these files in a safe location, such as another
disk, magnetic tape, or another system:

• CREATE PROCEDURE statements (or the equivalent SQL/MX metadata)

• Java class or JAR files that contain the Java classes of the SPJs
For comprehensive strategies of backing up and recovering database files, see the SQL/MX
Installation and Upgrade Guide and SQL/MX Management Manual.

Backing Up SPJs 97

Using SPJs in a Distributed Database Environment
For an SPJ to operate in a distributed database environment, the catalog in which the SPJ is created
must be visible on every remote node that requires access to that catalog. In other words, the
catalog of the SPJ must be visible on each node where you want users to be able to call the SPJ.
To make a catalog visible on a remote node, you must register the catalog on the remote node by
issuing a REGISTER CATALOG statement on a node where the catalog is visible, such as on the
local node. For the syntax of the REGISTER CATALOG statement, see the SQL/MX Reference
Manual. For information about how to manage a distributed database environment, see the SQL/MX
Installation and Management Guide.
In a distributed database environment, NonStop SQL/MX does not replicate or distribute the Java
class that underlies an SPJ. If you create an SPJ on a local node and want to call that SPJ on a
remote node, use one of these approaches:

• Copying Java Classes to the Remote Node (page 98)

• Specifying the Node in the External Path (page 99)
Make sure that the application classes on which the SPJ depends are also available in the distributed
database environment. For more information, see Distributing Application Classes (page 100).

Copying Java Classes to the Remote Node
Copy all the Java classes required for the SPJ from the local node (for example, \NODEA) to the
same OSS directory on the remote node (for example, \NODEB). By default, only a relative path
of the Java class is stored in the SQL/MX system metadata. Therefore, when an application on the
remote \NODEB calls the SPJ, the JVM looks for the Java class in the OSS directory on \NODEB.
See Figure 9.

Figure 9 Copying Java Classes to the Remote Node

98 Managing SPJs in NonStop SQL/MX

Advantages of Copying the Java Classes
The advantage of this approach is that there are fewer cross-node dependencies. If the network is
disconnected or if one node goes down (for example, \NODEA), a statically compiled application
can still execute the SPJ on the remaining node (for example, \NODEB), as long as the procedure
label of the SPJ is still available.
The procedure label is available if it is located on the same node (in this case, \NODEB) as the
calling application or if it is located on a remote node that is still connected and visible (for example,
\NODEC). If the procedure label is unavailable (for example, if it is on \NODEA), the CALL statement
that invokes the SPJ will fail. For more information about the procedure label, see Naming the
Procedure Label (page 66) TPSEC04.fm Naming the Procedure Label and Showing the Procedure
Label (page 91).
Currently, NonStop SQL/MX has limited local node autonomy because it disallows the replication
of metadata from one node to another. For more information about the limitations on local node
autonomy, see the SQL/MX Installation and Upgrade Guide and SQL/MX Management Manual.

Disadvantages of Copying the Java Classes
The disadvantage of this approach is that the Java classes must be maintained on more than one
node. If you change and recompile the Java class on one node, you must do the same on the other
node. Otherwise, the SPJ might behave inconsistently in a distributed database environment.

Specifying the Node in the External Path
Register the SPJ with an external path that begins with the name of the node. That is, specify the
full path (for example, /E/NODEA/usr/mydir/myclasses) in the EXTERNAL PATH clause of
the CREATE PROCEDURE statement. The full path of the Java class is stored in the SQL/MX system
metadata, as shown in Figure 10.

Using SPJs in a Distributed Database Environment 99

Figure 10 Specifying the Node in the External Path

When an application on the remote \NODEB calls the SPJ, the JVM looks for the Java class in the
/E/NODEA/usr/mydir/myclasses directory on \NODEA. Regardless of where you issue the
CALL statement, the JVM in the SPJ environment always tries to load the Java class from the OSS
directory on the node that you specify in the EXTERNAL PATH clause.

Advantages of Specifying the Node
The Java classes exist in only one location, which eliminates the need to maintain them on separate
nodes.

Disadvantages of Specifying the Node
By using this approach, you sacrifice local node autonomy. For example, applications running on
\NODEB rely on the Java class stored on \NODEA to function properly. If \NODEB becomes
disconnected from \NODEA, an application on \NODEB that calls the SPJ on \NODEA will not work.
This approach also involves the overhead of loading Java classes from a remote node instead of
from the local node.

Distributing Application Classes
If an SPJ method in a distributed database environment relies on application classes outside the
external path, you must either copy these classes to the same OSS directory on the remote node
or include the full path of these classes in the class path. For more information about how to set
the class path, see Setting the Class Path (page 43).

100 Managing SPJs in NonStop SQL/MX

7 Performance and Troubleshooting
This section describes how to improve and monitor the performance of SPJs in NonStop SQL/MX,
provides guidelines for troubleshooting common problems, and covers these topics:

• Troubleshooting SPJ Problems (page 101)

• Performance Tips (page 101)

• Displaying an Execution Plan for a CALL Statement (page 102)

• Displaying the Shape of a CALL Statement (page 103)

Troubleshooting SPJ Problems
To resolve problems that occur when you register or invoke an SPJ, follow these guidelines:

• Note the SQLCODE or SQLSTATE value of the error messages and locate the information in
the SQL/MX Messages Manual, which provides cause, effect, and recovery information for
all SQL/MX errors.

• Check that the user has the appropriate permissions to create or call the SPJ. See Required
Privileges for Creating an SPJ (page 59), Required Privileges for Calling an SPJ (page 71),
and Showing Privileges on the SPJs (page 89).

• Check the code of the SPJ method. See Chapter 3: Writing SPJ Methods. Fix any problems.

• If you successfully compiled and registered the SPJ but are receiving errors when calling the
SPJ, check that the output parameters in the Java method are specified as arrays. See Returning
Output Values From the Java Method (page 50).

• Check the syntax of the CREATE PROCEDURE statement by using the SHOWDDL command.
See Showing the Syntax of an SPJ (page 92). Compare the CREATE PROCEDURE syntax with
the SPJ method. See Using the CREATE PROCEDURE Statement (page 59). Fix any problems.

• Check the syntax of the CALL statement in the application. See Chapter 5: Invoking SPJs in
NonStop SQL/MX. Fix any problems.

• If the SQL/MX syntax and SPJ code are correct, check the configuration of the SPJ environment.
Verify the JREHOME, JDBC/MX location, and class path settings. Reconfigure the JVM startup
options (that is, UDR_JAVA_OPTIONS settings) to determine if the problem is related to the
SPJ environment. See Controlling JVM Startup Options (page 36).

• If you receive an error describing a Java security-related problem, check the
UDR_JAVA_OPTIONS setting and the permissions in the specified policy file. Verify that all
the Java classes have required permissions. See Establishing Java Security (page 46).

• To identify Java-related errors, execute the SPJ method outside the database by invoking the
Java method directly in a Java application that you run on the command line. For more
information, see the NonStop Server for Java Programmer's Reference.

Performance Tips
To ensure the optimal performance of SPJs in NonStop SQL/MX:

• Design your Java classes and directory structure so that fewer SPJ methods in different external
paths rely on the same application class. This approach conserves system resources and
memory. For more information, see Updating the Java Class Files of a Referenced Application
Class (page 30).

• Use UDR_JAVA_OPTIONS settings to manage multiple SPJ environments to support parallelism
of CALL statements issued from a multithreaded application. For more information, see
Multithreading in an SPJ Environment (page 27).

Troubleshooting SPJ Problems 101

• Avoid using too many UDR_JAVA_OPTIONS settings in applications that call SPJs. For more
information, see Using Multiple UDR_JAVA_OPTIONS Settings in One Application (page 39).

• Avoid nesting CALL statements in an SPJ method, which wastes resources and diminishes
performance. For more information, see Nested Java Method Invocations (page 53).

• Use connection pooling and explicitly close each java.sql.Connection object when it
is no longer needed instead of relying on garbage collection. For more information, see Use
of java.sql.Connection Objects (page 53).

Displaying an Execution Plan for a CALL Statement
An execution plan reveals how a CALL statement was optimized. You can display all or part of
the execution plan for a CALL statement by using the DISPLAY_EXPLAIN command or the EXPLAIN
function.

