
HP NonStop TMF
Application
Programmer’s Guide
Abstract

This manual describes how to design requester modules and server modules that run
in the HP NonStop™ Transaction Management Facility (TMF) programming
environment on HP NonStop servers, and how to use the TMF audit-reading
procedures. It discusses features and operations available with the TMF 3.7 product.

Product Version

TMF H01

Supported Releases

This manual supports J06.03 and all subsequent J-series RVUs and H06.06 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Part Number Published

540139-009 February 2014

Document History
Part Number Product Version Published

540139-002 TMF H01 November 2005

540139-003 TMF H01 April 2006

540139-004 TMF H01 February 2009

540139-006 TMF H01 August 2010

540139-007 TMF H01 February 2012

540139-008 TMF H01 February 2013

540139-009 TMF H01 February 2014

Legal Notices
 Copyright 2005, 2014 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

HP NonStop TMF Application
Programmer’s Guide
Index Examples Figures Tables
Legal Notices

What’s New in This Manual vii

Manual Information vii

New and Changed Information viii

About This Manual xiii

Who Should Read This Manual xiii

How this Manual is Organized xiii

About the TMF Library xiii

Related Manuals xiii

Notation Conventions xiv

HP Encourages Your Comments xvii

1. TMF Programming Environment
The TMF Transaction 1-2

Defining a Transaction 1-2

Initiating a Transaction 1-3

Committing a Transaction 1-4

Aborting a Transaction 1-4

Heterogeneous Transaction Processing 1-5

The Requester/Server Model 1-6

The Current Transaction 1-7

The Nil State 1-8

The Current Transaction Identifier 1-8

Excluding a Server from a TMF Transaction 1-8

Setting the Current Transaction to Nil 1-10

Marking an OPEN to Not Share a Transaction Identifier 1-10

Consistency and Concurrency 1-11

Achieving Maximum Consistency 1-11

Levels of Consistency 1-12

Enscribe Capabilities 1-14
 Hewlett-Packard Company—540139-009
i

Contents 2. Designing Single-Threaded Processes
2. Designing Single-Threaded Processes
Single-Threaded Requesters 2-1

Applicable System and TMF Procedures 2-1

Delegating Work to Servers 2-2

Terminating Transactions 2-3

Checkpointing Strategy 2-6

Single-Threaded Servers 2-11

Applicable System Procedures 2-11

Opening $RECEIVE 2-12

Matching Each READUPDATE With a REPLY 2-12

WRITEREAD to Another Server 2-13

The Use and Implications of ABORTTRANSACTION 2-13

The Implications of REPLY 2-14

NonStop Servers 2-14

Guarantees to Servers 2-15

Context-Sensitive Servers 2-15

3. Designing Multithreaded Processes
Multithreaded Requesters 3-1

Opening the TFILE 3-1

Manipulating the Current Transaction 3-2

Nowait ENDTRANSACTION Calls 3-3

Checkpointing Strategy 3-3

Multithreaded Servers 3-12

Opening $RECEIVE 3-12

Manipulating the Current Transaction 3-13

Replying to Requesters 3-13

NonStop Servers 3-13

Multithreaded Requester/Server Processes 3-14

4. File System Procedures
ABORTTRANSACTION 4-3

ACTIVATERECEIVETRANSID 4-5

BEGINTRANSACTION 4-7

BEGINTRANSACTION_EXT_ 4-10

COMPUTETRANSID 4-12

ENDTRANSACTION 4-15

GETTMPNAME 4-17

GETTRANSACTIONDETAILS 4-19
HP NonStop TMF Application Programmer’s Guide—540139-009
ii

Contents 5. TMF ARLIB2 Audit-Reading Procedures
GETTRANSID 4-24

GETTRANSINFO 4-26

INTERPRETTRANSID 4-28

RESUMETRANSACTION 4-31

STATUSTRANSACTION 4-34

TEXTTOTRANSID 4-37

TMF_BEGINTAG_FROM_TXHANDLE_ 4-40

TMF_GETTXHANDLE_ 4-43

TMF_GET_EXTTRANSID_ 4-44

TMF_GET_TX_ID_ 4-46

TMF_JOIN_ 4-48

TMF_JOIN_EXT_ 4-50

Usage Considerations 4-51

TMF_RESUME_ 4-53

TMF_SETTXHANDLE_ 4-55

TMF_SUSPEND_ 4-57

TMF_SUSPEND_EXT_ 4-59

TMF_TXBEGIN_ 4-61

TMF_TXHANDLE_FROM_BEGINTAG_ 4-63

TRANSIDTOTEXT 4-65

TMF_VERSION_EXT_ 4-67

5. TMF ARLIB2 Audit-Reading Procedures
ARLIB2 Compared to ARLIB 5-2

Cursors 5-3

Cursor Declaration 5-3

Cursor Positioning 5-5

Restoring Audit-Trail Files From Audit Dumps 5-5

Retrieving Information From Audit Records 5-6

Error Reporting 5-7

Return Codes 5-7

Messages Printed to the Operator Terminal 5-7

Procedural Retrieval of Message Text 5-8

Audit Compression 5-8

Enscribe 5-8

NonStop SQL/MP 5-8

Reading Active Audit Files 5-9

Reading a Range of Audit-Trail Files 5-10

Reading a Merged Audit Trail With a MERGE Cursor 5-11
HP NonStop TMF Application Programmer’s Guide—540139-009
iii

Contents 5. TMF ARLIB2 Audit-Reading Procedures
Reading a Merged Audit Trail Without a MERGE Cursor 5-12

Reading Audit Records for SQL/MX Objects 5-13

Distributed Transactions 5-13

Auxiliary Audit Trails 5-16

Subset Audit Records 5-16

NonStop SQL/MP Internal Field Formats 5-17

Field Alignment 5-17

Variable-Length Character (VARCHAR) Fields 5-18

DATETIME and INTERVAL Fields 5-19

Null Fields 5-19

Audit Records 5-20

Record Types 5-20

Record Formats 5-21

Field Descriptions 5-29

Procedure Calls 5-33

ARCLOSE 5-36

ARCOMPLETEIO 5-37

ARFETCHAFTERIMAGE 5-38

ARFETCHAUXPOINTER 5-40

ARFETCHBEFOREIMAGE 5-41

ARFETCHCHILDNODELIST 5-42

ARFETCHFIELDVALUE 5-43

ARFETCHFRAGMENT 5-46

ARFETCHMXAFTERDATA 5-48

ARFETCHMXAFTERDATA2 5-51

ARFETCHMXBEFOREDATA 5-54

ARFETCHMXBEFOREDATA2 5-57

ARFETCHRECORDKEY 5-60

ARGETANSINAME 5-62

ARGETAUDRECHEADERINFO 5-66

ARGETFIELDINFO 5-67

ARGETMESSAGELINE 5-71

ARGETMXCOLUMNINFO 5-73

ARGETNETWORKRECS 5-78

ARGETNONDATACHNGRECS 5-79

ARGETRECADDR 5-80

ARGETRECADDR64 5-83

AROPEN 5-86

ARPOSITION 5-89
HP NonStop TMF Application Programmer’s Guide—540139-009
iv

Contents Index
ARPOSITION2 5-92

ARPRINTMESSAGE 5-94

ARREAD 5-95

ARSETOPTIONS 5-97

ARSTART 5-99

ARSTOP 5-101

ARSTOPNETWORKRECS 5-102

ARSTOPNONDATACHNGRECS 5-103

Error Codes 5-104

How to Include Audit Reading in an Application 5-111

Use of AWAITIOX 5-112

Index

Examples
Example 5-1. IMAGEINFO and COLUMNINFO Definitions 5-76

Figures
Figure 2-1. Checkpointing Within Single-threaded Requesters 2-9

Figure 3-1. The Flow of an Individual Thread 3-6

Figure 3-2. Multithreaded Requester Flow Chart 3-7

Figure 3-3. Multithreaded Requester; Detailed Functionality 3-8

Figure 5-1. Basic Parent-Child Relationship 5-14

Figure 5-2. Layered Offspring Relationships 5-15

Tables
Table 1-1. Enscribe Locking Modes 1-16

Table 2-1. WRITEREAD Error Numbers 2-2

Table 2-2. Unilateral Abort Error Numbers 2-5

Table 5-1. RECTYPE Constants 5-20

Table 5-2. TMF Audit-Reading Procedures 5-33

Table 5-3. Error Codes by Class 5-104

Table 5-4. Subsystem Codes 5-108

Table 5-5. Errors returned in case return-code is -1000 5-108

Table 5-6. Files Supplied With TMFARLB2 (T2781) 5-112
HP NonStop TMF Application Programmer’s Guide—540139-009
v

Contents
HP NonStop TMF Application Programmer’s Guide—540139-009
vi

What’s New in This Manual

Manual Information
HP NonStop TMF Application Programmer’s Guide

Abstract

This manual describes how to design requester modules and server modules that run
in the HP NonStop™ Transaction Management Facility (TMF) programming
environment on HP NonStop servers, and how to use the TMF audit-reading
procedures. It discusses features and operations available with the TMF 3.7 product.

Product Version

TMF H01

Supported Releases

This manual supports J06.03 and all subsequent J-series RVUs and H06.06 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Document History

Part Number Published

540139-009 February 2014

Part Number Product Version Published

540139-002 TMF H01 November 2005

540139-003 TMF H01 April 2006

540139-004 TMF H01 February 2009

540139-006 TMF H01 August 2010

540139-007 TMF H01 February 2012

540139-008 TMF H01 February 2013

540139-009 TMF H01 February 2014
HP NonStop TMF Application Programmer’s Guide—540139-009
vii

What’s New in This Manual New and Changed Information
New and Changed Information

Changes to the H06.28/J06.17 Manual

 Added a Note for the following procedure:

 ARLIB2 Compared to ARLIB on page 5-2.

Changes to the H06.26/J06.15 Manual

 Added the procedure GETTRANSACTIONDETAILS on page 4-19.

 Added the procedure TMF_VERSION_EXT_ on page 4-67.

Changes to the H06.24/J06.13 Manual

 Added the procedure TMF_GET_EXTTRANSID_ on page 4-44.

 Added the 64 bit syntax for the following procedures:

 BEGINTRANSACTION on page 4-7

 BEGINTRANSACTION_EXT_ on page 4-10

 COMPUTETRANSID on page 4-12

 GETTMPNAME on page 4-17

 GETTRANSID on page 4-24

 GETRANSINFO on page 4-26

 INTERPRETTRANSID on page 4-28

 STATUSTRANSACTION on page 4-34

 TEXTTOTRANSID on page 4-37

 TMF_BEGINTAG_FROM_TXHANDLE_ on page 4-40

 TMF_GETTXHANDLE_ on page 4-43

 TMF_GET_TX_ID_ on page 4-46

 TMF_JOIN_EXT_ on page 4-50

 TMF_SETTXHANDLE_ on page 4-55

 TMF_SUSPEND_ on page 4-57

 TMF_SUSPEND_EXT_ on page 4-59

 TMF_TXBEGIN_ on page 4-61

 TMF_TXHANDLE_FROM_BEGINTAG_ on page 4-63
HP NonStop TMF Application Programmer’s Guide—540139-009
viii

What’s New in This Manual Changes to the H06.24/J06.13 Manual
 TRANSIDTOTEXT on page 4-65

 Added a Note for the following procedures:

 ABORTTRANSACTION on page 4-3

 ACTIVATERECEIVETRANSID on page 4-5

 ENDTRANSACTION on page 4-15

 TMF_JOIN_ on page 4-48

 TMF_RESUME_ on page 4-53

 Added new parameters for the following procedures:

 ARCLOSE on page 5-35

 ARFETCHFIELDVALUE on page 5-42

 ARFETCHMXAFTERDATA on page 5-47

 ARFETCHMXAFTERDATA2 on page 5-50

 ARFETCHMXBEFOREDATA on page 5-53

 ARFETCHMXBEFOREDATA2 on page 5-56

 ARGETANSINAME on page 5-61

 ARGETFIELDINFO on page 5-66

 ARGETMXCOLUMNINFO on page 5-72

 ARGETRECADDR on page 5-79

 ARGETRECADDR64 on page 5-82

 AROPEN on page 5-85

 ARPOSITION on page 5-88

 ARPOSITION2 on page 5-91

 ARREAD on page 5-94

 ARSTOP on page 5-100

 Updated the meaning for the error code -1000 in Table 5-3, Error Codes by Class,
on page 5-103.

 Added the following tables:

 Table 5-4, Subsystem Codes, on page 5-107

 Table 5-5, Errors returned in case return-code is -1000, on page 5-107
HP NonStop TMF Application Programmer’s Guide—540139-009
ix

What’s New in This Manual Changes to the H06.21/J06.10 Manual
Changes to the H06.21/J06.10 Manual

 Supported release statements have been updated to include J-series RVUs.

 Added the following procedures:

 BEGINTRANSACTION_EXT_ on page 4-10

 GETTRANSINFO on page 4-26

 TMF_JOIN_EXT_ on page 4-50

 TMF_SUSPEND_EXT_ on page 4-59

 Updated the description of UPDATE (10) on page 5-27.

 Updated the parameters of the following procedures:

 ARFETCHAFTERIMAGE on page 5-37

 ARFETCHBEFOREIMAGE on page 5-40

 ARFETCHCHILDNODELIST on page 5-41

 ARFETCHFIELDVALUE on page 5-43

 ARFETCHMXAFTERDATA on page 5-47

 ARFETCHMXAFTERDATA2 on page 5-50

 ARFETCHMXBEFOREDATA on page 5-53

 ARFETCHMXBEFOREDATA2 on page 5-56

 ARFETCHRECORDKEY on page 5-59

 ARGETANSINAME on page 5-62 and on page 5-63

 ARGETFIELDINFO on page 5-66, page 5-67, and page 5-68

 ARGETMESSAGELINE on page 5-70 and on page 5-71

 ARGETMXCOLUMNINFO on page 5-72

 ARGETRECADDR on page 5-79

 ARGETRECADDR64 on page 5-82

 AROPEN on page 5-85

 ARREAD on page 5-94

 Added a new parameter, next-field, under ARFETCHFIELDVALUE on page
5-43.

 Added a new parameter, guardian-name-length, under ARGETANSINAME on
page 5-62.

 Added the following parameters under ARGETFIELDINFO:
HP NonStop TMF Application Programmer’s Guide—540139-009
x

What’s New in This Manual Changes in the earlier version of the Manual
 flags on page 5-68

 collation-def on page 5-68

 Changed ARGETNONDATACHANGERECS to ARGETNONDATACHNGRECS on
page 5-78.

 Added a new parameter, return-TypeFlags, under ARSETOPTIONS on page
5-97.

 Added the following error codes in Table 5-3, Error Codes by Class on page 5-94:

 -903

 -904

 -905

 Updated the example in the How to Include Audit Reading in an Application on
page 5-110.

 Added information about using the ZCLIDLL and ZCLIPDLL DLLs with the
TMFARLB2 product on page 5-110.

Changes in the earlier version of the Manual

This is the third edition of the HP NonStop TMF Application Programmer’s Guide.
It has been updated to support the H06.04 release version update (RVU) of the TMF
product, and to correct and clarify elements in the previous edition. The changes are
indicated with change bars under these topics:

 Unilateral Aborts on page 2-4

 The Transaction Pseudofile (TFILE) on page 2-6

 Placement of Checkpoints on page 2-7

 Opening the TFILE on page 3-1
HP NonStop TMF Application Programmer’s Guide—540139-009
xi

What’s New in This Manual Changes in the earlier version of the Manual
HP NonStop TMF Application Programmer’s Guide—540139-009
xii

About This Manual
This manual also shows how to design requesters and servers to run effectively in that
environment and describes a set of procedures that you can use to examine the
contents of a TMF audit trail.

Who Should Read This Manual
This manual is intended for persons who design requester/server modules that run in
the TMF 3.6 programming environment.

How this Manual is Organized
Section 1, TMF Programming Environment, provides an overview of the TMF
programming environment.

Section 2, Designing Single-Threaded Processes, describes how to design single-
threaded requesters and servers.

Section 3, Designing Multithreaded Processes, describes how to design multithreaded
requesters and servers.

Section 4, File System Procedures, presents the syntax descriptions of those file-
system procedures that apply specifically to TMF.

Section 5, TMF ARLIB2 Audit-Reading Procedures, describes the audit-reading
procedures.

About the TMF Library
This manual is part of the TMF library of manuals, which also includes the following
manuals:

 TMF Introduction

 TMF Reference Manual

 TMF Operations and Recovery Guide

 TMF Planning and Configuration Guide

 TMF Management Programming Manual

 TMF Glossary

Related Manuals
Other manuals that provide information about how TMF interfaces to HP software
products are:
HP NonStop TMF Application Programmer’s Guide—540139-009
xiii

About This Manual Notation Conventions
 Introduction to Data Management provides an overview of HP data-management
products, including TMF, and discusses the use of those products in OLTP
applications.

 Enscribe Programmer's Guide discusses writing applications for using TMF when
accessing an Enscribe database.

 Guardian Procedure Calls Reference Manual describes the syntax of many system
procedure calls that are used in OLTP applications.

 HP NonStop SQL/MP Reference Manual describes the language elements and
syntax for HP NonStop SQL/MP that are used in the TMF environment.

 Programming language manuals for NonStop systems describe I/O procedures
that include accessing TMF protected data. These languages include COBOL85,
PATHWAY SCREEN COBOL, FORTRAN, TAL, Pascal, C, C++, and SQL
(NonStop SQL/MP implementation).

Notation Conventions

General Syntax Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name
HP NonStop TMF Application Programmer’s Guide—540139-009
xiv

About This Manual General Syntax Notation
[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"
HP NonStop TMF Application Programmer’s Guide—540139-009
xv

About This Manual General Syntax Notation
Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i
HP NonStop TMF Application Programmer’s Guide—540139-009
xvi

About This Manual Change Bar Notation
Change Bar Notation

Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
HP NonStop TMF Application Programmer’s Guide—540139-009
xvii

About This Manual HP Encourages Your Comments
HP NonStop TMF Application Programmer’s Guide—540139-009
xviii

1
TMF Programming Environment

The Transaction Management Facility (TMF) provides protection and concurrency
control for HP NonStop SQL/MP and Enscribe files.

Database integrity is vital to the success of any online transaction processing (OLTP)
environment. It is imperative that data not become corrupted as the result of hardware
or software failures, or conflicting operations performed concurrently against the same
data.

TMF protects the integrity of your database against failure of any of the following:

 A disk drive

 A disk controller

 A disk process

 An application process

 A CPU

 An entire system

In addition, TMF provides locking mechanisms with which you can achieve various
levels of isolation from the effects of other concurrently running application processes.

As an integral part of the operating system, much of the TMF functionality is provided
by system components such as the file system and the DP2 disk process. From the
perspective of the application programmer, TMF and the protection it provides are
often entirely transparent.

This section contains the following topics:

 The TMF Transaction on page 1-2

 Heterogeneous Transaction Processing on page 1-5

 The Requester/Server Model on page 1-6

 The Current Transaction on page 1-7

 Consistency and Concurrency on page 1-11
HP NonStop TMF Application Programmer’s Guide—540139-009
1-1

TMF Programming Environment The TMF Transaction
The TMF Transaction
Within the TMF programming environment, program operations that modify the content
of a protected database must be grouped together into TMF transactions.

From a syntactical perspective, a TMF transaction is an executed sequence of code
delimited by two unique programming statements: one indicating the start of the
transaction and the other indicating the end of the transaction.

From a program design perspective, however, the decision as to what best constitutes
a TMF transaction requires careful judgement; unfortunately, there is no simple
formula.

Defining a Transaction

The following characteristics might be helpful in defining transactions.

Shared Destiny

All of the database operations within a particular transaction have a shared destiny:
they are either all performed and their results committed (made permanent) or all
aborted and their results backed out.

Independent of Other Database Operations

In general, database operations that are not dependent upon one another should not
be bound together into a transaction. If the results of one operation leave the database
in a consistent state regardless of the results of another operation, the two operations
probably should not be bound together within a single TMF transaction.

Single Business Operation

Each TMF transaction often reflects a single business operation. For example,
consider the situation in which a customer is performing a sequence of operations at
an automated teller machine (ATM). The overall session at the ATM might include the
following operations:

 A transfer of funds from the customer’s checking account to a savings account

 A transfer of funds from the checking account to a charge card account

 A cash withdrawal from the checking account

The session divides most effectively into three TMF transactions: one for the checking-
to-savings transfer, one for the checking-to-charge transfer, and one for the cash
withdrawal.

The primary reason for dividing the session into three transactions instead of making it
a single TMF transaction is that each operation independently transforms the database
from one consistent state to another consistent state. There is no logical reason why a
HP NonStop TMF Application Programmer’s Guide—540139-009
1-2

TMF Programming Environment Initiating a Transaction
communications line failure during the cash withdrawal transaction, for example,
should negate the successful outcome of the two preceding fund transfer operations.

In this particular example, the situation is further complicated in that each of the
individual business operations results in the issuance of a printed receipt to the
customer upon successful completion of the operation. If the entire session were to be
backed out because of a line failure while processing the cash withdrawal, the
customer would possess two printed receipts indicating successful fund transfers that,
in fact, did not take place.

Completion Time

Occasionally, elapsed time is an issue to consider. If a transaction remains on the
system too long, TMF aborts it. In most application environments, individual
transactions exist for only a few seconds or minutes. In a very busy environment,
however, a transaction that exists for more than an hour is in real danger of being
aborted by TMF. This problem can be remedied somewhat at execution time by the
use of operator commands. A preferable solution, if at all possible, is to design your
transactions so they do not take too long to complete.

Initiating a Transaction

You initiate a TMF transaction by invoking the BEGINTRANSACTION procedure. The
following table summarizes the statements that you use to do so, in each of the
supported programming languages:

The BEGINTRANSACTION procedure generates a transaction identifier that uniquely
identifies each transaction. Thereafter, the transaction identifier is transparently affixed
to all database operations and interprocess communication performed within the
domain of the particular transaction.

Any program module can initiate a TMF transaction; within each module that does so,
however, you must always explicitly match every BEGINTRANSACTION call with a
corresponding call to ENDTRANSACTION or ABORTTRANSACTION. This is true
even if TMF or another process has already aborted the transaction.

Programming
Language

Statement Used for Invoking the BEGINTRANSACTION
Procedure

C, C++ status = BEGINTRANSACTION (trans-tag);

COBOL85 ENTER “BEGINTRANSACTION” USING trans-tag GIVING
status

FORTRAN status = BEGINTRANSACTION (trans-tag)

NonStop SQL/MP BEGIN WORK

Pascal status:= BEGINTRANSACTION (trans-tag)

SCREEN COBOL BEGINTRANSACTION

TAL status:= BEGINTRANSACTION (trans-tag);
HP NonStop TMF Application Programmer’s Guide—540139-009
1-3

TMF Programming Environment Committing a Transaction
Committing a Transaction

If a transaction completes successfully, the changes that it made to a protected
database are made permanent; this is referred to as “committing the transaction.”

You terminate a TMF transaction and commit the effects of that transaction by invoking
the ENDTRANSACTION procedure. The following table summarizes the statements
that you use to do so, in each of the supported programming languages:

Aborting a Transaction

After a TMF transaction has been initiated but before it is committed, any application
program module that is doing work on behalf of that transaction can terminate the
transaction; this is referred to as “aborting the transaction.”

When a transaction is aborted, all of the changes that were made to the database on
behalf of the transaction are backed out.

You abort a transaction by invoking the ABORTTRANSACTION procedure. The
following table summarizes the statements that you use to do so, in each of the
supported programming languages:

Programming
Language Statement Used for Invoking the ENDTRANSACTION Procedure

C, C++ status = ENDTRANSACTION;

COBOL85 ENTER “ENDTRANSACTION” GIVING status

FORTRAN status = ENDTRANSACTION

NonStop SQL/MP COMMIT WORK

Pascal status:= ENDTRANSACTION

SCREEN COBOL END—TRANSACTION

TAL status:= ENDTRANSACTION;

Programming
Language

Statement Used for Invoking the ABORTTRANSACTION
Procedure

C, C++ status = ABORTTRANSACTION;

COBOL85 ENTER “ABORTTRANSACTION” GIVING status

FORTRAN status = ABORTTRANSACTION

NonStop SQL/MP ROLLBACK WORK

Pascal status:= ABORTTRANSACTION

SCREEN COBOL ABORT—TRANSACTION

TAL status:= ABORTTRANSACTION;
HP NonStop TMF Application Programmer’s Guide—540139-009
1-4

TMF Programming Environment Heterogeneous Transaction Processing
Heterogeneous Transaction Processing
In heterogeneous transaction processing, TMF can start a transaction and then
subcontract portions of the transaction (branches) to one or more foreign transaction
management systems operating on platforms other than the HP system. Alternatively,
a foreign transaction management system can begin a transaction and then
subcontract parts to TMF. After completing the transaction, TMF and the foreign
transaction manager participate in an agreement protocol to determine the outcome of
the transaction. This cooperation between different transaction management systems
running on different platforms relies on collections of routines called resource
managers.

Resource managers encode the transactional semantics of foreign transaction
management systems, or provide abstractions of foreign database management
systems on the HP platform. They run in a process environment called a gateway
process. A gateway process executes a resource manager routine to export a
transaction branch from TMF to a foreign transaction management system, import a
transaction branch from a foreign transaction management system to TMF, and
participate in the agreement protocol between the two transaction management
systems.

Note. Heterogeneous transaction processing, and the resource managers that support this
processing, are used in HP products such as NonStop TUXEDO. Although TMFCOM and the
TMFSERVE programmatic interface provide TMF commands for operating on resource
managers, people issuing these commands do so in the context of issues involving multiple
software subsystems and inter-platform considerations. Discussion of those commands and
the context in which they are used is beyond the scope of this manual.

Readers who want more information about heterogeneous transaction processing are directed
to the Open Group TRANSACTION PROCESSING Publications, available from X/Open
Publications, PO Box 96, Witney, Oxon. OX8 6PG, U.K. Phone:+44 (0)1993 708731
Fax: +44 (0) 1993 708732, or from the following Web location:

 http://www.rdg.opengroup.org/public/pubs/catalog/tp.htm

These publications can also be ordered through many bookstores.
HP NonStop TMF Application Programmer’s Guide—540139-009
1-5

TMF Programming Environment The Requester/Server Model
The Requester/Server Model
Many business applications that run on HP systems use the requester/server
application design model to obtain input from end users and apply it to a database.

In the most elementary case, a requester is the process that receives the initial request
to perform a business operation requiring modification of a database. The requester
then initiates a TMF transaction, calls one or more server processes to make the
necessary changes to the database, terminates the transaction, and responds to the
end user (or to the application module that represents an end user).

In reality, however, application modules are usually much more complex than that.

Requester and server modules can be designed to work on more than one transaction
at a time; this is referred to as “multithreaded operation.” In addition to delegating the
work for a particular transaction to one or more servers, a requester can update a
database directly. Furthermore, a single application module can even function
simultaneously as a requester for some transactions and as a server for others.

TMF requesters can be coded in C, C++, COBOL85, FORTRAN, Pascal, SCREEN
COBOL, or TAL.

TMF servers can be coded in C, C++, COBOL85, FORTRAN, Pascal, or TAL.

Within the TMF environment, requesters and servers communicate with one another
over the message system.

To communicate with a server, a requester must first open the server process by using
the OPEN system procedure. The OPEN procedure includes, as its first parameter, the
server process’ name instead of a file name. All necessary process names, in local and
network form, can be predefined so that the particular processes are known throughout
both the system and the network.

To send a request to a server and receive a reply, the requester uses the WRITEREAD
procedure (specifying the filenumber returned by OPEN). Note that SCREEN
COBOL requesters use the SEND verb to communicate with servers.

After opening a server, a requester will often leave it open indefinitely. Eventually,
however, the requester terminates its communication path to the server by using the
CLOSE system procedure.

To communicate with a requester, a server must open a special file named $RECEIVE.
Thereafter, the server accepts work request messages from requesters by using the
READUPDATE system procedure to read from $RECEIVE. When the server has
completed all of the operations associated with a particular work request, it responds to
the requester by using the REPLY system procedure.
HP NonStop TMF Application Programmer’s Guide—540139-009
1-6

TMF Programming Environment The Current Transaction
Summary of Requester Actions

In general, TMF requester processes do the following:

 Open any necessary server processes.

 Initiate TMF transactions.

 Format work requests describing the necessary database manipulations and send
them to the appropriate servers by way of the message system.

 Receive reply messages from the servers, indicating success or failure.

 Terminate transactions.

Summary of Server Actions

In general, TMF server processes do the following:

 Accept request messages from requesters by way of $RECEIVE.

 Obtain any necessary file or record locks.

 Once acquired, the locks on any records or rows that have been updated, inserted,
or deleted are automatically maintained by the disk process until the transaction is
either committed or aborted and backed out.

 Execute I/O statements to perform the requested actions against the database.

 Determine the success or failure of each I/O operation by way of the associated
completion code or file system error code.

 Format reply messages and send them to the appropriate requesters.

The Current Transaction
An important concept within the TMF programming environment is that of the current
transaction. The current transaction is an implicit identifier that specifies the particular
transaction on behalf of which a process can perform operations on files being audited
by the TMF subsystem.

At any given time, the current transaction for a requester or server is either of the
following:

 A nil value, indicating that there currently is no transaction in progress

 The transaction identifier of the particular transaction on which the requester or
server is currently working
HP NonStop TMF Application Programmer’s Guide—540139-009
1-7

TMF Programming Environment The Nil State
The Nil State

Requesters and servers start execution with their current transaction in the nil state.

If a process attempts to lock or change the content of an audited file when the current
transaction is in the nil state, the file system rejects the particular I/O request with a
condition code of CCL and an error number 75 (no transaction identifier).

When a requester initiates a transaction, the current transaction for that requester
automatically changes from the nil state to the transaction identifier of the new
transaction.

The Current Transaction Identifier

When a requester sends a work request to a server process, the value of the
requester’s current transaction at the time of the transmission is extracted and used as
the transaction identifier of the particular work request. Upon receiving the message,
the server automatically inherits the transaction identifier as its current transaction.

Note that a process can always access nonaudited files regardless of the state of its
current transaction.

When a process executes an ENDTRANSACTION or ABORTTRANSACTION
statement, its current transaction automatically reverts to the nil state. This is also true
if an attempted BEGINTRANSACTION fails.

Excluding a Server from a TMF Transaction

There are times when a requester must delegate work to a server and yet exclude that
server from the bounds of a TMF transaction; it does so by either:

 Setting the current transaction to the nil state before sending the work request to
the server

 Opening the server with a prior designation that the transaction identifier be
omitted from all communication with the server

There are two reasons why a requester would want to exclude a server from a
transaction:

 To enhance performance within a network environment

 To eliminate unnecessary dependencies between processes
HP NonStop TMF Application Programmer’s Guide—540139-009
1-8

TMF Programming Environment Excluding a Server from a TMF Transaction
Enhancing Performance in a Network Environment

When a work request associated with a transaction identifier is transmitted from a
requester process on one node of a network to a server process on another node, TMF
generates additional messages and internal overhead (when the transaction is being
either committed or aborted) beyond that required for messages not associated with a
transaction identifier.

If the remote server is one of several processes locking or updating records in a
protected database as part of a single business function, then you will want the work of
all the processes to be interrelated within the bounds of a single TMF transaction. In
that scenario, the additional network overhead is not only unavoidable but is actually a
positive factor because of the transaction-oriented database protection it helps provide.

If, however, the remote server manipulates the database independently of other
processes, you should let the server initiate and terminate its own transaction for the
work request. In that scenario, because the work request has no transaction identifier,
you avoid unnecessary network overhead.

Eliminating Unnecessary Dependencies

The more processes that are explicitly involved in the processing of a transaction, the
more opportunity there is for the transaction to be aborted. Consequently, you should
minimize the number of server processes doing work under the same transaction
identifier.

If work being delegated to a server process is logically external to the requester’s
current transaction in that it does not involve protected portions of a database, you
should exclude that work from the particular transaction identifier.

For example, suppose a requester needs to send a message to the spooler. Requests
to the spooler occasionally time out. If that were to occur within the bounds of a
transaction, the entire transaction would be aborted and all of the work associated with
it would be backed out.

Because the spooler does not use audited database files, there is nothing to be gained
by including its activities within a TMF transaction.

By setting the current transaction to the nil state before issuing a WRITEREAD system
procedure call to the spooler, the requester’s transaction will not abort if a timeout
occurs for the WRITEREAD system procedure.
HP NonStop TMF Application Programmer’s Guide—540139-009
1-9

TMF Programming Environment Setting the Current Transaction to Nil
Setting the Current Transaction to Nil

A requester or server process sets its current transaction to the nil state by issuing a
RESUMETRANSACTION call with a tag value of zero. In TAL, the call is as follows:

status := RESUMETRANSACTION (0D);

After setting the current transaction to the nil state, however, you must then explicitly
reset it back to the transaction identifier of a currently active transaction. To do that,
you need to know the proper tag value for each transaction.

Within a requester, the tag for each transaction is returned by way of the
trans-begin-tag variable in the BEGINTRANSACTION TMF procedure call.
Requesters set their current transaction to a particular transaction by supplying the
appropriate tag value in a RESUMETRANSACTION TMF procedure call. In TAL, the
call is as follows:

status := RESUMETRANSACTION (tag);

Within a server, you obtain the tag for each transaction by issuing a LASTRECEIVE
TMF procedure call immediately after each READUPDATE of $RECEIVE. Servers set
their current transaction to a particular transaction by supplying the appropriate tag
value in an ACTIVATERECEIVETRANSID TMF procedure call. In TAL, the call is as
follows:

CALL ACTIVATERECEIVETRANSID (tag);

Marking an OPEN to Not Share a Transaction Identifier

A requester process can also exclude server processes from sharing its transaction
identifier by issuing a SETMODE 117 call with param1 = 1 after opening the servers.
This parameter setting is the default for process subtypes 30 and 31 (device simulators
and spoolers, respectively).

For any processes opened by the requester after such a SETMODE call, a transaction
identifier is never associated with messages sent from the requester to those
processes, even if one is in effect for the requester at the time the message is sent.
Thus, if a server terminates abnormally while working on behalf of a transaction, the
transaction itself will not be aborted because its transaction identifier was never
included in the requester’s messages.

Once this SETMODE call is issued, it remains in effect until it is explicitly reset by
issuing a SETMODE 117 call with param1 = 0.

The SETMODE 117 action is local to the process in which it is executed; no notification
is passed to any other process.

If this SETMODE is invoked within one process of a process pair, provision must be
made within the backup process to either call CHECKSETMODE or to reexecute the
SETMODE 117 call at the time of a takeover.
HP NonStop TMF Application Programmer’s Guide—540139-009
1-10

TMF Programming Environment Consistency and Concurrency
Consistency and Concurrency
In the OLTP environment, there are three fundamental criteria that you can use to
judge the integrity of a business database:

 The data must accurately reflect the results of all business operations performed
against the database. In particular, all related data items must be accurate with
regard to one another. Every total field, for example, must always equal the sum of
all the detail items that it represents.

 The data must not violate the fundamental operating precepts of the particular
business. Within the context of a financial institution, for example, the accrued debt
against a line of credit must not exceed the customer’s limit.

 Access to the same data by different program modules must result in the same
view of that data.

When a database satisfies all of these criteria, it is said to be in a consistent state.

The job of maintaining database consistency can be divided into three tasks.

First, each application program module must be coded to properly change all pertinent
data values and must be designed to do so in accordance with the rules of the
applicable business environment. As an application designer or programmer, this is
your responsibility.

Second, if a hardware or software failure occurs in the middle of a transaction, all of
the items in the database that have been altered by the aborted transaction must be
restored to their prior values. TMF does this for you. All you must do is properly group
related database operations into TMF transactions.

Finally, when different processes are accessing the same database concurrently, they
must be prevented from performing conflicting operations that distort one another’s
interpretation of the data. This is accomplished through the use of various types of
locks on the data. For NonStop SQL/MP objects, you merely specify appropriate
access options and NonStop SQL/MP obtains and releases the locks for you. For
Enscribe files, you obtain and release locks, either explicitly or implicitly, through the
use of file-system procedure calls.

Achieving Maximum Consistency

To achieve the highest degree of database consistency, do as follows:

1. If you have the choice of creating your database files as either NonStop SQL/MP
objects or Enscribe files, choose NonStop SQL/MP because it provides the more
effective (ANSI standard) concurrency control.

2. Design your TMF transactions so that all reads, updates, insertions, and deletions
related to a particular business operation are within the bounds of a single TMF
transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
1-11

TMF Programming Environment Levels of Consistency
3. When accessing NonStop SQL/MP objects, specify REPEATABLE ACCESS for all
database operations.

4. When accessing Enscribe files, obtain a file lock at the beginning of the transaction
and then let the DP2 disk process release the file lock when the transaction
commits.

Note that the use of file locks with Enscribe files severely limits the amount of
concurrent access, thereby reducing throughput and increasing the response time for
end users. In most cases, it is impractical to use Enscribe file locks.

Levels of Consistency

Consistency and concurrency are inversely proportional to one another; as one
increases, the other decreases. When using NonStop SQL/MP, you balance
consistency and concurrency through the use of access options.

NonStop SQL/MP includes three access options, each corresponding to a general
level of consistency. The access option specified by a particular transaction determines
how much that transaction will be insulated from the effects of other concurrently
running transactions.

The three access options, and the corresponding levels of consistency, are as follows:

 REPEATABLE ACCESS—Level-3 consistency

 STABLE ACCESS—Level-2 consistency

 BROWSE ACCESS—Level-1 consistency

The consistency level of a transaction depends on the lowest level of consistency
provided by any access option used in the transaction. For example, three
REPEATABLE ACCESS options and one STABLE ACCESS option used in a
transaction result in second-level consistency because of the one STABLE ACCESS
option.

REPEATABLE ACCESS

REPEATABLE ACCESS, sometimes referred to as “level-3 consistency,” provides
maximum insulation from other transactions. With REPEATABLE ACCESS enabled, a
transaction can run as though it were the only one active in the system. The
transaction will not read uncommitted changes made by other transactions. This
guarantees that any data you read is both stable and consistent; the data is neither in
transition nor will it be backed out after you have read it.

Furthermore, other transactions cannot alter any uncommitted changes made by the
transaction. This guarantees you the opportunity to change the database from one
consistent state to another consistent state. If your transaction has updated a set of
detail items, subtotals, and totals so that they are consistent with one another, no other
transaction can disturb that consistency.
HP NonStop TMF Application Programmer’s Guide—540139-009
1-12

TMF Programming Environment Levels of Consistency
Finally, other transactions cannot update, delete, or insert anything within the entire
range of rows accessed by the transaction. This guarantees you the opportunity to
reread previously read rows and see exactly the same data values.

You should specify REPEATABLE ACCESS for transactions that make business
decisions based on values that they have obtained by first reading the database. In
particular, if the decision is based upon the content of a range of rows, you do not want
anything to change within that range (including the addition of new rows) until the
transaction has made the appropriate decision and changed the database to a new
consistent state.

The effect of REPEATABLE ACCESS on concurrency is usually negligible compared to
that of STABLE ACCESS. If you are unsure which access mode to use, choose
REPEATABLE ACCESS.

STABLE ACCESS

STABLE ACCESS, sometimes referred to as “level-2 consistency,” provides less
stringent concurrency control than REPEATABLE ACCESS. With STABLE ACCESS
enabled:

 The transaction will not read uncommitted changes made by other transactions.

 Other transactions cannot alter any uncommitted changes made by the
transaction.

 Other transactions cannot update or delete the row in which the transaction’s
cursor is currently positioned. If you are doing processing in which you first read a
row and then update it, this guarantees that data within a row will not change
between reading and updating.

The essential difference between STABLE ACCESS and REPEATABLE ACCESS is
the continuing stability of the entire range of committed data that you access. STABLE
ACCESS provides short-term stability for the row in which the transaction’s cursor is
currently positioned, while REPEATABLE ACCESS provides long-term stability (from
initial access through the end of the transaction) for the entire range of rows accessed
by the transaction.

For many types of transactions, this difference is not really an issue; sometimes,
however, it can be critical.

Consider, for example, the case in which an airline has canceled a particular flight due
to mechanical problems and is rescheduling all existing reservations for that flight to
another. Assume that the application has a NonStop SQL/MP table in which each row
represents a reservation, and that the rows are in ascending order by the passenger’s
last name. Within each row is a flight number field, which is also a nonunique index for
accessing the table.

