
HP NonStop TACL
Reference Manual
Abstract

This publication describes the syntax and use of the HP Tandem Advanced Command
Language (TACL) variables, commands, and built-in functions.

Product Version

T9205D46, T9205H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, G06.20 and all subsequent G-series RVUs, and D46.00
and all subsequent D-series RVUs, until otherwise indicated by its replacement
publications. Additionally, all considerations for H-series throughout this manual will
hold true for J-series also, unless mentioned otherwise.

Part Number Published

429513-017 August 2013

Document History
Part Number Product Version Published

429513-013 T9205D46, T9205H01 November 2010

429513-014 T9205D46, T9205H01 August 2011

429513-015 T9205D46, T9205H01 February 2012

429513-016 T9205D46, T9205H01 August 2012

429513-017 T9205D46, T9205H01 August 2013

Legal Notices
 Copyright 2013 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a U.S. trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

HP NonStop TACL Reference
Manual
Glossary Index Figures Tables
Legal Notices

What’s New in This Manual xvii

Manual Information xvii

New and Changed Information xvii

About This Manual xix

Audience xix

Organization xix

Related Reading xx

Notation Conventions xxii

HP Encourages Your Comments xxvi

1. Overview of TACL
Using TACL Interactively 1-1

Developing TACL Programs 1-2

Language Features 1-3

Program Development Tools 1-4

Using TACL With Other Subsystems 1-4

2. Lexical Elements
Character Set 2-1

Data 2-1

Variable Names 2-1

Upshifting 2-1

Special Characters 2-2

Metacharacters 2-2

Separator Characters 2-5

Question Mark (?) 2-6

Ampersand (&) 2-6

Template Characters 2-6

Operators 2-8

Constants 2-8
 Hewlett-Packard Company—429513-017

i

Contents 3. Expressions
Text Constants 2-8

String Constants 2-9

Reserved Words 2-9

Comments 2-10

3. Expressions
Operators 3-1

Arithmetic Operations 3-2

Logical Operations 3-2

4. Variables
An Overview of TACL Variables 4-1

Variable Names 4-2

Variable Levels 4-3

Declaring a Variable 4-3

Specifying a Level of a Variable 4-4

Deleting a Variable 4-5

Accessing Variable Contents 4-5

Using a Variable as an Argument 4-6

TEXT Variables 4-6

Sample Declarations 4-6

ALIAS Variables 4-6

Sample Declarations 4-7

Limitations 4-7

MACRO Variables 4-7

Macro Arguments 4-8

Sample Declarations 4-8

ROUTINE Variables 4-9

Routine Arguments 4-9

Sample Declaration 4-10

Comparing Argument Handling in Macros and Routines 4-11

STRUCT Variables 4-12

Elements of STRUCT Variables 4-12

Limitations on the Use of STRUCT Variables 4-12

Declaring a Structure Body 4-13

Declaring a Simple Data Item 4-15

Declaring an Array Data Item 4-18

Declaring a Substructure 4-19

Declaring FILLER Bytes 4-20

Redefining a Structure 4-23
HP NonStop TACL Reference Manual—429513-017

ii

Contents 5. Statements and Programs
Setting or Altering Structured Data 4-25

Accessing Structured Data 4-26

DIRECTORY Variables 4-28

Declaring a Directory Variable 4-29

Accessing a Directory Variable 4-29

Directories Supplied With TACL 4-30

DELTA Variables 4-30

5. Statements and Programs
Function Calls 5-1

Directives 5-5

?BLANK Directive 5-6

?FORMAT Directive 5-6

?SECTION Directive 5-8

?TACL Directive 5-9

TACL Programs 5-9

Program Structure 5-10

How TACL Interprets Statements 5-11

Creating Program Files 5-12

Handling TACL Errors 5-21

6. The TACL Environment
Installation Instructions 6-1

TACL Software RVU Files 6-1

Starting a TACL Process 6-2

Logging On 6-3

TACL Initialization 6-3

Starting New Processes 6-5

Customizing the TACL Environment 6-7

Personal Customization 6-7

Local Customization 6-8

Managing the BREAK Key 6-8

Security 6-8

Command Interpreter Monitor Interface (CMON) 6-9

Using Directories 6-10

A Sample Directory Structure 6-10

Creating Your Own Directories 6-11

Directories Supplied by TACL 6-11

Avoiding Naming Conflicts With TACL 6-12

_EXECUTE Variables 6-13
HP NonStop TACL Reference Manual—429513-017

iii

Contents 7. Summary of Commands and Built-In Functions
Running a TACL Process in the Background 6-13

Initializing TACL and Specifying Input 6-13

Default Files 6-14

7. Summary of Commands and Built-In Functions
TACL Commands 7-1

Built-In Functions 7-2

Built-In Variables 7-3

Summary of Functionality 7-4

Obtaining Help and Information 7-4

Interfacing With the Operating System 7-6

Managing the TACL Environment 7-13

Processing Text in Variables 7-14

Controlling Program Flow 7-17

Debugging TACL Statements 7-18

8. UTILS:TACL Commands and Functions
:UTILS:TACL Command Summary 8-1

Commands and Programs 8-1

Restricted Commands 8-5

:UTILS:TACL Command Descriptions 8-7

ACTIVATE Command 8-8

ADD DEFINE Command 8-9

ADDDSTTRANSITION Command (Super-Group Only) 8-12

ADDUSER Program (Group Managers Only) 8-14

ALARMOFF Program (Super-Group Only) 8-16

ALTER DEFINE Command 8-17

ALTPRI Command 8-20

ASSIGN Command 8-21

ATTACHSEG Command 8-26

BACKUPCPU Command 8-28

BREAK Command 8-30

BUILTINS Command 8-31

BUSCMD Program (Super-Group Only) 8-32

CLEAR Command 8-33

CLICVAL Program 8-34

COLUMNIZE Command 8-35

COMMENT Command 8-36

_COMPAREV Function 8-37

COMPUTE Command 8-38
HP NonStop TACL Reference Manual—429513-017

iv

Contents 8. UTILS:TACL Commands and Functions
_CONTIME_TO_TEXT Function 8-39

_CONTIME_TO_TEXT_DATE Function 8-40

_CONTIME_TO_TEXT_TIME Function 8-41

COPYDUMP Program 8-42

COPYVAR Command 8-43

CREATE Command 8-44

CREATESEG Command 8-46

DEBUG Command 8-48

DEBUGGER Function 8-51

DEFAULT Program 8-53

DELETE DEFINE Command 8-56

DELUSER Program (Group Managers Only) 8-57

DETACHSEG Command 8-58

ENV Command 8-60

EXIT Command 8-62

FC Command 8-63

FILEINFO Command 8-67

FILENAMES Command 8-71

FILES Command 8-73

FILETOVAR Command 8-74

HELP Command 8-75

HISTORY Command 8-76

HOME Command 8-77

INFO DEFINE Command 8-78

INITTERM Command 8-80

INLECHO Command 8-81

INLEOF Command 8-82

INLOUT Command 8-83

INLPREFIX Command 8-84

INLTO Command 8-85

IPUCOM Program 8-86

JOIN Command 8-89

KEEP Command 8-90

KEYS Command 8-91

LIGHTS Program (Super-Group Only) 8-92

LOAD Command 8-94

LOADEDFILES Command 8-95

LOGOFF Command 8-97

LOGON Command 8-99
HP NonStop TACL Reference Manual—429513-017

v

Contents 8. UTILS:TACL Commands and Functions
_LONGEST Function 8-107

_MONTH3 Function 8-108

O[BEY] Command 8-109

OUTVAR Command 8-110

PARAM Command 8-113

PASSWORD Program 8-115

PAUSE Command 8-116

PMSEARCH Command 8-118

PMSG Command 8-120

POP Command 8-122

POSTDUMP Utility 8-123

PPD Command 8-126

PURGE Command 8-129

PUSH Command 8-131

RCVDUMP Program (Super-Group or Super ID Only) 8-132

RECEIVEDUMP Command (Super-Group Only) 8-139

RELOAD Program (Super-Group Only) 8-142

REMOTEPASSWORD Command and RPASSWRD Program 8-151

RENAME Command 8-153

RESET DEFINE Command 8-154

RUN[D|V] Command 8-156

SEGINFO Command 8-168

SEMSTAT Program 8-169

SET DEFINE Command 8-173

SET DEFMODE Command 8-191

SET HIGHPIN Command 8-192

SET INSPECT Command 8-193

SETPROMPT Command 8-194

SET SWAP Command 8-195

SETTIME Command (Super-Group Only) 8-196

SET VARIABLE Command 8-198

SHOW Command 8-200

SHOW DEFINE Command 8-202

SINK Command 8-205

STATUS Command 8-206

STOP Command 8-215

SUSPEND Command 8-217

SWITCH Command 8-219

SYSTEM Command 8-221
HP NonStop TACL Reference Manual—429513-017

vi

Contents 9. Built-In Functions and Variables
SYSTIMES Command 8-222

TACL Program 8-224

TIME Command 8-230

USE Command 8-231

USERS Program 8-232

VARIABLES Command 8-234

VARINFO Command 8-235

VARTOFILE Command 8-237

VCHANGE Command 8-238

VCOPY Command 8-241

VDELETE Command 8-244

VFIND Command 8-246

VINSERT Command 8-249

VLIST Command 8-251

VMOVE Command 8-253

VOLUME Command 8-256

VTREE Command 8-258

WAKEUP Command 8-259

WHO Command 8-260

XBUSDOWN/YBUSDOWN Command (Super-Group Only) 8-262

XBUSUP/YBUSUP Command (Super-Group Only) 8-263

Exclamation Point (!) Command 8-264

Question Mark (?) Command 8-265

9. Built-In Functions and Variables
Summary of Built-In Functions 9-1

Summary of Built-In Variables 9-9

Built-In Function and Variable Descriptions 9-12

#ABEND Built-In Function 9-12

#ABORTTRANSACTION Built-In Function 9-14

#ACTIVATEPROCESS Built-In Function 9-15

#ADDDSTTRANSITION Built-In Function (Super-Group Only) 9-16

#ALTERPRIORITY Built-In Function 9-18

#APPEND Built-In Function 9-19

#APPENDV Built-In Function 9-20

#ARGUMENT Built-In Function 9-21

#ASSIGN Built-In Variable 9-31

#BACKUPCPU Built-In Function 9-34

#BEGINTRANSACTION Built-In Function 9-35
HP NonStop TACL Reference Manual—429513-017

vii

Contents 9. Built-In Functions and Variables
#BREAKMODE Built-In Variable 9-36

#BREAKPOINT Built-In Function 9-37

#BUILTINS Built-In Function 9-38

#CASE Built-In Function 9-39

#CHANGEUSER Built-In Function 9-41

#CHARACTERRULES Built-In Variable 9-44

#CHARADDR Built-In Function 9-46

#CHARBREAK Built-In Function 9-47

#CHARCOUNT Built-In Function 9-49

#CHARDEL Built-In Function 9-51

#CHARFIND Built-In Function 9-53

#CHARFINDR Built-In Function 9-55

#CHARFINDRV Built-In Function 9-57

#CHARFINDV Built-In Function 9-59

#CHARGET Built-In Function 9-61

#CHARGETV Built-In Function 9-63

#CHARINS Built-In Function 9-65

#CHARINSV Built-In Function 9-67

#COLDLOADTACL Built-In Function 9-69

#COMPAREV Built-In Function 9-70

#COMPUTE Built-In Function 9-71

#COMPUTEJULIANDAYNO Built-In Function 9-72

#COMPUTETIMESTAMP Built-In Function 9-73

#COMPUTETRANSID Built-In Function 9-74

#CONTIME Built-In Function 9-75

#CONVERTPHANDLE Built-In Function 9-76

#CONVERTPROCESSTIME Built-In Function 9-78

#CONVERTTIMESTAMP Built-In Function 9-79

#CREATEFILE Built-In Function 9-81

#CREATEPROCESSNAME Built-In Function 9-83

#CREATEREMOTENAME Built-In Function 9-84

#DEBUGPROCESS Built-In Function 9-85

#DEF Built-In Function 9-87

#DEFAULTS Built-In Variable 9-90

#DEFINEADD Built-In Function 9-92

#DEFINEDELETE Built-In Function 9-93

#DEFINEDELETEALL Built-In Function 9-94

#DEFINEINFO Built-In Function 9-95

#DEFINEMODE Built-In Variable 9-96
HP NonStop TACL Reference Manual—429513-017

viii

Contents 9. Built-In Functions and Variables
#DEFINENAMES Built-In Function 9-97

#DEFINENEXTNAME Built-In Function 9-98

#DEFINEREADATTR Built-In Function 9-99

#DEFINERESTORE Built-In Function 9-101

#DEFINERESTOREWORK Built-In Function 9-103

#DEFINESAVE Built-In Function 9-104

#DEFINESAVEWORK Built-In Function 9-106

#DEFINESETATTR Built-In Function 9-107

#DEFINESETLIKE Built-In Function 9-108

#DEFINEVALIDATEWORK Built-In Function 9-109

#DELAY Built-In Function 9-110

#DELTA Built-In Function 9-111

#DEVICEINFO Built-In Function 9-134

#EMPTY Built-In Function 9-135

#EMPTYV Built-In Function 9-136

#EMSADDSUBJECT Built-In Function 9-137

#EMSADDSUBJECTV Built-In Function 9-139

#EMSGET Built-In Function 9-141

#EMSGETV Built-In Function 9-146

#EMSINIT Built-In Function 9-150

#EMSINITV Built-In Function 9-152

#EMSTEXT Built-In Function 9-154

#EMSTEXTV Built-In Function 9-156

#ENDTRANSACTION Built-In Function 9-158

#EOF Built-In Function 9-159

#ERRORNUMBERS Built-In Variable 9-160

#ERRORTEXT Built-In Function 9-162

#EXCEPTION Built-In Function 9-163

#EXIT Built-In Variable 9-164

#EXTRACT Built-In Function 9-165

#EXTRACTV Built-In Function 9-166

#FILEGETLOCKINFO Built-In Function 9-167

#FILEINFO Built-In Function 9-170

#FILENAMES Built-In Function 9-176

#FILTER Built-In Function 9-178

#FRAME Built-In Function 9-180

#GETCONFIGURATION Built-In Function 9-181

#GETPROCESSSTATE Built-In Function 9-184

#GETSCAN Built-In Function 9-187
HP NonStop TACL Reference Manual—429513-017

ix

Contents 9. Built-In Functions and Variables
#HELPKEY Built-In Variable 9-188

#HIGHPIN Built-In Variable 9-189

#HISTORY Built-In Function 9-190

#HOME Built-In Variable 9-191

#IF Built-In Function 9-192

#IN Built-In Variable 9-194

#INFORMAT Built-In Variable 9-196

#INITTERM Built-In Function 9-199

#INLINEECHO Built-In Variable 9-200

#INLINEEOF Built-In Function 9-201

#INLINEOUT Built-In Variable 9-202

#INLINEPREFIX Built-In Variable 9-203

#INLINEPROCESS Built-In Variable 9-204

#INLINETO Built-In Variable 9-206

#INPUT Built-In Function 9-207

#INPUTEOF Built-In Variable 9-210

#INPUTV Built-In Function 9-211

#INSPECT Built-In Variable 9-213

#INTERACTIVE Built-In Function 9-215

#INTERPRETJULIANDAYNO Built-In Function 9-216

#INTERPRETTIMESTAMP Built-In Function 9-217

#INTERPRETTRANSID Built-In Function 9-218

#JULIANTIMESTAMP Built-In Function 9-219

#KEEP Built-In Function 9-220

#KEYS Built-In Function 9-221

#LINEADDR Built-In Function 9-222

#LINEBREAK Built-In Function 9-223

#LINECOUNT Built-In unction 9-225

#LINEDEL Built-In Function 9-226

#LINEFIND Built-In Function 9-228

#LINEFINDR Built-In Function 9-230

#LINEFINDRV Built-In Function 9-232

#LINEFINDV Built-In Function 9-234

#LINEGET Built-In Function 9-236

#LINEGETV Built-In Function 9-238

#LINEINS Built-In Function 9-240

#LINEINSV Built-In Function 9-242

#LINEJOIN Built-In Function 9-244

#LOAD Built-In Function 9-245
HP NonStop TACL Reference Manual—429513-017

x

Contents 9. Built-In Functions and Variables
#LOCKINFO Built-In Function 9-248

#LOGOFF Built-In Function 9-252

#LOOKUPPROCESS Built-In Function 9-254

#LOOP Built-In Function 9-256

#MATCH Built-In Function 9-257

#MOM Built-In Function 9-258

#MORE Built-In Function 9-259

#MYGMOM Built-In Function 9-260

#MYPID Built-In Function 9-261

#MYSYSTEM Built-In Function 9-262

#MYTERM Built-In Variable 9-263

#NEWPROCESS Built-In Function 9-265

#NEXTFILENAME Built-In Function 9-268

#OPENINFO Built-In Function 9-269

#OUT Built-In Variable 9-272

#OUTFORMAT Built-In Variable 9-274

#OUTPUT Built-In Function 9-276

#OUTPUTV Built-In Function 9-279

#PARAM Built-In Variable 9-282

#PAUSE Built-In Function 9-284

#PMSEARCHLIST Built-In Variable 9-285

#PMSG Built-In Variable 9-287

#POP Built-In Function 9-288

#PREFIX Built-In Variable 9-289

#PROCESS Built-In Function 9-290

#PROCESSEXISTS Built-In Function 9-291

#PROCESSFILESECURITY Built-In Variable 9-292

#PROCESSINFO Built-In Function 9-294

#PROCESSLAUNCH Built-In Function 9-307

#PROCESSORSTATUS Built-In Function 9-309

#PROCESSORTYPE Built-In Function 9-310

#PROMPT Built-In Variable 9-312

#PURGE Built-In Function 9-313

#PUSH Built-In Function 9-314

#RAISE Built-In Function 9-315

#RENAME Built-In Function 9-316

#REPLY Built-In Function 9-317

#REPLYPREFIX Built-In Variable 9-318

#REPLYV Built-In Function 9-319
HP NonStop TACL Reference Manual—429513-017

xi

Contents 9. Built-In Functions and Variables
#REQUESTER Built-In Function 9-320

#RESET Built-In Function 9-325

#REST Built-In Function 9-326

#RESULT Built-In Function 9-327

#RETURN Built-In Function 9-328

#ROUTEPMSG Built-In Variable 9-329

#ROUTINENAME Built-In Function 9-332

#SEGMENT Built-In Function 9-333

#SEGMENTCONVERT Built-In Function 9-334

#SEGMENTINFO Built-In Function 9-336

#SEGMENTVERSION Built-In Function 9-338

#SERVER Built-In Function 9-339

#SET Built-In Function 9-343

#SETBYTES Built-In Function 9-346

#SETCONFIGURATION Built-In Function 9-347

#SETMANY Built-In Function 9-353

#SETPROCESSSTATE Built-In Function 9-355

#SETSCAN Built-In Function 9-358

#SETSYSTEMCLOCK Built-In Function (Super-Group Only) 9-359

#SETV Built-In Function Use 9-361

#SHIFTDEFAULT Built-In Variable 9-363

#SHIFTSTRING Built-In Function 9-364

#SORT Built-In Function 9-366

#SPIFORMATCLOSE Built-In Function 9-368

#SSGET Built-In Function 9-369

#SSGETV Built-In Function 9-374

#SSINIT Built-In Function 9-378

#SSMOVE Built-In Function 9-380

#SSNULL Built-In Function 9-383

#SSPUT Built-In Function 9-384

#SSPUTV Built-In Function 9-389

#STOP Built-In Function 9-392

#SUSPENDPROCESS Built-In Function 9-394

#SWITCH Built-In Function 9-395

#SYSTEM Built-In Function 9-396

#SYSTEMNAME Built-In Function 9-397

#SYSTEMNUMBER Built-In Function 9-398

#TACLOPERATION Built-In Function 9-399

#TACLSECURITY Built-In Variable 9-400
HP NonStop TACL Reference Manual—429513-017

xii

Contents A. Syntax Summary
#TACLVERSION Built-In Function 9-402

#TIMESTAMP Built-In Function 9-404

#TOSVERSION Built-In Function 9-405

#TRACE Built-In Variable 9-406

#UNFRAME Built-In Function 9-407

#USELIST Built-In Variable 9-408

#USERID Built-In Function 9-409

#USERNAME Built-In Function 9-410

#VARIABLEINFO Built-In Function 9-411

#VARIABLES Built-In Function 9-414

#VARIABLESV Built-In Function 9-415

#WAIT Built-In Function 9-416

#WAKEUP Built-In Variable 9-418

#WIDTH Built-In Variable 9-419

#XFILEINFO Built-In Function 9-420

#XFILENAMES Built-In Function 9-420

#XFILES Built-In Function 9-420

#XLOADEDFILES Built-In Function 9-420

#XLOGON Built-In Function 9-420

#XPPD Built-In Function 9-420

#XSTATUS Built-In Function 9-420

A. Syntax Summary
:UTILS:TACL Commands and Functions A-2

Built-In Functions and Variables A-7

STRUCT Declarations A-14

#SET Summary A-15

#DELTA Command Summary A-16

B. Error Messages
TACL Error Messages B-1

DEFINE Error Messages B-46

Process Creation Error Messages B-50

RCVDUMP Error Messages B-51

RCVDUMP Error Messages for H-Series Only B-51

RCVDUMP Error Messages for H-Series, G-Series and
D-Series B-54

RELOAD Error Messages B-58

RELOAD Error Messages for H-Series Only B-58

Omitslice Information and Error Messages B-61
HP NonStop TACL Reference Manual—429513-017