Using the DISPLAY_EXPLAIN Command
Suppose that you want to display the execution plan for this CALL statement:
CALL samdbcat.persnl.adjustsalary(202, 5.5, ?);

Enter this DISPLAY_EXPLAIN command in an MXCI session:
DISPLAY_EXPLAIN CALL samdbcat.persnl.adjustsalary(202, 5.5, ?);

The DISPLAY_EXPLAIN command generates and displays all the columns of the result table of the
EXPLAIN function. For more information, see the SQL/MX Query Guide.

Using the EXPLAIN Function
You can also prepare the CALL statement and select specific columns from the result table of the
EXPLAIN function, as shown:
PREPARE call_spj
 FROM CALL samdbcat.persnl.adjustsalary(202, 5.5, ?);

SELECT SUBSTRING(OPERATOR,1,8) AS "OPERATOR", OPERATOR_COST,
 SUBSTRING(DESCRIPTION,1,500) AS "DESCRIPTION"
 FROM TABLE (EXPLAIN(NULL, 'CALL_SPJ'));

The SELECT statement displays this output:

OPERATOR OPERATOR_COST DESCRIPTION
-------- --------------- ---

CALL 1.3930000E-005 input_values: cast(202), cast(cast((cast(5.5)/
cast(10)))) parameter_modes: I I O routine_name:
SAMDBCAT.PERSNL.ADJUSTSALARY routine_label:
\KINGPIN.$TX0115.ZSDPK4GV.Q85DXB00 sql_access_mode: MODIFIES SQL DATA
external_name: adjustSalary external_path: /usr/mydir/myclasses
external_file: Payroll signature:
(Ljava/math/BigDecimal;D[Ljava/math/BigDecimal;)V language: Java
runtime_options: OFF runtime_option_delimiters: ' '

ROOT 5.8506000E-008 select_list: NUMERIC(8,2) SIGNED input_variables:
? statement_index: 0 statement: CALL samdbcat.persnl.adjustsalary(202,
5.5, ?); return

For a CALL statement, the OPERATOR column of the result table contains a row named CALL. The
DESCRIPTION column contains special token pairs for the CALL operator. For more information,
see the SQL/MX Query Guide.

102 Performance and Troubleshooting

Using the EXPLAIN function with SPJ RS
You can also prepare the CALL statement and return result sets from the result table of the EXPLAIN
function, as shown:
PREPARE S
FROM CALL samdbcat.sales.order_summary(?, ?);

SELECT DESCRIPTION FROM TABLE(EXPLAIN(NULL, 'S')) WHERE OPERATOR
= 'CALL';

The SELECT statement displays the following output:

DESCRIPTION
--
--
parameter_modes: I O routine_name: SAMDBCAT.SALES.ORDER_SUMMARY
routine_label: \ALPINE.$SYSTEM.ZSDCR2C6.L1Z7NW00
sql_access_mode: READS SQL DATA external_name: orderSummary2
external_path: /usr/mydir/myclasses external_file: rs
signature:
(Ljava/lang/String;[J[Ljava/sql/ResultSet;[Ljava/sql/ResultSet;)V
language: Java runtime_options: OFF runtime_option_delimiters: ' '
max_results: 2
--- 1 row(s) selected.

The output includes a new entry max_results, which displays the maximum number of result sets
that can be returned by this procedure. The value for max-results is set by the DYNAMIC RESULTS
option in the CREATE PROCEDURE statement.

NOTE: The max_results option is displayed only on systems running J06.05 and later J-series
RVUs or H06.16 and later H-series RVUs.

Displaying the Shape of a CALL Statement
The SHOWSHAPE command displays the shape for a given DML statement, such as a CALL
statement, in an MXCI session. The result can be used at a later time to force the SQL/MX compiler
to choose a particular execution plan (or to force the same execution plan for the statement).

CALL Statements Without a Shape
A CALL statement that does not contain a subquery as one of its SQL parameter arguments does
not have a shape. For example, this SHOWSHAPE command is for a CALL statement without
subquery parameters:
SHOWSHAPE CALL samdbcat.persnl.adjustsalary(202,5.5,?);

Because this CALL statement does not have a shape, the SHOWSHAPE command returns this
output:

control query shape anything;
--- SQL operation complete.

CALL Statements With a Shape
If a CALL statement contains one or more subqueries as its SQL parameter arguments, the
SHOWSHAPE command generates a shape that describes the entire SQL statement. For example,
this SHOWSHAPE command is for a CALL statement with a subquery parameter:
SHOWSHAPE CALL samdbcat.sales.totalprice((SELECT qty_ordered
 FROM samdbcat.sales.odetail
 WHERE ordernum = 100210

Displaying the Shape of a CALL Statement 103

 AND partnum = 5100),
 'standard', ?param);

The generated shape describes all subquery trees and contains an ANYTHING token to represent
the CALL statement, as shown:

control query shape nested_join(nested_join(sort_groupby(partition_access(
scan(path 'SAMDBCAT.SALES.ODETAIL', forward, blocks_per_access 1
, mdam off))),tuple),anything);

--- SQL operation complete.

If the result of the SHOWSHAPE command is undesirable, you can use the CONTROL QUERY
SHAPE statement to force the execution plan. First generate the result of the EXPLAIN function for
a prepared CALL statement, and then modify the operator tree for the execution plan by using
CONTROL QUERY SHAPE.
For more information about the SHOWSHAPE command and the CONTROL QUERY SHAPE
statement, see the SQL/MX Reference Manual. For information about forcing execution plans, see
the SQL/MX Query Guide.

104 Performance and Troubleshooting

A Sample SPJs
This appendix presents the SPJs that are shown in examples throughout this manual. For descriptions
of the SPJ methods and the CREATE PROCEDURE statements that register those methods in an
SQL/MX database, see:
• Class Files and Java Methods (page 106)
• The createprocs.sql File (page 111)
• Examples of the Sample SPJs (page 113)

Using Sample SPJs
The SPJ methods are coded in Java source files, which are located in a JAR file named Sam
pleSPJs.jar in the NonStop Technical Library (NTL).

Installing the SampleSPJs.jar File
1. In NTL, navigate to the H06.04G06.23 or later RVU.
2. From the Categories list, select Sample Programs.
3. Under Publications, select SQL/MX Stored Procedures in Java (SPJs).
4. Follow the instructions in NTL for downloading the SampleSPJs.jar file to your PC

workstation.
5. On your PC, use WinZip to open the SampleSPJs.jar file and view the README.txt file,

which explains how to use SampleSPJs.jar.
To use the source files in SampleSPJs.jar, place the JAR file in the desired OSS directory,
extract the source files, and compile them by using the Java programming language compiler. See
Figure 11 (page 106).

Installing the SQL/MX Sample Database
The SPJs rely on the SQL/MX sample database (product T0517) to run properly. All the sample
SPJs can query both SQL/MP and SQL/MX tables of the SQL/MX sample database. To query
SQL/MP tables, use the NonStop SQL/MX Release 1.8 sample database. To query SQL/MX
tables, use the NonStop SQL/MX Release 2.x sample database.

NOTE: The SQL/MX Release 2.x sample database uses SQL/MX format tables. To install the
sample database, you must have a license to use SQL/MX DDL statements. To acquire this license,
purchase product T0394. Without this product, you cannot install the sample database. An error
message informs you that the system is not licensed.

To install the sample database, see the SQL/MX Quick Start. For information about the schema
and tables of the sample database, see the SQL/MX Reference Manual.

Using Sample SPJs 105

Figure 11 Steps for Using Sample SPJs

For details of these steps, see the README file in SampleSPJs.jar.

Class Files and Java Methods
The SPJ methods are stored in these class files:
• Sales Class (page 107)
• Payroll Class (page 109)
• Inventory Class (page 110)
These class files are coded as Java source files and use JDBC/MX to access a NonStop SQL
database. For information about JDBC/MX, see the JDBC Driver for SQL/MX Programmer's
Reference.

106 Sample SPJs

Sales Class
The Sales class contains these SPJ methods, which are useful for tracking orders and managing
sales:
• The lowerPrice()method determines which items are selling poorly (that is, have less than

50 orders) and lowers the price of these items in the database by 10 percent.
• The numDailyOrders() method accepts a date and returns the number of orders on that

date to an output parameter.
• The numMonthlyOrders() method accepts an integer representing the month and returns

the number of orders during that month to an output parameter.
• The totalPrice() method accepts the quantity, shipping speed, and price of an item,

calculates the total price, including tax and shipping charges, and returns the total price to
an input/output parameter.