The problem for the application is to sequentially step through the table, changing the
flight number in each row from the old one to the new one, without having additional
reservations for the old flight number be added to that part of the table that has already
HP NonStop TMF Application Programmer’s Guide—540139-009
1-13

TMF Programming Environment Enscribe Capabilities
been updated. A likely sequence of SQL statements for performing this operation
would be as follows:

UPDATE passenger
 SET flight-number = 701
 WHERE flight-number = 429
 FOR REPEATABLE ACCESS;

With both REPEATABLE and STABLE access, every row that has been updated is
protected against being deleted or changed by any other active transaction.

With STABLE ACCESS, however, another transaction could insert a new passenger
row into the processed portion of the table while the first transaction is still in progress.
If that were to happen, the table will not end up in a consistent state. With
REPEATABLE ACCESS, that type of conflict cannot occur because REPEATABLE
ACCESS prevents other transactions from updating, deleting, or inserting anything
within the entire range of rows that has been accessed.

There are other ways that an application could approach this particular problem, but
the example clearly illustrates a major advantage of REPEATABLE ACCESS over
STABLE ACCESS.

BROWSE ACCESS

BROWSE ACCESS, sometimes referred to as “level-1 consistency,” applies only to
read operations, allowing you to read through any type of existing lock. This means
that you can gather information without waiting for the results of other transactions to
commit; you would use BROWSE ACCESS, for example, if you want to generate an
interim report very quickly. However, it also means that the data you read might be in
transition or might even disappear altogether if another transaction aborts.

BROWSE ACCESS provides the least impact on other active transactions in that it
imposes no locks on the rows that you read.

Enscribe Capabilities

Both NonStop SQL/MP and Enscribe guarantee level-1 consistency: no other
transaction can delete or update any rows or records that you have inserted, updated,
or deleted until your transaction commits or is backed out.

Unlike NonStop SQL/MP, Enscribe does not provide access options but rather a set of
locking mechanisms with which you can approximate level-2 or level-3 consistency.

With Enscribe, you use the following system procedures to lock and unlock files, sets
of records (for key-sequenced files using generic locking), or individual records:

 LOCKFILE locks an entire file.

 LOCKREC locks the current record, as determined by the most recent operation
against the file. If generic locking is enabled for a key-sequenced file, the
LOCKREC procedure also locks any other records in the file whose keys begin
HP NonStop TMF Application Programmer’s Guide—540139-009
1-14

TMF Programming Environment Enscribe Capabilities
with the same character sequence as the key of the referenced record. Generic
locking applies only to key-sequenced files.

 READLOCK and READUPDATELOCK lock the record before reading it.

 WRITE locks the record that is being inserted.

 UNLOCKREC unlocks the current record (as determined by the most recent
operation against the file). If generic locking is enabled for a key-sequenced file,
calls to UNLOCKREC are ignored.

 UNLOCKFILE, ENDTRANSACTION, ABORTTRANSACTION, and CLOSE unlock
all records that were locked through the transaction identifier associated with the
call.

Note that locks on records that were read but not altered are released immediately;
locks on inserted, updated, or deleted records, however, are never released until the
transaction is either committed or aborted and backed out.

Unlike NonStop SQL/MP, all locks for Enscribe files are exclusive locks. Enscribe does
not support shared locks (locks whose ownership is claimed jointly by two or more
transactions).

Ensuring Level-1 Consistency

There are three ways that the DP2 disk process ensures level-1 consistency for
audited Enscribe files.

Whenever a transaction inserts a new record into an audited file, the disk process
automatically obtains a lock based on the inserted record’s primary-key value. This
lock prevents another transaction from inserting a record with the same primary key
value as the newly inserted record, and from reading, locking, updating, or deleting the
newly inserted record.

Before a transaction can update or delete an existing record in an audited file, the
transaction must first lock either the record or its file. If the transaction has not obtained
an appropriate lock, the attempt to update or delete the record is rejected immediately
with a condition code of CCL and an error 79.

The disk process retains all locks on inserted, updated, or deleted records in audited
files until the associated transaction is either committed or aborted and backed out.

Locking Modes

Enscribe provides six locking modes that determine what action occurs if you try to
lock a file, or read or lock a record, when the file or record is already locked. Table 1-1
summarizes each mode. You use SETMODE 4 procedure calls to select the desired
locking mode.

Note that the Enscribe locking modes apply only to read and lock requests. If you issue
a WRITE request (to insert a new record) and the target file is locked by a different
transaction identifier, the request is rejected with a condition code of CCL and an error
HP NonStop TMF Application Programmer’s Guide—540139-009
1-15

TMF Programming Environment Enscribe Capabilities
73 (file/record is locked). If a record with the same primary-key value already exists,
the WRITE request is rejected with a condition code of CCL and an error 10 (file/record
already exists).

The Inserted Record Problem

The use of REPEATABLE ACCESS with NonStop SQL/MP objects prevents other
transactions from updating, deleting, or inserting anything within the entire range of
rows accessed by a transaction.

Because this protection applies to a range of rows rather than to specific existing rows,
NonStop SQL/MP has in effect also locked the available (but not yet used) slots

Table 1-1. Enscribe Locking Modes

Mode param1 Description

Normal mode 0 Any attempt to lock a file, or to read or lock a record, that is
already locked through a different transaction identifier is
suspended until the existing lock is released. This is the default
locking mode.

Reject mode 1 Any attempt to lock a file, or to read or lock a record, that is
already locked through a different transaction identifier is
rejected with a file system error 73 (file/record is locked); no data
is returned.

Read-through/
normal mode

2 READ and READUPDATE requests ignore existing record and
file locks; encountering a lock does not delay or prevent reading
the record.

LOCKFILE, LOCKREC, READLOCK, and READUPDATELOCK
are treated as in normal mode.

Read-through/
reject mode

3 READ and READUPDATE requests ignore existing record and
file locks; encountering a lock does not delay or prevent reading
the record.

LOCKFILE, LOCKREC, READLOCK, and READUPDATELOCK
are treated as in reject mode.

Read-warn/
normal mode

6 READ and READUPDATE requests ignore existing record and
file locks; although an existing lock will not delay or prevent
reading the record, it will cause a CCG completion code with a
warning code of 9.

LOCKFILE, LOCKREC, READLOCK, and READUPDATELOCK
are treated as in normal mode.

Read-warn/
reject mode

7 READ and READUPDATE requests ignore existing record and
file locks; although an existing lock will not delay or prevent
reading the record, it will cause a CCG completion code with a
warning code of 9.

LOCKFILE, LOCKREC, READLOCK, and READUPDATELOCK
are treated as in reject mode.
HP NonStop TMF Application Programmer’s Guide—540139-009
1-16

TMF Programming Environment Enscribe Capabilities
between existing rows. While the transaction is in progress, no new rows can be
inserted within the entire range of rows accessed by the transaction.

Unless you lock an entire file, Enscribe does not provide this protection; therefore,
applications using Enscribe files can encounter what is called “the inserted record
problem.”

Consider the case in which a transaction is locking and reading a sequence of
employee records arranged in alphabetic order, using a read loop containing a
READLOCK call. When the transaction (designated T1) does its first read, the file is as
follows:

Record #1: ANN (locked by T1)
Record #2: BEN
Record #3: CHARLIE
Record #4: EDDIE
Record #5: FRANCO
EOF

When the read loop terminates, the file is as follows:

Record #1: ANN (locked by T1)
Record #2: BEN (locked by T1)
Record #3: CHARLIE (locked by T1)
Record #4: EDDIE (locked by T1)
Record #5: FRANCO (locked by T1)
EOF

At this point, another transaction inserts the record DYLAN into the file. The second
transaction can do so because T1 did not lock the entire file. The file now is as follows:

Record #1: ANN (locked by T1)
Record #2: BEN (locked by T1)
Record #3: CHARLIE (locked by T1)
Record #4: DYLAN
Record #5: EDDIE (locked by T1)
Record #6: FRANCO (locked by T1)
EOF

If T1 were then to reexecute its read loop, it would not get the same results it did the
first time.

The Deleted Record Problem

If you specify REPEATABLE ACCESS, NonStop SQL/MP prevents a transaction from
reading past rows that have been deleted by other incomplete transactions (the read
operation halts at the first deleted row until the delete is either committed or backed
out).

With Enscribe files, the SETMODE 4 normal mode and reject mode options prevent
individual reads from accessing deleted records. If you read an Enscribe file by using a
read loop, however, the read sequence always bypasses any records that are marked
as deleted (this is true even if the delete has not yet been committed); therefore,
HP NonStop TMF Application Programmer’s Guide—540139-009
1-17

TMF Programming Environment Enscribe Capabilities
applications using Enscribe files can encounter what is called “the deleted record
problem.”

Consider the case in which one transaction (designated T2) is using a loop to read a
sequence of employee records arranged in alphabetic order and another transaction
(designated T2) has previously deleted one of the records.

When T2 starts its read loop, the state of the employee file is as follows:

 Record #1: ANN
 Record #2: BEN
[Record #3: CHARLIE] (deleted by T1)
 Record #4: DYLAN
 Record #5: EDDIE
 Record #6: FRANCO
 EOF

As T2 loops through the file, it accesses the following sequence of records:

 ANN
 BEN
 DYLAN
 EDDIE
 FRANCO

If transaction T1 aborts while T2 is reading the record DYLAN, for example, the delete
operation is backed out and the file now is as follows:

 Record #1: ANN
 Record #2: BEN
 Record #3: CHARLIE
 Record #4: DYLAN
 Record #5: EDDIE
 Record #6: FRANCO
 EOF

If T2 were then to reexecute its read loop, it would not get the same results it did the
first time.

Summary of Levels of Consistency in Enscribe Files

When you are using TMF to protect Enscribe files, you are always guaranteed at least
level-1 consistency.

You can approximate level-2 consistency by:

 Not using any of the SETMODE 4 read-through options (all read operations must
wait for existing locks to be released)

 Using the READLOCK and READUPDATELOCK procedures instead of READ and
READUPDATE, explicitly releasing the record lock (UNLOCKREC) after each read
is complete

You can achieve level-3 consistency by locking the entire file at the start of your
transaction and then letting the disk process unlock it implicitly as part of the
HP NonStop TMF Application Programmer’s Guide—540139-009
1-18

TMF Programming Environment Enscribe Capabilities
ENDTRANSACTION function. In almost any interactive environment, however, this
practice is unacceptable because it precludes concurrent access.

You can approximate level-3 consistency by:

 Not using any of the SETMODE 4 read-through options

 Using the READLOCK and READUPDATELOCK procedures instead of READ and
READUPDATE

 Letting the disk process unlock all records implicitly as part of the
ENDTRANSACTION function

These practices do not prevent the inserted record problem or the deleted record
problem. If either problem could occur in your particular application environment, then
you can only achieve level-1 consistency.
HP NonStop TMF Application Programmer’s Guide—540139-009
1-19

TMF Programming Environment Enscribe Capabilities
HP NonStop TMF Application Programmer’s Guide—540139-009
1-20

2
Designing Single-Threaded
Processes

Application program modules are often designed as single-threaded processes. Single-
threaded requesters can only participate in one transaction at a time. Having initiated
one transaction, a single-threaded requester cannot initiate another transaction until it
has terminated the existing transaction.

Similarly, single-threaded servers can do work on behalf of only one transaction at a
time. Having accepted a work request for one transaction, a single-threaded server
cannot accept another work request until it has completed all of its work for the current
request.

This section contains the following topics:

 Single-Threaded Requesters on page 2-1

 Single-Threaded Servers on page 2-11

Single-Threaded Requesters
Within the TMF programming environment, a requester is an application program
module that initiates and terminates a transaction. Although the requester usually
delegates work to one or more servers, and any of the servers can abort a transaction
for any reason at any time, the requester always remains the owner of the transaction
and is responsible for explicitly terminating it.

Applicable System and TMF Procedures

Single-threaded TMF requesters use the following system and TMF procedures:

 ABORTTRANSACTION—aborts the current transaction

 BEGINTRANSACTION—initiates a transaction and returns the value of its tag

 FILE_CLOSE_—closes the TFILE or a server process

 ENDTRANSACTION—terminates the current transaction

 FILE_OPEN_—opens the TFILE or a server process

 RESUMETRANSACTION (0)—sets the current transaction to the nil state
HP NonStop TMF Application Programmer’s Guide—540139-009
2-1

Designing Single-Threaded Processes Delegating Work to Servers
 RESUMETRANSACTION (tag)—resets the current transaction from the nil state
to the transaction ID of the transaction identified by the specified
BEGINTRANSACTION tag value

 WRITEREAD—sends a work request to a server process and accepts a reply from
the server

Delegating Work to Servers

To subcontract a unit of work to a server process, the requester must:

1. Open the server process by using the FILE_OPEN_ system procedure.

2. Format a work request message.

3. Send the work request message to the server by using the WRITEREAD system
procedure.

The FILE_OPEN_ call includes, as its first parameter, the server process name instead
of a file name. All necessary process names, in local and network form, can be
predefined so they are known throughout both the system and the network.

The requester and any servers it communicates with must all use the same work
request message format.

The WRITEREAD call includes, as its first parameter, the file number returned by the
FILE_OPEN_ call.

WRITEREAD returns a condition code upon completion. The condition code CCE (=)
indicates successful completion. The condition code CCL (<) indicates that an error
occurred. For CCL completions, you can obtain the file system error code by calling the
FILEINFO system procedure. Table 2-1 lists those error codes that apply to
WRITEREAD calls.

If you are using nowait WRITEREAD calls, the error notification is returned with the
associated AWAITIO call.

Table 2-1. WRITEREAD Error Numbers (page 1 of 2)

Error Number Meaning

40 For nowait WRITEREAD operations, this code indicates that the AWAITIO
call timed out before the server could reply.

201 A server process or its processor module failed while the server was
working on the transaction.

211 A work request could not be delivered to a server because the processor
module containing the server had already failed.

240 A line handler failure occurred (the request did not get started).

241 A network failure occurred (the request did not get started).

246 A fiber optic extension (FOX) network direct route failure occurred (the
request was terminated).
HP NonStop TMF Application Programmer’s Guide—540139-009
2-2

Designing Single-Threaded Processes Terminating Transactions
Terminating Transactions

A requester must always match every BEGINTRANSACTION call with a corresponding
ENDTRANSACTION or ABORTTRANSACTION call. This is true even if another
process aborts the transaction.

ENDTRANSACTION

Requesters use ENDTRANSACTION to terminate transactions. ENDTRANSACTION
directs TMF to make permanent all changes that the transaction made to audited files.
For single-threaded requesters, ENDTRANSACTION normally suspends the requester
until the transaction is either committed or aborted.

Because ENDTRANSACTION is a function-type procedure, it returns a file system
error code in the status variable. The code 0 indicates successful completion; a
nonzero code indicates that the transaction could not be committed. For a complete list
of the file system error codes that apply to ENDTRANSACTION calls, see Parameters
under the description of ENDTRANSACTION on page 4-15.

ABORTTRANSACTION

After issuing a BEGINTRANSACTION call and before issuing a corresponding
ENDTRANSACTION call, a requester can abort the transaction by calling the
ABORTTRANSACTION procedure.

The requester can abort a transaction even if there are servers that still have work in
progress on behalf of the transaction.

If issued within a requester, an ABORTTRANSACTION call provides the necessary
match for the associated BEGINTRANSACTION call (the requester does not have to
also issue an ENDTRANSACTION call).

ABORTTRANSACTION backs out all changes made to audited files on behalf of the
aborted transaction. ABORTTRANSACTION also prevents any further changes from
being made to audited files on behalf of the aborted transaction (or at least guarantees
that any such changes will be undone shortly after they occur).

248 A line handler failure occurred (the request was terminated).

249 A network failure occurred (the request was terminated).

250 All paths to a required system are down (the request did not get started).

251 A network protocol error occurred (the request was terminated).

252 A required Expand class is not available (the request did not get started).

255 A line handler came up too often.

Table 2-1. WRITEREAD Error Numbers (page 2 of 2)

Error Number Meaning
HP NonStop TMF Application Programmer’s Guide—540139-009
2-3

Designing Single-Threaded Processes Terminating Transactions
After being called, ABORTTRANSACTION returns control immediately to the
requester. Because the disk process holds locks on the affected database records until
after the relevant changes have been backed out, the requester can safely initiate a
new transaction involving the same database files without fear of encountering
inconsistent data. If the new transaction requires access to a database record whose
content was altered by the aborted transaction, the record lock prevents access to that
record until the changes have been successfully backed out.

Because ABORTTRANSACTION is a function-type procedure, it returns a file system
error code in the status variable. The code 0 indicates successful completion (the
call has initiated transaction abort); 76 indicates that the transaction was already in the
process of ending; 75 indicate that the transaction could not be aborted. For a
complete list of the file system error codes that apply to ABORTTRANSACTION calls,
see Parameters under the description of ABORTTRANSACTION on page 4-3.

Unilateral Aborts

Once a transaction is initiated, either of the following conditions can occur:

1. One of the servers doing work on behalf of the transaction issues an
ABORTTRANSACTION call.

2. TMF or the file system aborts the transaction.

These types of transaction aborts are referred to as unilateral aborts because the
requester that initiated the transaction has no recourse—the transaction is
unconditionally aborted.

Any of the following situations will cause a unilateral abort:

 A requester or its processor module fails.

 A server or its processor module fails.

 A disk process or its processor module fails.

 A transaction remains on the system longer than TMF can tolerate.

 A waited WRITEREAD to a server process times out before the server can reply.

 An AWAITIO call times out before a server can reply.

 A requester cancels a WRITEREAD to a server process.

 A requester closes a server process that has not yet replied to a WRITEREAD.

 A requester closes its TFILE while a transaction is still in progress.

 A server issues an ABORTTRANSACTION call.

 A server closes $RECEIVE before having replied to a work request message.

 An operator manually aborts the transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
2-4

Designing Single-Threaded Processes Terminating Transactions
 A network failure occurs.

 A transaction is pinning a file on the MAT, and 45% of the MAT fills during the
transaction’s lifetime.

 The backup process of a process-pair or its processor fails after the transaction
has been checkpointed (see Placement of Checkpoints on page 2-7).

When and how a requester finds out that a transaction has been aborted depends
upon what the requester is doing at any particular time and the exact timing of various
events relative to one another:

 If the requester is using waited WRITEREAD calls, the error completion occurs for
the WRITEREAD call (a condition code of CCL and one of the error numbers
shown in Table 2-1).

 If the requester is using nowait WRITEREAD calls, the error completion occurs for
the AWAITIO call.

When a transaction aborts while the requester is issuing WRITEREADs to servers or
reading, updating, or locking audited files, the requester starts receiving error
completions. As the transaction is being aborted, the error number is one of those
between 90 and 97, and listed in Table 2-2. When the transaction is completely
aborted, the error number changes to 78 (invalid transaction ID).

When a transaction is unilaterally aborted by the system, the TFILE entry for the
transaction still exists. To clear the entry from the TFILE, the transaction initiator must
issue an explicit request to end or abort the transaction.

When the transaction initiator calls RESUMETRANSACTION or ENDTRANSACTION,
the error returned depends on the cause of the abort, as reflected in the following
table. For example, Error 93 is returned when the transaction is aborted because it
spans more than 45% of the MAT capacity. The transaction initiator must either end or
abort the transaction.

Table 2-2. Unilateral Abort Error Numbers (page 1 of 2)

Number Cause of Error

90 BeginTransaction CPU failed.

92 Network-related problems occurred.

93 Transaction spanned more than 45% of the MAT capacity.

94 Operator initiated abort.
HP NonStop TMF Application Programmer’s Guide—540139-009
2-5

Designing Single-Threaded Processes Checkpointing Strategy
Checkpointing Strategy

Within the TMF programming environment, requesters can be coded as NonStop
process pairs so that the backup process will take over automatically if the primary
process should fail.

A full discussion of the design of NonStop process pairs is beyond the scope of this
manual. The topics that follow do, however, present some requirements that TMF
imposes upon the use of checkpoints and a strategy for the most effective placement
of checkpoints within the primary requester process.

The Transaction Pseudofile (TFILE)

Every TMF requester process has its own transaction pseudofile, called a TFILE. The
TFILE is not a physical I/O device file; it is never the target of actual I/O operations.
Instead, the TFILE’s access control block (ACB) serves as a mechanism whereby TMF
can represent the state of transactions in a form that resembles a file.

Each entry in a TFILE corresponds to a single transaction and includes the transaction
identifier and a status descriptor. The status descriptor is used at the completion of the
transaction to indicate whether the transaction was committed or aborted.

For single-threaded requesters, the TFILE has only one entry: when the primary
requester process issues a BEGINTRANSACTION call, the entry in the TFILE for the
preceding transaction is overwritten by the information about the new transaction.

For single-threaded requesters that are not using checkpoints, the file system
automatically creates a TFILE that contains one entry when the requester first calls

95 One of the following occurred:

 Audit loss

 Backup disk process was not available for takeover

 Backup disk process failed to takeover

 Primary disk process failed because of internal error and backup disk
process failed to takeover for this specific transaction

 Double CPU or disk process failure

96 Transaction duration surpassed autoabort timeout interval

97 One of the following occurred:

 Application requested abort

 File system initiated abort

 Server process involved in transaction failed

 Unknown miscellaneous error occurred

1116 NonStop SQL/MP subsystem initiated abort

Table 2-2. Unilateral Abort Error Numbers (page 2 of 2)

Number Cause of Error
HP NonStop TMF Application Programmer’s Guide—540139-009
2-6

Designing Single-Threaded Processes Checkpointing Strategy
BEGINTRANSACTION. Such requesters can ignore the existence of the TFILE
altogether.

If a requester is the primary process of a NonStop process pair, however, it must
explicitly open the TFILE and then execute a CHECKOPEN call to create the backup
requester’s copy of the TFILE.

To open the TFILE, a single-threaded requester uses an FILE_OPEN_ call of the
following form (illustrated in TAL).

filename

is the name of a variable containing the logical device name of the TMF
Management Process (TMP). The name is always $TMP. You can obtain the name
programmatically by calling the GETTMPNAME procedure.

filenumber

is the name of a variable into which the FILE_OPEN_ system procedure returns a
unique value identifying this instance of the TFILE. You use filenumber in
CHECKPOINT calls to synchronize the content of the backup requester’s TFILE
with that of the primary requester’s TFILE.

filenumber may be used only in calls to AWAITIO[X], CLOSE, and
FILE_CLOSE_ or as a filenumber in a checkpoint procedure call. Using
filenumber with any other file system procedures will fail with several different
file error codes.

nowait-depth

is the name of a variable containing the FILE_OPEN_ nowait-depth parameter. For
a single-threaded requester, this parameter is either a 0 or a 1 (both specifying that
the requester can have only one transaction in existence at any given time). Zero
(0) indicates that ENDTRANSACTION calls are to be waited, while 1 specifies that
they are to be completed by an AWAITIO call (nowait).

A process can open the TFILE only once; attempts to open multiple instances of the
TFILE, or to open the TFILE after having called BEGINTRANSACTION, will fail with a
condition code of CCL and a file system error number 12 (file in use).

Placement of Checkpoints

If a primary requester process fails while a transaction is in progress, TMF
automatically aborts the transaction. If the backup requester process fails while a
transaction is in progress, and the transaction has been checkpointed, TMF
automatically aborts the transaction.

CALL FILE_OPEN_ (filename:4 , filenumber , , ,
 nowait-depth);
HP NonStop TMF Application Programmer’s Guide—540139-009
2-7

Designing Single-Threaded Processes Checkpointing Strategy
The processing of a transaction never transfers in midstream from the primary
requester to the backup: the backup requester, upon sensing a failure of the
associated primary process, either restarts the aborted transaction and performs it in
its entirety (if there was a transaction in progress at the time of the failure) or moves on
to the next transaction (if the failure occurred between transactions).

The primary process periodically issues calls to the CHECKPOINT system procedure.
Depending upon what parameters you supply in the CHECKPOINT call, the
CHECKPOINT procedure causes either or both of the following actions to occur:

 TMF updates the backup requester’s TFILE to synchronize its content with that of
the primary requester’s TFILE.

 The file system passes data from the primary requester’s data stack and any
combination of up to 13 separate data blocks and file synchronization blocks to the
backup requester. Data blocks are usually file buffers that are not checkpointed as
part of the stack and they can be from any location within the user data area (but
not an extended data area).

Instead of CHECKPOINT, there are three other checkpointing procedures that you will
sometimes need to use:

 You use the CHECKPOINTMANY procedure when you need to checkpoint more
than 13 items from the user data area.

 You use the CHECKPOINTX procedure when you need to checkpoint items from
an extended data area (up to five items).

 You use the CHECKPOINTMANYX procedure when you need to checkpoint more
than five items from an extended data area.

Note that one of the pieces of information that must be in the data stack or one of the
data blocks is the tag value returned by BEGINTRANSACTION. In the event of a
primary-to-backup switch, the backup process might need that value to issue a
RESUMETRANSACTION call.

Whenever the primary process issues a CHECKPOINT call, the backup process must
issue a call to the CHECKMONITOR system procedure. This is often done in the form
of a loop in which a single CHECKMONITOR call is issued repeatedly until a primary-
to-backup switch occurs; when a switch occurs, control falls through the loop to the
takeover code.

Figure 2-1 illustrates the proper placement of CHECKPOINT calls within the
transaction processing loop of a single-threaded primary TMF requester process.
HP NonStop TMF Application Programmer’s Guide—540139-009
2-8

Designing Single-Threaded Processes Checkpointing Strategy
Figure 2-1. Checkpointing Within Single-threaded Requesters

VST001.vsd

Has final
WRITEREAD been

issued?

 Specify the
TFILE.

NoYes

Failure #1

Failure #2

Failure #3

Call CHECKPOINT.

A

Call
BEGINTRANSACTION.

Issue WRITEREAD
call to server.

Call CHECKPOINT.

B

Call
ENDTRANSACTION.

Issue READ to get
terminal input.

Set up local storage with
all the application data
necessary to start the

transaction.

Specify both the
application data
necessary to start
the transaction and
the TFILE.
HP NonStop TMF Application Programmer’s Guide—540139-009
2-9

Designing Single-Threaded Processes Checkpointing Strategy
The procedure call for checkpoint A occurs when the primary process is about to
initiate a transaction but has not yet issued the BEGINTRANSACTION call. At that
point, the backup requester’s TFILE is updated to indicate that there is no current
transaction. All of the application data necessary to start the new transaction is present
in the data stack and data blocks that are copied to the backup process by the
CHECKPOINT procedure.

The procedure call for checkpoint B occurs when the primary process is about to
commit the transaction but has not yet issued the ENDTRANSACTION call. At that
point, the backup requester’s TFILE is updated to reflect the current transaction.

If the backup process is executing a single CHECKMONITOR call repeatedly, you
might want to include a program variable in the checkpointed data that serves as a
toggle switch identifying the current checkpoint (A or B); in the event of a primary-to-
backup switch, the backup process would then know immediately at what point in the
primary requester’s transaction loop the failure occurred.

When the primary fails, the CHECKMONITOR loop in the backup process passes
control to a section of takeover code. That code must first determine whether or not a
transaction was in progress when the primary failed.

Consider the effects of a primary process failure at points 1, 2, and 3 in the transaction
processing loop illustrated in Figure 2-1.

If the failure occurs at point 1, the backup process detects by the occurrence of check-
point A that the primary was about to initiate a transaction and that the transaction
either did not get started or was initiated and then aborted because of the failure.
Therefore, without further investigation, the backup (now acting as a primary) starts a
new backup process and then restarts the transaction using the checkpointed
application data.

If the failure occurs at either point 2 or 3, the backup process knows by the occurrence
of checkpoint B that the processing of a transaction was complete when the failure
occurred but does not know whether the transaction was committed or aborted. The
backup determines the outcome of the transaction by fetching the transaction’s
BEGINTRANSACTION tag value from the checkpointed data and then issuing a
RESUMETRANSACTION call containing that tag value, followed by an
ENDTRANSACTION or an ABORTTRANSACTION call.

If the transaction may have committed before the failure occurred, the
RESUMETRANSACTION call returns the error number 76 (transaction ended) in the
status variable. In this case, the backup (now acting as a primary) should call
ENDTRANSACTION. If ENDTRANSACTION returns no error, the transaction is
committed, and the application starts up a new backup process and then issues a
READ to the terminal to accept the next operator request. If ENDTRANSACTION
returns an error, the transaction is aborted, and the application starts a new backup
process and restarts the transaction using the checkpointed application data.

If the transaction was aborted, however, the RESUMETRANSACTION call returns one
of the errors 90 through 97 described in Table 2-2. In this case, the backup (now acting
HP NonStop TMF Application Programmer’s Guide—540139-009
2-10

Designing Single-Threaded Processes Single-Threaded Servers
as a primary) should call ABORTTRANSACTION, start a new backup process, and
then restart the transaction using the checkpointed application data.

If RESUMETRANSACTION returns no error, TMF has not yet sufficiently processed
the failure of the primary process to indicate that the transaction aborted. The
application should call ABORTTRANSACTION, start a new backup process, and
restart the transaction using checkpointed application data.

Single-Threaded Servers
Within the TMF programming environment, a server is an application program module
that manipulates a database in response to work requests from a requester.

A single-threaded server can work on behalf of only one transaction at a time: having
accepted a work request for one transaction, a single-threaded server cannot accept
another work request until it has completed all of its work for the current request.

Applicable System Procedures

Single-threaded TMF servers use the following file system procedures:

 ABORTTRANSACTION—aborts the current transaction

 CLOSE—closes $RECEIVE or a subordinate server process

 LASTRECEIVE—obtains the tag value associated with a work request (this
procedure call must immediately follow the READUPDATE call that accepted the
particular work request)

 FILE_OPEN_—opens $RECEIVE or a subordinate server process

 READUPDATE—accepts an incoming work request from a requester

 REPLY—sends a reply message to a requester

 RESUMETRANSACTION (0)—sets the current transaction to the nil state

 ACTIVATERECEIVETRANSID (tag)—resets the current transaction from the nil
state to the transaction identifier of the work request identified by the specified tag
value

 WRITEREAD—sends a work request to a subordinate server process and accepts
a reply from the server

Note. In addition to the transaction inherited from a requester, a single-threaded server
can initiate a new transaction by issuing a BEGINTRANSACTION call. If, however, the server
attempts to issue a second BEGINTRANSACTION call without first issuing either an
ENDTRANSACTION or ABORTTRANSACTION call, an error 83 occurs.
HP NonStop TMF Application Programmer’s Guide—540139-009
2-11

Designing Single-Threaded Processes Opening $RECEIVE
Opening $RECEIVE

To open the $RECEIVE pseudofile, a single-threaded server uses an FILE_OPEN_ call
of the following form (illustrated in TAL).

filename

specifies the character string $RECEIVE.

filenumber

is the name of a variable into which the FILE_OPEN_ procedure returns a unique
value identifying the $RECEIVE pseudofile. You use filenumber in
READUPDATE and REPLY calls to accept incoming messages and reply to the
associated requesters, respectively.

nowait-depth

is the name of a variable containing the FILE_OPEN_ nowait-depth parameter.
For a single-threaded server, this parameter is either a 0 or a 1. Zero (0) indicates
that I/O operations are to be waited, while 1 specifies that I/O operations are to be
completed by an AWAITIO call (nowait).

1

is the receive-depth value, specifying that the server can have only one incoming
message in $RECEIVE at any given time. Note that if multiple incoming messages
arrive within the same time period, none will be lost. The receive-depth of 1 means
that, having read one message through a READUPDATE call, the server cannot
read the next message until it has issued a reply to the first message.

A process can open $RECEIVE only once; attempts to open multiple instances of
$RECEIVE will fail with a condition code of CCL and the error number 12 (file in use).

You close $RECEIVE by specifying filenumber in a CLOSE procedure call. Note
that if the server has a transaction in progress (a work request message in $RECEIVE
for which a reply has not yet been sent) when you close $RECEIVE, TMF
automatically aborts the transaction associated with the work request.

Matching Each READUPDATE With a REPLY

Servers accept incoming work requests by way of the message system and the
$RECEIVE file.

If the incoming message is a work request from a requester, the server must issue a
corresponding reply message when it has finished doing the assigned tasks. If the
server fails to reply, the only possible outcome for the associated transaction is

CALL FILE_OPEN_ (filename:8 , filenumber , , ,
 nowait-depth , 1);
HP NonStop TMF Application Programmer’s Guide—540139-009
2-12

Designing Single-Threaded Processes WRITEREAD to Another Server
abortion: a requester cannot commit a transaction until all servers doing work under
the transaction identifier have issued replies.

There are some types of interprocess messages—notably status messages sent by
the operating system—that do not require a reply. Because there is no way to know in
advance what type of message is in $RECEIVE, TMF servers must always use
READUPDATE to accept incoming messages. If a particular message does not require
a reply, the server completes the READUPDATE by issuing a REPLY call containing no
parameters.

WRITEREAD to Another Server

A server can also subcontract work to other servers. The server does so in the same
way as a requester: open the subordinate server, send a work request, and eventually
close the server.

If a server is communicating with subordinate servers by using nowait WRITEREAD
calls, however, the server must not reply to its own requester until all subordinate
servers have issued their replies. If a server tries to issue a reply before having
received replies from all of its subordinate servers, the file system rejects the REPLY
call with a condition code of CCL and an error number 81 (nowait I/O pending).

The server’s current transaction, if not preset to the nil state, is passed with the work
request to the subordinate server. Note that a server sets its current transaction to the
nil state exactly as a requester does—by issuing a RESUMETRANSACTION (0) call.
Unlike requesters, however, a server restores the current transaction to the transaction
identifier of an active transaction by issuing an ACTIVATERECEIVETRANSID (tag)
call, where tag is the value obtained by using the LASTRECEIVE system procedure.

The Use and Implications of ABORTTRANSACTION

At any time after doing a READUPDATE of $RECEIVE and before issuing a
corresponding reply, a server can abort the current transaction by issuing an
ABORTTRANSACTION call.

ABORTTRANSACTION backs out all of the changes that were made to audited files
on behalf of the aborted transaction. ABORTTRANSACTION also prevents any further
changes from being made to audited files on behalf of the aborted transaction (or at
least guarantees that any such changes will be undone shortly after occurring).

A server can abort the transaction even if there are subordinate servers that still have
work in progress on behalf of the transaction.

ABORTTRANSACTION returns control to the server immediately. Even though the
server has aborted the transaction, the server must still reply to its requester. A call to
ABORTTRANSACTION merely aborts the current transaction; it does not complete the
requester’s WRITEREAD call, which is waiting for a reply.

A call to ABORTTRANSACTION automatically resets the server’s current transaction
to the nil state.
HP NonStop TMF Application Programmer’s Guide—540139-009
2-13

Designing Single-Threaded Processes The Implications of REPLY
A server is only allowed to call ABORTTRANSACTION when it is participating in an
active transaction: that is, when the server’s current transaction is not nil. Once the
server issues a reply to the requester, the server no longer has the ability to abort the
transaction. If a server calls ABORTTRANSACTION when the current transaction is in
the nil state, the call completes with an error number 75 (no transaction identifier) in
the status variable.

Backout and Volume Recovery Anomalies

Anomalies occur when the backout process undoes certain changes made by an
aborting transaction, or when volume recovery undoes certain changes made by an
aborted or incomplete transaction.

 The insertion of a record at the end of an unstructured file is not undone. The
inserted record stays in place, and the end-of-file (EOF) is unchanged. This
procedure preserves records that other transactions might have written to the end
of the file after the aborting transaction.

 The insertion of a record into an entry-sequenced file is undone by rewriting the
record with a length of 0 bytes. This procedure preserves the positioning of records
that other transactions might have inserted into the file after the aborting
transaction.

 The insertion of a record at the end of a relative file is undone by deleting the
record, but leaving the EOF unchanged. This procedure preserves records that
other transactions might have written to the end of the file after the aborting
transaction.

The Implications of REPLY

A reply message from a server indicates that the server is through with the work
request. Furthermore, unless the server has previously called ABORTTRANSACTION,
a reply message signifies that the server has agreed to commit the transaction. The
server will not be notified of the transaction’s eventual outcome.

When a single-threaded server issues a reply, the server’s current transaction reverts
to the nil state. If the server attempts to lock or change the content of an audited file
while the current transaction is in the nil state, the file system rejects the particular I/O
request with a condition code of CCL and an error number 75 (no transaction
identifier). This situation will persist until the server either accepts another work request
from $RECEIVE or (acting as a requester) initiates a new transaction by issuing a
BEGINTRANSACTION call.

NonStop Servers

In the TMF environment, there is no need for NonStop servers.

If a server process fails while working on one or more transactions, TMF automatically
aborts the affected transactions. When the associated requesters learn that their
HP NonStop TMF Application Programmer’s Guide—540139-009
2-14

Designing Single-Threaded Processes Guarantees to Servers
transactions have been aborted, the requesters open a new instance of the failed
server and then restart each transaction from the beginning.

As a result of this fundamental design characteristic of TMF, the processing of a failed
server simply cannot be taken over in midstream by a backup process, and the use of
checkpoints within a server is therefore meaningless.

Guarantees to Servers

TMF makes the following guarantees to server processes:

 Until the server issues a reply to the requester, the current transaction is not
committed.

 All changes that a server has made to the database prior to issuing a reply
participate in the eventual outcome of the transaction; the changes are either
committed or backed out.

 If the server issues an ABORTTRANSACTION call, the current transaction
unconditionally aborts and all changes made by anyone to the database on behalf
of the aborted transaction are backed out.

 If a nonrecoverable hardware or software failure occurs while the server is working
on the transaction, the transaction is unconditionally aborted and all changes made
to the database on behalf of the aborted transaction are backed out.

Context-Sensitive Servers

Some TMF users have designed their applications to include multiple-message
communication between a requester process and a particular server process. In that
environment, the server process must maintain the context of a transaction throughout
the interval spanned by successive interprocess messages. This type of server
process is referred to as, “context-sensitive.” The use of context-sensitive servers
requires that the requester observe certain constraints that can only be guaranteed
through proper application design; TMF does not support this type of operation and
cannot enforce the associated rules.

Suppose, for example, that a requester and server need to perform a transaction that
requires five WRITEREAD-REPLY sequences. If fewer than all five sequences are
performed, the transaction is not complete. According to the standard TMF rules, each
time the server issues a reply, the server process is implicitly agreeing that the
transaction can be committed. In a context-sensitive environment, however, that is true
only for the final reply in the sequence.

A properly designed and coded requester ensures that the transaction gets aborted if
anything prevents the completion of all five WRITEREAD-REPLY pairs. This includes a
mechanism to detect a failure of the server process prior to the fifth reply, in which
case the requester aborts the transaction, starts a new server using the old server’s
name, and then restarts the entire transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
2-15

Designing Single-Threaded Processes Context-Sensitive Servers
HP NonStop TMF Application Programmer’s Guide—540139-009
2-16

3
Designing Multithreaded Processes

Application program modules can be designed as multithreaded processes: for
example, multithreaded requesters can have many transactions at the same time.
Having initiated one transaction, a multithreaded requester can then initiate other
transactions and switch from one transaction to another.

Similarly, a multithreaded server can work on many transactions at the same time.
Having accepted a work request for one transaction, a multithreaded server can then
accept work requests for other transactions and switch from one transaction to another.

A program module can even act simultaneously as a requester for one or more
transactions and as a server for one or more other transactions.

Many concepts and characteristics of requesters and servers remain the same
regardless of whether they are designed as single-threaded or multithreaded
processes.

This section contains the following topics:

 Multithreaded Requesters on page 3-1

 Multithreaded Servers on page 3-12

 Multithreaded Requester/Server Processes on page 3-14

Multithreaded Requesters
Multithreaded requesters differ from single-threaded requesters in the following ways:

 Multithreaded requesters must always explicitly open their TFILE with more than
one entry.

 Multithreaded requesters use nowait I/O (including nowait ENDTRANSACTION
calls).

 Multithreaded requesters use a more complex checkpointing strategy.

These differences are detailed in the following subsections.

Opening the TFILE

To open the TFILE, a multithreaded requester uses FILE_OPEN_ call of the following
form (illustrated in TAL).

CALL FILE_OPEN_ (filename:4 , filenumber , , ,
 nowait-depth);
HP NonStop TMF Application Programmer’s Guide—540139-009
3-1

Designing Multithreaded Processes Manipulating the Current Transaction
filename

is the name of a variable containing the logical device name of the TMF
Management Process. The name is always $TMP. You can obtain the name
programmatically by calling the GETTMPNAME procedure.

filenumber

is the name of a variable into which the OPEN procedure returns a unique value
identifying this instance of the TFILE. You use filenumber in AWAITIO calls to
recognize completions of nowait ENDTRANSACTION calls. In addition, if the
requester is designed to run as a NonStop process pair, you also use
filenumber in CHECKPOINT calls to synchronize the content of the backup
requester’s TFILE with that of the primary requester’s TFILE.

filenumber may be used only in calls to AWAITIO[X], CLOSE, and
FILE_CLOSE_ or as a filenumber in a checkpoint procedure call. Using
filenumber with any other file system procedures will fail with several different
file error codes.

nowait-depth

is the name of a variable containing the OPEN nowait-depth parameter. For a
multithreaded requester, this parameter must be within the range 2 through 1000
(specifying the maximum number of transactions that the requester can have open
concurrently).