xiii

Contents C. Mapping TACL Built-In Functions to Guardian

Procedures
B-62

RELOAD Error Messages for H-Series, G-Series and D-Series B-62

EMS Messages B-69

Error Numbers B-70

C. Mapping TACL Built-In Functions to Guardian Procedures

Glossary

Index

Figures
Figure 6-1. TACL Segment File and Directory Relationships 6-9

Tables
Table 2-1. TACL Metacharacters 2-3

Table 2-2. Separator Characters 2-5

Table 2-3. Template Characters 2-7

Table 3-1. TACL Operators 3-1

Table 4-1. TACL Variables and Their Uses 4-1

Table 4-2. Functions and Commands That Allocate and Define Variables 4-3

Table 4-3. Functions and Commands That Delete Variables 4-5

Table 4-4. Macro Arguments 4-8

Table 5-1. Error Types 5-21

Table 6-1. Results of HIGHPIN Settings 6-5

Table 7-1. Informational Commands 7-4

Table 7-2. Informational Built-In Functions and Variables 7-5

Table 7-3. File and Device Commands 7-6

Table 7-4. File and Device Built-In Functions and Variables 7-7

Table 7-5. Process Control Commands 7-8

Table 7-6. Process Control Built-In Functions and Variables 7-9

Table 7-7. System Environment Management Commands 7-11

Table 7-8. System Environment Management Built-In Functions and
Variables 7-12

Table 7-9. TACL Environment Commands 7-13

Table 7-10. TACL Environment Commands 7-13

Table 7-11. Data Manipulation Commands 7-14

Table 7-12. Data Manipulation Built-In Functions and Variables 7-15

Table 7-13. Flow Control Built-In Functions and Variables 7-17

Table 7-14. Debugging Commands 7-18

Table 7-15. Debugging Built-In Functions and Variables 7-18
HP NonStop TACL Reference Manual—429513-017

xiv

Contents
Table 8-1. Commands and Programs 8-1

Table 8-2. Group Manager Commands 8-6

Table 8-3. Super-Group User Commands 8-7

Table 8-4. SORT DEFINE Attributes 8-178

Table 8-5. SPOOL DEFINE Attributes 8-181

Table 8-6. SUBSORT DEFINE Attributes 8-183

Table 8-7. TAPE DEFINE Attribute Consistency Rules 8-184

Table 8-8. TAPE DEFINE Attributes 8-185

Table 8-9. STOP Command Messages 8-214

Table 9-1. Built-In Functions 9-2

Table 9-2. Built-In Variables 9-10

Table 9-3. Effect of #INFORMAT on Argument Processing 9-28

Table 9-4. Some Effects of Expectation on VALUE Result 9-29

Table 9-5. Summary of #DELTA Commands 9-116

Table 9-6. Text Manipulation Commands 9-117

Table 9-7. Variable Control Commands 9-119

Table 9-8. File Manipulation Commands 9-120

Table 9-9. #DELTA Control Commands 9-121

Table 9-10. #FILEGETLOCKINFO Status Codes 9-169

Table 9-11. #INFORMAT Results 9-198

Table 9-12. Communicating with a TACL Requester 9-341

Table 9-13. Valid Operations for #SETPROCESSSTATE Built-In Function 9-356

Table 9-14. #SSGET(V) Header Tokens 9-372

Table 9-15. #SSPUT(V) Header Tokens and Special Operations 9-385

Table 9-16. #VARIABLEINFO Type-Dependent Results 9-412

Table A-1. #DELTA Commands A-16

Table B-1. #ERRORNUMBERS Results B-50

Table B-2. Error Numbers Associated With TACL Messages B-70

Table C-1. TACL Built-In Functions and Guardian Procedures C-1
HP NonStop TACL Reference Manual—429513-017

xv

Contents
HP NonStop TACL Reference Manual—429513-017

xvi

What’s New in This Manual

Manual Information
HP NonStop TACL Reference Manual

Abstract

This publication describes the syntax and use of the HP Tandem Advanced Command
Language (TACL) variables, commands, and built-in functions.

Product Version

T9205D46, T9205H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, G06.20 and all subsequent G-series RVUs, and D46.00
and all subsequent D-series RVUs, until otherwise indicated by its replacement
publications. Additionally, all considerations for H-series throughout this manual will
hold true for J-series also, unless mentioned otherwise.

Document History

New and Changed Information

Changes to the 429513-017 manual

 Modified the description of the STOP option on page 8-208.

 Added the FORCED option and its description on page 8-208.

 Added a confirmation message below the command line on page 8-214.

 Added more modes in the table and modified the information on modes under
mode on page 9-359.

 Modified the information on error results under Result on page 9-359.

Part Number Published

429513-017 August 2013

Part Number Product Version Published

429513-013 T9205D46, T9205H01 November 2010

429513-014 T9205D46, T9205H01 August 2011

429513-015 T9205D46, T9205H01 February 2012

429513-016 T9205D46, T9205H01 August 2012

429513-017 T9205D46, T9205H01 August 2013
H P N onS top TA C L R e fe rence M anua l — 429513-017
xvii

W hat’s N ew in Th is M anua l C hanges to the 429513-016 m anua l
 Added more information on customization of TACLCSTM and TACLLOCL under
Customizing the TACL Environment.

 Added the IPUASSOCIATION, IPUNUMBER, PROCESSCREATIONTIME, and
PROGRAMDATAMODEL options under #PROCESSINFO Built-In Function on
pages 9-295, 9-297, 9-299.

 Added new information on the output of the TACL STATUS command along with
the DETAIL option under Considerations on page 8-210.

 Added a new section Installation Instructions on page 6-1.

 Added three states of an ancestor and their description under aid on page 8-127.

 Added a note on subvolume names and #PMSEARCHLIST on page 9-286.

 Modified STATUS Command on page 8-206.

Changes to the 429513-016 manual

 Updated the IPUCOM Program Considerations on page 88.

 Updated the RUN[D|V] Command on page 8-156.

 Added SEMSTAT Program on page 8-169.

Changes to the 429513-015 manual

 Added CLICVAL program and its function in Commands and Programs table.

Changes to the 429513-014 manual

 Added IPUCOM program and its brief function in Commands and Programs table.

 Added the detailed description of IPUCOM Program in chapter 8.

 Updated Considerations section for FILEINFO Command on page 8-68.

Changes to the 429513-013 manual

 Added reference to the Guardian Procedure Calls Reference manual for a list of
processor types and the associated number under Results on page 9-310.

 Removed outdated table listing processors and their associated numbers from
9-310.

 Reworded information under Result on page 9-309.

 Updated error message for the FILEINFO command on page 8-68.
H P N onS top TA C L R e fe rence M anua l — 429513-017
xviii

About This Manual
This manual contains reference material describing the HP Tandem Advanced
Command Language (TACL). It presents the syntax and operations of all standard
commands and functions available in the :UTILS:TACL directory (embodying the
command interpreter capability of the TACL product), as well as the syntax and
description of TACL built-in functions and built-in variables (the programming language
aspect of the TACL product).

Audience
This manual is intended for all users of the TACL product, both users who intend to use
TACL primarily as a command interpreter, and those users who need to use the
extensible capabilities of TACL for programming. Also included in this manual are
descriptions of TACL operations that are restricted for use by system management
personnel only.

Organization

Section 1, Overview of TACL Provides an overview of TACL features and
operation.

Section 2, Lexical Elements Describes the basic elements of the TACL
product.

Section 3, Expressions Describes syntax and semantics for expressions.

Section 4, Variables Describes variable types and their uses.

Section 5, Statements and
Programs

Describes syntax and semantics for TACL
statements.

Section 6, The TACL
Environment

Describes environmental information about the
TACL product, including required and
recommended files, initialization, communication
with a CMON process, defining library files, and
defining and using segment files and directories.

Section 7, Summary of
Commands and Built-In
Functions

Lists commands and built-in functions by
functional group.

Section 8, UTILS:TACL
Commands and Functions

Describes commands and functions provided
with the TACL product in the :UTILS:TACL
directory.

Section 9, Built-In Functions and
Variables

Describes TACL built-in functions and variables.
H P N onS top TA C L R e fe rence M anua l — 429513-017
xix

A bout Th is M anua l R e la ted R ead ing
Related Reading
The following paragraphs list manuals that are related to the use of the TACL product,
either as a command interpreter or as a programming language.

Prerequisites

The Guardian User’s Guide presents introductory material about the TACL product,
including:

 Use of TACL as a command interpreter

 Defining function keys

 Writing simple macros

 Using DEFINEs

To gain a basic understanding of the use of TACL, read the first four sections of the
Guardian User’s Guide before using this manual. You should also be familiar with basic
programming concepts and terminology, such as “pushing” and “popping” (creating and
deleting) variables, using arguments, and so on.

Corequisites

If you use TACL as a programming language to create macros and routines, the TACL
Programming Guide presents task-oriented material and examples. (The TACL
Programming Guide does not, however, contain descriptions of restricted commands
and functions.) Additional sources of information depend on your use of the TACL
product. Manuals of possible interest include:

 Manuals about utilities, such as the File Utility Program (FUP) Reference Manual.

 Manuals about debugging programs in languages other than TACL (that you run
from TACL), such as the Debug Manual and the Inspect Manual.

 Manuals about Distributed Systems Management (DSM), including:

 EMS Reference Summary for reference information about EMS

 Manuals about the HP NonStop™ operating system, including:

Appendix A, Syntax Summary Provides a syntax summary of all TACL
functions.

Appendix B, Error Messages Describes types of error messages and includes
a list of TACL error messages.

Appendix C, Mapping TACL
Built-In Functions to Guardian
Procedures

Maps TACL built-in functions to Guardian
procedures.
H P N onS top TA C L R e fe rence M anua l — 429513-017
xx

A bout Th is M anua l C orequ is ites
 Guardian Programmer’s Guide

 Guardian Procedure Calls Reference Manual

 Guardian Procedure Errors and Messages Manual

 NonStop S-Series Operations Guide

 Security Management Guide
H P N onS top TA C L R e fe rence M anua l — 429513-017
xxi

A bout Th is M anua l N ota tion C onventions
Notation Conventions

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address
H P N onS top TA C L R e fe rence M anua l — 429513-017
xxii

A bout Th is M anua l G enera l S yntax N o ta tion
{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
H P N onS top TA C L R e fe rence M anua l — 429513-017
xxiii

A bout Th is M anua l N o ta tion fo r M essages
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages

This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.
H P N onS top TA C L R e fe rence M anua l — 429513-017
xxiv

A bout Th is M anua l N o ta tion fo r M anagem ent P rogram m ing In te rfaces
lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces

This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.
H P N onS top TA C L R e fe rence M anua l — 429513-017
xxv

A bout Th is M anua l C hange B ar N o ta tion
UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation

Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the HP
COBOL environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found,
suggestions for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or
suggestion for improvement you have concerning this document.
H P N onS top TA C L R e fe rence M anua l — 429513-017
xxvi

1 Overview of TACL

TACL is a software application that provides an interface to the HP NonStop operating
system. You can use TACL either as an interactive command interface or as an
interpreted programming language to construct programs.

This manual describes the syntactical elements of TACL.

 The Guardian User’s Guide describes how to use TACL interactively.

 The TACL Programming Guide describes how to construct TACL programs.

As a programming language, the TACL product is most often used for managing
systems and processes. You can, for example, use TACL to:

 Automate system startup and shutdown procedures

 Automate subsystem startup and shutdown procedures

 Run utilities and issue commands either with a fixed set of commands or a flexible
set that you can tailor at run time

 Create a customized environment that simplifies commonly performed tasks for
users

 Control subsystem operation using the Subsystem Programmatic Interface (SPI)

 Communicate with the Event Management Service (EMS) and generate EMS
messages

The TACL language consists of commands, built-in functions, and built-in variables.
Commands are typically used for interactive work. Built-in functions are typically used
for programmatic work. Built-in variables store environmental information; you can set
and retrieve their values.

Procedural constructs such as flow control statements are provided as part of the set of
built-in functions. In addition, TACL provides powerful text manipulation functions that
process output and results from processes.

TACL is extensible. Consult the documentation that accompanies each software RVU
to determine if additional function has been added.

Using TACL Interactively
After you log on to a TACL process, TACL provides an environment that includes
predefined commands such as:

RUN Runs a process

STATUS Displays information about one or more running processes

ENV and WHO Describes your TACL environment
H P N onS top TA C L R e fe rence M anua l — 429513-017
1-1

O verv iew o f TA C L D eve lop ing TA C L P rogram s
Your environment can include user-defined commands if you or your system manager
define them.

To start a process (such as FUP) or use a TACL command (such as TIME), type the
program name; this is known as invoking the program or the command. If you type a
command incorrectly, TACL issues an error message and includes the expected
syntax. You can then retype the command.

To obtain syntax help while you are typing a command, press the F16 key (or the
appropriate help key defined in your environment) at the point in the command where
you want help.

The Guardian User’s Guide provides detailed instructions for using TACL interactively,
including:

 Logging on and logging off

 Obtaining information about system users

 Editing command lines

 Managing files

 Starting and controlling processes

 Defining function keys

 Creating and using DEFINEs

The use of commands is the simplest interactive use of TACL. You can, however,
access TACL built-in variables and functions or run your own procedural constructs
interactively, as follows:

 Display the contents of TACL built-in variables by typing the variable name
(including the initial number sign).

 Invoke a TACL built-in function by typing the function name enclosed in square
brackets.

(First, set the #INFORMAT value to TACL as described in #INFORMAT Built-In
Variable on page 9-196. Otherwise, TACL will not recognize the square brackets as
special characters.)

To define and use your own variables, you must understand the use of square brackets
and other lexical elements; For additional information, see Section 2, Lexical Elements,
and Section 4, Variables.

Developing TACL Programs
The development of TACL programs is a more advanced use of TACL; programs are
useful if you plan to run the same set of TACL commands or built-in functions
frequently.
H P N onS top TA C L R e fe rence M anua l — 429513-017
1-2

O verv iew o f TA C L Language Fea tu res
TACL allows you to interact with processes, handle results, and make decisions about
further actions; it provides string-handling capabilities, character-handling capabilities,
exception-handling capabilities, and many built-in functions that provide information
about the system environment. You can use TACL to interface with the Subsystem
Programmatic Interface (SPI), the Event Management Service (EMS), and other
utilities and programs.

This manual describes TACL syntax and semantics. For more information about how to
use TACL for specific programming tasks, see the TACL Programming Guide.

Language Features

TACL provides a set of predefined commands, functions, and data variables. These
entities are built into the TACL language and are the building blocks with which you
construct TACL programs:

 TACL built-in functions are intended for use in TACL programs. Built-in function
names start with a number sign (#). Most functions return a result that can be
analyzed programmatically. Examples include:

Built-in functions also provide flow control, such as loop control and exit
mechanisms. To see a list of functions, use the #BUILTINS built-in function or see
Section 9, Built-In Functions and Variables.

 TACL built-in variables contain information about the TACL environment. Built-in
variable names start with a number sign (#). These variables are used primarily to
establish the TACL environment. You can set and retrieve their values, and create
new instances of these variables, but you cannot delete the variables themselves.
Examples of these variables include:

 TACL commands (such as RUN and STOP) are intended for interactive use, but
you can use them in TACL programs. Commands do not return status or error
information; they usually display results.

TACL provides these procedural features:

 Data structures. TACL supports text and STRUCT variables.

#ARGUMENT Parses the arguments passed to a routine

#INPUT Reads information from the TACL IN file

#PROCESSINFO Returns information about a process

#OUT The name of the OUT file used by TACL

#PMSG The state of the PMSG flag

When set, TACL displays a message whenever
processes associated with your TACL process start and
stop.

#MYTERM The name of the home terminal
H P N onS top TA C L R e fe rence M anua l — 429513-017
1-3

O verv iew o f TA C L P rogram D eve lopm ent Too ls
 Data types. TACL interprets text variables as text unless you request an
arithmetic or logical operation. TACL supports an extensive set of data types
for STRUCT variables and for arguments to routine variables. Programs. TACL
programs allow you to define a block of TACL statements that performs one or
more tasks. You can access a TACL program from other TACL programs; you
can nest programs within other programs. For a description of TACL programs,
see Section 5, Statements and Programs.

 Argument passing. You can pass arguments to TACL programs. The
mechanism depends on the type of program (text, macro, or routine).

 Data operations. You can compare, move, and manipulate the contents of
variables that contain text or TACL statements.

For additional information about TACL programs, see Section 5, Statements and
Programs.

Program Development Tools

TACL provides a symbolic debugger that gives you interactive debugging capabilities
such as breakpoints and step operations. For additional information about the
debugger, see the _DEBUGGER Command in Section 8, UTILS:TACL Commands and
Functions, or the TACL Programming Guide.

Using TACL With Other Subsystems
TACL can communicate with other programs. This manual describes each command
and function that supports network and interprocess communication. For examples
showing the use of the commands and functions and for information about subsystem-
specific information such as SPI tokens supported by TACL, see the TACL
Programming Guide.
H P N onS top TA C L R e fe rence M anua l — 429513-017
1-4

2 Lexical Elements

TACL consists of these lexical elements:

 Character Set

 Special Characters

 Constants

 Reserved Words

 Comments

Character Set
TACL supports the ISO 8859.1 (International Organization for Standardization)
character set, also called the ECMA-94 (European Computer Manufacturers
Association) character set, which is an 8-bit character set with 256 character positions.
The first 128 characters are the same as the ASCII (American Standard Code for
Information Interchange) character set; ISO 8859.1 is a superset of ASCII.

The high-order 128 positions include 94 characters that are used in the majority of
western European languages, plus two additional formatting characters: a nonbreaking
space and an optional or discretionary hyphen.

Data

You can use all characters in the ISO character set as data.

Variable Names

You can use all printable characters in TACL variable names; however, you can use
only the low-order (ASCII) characters in the names of systems, disk volumes,
subvolumes, files, processes, and devices.

Upshifting

TACL automatically upshifts variable names when it defines them. If a variable name
contains lowercase letters that contain diacritical marks (marks added to a letter to
indicate a special phonetic value), those characters may lose their diacritical marks
when upshifted using CPRULES0. This upshifting can change the apparent identity of
the variable. To avoid errors, use uppercase letters if your variable name includes
diacritical marks.

TACL provides two files that contain coded rules for upshifting characters:

 CPRULES0 contains the rules used by the majority of western European countries;
this is the default set of character-processing rules.

 CPRULES1 contains the rules used primarily by Spain and French Canada.
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-1

Lexica l E lem ents S pec ia l C haracters
Special Characters
There are six types of characters that have special meaning to TACL:

Metacharacters

The interpretation of special characters as metacharacters depends on the setting of
the #INFORMAT Built-In Variable on page 9-196. The display of special characters
depends on the setting of the #OUTFORMAT Built-In Variable on page 9-274.

The #INFORMAT built-in variable affects the interpretation of special characters read
from the IN file, including terminal input and files read by the OBEY command.
#INFORMAT can have one of three values:

 TACL: Metacharacters have full effect.

 PLAIN: Metacharacters are treated as ordinary characters.

 QUOTED: If metacharacters are contained within quotation marks (“ ”), they are
treated as ordinary text.

?TACL MACRO files, ?TACL ROUTINE files, and library files read by LOAD or #LOAD
are read in TACL format unless they contain ?FORMAT directives that specify PLAIN
or QUOTED format. For more information about the ?FORMAT directive, see
Section 5, Statements and Programs.

Character Name Description

Metacharacters Requests that TACL interpret subsequent text in a special way

Separator Delineates keywords, variable names, and so forth

Question mark Command line editing directive

Ampersand Continues current line on the next physical line

Template Provides wild-card matching for file names

Operator Specifies arithmetic, relational, or logical operations

Note. TACL treats metacharacters as PLAIN when they are transmitted by #REQUESTER or
#SERVER, so characters obtained from these functions do not retain their special properties.
For example, square brackets in text obtained from a file opened by #REQUESTER do not
cause enclosed text to be expanded. This also applies to FILETOVAR and VARTOFILE, which
use the #REQUESTER built-in function.
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-2

Lexica l E lem ents M etacharacters
Table 2-1 lists TACL metacharacters.

Square Brackets ([])

You can use square brackets in several ways:

 To extend a logical line past the physical line limit. If you enclose more than one
line within a pair of square brackets, the brackets mark the beginning and ending of
the logical line. You can extend the line to a maximum of 239 characters.

 To define an enclosure that contains a label and one or more TACL statements.
Enclosures can be used in #CASE, #DEF, #IF, and #LOOP built-in functions. For
more information about enclosures and labels, see Function Calls on page 5-1.