The Sales.java source file in SampleSPJs.jar contains the code shown in Example 1
(page 108).

Class Files and Java Methods 107

Example 1 Sales.java—The Sales Class

import java.sql.*;
import java.math.*;

public class Sales
{
 public static void lowerPrice()
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getParts =
 conn.prepareStatement("SELECT p.partnum, " +
 " SUM(qty_ordered) AS qtyOrdered" +
 "FROM samdbcat.sales.parts p "+
 "LEFT JOIN samdbcat.sales.odetailo " +
 " ON p.partnum = o.partnum "+
 "GROUP BY p.partnum");

 PreparedStatement updateParts =
 conn.prepareStatement("UPDATE samdbcat.sales.parts "+
 "SET price = price * 0.9 " +
 "WHERE partnum = ?");

 ResultSet rs = getParts.executeQuery();
 while (rs.next())
 {
 BigDecimal qtyOrdered = rs.getBigDecimal(2);
 if ((qtyOrdered == null) || (qtyOrdered.intValue() <50))
 {
 BigDecimal partnum = rs.getBigDecimal(1);
 updateParts.setBigDecimal(1, partnum);
 updateParts.executeUpdate();
 }
 }
 rs.close();

 conn.close();
 }
 public static void numDailyOrders(Date date,
 int[] numOrders)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getNumOrders =
 conn.prepareStatement("SELECT COUNT(order_date) " +
 "FROM samdbcat.sales.orders " +
 "WHERE order_date = ?");

 getNumOrders.setDate(1, date);
 ResultSet rs = getNumOrders.executeQuery();
 rs.next();
 numOrders[0] = rs.getInt(1);
 rs.close();

 conn.close();
 }

 public static void
numMonthlyOrders(int month,
 int[] numOrders)
 throws SQLException
 {
 if (month < 1 || month > 12)
 {
 throw new
 SQLException ("Invalid value for month. " +
 "Retry the CALL statement " +

108 Sample SPJs

 "using a number from 1 to 12 " +
 "to represent the month.", "38001");
 }

 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getNumOrders =
 conn.prepareStatement("SELECT COUNT(month(order_date))" +
 "FROM samdbcat.sales.orders "+
 "WHERE month(order_date) = ?");

 getNumOrders.setInt(1, month);
 ResultSet rs = getNumOrders.executeQuery();
 rs.next();
 numOrders[0] = rs.getInt(1);
 rs.close();

 conn.close();
 }
 public static voidtotalPrice(BigDecimal qtyOrdered,
 String shippingSpeed,
 BigDecimal[] price)
 throws SQLException
 {
 BigDecimal shipcharge = new BigDecimal(0);

 if (shippingSpeed.equals("economy"))
 {
 shipcharge = new BigDecimal(1.95);
 }
 else if (shippingSpeed.equals("standard"))
 {
 shipcharge = new BigDecimal(4.99);
 }
 else if (shippingSpeed.equals("nextday"))
 {
 shipcharge = new BigDecimal(14.99);
 }
 else
 {
 throw new
 SQLException ("Invalid value for shipping speed." +
 "Retry the CALL statement using "+
 "'economy' for 7 to 9 days," +
 "'standard' for 3 to 5 days, or "+
 "'nextday' for one day.", "38002");
 }

 BigDecimal subtotal = price[0].multiply(qtyOrdered);

 BigDecimal tax = new BigDecimal(0.0825);
 BigDecimal taxcharge = subtotal.multiply(tax);

 BigDecimal charges = taxcharge.add(shipcharge);

 price[0] = subtotal.add(charges);
 }
}

Payroll Class
The Payroll class contains these SPJ methods, which are useful for managing personnel data:

• The adjustSalary() method accepts an employee number and a percentage value and
updates the employee's salary in the database based on this value. This method also returns
the updated salary to an output parameter.

• The employeeJob() method accepts an employee number and returns a job code or null
value to an output parameter.

The Payroll.java source file in SampleSPJs.jar contains the code shown in Example 2.

Class Files and Java Methods 109

Example 2 Payroll.java-The PayrollClass

import java.sql.*;
import java.math.*;

public class Payroll
{
 public static void adjustSalary(BigDecimal empNum,
 double percent,
 BigDecimal[] newSalary)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement setSalary =
 conn.prepareStatement("UPDATE samdbcat.persnl.employee" +
 "SET salary = salary * (1 + (?/ 100)) " +
 "WHERE empnum = ?");

 PreparedStatement getSalary =
 conn.prepareStatement("SELECT salary " +
 "FROM samdbcat.persnl.employee" +
 "WHERE empnum = ?");

 setSalary.setDouble(1, percent);
 setSalary.setBigDecimal(2, empNum);
 setSalary.executeUpdate();

 getSalary.setBigDecimal(1, empNum);
 ResultSet rs = getSalary.executeQuery();
 rs.next();
 newSalary[0] = rs.getBigDecimal(1);
 rs.close();

 conn.close();
 }

 public static void employeeJob(int empNum,
 java.lang.Integer[] jobCode)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getJobcode =
 conn.prepareStatement("SELECT jobcode " +
 "FROM samdbcat.persnl.employee" +
 "WHERE empnum = ?");

 getJobcode.setInt(1, empNum);
 ResultSet rs = getJobcode.executeQuery();
 rs.next();
 int num = rs.getInt(1);
 if (rs.wasNull())
 jobCode[0] = null;
 else
 jobCode[0] = new Integer(num);
 rs.close();

 conn.close();
 }
}

Inventory Class
The Inventory class contains these SPJ methods, which are useful for tracking parts and suppliers:

• The supplierInfo() method accepts a supplier number and returns the supplier's name,
street, city, state, and post code to separate output parameters.

• The supplyQuantities() method returns the average, minimum, and maximum quantities
of available parts in inventory to separate output parameters.

110 Sample SPJs

The Inventory.java source file in SampleSPJs.jar contains the code shown in Example 3.

Example 3 Inventory.java-The Inventory Class

import java.sql.*;
import java.math.*;

public class Inventory
{
 public static void supplierInfo(BigDecimal suppNum,
 String[] suppName,
 String[] streetAddr,
 String[] cityName,
 String[] stateName,
 String[] postCode)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getSupplier =
 conn.prepareStatement("SELECT suppname, street, city," +
 " state, postcode " +
 "FROM samdbcat.invent.supplier" +
 "WHERE suppnum = ?");

 getSupplier.setBigDecimal(1, suppNum);
 ResultSet rs = getSupplier.executeQuery();
 rs.next();
 suppName[0] = rs.getString(1);
 streetAddr[0] = rs.getString(2);
 cityName[0] = rs.getString(3);
 stateName[0] = rs.getString(4);
 postCode[0] = rs.getString(5);
 rs.close();

 conn.close();
 }

 public static void supplyQuantities(int[] avgQty,
 int[] minQty,
 int[] maxQty)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getQty =
 conn.prepareStatement("SELECT AVG(qty_on_hand), " +
 " MIN(qty_on_hand), " +
 " MAX(qty_on_hand) " +
 "FROM samdbcat.invent.partloc");

 ResultSet rs = getQty.executeQuery();
 rs.next();
 avgQty[0] = rs.getInt(1);
 minQty[0] = rs.getInt(2);
 maxQty[0] = rs.getInt(3);
 rs.close();

 conn.close();
 }
}

The createprocs.sql File
CREATE PROCEDURE statements register SPJ methods in an SQL/MX database. Before registering
the methods described in Class Files and Java Methods (page 106), you must compile the Java
source files into class files. See Compiling Java Classes (page 58).
An OBEY command file named createprocs.sql in SampleSPJs.jar contains the CREATE
PROCEDURE statements shown in Example 4.