A process can open the TFILE only once; attempts to open multiple instances of the
TFILE, or to open the TFILE after having called BEGINTRANSACTION, will fail with a
condition code of CCL and a file system error number 12 (file in use).

You close the TFILE by specifying filenumber in a CLOSE procedure call. Note that
if there are any transactions in progress when you close the TFILE, TMF automatically
aborts them.

Manipulating the Current Transaction

Multithreaded requesters must always include a variable name in the tag field of each
BEGINTRANSACTION call. The BEGINTRANSACTION procedure returns a value, by
way of that variable, that uniquely identifies each transaction.

After calling BEGINTRANSACTION, the newly initiated transaction automatically
becomes the current transaction.

Thereafter, you use the returned tag values in RESUMETRANSACTION procedure
calls to change the current transaction from one transaction to another.

As for single-threaded requesters, a successful call to ABORTTRANSACTION or
ENDTRANSACTION automatically resets the current transaction to the nil state.
Because a multithreaded requester is continually switching from one transaction to
another, each portion of code that resumes the processing of a transaction must first
set the current transaction to the proper value by calling RESUMETRANSACTION.
HP NonStop TMF Application Programmer’s Guide—540139-009
3-2

Designing Multithreaded Processes Nowait ENDTRANSACTION Calls
If the call to ABORTTRANSACTION or ENDTRANSACTION fails, the current
transaction identifier remains unchanged and is the same identifier that was supplied to
the procedure.

Nowait ENDTRANSACTION Calls

Because multithreaded requesters are designed to work on multiple transactions in an
interleaved fashion, the requesters must be designed to use both nowait I/O and
nowait ENDTRANSACTION calls. When the requester issues a nowait
ENDTRANSACTION call, TMF does not suspend the requester but rather allows it to
continue working on other transactions as the ENDTRANSACTION processing
proceeds.

The current transaction identifier remains unchanged until the ENDTRANSACTION call
completes successfully. Under certain circumstances governed by timing, nowaited
READ operations executed immediately following ENDTRANSACTION calls can
incorrectly report transaction id errors. To ensure correct behavior and error reporting,
you should always issue a RESUMETRANSACTION(0d) call immediately after each
ENDTRANSACTION call.

The requester uses the AWAITIO procedure to recognize completions of its nowait
requests. Besides ENDTRANSACTION, the nowait requests can include WRITEREAD
requests to servers, interprocess communication with other processes, and perhaps
even updates to Enscribe database files.

When an AWAITIO call completes, it returns two pieces of information that identify the
nowait call with which the completion is associated: values for filenumber and tag.

For WRITEREADs to servers, filenumber is returned by the OPEN procedure when
the requester opened the particular process. For updates to Enscribe database files,
filenumber is returned by OPEN when the requester opened the particular file.

For ENDTRANSACTION calls, however, filenumber is returned by OPEN when the
requester opened its TFILE.

The tag value returned by AWAITIO identifies the particular transaction associated with
the completed nowait operation; it is the same value that was returned by the
BEGINTRANSACTION call that initiated the transaction.

Checkpointing Strategy

To describe the proper placement of checkpoints within multithreaded TMF requesters,
the topics that follow examine the general flow of control within the sample requester
illustrated in Figure 3-1, Figure 3-2 and Figure 3-3.

The sample requester accepts input from a set of terminals. The requester does that
by displaying a data entry form on each terminal and then issuing nowait READ calls,
one per terminal. After filling in the applicable fields on the form, the terminal operator
presses a function key causing an AWAITIO completion and the initiation of a new
transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
3-3

Designing Multithreaded Processes Checkpointing Strategy
The sample requester responds to all error conditions by aborting the transaction and
refreshing the READ to the affected terminal. The requester does not try to determine
what type of error occurred or to make any decisions based on the error condition.

Individual Threads

As illustrated in Figure 3-1, the sequence of activities in a multithreaded requester is
basically the same as that of a TMF transaction in a single-threaded requester. The
major difference is that each thread in a multithreaded environment uses nowait
procedure calls and, as a result, spends more time in a suspended state as the
requester works on other concurrent transactions (threads).

The requester divides each thread into pieces, with each piece roughly corresponding
to those sets of activities in Figure 3-1 that lie between the gray SUSPEND boxes. The
requester does this asynchronously, essentially on a first come, first served basis;
when an AWAITIO call completes, the requester uses filenumber and tag to
determine what type of call completed and which transaction (thread) the completion is
associated with. The requester then resumes processing for the particular transaction
until the next point of suspension.

At any given time, only one thread is active; all others are temporarily suspended.
Furthermore, each thread is at a particular point in its processing that is completely
independent of all other threads. Within the requester itself, the threads have little
impact on one another. Any contention between the threads occurs at the server level,
where one transaction might have to wait momentarily for another transaction’s locks
to be released.

Placement of Checkpoints

Figure 3-2 and Figure 3-3 together illustrate the flow of control within a primary
multithreaded TMF requester process. Figure 3-2 shows the overall flow while
Figure 3-3 shows the detailed functionality within each logical block of code.

Within the life of a transaction, there are three places at which information must be
checkpointed:

1. Along with BEGINTRANSACTION, the primary process must issue a
CHECKPOINT call to pass all application data necessary to restart the transaction
to the backup process.

2. After BEGINTRANSACTION, and before issuing the corresponding
ENDTRANSACTION call, the primary process must call CHECKPOINT to
generate an entry for that transaction in the backup requester’s TFILE.

3. After either ENDTRANSACTION or ABORTTRANSACTION, the primary process
must call CHECKPOINT to flush the transaction’s entry from the backup
requester’s TFILE.

By properly placing your CHECKPOINT calls, however, you can actually accomplish all
three of these checkpoint operations with just two calls.
HP NonStop TMF Application Programmer’s Guide—540139-009
3-4

Designing Multithreaded Processes Checkpointing Strategy
As illustrated in the BEGINTRANSACTION box in Figure 3-2, a CHECKPOINT call
following the BEGINTRANSACTION call can satisfy both items 1 and 2 in the
preceding list. To do that, however, the parameter list of the CHECKPOINT call must
include references to all of the following:

1. The local storage variable containing the filenumber of the TFILE

2. The list of active transactions

3. All blocks of application data that are necessary to restart the transaction
HP NonStop TMF Application Programmer’s Guide—540139-009
3-5

Designing Multithreaded Processes Checkpointing Strategy
Figure 3-1. The Flow of an Individual Thread

VST002.vsd

SUSPEND

AWAITIO
Completion?

More
WRITEREADs to be

performed?

No

Yes

Issue Nowait READ
to get terminal input.

Issue nowait
ENDTRANSACTION

call.

Call
BEGINTRANSACTION.

AWAITIO
Completion? No

Yes

YesNo

Issue nowait
WRITEREAD call

to server.

No

Yes

SUSPEND

SUSPEND

Set up local storage with
all the data necessary to

start the transaction.

Call
CHECKPOINT.

Include the transaction tag
and the TFILE's file
number in the parameter
list along with the
addresses of all local data
blocks necessary to start
the transaction.Include the

TFILE's file
number in the
parameter
list.

Call
CHECKPOINT.

AWAITIO
Completion

?

HP NonStop TMF Application Programmer’s Guide—540139-009
3-6

Designing Multithreaded Processes Checkpointing Strategy
Figure 3-2. Multithreaded Requester Flow Chart

Issue Nowait READs to
Get Terminal Input

ENDTRANSACTION?

Successful
Completion?

AWAITIO
Completion?

Terminal
I/O

Completion?

Final
WRITEREAD
Complete?

RESUME
TRANSACTION

ABORT
TRANSACTION

CHECKPOINT
#2

RESUME
TRANSACTION

CHECKPOINT
#3

END
TRANSACTION

ISSUE WRITEREAD
TO SERVER

CHECKPOINT
#1

BEGIN
TRANSACTION

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

WRITEREAD COMPLETION

RESUME
TRANSACTION

VST003.vsd
HP NonStop TMF Application Programmer’s Guide—540139-009
3-7

Designing Multithreaded Processes Checkpointing Strategy
Figure 3-3. Multithreaded Requester; Detailed Functionality

Restarting Aborted Transactions on Takeover

If the primary requester fails for any reason, the backup process automatically takes
over. When that happens, the backup process must determine which of the active
transactions were successfully committed before the failure occurred, and which were
aborted.

The processing of a transaction never transfers in midstream from the primary to the
backup; any transactions that were aborted must be restarted and performed in their
entirety.

One of the items that the primary requester must maintain in local storage is a list of
the tag values associated with all active transactions. The primary process periodically
passes the tag list to the backup process using a CHECKPOINT call. In general, it is
most appropriate to do so by using the CHECKPOINT call that follows each
BEGINTRANSACTION call.

When a primary-to-backup switch occurs, the backup process must determine which
transactions were committed and which were aborted. The backup requester does this

BEGIN TRANSACTION

Set up local storage with all the
application data necessary to start
the transaction.

CALL BEGINTRANSACTION.

Write the transaction tag to local
storage.

CHECKPOINT #1

Call CHECKPOINT (include the
TFILE's file number and the
transaction tag in the data list
along with the addresses of all
local data blocks necessary to
start the transaction).

CHECKPOINTS #2 and #3

Call CHECKPOINT to flush the
transaction's entry from the
TFILE (include the TFILE's file
number in the data list).

ISSUE WRITEREAD TO SERVER

Issue a nowait WRITEREAD
call to a server process.

RESUME TRANSACTION

Use the transaction tag
returned by AWAITIO in a
RESUMETRANSACTION call
to resume the transaction.

ABORT TRANSACTION

Call ABORTTRANSACTION.

Delete the transaction tag from
local storage.

END TRANSACTION

Call ENDTRANSACTION.

VST004.vsd
HP NonStop TMF Application Programmer’s Guide—540139-009
3-8

Designing Multithreaded Processes Checkpointing Strategy
by issuing a RESUMETRANSACTION call, followed by ENDTRANSACTION or
ABORTTRANSACTION for each tag value in the tag list.

If a transaction may have committed before the failure occurred, the
RESUMETRANSACTION call returns error number 76 (transaction ended) in the
status variable. In that case, the backup process (now acting as a primary) should call
ENDTRANSACTION. If ENDTRANSACTION returns no errors, the transaction is
committed and the application starts a new backup process and then issues a READ to
the terminal to accept the next operator request. If ENDTRANSACTION returns an
error, the transaction is aborted. The application should start a new backup process
and then restart the transaction using checkpointed application data.

If a transaction was aborted the RESUMETRANSACTION call returns one of the error
numbers 90 through 97 described in Table 2-2 on page 2-5 of this manual. In this case,
the backup process (now acting as a primary) should call ABORTTRANSACTION,
start a new backup process, and then restart the transaction using the checkpointed
application data.

If RESUMETRANSACTION returns no error, TMF has not yet sufficiently processed
the failure of the primary process to indicate the aborted transaction. The application
should call ABORTTRANSACTION, start a new backup, and restart the transaction
using checkpointed application data.

The MAINLOOP Code

Initially, for each user terminal, the MAINLOOP code opens the terminal, displays the
application data form on the terminal’s screen, and issues a nowait READ call to detect
when the operator presses a function key.

Thereafter, the MAINLOOP code continually checks for AWAITIO completions.

Upon detecting a successful AWAITIO completion, the MAINLOOP code determines
what type of nowait call has completed:

 If the filenumber returned by the AWAITIO completion is that of a terminal, the
MAINLOOP code passes control to the BEGINTRANSACTION code.

 If the filenumber returned by the AWAITIO completion is that of the TFILE, the
completion is for a nowait ENDTRANSACTION call. In that case, control passes to
the CHECKPOINTTFILEENTRY code.

 If the filenumber returned by the AWAITIO completion is that of a server process,
the completion is for a nowait WRITEREAD call. In that case, the MAINLOOP code
must determine whether or not this was the final WRITEREAD call to be issued for
the transaction.

If the completed WRITEREAD call is the final one for the transaction, control
passes to the ENDTRANSACTION code.

If the transaction requires another WRITEREAD call, control passes to the
ISSUEWRITEREADTOSERVER code.
HP NonStop TMF Application Programmer’s Guide—540139-009
3-9

Designing Multithreaded Processes Checkpointing Strategy
Upon return from either the ABORTTRANSACTION or CHECKPOINTTFILEENTRY
code, the MAINLOOP code once again displays the application data form on the
particular terminal’s screen, issues a nowait READ for the terminal, and then continues
checking for further AWAITIO completions.

The BEGINTRANSACTION Code

When the MAINLOOP code detects operator input, control passes to the
BEGINTRANSACTION code. The major functions of the BEGINTRANSACTION code
are as follows:

1. Save, in local storage, all of the application data necessary to start the new
transaction.

2. Issue a BEGINTRANSACTION call to initiate the new transaction.

3. Add the transaction tag, returned by BEGINTRANSACTION, to a list of active
transactions in local storage.

4. Issue a CHECKPOINT call. This call passes the startup data for the new
transaction (saved in step #1) and the active transaction list (saved in step #2) to
the backup requester and then generates an entry for the transaction in the backup
requester’s TFILE.

5. Pass control to the ISSUE WRITEREAD TO SERVER code.

The ISSUEWRITEREADTOSERVER Code

The ISSUE WRITEREADTOSERVER code formats a work request, sends the work
request to the appropriate server process by issuing a nowait WRITEREAD call, and
then returns control to the MAINLOOP code.

The CHECKPOINTTFILEENTRY Code

When the MAINLOOP code detects a successful AWAITIO completion for a nowait
ENDTRANSACTION call, control passes to the CHECKPOINTTFILEENTRY code. The
major functions of the CHECKPOINTTFILEENTRY code are as follows:

1. Issue a RESUMETRANSACTION call, specifying the tag value returned by the
AWAITIO completion.

2. Issue a CHECKPOINT call (containing the filenumber of the TFILE in the
parameter list) to flush the entry for the committed transaction from the backup
requester’s TFILE.

3. Delete the transaction tag from the list of active transactions in local storage.

4. Return control to the MAINLOOP code.
HP NonStop TMF Application Programmer’s Guide—540139-009
3-10

Designing Multithreaded Processes Checkpointing Strategy
The ENDTRANSACTION Code

When the MAINLOOP code receives indication that the final nowait WRITEREAD call
for a transaction has completed successfully, control passes to the
ENDTRANSACTION code. The major functions of the ENDTRANSACTION code are
as follows:

1. Issue a RESUMETRANSACTION call, specifying the tag value returned by the
AWAITIO completion.

2. Issue an ENDTRANSACTION call to commit the transaction.

3. Return control to the MAINLOOP code.

The ABORTTRANSACTION Code

If the MAINLOOP code detects an unsuccessful AWAITIO completion, control passes
to the ABORTTRANSACTION code. The major functions of the
ABORTTRANSACTION code are as follows:

1. Issue a RESUMETRANSACTION call, specifying the tag value returned by the
AWAITIO completion.

2. Issue an ABORTTRANSACTION call to abort the transaction.

3. Issue a CHECKPOINT call (containing the filenumber of the TFILE in the
parameter list) to flush the entry for the aborted transaction from the backup
requester’s TFILE.

4. Delete the transaction tag from the list of active transactions in local storage.

5. Return control to the MAINLOOP code.
HP NonStop TMF Application Programmer’s Guide—540139-009
3-11

Designing Multithreaded Processes Multithreaded Servers
Multithreaded Servers
Multithreaded servers differ from single-threaded servers in the following ways:

 Multithreaded servers must open the $RECEIVE pseudofile with receive-depth
greater than 1.

 Multithreaded servers must include the appropriate transaction tag in all REPLY
calls.

Opening $RECEIVE

To open the $RECEIVE pseudofile, a multithreaded server uses an OPEN call of the
following form (illustrated in TAL):

filename

is the name of a variable containing the character string $RECEIVE.

filenumber

is the name of a variable into which the OPEN procedure returns a unique value
identifying the $RECEIVE pseudofile. You will use that filenumber in
READUPDATE and REPLY calls to accept incoming messages and reply to the
associated requesters, respectively.

nowait-depth

is the name of a variable containing the FILE_OPEN_ nowait-depth parameter.
For a multithreaded server, this parameter is either a 0 or a 1. Zero (0) indicates
that I/O operations are to be waited, while 1 specifies that I/O operations are to be
completed by an AWAITIO call (nowait).

receive-depth

specifies the maximum number of incoming work requests that the server can have
received but not yet replied to at any one time. For multithreaded servers,
receive-depth must be within the range 2-2047.

A process can open $RECEIVE only once; attempts to open multiple instances of
$RECEIVE will fail with a condition code of CCL and the error number 12 (file in use).

You close $RECEIVE by specifying the returned filenumber in a CLOSE procedure
call. Note that if the server has any transactions in progress (messages queued in
$RECEIVE for which a reply has not yet been sent) when you close $RECEIVE, TMF
automatically aborts them.

CALL FILE_OPEN_ (filename:8 , filenumber , , , nowait-depth
 , receive-depth);
HP NonStop TMF Application Programmer’s Guide—540139-009
3-12

Designing Multithreaded Processes Manipulating the Current Transaction
Manipulating the Current Transaction

Immediately after accepting an incoming work request from $RECEIVE, the server
must call the LASTRECEIVE procedure to obtain the tag value associated with that
work request.

After each READUPDATE completion, the transaction identifier associated with the
particular incoming work request becomes the server’s current transaction.

Thereafter, you use the tag value (obtained by using LASTRECEIVE) in
ACTIVATERECEIVETRANSID procedure calls to change the server’s current
transaction from one transaction to another.

When you are done processing $RECEIVE requests and wish to return control to a
transaction that you previously initiated, you merely supply the tag value from the
associated BEGINTRANSACTION call in a RESUMETRANSACTION procedure call.

As with single-threaded servers, a successful call to ABORTTRANSACTION
automatically resets the current transaction to the nil state. Because a multithreaded
server is continually switching its attention from one transaction to another, each
portion of code that resumes the processing of a transaction must explicitly set the
current transaction to the proper value by using an ACTIVATERECEIVETRANSID call.

If the call to ABORTTRANSACTION fails, the current transaction identifier remains
unchanged and is the same identifier that was supplied to the ABORTTRANSACTION
procedure.

Replying to Requesters

Whenever you have opened $RECEIVE with a receivedepth greater than 1, the
REPLY procedure ignores the value of the server’s current transaction and requires
that you supply an explicit tag value in the procedure call.

NonStop Servers

In the TMF environment, there is no need for NonStop servers.

If a server process fails while working on one or more transactions, TMF automatically
aborts the affected transactions. When the associated requesters receive indication
that their transactions have been aborted, the requesters open a new instance of the
failed server and then restart each transaction from the beginning.

As a result of this fundamental design characteristic of TMF, the processing of a failed
server simply cannot be taken over in midstream by a backup process, and the use of
checkpoints within a server is therefore meaningless.
HP NonStop TMF Application Programmer’s Guide—540139-009
3-13

Designing Multithreaded Processes Multithreaded Requester/Server Processes
Multithreaded Requester/Server Processes
You can design program modules that simultaneously act as a multithreaded requester
for some transactions and as a multithreaded server for others.

These kinds of program modules must open both a TFILE and a $RECEIVE pseudofile
(with options greater than 1 for the TFILE and receive-depth greater than 1 for
$RECEIVE), but still have only one current transaction.

The TFILE options and $RECEIVE receive-depth parameters are completely
independent of one another.

The TFILE options parameter specifies the maximum number of new transactions
the program module can initiate (if the TFILE is opened with an options parameter
of four, for example, the program module can issue up to four BEGINTRANSACTION
calls without first issuing an ENDTRANSACTION or ABORTTRANSACTION call).

The $RECEIVE receive-depth parameter specifies the maximum number of
transaction identifiers the program module can inherit from requester modules.

At any given time, the current transaction specifies one of the following:

 The transaction ID of a transaction in the TFILE

 The transaction ID of a work request message in $RECEIVE

 A nil value, indicating that there currently is no transaction in progress

The program module uses RESUMETRANSACTION (0) calls to set the current
transaction to the nil state, RESUMETRANSACTION (tag) calls to set the current
transaction to the transaction ID of a transaction in the TFILE, and
ACTIVATERECEIVETRANSID (tag) calls to set the current transaction to the
transaction ID of a work request message in $RECEIVE.

The program module must keep track of all the various tag values and use the proper
procedure call (ACTIVATERECEIVETRANSID or RESUMETRANSACTION) for each
individual tag value.

Note that a single program module could even act as both the requester and a server
for the same transaction. Suppose that process A begins a transaction and does a
WRITEREAD to process B. If process B then does a WRITEREAD back to process A,
that very same transaction (which is already in process A’s TFILE) could arrive in
process A’s $RECEIVE pseudofile as well. If that were to happen, the server
component of process A must reply to process B (and process B must then reply to
process A) before the requester component of process A can commit the transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
3-14

4 File System Procedures

This section presents detailed reference information for those file system procedure
calls that pertain directly to TMF. The descriptions are in alphabetic order by procedure
name.

For each procedure, the reference information includes:

 A brief description of what the procedure does

 The syntax of the procedure call (in both C and TAL)

 Parameter definitions

 Additional guidelines for using the call, where applicable

This section contains descriptions of the following procedures:

 ABORTTRANSACTION on page 4-3

 ACTIVATERECEIVETRANSID on page 4-5

 BEGINTRANSACTION on page 4-7

 BEGINTRANSACTION_EXT_ on page 4-10

 COMPUTETRANSID on page 4-12

 ENDTRANSACTION on page 4-15

 GETTMPNAME on page 4-17

 GETTRANSACTIONDETAILS on page 4-19

 GETTRANSID on page 4-24

 GETTRANSINFO on page 4-26

 INTERPRETTRANSID on page 4-28

 RESUMETRANSACTION on page 4-31

 STATUSTRANSACTION on page 4-34

 TEXTTOTRANSID on page 4-37

 TMF_BEGINTAG_FROM_TXHANDLE_ on page 4-40

 TMF_GETTXHANDLE_ on page 4-43

 TMF_GET_EXTTRANSID_ on page 4-44

 TMF_GET_TX_ID_ on page 4-46

 TMF_JOIN_ on page 4-48

 TMF_JOIN_EXT_ on page 4-50

 TMF_RESUME_ on page 4-53
HP NonStop TMF Application Programmer’s Guide—540139-009
4-1

File System Procedures
 TMF_SETTXHANDLE_ on page 4-55

 TMF_SUSPEND_ on page 4-57

 TMF_SUSPEND_EXT_ on page 4-59

 TMF_TXBEGIN_ on page 4-61

 TMF_TXHANDLE_FROM_BEGINTAG_ on page 4-63

 TRANSIDTOTEXT on page 4-65

 TMF_VERSION_EXT_ on page 4-67

Note. For enabling 64-bit features, you can call the 64-bit APIs in the OSS
environment using the LP64 memory option. In the Guardian environment, call the
64-bit APIs using Mix Mode.

Mix mode programming uses 64-bit pointers generated by
SEGMENT_ALLOCATE64_ and the same pointers are used in the ILP32 memory
model. This enables 64-bit APIs to be used in the Guardian environment.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-2

File System Procedures ABORTTRANSACTION
ABORTTRANSACTION
This procedure aborts the current transaction (the transaction identified by the calling
process’ current transaction identifier). Any application process that is working on a
transaction can abort that transaction at any time for any reason.

If a server process aborts a transaction, the requester (or its backup) that initiated the
transaction must still explicitly terminate the transaction by calling either
ENDTRANSACTION or ABORTTRANSACTION.

When ABORTTRANSACTION returns control to the calling process, the aborted
transaction has not yet been backed out, but the transaction’s state has changed from
active to aborting. Later, the TMF backout process will back out the transaction by
restoring the transaction’s before-images to all affected disk files. When backout is
complete, all locks held for the aborted transaction are released.

If the transaction is restarted under a new transaction identifier, the new transaction
cannot access any records locked by the aborted transaction until transaction backout
is completed for the aborted transaction and the locks held by the aborted transaction
are released.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

#include <cextdecs(ABORTTRANSACTION)>

short ABORTTRANSACTION();

status := ABORTTRANSACTION;

0 Successful completion.

30 System unable to obtain message block, or is already using its
maximum number of RECEIVE or SEND message blocks.

75 Current transaction in nil state.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-3

File System Procedures ABORTTRANSACTION
For a list of file system error numbers, refer to the Operator Messages Manual.

76 The requester called ABORTTRANSACTION while the transaction was
already in the process of ending (the transaction therefore cannot be
aborted or resumed).

82 TMF not running.

84 TMF not configured.

97 Transaction already aborted.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-4

File System Procedures ACTIVATERECEIVETRANSID
ACTIVATERECEIVETRANSID
Servers use this procedure to set their current transaction to the transaction identifier
of a particular work request queued in $RECEIVE. In the call, you supply a message
tag that you initially obtained by calling the LASTRECEIVE procedure immediately
after the READUPDATE call that accepted the message.

A multithreaded server uses ACTIVATERECEIVETRANSID either to resume
processing for a particular transaction or to properly set the current transaction before
replying to a requester. A single-threaded server uses ACTIVATERECEIVETRANSID
to reset the current transaction from the nil state to the transaction identifier of the
currently active transaction.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

Syntax for TAL Programmers

Parameters

message-tag input

INT:value

is returned by LASTRECEIVE, identifying a particular work request queued in
$RECEIVE. message-tag must be an integer between 0 and
(receive-depth - 1), inclusive, that is currently associated with a work request
queued in $RECEIVE.

ACTIVATERECEIVETRANSID returns a condition code only. For more information
about error conditions, call the FILEINFO procedure specifying the filenumber of
$RECEIVE.

The condition codes have the following meanings:

#include <cextdecs(ACTIVATERECEIVETRANSID)>

_cc_status ACTIVATERECEIVETRANSID (short message-tag);

CALL ACTIVATERECEIVETRANSID (message-tag); !i

<< (CCL) indicates that an error occurred (call FILEINFO).

= (CCE) indicates successful completion.

>> (CCG) indicates that $RECEIVE was not opened with a receive-depth
equal to or greater than 1.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-5

File System Procedures ACTIVATERECEIVETRANSID
The function value returned by ACTIVATERECEIVETRANSID, which indicates the
condition code, can be interpreted by _status_lt() , _status_eq() , or
_status_gt() (defined in the file tal.h).
HP NonStop TMF Application Programmer’s Guide—540139-009
4-6

File System Procedures BEGINTRANSACTION
BEGINTRANSACTION
This procedure initiates a new transaction. When you call this procedure, TMF creates
a unique transaction identifier that distinguishes the new transaction from all other
active transactions. The new transaction identifier becomes the current transaction of
the calling process.

The form of the transaction identifier is as follows:

While the BEGINTRANSACTION procedure creates the transaction identifier, it does
not return it during the course of the procedure. GETTRANSID returns the transaction
identifier of the calling process’ current transaction. For more information, see the
description of GETTRANSID on page 4-24.

The value returned to the trans-begin-tag variable can be passed to the
RESUMETRANSACTION procedure to restore to currency a transaction that was
previously initiated by the calling process (or its backup).

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Transaction ID Description

transid[0].<0:7> contains 1 plus the Expand system number of the system in which
BEGINTRANSACTION was called (this field contains 0 if the originating
system is not part of a network). The system number identifies the home
node of the transaction.

transid[0].<8:15> contains the number of the processor in which the transaction
originated.

transid[1:2] contains a double-word sequence number to make the transaction
identifier unique.

transid[3] a number (zero or nonzero) representing flags used internally by TMF.

#include <cextdecs(BEGINTRANSACTION)>

short BEGINTRANSACTION ([long _near *trans-begin-tag]);

#include <cextdecs(BEGINTRANSACTION)>

short BEGINTRANSACTION ([int _ptr64 *trans-begin-tag]);
HP NonStop TMF Application Programmer’s Guide—540139-009
4-7

File System Procedures BEGINTRANSACTION
Syntax for TAL Programmers

status := BEGINTRANSACTION ([trans-begin-tag]); ! o

HP NonStop TMF Application Programmer’s Guide—540139-009
4-8

File System Procedures BEGINTRANSACTION
Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, see the Operator Messages Manual.

trans-begin-tag output

INT(32):ref

or

INT(32) .EXT64:ref

returns a value that identifies the new transaction, among other transactions, which
the calling process has initiated. This parameter is optional for single-threaded
requesters, and mandatory for multithreaded requesters.

0 Successful completion.

30 System unable to obtain message block, or is already using its
maximum number of RECEIVE or SEND message blocks.

82 TMF not running.

83 Too many transactions (a single-threaded requester tried to initiate a
transaction while it still had one in progress, or a multithreaded
requester attempted to initiate more concurrent transactions than there
were TFILE entries)

84 TMF not configured.

86 Audit trail at begin-trans-disable threshold, or operator has disabled the
BEGINTRANSACTION procedure.

98 TFILE was opened using a nonzero sync-depth and all transaction
control blocks (TCBs) within the caller’s CPU are currently occupied.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-9

File System Procedures BEGINTRANSACTION_EXT_
BEGINTRANSACTION_EXT_
This procedure initiates a new transaction. The procedure is the same as
BEGINTRANSACTION except that it includes two new parameters to specify the
transaction type, and a timeout value for the transaction.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

#include <cextdecs(BEGINTRANSACTION_EXT_)>

short BEGINTRANSACTION_EXT_ ([long _near *trans-begin-tag],
 [long timeout],
 [long long type_flags]);

#include <cextdecs(BEGINTRANSACTION_EXT_)>

short BEGINTRANSACTION_EXT_ ([int _ptr64 *trans-begin-tag],
 [int timeout],
 [long long type_flags]);

status := BEGINTRANSACTION_EXT_ ([trans-begin-tag], ! o
 [timeout], ! i
 [type_flags]); ! i

0 Successful completion.

30 System unable to obtain message block, or is already using its
maximum number of RECEIVE or SEND message blocks.

82 TMF not running.

83 Too many transactions (a single-threaded requester tried to initiate a
transaction while a transaction is in progress, or a multithreaded
requester attempted to initiate more concurrent transactions than there
were TFILE entries).
HP NonStop TMF Application Programmer’s Guide—540139-009
4-10

File System Procedures BEGINTRANSACTION_EXT_
For a list of file system error numbers, see the Operator Messages Manual.

trans-begin-tag output

INT(32) :ref

or

INT(32) .EXT64:ref

returns a value that identifies the new transaction, among other transactions, which
the calling process has initiated. This parameter is optional for single-threaded
requesters, and mandatory for multithreaded requesters.

timeout input

INT(32)

is the value in seconds that overrides the Auto Abort timer. A value 0 indicates use
of Auto Abort timer. A value -1 indicates that the transaction will never time out.

The timeout parameter can have a value in the range of -1 through 21474836.
This parameter is optional and if omitted, the configured AutoAbort value is used.

Type_Flags input

Fixed

is the transaction attribute. This parameter is optional.

The Transaction Typing parameter will be passed by the application to TMF and will be
returned from TMF to the application as a FIXED (64-bit) value but will be treated as a
structure within TMF.

84 TMF not configured.

86 Audit trail at begin-trans-disable threshold, or operator has disabled the
BEGINTRANSACTION procedure.

98 TFILE was opened using a nonzero sync-depth and all transaction
control blocks (TCBs) within the caller’s CPU are currently occupied.

590 The parameter value is invalid.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-11

File System Procedures COMPUTETRANSID
COMPUTETRANSID
This procedure converts the individual numeric parts of an externally formatted
transaction identifier to internal form. All output parameters are undefined unless a
status of 0 (successful) is returned. If omitted, the tm-flags parameter defaults to 0.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

STRUCT Type_Flags_Struct (*) FIELDALIGN (SHARED2);
BEGIN
 Fixed Flags[0:-1];

 UNSIGNED(8) User_Info;
 These bits may be set by the customer and are not the

concern of TMF.
Note: 8 bits allows 256 possibilities. These bits will
not be evaluated by TMF, they will simply be carried
with the transaction.

 BIT_FILLER 53;
 Reserved bits for HP internal use. Should be

initialized to zero.

 UNSIGNED(1) No_Capacity_Abort;
If set to true, the transaction is not subject to TMF
45% of audit-trail use limit.

 BIT_FILLER 2;
Reserved bits for HP internal use. Should be initialized
to zero.

END;

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-12

File System Procedures COMPUTETRANSID
 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a TMF or file system error number:

#include <cextdecs(COMPUTETRANSID)>

short COMPUTETRANSID (long long _far *transid
 , long system
 , short cpu
 , long sequence
 , [short tm-flags]);

#include <cextdecs(COMPUTETRANSID)>

short COMPUTETRANSID (long long _ptr64 *transid
 , int system
 , short cpu
 , int sequence
 , [short tm-flags]);

status := COMPUTETRANSID (transid ! o
 , system ! i
 , cpu ! i
 , sequence ! i
 , [tm-flags]); ! i

-4 Invalid system (TMF).

-3 Invalid TMF flags value (TMF).

-2 Invalid CPU (TMF).

-1 Invalid sequence (TMF).

0 Successful completion.

22 Invalid reference parameter.

29 Missing parameter(s).

82 TMF not running.

84 TMF not configured.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-13

File System Procedures COMPUTETRANSID
For a list of file system error numbers, refer to the Operator Messages Manual.

transid output

FIXED .EXT:ref:1 or INT .EXT:ref:4

or

FIXED .EXT64:ref:1 or INT .EXT64:ref:4

is the internal name of the transaction identifier.

system input

INT(32):value

is a required system number in the range 0 through 254.

cpu input

INT:value

is a required CPU number in the range 0 through 15.

sequence input

INT(32):value

is a required sequence number greater than 0.

tm-flags input

INT:value

is a number representing flags used internally by TMF.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-14

File System Procedures ENDTRANSACTION
ENDTRANSACTION
This procedure commits the database changes associated with the current transaction.
The only application process that can execute an ENDTRANSACTION call is the
requester process that initiated the particular transaction.

When a requester calls ENDTRANSACTION, TMF attempts to commit the changes
made to the database by the transaction. If the action completes successfully, the
changes made by the transaction are permanent and the locks held for the transaction
are released. Locks on inserted, updated, or deleted items are held until TMF has
written a commit record to the audit trail.

If the calling process did not explicitly open its TFILE, calls to ENDTRANSACTION are
waited operations: ENDTRANSACTION does not return control to the calling process
until TMF has written a commit record to the audit trail, thereby ensuring that the
transaction will commit. ENDTRANSACTION does not, however, wait for the
transaction’s locks to be released.

If the calling process explicitly opened its TFILE, calls to ENDTRANSACTION are
nowait operations: ENDTRANSACTION returns control immediately to the calling
process and the request must be completed by a subsequent call to the AWAITIO
system procedure.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

#include <cextdecs(ENDTRANSACTION)>

short ENDTRANSACTION();

status := ENDTRANSACTION;

0 Successful completion.

30 System unable to obtain message block, or is already using its
maximum number of RECEIVE or SEND message blocks.

75 Current transaction in nil state.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-15

File System Procedures ENDTRANSACTION
For a list of file system error numbers, refer to the Operator Messages Manual.

78 Invalid or obsolete transaction identifier.

81 Outstanding nowaited I/O requests exist for the current transaction.

82 TMF not running.

84 TMF not configured.

90 Transaction’s parent process failed.

91 The TMF subsystem failed and the transaction final outcome is
unknown. When TMF is re-started, if the transaction has not been
completely committed, it will automatically be aborted and all changes
will be removed.

92 Path to a participating network node failed.

93 TMF aborted the transaction because the transaction remained on the
system long enough to span too many audit-trail files.

94 Transaction aborted by operator command.

95 TMF aborted the transaction because a CPU failure caused a disk
process primary-to-backup switch.

96 Transaction aborted by Autoabort threshold.

97 Transaction aborted by ABORTTRANSACTION call.

730 One or more processes are still joined to the transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-16

File System Procedures GETTMPNAME
GETTMPNAME
This procedure returns the logical device name of the TMF Management Process
(TMP) defined during system configuration. You need to know the TMP name, which is
always $TMP, in order to open the TFILE.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

devname output

INT:ref:12

or

#include <cextdecs(GETTMPNAME)>

short GETTMPNAME (short _near *devname);

#include <cextdecs(GETTMPNAME)>

short GETTMPNAME (short _ptr64 *devname);

status := GETTMPNAME (devname); ! o

0 Successful completion.

29 Missing parameter(s).

82 TMF not running.

84 TMF not configured.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-17

File System Procedures GETTMPNAME
INT .EXT64:ref:12

is the name of a 12-word array into which GETTMPNAME returns the device
name of the TMP. This name can then be passed to the OPEN procedure to open
the TFILE. To call the FILE_OPEN_ procedure, pass a byte-addressable array
that has the same location as devname along with a length value of 4. If the TMP
is not configured, the returned device name is all blanks.

A process can open the TFILE only once. Attempts to open more than one instance of
the TFILE return an error number 12 (file in use). For multithreaded requesters, the
OPEN TFILE call must be performed before the first call to BEGINTRANSACTION. For
single-threaded requesters, the first call to BEGINTRANSACTION implicitly opens the
TFILE for you.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-18

File System Procedures GETTRANSACTIONDETAILS
GETTRANSACTIONDETAILS
This procedure returns transaction related information like TransID, TXID,
TxHandle, type flags, begin tag, and process handle of the process that had begun
the transaction.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

#include <cextdecs(GETTRANSACTIONDETAILS)>

short GetTransactionDetails (short,

 long long _far*,

 long long _far*,

 short _far*,

 long long _far*,

 short _far*,

 long _far*);

#include <cextdecs(GETTRANSACTIONDETAILS)>

short GetTransactionDetails (short,

 long long _ptr64*,

 long long _ptr64*,

 short _ptr64*,

 long long _ptr64*,

 short _ptr64*,

 int _ptr64*);
HP NonStop TMF Application Programmer’s Guide—540139-009
4-19

File System Procedures GETTRANSACTIONDETAILS
Syntax for TAL Programmers

Parameters

error returned value

INT

is an error number indicating the outcome of an operation. The following are the
possible errors:

For a list of file system error numbers, see Operator Messages Manual.

InputID input

INT

indicates whether TransID, TXID, TxHandle, or none of these are passed as
input. Valid values are 0, 1, 2, and 3.

If InputID = 0

It indicates that no input is passed. In this case, the API retrieves the following
details of the current transaction of the process:

 TransID

 TXID

error := GetTransactionDetails (InputID,

 TransID,

 TXID,

 TXHandle,

 TypeFlags,

 Phandle,

 BeginTag);

 CALLABLE, EXTENSIBLE;

FEOK Successful completion.

FEMISSPARAM Missing parameter(s).

FENOTRANSID Current transaction in NIL state.

FEINVTRANSID Invalid or obsolete transaction identifier.

FETMFNOTRUNNING TMF not running.

FETMFNOTCONFIGURED TMF not configured.

FEBADPARMVALUE InputID is invalid.

FEINVALIDTXHANDLE Invalid transaction handle.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-20

File System Procedures GETTRANSACTIONDETAILS
 TxHandle

 TypeFlags

 Phandle

 BeginTag

At least one of TransID, TXID, TxHandle, TypeFlags, or Phandle must be
passed as output parameter.

If InputID = 1

It indicates that TransID is passed as input. In this case, the API retrieves the
following details based on the TransID:

 TXID

 TxHandle

 TypeFlags

 Phandle

 BeginTag

At least one of TXID, TxHandle, TypeFlags, or Phandle must be passed as
output parameter.

If InputID = 2

It indicates that TXID is passed as input. In this case, the API retrieves the
following details based on the TXID:

 TransID

 TxHandle

 TypeFlags

 Phandle

 BeginTag

At least one of TransID, TxHandle, TypeFlags, or Phandle must be
passed as output parameter.

If InputID = 3

It indicates that TxHandle is passed as input. In this case, the API retrieves
the following details based on the TxHandle:

 TXID

 TransID

 TypeFlags
HP NonStop TMF Application Programmer’s Guide—540139-009
4-21

File System Procedures GETTRANSACTIONDETAILS
 Phandle

 BeginTag

At least one of TransID, TXID, TypeFlags, or Phandle must be passed as
output parameter.

TransID input/output

FIXED .EXT:REF:1
or
FIXED .EXT64:REF:1

TransID can be passed as an input parameter by setting the InputID to 1.
TransID must be local when it is passed as an input parameter. This is an
optional parameter.