 To specify that TACL expand a variable name to the contents of the variable. When
TACL expands a variable name, it replaces the variable name with the contents of
the variable. To expand the variable, enclose the name of the variable in square
brackets. For information about variables, see Section 4, Variables.

If the variable contains text, TACL replaces the bracketed variable name with the
text stored in the variable. For example, if the variable var1 contains the integer 3,

Table 2-1. TACL Metacharacters

Character(s) Name Description

[] Square
brackets

Causes TACL to expand the enclosed text

For additional information, see Square Brackets ([]) on
page 2-3.

== Double
equal signs

Specifies a comment from the equal signs to the end of the
line

For additional information, see Comments on page 2-10.

{ } Pairs of
braces

Specifies a label; used in #CASE, #DEF, #IF, and #LOOP
functions

For example, |THEN| and |ELSE| are labels. For more
information about enclosures and labels, see Function Calls
on page 5-1.

| | Pair of
vertical
lines

Specifies a label; used in #CASE, #DEF, #IF, and #LOOP
functions

For example, |THEN| and |ELSE| are labels. For more
information about enclosures and labels, see Function Calls
on page 5-1.

~ Tilde Changes the interpretation of the next character (or in the
case of double equal signs two characters)

For additional information, see Tilde (~) on page 2-5.
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-3

Lexica l E lem ents M etacharacters
you can enclose var1 in square brackets to obtain the contents of var1 or you can
omit the brackets to obtain the text var1:

12> #OUTPUT [var1]
3
13> #OUTPUT var1
var1
14>

If the variable is a routine that contains executable TACL statements, TACL
interprets the executable statements and replaces the variable name with the result
of the statements.

When specifying the contents of a variable as an argument to a command or built-in
function, you do not always need to enclose the variable name in square brackets:

 Commands and built-in functions such as VCHANGE and #CHARGETV expect a
variable name for one or more arguments. When you supply a variable name as an
argument to one of these commands or built-in functions, you do not need to
enclose a variable name in square brackets. (In these cases, if you wish to supply
text in place of a variable name, you must enclose the text in double quotation
marks.)

 Commands and built-in functions such as #IF and #COMPUTE expect expressions
as arguments. When you supply a variable name as an argument to one of these
commands or built-in functions, you do not need to enclose a variable name in
square brackets. For more information about expressions, see Section 3,
Expressions.

TACL evaluates the contents of square brackets before other portions of a statement.
This example illustrates the effect of square brackets on invocation sequence.
#OUTPUT is a built-in function that sends its argument to the TACL OUT file.

18> #OUTPUT #PMSEARCHLIST
#PMSEARCHLIST
19> #OUTPUT [#PMSEARCHLIST]
#DEFAULTS $HOME.SUBV $SYSTEM.SYSTEM
20> [#OUTPUT] #PMSEARCHLIST

#PMSEARCHLIST expanded to:

#DEFAULTS $HOME.SUBV $SYSTEM.SYSTEM

In the first case, line 18, TACL expands the #OUTPUT function first because it
encounters it first; there are no square brackets in the command line. The #OUTPUT
function uses the simple text “#PMSEARCHLIST” as its argument.

In the second case, line 19, TACL expands #PMSEARCHLIST first because of the
brackets. The #PMSEARCHLIST built-in variable returns the list of subvolumes in the
program and macro search list; TACL then expands #OUTPUT with that text as its
argument.
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-4

Lexica l E lem ents S epara to r C haracters
In the third case, line 20, TACL expands #OUTPUT entirely within the limits of the
square brackets, producing a blank line of output; then TACL invokes
#PMSEARCHLIST.

If you need to output a square bracket from a TACL program, you can use the ~[
combination described in Table 2-1 on page 2-3.

Tilde (~)

The tilde is used in combination with another character:

 ~; simulates an end-of-line character; this character allows you to enter multiple
TACL commands, separated by ~; combinations, in one line of terminal input.

 ~_ represents a space character when #OUTFORMAT is set to PRETTY. This
metacharacter is useful for managing the spacing and alignment of output. For
more information, see the #OUTFORMAT Built-In Variable on page 9-274.

 TACL replaces the combination of a tilde and a metacharacter with the
metacharacter itself. For example, ~[becomes [, and ~== becomes ==.

 TACL replaces the combination of a tilde and a character that is not a
metacharacter with a single question mark. For example, ~A becomes ?

Separator Characters

Most data supplied to TACL must end with a separator character. For example,
keywords, file names, and variable names must end with a standard TACL separator;
numbers and tokens, on the other hand, need not end with a separator character.

Table 2-2, lists the standard TACL separator characters.

Table 2-2. Separator Characters

Note. You cannot use these characters in the KEYWORD and TOKEN definitions of the
#ARGUMENT built-in function.

Character Name

Space

, Comma

(Left parenthesis

) Right parenthesis

/ Slash

; Semicolon

carriage return Physical end of line

~; Logical end of line; allows multiple statements per line.
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-5

Lexica l E lem ents Q uestion M ark (?)
Question Mark (?)

TACL uses the question mark character for two purposes:

 Displaying previous command lines

 Specifying the start of a TACL directive

To start a line with a question mark for any other purpose, use two question marks.
TACL then discards the first question mark and any adjacent spaces and treats the
remainder of the line as text.

Ampersand (&)

An ampersand (&) at the end of a line of TACL commands or function calls signals that
the line continues on the next physical line. This continuation applies to executable
statements and comments, with two exceptions:

 TACL does not interpret data transmitted by a process or file opened using
#REQUESTER or #SERVER; any special characters are treated as text. If you
receive a line that contains an ampersand, TACL does not view the ampersand as
a continuation character.

 You cannot use the continuation character with a TACL directive (a line beginning
with a question mark).

Template Characters

Templates are special constructs that allow you to perform simple pattern-matching
operations. For example, the command

FILENAMES c?t

displays all three-letter file names in the default volume and subvolume that begin with
C and end with T, such as CAT or CUT. The command

FILENAMES cat*

displays all file names that begin with CAT, regardless of name length, such as CAT,
CATALOG, or CATERERS. You can use templates to specify several entities with
similar names in a single request. TACL supports templates for file names and
DEFINEs.

Note. TACL strips off comments when converting text from external format to internal format,
so any ampersand that appears before a comment appears to be at the end of the line. This
behavior can cause TACL to treat the next line as a continuation of the previous line.

The maximum line length is 239 characters; if a line is longer than 239 characters, TACL
truncates the line to 239 characters.
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-6

Lexica l E lem ents Tem p la te C haracters
Subvolume Templates

Several TACL commands and built-in functions allow you to supply subvolume
templates in place of actual subvolume names. The TACL command or built-in function
then operates on one or more similarly named files. A subvolume specification includes
these fields:

[[[\node-name.]$volume-name.] subvolume-name.]

A subvolume template follows the format of a file name, but contains one or more of
the template characters listed in Table 2-3, in place of specific characters in the file
name. You can include these template characters in any field of the subvolume
specification except the node-name field, which does not allow the * character. In
addition, template characters cannot match a volume identifier ($) or a field separator
(.) in a file name.

File-Name Templates

Several TACL commands and built-in functions allow you to supply file-name templates
in place of actual file names. The TACL command or built-in function then operates on
one or more similarly named files. A file-name specification includes these fields:

[[[\node-name.]$volume-name.] subvolume-name.] file-name

A file-name template follows the format of a file name, but contains one or more of the
template characters listed in Table 2-3, in place of specific characters in the file name.
You can include these template characters in any field of the file-name specification
except the node-name field, which does not allow the * character. In addition, template
characters cannot match a volume identifier ($) or a field separator (.) in a file name.

Table 2-3. Template Characters

DEFINE Templates

Most TACL functions that allow DEFINEs allow you to specify templates for DEFINE
names. These templates use the same characters as file-name templates, with the
added convention that you can use these patterns to refer to all existing DEFINEs:

=* or **

For more information about DEFINEs, see Section 5, Statements and Programs and
the Guardian User’s Guide.

Character Description

? Matches any single character

* Matches any number of characters, including none
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-7

Lexica l E lem ents O pera tors
Operators

Operators perform mathematical or logical operations on values. The operators
provided by TACL can be divided into three categories:

 Arithmetic

 Logical

 String

For a complete list of operators, see Section 3, Expressions.

Constants
A constant is a value that you can store in a variable, use as a literal, or specify as part
of an expression. There are two types of TACL constants: text constants and string
constants. An integer is a special type of text constant.

Text Constants

A text constant is any sequence of these characters:

 Nonmetacharacters from the ISO character set

 Tilde-metacharacter combinations

TACL ignores leading and trailing spaces when interpreting a text constant.

Use a text constant with functions that accept text arguments. For example, the
#REPLY built-in function accepts a text argument. Built-in functions that accept text
arguments use all the remaining text on the line, with leading and trailing spaces and
end-of-line characters removed.

These text constants are valid:

 DATA1

 456

 Please type a number

An integer is a special type of text constant that consists of a sequence of digits. The
sequence can include a prefix that specifies a positive or negative sign. Many integers
in this manual are listed with commas for clarification. Do not, however, include
commas when you specify an integer. TACL does not accept commas in integers.

Integer-constant:

[+ | -]{ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }...

An integer constant can be written as one or more decimal digits (0-9) with an optional
sign prefix (+ or -). A TACL integer is similar to the FIXED numeric constant available in
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-8

Lexica l E lem ents S tring C onstan ts
the Transaction Application Language (TAL). The internal representation is a 64-bit
fixed-point binary number. The valid range is:

-9223372036854775808 to +9223372036854775807

This range is called max-int in command descriptions and function descriptions in this
manual.

These integers are valid

 145

 4

 -89776

TACL uses integer values for logical operations and comparisons. TACL interprets zero
as FALSE and nonzero integers as TRUE.

String Constants

A string constant is any sequence of these characters, enclosed within a pair of
quotation marks (“ ”):

 Nonmetacharacters from the ISO character set

 Tilde-metacharacter combinations

You can include leading and trailing spaces within the quotation marks. Use a string
constant with functions that accept string arguments. In addition, you can use a string
constant in place of a variable level in many built-in functions, such as built-in functions
that manipulate variables (functions with names that end in “V”). For example, the
#LINEFINDV function accepts a string constant.

These string constants are valid:

 “ Error on input ”

 “456”

Reserved Words
A reserved word is a predefined, symbolic name that has special meaning to TACL.
Reserved words cannot be redefined; if you try to redefine one, TACL returns an error.
Reserved words include:

 All built-in variable names

 All built-in function names

To define a new level of a built-in variable, use the PUSH command or the #PUSH
built-in function. You can then specify a new value for the built-in variable while
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-9

Lexica l E lem ents C om m ents
preserving the former value. For more information about variables and variable levels,
see Section 4, Variables.

Comments
TACL supports three forms of comments:

 The “double equal” metacharacter: == comment text

This form causes TACL to ignore all subsequent text until the end of the line,
including braces and square brackets but excluding ampersands. To continue the
comment on the next line, use the line continuation character (&).

== this is a valid comment

== and this == is }{ a valid][comment

== this is a valid comment that &

is carried over to the next line }

 Pairs of braces: { comment text }

When TACL encounters an opening brace, it ignores all subsequent text, including
double equal signs (==) and square brackets, until it encounters a closing brace.
The closing brace must appear on the same line unless you continue the line with
the line continuation character (&). An opening brace appearing within the
comment text is considered an error.

#OUTPUT This is not{this is a valid comment} a comment

{ this is a valid comment that &

is carried over to the next line }

{ this is an invalid comment; it exceeds one

line but has no "&" continuation character }

{ this is an invalid comment; it has two opening {'s }

 The COMMENT command: COMMENT comment text

COMMENT is a TACL command that simply ignores its argument unless the
argument contains square brackets or braces. COMMENT is provided for
compatibility with earlier command interpreters; for new work, the use of braces or
double equal signs is recommended because of these special considerations:

 If the argument contains a square-bracketed function, TACL executes the
function, but ignores its result along with the rest of the argument. A single left
bracket in the argument is not actually invalid, but causes unpredictable
results: TACL assumes it is the beginning of a function invocation and

Note. TACL does not prevent you from redefining TACL commands. You can, for example,
define a macro or function with the name TIME-a standard TACL command. You can also load
a segment file that has the same name as a TACL command. If you make such a change,
TACL will not act in its standard manner; it will, instead, execute your code.
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-10

Lexica l E lem ents C om m ents
processes as such all subsequent lines of text until it encounters a right
bracket.

 If the text contains braces, the rules for that form of comment also apply.

Comment text is terminated by the end of the command line unless you continue
the line with the line continuation character (&):

COMMENT This is == a valid }{ comment

COMMENT This is also a valid comment &
that is carried over to the next line

COMMENT {This {thing} is an invalid comment}

In all forms of comments, comment text is optional. TACL does not support nested
comments.
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-11

Lexica l E lem ents C om m ents
H P N onS top TA C L R e fe rence M anua l — 429513-017
2-12

3 Expressions

An expression can be a text, string, or integer constant, a variable, or a value obtained
by combining constants, variables, and other expressions with operators. This section
describes operators and how to use them in expressions.

Operators
Operators perform operations on values. The operators provided by TACL can be
divided into four categories:

 Arithmetic

 Relational

 Logical

 String

Operators have an order of precedence; when several operations take place within the
same program statement, operations with higher precedence are performed before
operators with lower precedence. Table 3-1 lists the category, function, and relative
precedence of each operator; a lower number indicates higher precedence. To change
the order of precedence, use parentheses. A subexpression in parentheses is
evaluated before the rest of the expression that contains it.

Table 3-1. TACL Operators (page 1 of 2)

Operator Function Type of Operation Precedence

NOT NOT Logical 0

* Multiplication Arithmetic 1

/ Division Arithmetic 1

+ Addition Arithmetic 2

- Subtraction Arithmetic 2

> Greater than Relational (integers) 3

< Less than Relational (integers) 3

>= Greater than or equal to Relational (integers) 3

<= Less than or equal to Relational (integers) 3

= Equal to Relational (integers) 3

<> Not equal to Relational (integers) 3

‘+’ Concatenation String 3

'>' or '!>' Greater than Relational (strings) 3

'<' or '!<' Less than Relational (strings) 3

'>=' or '!>=' Greater than or equal to Relational (strings) 3

'<=' or '!<=' Less than or equal to Relational (strings) 3
H P N onS top TA C L R e fe rence M anua l — 429513-017
3-1

E xpress ions A rithm etic O pera tions
String operators that include an exclamation point (!) are case-sensitive; those without
exclamation points make no distinction between uppercase and lowercase letters.

The apostrophes around each string operator are part of each operator and must be
present.

Arithmetic Operations
TACL supports arithmetic operations on integers. As with integer-based arithmetic in
other languages, perform multiplication operations before division operations to obtain
the greatest precision.

Logical Operations
TACL supports logical operations and comparisons for integer and string operands.
TACL interprets 0 as FALSE and nonzero integers as TRUE, and typically returns -1 or
1 as the nonzero (TRUE) result for built-in function results. String comparison
operators are enclosed in single quotes to differentiate them from numeric operators.
For example, assuming STATE is a variable containing text and COUNT is a variable
containing a number, this #IF condition could be stated:

[#IF STATE '=' "DONE" OR COUNT = 10 |THEN| ...

String comparison and numeric comparison yield different results. If, for example, one
variable contains 10 and the other contains 010, the two values are equal numerically
but unequal in the string sense (they are = but are not '=').

To perform operations interactively, use the COMPUTE command. To obtain the value
of an expression for use by other code, use the #COMPUTE built-in function. Note,
however, that if a function accepts an expression as an argument, you do not need to
specify #COMPUTE. For example, this statement evaluates the embedded arithmetic
expression because the #IF function accepts an expression as an argument:

[#IF A+1 = 3 |THEN|
...
]

To obtain the value of an expression, use the COMPUTE command (interactive) or the
#COMPUTE built-in function (programmatic).

'=' or '!' Equal to Relational (strings) 3

'<>' or '!<>' Not equal to3 Relational (strings) 3

AND AND Logical 4

OR OR Logical 5

Table 3-1. TACL Operators (page 2 of 2)

Operator Function Type of Operation Precedence
H P N onS top TA C L R e fe rence M anua l — 429513-017
3-2

E xpress ions Log ica l O pera tions
If you use a variable as an operand, you do not need to enclose the variable name in
square brackets.

Note. TACL evaluates all operands in a logical expression, even after the first FALSE (in an
AND expression) or the first TRUE (in an OR expression). Therefore, all variables used in such
expressions must first be initialized using #SET or a similar command or built-in function.
H P N onS top TA C L R e fe rence M anua l — 429513-017
3-3

E xpress ions Log ica l O pera tions
H P N onS top TA C L R e fe rence M anua l — 429513-017
3-4

4 Variables

In many other languages, the term variable refers to a simple variable that contains a
single element, such as the number 10, or a more complex variable that contains an
set of elements. In TACL, a variable can contain a single element, a set of elements, or
information as diverse as a hierarchy of variables or a series of TACL statements.

You can create, set, and delete variables. You can access variables interactively or
load them into memory from a file. For more information about loading variables, see
Section 5, Statements and Programs.

This subsection provides general information about variables, including a discussion of
the stack organization of variables. The remainder of this section provides information
about each type of TACL variable.

Along with the variables you create, TACL supplies a set of variables. These variables
are called built-in variables and are listed in Section 9, Built-In Functions and Variables.

An Overview of TACL Variables
A TACL variable can contain data, TACL statements, or other information. Table 4-1
lists the seven types of variables. TEXT variables can be used to contain text or
procedural constructs.

Table 4-1. TACL Variables and Their Uses (page 1 of 2)

Variable
Type Description

TEXT Contains text or a sequence of TACL statements. A text variable that
contains text is most similar to simple variables used by other programming
languages. A TEXT variable that contains TACL statements does not
accept arguments, but can be used in a similar way as a MACRO variable
(described below) if arguments are not necessary.

ALIAS Contains the name of a TACL variable. An ALIAS variable allows you to
invoke a variable by a different name: the alias name. Any arguments
supplied when invoking an alias variable are passed to the referenced
function.

MACRO Contains a sequence of TACL statements. Arguments presented to the
macro are substituted, without interpretation or checking, for dummy
arguments in the macro text; each argument is referenced by position.

ROUTINE Contains a sequence of TACL statements. A routine can parse its own
arguments (TACL supports several predefined argument types) and can
compute its own result.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-1

V ariab les V ariab le N am es
Variable Names

A variable name can contain from 1 to 31 characters and must start with a letter. The
name can contain letters, numbers, underscore characters (_), and circumflexes (^).
Variable names are not case-sensitive. These are valid variable names:

var1

ems^text^info

write_data

Coexisting With TACL Programs Supplied in a TACL
Software RVU

To avoid conflicts with TACL software provided as part of a software RVU, adhere to
these rules:

 Never create variables whose names begin with a circumflex (^) and never use, in
any way, such variables supplied as part of a TACL software RVU.

 Do not create or use variables whose names begin with an underscore (_), except
where specifically permitted as a feature of a TACL software RVU.

 Do not create any variables under :UTILS. Similarly, the associated source file,
TACLSEGF, can contain only TACL programs supplied as part of a TACL software
RVU.

 Do not create any variables under :UTILS_GLOBALS except where specifically
permitted.

 Do not push or pop :UTILS or :UTILS_GLOBALS.

 If you modify the use list, ensure that your use list always includes certain
directories necessary for the correct operation of TACL programs supplied as part
of a TACL software RVU. The USE command automatically does this for you. The

STRUCT Contains binary data and a set of type definitions that control the
conversion of the binary information to and from associated textual
representations

DELTA Contains a sequence of commands for the TACL low-level text manipulator
(#DELTA)

You cannot execute a DELTA variable as a TACL function.

DIRECTORY Contains an entire set of variables

A DIRECTORY has a hierarchical structure. If used as a function, TACL
executes the top level of a variable named EXECUTE.

Table 4-1. TACL Variables and Their Uses (page 2 of 2)

Variable
Type Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-2

V ariab les V ariab le Leve ls
list of necessary directories depends on the TACL software RVU and must not be
hard coded in your TACL programs.

Variable Levels

A variable level is an important organizational concept associated with TACL variables.
Whenever you create a variable, TACL creates a stack for the variable. Each element
of the stack is known as a variable level. The stack organization allows you to create
local copies of a variable. You can delete the local copies when you exit the local
environment, restoring the variable to its original value.

When you add a new variable level, TACL pushes the stack down by one level; when
you remove a level, TACL pops the stack by one level.

This diagram illustrates a sample variable, var1, that contains three levels:

Declaring a Variable

Table 4-2 lists TACL functions that allocate and define variables.

In addition, the ?SECTION directive allows you to declare any type of TACL variable.
To access such variables, you must LOAD the file that contains them.

Note. Descriptions in this manual sometimes use the term “variable” to mean “variable level,”
for brevity.

Variable Name and Level Contents

var1.3 (top), also accessible as var1 XYZ

var1.2 A

var1.1 35

Table 4-2. Functions and Commands That Allocate and Define Variables

Command
(Interactive)

Function
(Programmatic) Description

PUSH #PUSH Adds a level to the top of a variable. If the variable does
not exist, PUSH and #PUSH reserve the name; when
you use SET VARIABLE or #SET to assign a value to
the variable, TACL reserves space for the variable.