The createprocs.sql File 111

Example 4 createprocs.sql-An OBEY Command File

CREATE PROCEDURE samdbcat.sales.lowerprice()
 EXTERNAL NAME 'Sales.lowerPrice'
 EXTERNAL PATH '<mydir>'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA;

CREATE PROCEDURE samdbcat.sales.dailyorders(IN DATE, OUT number INT)
 EXTERNAL NAME 'Sales.numDailyOrders'
 EXTERNAL PATH '<mydir>'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT, OUT number INT)
 EXTERNAL NAME 'Sales.numMonthlyOrders'
 EXTERNAL PATH '<mydir>'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CREATE PROCEDURE samdbcat.sales.totalprice(IN qty NUMERIC(18),
 IN rate VARCHAR(10),
 INOUT price NUMERIC(18,2))
 EXTERNAL NAME 'Sales.totalPrice'
 EXTERNAL PATH '<mydir>'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CREATE PROCEDURE samdbcat.persnl.adjustsalary(IN empnum NUMERIC(4),
 IN percent FLOAT,
 OUT newsalary NUMERIC(8,2))
 EXTERNAL NAME 'Payroll.adjustSalary'
 EXTERNAL PATH '<mydir>'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA;

CREATE PROCEDURE samdbcat.persnl.employeejob(IN empnum INT,
 OUT jobcode INT)
 EXTERNAL NAME 'Payroll.employeeJob(int, java.lang.Integer[])'
 EXTERNAL PATH '<mydir>'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CREATE PROCEDURE samdbcat.invent.supplierinfo(INempnum NUMERIC(4),
 OUT suppname CHAR(18),
 OUT address CHAR(22),
 OUT city CHAR(14),
 OUT state CHAR(12),
 OUT zipcode CHAR(10))
 EXTERNAL NAME 'Inventory.supplierInfo'
 EXTERNAL PATH '<mydir>'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CREATE PROCEDURE samdbcat.invent.supplynumbers(OUT avrg INT,
 OUT minm INT,

112 Sample SPJs

 OUT maxm INT)
 EXTERNAL NAME 'Inventory.supplyQuantities'
 EXTERNAL PATH '<mydir>'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

Before executing the OBEY command file, createprocs.sql, change the external paths from
<dir> to the OSS directories that contain the SPJ class files.
The catalog and schemas of stored procedures must exist before you issue CREATE PROCEDURE
statements. The CREATE PROCEDURE statements in createprocs.sql use the SAMDBCAT
catalog and the SALES, PERSNL, and INVENT schemas, which are part of the SQL/MX sample
database. To install the sample database, see the SQL/MX Quick Start.
To execute the CREATE PROCEDURE statements in createprocs.sql, you must be either the
schema owner (which you are if you install the sample database yourself) or the super ID.

Examples of the Sample SPJs
These examples show each SPJ method, the CREATE PROCEDURE statement that registers the SPJ,
the CALL statement that invokes the SPJ, and the output in MXCI:
• LOWERPRICE Stored Procedure (page 113)
• DAILYORDERS Stored Procedure (page 115)
• MONTHLYORDERS Stored Procedure (page 115)
• TOTALPRICE Stored Procedure (page 116)
• ADJUSTSALARY Stored Procedure (page 117)
• EMPLOYEEJOB Stored Procedure (page 118)
• SUPPLIERINFO Stored Procedure (page 119)
• SUPPLYNUMBERS Stored Procedure (page 120)

LOWERPRICE Stored Procedure

Java Method
public static void lowerPrice()
 throws SQLException
{
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getParts =
 conn.prepareStatement("SELECT p.partnum, " +
 " SUM(qty_ordered) AS qtyOrdered" +
 "FROM samdbcat.sales.parts p " +
 "LEFT JOIN samdbcat.sales.odetailo " +
 " ON p.partnum = o.partnum " +
 "GROUP BY p.partnum");

 PreparedStatement updateParts =
 conn.prepareStatement("UPDATE samdbcat.sales.parts " +
 "SET price = price * 0.9 " +
 "WHERE partnum = ?");

 ResultSet rs = getParts.executeQuery();
 while (rs.next())
 {
 BigDecimal qtyOrdered = rs.getBigDecimal(2);
 if ((qtyOrdered == null) || (qtyOrdered.intValue() <50))
 {
 BigDecimal partnum = rs.getBigDecimal(1);
 updateParts.setBigDecimal(1, partnum);
 updateParts.executeUpdate();
 }

Examples of the Sample SPJs 113

 }
 rs.close();

 conn.close();
}

CREATE PROCEDURE Statement
CREATE PROCEDURE samdbcat.sales.lowerprice()
 EXTERNAL NAME 'Sales.lowerPrice'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA;

CALL Statement to Invoke the SPJ
To invoke the LOWERPRICE procedure in MXCI:
CALL samdbcat.sales.lowerprice();

To view the prices and quantities of items in the database with 50 or fewer orders, issue this query
before and after calling the LOWERPRICE procedure:
SELECT *
 FROM
 (SELECT p.partnum, SUM(qty_ordered) AS qtyOrdered, p.price
 FROM samdbcat.sales.parts p
 LEFT OUTER JOIN samdbcat.sales.odetail o
 ON p.partnum = o.partnum
 GROUP BY p.partnum, p.price) AS allparts
 WHERE qtyOrdered < 51;

The LOWERPRICE procedure lowers the price of items with 50 or fewer orders by 10 percent in
the database. For example, part number 3103, the LASER PRINTER, X1, has 40 orders and a
price of 4200.00:
PARTNUM QTYORDERED PRICE
------- -------------------- ------------

 212 20 2500.00
 244 47 3000.00
 255 38 4000.00
 2002 46 1500.00
 405 18 795.00

3103 40 4200.00
 3201 6 525.00
 3205 38 625.00
 3210 7 715.00
...

The invocation of LOWERPRICE lowers the price of this item from 4200.00 to 3780.00:
PARTNUM QTYORDERED PRICE
------- -------------------- ------------

 212 20 2250.00
 244 47 2700.00
 255 38 3600.00
 2002 46 1350.00
 2405 18 715.50

3103 40 3780.00
 3201 6 472.50
 3205 38 562.50
 3210 7 643.50
...

114 Sample SPJs

DAILYORDERS Stored Procedure

Java Method
public static void numDailyOrders(Date date,
 int[] numOrders)
 throws SQLException
{
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getNumOrders =
 conn.prepareStatement("SELECT COUNT(order_date) " +
 "FROM samdbcat.sales.orders " +
 "WHERE order_date = ?");

 getNumOrders.setDate(1, date);
 ResultSet rs = getNumOrders.executeQuery();
 rs.next();
 numOrders[0] = rs.getInt(1);
 rs.close();

 conn.close();
}

CREATE PROCEDURE Statement
CREATE PROCEDURE samdbcat.sales.dailyorders(IN DATE, OUT number INT)
 EXTERNAL NAME 'Sales.numDailyOrders'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CALL Statement to Invoke the SPJ
To invoke the DAILYORDERS procedure in MXCI:
CALL samdbcat.sales.dailyorders(DATE '2003-03-19', ?);

The DAILYORDERS procedure determines the total number of orders on a specified date and returns
this output in MXCI:
NUMBER

 2

--- SQL operation complete.

On March 19, 2003, there were two orders.

MONTHLYORDERS Stored Procedure

Java Method
public static void numMonthlyOrders(int month,
 int[] numOrders)
 throws SQLException
{
 if (month < 1 || month > 12)

 throw new
 SQLException ("Invalid value for month. " +
 "Retry the CALL statement " +
 "using a number from 1 to 12 " +
 "to represent the month.", "38001");
 }

 Connection conn = DriverManager.getConnection("jdbc:default:connection");

Examples of the Sample SPJs 115

 PreparedStatement getNumOrders =
 conn.prepareStatement("SELECT COUNT(month(order_date)) "+
 "FROM samdbcat.sales.orders " +
 "WHERE month(order_date) = ?");

 getNumOrders.setInt(1, month);
 ResultSet rs = getNumOrders.executeQuery();
 rs.next();
 numOrders[0] = rs.getInt(1);
 rs.close();

 conn.close();
}

CREATE PROCEDURE Statement
CREATE PROCEDURE samdbcat.sales.monthlyorders(IN INT, OUT number INT)
 EXTERNAL NAME 'Sales.numMonthlyOrders'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CALL Statement to Invoke the SPJ
To invoke the MONTHLYORDERS procedure in MXCI:
CALL samdbcat.sales.monthlyorders(3,?);

The MONTHLYORDERS procedure determines the total number of orders during a specified month
and returns this output in MXCI:
NUMBER

 4

--- SQL operation complete.

In March, there were four orders.