If TransID is passed as an output parameter, then one of the following is
returned:

 The TransID of the corresponding TXID or TxHandle that was
passed when the InputID is set to 2 or 3.

 The current transaction when the InputID is set to 0.

TXID input/output

FIXED .EXT:REF:1
or
FIXED .EXT64:REF:1

TXID can be passed as an input parameter by setting the InputID to 2. This
is an optional parameter.

If TXID is passed as an output parameter, then one of the following is returned:

 The TXID of the corresponding TransID or TxHandle that was
passed when the InputID is set to 1 or 3.

 The current transaction when the InputID is set to 0.

TxHandle input/output

INT .EXT:REF:10
or
INT .EXT64:REF:10

TxHandle can be passed as an input parameter by setting the InputID to 3.
This is an optional parameter.

If TxHandle is passed as an output parameter, the TxHandle of the current
transaction when the InputID is set to 0 is returned or when the InputID is
set to 1 or 2, TxHandle is not returned.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-22

File System Procedures GETTRANSACTIONDETAILS
TypeFlags output

FIXED .EXT:REF:1
or
FIXED .EXT64:REF:1

This is an optional parameter.

If this attribute is passed, one of the following is returned:

 The type flags of the transaction of the corresponding TransID, TXID,
or TxHandle that is passed when InputID is set to 1, 2, or 3.

 The type flags of the current transaction when the InputID is set to 0.

Phandle output

INT .EXT:REF:10
or
INT .EXT64:REF:10

This is an optional parameter.

If this attribute is passed, one of the following is returned:

 The process handle of the transaction beginner process of the
corresponding TransID, TXID, or TxHandle that is passed when
InputID is set to 1, 2, or 3.

 The process handle of the current transaction when the InputID is
set to 0.

BeginTag output

INT(32) .EXT:REF:1
or
INT(32) .EXT64:REF:1

This is an optional parameter.

If this attribute is passed, one of the following is returned:

 The beginner tag associated with the corresponding TransID, TXID,
or TxHandle that is passed when the InputID is set to 1, 2, or 3.

 The beginner tag associated with the current transaction when the
InputID is set to 0.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-23

File System Procedures GETTRANSID
GETTRANSID
This procedure returns the transaction identifier of the calling process’ current
transaction..

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

#include <cextdecs(GETTRANSID)>

short GETTRANSID (short _near *transid);

#include <cextdecs(GETTRANSID)>

short GETTRANSID (short _ptr64 *transid);

status := GETTRANSID (transid); ! o

0 Successful completion.

75 Current transaction in nil state.

78 Invalid or obsolete transaction identifier.

82 TMF not running.

84 TMF not configured.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-24

File System Procedures GETTRANSID
transid output

INT:ref:4

or

INT .EXT64:ref:4

is a four-word array into which GETTRANSID returns the transaction identifier of
the current transaction. Its form is as follows:

Transaction ID Description

transid[0].<0:7> contains 1 plus the Expand system number of the system in which
BEGINTRANSACTION was called (this field contains 0 if the
originating system is not part of a network). The system number
identifies the home node of the transaction.

transid[0].<8:15> contains the number of the processor in which the transaction
originated.

transid[1:2] contains a double-word sequence number to make the transaction
identifier unique.

transid[3] contains tm-flags, a number (zero or nonzero) representing flags
used internally by TMF.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-25

File System Procedures GETTRANSINFO
GETTRANSINFO
This procedure returns the exttransid and transaction type flags. Use
GETTRANSINFO when the calling process wants to pass exttransid to another
process in the same Expand network so that the process can call TMF_JOIN_EXT_.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, see the Operator Messages Manual.

#include <cextdecs(GETTRANSINFO)>

short GETTRANSINFO (long long _far *transid,
 long long _far *type_flags);

#include <cextdecs(GETTRANSINFO)>

short GETTRANSINFO (long long _ptr64 *transid,
long long _ptr64 *type_flags);

status := GETTRANSINFO (transid, ! o
 type_flags) ! o
 CALLABLE, EXTENSIBLE;

FEOK Successful completion.

FEMISSPARM Required parameter exttransid is missing.

FEBOUNDSERR One or more of the supplied parameters is out of bounds.

FENOTRANSID No current transaction.

FEINVTRANSID Invalid transaction identifier.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-26

File System Procedures GETTRANSINFO
transid output

FIXED .EXT:ref:1

or

FIXED .EXT64:ref:1

is the transaction identifier in internal format as obtained from GETTRANSID.

type_flags output

FIXED .EXT:ref:1

or

FIXED .EXT64:ref:1

the transaction type flags for the current transaction.

This parameter is optional.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-27

File System Procedures INTERPRETTRANSID
INTERPRETTRANSID
This procedure converts the supplied transaction identifier from internal form to its
individual external numeric parts. If the conversion fails (status <> 0), all output
parameters are undefined.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

#include <cextdecs(INTERPRETTRANSID)>

short INTERPRETTRANSID (long long transid
 , long _far *system
 , short _far *cpu
 , long _far *sequence
 ,[short _far *tm-flags]);

#include <cextdecs(INTERPRETTRANSID)>

short INTERPRETTRANSID (long long transid
 , int _ptr64 *system
 , short _ptr64 *cpu
 , int _ptr64 *sequence
 ,[short _ptr64 *tm-flags]);

status := INTERPRETTRANSID (transid ! i
 , system ! o
 , cpu ! o
 , sequence ! o
 [, tm-flags]); ! o
HP NonStop TMF Application Programmer’s Guide—540139-009
4-28

File System Procedures INTERPRETTRANSID
is a TMF or file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

-2 Invalid internal transaction identifier (TMF).

-1 Missing tm-flags parameter (TMF).

0 Successful completion.

22 Invalid reference parameter.

29 Missing parameter(s).

82 TMF not running.

84 TMF not configured.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-29

File System Procedures INTERPRETTRANSID
transid input

FIXED:value

is the transaction identifier in internal format as obtained from GETTRANSID.

system output

INT(32) .EXT:ref:1

or

INT(32) .EXT64:ref:1

is the system number.

cpu output

INT .EXT:ref:1

or

INT .EXT64:ref:1

is the CPU number.

sequence output

INT(32) .EXT:ref:1

or

INT .EXT64:ref:1

is a sequence number greater than 0.

tm-flags output

INT .EXT:ref:1

or

INT .EXT64:ref:1

is a number representing flags used internally by TMF.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-30

File System Procedures RESUMETRANSACTION
RESUMETRANSACTION
This procedure sets the current transaction of the calling process either to the nil state
or to the transaction identifier of the specified transaction. You identify the desired
transaction by supplying the trans-begin-tag returned by a previous call to
BEGINTRANSACTION.

RESUMETRANSACTION makes it possible for you to write multithreaded requesters
that can process two or more transactions at the same time: the requester can only
work on one transaction at a time. By using RESUMETRANSACTION to manipulate
the current transaction, however, the requester can switch from one active transaction
to another.

To use RESUMETRANSACTION, your program must include trans-begin-tag in
all BEGINTRANSACTION calls and must remember which tag applies to which active
transaction.

If RESUMETRANSACTION returns an error, this is an indication that future attempts to
use the transaction for updates to the database will result in an error. The requester (or
its backup) that initiated the transaction must still explicitly terminate the transaction by
calling either ENDTRASACTION or ABORTTRANSACTION. The final outcome of the
transaction will be indicated by the result of one of the calls.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

#include <cextdecs(RESUMETRANSACTION)>

short RESUMETRANSACTION (long trans-begin-tag);

#include <cextdecs(RESUMETRANSACTION)>

short RESUMETRANSACTION (int trans-begin-tag);
HP NonStop TMF Application Programmer’s Guide—540139-009
4-31

File System Procedures RESUMETRANSACTION
Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

Non-zero errors indicate that the transaction cannot be used to update the
database.

Note that for all errors except 31, 36, and 78, the caller must still call
ABORTTRANSACTION or ENDTRANSACTION to clean up data structures and
determine the final outcome of the transaction.

trans-begin-tag input

INT(32)

is the value returned by the optional trans-begin-tag parameter of
BEGINTRANSACTION. If the value of this parameter is 0D, the current transaction
identifier of the calling process is reset to the nil state.

If the transaction identified by trans-begin-tag was initiated by either the calling
process or its backup, the calling process’ current transaction is set to the associated
transaction identifier, even if RESUMETRANSACTION returns an error number.

status := RESUMETRANSACTION (trans-begin-tag); ! i

0 Successful completion.

76 Transaction ending or aborting.

78 Invalid or obsolete transaction identifier.

82 TMF not running.

84 TMF not configured.

90 Transaction’s parent process failed.

92 Path to a participating network node failed.

93 Transaction aborted because it was pinning a file on the MAT, and
more than 45% of the MAT filled during the transaction’s lifetime.

94 Transaction aborted by operator command.

96 Transaction aborted by Autoabort threshold.

97 Transaction aborted by ABORTTRANSACTION call.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-32

File System Procedures RESUMETRANSACTION
When issued by the primary requester process of a process pair,
RESUMETRANSACTION does not change the current transaction identifier of the
backup process.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-33

File System Procedures STATUSTRANSACTION
STATUSTRANSACTION
In addition to determining the status of a transaction, this procedure optionally accepts
a transaction identifier as an input parameter. If you omit the transaction identifier from
the call, STATUSTRANSACTION returns the status of the current transaction.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

#include <cextdecs(STATUSTRANSACTION)>

short STATUSTRANSACTION (short _far *trans-status
 ,[long long transid]);

#include <cextdecs(STATUSTRANSACTION)>

short STATUSTRANSACTION (short _ptr64 *trans-status
 ,[long long transid]);

status := STATUSTRANSACTION (trans-status ! o
 [, transid]); ! i

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

53 File system internal error.

75 No such transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-34

File System Procedures STATUSTRANSACTION
For a list of file system error numbers, refer to the Operator Messages Manual.

78 Calling process’ current transaction in the nil state.

82 TMF not running.

84 TMF not configured.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-35

File System Procedures STATUSTRANSACTION
trans-status output

INT .EXT:*

or

INT .EXT64:ref:1

is the status of the transaction, as follows:

transid input

FIXED:value

is an optional transaction identifier (in internal form). If this parameter is omitted,
STATUSTRANSACTION returns the status of the current transaction.

1 ACTIVE

2 PREPARED

3 COMMITTED

4 ABORTING

5 ABORTED

6 HUNG

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-36

File System Procedures TEXTTOTRANSID
TEXTTOTRANSID
This procedure converts a transaction identifier from external ASCII form to internal
form. If the conversion fails (status <> 0), all output parameters are undefined.

If the string pointed to by the text parameter does not include a system name or
number and the local system is a named system, TEXTTOTRANSID uses the local
Expand node number as the system number.

If the string pointed to by the text parameter does not include a TMF flags value,
TEXTTOTRANSID generates a TMF flags field containing 0.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

#include <cextdecs(TEXTTOTRANSID)>

short TEXTTOTRANSID (char _far *text
 , short text-byte-length
 , long long _far *transid);

#include <cextdecs(TEXTTOTRANSID)>

short TEXTTOTRANSID (char _ptr64 *text
 , short text-byte-length
 , long long _ptr64 *transid);

status := TEXTTOTRANSID (text ! i
 , text-byte-length ! i
 , transid); ! o
HP NonStop TMF Application Programmer’s Guide—540139-009
4-37

File System Procedures TEXTTOTRANSID
is a TMF or file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

text input

STRING .EXT:ref:*

or

STRING .EXT64:ref:*

is the name of a string variable containing the external ASCII transaction identifier
in one of the following formats:

\system-name(tm-flags).cpu.sequence
\system-number(tm-flags).cpu.sequence
\system-name.cpu.sequence
\system-number.cpu.sequence
cpu.sequence

text-byte-length input

INT:value

is the length of text, from 0 to 80 bytes. text-byte-length must specify the
exact length of the external transaction identifier contained in the string pointed to
by text.

transid output

FIXED:ref:1

or

FIXED .EXT64:ref:1

is the transaction identifier in internal format.

-6 Additional characters in transaction identifier (TMF).

-5 text-byte-length out of range (TMF).

-4 Invalid system name or number (TMF).

-3 Invalid TMF flags value (TMF).

-2 Invalid CPU (TMF).

-1 Invalid sequence (TMF).

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

82 TMF not running.

84 TMF not configured.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-38

File System Procedures TEXTTOTRANSID
Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-39

File System Procedures TMF_BEGINTAG_FROM_TXHANDLE_
TMF_BEGINTAG_FROM_TXHANDLE_
This procedure returns the begin-transaction-tag associated with the specified
transaction handle. The returned tag matches the one returned by the
BEGINTRANSACTION procedure, if the calling process began the transaction. It also
matches the tag returned by AWAITIO[X] to indicate completion of a nowaited
ENDTRANSACTION call.

If the specified transaction handle does not refer to a transaction begun or resumed by
the calling process, the file system error number 715 (invalid transaction handle) is
returned.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

#include <cextdecs(TMF_BEGINTAG_FROM_TXHANDLE_)>

short TMF_BEGINTAG_FROM_TXHANDLE_
 (short _far *tx-handle ,
 long _far *trans-begin-tag);

#include <cextdecs(TMF_BEGINTAG_FROM_TXHANDLE_)>

short TMF_BEGINTAG_FROM_TXHANDLE_
 (short _ptr64 *tx-handle ,
 int _ptr64 *trans-begin-tag);

status := TMF_BEGINTAG_FROM_TXHANDLE_ (tx-handle , ! i
 trans-begin-tag) ! o
 CALLABLE, EXTENSIBLE;
HP NonStop TMF Application Programmer’s Guide—540139-009
4-40

File System Procedures TMF_BEGINTAG_FROM_TXHANDLE_
is a file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

82 TMF not currently running.

84 TMF not configured.

715 Invalid transaction handle.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-41

File System Procedures TMF_BEGINTAG_FROM_TXHANDLE_
tx-handle input

INT .EXT:ref:10

or

INT .EXT64:ref:10

specifies the transaction handle associated with the transaction whose begin-
transaction-tag is to be returned.

trans-begin-tag output

INT(32) .EXT:ref:1

or

INT(32) .EXT64:ref:1

returns the begin-transaction-tag associated with the supplied transaction handle.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-42

File System Procedures TMF_GETTXHANDLE_
TMF_GETTXHANDLE_
This procedure returns the transaction handle of the current transaction.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

tx-handle output

INT .EXT:ref:10

or

INT .EXT64:ref:10

#include <cextdecs(TMF_GETTXHANDLE_)>

short TMF_GETTXHANDLE_ (short _far *tx-handle);

#include <cextdecs(TMF_GETTXHANDLE_)>

short TMF_GETTXHANDLE_ (short _ptr64 *tx-handle);

status := TMF_GETTXHANDLE_ (tx-handle) ! o
 CALLABLE;

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

75 No current transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-43

File System Procedures TMF_GET_EXTTRANSID_
specifies the transaction handle of the current transaction of the calling process.
The size of the returned handle is 20 bytes.

TMF_GET_EXTTRANSID_
This procedure returns the exttransid associated with the current transaction of the
process.

Note. This procedure cannot be called by TNS applications.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.

#include <cextdecs(TMF_GET_EXTTRANSID_)>

short TMF_GET_EXTTRANSID_ (long long _ptr64 *exttransid[2],
 long long _ptr64 *type_flags);

status := TMF_GET_EXTTRANSID_ (exttransid, ! i
 type_flags)
! o
 CALLABLE, EXTENSIBLE;

0 Successful completion.

22 Bounds error.

75 No current transaction

78 Transaction no longer valid.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-44

File System Procedures TMF_GET_EXTTRANSID_
For a list of file system error numbers, refer to the Operator Messages Manual

exttransid output

FIXED .EXT:ref:2

or

FIXED .EXT64:ref:2

the transactional identifier that can be used for a subsequent TMF_JOIN_EXT_
call, either in the calling process or in another process in the same EXPAND
network.

type_flags output

FIXED .EXT:ref:1

or

FIXED .EXT64:ref:1

the transaction type flags for the current transaction.

This parameter is optional.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-45

File System Procedures TMF_GET_TX_ID_
TMF_GET_TX_ID_
This procedure extracts a transactional identifier (txid) from a transaction handle. The
identifier is only valid within the lifetime of the calling process or until TMF is either shut
down or crashes. The returned identifier can be used in calls to TMF_RESUME_ to
specify the transaction to be resumed by the process. The same transactional identifier
is returned by TMF_SUSPEND_.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

#include <cextdecs(TMF_GET_TX_ID_)>

short TMF_GET_TX_ID_ (short _far *tx-handle ,
 long long _far *txid);

#include <cextdecs(TMF_GET_TX_ID_)>

short TMF_GET_TX_ID_ (short _ptr64 *tx-handle ,
 long long _ptr64 *txid);

status := TMF_GET_TX_ID_ (tx-handle , ! i
 txid) ! o
 CALLABLE, EXTENSIBLE;

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

78 Transaction no longer valid.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-46

File System Procedures TMF_GET_TX_ID_
For a list of file system error numbers, refer to the Operator Messages Manual.

tx-handle input

INT .EXT:ref:10

or

INT .EXT64:ref:10

specifies the transaction handle associated with the transaction whose
transactional identifier is to be returned.

txid output

FIXED .EXT:ref:1

or

FIXED .EXT64:ref:1

a transactional identifier to be used in a subsequent call to TMF_RESUME_ or
TMF_JOIN_.

82 TMF not running.

84 TMF not configured.

715 Invalid transaction handle.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-47

File System Procedures TMF_JOIN_
TMF_JOIN_
This procedure allows a process to participate in a transaction initiated by another
process without taking over as the ENDTRANSACTION caller. TMF_JOIN_ can be
called by more than one process in the same Expand node at the same time. The
BEGINTRANSACTION caller need not call TMF_SUSPEND_ before another process
calls TMF_JOIN_ and can participate in the transaction at the same time.

Joining a transaction means:

 Making the transaction the current transaction.

 The process calling TMF_JOIN_ is not allowed to call ENDTRANSACTION.

To relinquish control of a joined transaction, the calling process must issue a
TMF_SUSPEND_ call; otherwise, the process that initiated the transaction receives
error 730 when it tries to run ENDTRANSACTION.

TMF_JOIN_ has the same semantics as the implicit transaction propagation provided
by the file system and can provide the same function when file system propagation is
not appropriate to the application.

The transaction identifier passed to this procedure is the one returned by
TMF_GET_TX_ID_.

This procedure cannot be used for transactions that were begun on a different
EXPAND node.

A joined transaction uses one of the entries in the calling process’ TFILE. If the
process has not explicitly opened the TFILE, the joined transaction uses the one TFILE
entry that exists for all processes. If there are no available TFILE entries when the call
to TMF_JOIN_ is issued, the call is rejected with file system error 83 (too many
transactions).

If the calling process is the primary process of a process pair and the TFILE is being
checkpointed, the calling process should checkpoint the TFILE after calling
TMF_JOIN_ to modify the backup process’ TFILE accordingly.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

#include <cextdecs(TMF_JOIN_)>

short TMF_JOIN_ (long long txid);
HP NonStop TMF Application Programmer’s Guide—540139-009
4-48

File System Procedures TMF_JOIN_
Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

txid input

FIXED

the transactional identifier returned by TMF_GET_TX_ID_.

status := TMF_JOIN_ (txid) ! i
 CALLABLE, EXTENSIBLE;

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

76 Transaction ending or aborting.

78 Invalid transaction identifier or transaction not started on this EXPAND
node.

82 TMF not running.

83 Too many transactions (a single-threaded requester tried to initiate a
transaction while it still had one in progress, or a multithreaded
requester attempted to initiate more concurrent transactions than there
were TFILE entries).

84 TMF not configured.

721 BEGINTRANSACTION not completed.

731 The process has already called TMF_JOIN_ for this transaction.

732 The process has already called TMF_RESUME_ for this transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-49

File System Procedures TMF_JOIN_EXT_
TMF_JOIN_EXT_
This procedure allows a process to participate in a transaction, initiated by another
process, without taking over as the ENDTRANSACTION caller. TMF_JOIN_EXT_ can
be called by more than one process in any node in the beginner’s Expand network at
the same time. The BEGINTRANSACTION caller need not call TMF_SUSPEND_EXT_
before another process calls TMF_JOIN_EXT_ and can participate in the transaction at
the same time. TMF_JOIN_EXT_ is interchangeable with TMF_JOIN_ in the
beginner's node.

Joining a transaction means:

 Making the transaction the current transaction.

 The process calling TMF_JOIN_EXT_ is not allowed to call ENDTRANSACTION.

TMF_JOIN_EXT_ must be completed in the calling process by a call to
TMF_SUSPEND_EXT_.

Note. This procedure cannot be called by TNS applications.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

Syntax for TNS/E Programmers

Syntax for pTAL Programmers

Parameters

status returned value

INT

is a file system error number:

#include <cextdecs(TMF_JOIN_EXT_)>

short TMF_JOIN_EXT_ (long long _ptr64 *exttransid);

status := TMF_JOIN_EXT_ (exttransid) ! i
 CALLABLE, EXTENSIBLE;

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).
HP NonStop TMF Application Programmer’s Guide—540139-009
4-50

File System Procedures Usage Considerations
For a list of file system error numbers, see the Operator Messages Manual.

exttransid input

FIXED:ref:2

or

FIXED .EXT64:ref:2

the transactional identifier returned by TMF_SUSPEND_EXT_ or
GETTRANSINFO.

Usage Considerations

Applications using TMF_JOIN_EXT_ must also use TMF_SUSPEND_EXT_.
TMF_SUSPEND_EXT_ and GETTRANSINFO return exttransid, which is used in
subsequent calls to TMF_JOIN_EXT_.

TMF_JOIN_EXT_ has the same semantics as the implicit transaction propagation
provided by the file system and provides the same function when the file system
propagation is not appropriate to the application.

A joined transaction uses one of the entries in the calling process' TFILE. If the
process has not explicitly opened the TFILE, the joined transaction uses one TFILE
entry that exists for all processes. If there are no available TFILE entries when the call

76 Transaction ending or aborting.

78 Invalid transaction identifier.

82 TMF not running.

83 Too many transactions (a single-threaded requester
tried to initiate a transaction while a transaction is in
progress, or a multithreaded requester attempted to
initiate more concurrent transactions than there
were TFILE entries).

84 TMF not configured.

721 BEGINTRANSACTION not completed.

731 The process has already called TMF_JOIN_ or
TMF_JOIN_EXT_ for this transaction.

This error now always returns when
TMF_JOIN_EXT_ is called and the calling process
has a current transaction.

732 The process has already called TMF_RESUME_
for this transaction.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-51

File System Procedures Usage Considerations
to TMF_JOIN_EXT_ is issued, the call is rejected with file system error
FETOOMANYTRANSBEGINS (too many transactions).

If the calling process is the primary process of a process pair and the TFILE is being
checkpointed, the calling process should checkpoint the TFILE after calling
TMF_JOIN_EXT_ to modify the backup process' TFILE.

If the calling process has not relinquished control of a joined transaction by issuing a
TMF_SUSPEND_EXT call, one of the following takes place when the process that
initiated the transaction calls ENDTRANSACTION:

 If the calling process is on the beginner's node, then a retry error
FEJOINOUTSTANDING will be returned.

OR

 If the calling process is on a remote node, the transaction will be aborted, and
FETRANSABORTED will be returned.

Note. If the Joiners CPU fails while the join is active, the transaction is aborted with abort
flags set to AbortDueToServerFailure.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-52

File System Procedures TMF_RESUME_
TMF_RESUME_
This procedure allows a process to resume a previously suspended transaction.

Resuming a transaction means:

1. Making the transaction the current transaction

2. Taking over as the ENDTRANSACTION caller for the transaction

After successfully resuming a transaction, the calling process can then issue an
ENDTRANSACTION call. The process that suspended the transaction and the one
that resumes it need not reside in the same CPU, but they must reside in the same
EXPAND node. Only one process will succeed in resuming a previously suspended
transaction.

The transaction identifier passed to this procedure is the one returned by
TMF_SUSPEND_; it can also, however, be obtained by calling TMF_GET_TX_ID_.

This procedure cannot be used for transactions that were begun on a different
EXPAND node.

Resuming a transaction uses one of the entries in the calling process’ TFILE. If the
process has not explicitly opened the TFILE, the resumed transaction uses the one
TFILE entry that exists for all processes. If there are no available TFILE entries when
the call to TMF_RESUME_ is issued, the call is rejected with file system error 83 (too
many transactions).

If the calling process is the primary process of a NonStop process pair and the TFILE
is being checkpointed, the calling process should checkpoint the TFILE after calling
TMF_RESUME_ to modify the backup process’ TFILE accordingly.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

Syntax for TAL Programmers

#include <cextdecs(TMF_RESUME_)>

short TMF_RESUME_ (long long txid);

status := TMF_RESUME_ (txid) ! i
 CALLABLE, EXTENSIBLE;
HP NonStop TMF Application Programmer’s Guide—540139-009
4-53

File System Procedures TMF_RESUME_
Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

txid input

FIXED

the transactional identifier returned by either a TMF_GET_TX_ID_ or
TMF_SUSPEND_ call.

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

76 Transaction ending or aborting.

78 Invalid transaction identifier or transaction not started on this EXPAND
node.

82 TMF not running.

83 Too many transactions (a single-threaded requester tried to initiate a
transaction while it still had one in progress, or a multithreaded
requester attempted to initiate more concurrent transactions than there
were TFILE entries).

84 TMF not configured.

717 Transaction not suspended.

721 BEGINTRANSACTION not completed.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-54

File System Procedures TMF_SETTXHANDLE_
TMF_SETTXHANDLE_
This procedure sets the current transaction to the one associated with the specified
transaction handle.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

#include <cextdecs(TMF_SETTXHANDLE_)>

short TMF_SETTXHANDLE_ (short _far *tx-handle);

#include <cextdecs(TMF_SETTXHANDLE_)>

short TMF_SETTXHANDLE_ (short _ptr64 *tx-handle);

status := TMF_SETTXHANDLE_ (tx-handle) !i
 CALLABLE;

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

75 No current transaction.

78 Invalid transaction identifier or transaction not started on this EXPAND
node.

82 TMF not currently running.

715 Invalid transaction handle.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-55

File System Procedures TMF_SETTXHANDLE_
tx-handle input

INT .EXT:ref:10

or

INT .EXT64:ref:10

specifies the transaction handle of the transaction that is to become the current
transaction.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-56

File System Procedures TMF_SUSPEND_
TMF_SUSPEND_
This procedure allows the calling process to relinquish its duties as
ENDTRANSACTION caller for the current transaction, provided the transaction was
begun by or resumed by the calling process. A successful call to TMF_SUSPEND_ is
referred to as suspending the transaction.

TMF_SUSPEND_ is also used by the calling process to relinquish control of a
transaction to which it has been joined; otherwise, the process that initiated the
transaction receives an error 730 when it tries to run ENDTRANSACTION.

The suspended transaction is no longer the current transaction of the calling process
and the calling process is no longer allowed to call ENDTRANSACTION for the
transaction (until it subsequently calls TMF_RESUME_). The TFILE entry previously
occupied by the suspended transaction is vacated.

A different process can resume the transaction by calling TMF_RESUME_. The
resuming process can reside in a different CPU than the process that began the
transaction, but it must reside in the same EXPAND node. The suspending process
must pass the transaction identifier to the process that subsequently resumes the
transaction. The transaction identifier is returned by TMF_SUSPEND_; alternatively, it
can be obtained by calling TMF_GET_TX_ID_ prior to calling TMF_SUSPEND_.

This procedure cannot be used for transactions that were not begun by or are not
currently resumed by the calling process.

If the calling process is the primary process of a NonStop process pair and the TFILE
is being checkpointed, the calling process should checkpoint the TFILE after calling
TMF_SUSPEND_ to modify the backup process’ TFILE accordingly.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

#include <cextdecs(TMF_SUSPEND_)>

short TMF_SUSPEND_ (long long _far *txid);

#include <cextdecs(TMF_SUSPEND_)>

short TMF_SUSPEND_ (long long _ptr64 *txid);
HP NonStop TMF Application Programmer’s Guide—540139-009
4-57

File System Procedures TMF_SUSPEND_
Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

For a list oflist of file system error numbers, refer to the Operator Messages
Manual.

txid output

FIXED .EXT:ref:1

or

FIXED .EXT64:ref:1

the transactional identifier that can be used for a subsequent TMF_RESUME_ call,
either in the calling process or in another process in the same EXPAND node.

status := TMF_SUSPEND_ (txid) ! o
 CALLABLE, EXTENSIBLE;

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

75 No current transaction.

76 Transaction ending or aborting.

78 Invalid transaction identifier or transaction not started on this EXPAND
node.

81 Outstanding nowaited I/O requests exist for the specified transaction.

82 TMF not running.

84 TMF not configured.

716 Calling process is not the beginner, importer, or resumer of the
specified transaction.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-58

File System Procedures TMF_SUSPEND_EXT_
TMF_SUSPEND_EXT_
This procedure allows the calling process to relinquish control of a transaction— the
current transaction of the calling process. Applications that use TMF_JOIN_EXT_ must
also use TMF_SUSPEND_EXT_.

If the calling process does not relinquish control of a joined transaction by issuing a
TMF_SUSPEND_EXT call, one of the following takes place when the process that
initiated the transaction calls ENDTRANSACTION:

 If the calling process is on the beginner's node, a retry error
FEJOINOUTSTANDING will be returned.

OR

 If the calling process is on a remote node, the transaction will be aborted, and
FETRANSABORTED will be returned.

Semantically, TMF_SUSPEND_EXT_ is similar to TMF_SUSPEND_ and must be used
in conjunction with TMF_JOIN_EXT_ in applications where transactions can span
EXPAND nodes. TMF_SUSPEND_ or TMF_JOIN_ or TMF_RESUME_ work only
within an EXPAND node.

The suspended transaction is no longer the current transaction of the calling process
and the calling process is no longer allowed to call ENDTRANSACTION for the
transaction. The TFILE entry previously occupied by the suspended transaction is
vacated.

If the calling process is the primary process of a NonStop process pair and the TFILE
is being checkpointed, the calling process should checkpoint the TFILE after calling
TMF_SUSPEND_EXT_ to modify the backup process' TFILE accordingly.

Note. This procedure cannot be called by TNS applications.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

Syntax for TNS/E Programmers

Syntax for pTAL Programmers

#include <cextdecs(TMF_SUSPEND_EXT_)>

short TMF_SUSPEND_EXT_ (long long _ptr64 *exttransid);

status := TMF_SUSPEND_EXT_ (exttransid) ! o
 CALLABLE, EXTENSIBLE;
HP NonStop TMF Application Programmer’s Guide—540139-009
4-59

File System Procedures TMF_SUSPEND_EXT_
Parameters

status returned value

INT

is a file system error number:

For a list of file system error numbers, see the Operator Messages Manual.

exttransid output

FIXED .EXT:ref:2

or

FIXED .EXT64:ref:2

the transactional identifier that can be used for a subsequent TMF_JOIN_EXT_
call, either in the calling process or in another process in the same EXPAND
network.

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

75 No current transaction.

76 Transaction ending or aborting.

78 Invalid transaction identifier or transaction not started
on this EXPAND node.

81 Outstanding nowaited I/O requests exist for the
specified transaction.

82 TMF not running.

84 TMF not configured.

716 Calling process is not the beginner, importer, or
resumer of the specified transaction.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-60

File System Procedures TMF_TXBEGIN_
TMF_TXBEGIN_
This procedure is the same as BEGINTRANSACTION except that it includes a new
parameter to specify a timeout value.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

#include <cextdecs(TMF_TXBEGIN_)>

short TMF_TXBEGIN_ ([long timeout] ,
 [long _near *trans-begin-tag]);

#include <cextdecs(TMF_TXBEGIN_)>

short TMF_TXBEGIN_ ([int timeout] ,
 [int _ptr64 *trans-begin-tag]);

status := TMF_TXBEGIN_ ([timeout] ! i
 [, trans-begin-tag]) ! o
 CALLABLE, RESIDENT, EXTENSIBLE;

0 Successful completion.

30 System unable to obtain message block, or is already using its
maximum number of RECEIVE or SEND message blocks.

82 TMF not running.

83 Too many transactions (a single-threaded requester tried to initiate a
transaction while it still had one in progress, or a multithreaded
requester attempted to initiate more concurrent transactions than there
were TFILE entries).
HP NonStop TMF Application Programmer’s Guide—540139-009
4-61

File System Procedures TMF_TXBEGIN_
For a list of file system error numbers, refer to the Operator Messages Manual.

timeout input

INT(32)

the number of seconds that the transaction should be allowed to exist before it is
aborted due to a timeout. If the specified value is greater than the configured
AutoAbort attribute, the AutoAbort value takes precedence.

This parameter is optional. If omitted, the configured AutoAbort value is used.

trans-begin-tag output

INT(32) .EXT:ref:1

or

INT(32) .EXT64:ref:1

returns a value that identifies the new transaction among other transactions that
the calling process has initiated. This parameter is optional for single-threaded
requesters and process pairs, but it is required for multithreaded requesters and
process pairs.

84 TMF not configured.

86 Audit trail at begin-trans-disable threshold, or operator has disabled the
BEGINTRANSACTION procedure.

98 TFILE was opened using a nonzero sync-depth and all transaction
control blocks (TCBs) within the caller’s CPU are currently occupied.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-62

File System Procedures TMF_TXHANDLE_FROM_BEGINTAG_
TMF_TXHANDLE_FROM_BEGINTAG_
This procedure returns the transaction handle associated with the specified begin-
transaction-tag.

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file system error number:

#include <cextdecs(TMF_SETTXHANDLE_FROM_BEGINTAG_)>

short TMF_TXHANDLE_FROM_BEGINTAG_
 (long trans-begin-tag ,
 short _far *tx-handle);

#include <cextdecs(TMF_SETTXHANDLE_FROM_BEGINTAG_)>

short TMF_TXHANDLE_FROM_BEGINTAG_
 (int trans-begin-tag ,
 short _ptr64 *tx-handle);

status := TMF_TXHANDLE_FROM_BEGINTAG_ (trans-begin-tag, ! i
 tx-handle) ! o
 CALLABLE, EXTENSIBLE;

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

78 Invalid transaction identifier or transaction not started on the EXPAND
node.

84 TMF not configured.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-63

File System Procedures TMF_TXHANDLE_FROM_BEGINTAG_
For a list of file system error numbers, refer to the Operator Messages Manual.

trans-begin-tag input

INT(32)

specifies the begin-transaction-tag associated with the transaction whose
transaction handle is to be returned.

tx-handle output

INT .EXT:ref:10

or

INT .EXT64:ref:10

returns the transaction handle associated with the supplied begin-transaction-tag.
The size of the returned handle is 20 bytes.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-64

File System Procedures TRANSIDTOTEXT
TRANSIDTOTEXT
This procedure converts a transaction identifier from internal form to external ASCII
form. If the conversion fails (status <> 0), all output parameters are undefined.

text-byte-length specifies how many bytes in the string variable pointed to by
text are available for use by TRANSIDTOTEXT. bytes-used parameter specifies
how many of those bytes TRANSIDTOTEXT actually used.

If the system number of the transaction identifier can be converted to a system name,
the transaction identifier is formatted in either of the following ways (depending upon
whether or not the transaction identifier contains a nonzero TMF flags value):

\system-name(tm-flags).cpu.sequence
\system-name.cpu.sequence

If the system number of the transaction identifier cannot be converted to a system
name, the transaction identifier is formatted in either of the following ways (depending
upon whether or not the transaction identifier contains a nonzero TMF flags value):

\system-number(tm-flags).cpu.sequence
\system-number.cpu.sequence

If the system is not named, the transaction identifier is formatted as follows:

cpu.sequence

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

Note. Attempts to pass a transactional identifier (txid) to the TransIdToText procedure instead
of a transaction identifier (transid) will fail with a return code of -1. For information about txIds,
see the TMF_GET_TX_ID_ procedure description.

#include <cextdecs(TRANSIDTOTEXT)>

short TRANSIDTOTEXT (long long transid
 , char _far *text
 , short text-byte-length
 , short _far *bytes-used);
HP NonStop TMF Application Programmer’s Guide—540139-009
4-65

File System Procedures TRANSIDTOTEXT
 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a TMF or file system error number:

For a list of file system error numbers, refer to the Operator Messages Manual.

transid input

FIXED:value

is the name of the variable containing the transaction identifier in internal form.

text output

STRING .EXT:ref:*

or

STRING .EXT64:ref:*

#include <cextdecs(TRANSIDTOTEXT)>

short TRANSIDTOTEXT (long long transid
 , char _ptr64 *text
 , short text-byte-length
 , short _ptr64 *bytes-used);

status := TRANSIDTOTEXT (transid ! i
 , text ! o
 , text-byte-length ! i
 , bytes-used); ! o

-2 String too short (TMF).

-1 Invalid internal transaction identifier (TMF).

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

82 TMF not running.

84 TMF not configured.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-66

File System Procedures TMF_VERSION_EXT_
is the name of the string variable into which TRANSIDTOTEXT is to store the
external ASCII form of the transaction identifier.

text-byte-length input

INT:value

specifies the maximum number of bytes available in the string variable pointed to
by the text parameter. Any value greater than 3 is acceptable.

bytes-used output

INT .EXT:ref:1

or

INT .EXT64:ref:1

specifies the number of bytes in the string variable pointed to by text that were
actually used by TRANSIDTOTEXT.

TMF_VERSION_EXT_

Syntax for C Programmers

Note. This procedure can be called from 32-bit and 64-bit applications.

 Syntax for TNS Programmers

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.

#include <cextdecs(TMF_VERSION_EXT_)>
short TMF_VERSION_EXT_ (short _far *
 , short _far *
 , char _far *
 , short
 , char _far *
 , short
 , char _far *
 , short
 , short _far *
 , short _far *
 , short _far *
 , short _far *);
HP NonStop TMF Application Programmer’s Guide—540139-009
4-67

File System Procedures TMF_VERSION_EXT_
 Syntax for TNS/E Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a File System error number indicating the outcome of an operation:.

For a list of file system error numbers, see Operator Messages Manual.

Version output

Int .EXT:REF:1

or

#include <cextdecs(TMF_VERSION_EXT_)>

short TMF_VERSION_EXT_ (short _ptr64*
 , short _ptr64 *
 , char _ptr64 *
 , short
 , char _ptr64 *
 , short
 , char _ptr64*
 , short
 , short _ptr64*
 , short _ptr64 *
 , short _ptr64 *
 , short _ptr64 *);

Error := TMF_VERSION_EXT_ (Version
 , SubVersion
 , Platform_String:Platform_Max_Len
 , Release_String:Release_Max_Len
 , Release_Date_String:Release_Date_Max_Len
 , Platform_Return_Len
 , Release_Return_Len
 , Release_Date_Return_Len
 , Error_Detail);

0 Successful completion.

22 Bounds error.

29 Missing parameter(s).

84 TMF is not configured.

590 Parameter value invalid or inconsistent.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-68

File System Procedures TMF_VERSION_EXT_
Int .EXT64:REF:1

is an optional output parameter. Version returns the current version of the TMF
installed on a NonStop system. For example, if TMF 3.7 is installed on a NonStop
system, Version returns 3.

SubVersion output

Int .EXT:REF:1

or

 Int .EXT64:REF:1

is an optional output parameter. SubVersion returns the current subversion of the
TMF installed on a NonStop system. For example, if TMF 3.7 is installed on a
NonStop system, SubVersion returns 7.

Platform_String output

String .EXT:REF:*

or

String .EXT64:REF:*

is an optional output parameter. Platform_String returns the release version
installed on a NonStop system. For example, if T8607H01^AKV is installed on a
NonStop system, Platform_String returns H01.

Platform_Max_Len input

INT

is an optional input parameter. This option is required when Platform_String is
passed. Platform_Max_Len must be set to the maximum size in bytes of the
Platform_String output buffer.

Release_String output

String .EXT:REF:*

or

String .EXT64:REF:*

is an optional output parameter. Release_String returns the software product
revision installed on a NonStop system. For example, if T8607H01^AKV is
installed on a NonStop system, Release_String returns AKV.

Release_Max_Len input

INT
HP NonStop TMF Application Programmer’s Guide—540139-009
4-69

File System Procedures TMF_VERSION_EXT_
is an optional input parameter. This option is required when Release_String is
passed. Release_Max_Len must be set to the maximum length in bytes of the
Release_String output buffer.

Release_Date_String output

String .EXT:REF:*

or

String .EXT64:REF:*

is an optional output parameter. Release_Date_String returns the release date
of the software product revision installed on a NonStop system. For example, if
T8607H01^AKV is installed on a system, Release_Date_String returns
20Feb2013.

Release_Date_Max_Len input

INT

is an optional input parameter. This option is required when
Release_Date_String is passed. Release_Date_Max_Len must be set to the
maximum size in bytes of the Release_Date_String output buffer.