- #DEF Adds a level to the top of a variable. If the variable does
not exist, TACL creates it. You can use #DEF to assign
initial values to the variable. To create a STRUCT
variable, you must use #DEF.

SET
VARIABLE

#SET, #SETV,
#SETMANY

Assigns a value to a variable. If this is a new variable,
this step actually creates the variable.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-3

V ariab les S pecify ing a Leve l o f a V ariab le
The choice of a declaration mechanism depends on whether you want to define the
variable interactively, within a file, or in a library. For more information about files and
libraries, see Section 5, Statements and Programs.

When you create a variable, TACL creates level 1 of the variable. To create additional
levels, push or define the same variable. TACL then creates a new level of the variable
and increments the level number.

You can use the #FRAME built-in function at the start of a macro or routine to define a
local environment for variables. If you create variables within a frame, you can remove
all the variables and their levels by deleting the frame with an #UNFRAME or #RESET
FRAMES operation.

A variable remains in existence unless you delete it with a #POP function call, POP
command, an #UNFRAME operation, or a #RESET FRAMES operation.

Specifying a Level of a Variable

To specify a level of a variable, append a period and a level number to its name. If you
omit the level number, TACL accesses the top level.

You can specify a level number in one of two ways:

 Numbers greater than zero refer to levels relative to the bottom of the stack; they
indicate the order of creation of the levels. As an example, name.1 is the bottom
level, name.2 is the next to the bottom level, and so on.

 Numbers less than or equal to zero refer to levels relative to the top of the stack;
they indicate how far down a level is from the top of the stack. Therefore, name.0
is the top level, name.-1 is the next to the top level, and so on.

This diagram shows the two ways to address levels of the sample variable var1:

Different levels can contain different types of data. For example, the first level of a
variable could contain an alias, the second level could contain text, and the third level
could contain a macro.

Bottom-Up Addressing Top-Down Addressing

var1.3 (top), also accessible as var1 XYZ var1.0

var1.2 A var1.-1

var1.1 35 var1.-2
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-4

V ariab les D e le ting a V ariab le
Deleting a Variable

Table 4-3 lists TACL functions that delete variables.

Accessing Variable Contents

The mechanism for accessing variable contents depends on the context:

 To access the contents of a variable from a location that expects text, enclose the
variable name in square brackets ([]). When TACL encounters a variable name in
square brackets, it replaces the variable name with the contents of the variable;
this action is known as expanding a variable. For example:

#OUTPUT [var1]

If the variable is a routine that contains TACL statements, TACL replaces the
variable name with its associated statements, interprets the statements, and
produces results as directed by the statements. The result ends up in place of the
variable name, making the result very accessible to your program.

If you include a level number within the square brackets, TACL expands the
contents of the variable level. If you omit the level number, TACL expands the top
level of the variable.

 If you are calling a variable as a simple function, then you do not need to surround
the function call with brackets. This example shows a #SET function call without
square brackets surrounding it:

#SET temp 123

 If a statement within a variable contains an enclosure, include brackets to delimit
the enclosure:

[#IF level > limit |THEN|
 #OUTPUT Over limit

Table 4-3. Functions and Commands That Delete Variables

Command
(Interactive)

Function
(Programmatic) Description

POP #POP Removes a level from the top of a variable

KEEP #KEEP Removes one or more levels from the bottom of a
variable

- #UNFRAME Pops all variable levels pushed since the last #FRAME
operation

- #RESET
FRAMES

Performs an #UNFRAME operation for all frames with
frame numbers higher than they were when a routine
was entered

If not called from a routine, TACL performs an
#UNFRAME operation for all frames with numbers
higher than they were when the last prompt was issued.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-5

V ariab les U sing a V ariab le as an A rgum ent
|ELSE|
 #OUTPUT Value is OK

]

 To expand a result or the contents of a variable, include an extra set of brackets
beyond any others required by the foregoing rules.

Using a Variable as an Argument

To specify a variable as an argument to a function that expects a variable name, an
expression, or a string (passing the variable by name), enter the variable name:

#OUTPUTV var1

TEXT Variables
A text variable can contain:

 Integer or text data as defined in Section 2, Lexical Elements.

 TACL statements as defined in Section 5, Statements and Programs.

Sample Declarations

This TACL statement creates a TEXT variable called x:

#PUSH x

This TACL statement creates a TEXT variable called var1 and assigns the value 3 to
var1:

[#DEF var1 TEXT |BODY| 3]

This example creates a TEXT variable called printit; this variable contains TACL
statements:

?SECTION printit TEXT
#OUTPUT Here is line one
#OUTPUT Here is line two
#OUTPUT I'm finished!

To use this code, you must first load the file that contains the code. For more
information, see Section 6, The TACL Environment.

ALIAS Variables
An alias is a limited variable; its contents must be exactly one word-the name of a
variable or a file. (Comments of the == and { } forms are allowed, because TACL
deletes them; but COMMENT lines are not allowed, because they remain.) An alias is
simply a name for something else; for example, the variable S could be an alias for
STATUS.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-6

V ariab les S am p le D ec lara tions
For example, if you replace the TACL STATUS command with a macro called STATUS,
you can no longer use the TACL STATUS command. To access the TACL STATUS
command, you must make the variable S an alias for :UTILS:TACL:STATUS.

You can also use alias variables to define function keys. For more information, see the
Guardian User’s Guide.

Sample Declarations

This definition defines the variable S as an alias for the STATUS command:

[#DEF s ALIAS |BODY| STATUS]

After loading this definition, type the letter s to obtain status information.

Limitations

An alias must define something TACL can actually execute. TACL generates an error if
an alias returns simple text. A macro (described in MACRO Variables) does not have
this restriction. For example, given these definitions:

34> [#DEF a ALIAS |BODY| Huzzah]
35> [#DEF m MACRO |BODY| Huzzah]

you could do this:

36> #OUTPUT [m]
Huzzah

but not this:

37> #OUTPUT [a]
Huzzah
 ^
Expecting ...

followed by lists of what the alias could have been, followed by

#OUTPUT [a]
 ^
ERROR Cannot resolve alias
38>

MACRO Variables
A macro variable contains TACL statements; a macro can include conditional logic and
can invoke other macros and functions. When TACL encounters a macro name, it
replaces that name with the entire contents of the macro and interprets it, performing
the specified work.

If you declare variables within the macro and use #FRAME and #UNFRAME to
precede and follow their declaration and use, TACL deletes the variables before you
exit the macro.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-7

V ariab les M acro A rgum ents
For information about TACL statements, see Section 5, Statements and Programs. For
additional examples of TACL macros, see the TACL Programming Guide.

Macro Arguments

A macro accesses arguments by position. To access an argument, specify the position,
enclosed in percent signs (% n%). For example, %1% references the first argument
supplied when the variable is invoked. Table 4-4 lists several ways to access macro
arguments from within a macro.

When you invoke a macro, you supply arguments as a space-separated list. TACL
substitutes the real arguments in place of the dummy arguments. If you supply more
arguments than are used in the macro, TACL ignores the extra arguments.

Because of the use of the percent sign to denote dummy arguments, if you want to
include a literal percent sign in a macro, enter it twice (%%).

Sample Declarations

This code defines a macro called fn that calls FILENAMES with the first argument
supplied to fn:

?SECTION fn MACRO
FILENAMES %1%

If the argument is not a file-name template, TACL returns an error. You could also use
#DEF to define this macro:

[#DEF fn MACRO |BODY| FILENAMES %1%]

Table 4-4. Macro Arguments

Argument Form Description

%0% The name of the macro itself

%n% The nth argument supplied by the user

%n1 TO n2% The range of arguments from n1 to n2

%n1 to *% The range of arguments from n1 up to and including the last
argument

%n1 TO n2 BY n3% The range of arguments from n1 up to and including n2, using the
increment n3 to step through the specified portion of the list (For
example, %1 TO * BY 2% selects all odd-numbered arguments.)

%n1 TO * BY n3% The range of arguments from n1 up to and including the last
argument, using the increment n3 to step through the specified
portion of the list

%*% All arguments
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-8

V ariab les R O U TIN E V ariab les
This macro displays each of its arguments on a separate line:

?TACL MACRO
#OUTPUT %1% == Output the current argument
[#IF NOT [#EMPTY %2 TO *%] == Test for additional arguments
 |THEN| %0% %2 TO *% == Call self with first arg. gone
]

ROUTINE Variables
A routine variable contains TACL statements. When TACL encounters a routine, it
executes the routine and replaces the invocation with the results returned by the
routine.

TACL routines support these capabilities that are not provided by text variables or
macro variables:

 Sophisticated argument handling capabilities (provided by the #ARGUMENT,
#MORE, and #REST built-in functions)

 Generation of the routine’s own expansions (provided by the #RESULT built-in
function)

 Multiple exit points (provided by the #RETURN built-in function)

 Ability to handle exceptions (provided by the #EXCEPTION, #FILTER, #RAISE,
and #ERRORTEXT built-in functions)

TACL executes a routine within a separate buffer; the only result is generated by one
or more #RESULT built-in functions within the routine. The important distinction
between macros and routines is that a macro invocation returns the entire text of the
macro to be executed; a routine invocation returns only what the #RESULT function
provides.

You can perform exception handling in routines to retain control in case of error
instead of giving up control to the TACL automatic exception-handling logic. For more
information, see the TACL Programming Guide.

For more information about TACL statements, see Section 5, Statements and
Programs. For additional examples of routines, see the TACL Programming Guide.

Routine Arguments

A routine does not use dummy arguments (% n%) for its method of argument handling.
Instead, use the #ARGUMENT built-in function within the routine to examine and
validate arguments and assign their values to variables for use within the function.
#ARGUMENT checks arguments one at a time to see if they satisfy any one of a list of
argument types. For some types of arguments, such as disk files, ensure that the
argument refers to an existing object or that the argument represents a syntactically
correct name for an object. (For example, the file associated with a file name must
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-9

V ariab les S am ple D eclara tion
exist to be a valid file-name argument, but if you specify SYNTAX, TACL checks only
for correctness of the file-name syntax.)

If the argument matches a listed type, the argument is placed into a specified variable,
and TACL returns a number that indicates the argument type. If the argument does not
fit any of the specified types, the routine terminates and generates an error message,
listing the types of arguments that were expected.

To parse arguments to a routine, use the #ARGUMENT built-in function. The
#ARGUMENT function allows you to define the types of arguments that can be
processed by the routine. TACL searches this list from left to right when it processes
each argument and returns the position (in the list) of the first argument type that
matches the argument.

If you declare variables within the routine, surround their declaration and use with
#FRAME and #UNFRAME calls, TACL deletes the variables before you exit the
routine.

Sample Declaration

This code defines a routine variable called day_of_the_week that contains a series of
TACL statements. The routine accepts a timestamp as its argument; the argument is
optional:

?SECTION day_of_the_week ROUTINE
#FRAME
#PUSH days timestamp rslt
== Accept one argument that is a timestamp.
#SET rslt [#ARGUMENT /VALUE timestamp/ NUMBER END]
[#CASE [rslt]
|1| SINK [#ARGUMENT END] == A valid timestamp was supplied
|2| == No timestamp; use the current timestamp:
#SET timestamp [#TIMESTAMP]
|OTHERWISE|
== Unexpected value from #ARGUMENT
#OUTPUT Invalid argument
#UNFRAME
#RETURN
]

== Calculate the numbers of days since 0 and since
== the beginning of the week
#SET days [#COMPUTE [timestamp]/(24*60*60*100)]
== Return the day of the week.
#SET days [#COMPUTE days - ((days/7) * 7)]
#RESULT [#CASE [days]
|0| Tuesday
|1| Wednesday
|2| Thursday
|3| Friday
|4| Saturday
|5| Sunday
|6| Monday
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-10

V ariab les C om paring A rgum ent H and ling in M acros and
R outines
]
#UNFRAME

The SINK commands discard the results of #ARGUMENT and prevent TACL from
echoing to the TACL OUT file. A successful evaluation returns 1; otherwise, the routine
terminates with an error. You could also use a #SET call to evaluate the results.

Comparing Argument Handling in Macros and Routines

These examples show the difference in argument processing between macros and
routines.

This is a sample macro:

?TACL MACRO
== This macro does not check syntax or existence of
== file^name.
#FRAME
#PUSH file^name
#SET file^name %1%
#OUTPUT File name is [file^name]
#UNFRAME

The macro processes whatever it is given (even if no argument is supplied) and
outputs what it is given. Separate coding is required to validate arguments. If you store
this macro in a file named HEYMAC, TACL produces this when you run HEYMAC:

39 HEYMAC thisfile
File name is thisfile

This is a sample routine that performs a similar function:

?TACL ROUTINE
== This routine returns an error if there is no argument,
== if the argument does not have correct syntax, or
== if the named file does not exist.
#FRAME
#PUSH file^name
SINK [#ARGUMENT /VALUE file^name/ FILENAME]
#OUTPUT File name is [file^name]
#UNFRAME

If you store the routine in a file named ROOTN, TACL produces this when you run
ROOTN:

40 ROOTN thatfile
File name is \NODE.$VOL.SUBVOL.THATFILE

The #ARGUMENT function in the routine requires a file name, so TACL checks that:

 An argument is present in the function call

 The argument has proper syntax for a file name

 A file with the specified name actually exists
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-11

V ariab les S TR U C T V ariab les
The VALUE option of the #ARGUMENT function returns the fully qualified form of the
file-name argument.

STRUCT Variables
A STRUCT variable, or structure, is a special-purpose variable that contains a set of
named and typed data items that you can access individually or as a group. Use
STRUCTs to access the Subsystem Programmatic Interface (SPI), the Event
Management Service (EMS), or if you need to store binary data such as 6530 terminal
escape sequences.

TACL STRUCT variables support a wide range of data types. STRUCT variables can
contain simple data items, arrays, and other structures (called substructures).

Structures usually contain related data items. For example, a structure might contain a
process name, the primary CPU,PIN of the process, and its backup CPU,PIN.

Elements of STRUCT Variables

STRUCT variables have these elements:

 A name

 A body that can contain:

 Single-value data items

 Arrays

 Substructures

To declare a STRUCT, use #DEF or ?SECTION to declare a structure body and all
items and substructures associated with the body. For each STRUCT, TACL stores two
types of information: access information and the actual data. (If you declare a structure
using LIKE, the STRUCT contains a pointer to a similar STRUCT that contains access
information.) You store and retrieve STRUCT data as text; TACL stores the data in an
internal format and performs translation to and from the internal format as needed. You
can redefine a STRUCT and specify new access information for your data.

A structure in TACL can contain up to 5000 bytes of data.

Limitations on the Use of STRUCT Variables

Not all TACL commands and built-in functions accept STRUCT variables as
arguments. The use of a STRUCT variable is limited to:

 Describing the STRUCT using #VARIABLEINFO (programmatic) or VARINFO
(interactive)

 Invoking the STRUCT with the use of square brackets, in which case TACL returns
the elements of the STRUCT as a space-separated list
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-12

V ariab les D eclaring a S tructu re B ody
 Assigning values to the STRUCT using #SET (programmatic), SET VARIABLE
(interactive), #SETBYTES, or #SETV

 Comparing the STRUCT to another structure or structure item using #COMPAREV
(programmatic) or _COMPAREV (interactive)

 Specifying a STRUCT as the source variable for #OUTPUTV (programmatic),
OUTVAR (interactive), #APPENDV, or #REPLYV

 Specifying a STRUCT as the destination variable for #EXTRACTV

 Appearing as the prompt or destination variable for #INPUTV

 Initializing STRUCTs using #SSINIT or #SSNULL

 Accepting token entities from #SSGETV

 Supplying token entities to #SSGET(V), #SSPUT(V), or #SSNULL

The use of an item in a structure is limited to:

 Describing the item using #VARIABLEINFO (programmatic) or VARINFO
(interactive)

 Invoking the item with the use of square brackets

 Assigning values using #SET (programmatic) or SET VARIABLE (interactive),
#SETBYTES, or #SETV

 Comparing the item to another item or structure using #COMPAREV
(programmatic) or _COMPAREV (interactive)

Declaring a Structure Body

The syntax for a structure body is either a BEGIN ... END construct or a LIKE
construct:

{BEGIN declaration [declaration ...] END}

{LIKE structure-identifier;}

declaration

is the declaration of a STRUCT item: a simple data item declaration, an array data
item declaration, a substructure declaration, or a FILLER declaration. These types
of declarations are described later.

LIKE structure-identifier

specifies that the definition of a structure or substructure is to be identical to that of
an existing structure or substructure. structure-identifier is the name of an
existing variable of type STRUCT.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-13

V ariab les D eclaring a S tructu re B ody
Considerations

 The BEGIN ... END form can contain declarations for:

 Simple data items

 Array data items

 Substructures

 FILLER bytes

 Redefinitions

 The use of LIKE conserves variable space, because like structures and
substructures use the same structure-accessing information. Accessing
information is not part of a particular structure. The original structure and all like
structures merely point to the access information. TACL automatically releases
accessing information when it is no longer needed.

 Structure-accessing information must be in the same segment as any structure
using it. TACL automatically copies the information to the segment where it is
needed, even if it has copied it before; this means that if you have a segment full of
definitions to be used by structures in another segment, you should define one
structure in that other segment like the original definition, then define any additional
structures like that first copy. This precaution ensures that there is only one copy of
the structure-accessing information.

 If structure A is defined to be like structure B, changing the definition of B later
does not change the definition of A because, although it creates new structure-
accessing information for B, A still refers to the original accessing information.

 When manipulating structures in TACL, use data in an appropriate external format.
For instance, store and retrieve file names in STRUCTs in external format,
although TACL maintains file names in STRUCTs in internal format. In TACL, there
is a difference between 12 integers and an internal-format file name; each occupy
the same amount of storage, but their representation to a TACL programmer is
different.

 TACL aligns structures on word boundaries and allocates storage within a
structure:

 BYTE and CHAR data items in a structure are byte-aligned; all other items are
multiple-word items and are word-aligned.

 A substructure defined by LIKE is word-aligned.

 A substructure is word-aligned if the first item it contains is word-aligned;
otherwise, the substructure is byte-aligned.

 If a substructure is an array with more than one occurrence, contains a word-
aligned item, and would otherwise contain an odd number of bytes, TACL
automatically appends one FILLER byte to the substructure to make its length
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-14

V ariab les D ecla ring a S im p le D a ta Item
an even number of bytes. In this case, either all occurrences of the
substructure are word-aligned or none are.

Declaring a Simple Data Item

A simple data item declaration associates an identifier with a single-element data item.
The syntax for a simple data item declaration is:

type identifier [VALUE initial-value] ;

type

is one of these data types:

BOOL

is a 16-bit signed value that is either true (represented by -1) or false
(represented by 0).

BYTE

is an 8-bit unsigned binary integer; its value is in the range 0 to 255.

CHAR

is an 8-bit ASCII character.

CRTPID

is a 4-word internal-format process ID.

DEVICE

is a 4-word internal-format device name.

ENUM

is a 16-bit signed, enumerated value whose range is defined by the subsystem
and depends on the token number; its value is in the range -32768 to +32767,
and its format is the same as for INT type.

FNAME

is a 12-word internal-format file name for a disk file, process, or device, in the
same form as that produced by the FNAMEEXPAND procedure.

BOOL BYTE CHAR CRTPID DEVICE DEVICE

ENUM FNAME FNAME32 INT INT2 INT4

PHANDLE SSID STRUCT SUBVOL TRANSID TSTAMP

UINT USERNAME BOOL UINT
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-15

V ariab les D ecla ring a S im p le D a ta Item
FNAME32

is a 16-word internal file name of the form used by the Distributed Name
Service (DNS), consisting of a 4-word internal-format node name followed by a
12-word internal-format local file name.

INT

is a 16-bit signed integer; its value is in the range -32768 to +32767.

INT2

is a 32-bit signed integer; its value is in the range -2147483648 to
+2147483647.

INT4

is a 64-bit signed integer; its value is in the range -9223372036854775808 to
+9223372036854775807.

PHANDLE

is a 10-integer external representation of a process handle. The ten unsigned
integers are separated by periods. Each integer can range from 0 to 65535.

SSID

is a 6-word SPI subsystem identifier; its external representation is one to eight
alphanumeric characters or hyphens giving the subsystem owner, followed by
a period (.) separator, an integer subsystem number or a subsystem name, a
period separator, and an integer version number.

SUBVOL

is the first two parts (8 words) of an internal-format local file name; it can be a
disk volume and subvolume, a device name and subdevice name, or a process
name and its first qualifier name. The qualifier name can be from one to seven
alphanumeric characters, preceded by a number sign. The first character must
be alphabetic.

TRANSID

is a 64-bit HP NonStop Transaction Management Facility (TMF) subsystem
internal-format transaction ID.

TSTAMP

is a 64-bit, microsecond-resolution Julian timestamp (Greenwich mean time) or
an elapsed-time value in microseconds.