TOTALPRICE Stored Procedure

Java Method
public static void totalPrice(BigDecimal qtyOrdered,
 String shippingSpeed,
 BigDecimal[] price)
 throws SQLException
{
 BigDecimal shipcharge = new BigDecimal(0);

 if (shippingSpeed.equals("economy"))

 shipcharge = new BigDecimal(1.95);
 }
 else if (shippingSpeed.equals("standard"))

 shipcharge = new BigDecimal(4.99);
 }
 else if (shippingSpeed.equals("nextday"))

 shipcharge = new BigDecimal(14.99);
 }
 else
 {
 throw new
 SQLException ("Invalid value for shipping speed. " +
 "Retry the CALL statement using " +

116 Sample SPJs

 "'economy' for 7 to 9 days," +
 "'standard' for 3 to 5 days, or " +
 "'nextday' for one day.", "38002");

 BigDecimal subtotal = price[0].multiply(qtyOrdered);

 BigDecimal tax = new BigDecimal(0.0825);
 BigDecimal taxcharge = subtotal.multiply(tax);

 BigDecimal charges = taxcharge.add(shipcharge);

 price[0] = subtotal.add(charges);
}

CREATE PROCEDURE Statement
CREATE PROCEDURE samdbcat.sales.totalprice(IN qty NUMERIC(18),
 IN rate VARCHAR(10),
 INOUT price NUMERIC(18,2))
 EXTERNAL NAME 'Sales.totalPrice'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CALL Statement to Invoke the SPJ
To invoke the TOTALPRICE procedure in MXCI:
SET PARAM ?p 10; CALL samdbcat.sales.totalprice(23, 'standard', ?p);

The TOTALPRICE procedure calculates the total price of a purchase and returns this output in MXCI:
PRICE

 253.96

--- SQL operation complete.

The total price of 23 items, which cost $10 each and which are shipped at the standard rate, is
$253.96, including sales tax.

ADJUSTSALARY Stored Procedure

Java Method
public static void adjustSalary(BigDecimal empNum,
 double percent,
 BigDecimal[] newSalary)
 throws SQLException
{
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement setSalary =
 conn.prepareStatement("UPDATE samdbcat.persnl.employee "+
 "SET salary = salary * (1 + (? / 100))" +
 "WHERE empnum = ?");

 PreparedStatement getSalary =
 conn.prepareStatement("SELECT salary " +
 "FROM samdbcat.persnl.employee " +
 "WHERE empnum = ?");

 setSalary.setDouble(1, percent);
 setSalary.setBigDecimal(2, empNum);
 setSalary.executeUpdate();

 getSalary.setBigDecimal(1, empNum);

Examples of the Sample SPJs 117

 ResultSet rs = getSalary.executeQuery();
 rs.next();
 newSalary[0] = rs.getBigDecimal(1);
 rs.close();

 conn.close();
}

CREATE PROCEDURE Statement
CREATE PROCEDURE samdbcat.persnl.adjustsalary(IN empnum NUMERIC(4),
 IN percent FLOAT,
 OUT newsalary NUMERIC(8,2))
 EXTERNAL NAME 'Payroll.adjustSalary'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 MODIFIES SQL DATA;

CALL Statement to Invoke the SPJ
To invoke the ADJUSTSALARY procedure in MXCI:
CALL samdbcat.persnl.adjustsalary(29, 2.5, ?);

The ADJUSTSALARY procedure updates the salary of employee number 29 by 2.5 percent and
returns this output in MXCI:
NEWSALARY

 139400.00

--- SQL operation complete.

The salary of employee number 29 was originally $136,000.00 and became $139,400.00 after
the invocation of ADJUSTSALARY.

EMPLOYEEJOB Stored Procedure

Java Method
public static void employeeJob(int empNum,
 java.lang.Integer[] jobCode)
 throws SQLException
{
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getJobcode =
 conn.prepareStatement("SELECT jobcode " +
 "FROM samdbcat.persnl.employee " +
 "WHERE empnum = ?");

 getJobcode.setInt(1, empNum);
 ResultSet rs = getJobcode.executeQuery();
 rs.next();
 int num = rs.getInt(1);
 if (rs.wasNull())
 jobCode[0] = null;
 else
 jobCode[0] = new Integer(num);
 rs.close();

 conn.close();
}

CREATE PROCEDURE Statement
CREATE PROCEDURE samdbcat.persnl.employeejob(IN empnum INT,
 OUT jobcode INT)
 EXTERNAL NAME 'Payroll.employeeJob(int, java.lang.Integer[])'

118 Sample SPJs

 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CALL Statement to Invoke the SPJ
To invoke the EMPLOYEEJOB procedure in MXCI:
CALL samdbcat.persnl.employeejob(337, ?);

The EMPLOYEEJOB procedure accepts the employee number 337 and returns this output in MXCI:
JOBCODE

 900

--- SQL operation complete.

The job code for employee number 337 is 900.

SUPPLIERINFO Stored Procedure

Java Method
public static void supplierInfo(BigDecimal suppNum,
 String[] suppName,
 String[] streetAddr,
 String[] cityName,
 String[] stateName,
 String[] postCode)
 throws SQLException
{
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getSupplier =
 conn.prepareStatement("SELECT suppname, street, city, "+
 " state, postcode " +
 "FROM samdbcat.invent.supplier " +
 "WHERE suppnum = ?");

 getSupplier.setBigDecimal(1, suppNum);
 ResultSet rs = getSupplier.executeQuery();
 rs.next();
 suppName[0] = rs.getString(1);
 streetAddr[0] = rs.getString(2);
 cityName[0] = rs.getString(3);
 stateName[0] = rs.getString(4);
 postCode[0] = rs.getString(5);
 rs.close();

 conn.close();
}

CREATE PROCEDURE Statement
CREATE PROCEDURE samdbcat.invent.supplierinfo(IN empnum NUMERIC(4),
 OUT suppname CHAR(18),
 OUT address CHAR(22),
 OUT city CHAR(14),
 OUT state CHAR(12),
 OUT zipcode CHAR(10))
 EXTERNAL NAME 'Inventory.supplierInfo'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

Examples of the Sample SPJs 119

CALL Statement to Invoke the SPJ
To invoke the SUPPLIERINFO procedure in MXCI:
CALL samdbcat.invent.supplierinfo(25, ?, ?, ?, ?, ?);

The SUPPLIERINFO procedure accepts the supplier number 25 and returns this output in MXCI:
SUPPNAME ADDRESS CITY STATE ZIPCODE
------------------ ---------------------- -------------- ------------ ----------

Schroeder's Ltd 212 Strasse Blvd West Hamburg RhodeIsland 22222

--- SQL operation complete.

Supplier number 25 is Schroeder's Ltd. and is located in Hamburg, Rhode Island.

SUPPLYNUMBERS Stored Procedure

Java Method
public static void supplyQuantities(int[] avgQty,
 int[] minQty,
 int[] maxQty)
 throws SQLException
{
 Connection conn = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement getQty =
 conn.prepareStatement("SELECT AVG(qty_on_hand), " +
 " MIN(qty_on_hand), " +
 " MAX(qty_on_hand) " +
 "FROM samdbcat.invent.partloc");

 ResultSet rs = getQty.executeQuery();
 rs.next();
 avgQty[0] = rs.getInt(1);
 minQty[0] = rs.getInt(2);
 maxQty[0] = rs.getInt(3);
 rs.close();

 conn.close();
}

CREATE PROCEDURE Statement
CREATE PROCEDURE samdbcat.invent.supplynumbers(OUT avrg INT,
 OUT minm INT,
 OUT maxm INT)
 EXTERNAL NAME 'Inventory.supplyQuantities'
 EXTERNAL PATH '/usr/mydir/myclasses'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 READS SQL DATA;

CALL Statement to Invoke the SPJ
To invoke the SUPPLYNUMBERS procedure in MXCI:
CALL samdbcat.invent.supplynumbers(?, ?, ?);

The SUPPLYNUMBERS procedure returns this output in MXCI:

AVRG MINM MAXM
----------- ----------- -----------

 167 0 1132

--- SQL operation complete.

The average number of items in inventory is 167, the minimum number is 0, and the maximum
number is 1132.