Platform_Return_Len output

Int .EXT:REF:1

or

Int .EXT64:REF:1

is an optional output parameter. This option is required when Platform_String
is passed. Platform_Return_Len returns the length in bytes of the
Platform_String output parameter.

Release_Return_Len output

Int .EXT:REF:1

or

Int .EXT64:REF:1

is an optional output parameter. This option is required when Release_String is
passed. Release_Return_Len returns the length in bytes of the
Release_String output parameter.

Release_Date_Return_Len output

Int .EXT:REF:1

or
HP NonStop TMF Application Programmer’s Guide—540139-009
4-70

File System Procedures TMF_VERSION_EXT_
Int .EXT64:REF:1

is an optional output parameter. This option is required when
Release_Date_String is passed. Release_Date_Return_Len returns the
length in bytes of the Release_Date_String output parameter.

Error_Detail output

Int .EXT:REF:1

or

Int .EXT64:REF:1

is an optional output parameter. For a non-zero value of error, Error_Detail
returns the position of the parameter, which caused the first error. For example, if
Release_Date_Max_Len has caused an error, Error_Detail returns the value
8.

Note. EPTAL callers can pass 64-bit pointers by specifying the compiler directives
__EXT64 and SETTOG _64BIT_CALLS before sourcing from the EXTDECS file.
HP NonStop TMF Application Programmer’s Guide—540139-009
4-71

File System Procedures TMF_VERSION_EXT_
HP NonStop TMF Application Programmer’s Guide—540139-009
4-72

5
TMF ARLIB2 Audit-Reading
Procedures

This section describes the ARLIB2 audit-reading interface that is available in the
H06.03 and later release version updates (RVUs) of the TMF product.

The TMF ARLIB2 audit-reading interface allows you to programmatically examine TMF
audit records for SQL/MX, SQL/MP, and Enscribe objects. The interface consists of
two parts: a set of procedures that you bind into your program and a set of data
definitions that describe the information returned by the procedures. Table 5-2
summarizes the ARLIB2 audit-reading procedures.

Information about how to include the TMF ARLIB2 audit-reading procedures in your
application is described under How to Include Audit Reading in an Application on
page 5-110.

This section contains the following topics:

 ARLIB2 Compared to ARLIB on page 5-2

 Cursors on page 5-3

 Restoring Audit-Trail Files From Audit Dumps on page 5-4

 Retrieving Information From Audit Records on page 5-5

 Error Reporting on page 5-6

 Audit Compression on page 5-7

 Reading Active Audit Files on page 5-8

 Reading a Range of Audit-Trail Files on page 5-9

 Reading a Merged Audit Trail With a MERGE Cursor on page 5-10

 Reading a Merged Audit Trail Without a MERGE Cursor on page 5-11

 Distributed Transactions on page 5-12

 Auxiliary Audit Trails on page 5-15

 NonStop SQL/MP Internal Field Formats on page 5-16

 Audit Records on page 5-19

 Procedure Calls on page 5-32

 Error Codes on page 5-103

 How to Include Audit Reading in an Application on page 5-110
HP NonStop TMF Application Programmer’s Guide—540139-009
5-1

TMF ARLIB2 Audit-Reading Procedures ARLIB2 Compared to ARLIB
Once TMF audit-reading procedures are bound into your program, you can use them
to open an audit-trail file and read individual records from that file. Rather than return
entire audit records, the procedures return only those fields that contain information
useful to you from only those records useful to you. Fields and records that are only of
use to TMF are not accessible. By ignoring such information, the procedures make it
less likely that future changes to the format of TMF audit trails will adversely affect your
audit-reading programs.

TMF audit-reading procedures do no filtering or analysis; they simply provide selected
information from each accessible audit record. If you want any filtering, analysis, or
correlation of the returned data, your program must do it.

Audit records do not include a user ID or a terminal name. You can incorporate this
type of information into an audit trail, however, by having your application write a
record to an audited security log file after each BEGINTRANSACTION process; this
would insert an accessible audit record into the audit trail. The format and content of
such records could be customized to your specific application. To conserve disk space,
you could then delete the security record immediately from the audited security log file.

ARLIB2 Compared to ARLIB
The ARLIB2 audit-reading procedures read audit records for SQL/MX objects as well
as for Enscribe and SQL/MP objects. The ARLIB audit-reading procedures read audit
records only for Enscribe and SQL/MP objects.

The changes necessary to support SQL/MX objects are significant, including several
new procedures and changes to many of the record formats. Programs bound with
previous RVUs of ARLIB must not be used on systems that use SQL/MX objects. Such
programs must be rebound with a current version of ARLIB, or they must be changed
to use ARLIB2.

ARLIB2 is a native object file. To use this product, existing programs must be changed
to use the native compiler for their language and to link with NLD. The PASCAL
compiler cannot generate native code, however, so ARLIB2 is not usable by programs
written in PASCAL.

To read and process audit records for SQL/MX objects, you use combinations of the
following ARLIB2 procedures:

ARGETMXCOLUMNINFO

Returns column-format information for the SQL/MX object indicated by the
current audit record.

ARFETCHMXBEFOREDATA

Copies the before-image field from an SQL/MX audit record to the application
buffer (uses bit maps).
HP NonStop TMF Application Programmer’s Guide—540139-009
5-2

TMF ARLIB2 Audit-Reading Procedures Cursors
ARFETCHMXBEFOREDATA2

Copies the before-image field from an SQL/MX audit record to the application
buffer (uses byte maps).

ARFETCHMXAFTERDATA

Copies the after-image field from an SQL/MX audit record to the application
buffer (uses bit maps).

ARFETCHMXAFTERDATA2

Copies the after-image field from an SQL/MX audit record to the application
buffer (uses byte maps).

The structure of the ARRECORD for ARLIB2 differs from the structure for ARLIB, as
follows:

 A field has been added to identify audit records for SQL/MX objects.

 The rba field used to return the location of the audit record in the audit file has
been expanded from 32 to 64 bits.

 The before-image and after-image length fields have been expanded from 16 to 32
bits.

 Most of the fields have been reordered to allow for better performance.

Cursors
A cursor provides a reference into an audit trail. Each cursor reflects the generic name
of an audit trail, the sequence number of the file in the trail, the relative byte address
(RBA) of a record in the file, and the direction in which the cursor is to move through
the file (forward or reverse).

Cursor Declaration

You declare a cursor by using the AROPEN procedure. Each AROPEN call passes the
generic name of the desired audit trail and returns a cursor number that you use for
future references to that cursor. You can only open audit trails on the local node. Until
released by a call to the ARCLOSE procedure, each cursor continues to refer to the
specified audit trail. You can have up to 30 cursors declared simultaneously, any
number of which can refer to the same audit trail.

Caution. Relative byte address (rba) values for audit-trail files might exceed the size allowed
by C INT or pTAL INT(32) data types.

Note. Use ARLIB2 APIs to read and process SQL/MX fields as described in the
section Reading Audit Records for SQL/MX Objects on page 5-12. Some of the data
types are read as ASCII string as described in the section Using Host Variables in a
C/C++ Program of SQL/MX Programming Manual for C and COBOL.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-3

TMF ARLIB2 Audit-Reading Procedures Cursor Positioning
Cursor Positioning

You declare the location and direction of a cursor by using the ARPOSITION
procedure. Each ARPOSITION call supplies the cursor number, the sequence number
of the audit-trail file, an initial byte offset into the file, and the direction in which the
cursor is to move for successive reads. If the supplied offset is not at the beginning of a
record recognized by the audit-reading interface, then the first recognized record in the
current cursor direction is retrieved. Attempts to position the cursor beyond the end-of-
file (EOF) of an audit-trail file cause an error return.

The cursor position changes dynamically. Each read for a particular cursor causes the
position of that cursor to be advanced to the next recognized record. When a cursor
crosses from one audit-trail file to another, the new file is automatically opened and the
cursor’s sequence number and RBA are updated accordingly.

Restoring Audit-Trail Files From Audit Dumps
When you declare a cursor, you can indicate whether or not audit-trail files that are not
on disk should be restored from audit dumps. When you are reading from a cursor that
is positioned at a missing audit-trail file, a request is sent to the TMP process to restore
the file from the appropriate audit dump; this is true whether you do an explicit
positioning to a missing file, or successive reads cause the cursor to cross over into a
missing file.

Missing files are restored to an audit-restore volume, a disk on the local system used
to store audit-trail files that are restored from an audit dump as part of the recovery
procedure. This minimizes the impact of file restoration on normal transaction
processing.

You can also elect to have successive audit-trail files restored ahead of time. When
you do that and the next audit-trail file in the current cursor direction is missing, the
missing file is restored automatically: this saves time when reading sequentially
through several audit files.

You specify the desired audit-trail file restoration information by using the TMFCOM
ADD AUDITTRAIL and ALTER AUDITTRAIL commands. Tape mount requests, if
necessary, are handled by the labeled tape subsystem.

When unable to restore a requested file, the TMP returns an error indication.

To use this feature:

 You must be reading audit-trail files that were generated on the local system.

 The associated audit dumps must be included in the TMF catalog.

 TMF must be running.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-4

TMF ARLIB2 Audit-Reading Procedures Retrieving Information From Audit Records
Retrieving Information From Audit Records
Once you position a cursor, each call to ARREAD reads the audit record at the cursor
position. ARREAD returns the fixed-length fields and common attributes in a record
structure. The audit-trail file sequence number and RBA returned by ARREAD permit
you to position the cursor directly at that record if you need to later.

For distributed transactions, commit and abort records are written to the master audit
trail on the parent node when the parent node releases its locks. Such records can be
retrieved by calls to ARREAD, and are identified by the record types NETWORK-
COMMIT and NETWORK-ABORT (RECTYPE constants 18 and 19, respectively). To
retrieve NETWORK-COMMIT and NETWORK-ABORT records, you call
ARGETNETWORKRECS prior to the first call to ARREAD. Conversely, the
ARSTOPNETWORKRECS procedure disables the returning of NETWORK-COMMIT
and NETWORK-ABORT records. (Alternatively, you can use ARSETOPTIONS to
change the network options.)

For Enscribe and SQL/MP, you read the variable-length fields from audit records
separately by calling the ARFETCH objectname procedure immediately after using
ARREAD. The seven object names are AFTERIMAGE, AUXPOINTER,
BEFOREIMAGE, CHILDNODELIST, FIELDVALUE, FRAGMENT, and RECORDKEY.

For SQL/MX, you read the variable-length fields from audit records separately by
calling the ARFETCHMXBEFOREDATA, ARFETCHMXBEFOREDATA2,
ARFETCHMXAFTERDATA, or ARFETCHMXAFTERDATA2 procedures.

The before-image, after-image, and record key are copied into your application buffer
byte-for-byte. For audit records that contain variable-length fields, the byte length of
such fields is specified in the record returned by ARREAD. The auxiliary pointer is a
structure specifying a range of audit in an audit trail. The child node list is an array of
32-bit system numbers that starts in the first word of the specified application buffer.
For audit records that include a child node list, the number of elements (child nodes) in
the list is specified in the record returned by ARREAD. Fragment is a pair of before-
and after-image fragments from a compressed Enscribe update record. If you issue a
fetch procedure call for a variable-length field that is not present in the record most
recently returned by ARREAD, the procedure returns an error -17 (ARE-FIELD-NOT-
PRESENT).

To fetch one or more variable-length fields from an audit record, you must first have
read the record by using the ARREAD procedure. ARREAD saves information about
each record it reads and the fetch procedures use that information to retrieve the
associated variable-length fields. Calls to AROPEN, ARCLOSE, or ARPOSITION
erase that information; after such calls, further fetch attempts will fail with an error -9
(ARE-NO-CURRENT-RECORD) until the next successful call to ARREAD.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-5

TMF ARLIB2 Audit-Reading Procedures Error Reporting
How you go about retrieving the key or record address of a data record whose
modification is recorded in the audit trail depends upon the file type and the type of
audit record.

 For key-sequenced files, the key of the record is present in the before-image and
after-image of the record. Because these images are not available for the UPDATE
AUDITCOMP record, the key is stored separately in the audit record and must be
fetched by using the ARFETCHRECORDKEY procedure. For an UPDATE
FIELDCOMP record, you use the ARFETCHFIELDVALUE procedure to retrieve
the before-image and after-image fields.

 For entry-sequenced, relative, and unstructured files, you use the
ARGETRECADDR and ARGETRECADDR64 procedures to retrieve the record
address.

Error Reporting
The TMF audit-reading interface has two error reporting mechanisms: return codes
and messages printed to the operator terminal.

Return Codes

The first parameter of each procedure call, which is always required, is the name of a
variable to receive the return code. If that parameter is not passed to a procedure, the
procedure returns immediately without taking any action. The various types of return
codes have the following general meanings:

 Zero indicates that the procedure completed successfully.

 Negative numbers indicate that an error occurred.

 Positive numbers indicate warnings: although the procedure was successful, some
unusual condition occurred. Warnings take the form of a bit map. This allows new
warnings to be easily added and multiple warnings to be returned simultaneously.

Applicable warning codes are described in the syntax definition of each individual
procedure call, later in this section; the error codes are described in Table 5-3.

Messages Printed to the Operator Terminal

There are times when a simple error code is insufficient. Two examples are the
detection of a corrupt block in an audit file and the retry messages associated with
failed audit restore attempts.

In such cases, a message is printed on the operator terminal specified in the call to
ARSTART. If the problem causes the procedure to exit, an error code indicating the
general type of error is also returned to the calling program. Examples of this kind of
error are -800 (cursor error) and -900 (error reading the audit).
HP NonStop TMF Application Programmer’s Guide—540139-009
5-6

TMF ARLIB2 Audit-Reading Procedures Procedural Retrieval of Message Text
Procedural Retrieval of Message Text

When messages corresponding to error codes are printed on the operator terminal, the
error information is normally remembered by the associated cursor. The text of the
most recent message generated for a given cursor is available by calling the
ARPRINTMESSAGE or ARGETMESSAGELINE procedures.

ARPRINTMESSAGE copies the message text to a file whose filenumber is passed to
the procedure. ARGETMESSAGELINE allows you to retrieve lines of message text
into your application buffer. Both procedures return a warning if no error information is
currently recorded for the specified cursor.

Audit Compression
There are circumstances under which the disk process generates audit records
containing less than the complete before-image and after-image of an updated data
record.

Enscribe

When audit compression is enabled for an Enscribe file, the before-images and after-
images of updated records are recorded as compactly as possible to save space in the
audit trail (only those bytes in the data record that were actually modified are
represented).

If you want to be able to retrieve complete before-images and after-images for
Enscribe updates, do not enable audit compression.

NonStop SQL/MP

By default, NonStop SQL/MP applies a form of audit compression when updating
tables (only the individual fields that changed are recorded).

If you want to be able to retrieve complete before-images and after-images for
NonStop SQL/MP updates, you must first specify the NOAUDITCOMPRESS file
attribute.

If you are reading the audit trail for a NonStop SQL/MP table whose audit records are
compressed, you can use the ARFETCHFIELDVALUE procedure to retrieve the
before-image and after-image of those fields that are present in field-compressed
update records (both updated and key fields). The ARGETFIELDINFO procedure
provides information about the fields that are present.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-7

TMF ARLIB2 Audit-Reading Procedures Reading Active Audit Files
Reading Active Audit Files
The TMF audit-reading procedures use large physical transfers when reading audit
files from disk. The audit-trail file is read from the disk into cache memory and records
are then retrieved from cache into your application buffer.

If audit records are added to an audit file after the audit-reading procedures have
detected the EOF, your application can retrieve them by issuing more ARREAD calls
(provided you specified 999999 as the maximum sequence number in the AROPEN
call that opened the cursor).

The procedure for reading audit records from an active-audit trail is as follows:

1. Open a cursor for the audit trail by calling AROPEN.

Use a fully qualified file name or the appropriate audit-trail ID (MAT, AUX01,
AUX02, ...) as the generic-name. When using the fully qualified file name, the
volume name is meaningless because ARLIB2 consults the TMP to determine the
location of the audit trail, the subvolume name must be ZTMFAT, and the filename
should be the appropriate two-character identifier (AA, BB, CC, ...).

Use the desired starting audit-file sequence number as the min-seqno parameter
value and 999999 as the max-seqno parameter value.

ARLIB2 correctly processes multiple active-audit volumes, overflow-audit volumes,
and restore-audit volumes. If audit restore is necessary and enabled, the TMP
uses the TMF dump/restore capability to restore audit-trail files to one of the
configured restore-audit volumes.

2. Set the position at which to start reading by calling ARPOSITION.

To read forward from the beginning of the audit file specified in the AROPEN call,
set the audit-file-seqno parameter to the same value as the AROPEN
min-seqno parameter, the rel-byte-addr parameter to zero, and the
cursor-direction parameter to zero.

To read in reverse from the end of the current active audit file back to the beginning
of the audit file specified in the AROPEN call, set the audit-file-seqno
parameter to 999999, the audit-file-rba parameter to -1, and the
cursor-direction parameter to any value greater than zero.

Note. Updates belonging to different volumes might not be written to the audit trail in the same
sequence as the updates happen in the actual transaction. For example, assume that SQL/MP
(non-referential integrity) data is being replicated to SQL/MX (referential integrity) by a software
tool reading the audit trail and that a parent-child RI relationship exists for two tables in
SQL/MX. Assume also that the SQL/MP application starts a transaction, inserts the parent row
first, then inserts the child row, and then commits. Because the DP2 disk process flush
intervals can vary, this sequence of events might show up in the audit trail as insert of the child,
followed by insert of the parent, followed by the commit. Only when the partitions are on the
same volume is order within the audit trail assured.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-8

TMF ARLIB2 Audit-Reading Procedures Reading a Range of Audit-Trail Files
3. Retrieve successive audit records by repeatedly calling ARREAD.

When reading forward, ARE-END-OF-AUDIT indicates that you have reached the
end of the current active audit file. To retrieve newly added audit records, pause
briefly and then issue another ARREAD. That call will return either a new audit
record (if available) or an ARE-END-OF-AUDIT message. If the call returns a new
audit record, issue another ARREAD. If the call returns an ARE-END-OF-AUDIT,
then pause once again and issue another ARREAD, and so forth.

When reading in reverse, ARE-END-OF-AUDIT indicates that you have reached
the beginning of the audit file specified by the min-seqno parameter in the
AROPEN call.

Reading a Range of Audit-Trail Files
The procedure for reading a range of audit records that does not include the active
audit-trail file is as follows:

1. Open a cursor for the audit trail by calling AROPEN.

Use a fully qualified file name or the appropriate audit-trail ID (MAT, AUX01,
AUX02, ...) as the generic-name. When using the fully qualified file name, the
volume name is meaningless because ARLIB2 consults the TMP to determine the
location of the audit trail, the subvolume name must be ZTMFAT, and the filename
should be the appropriate two-character identifier (AA, BB, CC, ...).

Use the desired starting audit-file sequence number as the min-seqno parameter
value and the desired ending audit-file sequence number as the max-seqno
parameter value.

ARLIB2 correctly processes multiple active-audit volumes, overflow-audit volumes,
and restore-audit volumes. If audit restore is necessary and enabled, the TMP
uses the TMF dump/restore capability to restore audit-trail files to one of the
configured restore-audit volumes.

2. Set the position at which to start reading by calling ARPOSITION.

To read forward from the beginning of the audit file specified by the min-seqno
parameter, set the ARPOSITION audit-file-seqno parameter to the same
value as the min-seqno parameter, the ARPOSITION rel-byte-addr
parameter to zero, and the ARPOSITION cursor-direction parameter to zero.

To read in reverse from the end of the audit file specified by the max-seqno
parameter back to the beginning of the audit file specified by the min-seqno
parameter, set the ARPOSITION audit-file-seqno parameter to the same
value as the max-seqno parameter, the ARPOSITION rel-byte-addr
parameter to -1D, and the ARPOSITION cursor-direction parameter to any
value greater than zero.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-9

TMF ARLIB2 Audit-Reading Procedures Reading a Merged Audit Trail With a MERGE Cursor
3. Retrieve successive audit records by repeatedly calling ARREAD.

When reading forward, ARE-END-OF-AUDIT indicates that you have reached the
end of the audit file specified by the max-seqno parameter in the AROPEN call.

When reading in reverse, ARE-END-OF-AUDIT indicates that you have reached
the beginning of the audit file specified by the min-seqno parameter in the
AROPEN call.

Reading a Merged Audit Trail With a MERGE
Cursor

When using the ARLIB2 MERGE cursor, the application never sees AuxPointer
records. ARLIB2 merely uses those records to locate and return records from the
appropriate auxiliary audit trails.

The procedure for reading the MAT and all configured auxiliary audit trails as a merged
audit trail using the MERGE cursor is as follows:

1. Call AROPEN with “MERGE” as the generic-name for the cursor. Note that
“MERGE” functions as the audit-trail designator even if no auxiliary audit trails are
configured.

Specify the desired MAT low and high file-sequence numbers (min-seqno and
max-seqno). To designate the current active audit file as the high file-sequence
number, specify 999999 as the max-seqno.

2. Set the position in the MAT at which to start reading by calling ARPOSITION.

When you call ARPOSITION, you can also specify the desired starting position
within one of the configured auxiliary audit trails. If you specify both a MAT and
auxiliary position, however, they should be the values returned in an ARRECORD
or else unpredictable results may occur.

3. Retrieve successive audit records by repeatedly calling ARREAD.

When ARE-END-OF-AUDIT is returned, all audit records from the master and
auxiliary audit trails within the range determined by the ARPOSITION and
AROPEN calls have been returned.

If max-seqno in the AROPEN call was 999999, you have read to the end of the
merged audit trail. To retrieve newly added audit records, pause briefly and then
issue another ARREAD. That call will return either a new audit record (if available)
or an ARE-END-OF-AUDIT message. If the call returns a new audit record, issue
another ARREAD. If the call returns an ARE-END-OF-AUDIT, then pause once
again and issue another ARREAD, and so forth. Note that a MERGE cursor cannot
determine that additional data is written to an auxiliary audit trail until the TMP
writes an Aux Pointer record to the MAT.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-10

TMF ARLIB2 Audit-Reading Procedures Reading a Merged Audit Trail Without a MERGE
Cursor
Reading a Merged Audit Trail Without a
MERGE Cursor

The procedure for reading the MAT and all configured auxiliary audit trails as a merged
audit trail without using a MERGE cursor is as follows:

1. Open cursors for the MAT and all configured auxiliary audit trails by calling
AROPEN.

Within each call, use a fully qualified file name or the appropriate audit-trail ID
(MAT, AUX01, AUX02, ...) as the generic-name. When using the fully qualified
file name, the volume name is meaningless because ARLIB2 consults the TMP to
determine the location of the audit trail, the subvolume name must be ZTMFAT,
and the filename should be the appropriate two-character identifier (AA, BB, CC,
...).

Within the AROPEN call for the MAT, use the desired starting audit-file sequence
number as the min-seqno parameter value and the desired ending audit-file
sequence number or 999999 as the max-seqno parameter value. Within the
AROPEN call for each configured auxiliary audit trail, use 1 as the min-seqno
parameter value and 999999 as the max-seqno parameter value to achieve the
easiest implementation.

ARLIB2 correctly processes multiple active-audit volumes, overflow-audit volumes,
and restore-audit volumes. If audit restore is necessary and enabled, the TMP
uses the TMF dump/restore capability to restore audit-trail files to one of the
configured restore-audit volumes.

2. Using the MAT cursor, call ARREAD.

If any record other than an AuxPointer record is returned, process the record and
call ARREAD again.

If an AuxPointer record is returned, then do as follows for each configured auxiliary
audit trail:

a. Call ARFETCHAUXPOINTER.

b. Call ARPOSITION2 using the position information returned by the
ARFETCHAUXPOINTER call. The ARPOSITION2 call provides the starting
and ending positions within the auxiliary audit trail for the records to be merged
before the next MAT record.

c. Call ARREAD until ARE-END-OF-AUDIT is returned. At that point call
ARREAD for the MAT again.

If max-seqno in the AROPEN call was 999999 and ARE-END-OF-AUDIT is
returned for the MAT, you have read to the end of the merged audit trail. To retrieve
newly added audit records, pause briefly and then issue another ARREAD. That
call will return either a new audit record (if available) or an ARE-END-OF-AUDIT
message.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-11

TMF ARLIB2 Audit-Reading Procedures Reading Audit Records for SQL/MX Objects
Reading Audit Records for SQL/MX Objects
The general steps for processing SQL/MX audit records are as follows:

1. Read the audit record (ARREAD).

2. Verify that the audit record is for an SQL/MX object (OBJECTTYPE field in
ARRECORD).

3. Obtain the before-image and after-image column format
(ARGETMXCOLUMNINFO).

4. Obtain the before image (ARFETCHMXBEFOREDATA[2]). Process the various
fields using the column information returned by ARGETMXCOLUMNINFO.

5. Obtain the after image (ARFETCHMXAFTERDATA[2]). Process the various fields
using the column information returned by ARGETMXCOLUMNINFO.

Distributed Transactions
The audit-reading procedures only allow you to read local audit trails. If your
application is performing distributed transactions, you must incorporate the audit-
reading procedures into a server that can be invoked on a remote node. You could
then receive the results either by way of messages or by creating a file on the remote
node and reading it across the network.

Tracing network transactions is somewhat difficult. At the local node, the first and only
indication that a transaction involved changes on a remote node is found in the commit
record, which contains a list of any child nodes to which it sent requests.

Because the home node is recorded in every audit record for which it is relevant, it is
fairly easy to determine the node at which the transaction was initiated. This is not
sufficient, however, to identify the node that relayed the transaction to the current node
(that is, the parent node) because other nodes might have been involved between the
home node and the current node. The network-prepared record and the commit record
list the parent node (as well as any child nodes) of the current node.

To trace a distributed transaction completely, you must have servers available on all
nodes that were involved in the transaction. In addition, you must be familiar with the
audit trails on the other nodes (at a minimum, you must know their generic names and
sequence numbers).

Figure 5-1 and Figure 5-2 show relative time lines for two distributed transactions.
Figure 5-1 shows the basic relationship between a parent node and a child node.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-12

TMF ARLIB2 Audit-Reading Procedures Distributed Transactions
Figure 5-1. Basic Parent-Child Relationship

In Figure 5-1, the transaction begins at node \A. The requestor running in node \A
sends a work-request message to a server in node \B. The processes in both nodes
generate updates to audited data files. When the requestor in node \A is ready to
commit the transaction, a phase one commit message is sent to node \B.

When node \B is ready for the transaction to be committed, the audit on node \B is
flushed to disk and a reply is sent back to node \A. The transaction then commits on
node \A, and node \B is notified that the transaction is to be committed. At that point
the transaction also commits on node \B.

The commit record on node \A contains a list of its offspring, node \B in this case. You
can retrieve this list of child nodes by calling the ARFETCHCHILDNODELIST
procedure after reading the commit record.

Figure 5-2 shows how the basic relationship between a parent and a child node gets
expanded for more complex transactions.

Node
Begin
transaction

End
transaction

Messages

r request
c1 commit phase 1
r1 reply to c1
c2 commit phase 2

Audit Records Generated

C commit
P network prepared
U update

\A r U U c1 C c2

\B U U P r1 C

VST005.vsd
HP NonStop TMF Application Programmer’s Guide—540139-009
5-13

TMF ARLIB2 Audit-Reading Procedures Distributed Transactions
Figure 5-2. Layered Offspring Relationships

In Figure 5-2, the transaction again begins at node \A. The requestor running in node
\A sends work-request messages to servers in nodes \B and \C. The server in node \C
sends a further work-request message to a server in node \D. The processes in all four
nodes generate updates to audited data files. When the requestor in node \A is ready
to commit the transaction, a phase one commit message is sent to nodes \B and \C.

When node \B is ready for the transaction to be committed, the audit on node \B is
flushed to disk and a reply is sent back to node \A. Before it can commit the
transaction, node \C must first ascertain that its child at node \D is prepared to commit.
After node \D flushes its audit and replies to node \C, the audit on node \C is flushed
and node \A is notified that node \C is ready to commit.

Once node \A receives positive replies from both of its children, the transaction
commits on node \A and a message is sent to the offspring in nodes \B and \C telling
them that the transaction is to be committed. Then nodes \B and \C commit the
transaction and node \D is notified that the transaction is to be committed. Finally, the
transaction commits on node \D.

Node
Begin
transaction

End
transaction

c1r r U C c2

U P r1 C

r U P r1 C

U P r1 C

c1 c2

c1 c2

Messages

r request
c1 commit phase 1
r1 reply to c1
c2 commit phase 2

Audit Records Generated

C commit
P network prepared
U update

\A

\B

\C

\D

VST006.vsd
HP NonStop TMF Application Programmer’s Guide—540139-009
5-14

TMF ARLIB2 Audit-Reading Procedures Auxiliary Audit Trails
Auxiliary Audit Trails
Although most applications use only a master audit trail, the TMF audit-reading
procedures support both master and auxiliary audit trails. The following types of audit
records can appear in either the master audit trail or an auxiliary audit trail:

All other types of audit records can appear only in the master audit trail.

Tracing transactions that involve volumes whose audit records are directed to an
auxiliary audit trail can be difficult. There is no indication within the master audit trail
that a transaction also involves an auxiliary audit trail. If you are tracing a transaction
that involves auxiliary audit trails, you will have to search every trail that includes the
transaction and correlate the audit records by using the transid.

Subset Audit Records

When several records within the same data block are all deleted or updated in
the same manner, the disk process generates a single audit record containing the
before-images and after-images of all of the affected data records. Each delete or
update represented within such an audit record is called a “subset audit record.”

The use of subset audit records has the following consequences:

 The SEQNO and RBA values returned by ARREAD are the same for all related
subset audit records.

 If you try to position the cursor at a particular subset audit record, the cursor
actually gets positioned at the beginning of the entire audit record (or at the end if
you are reading in the reverse direction).

delete file purge update

file alter file
rename

update
auditcomp

file
create

insert update fieldcomp
HP NonStop TMF Application Programmer’s Guide—540139-009
5-15

TMF ARLIB2 Audit-Reading Procedures NonStop SQL/MP Internal Field Formats
NonStop SQL/MP Internal Field Formats
Certain fields in NonStop SQL/MP records are represented on disk in a way that does
not directly correspond to the external view of the data. Because TMF audit-reading
procedures return record and field images as they are on disk, you must understand
how the fields are represented on disk in order to interpret them.

This topic attempts to cover as many of the special cases as are currently known. The
on-disk record format is subject to change from RVU to RVU because it is not
considered to be an external feature of NonStop SQL/MP.

In the examples that follow, brackets ([]) denote a byte of storage, while an asterisk
(*) denotes an undefined byte.

Field Alignment

To conserve disk space, NonStop SQL/MP records are stored in a packed format. This
means that bytes not needed to represent the values of fields in the record are not
generally stored on disk. Each field in the record immediately follows the preceding
field with no filler bytes. This means, for example, that numeric fields following odd-
length fields are not necessarily aligned on word boundaries. The field can begin on
either an even or odd byte, depending upon whether the preceding odd-length fields
compensate for one another.

You must also consider the presence of variable-length character (VARCHAR) fields.
The length of a VARCHAR field can vary between records in the same table. This
means that, because the information in a record might not be at a fixed offset, you
cannot simply overlay the before-image or after-image buffer with the record definition
or use the offset that you might expect from an external point of view.

For example, assume that a table has the following Data Definition Language (DDL)
definition:

RECORD REC.
 02 A TYPE CHARACTER 3. ! SQL type: CHARACTER
 02 B TYPE BINARY 16,0. ! SQL type: SMALLINT
 02 C. ! SQL type: VARCHAR
 04 LENGTH TYPE BINARY 16,0.
 04 VALUE TYPE CHARACTER 4.
 02 D TYPE BINARY 32,0. ! SQL type: INT
END

Assume that the values of a row in the table are ABC, 5, Z, and 7. The external
representation would be as follows:

[A] [B] [C] * [0] [5] [0] [1] [Z] * * * * [0] [0] [0] [7]
 | | | | \
 | | | | \
 Filler-byte Unused-VARCHAR-bytes Filler-byte
HP NonStop TMF Application Programmer’s Guide—540139-009
5-16

TMF ARLIB2 Audit-Reading Procedures Variable-Length Character (VARCHAR) Fields
However, the data record image on disk and in a before-image or after-image from the
audit trail actually is as follows:

[A] [B] [C] [0] [5] [0] [1] [Z] [0] [0] [0] [7]

The offset of field B is fixed (namely, the length of field A). Although field B is a numeric
field, it is not word-aligned relative to the beginning of the image. Notice also that the
offset of field D depends upon the length of field C (the VARCHAR field) and is not
fixed for all rows in the same table.

Variable-Length Character (VARCHAR) Fields

VARCHAR fields, which store character-type data, are declared with a certain
maximum length. However, any given entry can actually contain from 0 characters up
to the maximum number of characters that the particular field declaration can hold.

The external DDL declaration for a VARCHAR field is as follows:

02 VARCHAR.
 04 LENGTH TYPE BINARY 16,0.
 04 VALUE TYPE CHARACTER max-length.

If you store the character string FRED in a VARCHAR field whose maximum length is
8, the external view of the field is then as follows:

[0] [4] [F] [R] [E] [D] * * * *

On disk and in most images in audit records, however, the unneeded bytes are
dropped and the image is actually as follows:

[0] [4] [F] [R] [E] [D]

Within field-compressed update records, VARCHAR fields that belong to the primary
key of a table are always represented using their maximum length with blanks
appended as necessary. The character string FRED within an 8-character field in a
field-compressed update record would therefore be represented as follows:

[0] [4] [F] [R] [E] [D] [] [] [] []

You can always determine the stored length of a VARCHAR field by looking in the
image of the field. The first word contains the length in bytes of the character portion. If
the audit record is a field-compressed update, then you can also get this information
from parameters returned by the ARFETCHFIELDVALUE or ARGETFIELDINFO
procedures.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-17

TMF ARLIB2 Audit-Reading Procedures DATETIME and INTERVAL Fields
DATETIME and INTERVAL Fields

DATETIME and INTERVAL fields in NonStop SQL/MP tables store time-related
information using varying units. DATETIME fields contain a value that designates a
point in time. INTERVAL fields contain a value that represents a time interval or
duration. Information is represented on disk depending on how the field is declared.

A DATETIME field stores values for a logically contiguous subset of the following
subfields:

The length of a DATETIME field is determined by its declaration. For example, a field
declared as DATETIME HOUR TO FRACTION(1) will be of length 1 + 1 + 1 + 4 = 5
bytes.

The DATE, TIME, and TIMESTAMP types are special cases of DATETIME:

An INTERVAL field stores an integer whose units are those of the smallest subfield in
its declaration. For example, a field of the type INTERVAL HOUR(1000) TO SECOND
will contain an integer number of seconds while a field of the type INTERVAL MINUTE
TO FRACTION(3) will contain an integer number of microseconds.

The length of an INTERVAL field is determined by the space required to represent the
largest value that can be accommodated by the declared field and is either 2, 4, or 8
bytes (that is, the field contains a 16-bit, 32-bit, or 64-bit integer).

Null Fields

A field in a NonStop SQL/MP table that can be set to a null value consists of a 1-word
(2-byte) null indicator followed by the normal field itself. If the null indicator is set, then
the value in the field is undefined (except that VARCHAR fields retain their length
word). If the null indicator is not set, then the value in the field is valid. The value -1 in
the null indicator specifies that the field is null, while the value 0 specifies that the field
is not null.

Subfield Value Range Storage

YEAR 1 to 9999 2 bytes

MONTH of year 1 to 12 1 byte

DAY of month 1 to 31 1 byte

HOUR of day 0 to 23 1 byte

MINUTE of hour 0 to 59 1 byte

SECOND of minute 1 to 59 1 byte

FRACTION of second 0 to 9(n)* 4 bytes

* n is the number of decimal digits of precision and is in the range 1 to 6. For example, FRACTION(3) has the
range of values 0 to 999, which represent .000 to .999 seconds.

DATE is equivalent to DATETIME YEAR TO DAY

TIME is equivalent to DATETIME HOUR TO SECOND

TIMESTAMP is equivalent to DATETIME YEAR TO FRACTION(3)
HP NonStop TMF Application Programmer’s Guide—540139-009
5-18

TMF ARLIB2 Audit-Reading Procedures Audit Records
Null VARCHAR fields are stored using a 0-length character part. The field length is 4
bytes, consisting of the 2-byte null indicator (set to -1) and the 2-byte VARCHAR length
(set to 0), as follows:

[-1] [-1] [0] [0]

Audit Records
The various types of audit records that are accessible, and the particular fields from
which you can retrieve them, are as follows.

Record Types

Table 5-1 summarizes the constants that identify each record type and the related
record format name. The appropriate constant appears in the RECTYPE field of each
audit record.

Table 5-1. RECTYPE Constants

Constant Record Type Record Format Name

1 ABORT ABORTREC

2 COMMIT COMMITREC

3 DELETE DELETEREC

5 INSERT INSERTREC

6 NETWORK-PREPARED PREPAREDREC

7 TMF SHUTDOWN TMF SHUTDOWNREC

10 UPDATE UPDATEREC

11 UPDATE AUDITCOMP UPDATEAUDITCOMPREC

12 FILE ALTER FILE ALTERREC

13 FILE CREATE FILECREATEREC

14 FILE PURGE FILEPURGEREC

15 UPDATE FIELDCOMP UPDATE FIELDCOMPREC

16 FILE RENAME FILE RENAMEREC

17 AUX POINTER AUX POINTERREC

18 NETWORK-COMMIT NETWORKCOMMITREC

19 NETWORK-ABORT NETWORKABORTREC

20 ARTYPE-CURRENTPOS ARRECORD Header
HP NonStop TMF Application Programmer’s Guide—540139-009
5-19

TMF ARLIB2 Audit-Reading Procedures Record Formats
Record Formats

Included in each of the following record descriptions is the DDL representation of those
fields that are returned by the ARREAD procedure and a list of any variable-length
fields that you can access by using one of the ARFETCHxxx procedures.

Each record has the following general form:

where the BODY field is redefined for each specific record type.

Within some of the record definitions, the DATAFILE entry refers to the following
FILESPEC definition:

record ARRECORD.

 02 RECTYPE type binary 16,0. ! record type constant
 02 FILLER pic x(2). ! for alignment
 02 SEQNO type binary 32,0. ! audit file sequence #
 02 RBA type binary 64,0. ! rel byte addr of record
 02 FILLER pic x(2). ! for alignment
 02 AUX-INDEX type binary 16,0. ! for MERGE cursor
 02 AUX-SEQNO type binary 32,0. ! for MERGE cursor
 02 AUX-RBA type binary 64,0. ! for MERGE cursor
 02 TIMESTAMP type binary 64,0.
 02 FILLER pic x(24).
 02 BODY pic x(136).

end ! of record ARRECORD.

definition FILESPEC.

 02 VOLUME type character 8. ! $volume-name
 02 VOLUME-I type binary 16,0 occurs 4 times
 redefines VOLUME.
 02 SUBVOL type character 8. ! subvolume-name
 02 SUBVOL-I type binary 64,0.
 redefines SUBVOL.
 02 FILENAME type character 8. ! disk-filename
 02 FILENAME-I type binary 16,0 occurs 4 times
 redefines FILENAME.

end ! of definition FILESPEC.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-20

TMF ARLIB2 Audit-Reading Procedures Record Formats
Within some of the record definitions, the EXTERNALNAME entry refers to the
following DSMSMFILESPEC definition:

ABORT (1)

This record is generated whenever a transaction is aborted. Abort records can occur
only in the master audit trail.

Variable-length fields: none

AUX POINTER (17)

This record shows ranges of audit for each auxiliary audit-trail file, creating a logical
ordering among all audit records in audit trails on a given system. Aux pointer records
can occur only in the master audit trail.

Variable-length fields: aux pointers

When an AUX POINTER record is returned by ARREAD, the NUMAUXTRAILS value
may increase. This is because, during the time between two AUX POINTER records,
one or more new auxiliary audit trails could have been added to the audit trail
configuration. When another audit trail is added to the configuration, a range of audit
corresponding to that new trail will exist in every subsequent AUX POINTER record. If
that happens, you should determine if it is necessary to retrieve audit from the new
audit trail for the task at hand and, if so, open a new cursor(s) to read the additional
audit trail(s).

definition DSMSMFILESPEC.

 02 FILENAME type character 36. ! \sys.$vdp.svol.file
 ! blank-filled on right
 02 FILENAME-I type binary 16,0 occurs 18 times
 redefines FILENAME.

end ! of definition DSMSMFILESPEC.