UINT

is a 16-bit unsigned integer; its value is in the range 0 to 65535.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-16

V ariab les D ecla ring a S im p le D a ta Item
USERNAME

is an 8-word internal-format user name in the same form as that produced by
the USERIDTOUSERNAME procedure. identifier is a name, 1 to 32 characters
in length, which can include alphanumeric, underscore, and circumflex
characters; the first character cannot be numeric.

identifier

is a name, 1 to 32 characters in length, which can include alphanumeric,
underscore, and circumflex characters; the first character cannot be numeric.

VALUE initial-value

specifies the initial value for the field and the value to be given to the field anytime
that the STRUCT is cleared. A STRUCT, like any variable, is cleared by setting it to
nothing:

#SET struct

If you omit VALUE, the default initial value depends on the type of the item:
Numeric items are set to binary zero; other items are set to ASCII spaces.

For CHAR items, initial-value is a character sequence that can appear in
either of two formats:

 If it is not preceded by a quotation mark, the character sequence can contain
any character except space, semicolon, end-of-line, or any TACL
metacharacter.

 If it is preceded by a quote, the character sequence must also be followed by a
quote; internal quotes must be doubled (for example, *Press **return**
key*). The character sequence can contain any character other than a TACL
metacharacter.

If you include VALUE for a CHAR item, but supply an incorrect number of initial
values, TACL returns a syntax error.

For all other items, initial-value is a space-separated list of values
appropriate to the type of the item. End-of-line may also be used as a separator.
The list ends when the semicolon is reached. If initial-value does not supply
enough data for all occurrences of the item, TACL supplies appropriate default
initial values for the remaining occurrences.

To be included in a CHAR value, regardless of whether it is enclosed in quotation
marks, a TACL metacharacter must be input under PLAIN or QUOTED format, or
must be preceded by a tilde: ~[, ~|, ~], ~{, ~}, ~==, or ~~. The tilde is not stored in
the structure.

Considerations

These considerations apply to the use of a STRUCT variable to store process
information:
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-17

V ariab les D ec laring an A rray D a ta Item
 To describe a high-PIN process, use a PHANDLE item in place of a process
identifier (CRTPID).

 TACL uses ten unsigned integers, separated by periods, to represent a process
handle in external form. Each integer can range from 0 to 65535. Use this external
form whenever you send a process handle to TACL (#SSPUT or #SET). This
example shows a process handle in TACL external form:

1.3.5.7.9.11.13.15.17.19

 To display a process handle, you can use the OUTVAR command or #OUTPUTV
built-in function. In addition, the #VARIABLEINFO built-in function with option
TYPE returns type PHANDLE for a process handle field in a STRUCT. You can
specify a structure or an array within a structure. For more information, see the
next two subsections.

Declaring an Array Data Item

The array data item declaration associates an identifier with a group of data items with
the same type. The syntax for the array data item declaration is:

type identifier [(lower-bound : upper-bound)]

[VALUE initial-value] ;

type

is a data type as defined in Declaring a Simple Data Item on page 4-15.

identifier

is a name, 1 to 32 characters in length, which can include alphanumeric,
underscore, and circumflex characters; the first character cannot be numeric.

lower-bound

is a value in the range -32768 to +32767 that defines the number of the first array
element; it must be less than or equal to upper-bound.

upper-bound

is a value in the range -32768 to +32767 that defines the number of the last array
element; it must be greater than or equal to lower-bound.

VALUE initial-value

specifies the initial value for the field and the value to be given to the field anytime
the STRUCT is cleared. A STRUCT, like any variable, is cleared when set to a null
value.

The initial value used if you omit VALUE depends on the type of the item: Numeric
items are set to binary zero; other items are set to ASCII spaces.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-18

V ariab les D ecla ring a S ubstructu re
For CHAR items, initial-value is the same as that defined for a simple data item (in
the previous subsection). If you include VALUE but supply an incorrect number of
initial values, TACL returns a syntax error.

For all other items, initial-value is a space-separated list of values appropriate to
the type of the item. End-of-line may also be used as a separator. The list ends
when the semicolon is reached. If initial-value does not supply enough data for all
occurrences of the item, TACL supplies appropriate default initial values for the
remaining occurrences.

Consideration

TACL treats a data item declared without bounds as though it had been declared with
bounds (0:0, which is one byte long).

Example

This example declares a structure containing various arrays:

[#DEF arrays STRUCT
 BEGIN
 INT array^1 (1:100);
 INT array^2 (-5:-1) VALUE 1 2 3 4 5;
 INT array^3 (-90:90);
 CHAR array^4 (0:16) VALUE "This is a ""VALUE""";
 END;
]

Declaring a Substructure

A substructure declaration associates an identifier with a structure embedded within
another structure or substructure. The syntax for a substructure declaration is:

STRUCT identifier [(lower-bound : upper-bound)] ;

structure-body

identifier

is a name, 1 to 32 characters in length, which can include alphanumeric,
underscore, and circumflex characters; the first character cannot be numeric.

lower-bound

is a value in the range -32768 to +32767 that defines the number of the first
array element of an array data item; it must be less than or equal to upper-
bound.

upper-bound

is a value in the range -32768 to +32767 that defines the number of the last array
element of an array data item; it must be greater than or equal to lower-bound.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-19

V ariab les D eclaring F ILLE R B ytes
structure-body

contains the declarations that define the substructure.

Considerations

 You can nest substructures to any practical level. For additional information on
substructure alignment, see Declaring a Structure Body on page 4-13.

 TACL treats a data item declared without bounds as though it had been declared
with bounds (0:0, which is one byte long).

Declaring FILLER Bytes

A FILLER byte provides a placeholder for structure data or space that your program
does not use. TACL aligns some items on word boundaries; you can use FILLER bytes
to control the alignment of data.

The syntax for the FILLER declaration is:

FILLER num;

num

is a number in the range 1 to 5000 that specifies the number of bytes of filler.

FILLER declarations contribute to more readable TACL programs. For example, you
can use FILLER bytes:

 To define data that appears in a structure but is not used by your program

 To document word-alignment padding bytes that would be inserted by TACL

 To provide placeholders for unused space

You can access a FILLER item only by accessing a structure containing it; if you do
access this structure, TACL treats the FILLER item as type CHAR.

Example

This example shows sample FILLER declarations:

[#DEF sample STRUCT
 BEGIN
 CHAR byte (0:2);
 FILLER 1; == Documents word-alignment pad byte
 INT word1;
 INT word2;
 FILLER 30; == Placeholder for unused space
 INT2 integer32;
 END;
]

H P N onS top TA C L R e fe rence M anua l — 429513-017
4-20

V ariab les D eclaring F ILLE R B ytes
Sample STRUCT Declarations

These examples illustrate several STRUCT declarations.

1. This example declares a two-dimensional array. It consists of two occurrences of a
substructure, each of which contains 50 occurrences of a substructure.

[#DEF buildings STRUCT
 BEGIN
 STRUCT warehouse (0:1);
 BEGIN
 STRUCT inventory (0:49);
 BEGIN
 INT item^number;
 INT price;
 INT on^hand;
 END;
 END;
 END;
]

2. This example shows a structure that holds a start-up message.

[#DEF startup_message STRUCT
 BEGIN
 INT msgcode;
 STRUCT default;
 BEGIN
 SUBVOL default^name;
 END;
 STRUCT infile;
 BEGIN
 FNAME infile^name;
 END;
 STRUCT outfile;
 BEGIN
 FNAME outfile^name;
 END;
 CHAR param (0:529);
 END;
]

3. This example shows storage for substructure occurrences that begin on byte
boundaries because the substructure not only follows a CHAR item (“x”) but also starts
with a CHAR item (“aa”).

[#DEF s STRUCT
 BEGIN
 CHAR x;
 STRUCT sub (0:2);
 BEGIN
 CHAR aa;
 INT b;
 CHAR c;
 END;
 INT y;
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-21

V ariab les D eclaring F ILLE R B ytes
 END;
]

4. This example shows storage for substructure occurrences that begin on word
boundaries because the substructure starts with an INT item (“a^a”).

[#DEF t1 STRUCT
 BEGIN
 CHAR x;
 STRUCT t2 (0:1);
 BEGIN
 INT a^a;
 INT b;
 CHAR c;
 END;
 INT y;
 END;
]

5. This example shows substructures defined using LIKE:

[#DEF state STRUCT
 BEGIN
 UINT code;
 STRUCT startup_message_in;
 LIKE startup_message;
 STRUCT startup_message_out;

x aa

b

c aa

b

c aa

b

c

y

x

a^a

b

c

a^a

b

c

y

H P N onS top TA C L R e fe rence M anua l — 429513-017
4-22

V ariab les R ede fin ing a S tructu re
 LIKE startup_message;
 END;
]

Redefining a Structure

A redefinition declares a new name and description for an existing data item or
substructure. This functionality is similar to a redefine in TAL or a variant record in
Pascal. The syntax for a redefinition declaration is:

type identifier [(lower-bound : upper-bound)]
REDEFINES previous-identifier ;

[structure-body]

type

is one of the data types defined in Declaring a Simple Data Item on page 4-15.

identifier

is the name of the new data item that redefines an existing data item, at the same
structure-nesting level. The new item can be a simple data item, an array data
item, or a substructure.

lower-bound

is a value in the range -32768 to +32767 that defines the number of the first array
element of an array data item; it must be less than or equal to upper-bound.

upper-bound

is a value in the range -32768 to +32767 that defines the number of the last array
element of an array data item; it must be greater than or equal to lower-bound.

previous-identifier

is the name of a data item previously declared at the same structure nesting level.
You cannot specify array bounds with this name.

structure-body

is used only when redefining a substructure (type is STRUCT); it contains the
declarations that describe the new substructure.

Considerations

 A redefinition always starts at element zero of the previous item regardless of the
bounds of that item; this means that the previous item must at least have an
element 0.

 The data area of a redefinition must be exactly the same as, or entirely within, the
data area of the previous item.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-23

V ariab les R ede fin ing a S tructu re
 The new item must be capable of the same alignment as the previous item.

Examples

Examples of redefinition declarations follow.

1. This example redefines part of an INT array as an INT2 array. The redefinition
begins at a(0):

[#DEF s STRUCT
 BEGIN
 INT a(-2:3);
 INT2 b(1:2) REDEFINES a;
 END;
]

2. This example shows a substructure redefinition; the new substructure is smaller
than the previous substructure:

[#DEF str1 STRUCT
 BEGIN
 STRUCT sub1;
 BEGIN
 INT int1;
 END;
 STRUCT sub2 REDEFINES sub1;
 BEGIN
 CHAR chr1;
 END;
 END;
]

Caution. Data stored by one definition might not be readable when retrieved by using another
definition. TACL does not ensure that the data being retrieved is valid under the definition by
which it is being retrieved.

Definition Redefinition

a(-2)

a(-1)

a(0) b(1)

a(1)

a(2) b(2)

a(3)

Definition Redefinition

int1 chr1
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-24

V ariab les S e tting o r A lte ring S tructured D ata
3. In this substructure redefinition, both substructures (“b” and “c”) have the same
alignment as required. In this case, both begin on an odd-byte boundary:

[#DEF a STRUCT
 BEGIN
 CHAR xx;
 STRUCT b;
 BEGIN
 CHAR yy;
 END;
 STRUCT c REDEFINES b;
 BEGIN
 CHAR zz;
 END;
 END;
]

4. This example redefines the format of a substructure record:

[#DEF name^record STRUCT
 BEGIN
 STRUCT whole^name;
 BEGIN
 CHAR first^name (0:10);
 CHAR middle^name (0:10);
 CHAR last^name (0:15);
 END;
 STRUCT initials REDEFINES whole^name;
 BEGIN
 CHAR first^initial;
 FILLER 10;
 CHAR middle^initial;
 FILLER 10;
 CHAR last^initial;
 FILLER 15;
 END;
 END;
]

Setting or Altering Structured Data

To initialize data in a STRUCT, use #DEF or #SET. To change values in the STRUCT,
use #SET.

When storing data in a structure item, you must enter it in a representation appropriate
for the type of that item:

Definition Redefinition

xx yy xx zz
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-25

V ariab les A ccessing S tructured D ata
 If you are storing data in a substructure or array (except of type CHAR) you must
enter it into a space-separated list of representations appropriate for the types of
those items. If the data is shorter than the substructure or array, TACL sets
remaining numeric binary items to binary zero and sets other types of items to
spaces.

 Data that is being stored into an array of type CHAR is not separated by spaces
and may even include spaces. If the data is exhausted, TACL sets the remainder of
the array to spaces.

These examples are based on this structure:

[#DEF tacl^files STRUCT
 BEGIN
 STRUCT file (1:3);
 BEGIN
 FNAME name;
 UINT code;
 END;
 END;
]

Use the #SET built-in function to specify values:

#SET tacl^files:file(2):name taclbase == set a data item

#SET tacl^files:file(1) tacl 100 == set substructure values

== set structure values
#SET tacl^files tacl 100 taclbase 101 taclinit 101

== set structure values from variables
#SET tacl^files [prg] [prgcd] [lib] [libcd] [mac] [maccd]

Accessing Structured Data

To display structured data in a stylized format, use #OUTPUTV. To invoke the STRUCT
(expand its contents into a space-separated list), surround the STRUCT name with
square brackets.

To access a data item in a structure, specify the fully qualified identifier of the structure
item, using this form, with or without array indexes:

struct-name [:substruct-name ...] :item-name

A structure identifier cannot contain any spaces.

All indexes must be within the range declared for the data item. If you try to use an
index outside the range declared for a data item, TACL returns an error.

An example of an identifier of a structure item is:

record.-1:table(1):item([x])

where .-1 indicates that you are accessing the next-to-the-top level of the variable
record; x is a numeric variable containing a valid index.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-26

V ariab les A ccessing S tructured D ata
You can use the #SETV built-in function to copy structures (as well as other types of
variables). The output variable level must already exist; its original type and data are
lost. The output variable level becomes a structure identical to the input structure and
has its own copy of the data.

This is a brief summary of what you can and cannot do when copying STRUCT data.

Suppose you had created this STRUCT to contain an escape control character (ASCII
27) followed by a vertical-line character; this combination clears the screen when sent
to 653x terminals. To assign the data to a text variable for ease of use, enter:

[#DEF makecs STRUCT
 BEGIN
 BYTE b(0:1) VALUE 27 73;
 CHAR c(0:1) REDEFINES b;
 END;
]

#PUSH cs

To do so, you could use one of these #SET calls:

#SET cs [makecs:c(0:1)]

#SETV cs "[makecs:c(0:1)]"

but you could not use this statement:

#SETV cs makecs:c(0:1)

You can assign structures or substructures with #SETV, but not specific data items of a
structure. (If you had defined B and C as substructures of MAKECS, you could use the
preceding function call, but it would change CS from a simple text variable to a
STRUCT identical to MAKECS). Nor could you use:

#SETBYTES cs makecs:c(0:1)

because CS is a text variable and #SETBYTES requires that both source and
destination be structured variables.

If you had a STRUCT defined as:

[#DEF arrays STRUCT
 BEGIN
 INT array^1 (1:100);
 CHAR array^2 (0:16) VALUE "This is a ""VALUE""";
 END;
]

you could copy specific elements of array^1 or array^2 to another variable in this way:

#SET halfnums [arrays:array^1(1:50)]

#SET firstword [arrays:array^2(0:3)]

Data retrieved from a structure item is presented in a standard representation
appropriate for the type of that item.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-27

V ariab les D IR E C TO R Y V ariab les
Data retrieved from a substructure is presented in a space-separated list of standard
representations appropriate for the types of those items. Spaces are not inserted
between CHAR items, however.

These examples are based on the structure defined in Setting or Altering Structured
Data on page 4-25.

To access a data item, surround the structure and item names in square brackets. For
example:

== Access elements in a structure
[tacl^files:file(2):name] == yields taclbase
[tacl^files:file(1)] == yields tacl 100

== Access the entire structure structure
[tacl^files] == yields tacl 100 taclbase 101 taclinit 101

== Distribute structure items into variables
#SETMANY prg prgcd lib libcd mac maccd , [tacl^files]

== Copy a substructure to a substructure
#SET tacl^files:file(1) [tacl^files:file(2)]

To fill one STRUCT with data already present in another structure, use #SETBYTES.

You can use the #SETV built-in function to copy structures (as well as other types).
The output variable must already exist. After the data has been copied, the original

type and data of the output variable is lost; the variable becomes a structure like the
input structure and has its own copy of the data.

DIRECTORY Variables
Directory variables allow you to specify a hierarchical organization for variables that
reside in a segment file; directories can contain directories, which in turn can contain
other directories. The maximum nesting depth for directories is 16 levels. The root of
the tree is the home (:) character. TACL supplies the :UTILS directory, which includes
the :UTILS:TACL directory where all TACL variables reside.

Caution. If one or more of the elementary items consists of or contains spaces, be careful if
you later access this data with commands or functions that use spaces as delimiters;
otherwise, TACL might overlook an item.

Caution. Use care when moving data between structures and variables of other types unless
those variables are used with #SERVER or #REQUESTER or are merely temporary variables
for copying the data of one structure to another. TACL interprets data differently for STRUCT
variables than for other types of variables. For example, if you process such data with #DELTA
while the data is in a variable that is not a structure, #DELTA interprets any bytes holding
binary zero as line end characters, and reshapes the data into multiple lines when putting it
back into a variable. In short, do not process structure data outside a structure except to
perform I/O operations with it.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-28

V ariab les D ecla ring a D irecto ry V ariab le
Directory variables allow you to keep your variables grouped together in a segment file,
for your use or for sharing with other users. Segment files are explained in Section 5,
Statements and Programs.

Declaring a Directory Variable

To create a directory, use #DEF or ?SECTION (in a library) and specify the variable
type as DIRECTORY. You can also create directories by creating variables. For
example:

PUSH :a:b:c:d

creates these directories, if they do not already exist:

:a

:a:b

:a:b:c

You cannot, however, create a root (:) directory; do not issue a PUSH : command.

Accessing a Directory Variable

To refer to a specific variable in a directory, you name, in order, all the directories on
the direct path from the root to the specific variable. Start the name with a colon at the
beginning (which identifies the root directory) and place a colon after each directory
name. The name cannot contain spaces. Such a name is called a full path name. For
example, the full path name for the RUN command, which is a TACL variable stored in
the TACL directory variable in the UTILS directory variable, is :UTILS:TACL:RUN.

As an alternative, you can use a partial path name. A partial path name does not begin
with a colon, and it contains only as much of the full path name as is necessary to
properly identify the variable. On encountering a partial path name, TACL does one of
the following:

 If the partial path name is being supplied to #DEF, #PUSH, PUSH, or ?SECTION
(in a library), TACL behaves as though the partial path name were preceded by the
directory named in the most recent HOME command. For example,

HOME :a:b

PUSH c

is equivalent to

PUSH :a:b:c

If the partial path name is being supplied to any other command, TACL acts as though
the partial path name were preceded by the directory named in the most recent HOME
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-29

V ariab les D irec to ries S upp lied W ith TA C L
command, and then successively by the directories named in the most recent USE
command, until it finds a variable by that name. For example,

HOME :a:one
USE :b :b:two : :c:d:three
OUTVAR d

outputs the first one of these that it finds:

:a:one:d
:b:d
:b:two:d
:d
:c:d:three:d

Directories Supplied With TACL

TACL keeps product variables separate from your user variables by organizing them
into directories within the root directory (:). A directory named TACL exists in :UTILS; it
contains all variables that define TACL commands. A directory within TACL, called
^UTILS, contains helper variables that are not intended for your direct use. By
convention, variables whose names begin with “^” or “_” are reserved for use by a
TACL software RVU. You can use variables beginning with “_” in accordance with their
definitions, but you should never use a variable beginning with “^” in any way at all. If a
directory name begins with “^”, you should not use anything in that directory regardless
of its name.

The :UTILS directory contains directories for all software products on your system that
include TACL programs. The :UTILS_GLOBALS directory is used by software products
that include TACL programs and that need to maintain writable global TACL variables.

For additional information about directories supplied with the TACL software, see
Section 6, The TACL Environment.

DELTA Variables
DELTA variables contain a sequence of commands that are understood by the #DELTA
low-level character editor. Most #DELTA capabilities can be performed using string-
handling and character-handling commands and functions. For more information about
#DELTA, see #DELTA Built-In Function on page 9-111.

Note. Do not create, delete, or change any variables anywhere under these two directories.
Do not create, delete, or change the directories themselves, unless the documentation for a
software product explicitly states that you can. (Some products allow you to modify certain of
their variables in :UTILS_GLOBALS.) This means you should not #PUSH :UTILS.
H P N onS top TA C L R e fe rence M anua l — 429513-017
4-30

5 Statements and Programs

A TACL program consists of one or more statements. A TACL statement consists of
one of these:

 A function call

 A directive

This section describes the syntax for TACL statements and directives, and then
discusses how to create TACL programs, handle completion codes, and process
errors.

For additional examples of TACL programs, see the TACL Programming Guide.

Function Calls
This subsection describes each of these types of statements, and includes a list of
arguments that are common to built-in TACL functions.