120 Sample SPJs

ORDERSUMMARY Stored Procedure

Java Method
public static void orderSummary(java.lang.String onOrAfter,
 long[] numOrders,
 java.sql.ResultSet[] orders,
 java.sql.ResultSet[] detail)
throws SQLException
{
java.lang.String s;
java.sql.Connection c =
DriverManager.getConnection("jdbc:default:connection");

// Get the number of orders on or after this date
s = " SELECT count(ordernum) FROM sales.orders " +
 " WHERE order_date >= cast(? as date) ";
java.sql.PreparedStatement ps1 = c.prepareStatement(s);
ps1.setString(1, onOrAfter);
java.sql.ResultSet rs = ps1.executeQuery();
rs.next();
numOrders[0] = rs.getLong(1);
rs.close();
// Open a result set for <order num, order info>
rows
s = " SELECT AMOUNTS.*, ORDERS.order_date, EMPS.last_name " +
 " FROM (select o.ordernum, count(d.partnum) as num_parts, " +
 " sum(d.unit_price * d.qty_ordered) as amount " +
 " from sales.orders o, sales.odetail d " +
 " where o.ordernum = d.ordernum " +
 " and o.order_date >= cast(? as date) " +
 " group by o.ordernum) AMOUNTS, " +
 " sales.orders ORDERS, persnl.employee EMPS " +
 " WHERE AMOUNTS.ordernum = ORDERS.ordernum " +
 " AND ORDERS.salesrep = EMPS.empnum " +
 " ORDER BY ORDERS.ordernum ";
java.sql.PreparedStatement ps2 = c.prepareStatement(s);
ps2.setString(1, onOrAfter);
orders[0] = ps2.executeQuery();
// Open a result set for order detail rows
s = " SELECT D.*, P.partdesc " +
 " FROM sales.odetail D, sales.parts P, sales.orders O " +
 " WHERE D.partnum = P.partnum AND D.ordernum = O.ordernum " +
 " AND O.order_date >= cast(? as date) " +
 " ORDER BY D.ordernum ";
java.sql.PreparedStatement ps3 = c.prepareStatement(s);
ps3.setString(1, onOrAfter);
detail[0] = ps3.executeQuery();
}

CREATE PROCEDURE Statement
CREATE PROCEDURE SAMDBCAT.SALES.ORDER_SUMMARY
(IN ON_OR_AFTER_DATE VARCHAR(20) CHARACTER SET ISO88591,
OUT NUM_ORDERS
LARGEINT)
DYNAMIC RESULT SETS 2
EXTERNAL NAME 'SPJMethods.orderSummary(java.lang.String,
long[],java.sql.ResultSet[], java.sql.ResultSet[])'
EXTERNAL PATH '/usr/mydir/myclasses';
LOCATION \ALPINE.$SYSTEM.ZSDCR2C6.L1Z7NW00
LANGUAGE JAVA
PARAMETER STYLE JAVA
READS SQL DATA
NOT DETERMINISTIC

Examples of the Sample SPJs 121

ISOLATE
;
--- SQL operation complete.

CALL Statement to Invoke the SPJ
CALL samdbcat.sales.order_summary('2001-01-01', ?);

The ORDER_SUMMARY procedure accepts the date and returns this output in MXCI:

NUM_ORDERS

 13
ORDERNUM NUM_PARTS AMOUNT Order/Date Last Name
---------- -------------- --------------- ---------- ------------------
 100210 4 19020.00 2003-04-10 HUGHES
 100250 4 22625.00 2003-01-23 HUGHES
 101220 4 45525.00 2003-07-21 SCHNABL
 200300 3 52000.00 2003-02-06 SCHAEFFER
 200320 4 9195.00 2003-02-17 KARAJAN
 200490 2 1065.00 2003-03-19 WEIGL
 .
 .
 .
--- 13 row(s) selected.

Order/Num Part/Num Unit/Price Qty/Ord Part Description
---------- -------- ------------ ---------- ------------------
 100210 2001 1100.00 3 GRAPHIC PRINTER,M1
 100210 2403 620.00 6 DAISY PRINTER,T2
 100210 244 3500.00 3 PC GOLD, 30 MB
 100210 5100 150.00 10 MONITOR BW, TYPE 1
 100250 6500 95.00 10 DISK CONTROLLER
 100250 6301 245.00 15 GRAPHIC CARD, HR
 .
 .
 .
--- 70 row(s) selected
--- SQL operation complete.

122 Sample SPJs

Index

Symbols
-Dsqlmx.udr.extensions option, 43
-Dsqlmx.udr.jrehome option, 40

A
ADJUSTSALARY procedure

creating, 18, 112, 118
invoking, 118

adjustSalary() method
code for, 110, 117
description of, 109
example of, 18

ALL_UIDS system metadata table, 22
Altering SPJs

altering, 68
Application class loader

See System class loader, 28
Application classes

description of, 30
in a distributed database environment, 100

Argument list, CALL statement, 73
Array, output parameter, 50
AUTOCOMMIT setting, 72

B
Backing up SPJs

backing up, 97
Bootstrap class loader, 28

C
CALL operator, 102
CALL statement

argument list, 73
description of, 72
dynamic execution, 77
execution plan, 102
restrictions, 71
shape, 103
static execution, 76
transaction behavior, 71

Calling SPJs
See Invoking SPJs, 71

Character sets, supported as SQL parameters
character sets, 63

Class file path, 66
Class loaders

copies of Java classes in, 31
description of, 28
in an SQL/MX UDR server process, 28

Class path, setting, 43
CLASSPATH environment variable, 45
COLS system metadata table, 22
Compilation, Java

compilation of, 58
Compressed Java signature, 65

CONTAINS SQL clause, 67
CONTROL QUERY SHAPE statement, 104
CREATE PROCEDURE statement, 96

description of, 59
examples of;, 111

createprocs.sql, 111
Creating SPJs, 21, 59
see also Registering SPJs[Creating SPJs:000]

D
DAILYORDERS procedure

creating, 112, 115
invoking, 115

Data types, 50, 62, 63
conversion of parameter arguments, 73

Database objects, referring to, 55
DISPLAY_EXPLAIN command, 102
Displaying information about SPJs

displaying information about, 88
Distributed database environment considerations, 98
DROP PROCEDURE statement, 68
Dropping SPJs, 67
Dynamic CALL statement, 77

argument lists, 79

E
EMPLOYEEJOB procedure

creating, 112, 118
invoking, 119

employeeJob() method
code for, 110, 118
description of, 109

Environment variables
CLASSPATH, 45
JREHOME, 40, 41

Error messages, finding, 101
Exceptions, handling, 57
EXECUTE privilege, 83
Execution plan, CALL statement, 102
EXPLAIN function, 102
Extension class loader, 28
Extension classes

description of, 28
required permissions, 48

External name
changes to, 69
description of, 64

External path
changes to, 68
description of, 66
specifying a remote node, 99

G
GRANT EXECUTE statement, 83
GRANT statement, 83
Grantee, displaying information about, 90

123

Granting privileges on an SPJ, 83
Grantor, displaying information about, 90

I
IN parameter mode, 61
IN parameters, 73
Initialization, SPJ environment, 26
INOUT parameter mode, 61
INOUT parameters, 74
Input descriptors

input and output descriptors, 77
Internal SPJ, registering an SPJ, 21
Internal type signature

Compressed Java signature, 65
Inventory class, 110
Invoking SPJs

description of, 71
embedded SQL program in C, C++, or COBOL, 76,

77
examples of, 113
internal process, 22
JDBC/MX program, 81
MXCI, 74
ODBC/MX client, 80
privileges, 83
restrictions, 71
transaction behavior, 71

J
JAR file path, 66
JAR files, installing, 46
Java classes, 58

accessible to an SPJ, 29
altering, 68
copying to a remote node, 98
effects of changes to, 30
loading, 28

Java compilation, 58
Java data types

Java, 50, 63
Java environment

SPJ environment, 24
Java exceptions, handling, 57
Java library path for SPJs, 35
Java method