02 ABORTREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 HOMENODE type binary 32,0. ! system number
 04 FILLER type x(4).

02 AUXPOINTERREC redefines BODY.

 04 NUMAUXTRAILS type binary 16,0. ! # of auxiliary
 ! audit-trail files
HP NonStop TMF Application Programmer’s Guide—540139-009
5-21

TMF ARLIB2 Audit-Reading Procedures Record Formats
It is also possible for TMF to be configured as a MAT-only environment and for the first
auxiliary audit trail to be added after TMF is started. You must be able to handle and
properly process an AUX POINTER record from the master audit trail, and retrieve
audit, if deemed necessary, from a new auxiliary audit trail.

If the “MERGE” generic audit trail name is used in ARLIB2, then ARLIB2 will handle
the new auxiliary audit trail(s) and return the audit records from the newly added
trail(s).

COMMIT (2)

This record is generated whenever a transaction is made permanent by a call to
ENDTRANSACTION. Commit records can occur only in the master audit trail.

Variable-length fields: child node list

DELETE (3)

This record indicates the deletion of a record from an audited file. Delete records can
occur in either the master audit trail or an auxiliary audit trail.

Variable-length fields: before-image

 02 COMMITREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 HOMENODE type binary 32,0. ! system number
 04 PARENTNODE type binary 32,0. ! system number
 04 NUMCHILDREN type binary 16,0. ! # of child nodes
 04 FILLER type x(6).

 02 DELETEREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 DATAFILE type FILESPEC.
 04 EXTERNALNAME type DSMSMFILESPEC.
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.
 04 HOMENODE type binary 32,0. ! system number
 04 BEFORELEN type binary 32,0. ! before-image length
HP NonStop TMF Application Programmer’s Guide—540139-009
5-22

TMF ARLIB2 Audit-Reading Procedures Record Formats
FILE ALTER (12)

This record indicates that an attribute of an audited file (such as the file’s security, the
audit attribute, or maxextents) was modified. No indication of which attribute was
modified is returned.

For Enscribe files, the value of transid is meaningless because attribute modifications
are not done within a transaction.

Variable-length fields: none

FILE CREATE (13)

This record signifies the creation of an audited file.

For Enscribe files, the value of transid is meaningless because file creation is not done
within a transaction.

Variable-length fields: none

 02 FILEALTERREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 DATAFILE type FILESPEC.
 04 EXTERNALNAME type DSMSMFILESPEC.!
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.
 04 PURGEDATA type binary 16,0. ! TRUE if EOF altered
 ! to zero

 02 FILECREATEREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 DATAFILE type FILESPEC.
 04 EXTERNALNAME type DSMSMFILESPEC.
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-23

TMF ARLIB2 Audit-Reading Procedures Record Formats
FILE PURGE (14)

This record indicates that an audited file was purged.

For Enscribe files, the value of transid is meaningless because file purging is not done
within a transaction.

Variable-length fields: none

FILE RENAME (16)

This record indicates that an audited file has been renamed. Since Enscribe does not
allow the rename of audited files, this record for all practical purposes indicates the
renaming of an SQL table.

Variable-length fields: none

 02 FILEPURGEREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 DATAFILE type FILESPEC.
 04 EXTERNALNAME type DSMSMFILESPEC.
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.

 02 FILERENAMEREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 DATAFILE type FILESPEC.
 04 EXTERNALNAME type DSMSMFILESPEC.
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.
 04 NEWFILENAME type FILESPEC.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-24

TMF ARLIB2 Audit-Reading Procedures Record Formats
INSERT (5)

This record signifies the insertion of a new record into an audited file. Insert records
can occur in either the master audit trail or an auxiliary audit trail.

Variable-length fields: after-image

NETWORK-ABORT (19)

This record is generated whenever a network transaction aborts, and it only appears in
the master audit trail on the parent node. The record indicates that the parent node has
released its locks while simultaneously delivering abort instructions to all child nodes. A
subsequent abort record (FORGOTTEN) is then written after replies to the abort
instructions have been received from all child nodes.

Variable-length fields: child node list

 02 INSERTREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 DATAFILE type FILESPEC.
 04 EXTERNALNAME type DSMSMFILESPEC.
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.
 04 HOMENODE type binary 32,0. ! system number
 04 AFTERLEN type binary 16,0. ! after-image length

 02 NETWORKABORTREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 HOMENODE type binary 32,0. ! system number
 04 PARENTNODE type binary 32,0. ! system number
 04 NUMCHILDREN type binary 16,0. ! # of child nodes
 04 FILLER type x(6)
HP NonStop TMF Application Programmer’s Guide—540139-009
5-25

TMF ARLIB2 Audit-Reading Procedures Record Formats
NETWORK-COMMIT (18)

This record is generated whenever a network transaction commits, and it only appears
in the master audit trail on the parent node. The record indicates that the parent node
has released its locks while simultaneously delivering commit instructions to all child
nodes. A subsequent commit record (FORGOTTEN) is then written after replies to the
commit instructions have been received from all child nodes.

Variable-length fields: child node list

NETWORK-PREPARED (6)

This record is written into the master audit trail by every child (non-home) node
participating in a network transaction. The record indicates that this node and all of its
children, if any, are prepared to commit the transaction (child nodes generate a
network-prepared record at the end of Phase 1 of the two-phase commit). Network-
prepared records are sometimes referred to as “non-home flush records.”

Variable-length fields: child node list

TMF SHUTDOWN (7)

This record signifies the successful shutdown of TMF. TMFSHUTDOWN records can
only occur in the master audit trail.

Variable-length fields: none

 02 NETWORKCOMMITREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 HOMENODE type binary 32,0. ! system number
 04 PARENTNODE type binary 32,0. ! system number
 04 NUMCHILDREN type binary 16,0. ! # of child nodes
 04 FILLER type x(6)

 02 PREPAREDREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 HOMENODE type binary 32,0. ! system number
 04 PARENTNODE type binary 32,0 ! system number
 04 NUMCHILDREN type binary 16,0. ! # of child nodes
 04 FILLER type x(6)

 02 TMFSHUTDOWNREC redefines BODY.

 04 FILLER PIC X(2).
 ! tmf shutdown record contains the header info only
HP NonStop TMF Application Programmer’s Guide—540139-009
5-26

TMF ARLIB2 Audit-Reading Procedures Record Formats
UPDATE (10)

This record signifies the modification of an existing record in an audited file. An update
record can occur in either the master audit trail or an auxiliary audit trail.

When audit compression is enabled, update records are generated only for those
records in the audited file, which are not compressed by DP2. However, for records
that are compressed by DP2, the disk process generates the update auditcomp
records for the Enscribe data files; and the update fieldcomp records for the
NonStop SQL/MP files.

Variable-length fields: before-image and after-image

UPDATE AUDITCOMP (11)

This record reflects updates to an Enscribe file when audit compression is enabled.
The major difference between this record and an update record is that the before-
image and after-image within an update auditcomp record are encoded. Call
ARFETCHFRAGMENT to get the offset, length, before-image, and after-image of each
data record fragment. The recordkey field identifies the modified record.

Variable-length fields: recordkey and fragments

 02 UPDATEREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 DATAFILE type FILESPEC.
 04 EXTERNALNAME type DSMSMFILESPEC.
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.
 04 HOMENODE type binary 32,0. ! system number
 04 BEFORELEN type binary 32,0. ! before-image length
 04 AFTERLEN type binary 32,0. ! after-image length
 04 FILLER type x(4)

 02 UPDATEAUDITCOMPREC redefines BODY.

 04 TRANSID type binary 64,0
 04 DATAFILE type FILESPEC
 04 EXTERNALNAME type DSMSMFILESPEC.
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.
 04 HOMENODE type binary 32,0. ! system number
 04 KEYLEN type binary 32,0. ! record key length
 04 NUMFRAGS type binary 16,0 ! #datarec frags in
 ! audit rec
 04 FILLER type x(6)
HP NonStop TMF Application Programmer’s Guide—540139-009
5-27

TMF ARLIB2 Audit-Reading Procedures Field Descriptions
UPDATE FIELDCOMP (15)

This record reflects the form of audit compression used by NonStop SQL/MP.
Compression within this type of record is achieved by omitting fields that were not
updated and that do not belong to the primary key of the file. Information about the
fields contained in the audit record is available by using the ARGETFIELDINFO
procedure, and the before-image and after-image of each field are available by using
the ARFETCHFIELDVALUE procedure.

Variable-length fields: before-images and after-images of all updated fields and primary
key fields

Field Descriptions

The following paragraphs briefly describe the fields returned by the ARREAD and
ARFETCHxxx procedures. Note that not every field discussed is present in every type
of audit record.

After-image

An after-image is a byte-for-byte copy of a record (as it was after being inserted or
modified) in an audited file.

The AFTERLEN field returned by the ARREAD procedure specifies the length (in
bytes) of the associated after-image field.

You use the ARFETCHAFTERIMAGE procedure to copy the after-image field from the
audit record into your application buffer.

For key-sequenced files that have the DCOMPRESS (key compression in data blocks)
attribute set, it is possible that an after-image retrieved from an audit record using the
ARFETCHAFTERIMAGE procedure will include the leading compression-count byte.

In most cases the audit-reading procedures can detect that key compression is being
used and remove its effects from the record image. There are situations, however, in
which it is not possible to detect compression; in particular, when the record is involved
in an insertion or update that caused a block split and the compression count for the
record is 1. Whenever this occurs, ARFETCHAFTERIMAGE returns a warning code.

 02 UPDATEFIELDCOMPREC redefines BODY.

 04 TRANSID type binary 64,0.
 04 DATAFILE type FILESPEC.
 04 EXTERNALNAME type DSMSMFILESPEC.
 04 OBJECTTYPE type binary 16,0. ! to id SQL/MX objects
 04 UNDOFLAG type binary 16,0.
 04 HOMENODE type binary 32,0. ! system number
 04 FILLER type x(4)
HP NonStop TMF Application Programmer’s Guide—540139-009
5-28

TMF ARLIB2 Audit-Reading Procedures Field Descriptions
Aux Pointer

This 16-byte structure specifies a range of audit in an auxiliary audit trail that is
logically ordered at this point relative to the records in the master audit trail. When all
aux pointer records are combined, they show the logical ordering of all audit records in
all audit trails on a given system.

The NUMAUXTRAILS field returned by the ARREAD procedure specifies the number
of auxiliary audit ranges represented in the record.

You use the ARFETCHAUXPOINTER procedure to copy the auxiliary audit trail ranges
into your application buffer. The format of the output is like the following:

record AUX-POINTER.
 02 BEGIN-SEQNO type binary 32,0.
 02 FILLER type binary 32,0.
 02 BEGIN-RBA type binary 64,0.
 02 END-SEQNO type binary 32,0.
 02 FILLER type binary 32,0.
 02 END-RBA type binary 64,0.

Audit records in an auxiliary audit trail are considered “in range” if the audit record
begins at or after the beginning SEQNO and RBA, and ends before the ending
SEQNO and RBA.

Before-image

A before-image is a byte-for-byte copy of a record (as it was before being deleted or
modified) in an audited file.

The BEFORELEN field returned by the ARREAD procedure specifies the length (in
bytes) of the associated before-image field.

You use the ARFETCHBEFOREIMAGE procedure to copy the before-image field from
the audit record into your application buffer.

Child Node List

Each entry in this list specifies the system number of a node that is the child of the
current node in a network transaction, represented as a 32-bit integer.

The NUMCHILDREN field returned by the ARREAD procedure specifies the number of
entries in the associated child node list.

You use the ARFETCHCHILDNODELIST procedure to copy the child node list field
from the audit record into your application buffer.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-29

TMF ARLIB2 Audit-Reading Procedures Field Descriptions
DATAFILE

This is the 12-word (24-character) local internal form of the name of the audited file
upon which the action was performed (“$DATA JOB100 PARTS ”, for example).

For files managed by the HP NonStop Storage Management Foundation (SMF)
product, DATAFILE contains the logical name of the affected file. For files not managed
by the SMF product, DATAFILE contains the physical filename.

Users of the TMF audit-reading procedures who change to the SMF environment need
only re-compile their applications using the new audit-reading procedures to take
advantage of this capability.

FRAGMENTS

This is a pair of before- and after-image fragments from a compressed Enscribe
update record.

The NUMFRAGS field returned by the ARREAD procedure specifies the number of
fragments in an audit-compressed update record.

You use the ARFETCHFRAGMENTS procedure to copy the before- and after-image
fragments into your application buffer.

HOMENODE

This is the system number of the home node of a network transaction.

PARENTNODE

This field specifies the system number of the node that was the immediate parent of
the current node in a network transaction.

For a local commit record, the value of PARENTNODE is -1D, indicating that there is
no parent node.

RBA

This field specifies the relative byte address (byte offset) of the audit record within the
audit-trail file. RBA is part of the cursor positioning information.

Record Key

This field is present only in update auditcomp records. The KEYLEN field returned by
the ARREAD procedure specifies the length (in bytes) of the associated record key
field.

For key-sequenced files, the record key field is a byte-for-byte copy of the record key.
For key-sequenced files, you use the ARFETCHRECORDKEY procedure to copy the
record key field from the audit record into your application buffer.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-30

TMF ARLIB2 Audit-Reading Procedures Field Descriptions
For entry-sequenced, relative, or unstructured files, the record key field represents the
two-word internal form of the data record address, which is not particularly useful. You
can use the ARGETRECADDR procedure to copy the record address (in external
form) from the audit record into your application buffer when you encounter an update
auditcomp record for one of these file types.

RECTYPE

This field specifies the type of audit record that was read. Table 5-1 shows the
applicable values.

SEQNO

This field specifies the sequence number of the current audit file within the audit-trail.
SEQNO is part of the cursor positioning information.

TIMESTAMP

This is a 4-word Julian timestamp, stored in the audit trail, that represents Greenwich
Mean Time (GMT). If necessary, you are responsible for converting the timestamp to
Local Standard Time (LST) or Local Civil Time (LCT).

When an audit record contains a timestamp, the value returned by the ARREAD
procedure is the Julian value stored in the audit record. Note that many of the audit
records do not contain a timestamp. For such records, TIMESTAMP refers to the
timestamp in the header of the audit block containing the record; that timestamp
indicates when the entire block was written to disk.

Timestamps provide only a coarse means of placing audited events in time. There are
several reasons for this, one of which is the use of block header timestamps, as
previously mentioned. Audit records are stored in a disk process buffer for some period
of time before the block(s) containing them are actually written to disk. This means that
the TIMESTAMP value from the block header will indicate a time that is later than the
time when the record was generated.

Another reason for an irregular time track is that timestamps are based upon the
system time as set by the system operator. It is possible for an operator to set the
system time or date to an incorrect value.

Finally, separate disk processes using independent buffering can all write records to a
single audit trail. This scenario could result in records that have later timestamps
appearing before records that were actually generated earlier by a different disk
process.

TRANSID

The TRANSID is the unique 4-word transaction identifier assigned to the particular
transaction.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-31

TMF ARLIB2 Audit-Reading Procedures Procedure Calls
UNDOFLAG

The UNDOFLAG field, when set to a nonzero value, indicates that the audit record was
produced by a TMF recovery process (transaction backout, volume recovery, or file
recovery) as it undid the effects of a transaction. You use the UNDOFLAG field to
distinguish such records from those produced on behalf of an application program.

The value of the UNDOFLAG field has the following meaning:

VOLUME

This is the 4-word (8-character) name of the affected disk volume (“$DATA ”, for
example).

Procedure Calls
This section provides the format of each TMF audit-reading procedure call. The
descriptions are presented in alphabetic order by procedure name.

Table 5-2 summarizes the audit-reading procedures.

<> 0 the audit record was generated as part of an undo operation by a TMF
recovery process (backout, volume recovery, or file recovery)

0 the audit record does not represent undo work

Note. The TMF audit-reading procedures cannot be called from highpin user processes. Any
attempt to do so will cause a run-time error.

Table 5-2. TMF Audit-Reading Procedures (page 1 of 3)

Procedure Name Function

ARCLOSE Closes a cursor to an audit trail.

ARCOMPLETEIO ARCOMPLETEIO is for compatibility, the application will
not see ARLIB2 I/O's.

ARFETCHAFTERIMAGE Copies the after-image field from an SQL/MP or
Enscribe audit record to the application buffer.

ARFETCHAUXPOINTER Retrieves information about the audit ranges in auxiliary
audit trails.

ARFETCHBEFOREIMAGE Copies the before-image field from an SQL/MP or
Enscribe audit record to the application buffer.

ARFETCHCHILDNODELIST Copies the child node list from an audit record to the
application buffer.

ARFETCHFIELDVALUE Retrieves both the before-image and after-image from
field-compressed update record.

ARFETCHFRAGMENT Returns information about updated data record
fragments from field-compressed update record.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-32

TMF ARLIB2 Audit-Reading Procedures Procedure Calls
ARFETCHMXAFTERDATA Copies the after-image field from an SQL/MX audit
record to the application buffer (uses bit maps).

ARFETCHMXAFTERDATA2 Copies the after-image field from an SQL/MX audit
record to the application buffer (uses byte maps).

ARFETCHMXBEFOREDATA Copies the before-image field from an SQL/MX audit
record to the application buffer (uses bit maps).

ARFETCHMXBEFOREDATA2 Copies the before-image field from an SQL/MX audit
record to the application buffer (uses byte maps).

ARFETCHRECORDKEY Copies the record key field from the audit record into the
application’s buffer.

ARGETANSINAME Returns the ANSI name of an SQL/MX object.

ARGETAUDRECHEADERINFO Returns certain information from the audit-record
header.

ARGETFIELDINFO Returns information about the individual fields contained
in a field-compressed update record.

ARGETMESSAGELINE Reproduces error messages for user logging.

ARGETMXCOLUMNINFO Returns column-format information for the SQL/MX
object indicated by the current audit record.

ARGETNETWORKRECS Enables the returning of network-related audit records
when the ARREAD procedure is called.

ARGETNONDATACHNGRECS Causes certain audit records that do not reflect changes
to customer data to be returned instead of being
discarded by the ARREAD procedure.

ARGETRECADDR Returns the 32-bit record address of the modified data
record (for FORMAT1 or non-oversized FORMAT2
entry-sequenced, relative, and unstructured files.).

ARGETRECADDR64 Returns the 64-bit record address of the modified data
record (for FORMAT1, FORMAT2, or oversized
FORMAT2 entry-sequenced, relative, and unstructured
files).

AROPEN Opens a cursor for reading audit records from a
particular audit trail.

ARPOSITION Positions a cursor within an audit trail.

ARPOSITION2 Uses the aux-trail-range returned by an
ARFETCHAUXPOINTER call to position the cursor for
the specified auxiliary audit trail.

ARPRINTMESSAGE Reproduces error messages for user logging.

ARREAD Reads a single record from the audit trail and retrieves
selected fields from the record.

Table 5-2. TMF Audit-Reading Procedures (page 2 of 3)

Procedure Name Function
HP NonStop TMF Application Programmer’s Guide—540139-009
5-33

TMF ARLIB2 Audit-Reading Procedures Procedure Calls
ARSETOPTIONS Sets several different options that control audit-record
processing.

ARSTART Initiates audit reading.

ARSTOP Terminates audit reading.

ARSTOPNETWORKRECS Disables the returning of network-related audit records
when the ARREAD procedure is called.

ARSTOPNONDATACHNGRECS Causes certain audit records that do not reflect changes
to customer data to be discarded instead of being
returned by the ARREAD procedure.

Table 5-2. TMF Audit-Reading Procedures (page 3 of 3)

Procedure Name Function
HP NonStop TMF Application Programmer’s Guide—540139-009
5-34

TMF ARLIB2 Audit-Reading Procedures ARCLOSE
ARCLOSE

This procedure closes an open cursor. Closing a cursor ends its association with a
particular audit trail and makes that cursor available for reassignment by a subsequent
call to the AROPEN procedure.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

cursor-number input

INT:value

is the number identifying the particular open cursor to be closed.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs. You
must pass either both the parameters or none.

CALL ARCLOSE (return-code ! o
 , cursor-number ! i
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-35

TMF ARLIB2 Audit-Reading Procedures ARCOMPLETEIO
ARCOMPLETEIO

This procedure is provided for compatibility only. AWAITIO will not complete any
ARLIB2 nowait I/O.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

count-transferred input

INT:value

is the value of the count-transferred parameter returned by AWAITIOX.

tag input

INT(32):value

is the value of the tag value returned by AWAITIOX.

CALL ARCOMPLETEIO (return-code ! o
 , count-transferred ! o
 , tag); ! i

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-36

TMF ARLIB2 Audit-Reading Procedures ARFETCHAFTERIMAGE
ARFETCHAFTERIMAGE

This procedure copies the after-image field from the most recently read audit record
into the application’s buffer. This procedure works with records of type Update (10) and
Insert (5). This procedure cannot be used with audit records for SQL/MX objects. The
object type can be determined by checking the OBJECTTYPE field in the
ARRECORD.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

buffer output

INT .EXT:ref:*

is a buffer in the application process in which the information returned by
ARFETCHAFTERIMAGE is stored. Note that buffer can be allocated from the
64K data stack or from an extended segment.

max-copy-length input

INT(32):value

is the maximum number of bytes to copy into the buffer. This routine returns an
error for values of max-copy-length less than 1.

maybe-comp-byte output, optional

STRING .EXT:ref:1

returns the single byte which may be the actual first byte of the after-image in
cases where warning <return-code>.<14> is returned. If the data file has the
DCOMPRESS attribute set, then this is the actual first byte of the after-image, and

CALL ARFETCHAFTERIMAGE (return-code ! o
 , buffer ! o
 , max-copy-length ! i
 ,[maybe-comp-byte]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) Bit 14, when set, indicates that the first byte of the after-image is
a 1 (possibly representing a compression count rather than the
actual first byte of data if data compression is enabled). The
Enscribe Programmer’s Guide and the HP NonStop SQL/MP
Reference Manual discuss the DCOMPRESS attribute.

Bit 15, when set, indicates that the after-image is longer than
max-copy-length. At least one byte was truncated.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-37

TMF ARLIB2 Audit-Reading Procedures ARFETCHAFTERIMAGE
should be substituted for <buffer>[0].<0:7>. If the DCOMPRESS attribute is not set
for the data file, or the warning <return-code>.<14> is not returned by
ARFETCHAFTERIMAGE, then the value returned in this parameter is
meaningless.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-38

TMF ARLIB2 Audit-Reading Procedures ARFETCHAUXPOINTER
ARFETCHAUXPOINTER

This procedure retrieves information about the ranges of audit in auxiliary audit trails
that are logically ordered at this point relative to audit records in the master audit trail.
Together, these ranges create a logical ordering among all audit records in all audit
trails on a given system.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

audit-trail-index input

INT:value

specifies the index of an auxiliary audit trail in the TMF configuration whose audit-
trail position is to be returned from the current AUXPOINTER audit record. The
specified value must be an integer between 1 and 15, but not greater than the
value of NUMAUXTRAILS in the current AUXPOINTER audit record. A value of 1
specifies auxiliary audit trail AUX01, 2 specifies AUX02, and so forth.

aux-trail-range output

INT .EXT:ref:*

points to a caller-allocated buffer into which the AUXPOINTER information for the
specified auxiliary audit trail will be returned. The format of this information is as
follows:

record AUXPOINTERINFO

02 LOWPOS type ATLOCSPEC.

02 HIGHPOS type ATLOCSPEC.

record ATLOCSPEC

02 SEQ-NO type binary 32, 0.

02 FILLER type x(4).

02 RBA type binary 64, 0.

CALL ARFETCHAUXPOINTER (return-code ! o
 , audit-trail-index ! i
 , aux-trail-range); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-39

TMF ARLIB2 Audit-Reading Procedures ARFETCHBEFOREIMAGE
ARFETCHBEFOREIMAGE

This procedure copies the before-image field from the most recently read audit record
into the application’s buffer. This procedure works with records of type Update (10) and
Delete (3). This procedure cannot be used with audit records for SQL/MX objects. The
object type can be determined by checking the OBJECTTYPE field in the
ARRECORD.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

buffer output

INT .EXT:ref:*

is a buffer in the application process in which the information returned by
ARFETCHBEFOREIMAGE is stored. Note that buffer can be allocated from the
64K data stack or from an extended segment.

max-copy-length input

INT(32):value

is the maximum number of bytes to copy into the buffer.

ARFETCHBEFOREIMAGE returns an error for values of max-copy-length less
than 1.

CALL ARFETCHBEFOREIMAGE (return-code ! o
 , buffer ! o
 , max-copy-length); ! i

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) Bit 15, when set, indicates that the before image is longer than
max-copy-length. At least one byte was truncated from the
end.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-40

TMF ARLIB2 Audit-Reading Procedures ARFETCHCHILDNODELIST
ARFETCHCHILDNODELIST

This procedure copies the child node list from the most recently read audit record into
the application’s buffer.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

buffer output

INT .EXT:ref:*

is a buffer in the application process in which the information returned by
ARFETCHCHILDNODELIST is stored.

max-copy-length input

INT:value

is the maximum number of bytes to copy into the buffer.

ARFETCHCHILDNODELIST returns an error for values of max-copy-length
less than 4.

CALL ARFETCHCHILDNODELIST (return-code ! o
 , buffer ! o
 , max-copy-length); ! i

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) Bit 15, when set, indicates that the child node list is longer than
max-copy-length. At least one of the elements was
truncated from the end.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-41

TMF ARLIB2 Audit-Reading Procedures ARFETCHFIELDVALUE
ARFETCHFIELDVALUE

This procedure retrieves both the before-image and after-image from a field-
compressed update (UPDATE FIELDCOMP) record. These are SQL-only records. This
procedure cannot be used with audit records for SQL/MX objects. The object type can
be determined by checking the OBJECTTYPE field in the ARRECORD.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

field-number input

INT:value

is the zero-based ordinal field number within the data record of the field whose
before-image and/or after-image is to be retrieved. This value can be found in the
NonStop SQL/MP catalog (the COLNUMBER field of the COLUMNS table).

before-image output, optional

INT .EXT:ref:*

is a buffer in the application process in which the before-image of the field is
returned.

max-before-copy-len input, optional

INT:value

CALL ARFETCHFIELDVALUE (return-code ! o
 , field-number ! i
 , [before-image]) ! o
 , [max-before-copy-len]) ! i
 , [actual-before-len]) ! o
 , [after-image]) ! o
 , [max-after-copy-len]) ! i
 , [actual-after-len] ! o
 , [next-field] ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) Bit 14, when set, indicates that the before image is longer than
max-before-copy-len. At least one byte was truncated from
the end.

Bit 15, when set, indicates that the after image is longer than
max-after-copy-len. At least one byte was truncated from
the end.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-42

TMF ARLIB2 Audit-Reading Procedures ARFETCHFIELDVALUE
is the maximum number of bytes to copy into before-image. This value must be
supplied if before-image is present.

ARFETCHFIELDVALUE returns an error for values of max-before-copy-len
less than 1.

actual-before-len output, optional

INT .EXT:ref:1

returns the actual length of the retrieved before-image of the field. For a variable-
length character (VARCHAR) field, this value includes the 2-byte length word of the
field. For null fields, this count includes the two bytes occupied by the null indicator.

after-image output, optional

INT .EXT:ref:*

is a buffer in the application process in which the after-image of the field is
returned.

max-after-copy-len input, optional

INT:value

is the maximum number of bytes to copy into after-image. This value must be
supplied if after-image is present.

ARFETCHFIELDVALUE returns an error for values of max-after-copy-len
less than 1.

actual-after-len output, optional

INT .EXT:ref:1

returns the actual length of the retrieved after-image of the field. In the case of a
variable-length character (VARCHAR) field, this value includes the 2-byte length
word of the field. For fields that can be set to a null value, this count includes the
2 bytes occupied by the null indicator.

next-field output, optional

INT .EXT:ref:1

returns the next available field in the current audit record.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-43

TMF ARLIB2 Audit-Reading Procedures ARFETCHFIELDVALUE
ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

 The modified data file must be accessible.

 If a file that has the same name as the modified file, but different characteristics,
exists on disk and is accessible, the results of ARFETCHFIELDVALUE will most
likely be incorrect. The TMF audit-reading procedures cannot always detect this
situation.

 The optional parameters sub-system and ar-error must be passed in pairs.
You must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-44

TMF ARLIB2 Audit-Reading Procedures ARFETCHFRAGMENT
ARFETCHFRAGMENT

This procedure returns information about updated data record fragments from audit-
compressed update records. Use the ARFETCHFRAGMENT procedure call after
reading a record of type UPDATE AUDITCOMP to get the offset, length, before-image,
and after-image of each data record fragment. This procedure works with records of
type UPDATE AUDITCOMP (11).

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

frag-number input

INT:value

is the zero-based ordinal number of the updated data record fragment to retrieve.

frag-offset output, optional

INT .EXT:ref

is the zero-based byte offset within the data record where the specified fragment
begins.

CALL ARFETCHFRAGMENT (return-code ! o
 ,frag-number ! i
 ,[frag-offset] ! o
 ,[before-image-buf] ! o
 ,[max-before-copy-len] ! i
 ,[actual-before-len] ! o
 ,[after-image-buf] ! o
 ,[max-after-copy-len] ! i
 ,[actual-after-len]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) Bit 14 indicates that the before-image of the fragment is longer
than max-before-copy-length. At least one byte was
truncated from the end.

Bit 15 indicates that the after-image of the fragment is longer
than max-after-copy-length. At least one byte was
truncated from the end.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-45

TMF ARLIB2 Audit-Reading Procedures ARFETCHFRAGMENT
before-image-buf output, optional

INT .EXT:ref:*

is a buffer in the application process in which the before-image of the updated data
record fragment is returned.

max-before-copy-len input, optional

INT:value

is the maximum number of bytes to copy into before-image. This must be
supplied if before-image-buf is supplied.

ARFETCHFRAGMENT will return an error for values of max-before-copy-len
less than 1.

actual-before-len output, optional

INT .EXT:ref

is the actual byte length of the before-image of the fragment.

after-image-buf output, optional

INT .EXT:ref:*

is a buffer in the application process in which the after-image of the updated data
record fragment is returned.

max-after-copy-len input, optional

INT:value

is the maximum number of bytes to copy into after-image. This must be
supplied if after-image-buf is supplied.

ARFETCHFRAGMENT will return an error for values of max-after-copy-len
less than 1.

actual-after-len output, optional

INT .EXT:ref

is the actual byte length of the after-image of the fragment.

Considerations

 ARFETCHFRAGMENT may be called without supplying the before-image and
after-image buffers. This usage may be useful in determining an appropriate buffer
size to allocate for successive calls that have those buffers supplied.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-46

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXAFTERDATA
ARFETCHMXAFTERDATA

This procedure retrieves column data from the after image of audit records for SQL/MX
objects. ARFETCHMXAFTERDATA can only be used with data-fork audit records for
SQL/MX objects. The object type can be determined by checking the OBJECTTYPE
field in the ARRECORD. ARFETCHMXAFTERDATA copies the data for all columns
from the after image of the current audit record into a buffer specified by the
application. ARFETCHMXAFTERDATA works with audit records of type UPDATE (10),
UPDATE FIELDCOMP (15), and INSERT (5).

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

request-bitmap input

INT(32) .EXT:ref:*

must be bitmap-length bytes long. The setting of the various bits, however,
does not matter. request-bitmap and reply-bitmap must not overlap one
another. For best performance, request-bitmap and reply-bitmap should
be allocated as INT(32) variables.

reply-bitmap output

INT(32) .EXT:ref:*

is bitmap-length bytes long. Each bit represents a column in the output buffer.
Upon return, a bit is zero if data is not present in the corresponding column or one
if data is present. If reply-bitmap is not large enough to represent all of the
columns in the returned output, then data about columns corresponding to the
missing bits is not returned. request-bitmap and reply-bitmap must not
overlap one another. For best performance, request-bitmap and reply-
bitmap should be allocated as INT(32) variables.

CALL ARFETCHMXAFTERDATA (return-code ! o
 , request-bitmap ! i
 , reply-bitmap ! o
 , bitmap-length ! i
 , image-buffer ! o
 , image-buffer-length ! i
 , end-image-data-offset ! o
 , reply-hint ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-47

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXAFTERDATA
bitmap-length input

INT(32):value

specifies the length of request-bitmap and reply-bitmap in bytes, and
must be mod 4.

image-buffer output

FIXED .EXT:ref

points to a caller-allocated buffer where the image data is returned. The
information is returned in a fixed format defined by SQL/MX with room for all the
columns, regardless of how many are requested. VARCHAR columns have their
maximum lengths allocated. The performance of this procedure is improved if this
buffer starts on a mod 8 address, and is mod 8 in length.

image-buffer-length input

INT(32):value

specifies the length in bytes of the caller-allocated image buffer. The performance
of this procedure is improved if this length is mod 8.

If this length is not large enough to contain the data for all the columns in the
record (plus fillers, as indicated by the information returned by the
ARGETMXCOLUMNINFO procedure), an ARE-BUFFER-TOO-SMALL error is
returned and the needed length is returned in reply hint.

end-image-data-offset output

INT(32) .EXT:ref

specifies the offset in the image buffer of the byte after the end of the last column
(highest column number) for which image data is being returned by this call.

reply-hint output

INT(32) .EXT:ref

is a hint returned by TMFARLB2.

If the return code is AR-OK, this parameter contains the highest column number for
which image data is being returned.

If the return code is ARE-BUFFER-TOO-SMALL, this parameter contains the
minimum length necessary for the image buffer in bytes (adjusted to mod 8).

For all other return-code values this parameter contains zero.

Note. The data within the image buffer returned by ARFETCHMXAFTERDATA is not
aligned on any boundary. You must use a string move to move numeric values from the
image buffer to an aligned numeric field before processing the value. The same is true for
NULL indicator fields and VARCHAR character length fields, and their length fields.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-48

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXAFTERDATA
sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs.
You must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-49

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXAFTERDATA2
ARFETCHMXAFTERDATA2

This procedure is the same as ARFETCHMXAFTERDATA except that it uses byte
maps instead of bit maps. Byte maps are easier to use for languages that have
difficulty checking and setting bits.

This procedure retrieves column data from the after image of audit records for SQL/MX
objects. ARFETCHMXAFTERDATA2 can only be used with data-fork audit records for
SQL/MX objects. The object type can be determined by checking the OBJECTTYPE
field in the ARRECORD. ARFETCHMXAFTERDATA2 copies the data for all columns
from the after image of the current audit record into a buffer specified by the
application. ARFETCHMXAFTERDATA2 works with audit records of type UPDATE
(10), UPDATE FIELDCOMP (15), and INSERT (5).

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

request-bytemap input

STRING .EXT:ref:*

must be bytemap-length bytes long. The setting of the various bytes, however,
does not matter. request-bytemap and reply-bytemap must not overlap one
another.

reply-bytemap output

STRING .EXT:ref:*

is bytemap-length bytes long. Each byte represents a column in the output
buffer. Upon return, a byte is 0x00 if data is not present in the corresponding
column or 0xFF if data is present. If reply-bytemap is not large enough to
represent all of the columns in the returned output, then data about columns

CALL ARFETCHMXAFTERDATA2 (return-code ! o
 , request-bytemap ! i
 , reply-bytemap ! o
 , bytemap-length ! i
 , image-buffer ! o
 , image-buffer-length ! i
 , end-image-data-offset ! o
 , reply-hint ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-50

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXAFTERDATA2
corresponding to the missing bytes is not returned. request-bytemap and
reply-bytemap must not overlap one another.

bytemap-length input

INT(32):value

specifies the length of request-bytemap and reply-bytemap in bytes, and
can be any length.

image-buffer output

FIXED .EXT:ref

points to a caller-allocated buffer where the image data is returned. The
information is returned in a fixed format defined by SQL/MX with room for all the
columns, regardless of how many are requested. VARCHAR columns have their
maximum lengths allocated. The performance of this procedure is improved if this
buffer starts on a mod 8 address, and is mod 8 in length.

image-buffer-length input

INT(32):value

specifies the length in bytes of the caller-allocated image buffer. The performance
of this procedure is improved if this length is mod 8.

If this length is not large enough to contain the data for all the columns in the
record (plus fillers, as indicated by the information returned by the
ARGETMXCOLUMNINFO procedure), an ARE-BUFFER-TOO-SMALL error is
returned and the needed length is returned in reply hint.

end-image-data-offset output

INT(32) .EXT:ref

specifies the offset in the image buffer of the byte after the end of the last column
(highest column number) for which image data is being returned by this call.

reply-hint output

INT(32) .EXT:ref

is a hint returned by TMFARLB2.

If the return code is AR-OK, this parameter contains the highest column number for
which image data is being returned.

Note. The data within the image buffer returned by ARFETCHMXAFTERDATA2 is not
aligned on any boundary. You must use a string move to move numeric values from the
image buffer to an aligned numeric field before processing the value. The same is true for
NULL indicator fields and VARCHAR character length fields, and their length fields.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-51

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXAFTERDATA2
If the return code is ARE-BUFFER-TOO-SMALL, this parameter contains the
minimum length necessary for the image-buffer in bytes (adjusted to mod 8).

For all other return-code values this parameter contains zero.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs.
You must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-52

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXBEFOREDATA
ARFETCHMXBEFOREDATA

This procedure retrieves column data from the before image of audit records for
SQL/MX objects. ARFETCHMXBEFOREDATA can only be used with data-fork audit
records for SQL/MX objects. The object type can be determined by checking the
OBJECTTYPE field in the ARRECORD. ARFETCHMXBEFOREDATA copies the data
for all columns from the before image of the current audit record into a buffer specified
by the application. ARFETCHMXBEFOREDATA works with audit records of type
UPDATE (10), UPDATE FIELDCOMP (15), and DELETE (3).

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

request-bitmap input

INT(32) .EXT:ref:*

must be bitmap-length bytes long. The setting of the various bits, however,
does not matter. request-bitmap and reply-bitmap must not overlap one
another. For best performance, request-bitmap and reply-bitmap should
be allocated as INT(32) variables.

reply-bitmap output

INT(32) .EXT:ref:*

is bitmap-length bytes long. Each bit represents a column in the output buffer.
Upon return, a bit is zero if data is not present in the corresponding column or one
if data is present. If reply-bitmap is not large enough to represent all of the
columns in the returned output, then data about columns corresponding to the
missing bits is not returned. request-bitmap and reply-bitmap must not
overlap one another. For best performance, request-bitmap and reply-
bitmap should be allocated as INT(32) variables.

CALL ARFETCHMXBEFOREDATA (return-code ! o
 , request-bitmap ! i
 , reply-bitmap ! o
 , bitmap-length ! i
 , image-buffer ! o
 , image-buffer-length ! i
 , end-image-dataoffset ! o
 , reply-hint ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-53

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXBEFOREDATA
bitmap-length input

INT(32):value

specifies the length of request-bitmap and reply-bitmap in bytes, and
must be mod 4.

image-buffer output

FIXED .EXT:ref

points to a caller-allocated buffer where the image data is returned. The
information is returned in a fixed format defined by SQL/MX with room for all the
columns, regardless of how many are requested. VARCHAR columns have their
maximum lengths allocated. The performance of this procedure is improved if this
buffer starts on a mod 8 address, and is mod 8 in length.

image-buffer-length input

INT(32):value

specifies the length in bytes of the caller-allocated image buffer. The performance
of this procedure is improved if this length is mod 8.

If this length is not large enough to contain the data for all the columns in the
record (plus fillers, as indicated by the information returned by the
ARGETMXCOLUMNINFO procedure), an ARE-BUFFER-TOO-SMALL error is
returned and the needed length is returned in reply hint.

end-image-dataoffset output

INT(32) .EXT:ref

specifies the offset in the image buffer of the byte after the end of the last column
(highest column number) for which image data is being returned by this call.

reply-hint output

INT(32) .EXT:ref

is a hint returned by TMFARLB2.

If the return code is AR-OK, this parameter contains the highest column number for
which image data is being returned.

If the return code is ARE-BUFFER-TOO-SMALL, this parameter contains the
minimum length necessary for the image-buffer in bytes (adjusted to mod 8).

For all other return-code values this parameter contains zero.

Note. The data within the image buffer returned by ARFETCHMXBEFOREDATA is not
aligned on any boundary. You must use a string move to move numeric values from the
image buffer to an aligned numeric field before processing the value. The same is true for
NULL indicator fields and VARCHAR character length fields, and their length fields.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-54

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXBEFOREDATA
sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs.
You must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-55

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXBEFOREDATA2
ARFETCHMXBEFOREDATA2

This procedure is the same as ARFETCHMXBEFOREDATA except that it uses byte
maps instead of bit maps. Byte maps are easier to use for languages that have
difficulty checking and setting bits.