A function call has this syntax:

function-call [argument [argument ...]] [enclosure]
[comment]
function-call

is the name of a TACL command or built-in function, or a user-defined TACL program.
The syntax for each command is listed in Section 8, UTILS:TACL Commands and
Functions. The syntax for each built-in function is listed in Section 9, Built-In Functions
and Variables.

You must enclose the function call in square brackets if:

 You want to use the expansion of the function call for further processing.

 The function call includes an enclosure.

 The function call spans more than one line.

 The function call requires brackets to process an argument that references a
multiple-line variable. (Some function calls, such as #OUTPUT, expand their
arguments and use only the first line unless you surround the function call with
square brackets. TACL then tries to execute the second and following lines of the
expanded variable.)

If none of the foregoing are true, the function call need not be enclosed in brackets.

argument

is text, a string, a function name, or other construct as defined by the function call.
If you supply a function name as an argument, the name must be enclosed in
square brackets. For definitions of text and strings, see Section 2, Lexical
Elements.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-1

S ta tem ents and P rogram s Function C a lls
enclosure

specifies that TACL defers expansion of enclosed code until a specific path is
selected. (See Considerations.) An enclosure can be used only in a #CASE, #DEF,
#IF, or #LOOP built-in function call. An enclosure consists of one or more pairs of
labels and text:

label

A label is a text constant or a space-separated list of text constants, enclosed
in vertical lines. Each label precedes and identifies a given portion of text
(which may be empty).

The text within the vertical lines depends on the type of statement; for
example, the label used with the #DEF built-in function is |BODY|.

text

is a string of text that can include one or more function calls as defined
previously. TACL expands this text if the associated label is selected by the
condition in the controlling #CASE, #DEF, #IF, or #LOOP built-in function. Any
square brackets within an enclosure must balance. The last enclosure within
the controlling function call is terminated by the right square bracket (]) that
ends the function call.

comment

is a valid comment, initiated with double equal sign characters (==) or surrounding
braces ({}), which can include text. (The COMMENT command is a function call.)

Considerations

 Note that function-call can be a built-in function or command supplied in the TACL
software or a user-defined TACL program; all are handled in the same manner.

 When you enter a program name (such as RELOAD or USERS) as your function
call, TACL performs an implicit RUN command. TACL starts the program and then
provides the new process with the parameters you entered after the program
name. The process then carries out your instructions.

 You can place more than one function call on a physical line. To separate the
statements, use a logical end-of-line marker (~;).

 TACL interprets each line or logical line (~;) as the end of a statement unless:

 There are unbalanced left square brackets, in which case TACL processes
lines until all brackets are balanced.

 The line ends with a continuation character (&), in which case TACL treats the
next line as a continuation of the first line.

 For information about how TACL interprets each line, see How TACL Interprets
Statements on page 5-11.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-2

S ta tem ents and P rogram s Function C a lls
 To call your program recursively, use %0% for a macro or #ROUTINENAME to
obtain the name of your routine. For examples, see the TACL Programming Guide.

 The ?FORMAT directive and #INFORMAT built-in function affect how TACL
interprets an argument. Under control of the QUOTED input format, STRING
arguments allow inclusion of TACL metacharacters (square brackets, vertical line,
braces, and double equal sign) as ordinary data characters; quotation marks do not
override metacharacters under control of TACL or PLAIN input format.

 Each logical line in a TACL program can contain a maximum of 239 characters. To
extend an 80-character physical line to 239 characters, you can use the
continuation character (&), or you can enclose the statement within square
brackets ([]). Each physical line length depends on the terminal device. The 65nn
terminal uses a line length of 80 characters by default. If a function call and its
associated arguments exceed the maximum physical line length, you can enclose
the statement within square brackets ([]) to treat multiple physical lines as a single
statement.

 When TACL encounters an enclosure, it departs from its standard method of
evaluating bracketed text. Instead of expanding bracketed text, TACL defers
evaluation of all statements in an enclosure until the controlling information is
processed. For example, in an #IF statement, TACL evaluates the expression
before invoking the code associated with |THEN| or |ELSE|.

Example

This example shows an #IF built-in function call with |THEN| and |ELSE| labels:

[#IF x > 3 |THEN|
#OUTPUT Incorrect number
|ELSE|
#OUTPUT x = [x]
]

File-Name Arguments

For file-name arguments, these guidelines apply:

 TACL creates a file name based on what you specify and what the current defaults
are. To specify a file that is not in the current default subvolume (or volume),
include the appropriate subvolume (or volume) name. If you do not specify the
node name, then TACL uses the current default system. For example, if your
current defaults are \LOCAL.$WORK.MINE and you want to specify the file
TIMING in subvolume IGNITION of volume $TUNEUP on the remote system
\AUTOS, you must specify:

\AUTOS.$TUNEUP.IGNITION.TIMING

 TACL performs file-name expansion for partial file names that you specify as
arguments in calls to commands and built-in functions that accept file names. A
partial file name is one that omits the node name, volume, or subvolume of a full
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-3

S ta tem ents and P rogram s Function C a lls
file name. If, however, you specify a volume name, you must specify a subvolume
name. This file name is not syntactically correct:

$VOLUME.FILE

If you specify a partial file name, TACL expands the file name using the current
default names for system, volume, and subvolume where necessary. If you specify
MYFILE, for example, TACL assumes you mean the file named MYFILE in the
current default subvolume, volume, and system.

For more information about file-name expansion, see the Guardian User’s Guide.

 Many built-in functions accept file-name templates in place of actual file names, so
that the command or function can operate on a number of similarly named files.
For information about file-name template characters, see Section 2, Lexical
Elements.

Device-Name Arguments

TACL evaluates a device name based on what you specify and what the current
defaults are. For file-name arguments, if you do not specify a node name, then TACL
uses the current default system.

Process Identifier Arguments

A process identifier identifies a process within a system or in a network. TACL uses
these types of process identifiers:

 Process name

A process name identifies a process or process pair within a node. The name is an
alphanumeric string up to five characters long, preceded by a dollar sign, and can
be preceded by a node name. The first character must be alphabetic. TACL uses
process names in displays and interactive requests. For each named process or
process pair, the format is $ process-name; for example:

$ABC

\SYSTEM.$PRC12

The D-series process name is similar to a C-series process name, but a five-
character name is allowed for remote processes. (The syntax for D-series remote
process names matches the syntax for local names.)

TACL evaluates process names based on what you specify and what the current
defaults are. If you do not specify a node name, then TACL uses the current
default system.

 CPU,PIN (also known as a PID)

The combination of a CPU number and process identification number (PIN) identify
a process on a node. This combination is the only way to identify an unnamed
process on C series or earlier software.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-4

S ta tem ents and P rogram s D irec tives
 Process handle

A process handle contains ten unsigned integers that identify a single named or
unnamed process among all processes that are running or have run in one or more
system nodes. The process handle is an internal form of identification for a process.
System messages, completion code STRUCTs, and SPI buffers contain process
handle information.

TACL creates a process name based on what you specify and what the current
defaults are. If you do not specify a node name, then TACL uses the current default
system.

DEFINEs as Arguments

A number of TACL functions accept DEFINEs as arguments. A DEFINE is a named set
of attributes and associated values. In a DEFINE (as with an ASSIGN command), you
can specify information to be communicated to processes you start. The operating
system (file system or I/O processes) usually processes DEFINEs, while application
programs or run-time libraries process ASSIGNs.

TACL stores DEFINEs in its process file segment (PFS) and can propagate them to
processes you start. Some TACL functions permit you to use templates in place of
actual DEFINE names. For information about DEFINE templates, see Section 2,
Lexical Elements Commands and built-in functions that support DEFINEs are
identifiable by the appearance of DEFINE or DEFMODE in their titles. For more
information about DEFINEs, see individual command and function descriptions in this
manual, the TACL Programming Guide, the Guardian Programmer’s Guide, and the
Guardian User’s Guide.

Directives
TACL directives are for use only in files that contain TACL statements. There are four
types of directives:

 ?BLANK

 ?FORMAT

 ?SECTION

 ?TACL

All TACL directives start with a question mark (?).

Note. The format of a process handle is defined by the TACL software and is subject to
change in future RVUs.

Note. Question marks are used for two purposes in TACL: for editing previous command lines
and for specifying the start of a TACL directive. To start a line with a question mark for another
purpose, such as loading DDL commands, use two question marks. TACL discards the first
question mark and any adjacent spaces and treats the remainder of the line as text.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-5

S ta tem ents and P rogram s ?B LA N K D irective
?BLANK Directive

 Use the ?BLANK directive to insert a blank line into a variable; this can be useful when
you load text that is to be displayed. The syntax is:

?BLANK

?FORMAT Directive

Use the ?FORMAT directive to specify how TACL interprets metacharacters in the
TACL statements following the directive. The ?FORMAT directive is similar to the
#INFORMAT built-in variable, but acts on statements in a file instead of text from the IN
file. The syntax is:

?FORMAT { PLAIN | QUOTED | TACL }

PLAIN

causes TACL to interpret metacharacters and all other characters in the file as
ordinary text. For example, braces and double equal signs are read as such and
are not interpreted as comments in PLAIN mode.

QUOTED

causes TACL to interpret metacharacters as metacharacters (the same as the
TACL option), unless text with metacharacters is enclosed in quotation marks. In
this case, TACL treats metacharacters as if they were ordinary text (tildes are not
needed).

TACL

causes TACL to interpret metacharacters as metacharacters and store them in
internal notation. TACL reads square brackets as the beginning and ending of an
invocation. A vertical line indicates a label in an enclosure. TACL reads braces and
double equals as comments.

Using a tilde causes TACL to interpret the next character as plain text, rather than
a delimiter; for example, TACL reads ~[as an ordinary open square bracket, rather
than the beginning of an invocation. To use a tilde character as text, enter it twice
(~~). The tilde has no effect on its own, but only in conjunction with other
characters.

When using the TACL format, you can put several commands on a single line by
separating the commands with a tilde and a semicolon (~;). TACL translates these
metacharacters into internal end-of-line characters.

You can also use a tilde and an underscore (~_) when ?FORMAT is set to TACL.
TACL translates this notation into an internal space, which is printed as a space if
you use the PRETTY option with #OUTFORMAT; otherwise, the tilde and
underscore are treated as ordinary characters.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-6

S ta tem ents and P rogram s ?FO R M A T D irective
Considerations

 The ?FORMAT value for a library file is set to TACL at every ?SECTION directive.

 The ?FORMAT value for a macro or routine file that starts with a ?TACL directive is
set to TACL at the beginning of the file.

Example

This example shows the effects of the ?FORMAT directive:

?SECTION this^section ROUTINE
==
== PLAIN format allows a multiple-line #OUTPUT function to
== output text containing special characters without having
== to use tildes
==
#SET #OUTFORMAT PLAIN == Set display format to PLAIN

[#OUTPUT Using ?FORMAT PLAIN:
?FORMAT PLAIN

+------------------------+
| COMMENT [<argument>] |
+------------------------+

?FORMAT TACL
]
#OUTPUT
[#OUTPUT Using ?FORMAT QUOTED:

?FORMAT QUOTED

"+------------------------+"
"| COMMENT [<argument>] |"
"+------------------------+"

?FORMAT TACL
]
#OUTPUT
#OUTPUT

#OUTPUT ?FORMAT TACL, with quotes: "[#MYTERM]"
#OUTPUT ?FORMAT TACL, without quotes: [#MYTERM]
#OUTPUT

?FORMAT PLAIN
#OUTPUT ?FORMAT PLAIN, with quotes: "[#MYTERM]"
#OUTPUT ?FORMAT PLAIN, without quotes: [#MYTERM]
#OUTPUT

?FORMAT QUOTED
#OUTPUT ?FORMAT QUOTED, with quotes: "[#MYTERM]"
#OUTPUT ?FORMAT QUOTED, without quotes: [#MYTERM]
#OUTPUT

?SECTION next^section ROUTINE
== Format reverts to TACL because this is a new section
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-7

S ta tem ents and P rogram s ?S E C TIO N D irective
== This output appears as "$<terminal name>"
#OUTPUT "[#MYTERM]"

If you load the preceding file and invoke this section, TACL produces this output when
#OUTFORMAT is set to PLAIN:

14> this^section

Using ?FORMAT PLAIN:

+------------------------+
| COMMENT [<argument>] |
+------------------------+

Using ?FORMAT QUOTED:

"+------------------------+"
"| COMMENT [<argument>] |"
"+------------------------+"

?FORMAT TACL, with quotes: "$LM1.#ZWN0009"
?FORMAT TACL, without quotes: $LM1.#ZWN0009

?FORMAT PLAIN, with quotes: "[#MYTERM"]
?FORMAT PLAIN, without quotes: [#MYTERM]

?FORMAT QUOTED, with quotes: "[#MYTERM]"
?FORMAT QUOTED, without quotes: $LM1.#ZWN0009

15>

?SECTION Directive

Use the ?SECTION directive to signal the beginning of a variable definition in a file.
This directive allows you to create a library that contains definitions for many variables.
The syntax of the directive is:

?SECTION variable-name variable-type

variable-name

specifies the name associated with the following lines of text. For information about
valid variable names, see Section 4, Variables.

variable-type

specifies the type of TACL variable: TEXT, ALIAS, MACRO, ROUTINE, STRUCT,
DIRECTORY, or DELTA.

Considerations

 To cause TACL to interpret or execute the contents of the file, use the LOAD
command or #LOAD built-in function to load the contents into memory. This
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-8

S ta tem ents and P rogram s ?TA C L D irective
example shows how to load two libraries, retaining only one level of each variable
in the libraries:

17> LOAD /KEEP 1/ mykeys mymacs

 To invoke a variable after it is loaded, type the variable name.

 To process a file, TACL pushes the variable for each ?SECTION directive, sets its
contents to type, and makes body the new top-level definition of the variable.

 As a library is loaded, comments are removed to conserve variable space. Any line
that is blank, or that becomes blank because of comment removal, is discarded.

 For additional information about creating and accessing a file with the ?SECTION
directive, see Creating Program Files on page 5-12.

?TACL Directive

Use the ?TACL directive to specify that the TACL statements following the directive in a
file are the contents of a TACL variable. The syntax of the directive is:

?TACL variable-type

variable-type

specifies the type of TACL variable: TEXT, ALIAS, MACRO, ROUTINE, STRUCT,
DIRECTORY, or DELTA.

Considerations

 The ?TACL directive, if specified, must be the first line of the file.

 To cause TACL to interpret or execute the contents of the file, type the file name.

 For additional information about creating and accessing a file with the ?TACL
directive, see Creating Program Files on page 5-12.

TACL Programs
A program consists of one or more statements. You can enter the statements
interactively or store them in a file. This subsection contains information about TACL
programs:

 The structure of a TACL program.

 A description of how TACL interprets statements.

 Instructions for creating and accessing three types of program files.

 A description of completion code information.

 A description of TACL error types.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-9

S ta tem ents and P rogram s P rogram S tructu re
Program Structure

When you write a TACL program, you define the program as a type of TACL variable.
There are four types of variables that can contain executable statements: TEXT,
MACRO, ROUTINE, and ALIAS. A program can contain of one or more TACL
statements:

 A directive, ?TACL or ?SECTION, that indicates that the following lines define a
program.

 A #FRAME call that defines a local environment.

 A series of #PUSH or #DEF statements that define data variables and
subprograms. (TACL does not require you to place definitions at the start of a
program, but placing definitions at the start can increase readability of the
program.)

 Additional TACL statements; the main body of the program.

 An #UNFRAME or #RESET FRAMES call if the program called #FRAME earlier.

TACL is an interpretive language; you do not compile or bind TACL programs. TACL
programs execute as part of your interactive TACL process unless you direct them to
run independently (in the background).

Sample Program

This program, of type macro, purges a file:

?TACL MACRO
#FRAME == Establish a local environment for variables
#PUSH err == Declare a variable called "err"

== Set err to the result of the #PURGE function:
#SET err [#PURGE %1%]

== Display the results of the purge operation:
[#IF NOT err |THEN|
 #OUTPUT Purge of file %1% complete!
|ELSE|
 #OUTPUT Error [err]
]
#UNFRAME == Delete the local environment

A macro accepts positional arguments; %1% refers to the first argument supplied when
you run the program.

To run this program, type the name of the file that contains the TACL statements,
followed by the name of an existing file that you want to purge. If, for example, the
statements are stored in a file called PRG, you would type this to purge a file called
TEMP:

18> PRG TEMP
Purge of file TEMP complete!
19>
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-10

S ta tem ents and P rogram s H ow TA C L In te rp re ts S ta tem ents
If you try to purge TEMP a second time, TACL returns an error message:

19> PRG TEMP
Error 11
20>

An error 11 indicates that the file was not found:

20> Error 11
011 file not in directory or record not in file, or the
specified tape file is not present on a labeled tape

How TACL Interprets Statements

TACL requires read access to interpret a TACL program. TACL uses a 32,767-byte text
buffer to execute statements. TACL executes statements in this sequence:

1. If the text buffer is empty, TACL prompts and waits for input. The input is placed
into the TACL text buffer, the place where function execution actually takes place.
The text buffer may contain from zero to many lines of text. If the text buffer is not
empty, TACL examines the contents of the buffer, starting with the first line and
moving forward through the buffer.

2. TACL examines the current line of the text buffer from its beginning, searching for
square brackets.

If TACL encounters square brackets, TACL invokes the first element in that line
whose closing bracket is found, ignoring any function calls that are inside
enclosures. For macro variables, TACL substitutes dummy arguments as
necessary. TACL replaces the element with its result (if it was a built-in function or
other routine) or its expansion, starts again at the beginning of the line, and
repeats the process.

If the current line of the text buffer does not contain any square brackets, TACL
executes the entire line as though the entire line had been surrounded by a pair of
square brackets. TACL replaces the function call or line of text with the result of the
function. The result can be empty, can contain part of a line of text, or can contain
many lines of text.

3. TACL returns to Step 1.

As you can see from Step 2, TACL does not execute function calls within enclosures.
Enclosures usually contain TACL statements; functions typically expand enclosures
and return unexecuted TACL statements. When TACL returns to Step 1, the code is
available for execution. Enclosures are used with a functions that control program flow
or define variables; they are not used with any commands.

During execution, the space available in the text buffer diminishes as routines and
macros are nested. Also, TACL might need up to half of the available area of the text
buffer as a scratch area.

If your code exceeds the size of the text buffer, TACL returns a “Text buffer overflow”
error. Common causes are:
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-11

S ta tem ents and P rogram s C rea ting P rogram F iles
 Very large macros or routines. As a rule, macros should never exceed 15,000
bytes after dummy argument substitution; routines should never exceed 15,000
bytes. Nesting reduces these numbers further.

 Uncontrolled nesting of macros. (If, however, you construct a recursive macro so
that it invokes itself in its last statement, each instance of the macro vanishes from
the text buffer before the next one begins and does not increase the contents of
the text buffer.)

 Matching too many file names with the #FILENAMES function. TACL stores the
information in the text buffer before displaying it. Loading too much data (such as
large subvolumes of file names).

 Using #CHARxxx, #LINExxx, or #DELTA built-in functions on data larger than
15,000 bytes.

Creating Program Files

You can store TACL programs in one of three ways:

 One program in an edit file, executed by referencing the file name. The first line
must be a ?TACL directive.

 Several programs in a single edit file, known as a library file, executed by loading
the file into variables and then referencing the name of the variable (defined in the
code). A library file can also contain other types of variables. Each variable starts
with a ?SECTION directive that assigns a name to the variable.

 One or more programs in a segment file, executed by attaching the file (making
them accessible to TACL) and then referencing the variable name associated with
the program.

You can set up your TACL environment so that it loads variables from edit files or
segment files automatically at logon time.

Creating a Single-Variable Program File: The ?TACL
Directive

To store a single variable in a file, create an edit-format file whose first line is a ?TACL
MACRO or ?TACL ROUTINE directive. To invoke the text, macro, or routine, type the
file name.

The name of the subvolume containing the program file must be in #PMSEARCHLIST,
or you must qualify it fully, to enable TACL to find it and invoke the file.

When you invoke a ?TACL ROUTINE file, TACL automatically pushes a variable called
:_TACL_ROUTINE and reads the file into it; TACL pops :_TACL_ROUTINE when the
routine exits. Thus, :_TACL_ROUTINE becomes the name of the active routine.

This feature is useful for recursion: a routine stored in a ?TACL ROUTINE file cannot
determine the name of the file it is stored in, but the #ROUTINENAME built-in function,
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-12

S ta tem ents and P rogram s C rea ting P rogram F iles
if executed in a routine stored in a ?TACL ROUTINE file, returns :_TACL_ROUTINE,
allowing the routine to invoke itself.

Creating a Library of TACL Statements: The ?SECTION
Directive

A library is an edit file that contains a sequential list of one or more TACL variable
definitions. For each variable, enter a ?SECTION directive at the beginning of the
definition, followed by the name of each variable and its type. (The type is not limited to
procedural variables; you can define any type of variable-ALIAS, DELTA, DIRECTORY,
MACRO, ROUTINE, STRUCT, or TEXT-in a library file). On subsequent lines, enter the
statements associated with the variable.