SPJ method, 49
Java security, 46
Java signature

changes to, 70
compressed, 65
description of, 64
restrictions, 49

Java variables, static, 52
Java virtual machine (JVM)

invoking an SPJ, 22
registering an SPJ, 21

java.sql.Types, 81
JDBC data types, 81
JDBC Driver for SQL/MX

See JDBC/MX driver, 33
JDBC/MX driver

description of, 33
required permissions, 48
verifying the version, 34

JDBC/MX JAR file, 36
JDBC/MX location, setting, 42
JDBC/MX native library, 35
JDBC/MX-based Java method, 24
see also SPJ method[JDBC/MX method:000]
example of, 54
processing, 24

jdbcMx.jar file, 36
jdbcmx.transactionMode property, 72
JREHOME location

environment variable, 41
setting, 35, 40

JVM startup options, setting;SPJ environment
configuring, 36

L
libjdbcMx.so library, 35
LOCATION clause, 67
LOWERPRICE procedure

creating, 114
invoking, 114

lowerPrice() method
code for, 108, 113
description of, 107

M
main() method, 52
Method attributes, 59
MODIFIES SQL DATA clause, 67
MONTHLYORDERS procedure

creating, 112, 116
invoking, 116

Multithreading, 27
MXCMP process, registering an SPJ, 21
MXUDR

SQL/MX UDR server, 23

N
Named parameter, 75
Nesting SPJs, 53
NO SQL clause, 67
Nonblocking JDBC/MX, 27
NonStop Server for Java

description of, 33
specifying for SPJs, 35
verifying the version, 34

Nowait SQL/MX
Nonblocking JDBC/MX, 27

Nulls, input and output, 52
numDailyOrders() method

code for, 108, 115
description of, 107

numMonthlyOrders() method
code for, 108, 115

124 Index

description of, 107

O
OBEY command files, 94
OBJECTS system metadata table, 22
ODBC/MX client

invoking SPJs, 80
setting JREHOME, 40
setting the class path, 44

OUT parameter mode, 61
OUT parameters, 74
Output descriptors, 77
Output parameter array, 50
Output parameter, SPJ method, 50
Overloading of procedure names

overloading of, 61
Ownership, displaying information about, 90

P
Parameter array, 50
Parameter descriptors, retrieving information about, 79
Parameter mode, IN, OUT, or INOUT, 61
Parameters, SQL

See SQL parameters, 73
SQL parameters, 61

Payroll class, 109
Performance tips, 101
Privileges

displaying information about, 89
for creating SPJs, 59
for dropping SPJs, 67
for invoking SPJs, 83
granting, 83
on referenced database objects, 84
revoking, 85

Procedure label
creation of, 22
effect of creating an SPJ, 59
effect of dropping an SPJ, 67
naming, 66
showing the location, 91

Procedure names, 61
description of, 60

Pure Java method, 23
see also SPJ method

R
READS SQL DATA clause, 67
Regenerating CREATE PROCEDURE statements

regenerating, 96
Registering SPJs, 21
see also Creating SPJs[Registering SPJs:000]

registerOutParameter() method, 81
Reinitialization, SPJ environment, 27
Remote node

copying Java classes to, 98
specifying in the external path, 99

REPLICAS system metadata table, 22
Requirements, software, 32

Result set, 51
REVOKE EXECUTE statement, 85
REVOKE statement, 85
Revoking privileges from an SPJ, 85
ROUTINES system metadata table, 22
Rowsets, 71

S
Sales class, 107
Sample SPJs, installing, 105
SampleSPJs.jar, 105
Security, SPJ environment, 46
Shape, for a CALL statement, 103
SHOWDDL command, 92
SHOWSHAPE command, 103
Signature, Java see Java signature
Software product versions

description of, 32
verification of, 33

Software requirements, 32
SPJ

See Stored procedure in Java (SPJ), 17
SPJ class loader, 28
see also Class loaders[SPJ class loader:000]

SPJ classes see Java classes
SPJ environment

description of, 24
diagram of, 24
initialization, 26
reinitialization, 27
security, 46

SPJ method, 53, 57
see also JDBC/MX-based Java method
see also Pure Java method
see also SQLJ-based Java method
accessing SQL/MP and SQL/MX databases, 53
examples of, 106
external path, 66
guidelines for writing, 49
naming in a CREATE PROCEDURE statement, 64
referring to database objects, 55
required permissions, 48
signature in a CREATE PROCEDURE statement, 64
signature restrictions, 49
types of, 23, 53

SPJ policy file; mxlangman policy file;Policy file, 47
SQL access modes, 67
SQL data types

SQL, 62
SQL parameters, 63

in a CALL statement, 73
in a CREATE PROCEDURE statement, 61

SQL syntax, SPJ, 92
SQL/MP database objects, referring to, 55
SQL/MX data types, 50, 63
SQL/MX database objects, referring to, 55
SQL/MX language manager, required permissions, 47
SQL/MX UDR server

accessing Java classes, 29

125

diagram of, 24
initialization, 26
invoking an SPJ, 23
loading Java classes, 28
registering an SPJ, 21
server process, 25

SQLException, 57
Static CALL statement, 76
Static Java variables, 52
Stored procedure in Java (SPJ), 68, 88, 97

argument list, 73
benefits of, 19
description of, 17
granting privileges on, 83
invoking, 22, 71
naming, 60
on systems running H-series RVUs, 35
registering, 21, 59
revoking privileges from, 85
SQL/MX processing of, 21, 23
steps for using, 18
syntax, 92

Stored procedure result set, 51
SUPPLIERINFO procedure

creating, 112, 119
invoking, 120

supplierInfo() method
code for, 111, 119
description of, 110

SUPPLYNUMBERS procedure
creating, 112, 120
invoking, 120

supplyQuantities() method
code for, 111, 120
description of, 110

Surrogate file see Procedure label
Syntax, SPJ, 92
System class loader, 28
System classes

description of, 28
required permissions, 48

System.err.println() method, 57
System.out.println() method

printing output, 57
SYSTEM_SQLJ_SCHEMA schema, 21

T
TBL_PRIVILEGES system metadata table, 22
TEXT system metadata table, 22
throw statement, 57
TOTALPRICE procedure

creating, 112, 117
invoking, 117

totalPrice() method
code for, 109, 116
description of, 107

Transaction behavior, 71
transactionMode property, 72
Troubleshooting guidelines, 101

Types data types, 81

U
UDR extensions class path, 36, 42
UDR_JAVA_OPTIONS default attribute

description of, 36
multiple settings, 39
performance considerations, 40
setting in a CONTROL QUERY DEFAULT statement, 37
setting in the SYSTEM_DEFAULTS table, 36
unique settings, 39

Unnamed parameter, 75
User-defined exceptions, 57

V
VALIDATEROUTINE, 21
Versions

See Software product versions, 32

W
WITH GRANT OPTION privilege, 83

126 Index

	HP NonStop SQL/MX Release 3.2.1 Guide to Stored Procedures in Java
	Contents
	About This Manual
	Supported Release Version Updates (RVUs)
	Audience
	Related Documentation
	New and Changed Information
	Changes to the 540433-001 Manual

	Document Organization
	Examples in This Manual
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces

	Change Bar Notation
	Publishing History
	HP Encourages Your Comments

	1 Introduction
	What Is an SPJ?
	How Do I Use SPJs?
	Benefits of SPJs
	Java Methods Callable From NonStop SQL/MX
	Common Packaging Technique
	Security
	Increased Productivity
	Portability

	SPJs in NonStop SQL/MX
	Effect of Registering an SPJ
	Effect of Invoking an SPJ
	Invoking Different Types of SPJs
	Pure Java Method
	JDBC/MX-Based Java Method

	The SPJ Environment
	SQL/MX UDR Server Process
	Single SQL/MX UDR Server Process Per Connection
	Multiple SQL/MX UDR Server Processes Per Connection
	Conditions Causing Initialization of an SPJ Environment
	Conditions Preventing Initialization of an SPJ Environment
	Reinitialization of the SPJ Environment

	Multithreading in an SPJ Environment
	Class Loaders in an SPJ Environment
	Application Classes That an SPJ Can Access
	Accessing Application Classes in the External Path
	Accessing Application Classes Outside the External Path

	Maintaining Class and JAR Files in an SPJ Environment
	Updating the Java Class Files of an SPJ Method
	Updating the Java Class Files of a Referenced Application Class

	2 Getting Started
	Software Requirements
	NonStop Server for Java
	JDBC/MX Driver

	Verifying Software Versions
	Verifying the SQL/MX UDR Server
	Verifying the NonStop Server for Java
	Verifying the JDBC/MX Driver