This procedure retrieves column data from the before image of audit records for
SQL/MX objects. ARFETCHMXBEFOREDATA2 can only be used with data-fork audit
records for SQL/MX objects. The object type can be determined by checking the
OBJECTTYPE field in the ARRECORD. ARFETCHMXBEFOREDATA2 copies the data
for all columns from the before image of the current audit record into a buffer specified
by the application. ARFETCHMXBEFOREDATA2 works with audit records of type
UPDATE (10), UPDATE FIELDCOMP (15), and DELETE (3).

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

request-bytemap input

STRING .EXT:ref:*

must be bytemap-length bytes long. The setting of the various bytes, however,
does not matter. request-bytemap and reply-bytemap must not overlap one
another.

reply-bytemap output

STRING .EXT:ref:*

is bytemap-length bytes long. Each byte represents a column in the output
buffer. Upon return, a byte is 0x00 if data is not present in the corresponding
column or 0xFF if data is present. If reply-bytemap is not large enough to
represent all of the columns in the returned output, then data about columns

CALL ARFETCHMXBEFOREDATA2 (return-code ! o
 , request-bytemap ! i
 , reply-bytemap ! o
 , bytemap-length ! i
 , image-buffer ! o
 , image-buffer-length ! i
 , end-image-dataoffset ! o
 , reply-hint ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-56

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXBEFOREDATA2
corresponding to the missing bytes is not returned. request-bytemap and
reply-bytemap must not overlap one another.

bytemap-length input

INT(32):value

specifies the length of request-bytemap and reply-bytemap in bytes, and
can be any length.

image-buffer output

FIXED .EXT:ref

points to a caller-allocated buffer where the image data is returned. The
information is returned in a fixed format defined by SQL/MX with room for all the
columns, regardless of how many are requested. VARCHAR columns have their
maximum lengths allocated. The performance of this procedure is improved if this
buffer starts on a mod 8 address, and is mod 8 in length.

image-buffer-length input

INT(32):value

specifies the length in bytes of the caller-allocated image buffer. The performance
of this procedure is improved if this length is mod 8.

If this length is not large enough to contain the data for all the columns in the
record (plus fillers, as indicated by the information returned by the
ARGETMXCOLUMNINFO procedure), an ARE-BUFFER-TOO-SMALL error is
returned and the needed length is returned in reply hint.

end-image-dataoffset output

INT(32) .EXT:ref

specifies the offset in the image buffer of the byte after the end of the last column
(highest column number) for which image data is being returned by this call.

reply-hint output

INT(32) .EXT:ref

is a hint returned by TMFARLB2.

If the return code is AR-OK, this parameter contains the highest column number for
which image data is being returned.

Note. The data within the image buffer returned by ARFETCHMXBEFOREDATA2 is not
aligned on any boundary. You must use a string move to move numeric values from the
image buffer to an aligned numeric field before processing the value. The same is true for
NULL indicator fields and VARCHAR character length fields, and their length fields.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-57

TMF ARLIB2 Audit-Reading Procedures ARFETCHMXBEFOREDATA2
If the return code is ARE-BUFFER-TOO-SMALL, this parameter contains the
minimum length necessary for the image-buffer in bytes (adjusted to mod 8).

For all other return-code values this parameter contains zero.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations
The optional parameters sub-system and ar-error must be passed in pairs. You must
pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-58

TMF ARLIB2 Audit-Reading Procedures ARFETCHRECORDKEY
ARFETCHRECORDKEY

This procedure copies the record key field from the most recently read audit record into
the application’s buffer. This procedure works with records of type UPDATE
AUDITCOMP (11).

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

buffer output

INT .EXT:ref:*

is a buffer in the application process in which the information returned by
ARFETCHRECORDKEY is stored. Note that the buffer can be allocated either
from the 64K data stack or from an extended segment.

max-copy-length input, optional

INT:value

is the maximum number of bytes to copy into the buffer.

ARFETCHRECORDKEY returns an error for values of max-copy-length less
than 1.

CALL ARFETCHRECORDKEY (return-code ! o
 , buffer ! o
 , [max-copy-length]); ! i

Errors (<0) Table 5-3 describes the various error codes.

Warnings (>0) Bit 15, when set, indicates that the record key is longer than
max-copy-length. At least one byte was truncated from the
end.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-59

TMF ARLIB2 Audit-Reading Procedures ARFETCHRECORDKEY
Considerations

 The record key field only occurs in UPDATE AUDITCOMP audit records.

 The value of a record key is only meaningful if the audit (data) file is key-
sequenced. For other types of files (entry-sequenced, relative, or unstructured), the
field contains the two-word internal form of the data record address.

Because audit records do not specify the file type, the TMF audit-reading
procedures cannot distinguish between an internal record address and a two-word
key, either of which can be returned. If the audited file is accessible, you can find
out its type by calling the FILEINFO system procedure.

 The ARGETRECADDR procedure returns the data record address for changes to
entry-sequenced, relative, or unstructured files (the file must be accessible). You
can use ARGETRECADDR with any data change audit record (insert, delete, and
any form of update).
HP NonStop TMF Application Programmer’s Guide—540139-009
5-60

TMF ARLIB2 Audit-Reading Procedures ARGETANSINAME
ARGETANSINAME

This procedure returns the ANSI name of an SQL/MX object. It also returns the ANSI
partition name of the object (where pertinent) and the name space of the returned
ANSI name.

Using the ANSI name, the calling program can perform SQL/MX SELECT statements
against the SQL/MX metadata to obtain additional information about that object not
available from the ARGETMXCOLUMNINFO procedure.

Each partition of an SQL/MX table has another file associated with it called a resource
fork that contains additional label information. Actually, all SQL/MX partitions/files
except resource forks have resource forks associated with them.

If this procedure is called using the Guardian name of a resource fork, the information
pertaining to the SQL/MX partition/file that the resource fork is associated with is
returned.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

If the format of the specified Guardian name is not valid, an ARE-INVALID-PARAM
error is returned.

If the specified Guardian name does not map to the SQL/MX name space, an
ARE-ONLY-USABLE-WITH-SQLMX error is returned. This determination is made
by examining the Guardian name, not by accessing the file on disk that has that
Guardian name.

If the file that has the specified Guardian name does not exist on disk, an ARE-
DATA-FILE-NOT-FOUND error is returned.

CALL ARGETANSINAME (return-code ! o
 , guardian-name ! i
 , guardian-name-length ! i
 , ansi-name ! o
 , ansi-name-buffer-length ! i
 , ansi-name-length ! o
 , namespace ! i
 , partition-name ! o
 , partition-name-buffer-length ! i
 , partition-name-length ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-61

TMF ARLIB2 Audit-Reading Procedures ARGETANSINAME
If the ANSI name being returned is too long to fit in the caller-allocated ANSI-name
buffer, or the partition name being returned is too long to fit in the caller-allocated
partition-name buffer, or both, an ARE-BUFFER-TOO-SMALL error is returned. No
name information is returned in either name buffer in such cases, but the minimum
buffer lengths needed are returned in both the ansi-name-length and
partition-name-length parameters.

guardian-name input

STRING .EXT:ref:*

specifies the Guardian name. This is a pointer to a buffer of type
DSMSMFILESPEC that is allocated by the calling process.

guardian-name-length input

INT(32):value

is the length in bytes of guardian-name.

ansi-name output

STRING .EXT:ref:*

is the corresponding ANSI name (in external format). This is a pointer to a buffer of
length ansi-name-buffer-length bytes that is allocated by the calling
process.

The format of an ANSI name is <Catalog>.<Schema>.<Object>.

ansi-name-buffer-length input

INT(32):value

is the length in bytes of the caller-allocated buffer for the returned ANSI name. The
maximum length necessary for this buffer is the maximum length in bytes of an
external format ANSI name: ((((128 * 2) + 2) * 3) + 2).

ansi-name-length output

INT(32) .EXT:ref

is the length in bytes of the returned ANSI name string.

namespace input

STRING .EXT:ref:2

is the name space of the returned ANSI name. Because the ANSI names of an
SQL/MX base table and an SQL/MX index can be the same, the name space is a
necessary adjunct to an ANSI name to prevent name clashes.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-62

TMF ARLIB2 Audit-Reading Procedures ARGETANSINAME
The defined ANSI name spaces are as follows:

partition-name output

STRING .EXT:ref:1

is the corresponding partition name (in external format). This is a pointer to a buffer
of length partition-name-buffer-length bytes that is allocated by the
calling process. A partition name is returned only when the specified Guardian
name is for an SQL/MX base-table partition or index partition. Otherwise, when
there is no associated partition name, zero is returned in partition-name-
length.

partition-name-buffer-length input

INT(32):value

is the length in bytes of the caller-allocated buffer for the returned partition name.
The maximum length necessary for this buffer is ((128 * 2) + 2) bytes.

partition-name-length output

INT(32) .EXT:ref

is the length in bytes of the returned partition-name string.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

TA = Base Table or View

IX = Index

IL = Log Table for Materialized Views (not returned in this interface)

RL = Range Log Table for Materialized Views (not returned in this
interface)

TT = Trigger Temporary Table

 = Unknown Namespace
HP NonStop TMF Application Programmer’s Guide—540139-009
5-63

TMF ARLIB2 Audit-Reading Procedures ARGETANSINAME
Considerations

The optional parameters sub-system and ar-error must be passed in pairs.
You must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-64

TMF ARLIB2 Audit-Reading Procedures ARGETAUDRECHEADERINFO
ARGETAUDRECHEADERINFO

This procedure returns certain information from the audit-record header.

return-code output

INT .EXT:ref:1

indicates the outcome of the call.

file-format output

INT .EXT:ref

indicates the file format (0 = format-1 files, 1 = format-2 files).

blocksize output

INT .EXT:ref

indicates the block size of the file (0 = 512, 1 = 1024, 2 = 2048, 3 = 4096)

rsn-rbn output

INT(32) .EXT:ref

indicates the relative sector number (rsn) for format-1 files or the relative block
number (rbn) for format-2 files.

recnum-offset output

INT(32) .EXT:ref

indicates the record number within this block for relative files and entry sequence
files, or the offset within the block for unstructured files.

CALL ARGETAUDRECHEADERINFO (return-code ! o
 , [file-format] ! o
 , [blocksize] ! o
 , [rsn-rbn] ! o
 , [recnum-offset]) EXTENSIBLE; ! o
HP NonStop TMF Application Programmer’s Guide—540139-009
5-65

TMF ARLIB2 Audit-Reading Procedures ARGETFIELDINFO
ARGETFIELDINFO

This procedure returns information about the fields contained in a field-compressed
update audit record. This procedure works only with SQL records of type UPDATE
FIELDCOMP (15). This procedure cannot be used with audit records for SQL/MX
objects (see the ARGETMXCOLUMNINFO procedure). The object type can be
determined by checking the OBJECTTYPE field in the ARRECORD.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

field-number input

INT:value

is the zero-based ordinal field number within the data record of the field about
which information is to be returned. This value can be found in the NonStop
SQL/MP catalog (the COLNUMBER field of the COLUMNS table).

field-type output, optional

INT .EXT:ref:1

is one of a set of constants that identify the SQL type of the field, as indicated
below. Note that these correspond to the field type values found in the
NonStop SQL/MP Catalog (in the FSDATATYPE field of the COLUMNS Table).

CALL ARGETFIELDINFO (return-code ! o
 , field-number ! i
 , [field-type] ! o
 , [field-length] ! o
 , [is-key-length] ! o
 , [next-field] ! o
 , [null-allowed] ! o
 , [flags] ! o
 , [collation-def] ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.

Value Field Type Literal Name

0 Fixed-length ASCII character ARVALUE-ASCII-F

1 Fixed-length upshifted ASCII ARVALUE-ASCII-F-U

64 Variable-length ASCII character ARVALUE-ASCII-V

65 Variable-length upshifted ASCII ARVALUE-ASCII-V-U
HP NonStop TMF Application Programmer’s Guide—540139-009
5-66

TMF ARLIB2 Audit-Reading Procedures ARGETFIELDINFO
field-length output, optional

INT .EXT:ref:1

is the 0-byte length of the particular field. In the case of a variable-length character
(VARCHAR) field, field-length is the maximum length of the field (the declared
length plus the 2 bytes that make up the length word). For fields that can be set to
a null value, this count includes the 2 bytes occupied by the null indicator.

130 Signed 16-bit integer ARVALUE-SMALLINT-S

131 Unsigned 16-bit integer ARVALUE-SMALLINT-U

132 Signed 32-bit integer ARVALUE-INT-S

133 Unsigned 32-bit integer ARVALUE-INT-U

134 Signed 64-bit integer ARVALUE-LARGEINT-S

140 32-bit floating point number ARVALUE-FLOAT32

141 64-bit floating point number ARVALUE-FLOAT64

150 Unsigned decimal ARVALUE-DECIMAL-U

152 Decimal, leading sign
embedded

ARVALUE-DECIMAL-LSE

192 Datetime, date, time, timestamp ARVALUE-DATETIME

195 Interval years ARVALUE-INTRV-Y

196 Interval months ARVALUE-INTRV-MN

197 Interval years to months ARVALUE-INTRV-Y-MN

198 Interval days ARVALUE-INTRV-D

199 Interval hours ARVALUE-INTRV-H

200 Interval days to hours ARVALUE-INTRV-D-H

201 Interval minutes ARVALUE-INTRV-M

202 Interval hours to minutes ARVALUE-INTRV-H-M

203 Interval days to minutes ARVALUE-INTRV-D-M

204 Interval seconds ARVALUE-INTRV-S

205 Interval minutes to seconds ARVALUE-INTRV-M-S

206 Interval hours to seconds ARVALUE-INTRV-H-S

207 Interval days to seconds ARVALUE-INTRV-D-S

208 Interval fraction ARVALUE-INTRV-F

209 Interval seconds to fraction ARVALUE-INTRV-S-F

210 Interval minutes to fraction ARVALUE-INTRV-M-F

211 Interval hours to fraction ARVALUE-INTRV-H-F

212 Interval days to fraction ARVALUE-INTRV-D-F

Value Field Type Literal Name
HP NonStop TMF Application Programmer’s Guide—540139-009
5-67

TMF ARLIB2 Audit-Reading Procedures ARGETFIELDINFO
is-key-field output, optional

INT .EXT:ref:1

is a Boolean value indicating whether or not the field is an element of the primary
key (either user-defined or system-defined) of the data file. The value returned is
nonzero for a key field and 0 for all other types of fields.

next-field output, optional

INT .EXT:ref:1

is the ordinal field number of the next field (in ascending field number order) that is
present in the audit record. If no field follows the field specified by field-number
in the audit record, then next-field is set to -1.

null-allowed output, optional

INT .EXT:ref:1

is a Boolean value indicating whether or not the null value is allowed for the field.
The value returned is nonzero if the field can be set to a null value and 0 if it
cannot be set to a null value. Note that this flag does not indicate whether or not
the field is actually null.

flags output, optional

INT .EXT:ref:1

returns the flag information for the field.

collation-def output, optional

INT .EXT:ref:1

returns internal-form filename of the collation definition for the field, if any. Returns
all blanks if the field is not a character-type field or if no collation is defined.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-68

TMF ARLIB2 Audit-Reading Procedures ARGETFIELDINFO
Considerations

 The file that was modified must be accessible.

 If a file that has the same name as the modified file, but different characteristics,
exists on disk and is accessible, the results of ARGETFIELDINFO will probably be
incorrect. The TMF audit-reading procedures cannot always detect this situation.

 If the specified field does not exist in the audit record, return-code is -17 (field
not present). In this case, the value of next-field is valid despite the error
indication.

 The optional parameters sub-system and ar-error must be passed in pairs.
You must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-69

TMF ARLIB2 Audit-Reading Procedures ARGETMESSAGELINE
ARGETMESSAGELINE

This procedure retrieves a line of text from the most recent error message for a
particular cursor. The call indicates which line of the message to retrieve (the first line
of text in each message is line number 1). If the indicated line does not exist, then
line-length is set to 0. This convention allows you to retrieve the complete text of
a message by making successive calls to ARGETMESSAGELINE starting with line-
to-retrieve set to 1 and incrementing it by 1 each time through the loop until you
detect a line-length of 0.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

cursor-number input

INT:value

is the number of the open cursor for which the message text is to be retrieved.

line-to-retrieve input

INT:value

is the number of the text line to be retrieved from the message.

buffer output

INT .EXT:ref:*

is a buffer in the application process in which the line of message text is stored by
ARGETMESSAGELINE. The buffer must be at least 72 bytes long. Note that the
buffer can be allocated from either the 64K data stack or an extended segment.

CALL ARGETMESSAGELINE (return-code ! o
 , cursor-number ! i
 , line-to-retrieve ! i
 , buffer ! o
 , line-length); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) Bit 13, when set, indicates that the cursor has no error
information recorded.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-70

TMF ARLIB2 Audit-Reading Procedures ARGETMESSAGELINE
line-length output

INT .EXT:ref:1

is a returned value indicating the byte length of the text line. The range is 0 through
72.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-71

TMF ARLIB2 Audit-Reading Procedures ARGETMXCOLUMNINFO
ARGETMXCOLUMNINFO

This procedure returns column information for the SQL/MX object indicated by the
current data-fork audit record (as long as the object exists on disk and has the same
name). The information provided by this procedure is necessary to understand the
format of the before-image and after-image data returned by the
ARFETCHMXBEFOREDATA[2] and ARFETCHMXAFTERDATA[2] procedures.

This procedure can only be called when the OBJECTTYPE field in the ARRECORD
indicates ARVALUE-SQLMX-DATADML.

You should call this procedure once for every SQL/MX object, and then cache the
information and re-use it. Whenever a FILE ALTER record, FILE PURGE record, FILE
CREATE record, FILE RENAME record, or an ARVALUE-SQLMX-DDL object-type
record is returned, any cached column information for the corresponding data fork
should be deleted so ARGETMXCOLUMNINFO will be called again when the next
audit record for the data fork is read. DDL changes to the object may cause the column
offsets in the image buffer to change.

This procedure works with audit records of the following types: DELETE (3), INSERT
(5), UPDATE (10), FILE ALTER (12), FILE CREATE (13), UPDATE FIELDCOMP (15),
and FILE RENAME (16)

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

info-buffer input

INT(32):value

is the address of the buffer into which the before-image and after-image description
information is returned. The buffer must be as large as is specified by the info-
buffer-length parameter. The returned information describes the format of the
information returned by the ARFETCHMX* procedures in their image-buffer
parameters. The performance of this procedure will be improved if this buffer starts
on a mod 4 address.

CALL ARGETMXCOLUMNINFO (return-code ! o
 , info-buffer ! i
 , info-buffer-length ! i
 , image-buffer-length-needed ! o
 , reply-hint ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-72

TMF ARLIB2 Audit-Reading Procedures ARGETMXCOLUMNINFO
The format of the information returned in this buffer is described by the
IMAGEINFO and COLUMNINFO structures defined below. All offsets are
zero-relative from the start of the image buffer.

info-buffer-length input

INT(32):value

is the length in bytes of the caller-allocated info buffer. The performance of this
procedure will be improved if this length is mod 4.

If the specified length is not large enough to contain the information for all the
columns in the record, an ARE-BUFFER-TOO-SMALL error is returned and the
required length is returned in reply-hint.

image-buffer-length-needed output

INT(32) .EXT:ref

indicates how large in bytes the image buffer used with
ARFETCHMXBEFOREDATA[2] or ARFETCHMXAFTERDATA[2] must be for the
SQL/MX object associated with the current audit record.

If this value is not mod 8, it will be rounded up to the next higher value evenly
divisible by 8 before returning to the caller.

reply-hint output

INT(32) .EXT:ref

is a hint returned by TMFARLB2.

If return-code is ARE-BUFFER-TOO-SMALL, reply-hint returns the
minimum length in bytes necessary for info-buffer.

Otherwise, this parameter contains zero.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-73

TMF ARLIB2 Audit-Reading Procedures ARGETMXCOLUMNINFO
Considerations

The optional parameters sub-system and ar-error must be passed in pairs. You
must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-74

TMF ARLIB2 Audit-Reading Procedures ARGETMXCOLUMNINFO
The definitions of IMAGEINFO and COLUMNINFO are shown in Example 5-1. They
are declared in the ARDDL2 file (and the related AR* files). The values returned in all
the length and offset fields in these structures are in bytes. The order of the columns
reflects the order they were declared in, not their order in the on-disk record, which can
differ from the declared order for SQL/MX objects.

Example 5-1. IMAGEINFO and COLUMNINFO Definitions

efinition IMAGEINFO.
02 COLUMN-COUNT type binary 32,0
02 ENCODEDKEYLENGTH type binary 32,0
02 filler type pic x (120)
02 COLUMNINFO-ARRAY type COLUMNINFO occurs 1 to
MAXMXCOLUMNS times depending on COLUMN-COUNT.
end ! of definition IMAGEINFO

ddefinition COLUMNINFO.
02 COLUMN-NUM type binary 32,0
 Column number (same as in SQL/MX metadata tables).
 Column number zero is the system key.
02 COLUMN-ANSI-TYPE type binary 32,0
 ANSI type code for the data type of the column.
 See table 18 in the ANSI SQL92 standard.
02 COLUMN-FS-TYPE type binary 32,0
 FS data type of the column. See file sqlcli.h for the _SQLDT_*
 defines that describe the codes returned here
02 KEYFLAG type binary 32,0
 Set to -1 if this column is not part of the clustering key, set to
 the key column position otherwise (first column is column #0).
02 DATAOFFSET type binary 32,0 ! Offset into the Image Record.
 Offset in bytes of the data portion of this column. Note that the data
 portion does not include the null indicator or the varchar length.
02 DATALENGTH type binary 32,0
 Length in bytes of the data portion of this column. The data portion
 will occupy DATALENGTH bytes, starting at offset DATAOFFSET.
02 NULLINDOFFSET type binary 32,0
 Offset of the NULL indicator of this column in bytes. This value
 is undefined if the column is not nullable.
02 NULLINDLENGTH type binary 32,0
 Length in bytes of this column's NULL indicator. Value is 0 if the
 column is not nullable. Otherwise, the NULL indicator will occupy
 NULLINDLENGTH bytes, starting at offset NULLINDOFFSET.
 Note that the NULL indicator may or may not be adjacent
 to the data portion of the column. This value could be 0, 2, 4, or 8.
02 VARCHARLENOFFSET type binary 32,0
 Similar to the NULL indicator, this describes the offset of the
 length indicator for varchars (and maybe other variable-length
 columns in the future). This value is undefined if the column
 does not have a variable length indicator.
02 VARCHARLENLENGTH type binary 32,0 ! Zero if column not varchar.
 Size (length) in bytes of the variable length indicator. This value
 could be 0, 2, 4, or 8. A value of 0 indicates that the column does
 not have a variable length indicator.
02 DATETIME-INTCODE type binary 32,0
 Detailed information on datetime or interval ANSI datatypes.
 See Tables 19 and 20 in the ANSI SQL92 standard or see the
 SQLDTCODE_ and SQLINTCODE_ constants defined in file sqlcli.h.
02 DATETIME-FSCODE type binary 32,0
 A more detailed description if COLUMN-FS-TYPE has the value 192
 (_SQLDT_DATETIME). This value is sometimes also returned as
 "precision" of a datetime value. See the SQLDTCODE_* constants
 defined in file sqlcli.h for the values returned. This value is
 undefined if COLUMN-FS-TYPE is not _SQLDT_DATETIME.
02 LEADING-PRECISION type binary 32,0
 This value is only set for interval data types and indicates the
 precision of the leading part of the interval (years, months, etc.).
HP NonStop TMF Application Programmer’s Guide—540139-009
5-75

TMF ARLIB2 Audit-Reading Procedures ARGETMXCOLUMNINFO
To ensure upward-compatibility, do not make assumptions about how information gets
returned. For example, do not assume that:

 the offsets in the columns are in ascending order.

 the null indicator offset, varlen offset, and data offset are within a contiguous range
without intervening fillers or data from other columns.

 the data in the image info buffer is “dense,” meaning that there are no unused
spaces in it.

 the first field in the record starts at a fixed offset.

 the values of nullIndLength_ and varLenLength_ are fixed at 2 and 4, respectively,
if non-zero.

 fields in the image buffer that are not described by an MXARLibColumnInfo
structure are set to any given value.

02 PRECISION type binary 32,0
 The precision (number of significant decimal digits)
 for numeric values.
02 SCALE type binary 32,0
 The scale (decimal digits after the decimal point) for numeric values.
 For interval, time and timestamp columns, this is the "fraction
 precision", the precision of fractional seconds (a value between 0
 for whole seconds and 6 for microsecond resolution).
02 CHARACTERSET type binary 32,0
 Character set for a character column. See
 SQLCHARSETCODE_ literals in file sqlcli.h.
02 FUTURECOLLATION type binary 32,0
 A literal identifying the collation of a character column,
 should collations be supported in Release 2.
02 filler type pic x (20)
end ! of definition COLUMNINFO

Example 5-1. IMAGEINFO and COLUMNINFO Definitions
HP NonStop TMF Application Programmer’s Guide—540139-009
5-76

TMF ARLIB2 Audit-Reading Procedures ARGETNETWORKRECS
ARGETNETWORKRECS

This procedure enables the returning of network-related audit records (NETWORK-
COMMIT and NETWORK-ABORT) when the ARREAD procedure is called.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

CALL ARGETNETWORKRECS (return-code) ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-77

TMF ARLIB2 Audit-Reading Procedures ARGETNONDATACHNGRECS
ARGETNONDATACHNGRECS

This procedure reverses the effect of the ARSTOPNONDATACHNGRECS procedure
(it causes certain audit records that do not reflect changes to customer data to be
returned instead of being discarded by the ARREAD procedure).

Audit reading must be started before you call this procedure.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

CALL ARGETNONDATACHNGRECS (return-code); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-78

TMF ARLIB2 Audit-Reading Procedures ARGETRECADDR
ARGETRECADDR

For format 1 and non-oversized format 2 entry-sequenced, relative, or unstructured
files, this procedure computes and returns the 32-bit external (user-understood) record
address of the data record whose modification is reflected in the current audit record.

Format 1 is the default file format and supports file sizes up to 2 GB - 1MB. Format 2 is
a disk format that supports large format files (big files). An oversized format 2 file is
one that has a maximum file size greater than 4 gigabytes - 4 kilobytes. If you use this
procedure with an oversized format 2 file, the call fails with an error -21.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

recaddr output

INT(32) .EXT:ref:1

returns the record address of the modified data record. This is a record address,
record number, or relative byte address, depending upon the particular file type
(entry-sequenced, relative, or unstructured).

If the procedure call fails with an error -21, the record address returned is -3D.

root-part input, optional

INT .EXT:ref:4

is the name of the volume containing the primary (root) partition of the data file. If
the modified file is a secondary partition of a partitioned Enscribe file, this
information is necessary to determine the record address; in all other cases, this
parameter is simply ignored.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

CALL ARGETRECADDR (return-code ! o
 , recaddr ! o
 , [root-part] ! i
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-79

TMF ARLIB2 Audit-Reading Procedures ARGETRECADDR
ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-80

TMF ARLIB2 Audit-Reading Procedures ARGETRECADDR
Considerations

 You can use ARGETRECADDR after reading any type of data change audit record
(insert, delete, or any form of update).

 The file that was modified must be accessible. If the file is a secondary partition of
an Enscribe partitioned file, root-part must be present and the root partition of
the file must also be accessible.

 If a file that has the same name as the modified file, but different characteristics,
exists on disk and is accessible, the results of ARGETRECADDR will most likely
be incorrect. The TMF audit-reading procedures cannot always detect this
situation.

 The optional parameters sub-system and ar-error must be passed in pairs.
You must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-81

TMF ARLIB2 Audit-Reading Procedures ARGETRECADDR64
ARGETRECADDR64

For format 1, format 2, and oversized format 2 entry-sequenced, relative, or
unstructured files, this procedure computes and returns the 64-bit external (user-
understood) record address of the data record whose modification is reflected in the
current audit record.

Format 1 is the default file format and supports file sizes up to 2 GB - 1MB. Format 2 is
a disk format that supports large format files (big files). An oversized format 2 file is
one that has a maximum file size greater than 4 gigabytes - 4 kilobytes.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

recaddr64 output

FIXED .EXT:ref:1

returns the 64-bit record address of the modified data record. This is a record
address, record number, or relative byte address, depending upon the particular
file type (entry-sequenced, relative, or unstructured). Note that you cannot use this
value with the POSITION or KEYPOSITION Enscribe procedures; instead you
must use it with the FILE_SETPOSITION_ or FILE_SETKEY_ procedure.

root-part input, optional

INT .EXT:ref:4

is the name of the volume containing the primary (root) partition of the data file. If
the modified file is a secondary partition of a partitioned Enscribe file, this
information is necessary to determine the record address; in all other cases, this
parameter is simply ignored.

sub-system output, optional

INT .EXT:ref:1

CALL ARGETRECADDR64 (return-code ! o
 , recaddr64 ! o
 , [root-part] ! i
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-82

TMF ARLIB2 Audit-Reading Procedures ARGETRECADDR64
is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-83

TMF ARLIB2 Audit-Reading Procedures ARGETRECADDR64
Considerations

 You can use ARGETRECADDR64 after reading any type of data change audit
record (insert, delete, or any form of update).

 The file that was modified must be accessible. If the file is a secondary partition of
an Enscribe partitioned file, root-part must be present and the root partition of
the file must also be accessible.

 If a file that has the same name as the modified file, but different characteristics,
exists on disk and is accessible, the results of ARGETRECADDR64 will most likely
be incorrect. The TMF audit-reading procedures cannot always detect this
situation.

 The optional parameters sub-system and ar-error must be passed in pairs.
You must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-84

TMF ARLIB2 Audit-Reading Procedures AROPEN
AROPEN

This procedure opens a cursor. You can specify bounds on the sequence number of
the audit files to which the cursor refers. The number of the cursor assigned to the
audit trail is returned for use in subsequent calls to other audit-reading procedures.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

generic-name input

INT .EXT:ref:9

is an array containing the name ($volume.subvol.two-char-prefix) of the audit-trail
file (must be in local internal format) or the audit-trail identifier (MAT, MERGE,
AUX01…AUX15) which identifies the audit trail to be read. If the audit-trail ID is
MERGE, a merge cursor is opened and the master audit trail and auxiliary audit
trails are merged into a single cursor (note that AuxPtr records are not returned to
the application).

If the subvol name is “ZTMFAT” or generic-name is an audit-trail ID, TMF must be
running and the TMP will locate and restore the necessary audit-trail files. If audit
restore is allowed and is required, the TMP will start a TMFDR process to restore
the audit file to a configured restore volume. When an EOF is returned, there is no
need to close and reopen the cursor or call ARPOSITION. Simply delay a short
time and call ARREAD again so that any additional audit written to the audit trail
will be returned, even if a rollover to a new audit file has occurred. If TMF is not
running, an error 82 will be returned when trying to obtain the current audit-file
name or EOF.

If the subvol name is not “ZTMFAT” or an audit-trail ID, you must pre-restore the
audit files to a chosen location and specify that location in this parameter.

CALL AROPEN (return-code ! o
 , generic-name ! i
 , cursor-number ! o
 , [min-seqno] ! i
 , [max-seqno] ! i
 , [open-flags] ! i
 , [trail-index-count] ! i
 , [trail-index-list] ! i
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-85

TMF ARLIB2 Audit-Reading Procedures AROPEN
cursor-number output

INT .EXT:ref:1

returns a number used to identify the cursor in subsequent calls.

min-seqno input, optional

INT(32):value

is a double-word value, within the range 1 through 999999, specifying the minimum
audit file sequence number that this cursor will accept. By including this value, you
can prevent the cursor from reading or being positioned into any audit file whose
sequence number is less than this value. The default value is one.

max-seqno input, optional

INT(32):value

is a double-word value, within the range 1 through 999999, specifying the
maximum audit file sequence number that this cursor will accept. By including this
value, you can prevent the cursor from reading or being positioned into any audit
file whose sequence number is greater than this value. The default value is
999999.

open-flags input, optional

INT:value

specifies certain attributes of the cursor, as described below. If open-flags is
omitted, all fields default to 0.

trail-index-count input, optional

INT:value

is the number of entries in the trail-index-list that follows. If the cursor is
not a MERGE cursor, the value must be zero or the parameter must be omitted. If
specified for a MERGE cursor, the value must be in the range of 1 through 15.

Bit Meaning When Set

0 Audit restore from audit dumps should be attempted for files that are not
present on disk when an attempt is made to read from them.

The requested audit dumps must be in the local TMF catalog and the TMP
process must be running on the local system.

1 Audit restore from audit dumps should be attempted for the next audit file in the
cursor direction if the file is not on disk when the current file is first read. The
use of this option might improve performance for sequential reading through
multiple audit files. This flag bit is ignored unless bit 0 is also set.

all
others

Undefined.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-86

TMF ARLIB2 Audit-Reading Procedures AROPEN
trail-index-list input, optional

INT .EXT ref:trail-index-count

is an integer array of trail-index-count size. Valid only if trail-index-
count is not zero. Each entry is the audit-trail index of an auxiliary audit trail to be
read by this MERGE cursor. Each value must be 1 through 15, and may not be
repeated. Each value must be that of a configured auxiliary audit trail.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs. You
must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-87

TMF ARLIB2 Audit-Reading Procedures ARPOSITION
ARPOSITION

This procedure positions a cursor within the audit trail to which it refers and specifies
the direction in which subsequent calls to ARREAD traverse the audit. Cursors are
positioned by the sequence number of the desired audit-trail file and a relative byte
address (offset) within the file.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

cursor-number input

INT:value

is the number of the open cursor for which the message text is to be retrieved.

audit-file-seqno input

INT(32):value

specifies the sequence number of an audit file in the audit trail referred to by the
cursor. If this is a MERGE cursor, this number is the MAT sequence number.

CALL ARPOSITION (return-code ! o
 , cursor-number ! i
 , audit-file-seqno ! i
 , audit-file-rba ! i
 , aux-index ! i
 , aux-seqno ! i
 , aux-rba ! i
 , [cursor-direction] ! i
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.

Note. The following five fields are used to position the specified cursor. These fields are the
same as the values returned in the ARRECORD structure. By saving these fields from the
ARRECORD, you can position the cursor and re-read the record. When reading forward, the
record that begins at or after the position is returned. When reading in reverse, the record that
ends at or before the position is returned.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-88

TMF ARLIB2 Audit-Reading Procedures ARPOSITION
audit-file-rba input

FIXED:value

specifies the relative byte address (offset) within the audit file to which the cursor is
being positioned. If the value specified is zero, the cursor is positioned at the
beginning of the audit file. If the value specified is -1, the cursor is positioned at the
end of the audit file. If this is a MERGE cursor, then this is the MAT rba.

aux-index input

INT:value

This input parameter is used only for MERGE cursors. It specifies the auxiliary
audit trail to position into. A zero value specifies the MAT audit trail.

aux-seqno input

INT(32):value

This input parameter is used only for MERGE cursors. It specifies the sequence
number to position to within the specified aux-index audit trail.

aux-rba input

FIXED:value

This input parameter is used only for MERGE cursors. It specifies the rba to
position to within the aux-index audit trail.

cursor-direction input, optional

INT:value

is a value indicating which direction the cursor will travel through the audit. The
values are:

If cursor-direction is omitted, forward is assumed.

When reading forward, ARREAD returns the next audit record that begins at or
after the specified rba. If the rba is the beginning of an audit record, that record is
returned; if the rba is not at the beginning of an audit record, the next audit record
is returned.

AuditRecord Start rba :

100: Rec 1

200: Rec 2

300: Rec 3

0 forward

> 0 reverse
HP NonStop TMF Application Programmer’s Guide—540139-009
5-89

TMF ARLIB2 Audit-Reading Procedures ARPOSITION
ARPOSITION to 200, Read Forward returns Rec 2; Read Reverse returns Rec 1

ARPOSITION to 201, Read Forward returns Rec 3; Read Reverse returns Rec 2

ARPOSITION to 199, Read Forward returns Rec 2; Read Reverse return Rec 1

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs. You
must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-90

TMF ARLIB2 Audit-Reading Procedures ARPOSITION2
ARPOSITION2

This procedure uses the aux-trail-range returned by an ARFETCHAUXPOINTER call
to position the cursor for the specified auxiliary audit trail. An AUXPOINTERINFO Def
structure may also be specified for the MAT. When reading forward, ARREAD returns
audit records starting with the LOWPOS and returns ARE-END-OF-AUDIT when the
HIGHPOS is reached. When reading in reverse, ARREAD returns audit records
starting with the HIGHPOS and returns ARE-END-OF-AUDIT when the LOWPOS is
reached. The AUXPOINTERINFO Def structure simplifies merging the MAT and
auxiliary audit trails.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

cursor-number input

INT:value

is the number of the previously opened cursor that is to be positioned.

position-info input

INT .EXT:ref:1

is an AUXPOINTERINFO Def structure containing the LOWPOS and HIGHPOS
audit-trail position information.

cursor-direction input, optional

INT:value

is a value indicating which direction the cursor will travel through the audit. The
values are:

If cursor-direction is omitted, forward is assumed.

CALL ARPOSITION2 (return-code ! o
 , cursor-number ! i
 , position-info ! i
 , [cursor-direction] ! i
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.

0 forward

> 0 reverse
HP NonStop TMF Application Programmer’s Guide—540139-009
5-91

TMF ARLIB2 Audit-Reading Procedures ARPOSITION2
sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs. You
must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-92

TMF ARLIB2 Audit-Reading Procedures ARPRINTMESSAGE
ARPRINTMESSAGE

This procedure writes, to a specified file, the message text associated with the most
recent error condition for a particular cursor.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

cursor-number input

INT:value

is the number of the open cursor for which the message text is to be written.

file-number input

INT:value

is the filenumber of the file to which the message text is to be written.

max-line-length input, optional

INT:value

is the maximum number of characters to be printed as a single line of text. The
default value is 72.

Considerations

 You can retrieve lines of the message text in a buffer by calling the
ARGETMESSAGELINE procedure.

CALL ARPRINTMESSAGE (return-code ! o
 , cursor-number ! i
 , file-number ! i
 ,[max-line-length]); ! i

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) Bit 13, when set, indicates that the cursor has no error
information recorded.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-93

TMF ARLIB2 Audit-Reading Procedures ARREAD
ARREAD

This procedure advances the cursor to the next audit record and copies the fixed-
length fields and certain other attributes into the application’s buffer. The next audit
record is the subsequent record (in the set of audit records externalized by this
interface) in the cursor direction specified by the most recent call to ARPOSITION for
the specified cursor.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

cursor-number input

INT:value

is the number of the open cursor identifying the audit trail that is to be read.

buffer output

INT .EXT:ref:*

is a buffer in the application process in which the record returned by ARREAD is
stored. Note that the buffer can be allocated either from the 64K data stack or from
an extended segment.

max-copy-length input

INT:value

is the maximum number of bytes to copy into the buffer. ARREAD returns an error
for values of max-copy-length less than 2.

sub-system output, optional

INT .EXT:ref:1

CALL ARREAD (return-code ! o
 , cursor-number ! i
 , buffer ! o
 , max-copy-length ! i
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) Bit 15, when set, indicates that the record returned in the buffer
is longer than max-copy-length. At least one byte was
truncated from the end.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-94

TMF ARLIB2 Audit-Reading Procedures ARREAD
is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs. You
must pass either both the parameters or none.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-95

TMF ARLIB2 Audit-Reading Procedures ARSETOPTIONS
ARSETOPTIONS

This procedure sets several options that control audit-record processing. Rather than
having multiple procedures to turn on and off the various options, this single procedure
controls all of them. If a parameter is not specified, that option is not changed from its
current setting.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

return-networkrecs input

INT:value

controls the returning of Network Abort and Network Commit records. If TRUE, the
records are returned. The default is FALSE; the records are not returned.

return-nondatachangerecs input

INT:value

controls the returning of audit records that do not change the data in the database,
including audit generated by AudServ during certain operations WITH SHARED
ACCESS. Some types of SQL/MX audit may also be ignored. If FALSE, the
records are not returned. If TRUE, the records are returned. The default is TRUE;
the records are returned.

max-ignorereccount input

INT(32):value

sets the maximum number of continuous audit records that can be ignored before
returning an ARTYPE-CURRENTPOS record (no data is returned in the body area
of the ARRECORD). Must be zero or a positive number. If zero, there is no limit on
the number of audit records that may be ignored. The default is zero.