To load your library into the variables named in ?SECTION directives, type the LOAD
command or #LOAD function with the file name of your library file. To load the file
whenever you log on, include the LOAD or #LOAD call in your TACLCSTM file. The
load process includes partial interpretation of statements, making subsequent
invocations more efficient.

Creating a Segment File

Segment files are memory-mapped files that can be loaded into an extended memory
segment. When you attach a segment file, you load it into memory so that TACL can
gain immediate access to your macros, routines, and other variables. Segment files
provide efficient storage for commonly used macros and routines.

The Default TACL Segment File

Whenever you log on, TACL creates a private segment file to hold the variables in the
root (:) directory; this file is called the TACL default segment file. TACL then creates the
directory UTILS and attaches the segment file TACLSEGF to it for shared access.
TACLSEGF contains directories for all the software RVU products that have TACL
programs and that are available on your system. Each TACL command is stored as
:UTILS:TACL: command. For additional information about directories, see Section 6,
The TACL Environment.

User-Defined Segment Files

To create a segment file, you load a library file into a segment. Unlike a library file, you
do not need to load it again unless you change its contents. After the contents of the
file are in the segment file, the ATTACHSEG and USE commands establish access to
the variables in the segment. If the segment has not been detached since you last
logged on, only the USE command is needed.

You can add your own library of variables to the default segment file established by
TACL at logon time, or you can create your own personal segment file. If you load your
variables into the default segment file, you must do so every time that file is recreated.
If you have your own segment file, you direct TACL to attach the file to a directory
variable and to use that directory for reference to the file. Because each load performs
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-13

S ta tem ents and P rogram s C rea ting P rogram F iles
partial code interpretation, the greater the number of variables you use regularly, the
more efficiency you can gain by using personal segment files instead of loading the
variables into the default segment.

Sharing a Segment File

A segment file can be restricted to your TACL process or shared among multiple TACL
processes. You can read and modify variables in a private segment file; variables in a
shared segment file can be read but not modified.

Commands and Built-In Functions That Manage Segment Files

There are several TACL commands that manage segment files:

 CREATESEG creates and initializes a new segment file.

 LOAD loads the contents of a library file into a segment file.

 ATTACHSEG gains access, in either private or shared mode, to an existing
segment file.

 DETACHSEG detaches a segment file and removes its contents from memory.

 You can detach any segment file except the default segment file. After a segment
file has been detached by all TACL processes that had attached it, the segment is
available for use again as either a private or shared segment file.

 SEGINFO displays information about all segment files that your TACL currently
has attached. The SEGINFO display includes a use count, which is a count of
variables that are being used by your TACL for process I/O, in the use list, or that
are in your home directory.

There are also several built-in functions that manage segment files: #SEGMENT,
#SEGMENTINFO, and #SEGMENTVERSION return information about segment files,
and #SEGMENTCONVERT converts a segment file from C20 formats to formats of
segment files created on an RVU of TACL released at C20 or after. (Later RVUs of
TACL are different from earlier RVUs because of the addition of the international
character set).

For additional information about the creation and use of segments, see individual
command and function descriptions in Section 8, UTILS:TACL Commands and
Functions and Section 9, Built-In Functions and Variables respectively.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-14

S ta tem ents and P rogram s C rea ting P rogram F iles
Creating and Accessing a Segment File: An Example

This example shows one method for setting up a segment file; it demonstrates most of
the commands and functions that relate to segment files, the home directory, the use
list, and #PMSEARCHLIST.

== Create and attach the segment
CREATESEG mysegfil
ATTACHSEG PRIVATE mysegfil :mydir

== Change the name of the home directory for the next few
== commands
HOME :mydir
== Load library files into the segment file
SINK [#LOAD /KEEP 1/ filename]
SINK [#LOAD /KEEP 1/ filename] == As many of these as you
SINK [#LOAD /KEEP 1/ filename] == need to load all libraries

== Change the home directory back to the root directory
HOME

== Delete :mydir and close the segment file. This causes the
== new contents to be written to the segment file.
DETACHSEG :mydir

To modify the segment file, close the segment file (with a DETACHSEG command),
and then follow the previous steps, entering commands to create, delete, or change
variables in place of the #LOAD commands.

These commands show how to provide shared access to the new segment file:

== Attach the segment file to a directory
ATTACHSEG SHARED mysegfil :mydir
#SET #USELIST [#USELIST] :mydir

To view your current use list, use the ENV command.

These lines of code, when included in your TACLCSTM file, attach a segment file
whenever you log on:

?TACL MACRO
#PUSH taclversion
#SETMANY taclversion , [#TACLVERSION]
[#IF NOT %1% |THEN|
 [#CASE [taclversion] == To make TACLCSTM work with any TACL
 | t9205b20 t9205b30 t9205b40 |

Commands to load your libraries (for older TACL versions)

 | t9205c00 t9205c10 |
 ATTACHSEG SHARED mysegfil :mydir
 | OTHERWISE |
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-15

S ta tem ents and P rogram s C rea ting P rogram F iles
 #OUTPUT Unknown TACL version: [taclversion]
] == End CASE

] == End IF
[#CASE [taclversion]
| t9205c00 t9205c10 | USE :mydir
| OTHERWISE |
]
#POP taclversion
#SET #PMSEARCHLIST $SYSTEM.SYSTEM [#DEFAULTS]

Releasing a Segment File

Unless you use the SEGRELEASE option with the LOGOFF command, TACL delays
detaching and purging its default segment file-an advantage if you are the next user to
log on. If a different user logs on, TACL detaches and purges that default segment file
and creates and attaches a new one.

If the CPU on which your TACL process is running fails while you are in the act of
detaching a private segment file, the segment file may be corrupted. TACL detects
corruption of segment files and prevents their reuse. If this happens to one of your
segment files, you must purge it and re-create it.

In general, TACL segment files created by previous RVUs of TACL do not have to be
rebuilt; however, if an attempt is made to use an incompatible segment file, TACL will
give a specific error message. Rebuilding is always possible from the original libraries
without change, but there is no guarantee that you will be able to decompose a
segment file into its original libraries.

Handling Process Completion Information

Depending on how you run a process from TACL and how the process handles
termination,

 TACL can access several types of completion information: TACL supports a
STATUS option that stores an indication of why the process terminated. The
possible indications are STOP, ABEND, CPU (CPU failure), and NET (network
failure).

 If the process specifies a completion code, you can access the completion code.

TACL stores completion code information in two STRUCT variables:

 :_COMPLETION provides compatibility with C-series software

Note. To provide shared access to a segment file, you must specify shared when you attach
the file.

Note. If you log on at a terminal other than your usual one, or through a modem, use the
SEGRELEASE option when you log off. Otherwise, the TACL process keeps your segment file
open until someone else logs on, and you cannot detach it and reattach it in PRIVATE mode if
you decide to modify it.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-16

S ta tem ents and P rogram s C rea ting P rogram F iles
 :_COMPLETION^PROCDEATH supports D-series process handles

TACL defines both variables when you log on, and the variables remain unless you
pop (delete) them. The default values are zeros for numeric items and spaces for text
items.

TACL sets specific items within these STRUCT variables whenever you try to start a
process, whenever you successfully start a process, and whenever a process you
started terminates (successfully or otherwise). Whenever TACL sets these variables,
their previous contents are lost. For information about the contents of these variables,
see:

 C-Series :_COMPLETION Variable on page 5-17

 D-Series :_COMPLETION^PROCDEATH Variable on page 5-18

If you define your own variable named :_COMPLETION or
:_COMPLETION^PROCDEATH, it should be a STRUCT variable. Each time TACL
stores data in :_COMPLETION or :_COMPLETION^PROCDEATH, TACL sets the
STRUCT to default values. If the STRUCT is shorter than the data that needs to be
stored in it, TACL discards the extra data. If the STRUCT is longer than the data to be
stored in it, the extra space remains set to default values.

C-Series :_COMPLETION Variable

TACL updates completion code information in the variable :_COMPLETION, if it exists.
The standard TACL software file TACLSEGF defines :_COMPLETION as follows:

[#DEF :_completion STRUCT
 BEGIN
 INT messagecode;
 CRTPID process;
 INT headersize VALUE 14;
 INT4 cputime;
 INT jobid;
 INT completioncode;
 STRUCT internal;
 BEGIN
 INT terminationinfo;
 SSID subsystem;
 END;
 STRUCT external REDEFINES internal;
 BEGIN
 BYTE group;
 BYTE user;
 CRTPID process;
 END;
 INT textlength;
 CHAR text(0:79);
 END;
]

If you incur a syntax error while trying to start a process, TACL sets MESSAGECODE to
0, COMPLETIONCODE to 4, and TERMINATIONINFO to 0.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-17

S ta tem ents and P rogram s C rea ting P rogram F iles
If a process fails to start, TACL sets MESSAGECODE to 0, COMPLETIONCODE to 4, and
TERMINATIONINFO to an error code that describes the failure. For more information,
see the #NEWPROCESS Built-In Function on page 9-265.

If you start a process successfully, TACL sets MESSAGECODE to 0, COMPLETIONCODE
to 0, and TERMINATIONINFO to 0.

When TACL receives a STOP or ABEND message from a D-series process, TACL
stores the termination information in the :_COMPLETION variable:

 TACL tries to convert a PROCDEATH system message to a C-series STOP or ABEND
system message. Note, however, that if the message represents an unnamed high
PIN process, the message will not fit in :_COMPLETION. In this case, TACL fills
:_COMPLETION with zeros for numeric items and spaces for text items.

 The PIN in the process identifier field is set to 255 for any high PIN value.

TACL stores the name of the terminating process in :_COMPLETION:PROCESS and
stores the name of the process that requested the termination in
:_COMPLETION:EXTERNAL:PROCESS. If, however, the requesting process has
stopped or is not named, TACL cannot access its name. In this case, TACL sets
:_COMPLETION:EXTERNAL:PROCESS to spaces. You can use CPU and PIN
information instead of the process name.

For more information about MESSAGECODE and other definitions and for an example of
TACL statements that process completion codes, see the TACL Programming Guide.

D-Series :_COMPLETION^PROCDEATH Variable

A D-series PIN does not fit into a CRTPID field, so D-series TACL stores D-series
completion information in the :_COMPLETION^PROCDEATH variable, if it exists. D-
series TACL receives PROCDEATH (-101) messages instead of STOP and ABEND
messages, and saves any PROCDEATH messages in the :_COMPLETION^PROCDEATH
variable, if it exists.

New D-series TACL applications should use the :_COMPLETION^PROCDEATH for
completion information.

If a requesting process is named and started on another processor and if that
processor fails, TACL still receives the PROCDEATH system message to fill in the
completion information. If the requesting process is unnamed, however, TACL does not
receive the PROCDEATH system message and the completion information is not
updated. The requesting process should be named to make sure the completion
information is updated. For more information on these limitations, see the Guardian
Procedure Calls Reference Manual.

The TACL software file, TACLSEGF, defines :_COMPLETION^PROCDEATH as follows:

[#DEF :_completion^procdeath STRUCT
 BEGIN
 INT z^msgnumber;
 STRUCT z^base
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-18

S ta tem ents and P rogram s C rea ting P rogram F iles
 REDEFINES z^msgnumber;
 BEGIN
 CHAR byte(0:1);
 END;
 PHANDLE z^process^handle;
 INT4 z^cputime;
 INT z^jobid;
 INT z^completion^code;
 INT z^termination^code;
 INT z^killer^craid;
 REDEFINES z^termination^code;
 SSID z^subsystem;
 PHANDLE z^killer;
 INT z^termtext^len;
 STRUCT z^procname;
 BEGIN
 INT zoffset;
 INT zlen;
 END;
 INT z^flags;
 INT z^reserved(0:2);
 STRUCT z^data;
 BEGIN
 CHAR byte(0:111);
 END;
 STRUCT z^termtext
 REDEFINES z^data;
 BEGIN
 CHAR byte(0:111);
 END;
 STRUCT z^procname^
 REDEFINES z^data;
 BEGIN
 CHAR byte(82:193);
 END;
 END;
]

If you incur a syntax error while trying to start a process, TACL sets
z^completion^code to 4.

If a process fails to start, TACL sets z^completion^code to 4.

If you successfully start a process, TACL sets z^completion^code to 0.

The field :_completion^procdeath:z^procname:zoffset contains the byte
offset of the process name. The process name will always be within the substructure
z^data, so the offset will always be between 82 and 193.

When a process is named, :_completion^procdeath.z^procname.zlen is
greater than zero.

Otherwise, :_completion^procdeath.z^procname.zlen equals zero and
:_completion^procdeath:z^data contains spaces.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-19

S ta tem ents and P rogram s C rea ting P rogram F iles
To access the process name:

#PUSH proc^offset proc^len proc^lwa procname
#SET proc^len &
 [:_completion^procdeath:z^procname:zlen]
[#IF proc^len > 0 |THEN|
 #SET proc^offset &
 [:_completion^procdeath:z^procname:zoffset]
 #SET proc^lwa [#compute proc^offset+proc^len-1]
 #SET procname &
 [:_completion^procdeath:z^procname^:byte([proc^offset]:&
 [proc^lwa])]
]

To access the termination text:

#PUSH termtext^len termtext^lwa termtext
#SET termtext^len &
 [:_completion^procdeath:z^termtext^len]
[#IF termtext^len > 0 |THEN|
 #SET termtext^lwa [#compute termtext^len-1]
 #SET termtext &
 [:_completion^procdeath:z^termtext:byte(0:[termtext^lwa])]

]

Interactive Display of Completion Code Information

An interactive TACL displays completion code information whenever one or more of
these statements are true:

 PMSG is ON.

 :_COMPLETION:MESSAGECODE is -5 (STOP) and
:_COMPLETION:COMPLETIONCODE is not 0 and not 6 (stopped externally).

 :_COMPLETION:MESSAGECODE is -6 and :_COMPLETION:COMPLETIONCODE is
not 5 and not 6 (stopped externally).

 :_COMPLETION:TERMINATIONINFO is not 0 and
:_COMPLETION:COMPLETIONCODE is not 6 (stopped externally).

 :_COMPLETION:TEXTLENGTH is not 0.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-20

S ta tem ents and P rogram s H and ling TA C L E rrors
Handling TACL Errors

TACL can generate several types of errors. Table 5-1 lists the types of errors, a sample
display, and a description and action for each type of error.

Table 5-1. Error Types

Error Example Description

Syntax error Expecting an
existing
variable,
unqualified

In this example, TACL required a variable. In general,
TACL required one or more types of elements and did not
find them. The program stops executing at the statement
indicated in the message. The message includes the
command line in question, a pointer that indicates where
the potential problem is, and the type of argument or value
that TACL expects to find in the indicated position.

TACL error *ERROR*
Security
Violation

The program used a construct incorrectly or supplied an
argument that would not work in the specified manner. For
example, if you set #OUT to a file that you do not have
write access to, you receive *ERROR* Security Violation.
The program stops unless it includes an exception handler
and an _ERROR clause in an associated #FILTER
statement. (For information about exception handlers, see
Section 3, “Developing TACL Routines,” in the TACL
Programming Guide.)

Error During
a function
call

None A built-in function such as #PURGE or #RENAME can
return file system or operating system errors. The program
continues. To check for these errors, store the contents of
the result into a variable and check the result before
continuing.
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-21

S ta tem ents and P rogram s H and ling TA C L E rrors
TACL programs can check for function call errors immediately after a function call. To
handle other types of errors, see the discussion about exception handlers in the TACL
Programming Guide.

TACL can generate one type of EMS error: Error 66, an I/O error.

Error defined
by program

None The program detected a condition defined as an error in
the local TACL environment; this error could be a volume
name that should not be accessed by a particular user.
Action depends on the code. The program can exit or raise
a user-defined exception, which causes TACL to invoke an
exception handler if one is defined.

Fatal error ABENDED:
$TCL2 CPU
TIME
0:00:00.013
Termination
Info 14 TACL
fatal error:
Couldn't open
TACL IN

ABENDED: $TCL2 CPU TIME 0:00:00.013 Termination
Info 14 TACL fatal error: Couldn't open TACL IN TACL
encountered a problem with an external file, memory, or
other resource, and could not continue. If, for example,
TACL cannot find its IN file at startup time, it produces this
error. Termination info reports the error that TACL received.
TACL abends or stops itself.

Internal error ABENDED:
$TCL4 CPU
TIME
0:00:00.052
Termination
Info 18 TACL
internal error:
Initialize.100

TACL encountered an internal error condition and could
not continue. TACL abends or stops itself.

Table 5-1. Error Types

Error Example Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
5-22

6 The TACL Environment

This section describes these operational topics:

 Files that are required and recommended for TACL operation

 Starting a TACL process and subordinate processes

 Using TACL directories

 Running TACL as a background process

For information about the use of TACL with other subsystems, see the TACL
Programming Guide. Section 7, Summary of Commands and Built-In Functions,
provides an overview of TACL commands and functions.

Installation Instructions
TACL is now also delivered with HIGHPIN set to ON. To get TACL with HIGHPIN set to
ON, follow the below steps:

1. Run this command:

FUP RENAME <install-vol>.<SYSnn>.TACL, TACLLOW

2. Run this command:

FUP DUP <install-vol>.ZTACL.TACLH,<install-vol>.<SYSnn>.TACL

3. Restart all TACL processes..

TACL Software RVU Files
TACL uses these files:

 TACL, a program file that is usually stored at $SYSTEM.SYSnn.TACL.

 TACLINIT, an edit file that resides on the same subvolume as the TACL file.

 TACLCSTM, an edit file that provides customization for your personal TACL
environment. The file starts with a ?TACL MACRO directive and resides in your
default subvolume.

 TACLLOCL, an edit file that is invoked by TACL to perform customization of the
TACL environment for all TACL users on a system. The file starts with a ?TACL
MACRO directive and resides on the same subvolume as the TACL file.

 TACLSEGF, a segment file that contains TACL commands and the code for all
other products (that are part of a software RVU) on the system that include TACL
programs.

Note. From th is S P R the ZTA C L subvo l w ill be ava ilab le , under w h ich the TA C LH file fo r
H IG H P IN is p resen t.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-1

The TA C L E nvironm ent S ta rting a TA C L P rocess
 TACLBASE, an edit file that contains the same functionality as TACLSEGF. This
file resides on the same subvolume as the TACL file. Along with providing
functionality, TACLBASE provides a readable source of examples of TACL
programs.

 TACLCOLD, a segment file that TACL uses when running as the coldload
command interpreter. TACL creates this file or reuses it as a way of reducing the
chance that the coldload TACL will fail due to lack of disk space at startup.

 CPRULES0 and CPRULES1, which define the character set in use by TACL.
CPRULES0 is the default set.

In addition to the preceding list of files, there are utility programs that assist TACL in
performing certain operations. Each program is in a separate program file in
$SYSTEM.SYSnn or $SYSTEM.SYSTEM. These programs:

 Perform privileged operations, such as establishing user IDs and passwords or
reloading processors

 Must be licensed for use by nonprivileged users

 Can run only on the local system

Utility programs are listed in Section 8, UTILS:TACL Commands and Functions.

TACL requires the TACL program file and the TACLINIT file. If TACLBASE and
TACLSEGF are not present, TACL can operate, but will provide only built-in functions
and variables.

If TACLLOCL is missing, an unfriendly user could create a file with that name and
place harmful commands (such as PURGE commands) in it. To minimize this danger,
TACL creates a dummy TACLLOCL file whenever any user logs on and TACLLOCL is
not present. TACL secures the file to “NUUU” and gives it to the owner of the TACL
process itself.

A similar danger exists if your TACLCSTM file is missing, so TACL creates a dummy
TACLCSTM file when you log on and TACLCSTM is not present. TACL secures the file
to your default security and gives ownership of the file to you.

Starting a TACL Process
To start an interactive TACL process, run TACL with the IN and OUT files specified as
the same name, that of a terminal device. System management usually starts a TACL
process pair for each terminal, using the RUN or TACL command or the
#NEWPROCESS built-in function.

A TACL process:

Note. A ll TA C L bu ilt-ins a re execu ted by the TA C L process, w h ich runs on ly on the node
w here it w as s ta rted , regard less o f any S Y S TE M com m ands tha t a re issued. To execute a
bu ilt-in com m and on ano ther system , you m ust s ta rt a new TA C L process on tha t system .
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-2

The TA C L E nvironm ent Logg ing O n
 Can run at a high PIN

 Can create a high-PIN process

 Can be created by a high-PIN process

 Can communicate with a high-PIN requester

 Can communicate with a high-PIN server

 Recognizes high-PIN process identifiers

 Does not default to run at a high PIN

Processes that run at high PINs cannot open and write to processes that do not allow
high-PIN openers. For example, a TACL process that runs at a high PIN cannot open a
process on a C-series node. Similarly, a TACL process on a C-series node cannot
open a high-PIN process. This limitation applies to any operation that accesses
process identifier information, such as alteration of priority. If you start a process and
try such communication with the new process, the new process terminates.