	Configuring the SPJ Environment on Systems Running H-Series RVUs
	JREHOME Setting for the NonStop Server for Java
	Java Library Path for the JDBC/MX Native Library
	UDR Extensions Class Path for the JDBC/MX JAR File

	Controlling JVM Startup Options
	JVM Startup Options for All Processes on a Node
	Scope of JVM Startup Options in the SYSTEM_DEFAULTS Table
	Precedence of JVM Startup Options
	Displaying the UDR_JAVA_OPTIONS in Effect for a Node

	JVM Startup Options for Each SPJ Caller
	Scope of JVM Startup Options in an SPJ Method
	Scope of JVM Startup Options in Statically Compiled Applications
	Scope of JVM Startup Options in Dynamically Compiled Applications
	Scope of JVM Startup Options in an MXCI Session
	Displaying the UDR_JAVA_OPTIONS in Effect for an MXCI Session

	Using Multiple UDR_JAVA_OPTIONS Settings in One Application
	Determining the Uniqueness of UDR_JAVA_OPTIONS Settings
	Performance Considerations of Using Multiple UDR_JAVA_OPTIONS Settings

	Setting the JREHOME Location
	Setting JREHOME by Using UDR_JAVA_OPTIONS
	Scope of JREHOME in UDR_JAVA_OPTIONS
	Precedence of JREHOME in UDR_JAVA_OPTIONS

	Setting the JREHOME Environment Variable
	Scope of the JREHOME Environment Variable
	Precedence of the JREHOME Environment Variable
	Setting JREHOME in the OSS Environment
	Setting JREHOME in the Guardian Environment

	Setting the JDBC/MX Location
	UDR Extensions Class Path
	Setting the JDBC/MX Location by Using UDR_JAVA_OPTIONS
	Scope of the JDBC/MX Location in UDR_JAVA_OPTIONS
	Precedence of the JDBC/MX Location in UDR_JAVA_OPTIONS

	Setting the Class Path
	Setting the Class Path by Using UDR_JAVA_OPTIONS
	Scope of the Class Path in UDR_JAVA_OPTIONS
	Precedence of the Class Path in UDR_JAVA_OPTIONS

	Setting the CLASSPATH Environment Variable
	Scope of the CLASSPATH Environment Variable
	Precedence of the CLASSPATH Environment Variable
	Setting CLASSPATH in the OSS Environment
	Setting CLASSPATH in the Guardian Environment

	Setting the JVM extensions location
	Setting the JVM extensions location by Using UDR_JAVA_OPITIONS

	Installing JAR Files in NonStop SQL/MX
	Establishing Java Security
	Using UDR_JAVA_OPTIONS to Enable Java Security
	SPJ Policy File and Required Permissions
	Permissions for the SQL/MX Language Manager
	Permissions for the JDBC/MX Driver
	Permissions for the Java System and Extension Classes
	Permissions for the SPJ Method

	3 Writing SPJ Methods
	Guidelines for Writing SPJ Methods
	Signature of the Java Method
	Public Access and Static Modifiers
	Void Return Type
	Java Parameters

	Returning Output Values From the Java Method
	Using Arrays for Output Parameters
	Type Mapping of Output Parameters
	Stored Procedure Result Sets

	Using the main() Method
	Null Input and Output
	Static Java Variables
	Nested Java Method Invocations

	Accessing SQL/MP and SQL/MX Databases
	Use of java.sql.Connection Objects
	JDBC/MX-Based Java Method
	Referring to Database Objects in an SPJ Method
	Object Name Qualification Before NonStop SQL/MX Release 2.1.1
	Object Name Qualification in NonStop SQL/MX Release 2.1.1 and Later

	Exception Handling

	Handling Java Exceptions
	User-Defined Exceptions

	Writing Data to a File or Terminal
	Compiling Java Classes

	4 Registering SPJs in NonStop SQL/MX
	Creating an SPJ
	Required Privileges for Creating an SPJ
	Effect of Creating an SPJ

	Using the CREATE PROCEDURE Statement
	Naming the Stored Procedure
	Specifying SQL Parameters
	Parameter Mode
	SQL Identifier
	SQL Data Type
	Character String Parameters and Character Sets

	Specifying the Maximum Number of Result Sets
	Specifying the SPJ Method
	Java Method Name
	Java Method Signature

	Specifying the External Path
	Package Consideration
	Example of a Class File Path
	Example of a JAR File Path

	Naming the Procedure Label
	Specifying an SQL Access Mode

	Dropping an SPJ
	Required Privileges for Dropping an SPJ
	Effect of Dropping an SPJ
	Using the DROP PROCEDURE Statement

	Altering an SPJ and Its Java Class
	Changes to the External Path
	Changes to the External Name
	Changes to the Java Signature

	5 Invoking SPJs in NonStop SQL/MX
	Calling an SPJ
	Required Privileges for Calling an SPJ
	Effect of Calling an SPJ
	Transaction Behavior
	Transaction Statements or Methods in an SPJ Method
	Committing or Rolling Back a Transaction
	Effect of the jdbcmx.transactionMode Property

	Using the CALL Statement
	Specifying the Name of the SPJ
	Listing the Arguments of the SPJ
	Data Conversion of Parameter Arguments
	Input Parameter Arguments
	Output Parameter Arguments

	Invoking SPJs in MXCI
	Using MXCI Named Parameters
	Using MXCI Unnamed Parameters
	Using MXCI with SPJ RS

	Invoking SPJs Statically in an Embedded SQL Program in C, C++, or COBOL
	Invoking SPJs Dynamically in an Embedded SQL Program in C, C++, or COBOL
	Input and Output Descriptors
	Formal and Actual Parameters
	Number of Entries in Input and Output Descriptors
	Example of Using Input and Output Descriptors

	Argument Lists

	Invoking SPJs in a NonStop ODBC/MX Client
	Invoking SPJs in a JDBC/MX Program
	Invoking SPJs in a Trigger

	6 Managing SPJs in NonStop SQL/MX
	Granting Privileges for Invoking SPJs
	Granting Privileges on an SPJ
	Granting Privileges on Referenced Database Objects
	Revoking Privileges on an SPJ

	Displaying Information About SPJs
	Listing the SPJs in a Catalog
	Showing Privileges on the SPJs
	Interpreting Ownership and Grantor Informationntor Information
	Interpreting Privileges Information

	Showing the Procedure Label
	Showing the Procedure Label of One SPJ
	Showing the Procedure Labels of All SPJs in a Catalog

	Showing the Syntax of an SPJ
	Using the SHOWDDL Command
	Output of the SHOWDDL Command
	Output of the SHOWDDL Command of an SPJ with Result Sets

	Keeping SPJ Statements in OBEY Command Files
	OBEY Command Files
	CREATE PROCEDURE Statements in an OBEY Command File
	DROP PROCEDURE Statements in an OBEY Command File
	GRANT EXECUTE Statements in an OBEY Command File
	REVOKE EXECUTE Statements in an OBEY Command File

	Regenerating CREATE PROCEDURE Statements

	Backing Up SPJs
	Using SPJs in a Distributed Database Environment
	Copying Java Classes to the Remote Node
	Advantages of Copying the Java Classes
	Disadvantages of Copying the Java Classes

	Specifying the Node in the External Path
	Advantages of Specifying the Node
	Disadvantages of Specifying the Node

	Distributing Application Classes

	7 Performance and Troubleshooting
	Troubleshooting SPJ Problems
	Performance Tips
	Displaying an Execution Plan for a CALL Statement
	Using the DISPLAY_EXPLAIN Command
	Using the EXPLAIN Function
	Using the EXPLAIN function with SPJ RS

	Displaying the Shape of a CALL Statement
	CALL Statements Without a Shape
	CALL Statements With a Shape

	A Sample SPJs
	Using Sample SPJs
	Installing the SampleSPJs.jar File
	Installing the SQL/MX Sample Database

	Class Files and Java Methods
	Sales Class
	Payroll Class
	Inventory Class

	The createprocs.sql File
	Examples of the Sample SPJs
	LOWERPRICE Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	DAILYORDERS Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	MONTHLYORDERS Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	TOTALPRICE Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	ADJUSTSALARY Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	EMPLOYEEJOB Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	SUPPLIERINFO Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	SUPPLYNUMBERS Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	ORDERSUMMARY Stored Procedure
	Java Method
	CREATE PROCEDURE Statement
	CALL Statement to Invoke the SPJ

	Index