CALL ARSETOPTIONS (return-code ! o
 , [return-networkrecs] ! i
 , [return-nondatachangerecs] ! i
 , [max-ignorereccount] ! i
 , [set-undoauditflag] ! i
 , [return-TypeFlags]); ! i

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-96

TMF ARLIB2 Audit-Reading Procedures ARSETOPTIONS
set-undoauditflag input

INT:value

controls the setting of UndoFlag in undo audit records. If this parameter is TRUE
then the UndoFlag will differentiate between transaction-level and file-level undo
audit. If it is transaction-level undo, the value of UndoFlag will be 1 and if it is file-
level undo then the value will be 2. If the parameter is FALSE then UndoFlag will
indicate that it's a transaction-level undo audit. If it is transaction-level undo, the
value of UndoFlag will be 1 else it will be 0. The parameter default is FALSE.

return-TypeFlags input

INT:value

controls the return of transaction type flags from transaction state records. If the
parameter is FALSE, type flags are not returned. If it is set to TRUE, ARREAD of
transaction state record will return the type flags associated with the transaction.
The parameter default is FALSE; type flags are not returned.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-97

TMF ARLIB2 Audit-Reading Procedures ARSTART
ARSTART

This procedure initializes the audit-reading programmatic interface. You must call
ARSTART before you begin issuing calls to any other audit-reading procedure.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

number-of-cursors input, optional

INT:value

is an integer in the range 1 through 30 indicating the maximum number of cursors
that you can have open simultaneously. The amount of extended virtual memory
allocated for each cursor is approximately 100 KB. The default value is one.

operator-term input, optional

INT .EXT:ref:12

is an array containing the name (in internal form) of a terminal to which messages
to the operator are to be printed.

If operator-term is omitted, then the home terminal is used.

extended-seg-size input, optional

INT:value

specifies the maximum size (in megabytes) of the main extended segment. This
memory space will be shared by all memory allocated except that related to audit
for SQL/MX objects, including the memory reserved for use by cursors
(approximately 100 KB each), as well as caching of labels for SQL/MP objects
(approximately 32 KB each) and caching of label information for Enscribe objects
(approximately 50 bytes each). The minimum is 2, the maximum is 128, and the
default is 5.

CALL ARSTART (return-code ! o
 , [number-of-cursors] ! i
 , [operator-term] ! i
 , [extended-seg-size] ! i
 , [sqlmx-cache-size] ! i
 , ar-version); ! i

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-98

TMF ARLIB2 Audit-Reading Procedures ARSTART
sqlmx-cache-size input, optional

INT:value

specifies the maximum size (in megabytes) of the cache used by SQL/MX for
caching labels of objects. The minimum is 2, the maximum is 128, and the default
is 5. The cache is maintained in a SQL/MX specific extended segment that is
different from the main extended segment. Note that this value does not represent
the limit on the total memory used by SQL/MX.

ar-version input

INT:value

specifies which version of the ARRECORD structure your program understands.
The set of literals begins as follows:

literal ARVALUE^CURRENT^VERSION = 1;

literal ARVALUE^SQLMX^VERSION = 1;

The next time ARRECORD is changed, a new structure will describe it, another
fixed-version literal will be added to represent it with an assigned value of two, and
ARVALUE^CURRENT^VERSION will be changed to two. The ARRECORD
structure associated with ARVALUE^SQLMX^VERSION remains unchanged.

Typically you should not specify ARVALUE^CURRENT^VERSION for this
parameter because the value of ARVALUE^CURRENT^VERSION changes
automatically each time the ARRECORD structure is changed. Instead you should
use the highest fixed-version literal (ARVALUE^SQLMX^VERSION initially). If you
change your program to use a later version of ARRECORD, you then change this
parameter to the fixed-version literal that applies to the new ARRECORD version.
Using ARVALUE^CURRENT^ VERSION implies that you will change your program
to use the new ARRECORD structure every time the structure is changed.

This parameter is required.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-99

TMF ARLIB2 Audit-Reading Procedures ARSTOP
ARSTOP

This procedure does the appropriate cleanup and closes the programmatic interface.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

sub-system output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case this value reports the subsystem that returned the error.
Table 5-4 describes the subsystem codes.

ar-error output, optional

INT .EXT:ref:1

is a returned value valid only when return-code equals ARE-INTERNAL-ERROR
(-1000), in which case the value indicates the specific error. Table 5-5 describes
the error codes.

Considerations

The optional parameters sub-system and ar-error must be passed in pairs. You
must pass either both the parameters or none.

CALL ARSTOP (return-code ! o
 , [sub-system] ! o
 , [ar-error]); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-100

TMF ARLIB2 Audit-Reading Procedures ARSTOPNETWORKRECS
ARSTOPNETWORKRECS

This procedure disables the returning of network-related audit records (NETWORK-
COMMIT and NETWORK-ABORT) when the ARREAD procedure is called.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

CALL ARSTOPNETWORKRECS (return-code) ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-101

TMF ARLIB2 Audit-Reading Procedures ARSTOPNONDATACHNGRECS
ARSTOPNONDATACHNGRECS

This procedure causes certain audit records that do not reflect changes to customer
data to be discarded instead of being returned by the ARREAD procedure.

Audit records filtered out after this procedure is called include the following:

 Audit records generated during SQL online DDL modification operations (SQL
NonStop Availability operations). SQL NSA operations are performed by the SQL
AUDSERV program when the “WITH SHARED ACCESS” option is specified in an
SQL ALTER TABLE or ALTER INDEX command.

 Audit records generated by the activity of the RDF updater on the RDF backup
system.

Note that FLABMOD audit records are an exception; they are always returned, even
when after this procedure is called.

Audit reading must be started before you call this procedure.

return-code output

INT .EXT:ref:1

is a returned value indicating the outcome of this procedure.

CALL ARSTOPNONDATACHNGRECS (return-code); ! o

Errors (<0) Table 5-3 describes the error codes.

Warnings (>0) None.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-102

TMF ARLIB2 Audit-Reading Procedures Error Codes
Error Codes
Table 5-3 lists all of the error codes returned by the TMF audit-reading procedures.
Additional error codes will be defined in the future. You should design your error
handling code so that it can be easily expanded to recognize and respond to error
code values not documented in this table.

Table 5-3. Error Codes by Class (page 1 of 4)

Code DDL Name Meaning

Successful

0 AR-OK Successful completion.

User Errors

-1 ARE-ALREADY-STARTED You called ARSTART, but audit reading is
already started.

-2 ARE-BAD-PARAM-COMBINATION There is a conflict between two or more
parameters that are valid when taken
individually.

-3 ARE-CURSOR-NOT-ALLOCATED The specified cursor was not allocated in
the call to ARSTART.

-4 ARE-CURSOR-NOT-OPEN The specified cursor is not open.

-5 ARE-CURSOR-NOT-POSITIONED The specified cursor has not been
positioned.

-6 ARE-CURSOR-SEQNO-RANGE The sequence number passed to
ARPOSITION is not within the range
specified when the cursor was opened.

-7 ARE-INVALID-PARAM The value of a parameter is outside the
valid range.

-8 ARE-MISSING-PARAM A required parameter is missing from the
call.

-9 ARE-NO-CURRENT-RECORD There is no current audit record from which
to satisfy the request.

-10 ARE-NO-DISK-SPACE ARSTART received an error 43 (no disk
space) when attempting to allocate an
extended segment.

-11 ARE-NO-FREE-CURSORS All allocated cursors are in use.

-12 ARE-NOT-AVAILABLE The object of the procedure call, such as a
before-image or after-image, does not exist
in the current audit record (you are using
the wrong procedure call for the current
type of audit record).
HP NonStop TMF Application Programmer’s Guide—540139-009
5-103

TMF ARLIB2 Audit-Reading Procedures Error Codes
-13 ARE-NOT-STARTED You tried to do something before starting
the audit-reading interface (you must call
ARSTART before calling any of the other
audit-reading procedures).

-14 ARE-DATA-FILE-NOT-FOUND The required data file is not available on
disk.

-15 ARE-DATA-FILE-TYPE The procedure you called cannot operate
on the current type of data file.

-16 ARE-DATA-FILE-VERSION The data file on disk is not the same type
or does not have the same attributes as
the one whose modification generated the
current audit record.

-17 ARE-FIELD-NOT-PRESENT The specified field does not exist in the
current field-compressed update audit
record (the field was not updated and is not
part of the record key).

-18 ARE-NO-SQL The attempted operation requires NonStop
SQL/MP, but the system on which the
operation was attempted does not include
the NonStop SQL/MP product.

-19 ARE-FRAGMENT-NOT-PRESENT The requested data record fragment does
not exist in this audit record

-20 ARE-SWAP-VOL-INACCESSIBLE When ARSTART attempted to allocate an
extended segment, it received a file system
error that indicated the swap volume for
the segment was not accessible.

-21 ARE-OVERSIZE-FILE You called ARGetRecAddr, but the data file
whose modification generated the current
audit record is an oversized FORMAT2 file.
Use ARGetRecAddr64 instead.

-22 ARE-WRONG-AUDIT-VERSION The Audit Trail record is in an older format.

-23 ARE-INVALID-OPERATION The operation specified is not allowed on
this file type.

SQL/MX Support Errors

-100 ARE-NO-SQLMX-SUPPORT SQL/MX is not installed.

-101 ARE-ONLY-USEABLE-WITH-SQLMX The called procedure requires that the
current audit record be an SQL/MX audit
record.

-102 ARE-NOT-USEABLE-WITH-SQLMX The called procedure requires a non-
SQL/MX audit record.

Table 5-3. Error Codes by Class (page 2 of 4)

Code DDL Name Meaning

Successful
HP NonStop TMF Application Programmer’s Guide—540139-009
5-104

TMF ARLIB2 Audit-Reading Procedures Error Codes
-103 ARE-BUFFER-TOO-SMALL The size of the output buffer is too small.
The reply-hint variable contains the
required size.

-104 ARE-MUST-USE-SEPARATE-
BUFFERS

The request and reply maps must not
overlap.

-105 ARE-ONLY-USEABLE-WITH-
DATAFORK

The called procedure requires an SQL/MX
data-fork record but the current record is
not an SQL/MX data-fork record.

-106 ARE-ONLY-USABLE-WITH-DML The called procedure requires a DML audit
record but the current record is not a DML
audit record.

-107 ARE-NEED-NEWER-SQLMX The current version of SQL/MX is not new
enough to understand the current audit
record.

-108 ARE-NEED-OLDER-SQLMX The current version of SQL/MX is too new
to understand the current audit record.

File Management Error

-700 ARE-WRITE-ERROR An error occurred while attempting to write
to the specified file. To obtain more
information, call the FILEINFO system
procedure.

Cursor Management Error

-800 ARE-CURSOR-ERROR An error occurred while attempting to open,
close, or position a cursor or while
switching between cursors.

A more detailed error message is printed
on the operator terminal and is available
programmatically by calling the
ARGETMESSAGELINE audit-reading
procedure.

Auto I/O Errors

-900 ARE-AUDIT-READ-ERROR An error occurred while attempting to read
an audit record. No further reads will be
allowed for the current cursor until it has
been repositioned.

A more detailed error message is printed
on the operator terminal and is available
programmatically by calling the
ARGETMESSAGELINE audit-reading
procedure.

Table 5-3. Error Codes by Class (page 3 of 4)

Code DDL Name Meaning

Successful
HP NonStop TMF Application Programmer’s Guide—540139-009
5-105

TMF ARLIB2 Audit-Reading Procedures Error Codes
-901 ARE-END-OF-AUDIT The cursor has reached the end of the
audit file range specified when the cursor
was opened. No further reads will be
allowed for that cursor until it has been
repositioned.

A more detailed error message is printed
on the operator terminal and is available
programmatically by calling the
ARGETMESSAGELINE audit-reading
procedure.

-902 ARE-FILE-NOT-FOUND The cursor is positioned to a sequence
number that does not correspond to an
audit file on disk, and audit restore failed or
is not enabled. This error condition can
result either from explicit cursor positioning
(ARPOSITION) or successive reads. No
further reads will be allowed for the current
cursor until it has been repositioned.

-903 ARE-TMP-NOT-RUNNING TMF is not running on the system. No TMF
operation, including the ARLIB2 file, can be
used. Start TMF.

-904 ARE-TMP-BAD-VERSION The installed $TMP is downrev. The
ARLIB2 file cannot be used with a downrev
TMF. Install the correct version of TMF.

-905 ARE-NOT-LICENSED The application file is not licensed using
the ARLIB2 file or the TMFARUL2 file or
both. The ARLIB2 file does not work.
License the application file or the
TMFARUL2 file or both.

Internal Errors

-1000 ARE-INTERNAL-ERROR An exceptional condition occurred within
the system code. If the API that returned
this error was called with two additional
parameters, namely, sub-system and ar-
error, see Table 5-4 for subsystem codes
information and Table 5-5 for errors
returned by the subsystem. The sub-
system and ar-error information may be
required for the Global Customer Support
Center (GCSC) or your service provider for
additional assistance.

-2000 ARE-MEMORY-ALLOCATION An internal memory allocation occurred.
Contact your service provider.

Table 5-3. Error Codes by Class (page 4 of 4)

Code DDL Name Meaning

Successful
HP NonStop TMF Application Programmer’s Guide—540139-009
5-106

TMF ARLIB2 Audit-Reading Procedures Error Codes

Table 5-4. Subsystem Codes

Code DDL Name Meaning

-3000 ARE-TMF The subsystem is TMF. Table 5-5
describes the ar-error codes.

-3001 ARE-SQLMX The subsystem is SQL/MX. For
further information, see the HP
NonStop SQL/MX Messages
Manual.

-3002 ARE-FILESYSTEM The subsystem is File Systems.
For further information, see the
Guardian Procedure Errors and
Messages Manual.

-3003 ARE-DP2 The subsystem is DP2. For further
information, see the Guardian
Procedure Errors and Messages
Manual.

Table 5-5. Errors returned in case return-code is -1000

Code DDL Name Meaning

-24 ARE-OVERSIZED-
FORMAT1-FILE

The ARGetRecAddr procedure is
called, but the data file whose
modification generated the current
audit record is an oversized
FORMAT1 file. Use a Format1 file
with a maximum capacity of 4GB
or use a Format2 file.

-25 ARE-AUDIT-ERROR The current audit record is not for
a SQL/MX DataFork object or it
does not have an before/after
image to fetch or both. Check if
the audit record being pointed at
is correct.

-26 ARE-NIL-ADDRESS The current audit record key
address is nil which means it is a
non key-sequenced file. The key
value in this case is not stored in
the audit record and must be
derived using other information.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-107

TMF ARLIB2 Audit-Reading Procedures Error Codes
-27 ARE-PAGE-LIMIT-
EXCEEDED

The ARGetRecAddr procedure is
called. The total number of pages
or blocks for all the partitions in
the FORMAT1 file exceeds or
equals 2^33. Use a Format 1 file
which does not exceed the
page/block limit or use a Format2
file.

-28 ARE-INVALID-
FILETYPE

The ARGetRecAddr procedure is
called. The data file whose
modification generated the current
audit record is not key-sequenced,
entry-sequenced, unstructured, or
relative. Check the file-type of the
data file.

-29 ARE-CACHE-
ERROR

Allocation and initialization of a
new record address information
cache entry could not be made.

-30 ARE-ILLEGAL-
FLABMOD-
RECTYPE

Illegal file label modification record
type was encountered which does
not match with the standard
known file label modification
operations. Ensure the file label
modification operation you intend
is among the standard known
operations. It might be the case
that the current audit record is not
pointing to the intended location.

-31 ARE-ILLEGAL-
RECTYPE

Illegal Audit Record type
encountered. Ensure the current
audit record is pointing to the
intended record type.

-32 ARE-ILLEGAL-
OTHER-RECCLASS

Illegal Record Class encountered
which is not one of the following:
Character field, Variable Length
Character field, Numeric field. It is
an assortment of other field types
which is not expected.

-33 ARE-ILLEGAL-
RECCLASS

Illegal Record Class encountered
which cannot exist and thus is not
expected.

-34 ARE-
FIELDNUMBER-
MISMATCH

Requested field number is not
equal to previously saved field
number.

Table 5-5. Errors returned in case return-code is -1000

Code DDL Name Meaning
HP NonStop TMF Application Programmer’s Guide—540139-009
5-108

TMF ARLIB2 Audit-Reading Procedures Error Codes
Important. These error codes are for debugging purpose and are to be
used by support personnel only.

-35 ARE-FIELD-NOT-
FOUND

The requested field is not found in
the audit record.

-36 ARE-INVALID-
COLLATION-BASE

The information of the character
field you requested from the field-
compressed audit record has a
non-standard collation.

-37 ARE-AUDITREAD-
EXCEPTION

A non-standard TMF audit reading
exception has occurred.

-38 ARE-GENERAL-AR-
EXCEPTION

A general audit reading exception
occurred which neither involves
TMF nor Heap overflow.

Table 5-5. Errors returned in case return-code is -1000

Code DDL Name Meaning
HP NonStop TMF Application Programmer’s Guide—540139-009
5-109

TMF ARLIB2 Audit-Reading Procedures How to Include Audit Reading in an Application
How to Include Audit Reading in an
Application

The TMF audit-reading procedures are contained in a set of files that are delivered with
the TMF product. Table 5-6 summarizes the audit-reading procedure files.

Using FUP LICENSE and FUP PROGID to a Super group user will allow users other
than SUPER.SUPER users to run the program based on Guardian file security.

There are two ways to associate the TMFARUL2 library file with the application run
object file: the ELD -libname option, or the TACL RUN command LIB option.
Once the association is made, the LIB option does not need to specified to execute
the program. The RUN command LIB option can be used to change the location of
the TMFARUL2 file.

Examples:

ELD linkfile .. TMFARLB2 .. -o runfile -l ZCLIPDLL .. other
required DLL's ..

 -libname $vol.subvol.TMFARUL2

FUP LICENSE (runfile, TMFARUL2)

TACL RUN /LIB TMFARUL2/ runfile

If -libname is part of the ELD step, the TACL LIB option is not required unless the
TMFARUL2 file location changes.

A third party can use the ELD step to build the application file that is shipped to its
customer, the -libname option is not required. Then the customer can do the FUP
LICENSE and TACL RUN command with the LIB option to prepare the files for
execution.

The FUP LICENSE and TACL RUN commands must be executed each time either file
is replaced or moved.

Both the application runfile and TMFARUL2 must be LICENSEd or either a
Process_Create_ error or ARLIB2 error -905 will occur. This will occur even if
Super.Super runs the program.

Usage of the ZCLIDLL and ZCLIPDLL DLLs with the TMFARLB2 product

For the NonStop SQL/MX version released in the H06.10 RVU, the programs that call
the TMFARLB2 procedures must use ZCLIPDLL.

Before this version of SQL/MX, some of the procedures required by TMFARLB2 were
not exported by SQL/MX, thereby resulting in compile or link or run-time error when a
user application tried to compile or link with TMFARLB2.

A workaround for this problem, on releases before the H06.10 RVU, is to use ZCLIDLL
in place of ZCLIPDLL. The ZCLIDLL requires the CRE. This means that the EPTAL
main must be renamed and a C main must be created to call the EPTAL main.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-110

TMF ARLIB2 Audit-Reading Procedures Use of AWAITIOX
Example of linking with TMFARLB2 and ZCLIDLL:

ELD linkfile .. TMFARLB2 .. -o runfile -l ZCLIDLL .. other
required DLL’s.. -libname $vol.subvol.TMFARUL2”

ZCLIPDLL released in the H06.10 RVU and in subsequent releases, includes the
required exported procedures, and can be used instead of ZCLIDLL. This avoids the
use of C main.

Example of linking with TMFARLB2 and ZCLIPDLL:

ELD linkfile .. TMFARLB2 .. -o runfile -l ZCLIPDLL .. other
required DLL’s.. -libname $vol.subvol.TMFARUL2”

Use of AWAITIOX

AWAITIOX will not complete nowaited I/O calls started by TMFARLB2.

Table 5-6. Files Supplied With TMFARLB2 (T2781)

File Name Content

ARDECS2 External declarations (in TAL) for the audit-reading procedures.

ARDECSC2 External declarations (in C) for the audit-reading procedures.

ARDDL2, ARC2,
ARCOBOL2,
ARTACL2, ARTAL2

DDL source and corresponding data-definition files for C, COBOL85,
TACL, and TAL programs, respectively, that are going to call the
audit-reading procedures. These files each contain the following
sections:

 FILESPEC and ARRECORD define the record formats.

 ARTYPE-LITERALS contains the literals for record types.

 ARVALUE-LITERALS contains the literals for special values of
certain fields and returned parameters.

 AR-RETURN-CODES contains the literals for the return codes.

TMFARLB2,
TMFARUL2

Object files containing the ARLIB2 audit-reading procedures.
HP NonStop TMF Application Programmer’s Guide—540139-009
5-111

TMF ARLIB2 Audit-Reading Procedures Use of AWAITIOX
HP NonStop TMF Application Programmer’s Guide—540139-009
5-112

Index

A
ABORT audit record 5-21
Aborting transactions 1-4, 2-13/2-14
ABORTTRANSACTION code 3-11
ABORTTRANSACTION TMF procedure

description of 2-3

errors 2-4

statements used for invoking 1-4

syntax description 4-3

unlocking records 1-15

use and implications of 2-13

Access control block (ACB) 2-6
ACTIVATERECEIVETRANSID TMF
procedure

multithreaded heterogeneous
processes 3-14

restoring current transaction 2-13

syntax description 4-5

After-image
audit compression 5-7

field description 5-28

Applications, including audit-reading
procedures in 5-110
ARCLOSE audit-reading procedure 5-35,
5-65
ARCOMPLETEIO audit-reading
procedure 5-36
ARFETCHAFTERIMAGE audit-reading
procedure 5-37
ARFETCHAUXPOINTER audit-reading
procedure 5-39
ARFETCHBEFOREIMAGE audit-reading
procedure 5-40
ARFETCHCHILDNODELIST audit-reading
procedure 5-41
ARFETCHFIELDVALUE audit-reading
procedure 5-42
ARFETCHFRAGMENT audit-reading
procedure 5-45

ARFETCHMXAFTERDATA audit-reading
procedure 5-47
ARFETCHMXAFTERDATA2 audit-reading
procedure 5-50
ARFETCHMXBEFOREDATA audit-reading
procedure 5-53
ARFETCHMXBEFOREDATA2 audit-
reading procedure 5-56
ARFETCHRECORDKEY audit-reading
procedure 5-59
ARGETANSINAME audit-reading
procedure 5-61
ARGETAUDRECHEADERINFO audit-
reading procedure 5-65
ARGETFIELDINFO audit-reading
procedure 5-66
ARGETMESSAGELINE audit-reading
procedure 5-70
ARGETMXCOLUMNINFO audit-reading
procedure 5-72
ARGETNETWORKRECS audit-reading
procedure 5-77
ARGETNONDATACHANGERECS audit-
reading procedure 5-78
ARGETRECADDR audit-reading
procedure 5-79
ARGETRECADDR64 audit-reading
procedure 5-82
AROPEN audit-reading procedure

declaring a cursor 5-3

syntax description 5-85

ARPOSITION audit-reading procedure
positioning a cursor 5-4

syntax description 5-88

ARPOSITION2 audit-reading
procedure 5-91
ARPRINTMESSAGE audit-reading
procedure 5-93
ARREAD audit-reading procedure

retrieving information from audit
records 5-5

syntax description 5-94
HP NonStop TMF Application Programmer’s Guide—540139-009
Index-1

Index B
ARSETOPTIONS audit-reading
procedure 5-96
ARSTART audit-reading procedure 5-98
ARSTOP audit-reading procedure 5-100
ARSTOPNETWORKRECS audit-reading
procedure 5-101
ARSTOPNONDATACHNGRECS audit-
reading procedure 5-102
Audit compression 5-7
Audit dumps, restoring audit trail files
from 5-4
Audit records

description of fields 5-28/5-32

formats 5-20

retrieving information from 5-5

types 5-19

See also individual audit record
names 5-21

See also Subset audit record 5-15

Audit trail files
See also Auxiliary audit trails 5-15

cursors 5-3

reading active 5-8

restoring audit from audit dumps 5-4

Audit-reading procedures
See also individual procedure
names 1-1

error codes 5-103

including in an application 5-110

Audit-restore volume 5-4
AUX POINTER audit record 5-21
Aux pointer field description 5-29
Auxiliary audit trail files 5-15
AWAITIO system procedure 3-3

B
Backout anomalies 2-14
Before-image

audit compression 5-7

field description 5-29

BEGINTRANSACTION code 3-10

BEGINTRANSACTION TMF procedure
statements used for invoking 1-3

syntax description 4-7

BEGINTRANSACTION_EXT_ 4-10
BROWSE ACCESS, SQL/MP access
options 1-14

C
CHECKMONITOR system procedure 2-8
CHECKPOINT system procedure

description of 2-8

placing CHECKPOINT calls 3-4/3-5

CHECKPOINTMANY system
procedure 2-8
CHECKPOINTMANYX system
procedure 2-8
Checkpoints

placement of 2-7/2-10

strategy in multithreaded
requesters 3-3

strategy in single-threaded
requesters 2-6

CHECKPOINTTFILEENTRY code 3-10
CHECKPOINTX system procedure 2-8
Child node list field description 5-29
Child nodes

distributed transactions 5-12

relationship to parent node 5-13/5-14

retrieving a list of 5-13

CLOSE system procedure
closing a server 1-6

closing the TFILE 3-2

ENSCRIBE 1-15

Code
ABORTTRANSACTION 3-11

BEGINTRANSACTION 3-10

CHECKPOINTTFILEENTRY 3-10

ENDTRANSACTION 3-11

ISSUEWRITEREADTOSERVER 3-10

MAINLOOP 3-9

COMMIT audit record 5-22
HP NonStop TMF Application Programmer’s Guide—540139-009
Index-2

Index D
Committing transactions 1-4
COMPUTETRANSID TMF procedure 4-12
Concurrency

See Database concurrency 1-11

Condition codes (CCL, CCE, CCG) 4-5
Consistency

See Database consistency 1-11

Context-sensitive servers 2-15
Current transaction

description of 1-7

manipulating 3-2

obtaining the transid 3-13

setting to nil 2-13

setting to nil state 1-10, 3-13

Cursor
closing 5-35

declaration 5-3

positioning 5-4

Cursor, closing 5-65

D
Database concurrency 1-11/1-19
Database consistency

achieving maximum 1-11

description of 1-11/1-19

Enscribe 1-14/1-15

NonStop SQL/MP 1-12/1-14

tasks for maintaining 1-11

Datafile field description 5-30
DATETIME fields 5-18
DELETE audit record 5-22
Distributed transactions

basic parent-child
relationship 5-13/5-14

description of 5-12

layered offspring relationship 5-14

DSMSFILESPEC definition 5-21

E
ENDTRANSACTION code 3-11
ENDTRANSACTION TMF procedure

Enscribe 1-15

errors 2-3

nowait calls 3-3

statements used for invoking 1-4

syntax description 4-15

terminating transactions 2-3

Enscribe
audit compression 5-7

deleted record problem 1-17

file locks

ensuring level-1 database
consistency 1-15

exclusive 1-15

locking modes 1-15

performance issues 1-12

using to ensure database
consistency 1-14/1-19

inserted record problem 1-16

levels of consistency 1-18

Error codes
description of 5-6

returned by audit-reading
procedures 5-103/5-106

Error messages, obtaining recent text 5-7
Errors

See also error codes 5-103

10 (file/record already exists) 1-15

12 (file in use) 2-7, 3-2, 3-12

73 (file/record is locked) 1-15

75 (no transaction identifier) 1-8, 2-14

76 (transaction ended) 2-10, 3-9

79 (no file/record lock) 1-15

81 (nowait I/O pending) 2-13

ABORTTRANSACTION errors 2-4

ENDTRANSACTION errors 2-3

WRITEREAD errors 2-2
HP NonStop TMF Application Programmer’s Guide—540139-009
Index-3

Index F
F
Field alignment, SQL/MP 5-16
Field descriptions in audit
records 5-28/5-32
Field formats, internal 5-16
FILE ALTER audit record 5-23
FILE CREATE audit record 5-23
FILE PURGE audit record 5-24
FILE RENAME audit record 5-24
FILESPEC definition 5-20
FILE_OPEN_ system procedure

opening the TFILE 2-7, 3-1

opening $RECEIVE 2-12, 3-12

Fragments field description 5-30

G
Gateway processes 1-5
GETTMPNAME TMF procedure 4-17
GETTRANSACTIONDETAILS 4-19
GETTRANSID TMF procedure 4-24
GETTRANSINFO 4-26

H
Heterogeneous transactions 1-5
Home nodes 5-12
Homenode field description 5-30

I
Initiating transactions 1-3, 4-7
INSERT audit record 5-25
INTERPRETTRANSID TMF
procedure 4-28
INTERVAL fields 5-18
ISSUEWRITEREADTOSERVER code 3-10

L
LASTRECEIVE system procedure 3-13
LOCKFILE system procedure 1-14
LOCKREC system procedure 1-14

M
MAINLOOP code 3-9
Message system 1-6
Multithreaded heterogeneous
processes 3-14
Multithreaded operation 1-6
Multithreaded requesters

checkpointing strategy 3-3

description of 3-1

differences from single-threaded
requesters 3-1

Multithreaded servers
description of 3-12

differences from single-threaded
servers 3-12

N
NETWORK ABORT audit record 5-25
NETWORK COMMIT audit record 5-26
NETWORK PREPARED audit record 5-26
Nil state 1-8
NOAUDITCOMPRESS file attribute 5-7
Nodes 5-12
NonStop servers 2-14, 3-13
NonStop SQL/MP

audit compression 5-7

DATETIME fields 5-18

internal field alignment 5-16

internal field formats 5-16

INTERVAL fields 5-18

levels of database consistency

BROWSE ACCESS 1-14

REPEATABLE ACCESS 1-12

STABLE ACCESS 1-13

null fields 5-18

variable-length character (VARCHAR)
fields 5-17

Nowait ENDTRANSACTION calls 3-3
Nowait operations 4-15
Null fields 5-18
HP NonStop TMF Application Programmer’s Guide—540139-009
Index-4

Index O
O
OPEN system procedure, opening the
server process 1-6
Operations, nowait 4-15
Operations, waited 4-15

P
Parent nodes

description of 5-12

relationship to child nodes 5-13/5-14

Parentnode field description 5-30
Performance

decreasing by using Enscribe file
locks 1-12

enhancing within a network
environment 1-9

Procedure-call syntax
See individual procedure names

Processes, heterogeneous
multithreaded 3-14
Programming languages

for coding requesters 1-6

for coding servers 1-6

R
RBA field description 5-30
READLOCK system procedure 1-15
READUPDATE system procedure

accepting incoming messages 2-12

accepting work requests from
requesters 1-6

READUPDATELOCK system
procedure 1-15
Record key field description 5-30
Recoverable resource manager file 1-5
Rectype field description 5-31
Registering resource managers 1-5
Relative byte address (RBA) 5-3
Remote nodes 5-12

REPEATABLE ACCESS, SQL/MP access
options 1-12
REPLY system procedure

completing a READUPDATE 2-12

implications of 2-14

replying to requesters 3-13

responding to the requester 1-6

Requesters
programming languages for coding 1-6

role in the requester/server model 1-7

See also Multithreaded requesters

See also Single-threaded requesters

Requester/server
application design model 1-6/1-7

communication 1-6

multithreaded operation 1-6

Resource manager files 1-5
Resource manager registration 1-5
Resource managers 1-5
RESUMETRANSACTION TMF procedure

backup process 3-8

checkpoints 2-10

multithreaded processes 3-14

syntax description 4-31

Return codes 5-6

S
SCREEN COBOL, SEND verb 1-6
SEQNO field description 5-31
Servers

context-sensitive 2-15

excluding from a TMF transaction 1-8

guarantees to 2-15

minimizing processes 1-9

NonStop 2-14, 3-13

obtaining transaction identifier 1-10

programming languages for coding 1-6

role in the requester/server model 1-7

subordinate 2-13

See also Multithreaded servers 3-12
HP NonStop TMF Application Programmer’s Guide—540139-009
Index-5

Index T
See also Single-threaded servers 2-11

SETMODE = 117 1-10
SETMODE = 4

description of 1-15

normal mode and reject mode
options 1-17

Single-threaded requesters
checkpointing strategy 2-6

delegating work to servers 2-2

description of 2-1

system and TMF procedures for 2-1

Single-threaded servers
description of 2-11

file system procedures 2-11

SNOOP Dump/Restore (SNOOPDR) 5-4
SQL/MP

See NonStop SQL/MP

STABLE ACCESS, SQL/MP access
options 1-13
Status descriptor 2-6
STATUSTRANSACTION TMF
procedure 4-34
Subset audit records 5-15
System procedures

See individual procedure names

single-threaded servers 2-11

T
TEXTTOTRANSID TMF procedure 4-37
TFILE

access control block 2-6

clearing entry after unilateral abort 2-5

description of 2-6

multithreaded heterogeneous
processes 3-14

opening 2-7, 3-1

Timestamp field description 5-31
TMF procedures

See individual procedure names

TMF SHUTDOWN audit record 5-26

TMF_BEGINTAG_FROM_TXHANDLE_
TMF procedure 4-40
TMF_GETTXHANDLE_ TMF
procedure 4-43
TMF_GET_EXTTRANSID_ 4-44
TMF_GET_TX_ID_ TMF procedure 4-46
TMF_JOIN_EXT_ 4-50
TMF_JOIN_EXT_ TMF procedure 4-50
TMF_RESUME_ TMF procedure 4-53
TMF_SETTXHANDLE_ TMF
procedure 4-55
TMF_SUSPEND_ TMF procedure 4-57,
4-60
TMF_SUSPEND_EXT_ 4-60
TMF_TXBEGIN_ TMF procedure 4-62
TMF_TXHANDLE_FROM_BEGINTAG_
TMF procedure 4-65
Transaction identifiers

BEGINTRANSACTION procedure 1-3

excluding servers from sharing 1-10

form 4-7

obtaining the current 3-13

Transaction Management Process
(TMP) 4-17
Transaction pseudofile

See TFILE

Transactions
aborting 1-4, 2-3, 2-13

basic parent-child relationship 5-13,
5-14

committing 1-4, 2-3

considerations for defining 1-2/1-3

excluding servers 1-8

initiating 1-3, 4-7

invalid handle 4-40

layered offspring relationship 5-14

restarting aborted 3-8

status descriptor 2-6

terminating 2-3

unilateral aborts

clearing TFILE entry 2-5

description of 2-4
HP NonStop TMF Application Programmer’s Guide—540139-009
Index-6

Index U
Transactions, distributed 5-12
Transactions, heterogeneous 1-5
Transactions, TMF 1-2
Transaction, current 1-7, 3-2
Transid field description 5-31
TRANSIDTOTEXT TMF procedure 4-68

U
Undoflag field description 5-32
Unilateral transaction aborts

clearing TFILE entry 2-5

description of 2-4

UNLOCKFILE system procedure 1-15
UNLOCKREC system procedure 1-15
UPDATE audit record 5-27
UPDATE AUDITCOMP audit record 5-27
UPDATE FIELDCOMP audit record 5-28

V
Variable-length character fields 5-17
Variable-length fields, reading 5-5
Volatile resource manager files 1-5
Volume field description 5-32
Volume Recovery, anomalies 2-14

W
Waited operations 4-15
WRITE system procedure 1-15
WRITEREAD system procedure

errors 2-2

sending a request to the server and
receiving a reply 1-6

subcontracting work to other
servers 2-13

Special Characters

$RECEIVE

multithreaded heterogeneous
processes 3-14

opening 3-12

opening and closing 2-12

requester/server model 1-6
HP NonStop TMF Application Programmer’s Guide—540139-009
Index-7

Index Special Characters
HP NonStop TMF Application Programmer’s Guide—540139-009
Index-8

	HP NonStop TMF Application Programmer’s Guide
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the H06.28/J06.17 Manual
	Changes to the H06.26/J06.15 Manual
	Changes to the H06.24/J06.13 Manual
	Changes to the H06.21/J06.10 Manual
	Changes in the earlier version of the Manual

	About This Manual
	Who Should Read This Manual
	How this Manual is Organized
	About the TMF Library
	Related Manuals
	Notation Conventions
	General Syntax Notation
	Change Bar Notation

	HP Encourages Your Comments

	1 TMF Programming Environment
	The TMF Transaction
	Defining a Transaction
	Initiating a Transaction
	Committing a Transaction
	Aborting a Transaction

	Heterogeneous Transaction Processing
	The Requester/Server Model
	The Current Transaction
	The Nil State
	The Current Transaction Identifier
	Excluding a Server from a TMF Transaction
	Setting the Current Transaction to Nil
	Marking an OPEN to Not Share a Transaction Identifier

	Consistency and Concurrency
	Achieving Maximum Consistency
	Levels of Consistency
	Enscribe Capabilities

	2 Designing Single-Threaded Processes
	Single-Threaded Requesters
	Applicable System and TMF Procedures
	Delegating Work to Servers
	Terminating Transactions
	Checkpointing Strategy

	Single-Threaded Servers
	Applicable System Procedures
	Opening $RECEIVE
	Matching Each READUPDATE With a REPLY
	WRITEREAD to Another Server
	The Use and Implications of ABORTTRANSACTION
	The Implications of REPLY
	NonStop Servers
	Guarantees to Servers
	Context-Sensitive Servers

	3 Designing Multithreaded Processes
	Multithreaded Requesters
	Opening the TFILE
	Manipulating the Current Transaction
	Nowait ENDTRANSACTION Calls
	Checkpointing Strategy

	Multithreaded Servers
	Opening $RECEIVE
	Manipulating the Current Transaction
	Replying to Requesters
	NonStop Servers

	Multithreaded Requester/Server Processes

	4 File System Procedures
	ABORTTRANSACTION
	ACTIVATERECEIVETRANSID
	BEGINTRANSACTION
	BEGINTRANSACTION_EXT_
	COMPUTETRANSID
	ENDTRANSACTION
	GETTMPNAME
	GETTRANSACTIONDETAILS
	GETTRANSID
	GETTRANSINFO
	INTERPRETTRANSID
	RESUMETRANSACTION
	STATUSTRANSACTION
	TEXTTOTRANSID
	TMF_BEGINTAG_FROM_TXHANDLE_
	TMF_GETTXHANDLE_
	TMF_GET_EXTTRANSID_
	TMF_GET_TX_ID_
	TMF_JOIN_
	TMF_JOIN_EXT_
	Usage Considerations

	TMF_RESUME_
	TMF_SETTXHANDLE_
	TMF_SUSPEND_
	TMF_SUSPEND_EXT_
	TMF_TXBEGIN_
	TMF_TXHANDLE_FROM_BEGINTAG_
	TRANSIDTOTEXT
	TMF_VERSION_EXT_

	5 TMF ARLIB2 Audit-Reading Procedures
	ARLIB2 Compared to ARLIB
	Cursors
	Cursor Declaration
	Cursor Positioning

	Restoring Audit-Trail Files From Audit Dumps
	Retrieving Information From Audit Records
	Error Reporting
	Return Codes
	Messages Printed to the Operator Terminal
	Procedural Retrieval of Message Text

	Audit Compression
	Enscribe
	NonStop SQL/MP

	Reading Active Audit Files
	Reading a Range of Audit-Trail Files
	Reading a Merged Audit Trail With a MERGE Cursor
	Reading a Merged Audit Trail Without a MERGE Cursor
	Reading Audit Records for SQL/MX Objects
	Distributed Transactions
	Auxiliary Audit Trails
	Subset Audit Records

	NonStop SQL/MP Internal Field Formats
	Field Alignment
	Variable-Length Character (VARCHAR) Fields
	DATETIME and INTERVAL Fields
	Null Fields

	Audit Records
	Record Types
	Record Formats
	Field Descriptions

	Procedure Calls
	ARCLOSE
	ARCOMPLETEIO
	ARFETCHAFTERIMAGE
	ARFETCHAUXPOINTER
	ARFETCHBEFOREIMAGE
	ARFETCHCHILDNODELIST
	ARFETCHFIELDVALUE
	ARFETCHFRAGMENT
	ARFETCHMXAFTERDATA
	ARFETCHMXAFTERDATA2
	ARFETCHMXBEFOREDATA
	ARFETCHMXBEFOREDATA2
	ARFETCHRECORDKEY
	ARGETANSINAME
	ARGETAUDRECHEADERINFO
	ARGETFIELDINFO
	ARGETMESSAGELINE
	ARGETMXCOLUMNINFO
	ARGETNETWORKRECS
	ARGETNONDATACHNGRECS
	ARGETRECADDR
	ARGETRECADDR64
	AROPEN
	ARPOSITION
	ARPOSITION2
	ARPRINTMESSAGE
	ARREAD
	ARSETOPTIONS
	ARSTART
	ARSTOP
	ARSTOPNETWORKRECS
	ARSTOPNONDATACHNGRECS

	Error Codes
	How to Include Audit Reading in an Application
	Use of AWAITIOX

	Index