Logging On
To access a TACL process, you must log on. Before you log on, the only commands
TACL accepts are LOGON, FC, !, PAUSE, and TIME. If the system runs Safeguard
software, Safeguard can be set up so that it authenticates your user ID and requests
that TACL start logged-on. In this case, you do not need to log on to TACL.

TACL Initialization
When you log on, TACL creates a private segment file for you and invokes TACLINIT
(usually $SYSTEM.SYSnn.TACLINIT). TACLINIT begins initialization of TACL and then
searches in the same subvolume for the TACLSEGF segment file, which it attaches
and makes available under the directory :UTILS:TACL. Directories are described in
Using Directories on page 6-9.

TACL searches for TACLLOCL first in the SYSnn of the TACL PROGRAMFILE, and
then in $SYSTEM.SYSTEM.

You can ensure that there is always a system load recovery path by placing a
TACLLOCL in each SYSnn. If a TACLLOCL change causes any problem, reload the
system from the original SYSnn.

This method also offers a superior organizational scheme, because a TACLLOCL for
different system images often needs to have different TACL statements. Rather than
having complex version condition checking, each system image version can now have
its own TACLLOCL file.

If it finds the file, TACL invokes it as a macro. At this point, if your default subvolume
contains a TACLCSTM file, TACL invokes it as a macro. Your TACLCSTM file, which
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-3

The TA C L E nvironm ent TA C L In itia liza tion
contains any commands you supply, can include a request to load all your personal
command definitions.

TACL passes one argument to TACLCSTM, indicating whether the loading of
TACLBASE was suppressed because you are the most recent user to log off from this
TACL and are now logging back on. (The same segment is still in effect.) The
argument is nonzero if loading was suppressed, and zero if it occurred.

The TACLLOCL of the installation or your individual TACLCSTM can also create
directories for additional segment files.

CPRULES0 and CPRULES1 define the character set in use by TACL. CPRULES0 is
the default set. When starting a TACL process, if #CHARACTERRULES is empty after
TACLLOCL has been invoked, the TACL process looks for CPRULES0. TACL
searches for CPRULES0 in $SYSTEM.SYSTEM. If CPRULES is not found there, then
TACL searches the same volume and subvolume in which the TACL program file
resides (usually, $SYSTEM.SYSnn). If a CPRULES file does not exist when a user
logs on and the TACL process tries to access a CPRULES file, the TACL process
issues a warning that it is using its own set of rules (that are encoded in the TACL
program file).

TACL sets the initial terminal state to:

 ECHO on

 Single spacing

 Post spacing

 Conversational mode

After your TACL process completes initialization and you log on, you can:

 Issue TACL commands or other statements (supplied in :UTILS:TACL and stored
in the TACLBASE file) by typing the command

 Store TACL programs in files and invoke the programs when needed, in one of
three ways:

 Store a text, macro, or routine variable in its own file and invoke it by file name

 Store one or more programmatic variables in a library file and issue a LOAD
command or #LOAD call to make the variables accessible to TACL

 Save one or more programmatic variables in a segment file and issue an
ATTACHSEG command to bring the functions into memory

For more information about these procedures, see Section 5, Statements and
Programs.

Note. If a backup TACL process takes over at a later time, TACL initializes the terminal state
to the preceding values unless the TACL process has a descendent process that continued to
run during the processor switch. In this case, TACL does not initialize the terminal state values.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-4

The TA C L E nvironm ent S ta rting N ew P rocesses
Starting New Processes
To start a new process from a TACL process, use the RUN command or the
#NEWPROCESS built-in function, or specify the program file name (an implicit RUN
command). If you use an implicit RUN command, ensure that the #PMSEARCHLIST
setting includes the location of the program file. For more information, see Section 9,
Built-In Functions and Variables.

You can request to run a process at a high or low PIN. Several options affect whether a
new process runs at a high or low PIN, including the TACL HIGHPIN variable, the
BINDER HIGHPIN option, and the TACL RUN and #NEWPROCESS /HIGHPIN ON/
option.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-5

The TA C L E nvironm ent S ta rting N ew P rocesses
These conditions must be met before TACL can start a process at a high PIN:

 The HIGHPIN option for the code file must be enabled at compile or bind time

 Either the RUN /HIGHPIN ON/ option or the #HIGHPIN built-in variable (or both)
must be ON

 There must be a high PIN available

Table 6-1 describes how TACL resolves each combination of HIGHPIN settings. A
dash (-) indicates that the option is not specified.

Table 6-1. Results of HIGHPIN Settings

Parent TACL
Runs at a

BINDER
HIGHPIN
Option

HIGHPIN
Variable

RUN or
#NEWPROCESS
HIGHPIN Option

New Process
Runs at a

Low PIN OFF OFF - Low PIN

Low PIN OFF OFF OFF Low PIN

Low PIN OFF OFF ON Low PIN

Low PIN OFF ON - Low PIN

Low PIN OFF ON OFF Low PIN

Low PIN OFF ON ON Low PIN

Low PIN ON OFF - Low PIN

Low PIN ON OFF OFF Low PIN

Low PIN ON OFF ON High PIN*

Low PIN ON ON - High PIN*

Low PIN ON ON OFF Low PIN

Low PIN ON ON ON High PIN*

High PIN OFF OFF - Low PIN

High PIN OFF OFF OFF Low PIN

High PIN OFF OFF ON Low PIN

High PIN OFF ON - Low PIN

High PIN OFF ON OFF Low PIN

High PIN OFF ON ON Low PIN

High PIN ON OFF OFF Low PIN

High PIN ON OFF OFF Low PIN

High PIN ON OFF ON High PIN*

High PIN ON ON - High PIN*

High PIN ON ON OFF Low PIN

High PIN ON ON ON High PIN*

* The process runs at a high PIN if a high PIN is available.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-6

The TA C L E nvironm ent C ustom iz ing the TA C L E nvironm ent
To check the setting of the #HIGHPIN variable from an interactive terminal, type
SHOW HIGHPIN. To check the setting of the BINDER HIGHPIN option for an object
file (type 100 or 700), enter:

BIND; SHOW SET * FROM file-name

For additional information about the BINDER HIGHPIN option, see the Binder Manual.

Customizing the TACL Environment
TACL supports two types of customization:

 Personal customization for one user, through the use of the TACLCSTM file

 Local customization, through use of the TACLLOCL file

Customization affects all uses of TACL, not just interactive TACL sessions started from
TELNET or SSH. Customization of TACLCSTM and TACLLOCL must allow server
programs to start TACL processes without interference.

Standard server programs using background TACL processes do not tolerate
interactive queries when TACL starts. Arbitrary redefinition of standard TACL
commands or environment might also cause difficulties.

Examples of products that start background TACL processes include some HP OSM
program files, NonStop Essentials, and the SeeView Server Gateway. These products
start TACL processes either on behalf of a command from a human-computer interface
or for unattended background activities.

Customization of a particular user ID’s TACLCSTM for security auditing might require
special care. A TACLCSTM file for a particular user can check the ancestor process of
the TACL process for special exceptions. For an example of this customization for a
particular user in the SUPER group, see the OSM Configuration Guide.

Personal Customization

To customize your TACL environment, you can add the following to your TACLCSTM
file:

 Function-key definitions, command aliases, macros, or routines in edit-format files.

 LOAD commands or #LOAD functions to load files into variables in your home
directory (the root directory, by default). When TACL invokes the TACLCSTM file
as you log on, it loads the files.

 ATTACHSEG and USE commands to gain access to a segment file. Segment files
are described in Section 5, Statements and Programs.

 Commands such as TIME or SETPROMPT, or your own programs, to be invoked
when you log on.

TACLCSTM can also change your saved defaults by assigning volume and subvolume
names to the variable :UTILS_GLOBALS:TACL:_DEFAULTS_INITIAL.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-7

The TA C L E nvironm ent Loca l C ustom iza tion
Local Customization

The TACLLOCL file provides a mechanism for environment customization for all users
on a given system (you might think of TACLLOCL as the system manager’s version of
TACLCSTM). This example shows a sample TACLLOCL file:

?TACL MACRO
== TACLLOCL sets up variables, macros needed for operations
RUN $system.system.opertool == defines _oper^tools variables
[#IF %1% |THEN|
 == A fast logon
|ELSE|
 == A slow logon
 SINK [#LOAD /KEEP 1/ [_oper^tools].macrolib]
]

In the preceding example, the dummy argument %1% refers to an argument provided
by TACL when you log on; you can use this same construct in your TACLCSTM file.
The argument is true (a nonzero value) if the default segment file containing TACL
variables exists, false (zero) if TACL created a new segment file when you logged on. If
the segment file exists, loading library files is unnecessary.

Managing the BREAK Key
When you first log on, TACL initializes #BREAKMODE to POSTPONE (see
#BREAKMODE Built-In Variable on page 9-36). The standard TACL logon support sets
#BREAKMODE to ENABLE just before invoking your TACLCSTM. This prevents you
from breaking out of operations needed to configure your TACL when you log on, yet
allows you to break out of TACLCSTM if it becomes necessary.

Thereafter, you can set #BREAKMODE to enable, disable, or postpone the action of
the BREAK key as needed to ensure that any given sequence of TACL statements can
be free of interruption. This feature should be used with caution, however, because it
removes user control of the BREAK key. If you use a TACL with a customized version
of TACLINIT or TACLSEGF, you must ensure that #BREAKMODE is set to ENABLE at
some point during initialization if you want users to be able to use the BREAK key to
interrupt TACL processing.

Security
There exists a potential breach of security if other TACL users open your TACL
process. To limit access to your TACL process, use the #TACLSECURITY built-in
variable, described in #TACLSECURITY Built-In Variable on page 9-400.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-8

The TA C L E nvironm ent C om m and In te rpre ter M on ito r In te rface (C M O N)
Command Interpreter Monitor Interface
(CMON)

The purpose of a command interpreter monitor ($CMON) process is to control and
monitor:

 Logons and logoffs, including illegal logon attempts (LOGON and LOGOFF
commands)

 Addition or deletion of users (ADDUSER, DELUSER programs)

 Alteration of priorities at execution time (ALTPRI command)

 Process startups (RUN command and #NEWPROCESS built-in function)

If a $CMON process exists on a system, TACL communicates information to $CMON
when the above activities are requested.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-9

The TA C L E nvironm ent U s ing D irecto ries
TACL sends these types of messages to $CMON:

 A CMON configuration message, which establishes the TACL configuration for the
new process or user.

 A pre-LOGON message, which allows $CMON to invoke additional security
provisions (for example, requiring a user to log on under one ID before being able
to log on under some other ID).

If the $CMON process is not running, TACL uses stored defaults.

For a description of the communication between TACL and a command interpreter
monitor process, see the Guardian Programmer’s Guide.

Using Directories
TACL organizes its variables according to purpose or product; it keeps your variables
separate from TACLBASE variables (commands) and helper variables that are used by
the TACLBASE variables and are not intended for direct use. This organization called a
directory, and is hierarchical, similar to a tree. The root of the tree is the :directory.

Directories organize variables in a hierarchy and take advantage of operating system
features that support segment files.

A Sample Directory Structure

Figure 6-1 on page 6-10 demonstrates the structure of variables and segment files in a
running TACL process. ZAP is an example of an application product (that are part of a
software RVU); each application product that releases TACL programs has a directory
equivalent to those shown for ZAP. Any segment file that you create would be attached
among the user-vars.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-10

The TA C L E nvironm ent C reating Y our O w n D irecto ries
Creating Your Own Directories

You can create your own directories of variables. For more information, see Section 4,
Variables. For information about creating and attaching segment files, see Section 5,
Statements and Programs.

Directories Supplied by TACL

The UTILS directory exists in the root and contains directories for all application
products (that are part of a software RVU) on your system that use TACL, referenced
as :UTILS: product. If a product includes or consists of subproducts, each subproduct
can be considered a product in its own right and be given its own directory in :UTILS.

The :UTILS:TACL directory contains all the TACL commands, including command-
interpreter commands and additional commands, programs, and functions used by
TACL. For example, the :UTILS:TACL variable VOLUME refers to the command
named VOLUME that is executable by the TACL program.

There are also some primitive functions in :UTILS:TACL. The name of each of these
functions begins with an underscore (_), and each returns a value. Primitive functions
differ from commands, which primarily perform actions, in that the returned value, not
the action, is the primary result.

Other products that are part of the same software RVU use another directory in the
root, UTILS_GLOBALS, if they include TACL programs and need to maintain writable
global TACL variables. This use of directories achieves the following:

 Minimizes the potential for naming conflicts among variables from various sources

Figure 6-1. TACL Segment File and Directory Relationships

Root

UTILS_GLOBALS UTILSuser-variables

ZAP TACL

zap-globals tacl-globals

ZAP TACL

zap-commands tacl-commands

... ...

TACLSEGF Segment File
Shared/Read-Only

Shared by all TACL Processes

Private Segment File
Private/Read-Write

One per TACL Process

VST001.vsd
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-11

The TA C L E nvironm ent A vo id ing N am ing C onflic ts W ith TA C L
 Provides for read-only sharing of variables among TACL users

 Removes the need for loading each library of variables before each use

 Removes the need for predicting the maximum segment file size a given TACL
user will require

Other application products (that are part of a software RVU) can also create
directories. TACL requires you to specify where to put the associated variables or, by
default, stores them in your current home directory. (To store variables in your home
directory, your home directory must be writable.) The documentation for each product
explains how to access and use these files.

Avoiding Naming Conflicts With TACL
All temporary variables created by TACL begin with colon-circumflex (:^). TACL stores
these variables in the root directory, which is always writable, and guarantees that
these temporary variables will never conflict with any of your own variables.

The TACLINIT file creates a directory called :UTILS_GLOBALS in the default segment
file; each product that needs global, writable variables creates its own directory and
variables within the :UTILS_GLOBALS directory. Such variables are named
:UTILS_GLOBALS: product: var-name.

All TACL variables included with an application product (that is part of a software RVU),
and intended solely for use by that product, are put into subordinate directories in the
directory of the product; the name of each variable of this type begins with a circumflex
(^). This convention allows you to list the directory of a product without memorizing the
names of private utilities.

To avoid conflicts with TACL and application products using TACL, adhere to these
rules:

 Do not create variables whose names begin with a circumflex (^) and never use, in
any way, such variables.

 Do not create or use variables whose names begin with an underscore (_), except
where specifically permitted as a feature of an application program.

 Do not create any variables under :UTILS.

 Do not create any variables under :UTILS_GLOBALS, except where specifically
permitted as a feature of an application program.

 Do not push or pop :UTILS or :UTILS_GLOBALS.

 If you modify the use list, ensure that your use list always includes certain
directories necessary for the correct operation of the application program. The
USE command automatically does this for you. The list of necessary directories
depends on the application software version and must not be hard coded in your
TACL programs.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-12

The TA C L E nvironm ent _E X E C U TE V ariab les
_EXECUTE Variables
If you try to invoke a variable that is itself a directory, TACL searches that directory for
a variable named “_EXECUTE” and invokes that variable instead. The _EXECUTE
variable provides an automatic mechanism for special initialization activities such as:

 Displaying a banner

 Establishing a frame

 Pushing the use list and altering it

 Creating variables

 Starting servers

 Opening files

 Establishing an exception handler

For example:

?SECTION _execute ROUTINE
PATHCOM $XXPM;RUN XX

Some application products allow you to enter TACL commands while you are using
them. This flexibility allows you to invoke another product without leaving the first
product.

Running a TACL Process in the Background
Another way to start a TACL process is to start one as a background process. A
background process is a process that runs with the NOWAIT, INV, or INLINE option. A
background process allows you to perform noninteractive tasks without interfering with
your interactive work. This type of TACL process starts running and can wait for
commands indefinitely; the background process does not prompt for input.

Initializing TACL and Specifying Input

To create a background TACL, specify a file name as the IN file. You can, for example,
specify an EDIT file with a set of TACL commands (and without a ?SECTION or ?TACL
directive) as the IN file:

TACL /IN file-name, NOWAIT, NAME $TCL2/

To send commands interactively to the background process, use the INV or INLINE run
options. To execute a routine from the background process, you can supply an IN file
that loads and runs the routine.

When a background TACL starts, you do not need to log on to it; it automatically starts
up logged on as the user who started it.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-13

The TA C L E nvironm ent D efau lt F iles
Default Files

Instead of using your saved defaults, a background TACL takes on the same file-name
defaults as those of the process that started it. This procedure occurs as follows:

1. TACL saves the inherited defaults in the variable
:UTILS_GLOBALS:TACL:_DEFAULTS_INITIAL and switches to your saved
defaults (saved under your user ID on the system where the background TACL is
running). TACL saves a copy of those defaults in the variable
:UTILS_GLOBALS:TACL:_DEFAULTS_SAVED.

2. TACL invokes the specified TACLCSTM file (if any) in the same way and with the
same defaults as if you logged on explicitly. To specify a TACLCSTM file, use the
ASSIGN command in the process that starts the background TACL:

ASSIGN TACLCSTM, file-name

If file-name is not fully qualified, ASSIGN assumes the defaults in existence for
the process that issued the ASSIGN command (not the process receiving it).

To omit the TACLCSTM file, enter this; the comma indicates the absence of the
file-name field:

ASSIGN TACLCSTM,

If you do not issue an ASSIGN TACLCSTM command, the background TACL uses
your current TACLCSTM file by default.

3. After it has invoked TACLCSTM, TACL sets the defaults to the value in the variable
:UTILS_GLOBALS:TACL:_DEFAULTS_INITIAL. If you need to establish a
particular set of initial defaults, your TACLCSTM should contain coding to set
:UTILS_GLOBALS:TACL:_DEFAULTS_INITIAL accordingly.

You can read the variables in the directory :UTILS_GLOBALS (and its subdirectories),
but do not change them, except as directed in application-product documentation.
H P N onS top TA C L R e fe rence M anua l — 429513-017
6-14

7
Summary of Commands and Built-In
Functions

TACL provides three types of standard capabilities:

 Commands, which are implemented as TACL variables

 Built-in functions, which are not implemented as TACL variables but are accessed
in the same manner as TACL variables

 Built-in data variables

This section provides an overview of these standard capabilities, followed by tables
that summarize commands, functions, and variables by functional group. All these
constructs can be used interactively or in a TACL program. When there are two
constructs that support the same function, however, use the command for interactive
work and the built-in function for programmatic work:

 Commands typically display results. Commands provide information about files,
allow you to check the status of processes, gather information about your own
processes and those of other users, and perform other types of work. The RUN
command runs other programs such as the File Utility Program (FUP).

The :UTILS:TACL directory contains the set of standard TACL commands.

 Built-in functions and variables provide information that can be used by a program.
They return information and status in the form of a result. The set of built-in
functions and built-in variables provide the fundamental, fixed set of TACL
functionality.

TACL Commands
When you log on to your system, you use TACL commands. These commands include:

Commands are intended for interactive use; although you can use them in TACL
programs, commands do not typically return as much status or error information as do
functions. The commands generally display a result.

TACL commands are interpreted. Each command is a TACL variable. All commands
call TACL built-in functions.

The :UTILS:TACL directory contains all the TACL commands, including command-
interpreter commands and additional commands, programs, and functions used by

RUN Runs a process

STATUS Displays information about one or more running processes

WHO Describes the current environment
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-1

S um m ary o f C om m ands and B u ilt-In Functions B u ilt-In Functions
TACL. For example, the :UTILS:TACL variable VOLUME refers to the command
named VOLUME that is executable by the TACL program. For more information about
directories, see Section 6, The TACL Environment.

Most :UTILS:TACL commands are available to every user. Some commands and some
utility programs, however, are restricted so that only certain users can execute them.
Restricted commands and programs can be used by these two groups:

 Group managers (users who have a user ID of n,255)

 Super-group users (users who have a user ID of 255,n)

(The terms “user ID” and “group ID” are described in the Guardian User’s Guide.) The
command descriptions in Section 8, UTILS:TACL Commands and Functions indicate
whether a command or program is restricted or not.

The super ID (a user who has the user ID 255,255) can execute any command or
program reserved for group managers or super-group users.

Built-In Functions
In addition to the :UTILS:TACL commands, TACL provides built-in functions and built-in
variables that can be used for the construction of macros and routines.

TACL built-in functions cannot be changed. Built-in functions provide the basic
elements of TACL on which all other features, including TACL commands, are based.
Where built-in functions and TACL commands provide the same functionality, built-in
functions provide more error information and are slightly faster than commands. Built-in
function names start with a number sign (#), ensuring that the names you choose for
your macros or routines do not conflict with the names of built-in functions and
variables. Examples include:

Built-in functions also provide flow control, such as loop control and exit mechanisms.
To view a list of built-in functions, use the #BUILTINS built-in function.

Some built-in functions must be used within routines. These built-in functions (for
example, #ARGUMENT, #MORE, and #REST) provide the mechanism by which
routines evaluate their arguments and return their results. Unlike a macro, the result of
a routine is not the text of the routine itself. A routine computes a result string to
replace its invocation. A routine invokes #RESULT one or more times to produce a
nonempty result.

#COMPAREV Compares one variable with another

#OUTPUT Writes data to an output file

#PROCESSINFO Returns information about a process
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-2

S um m ary o f C om m ands and B u ilt-In Functions B u ilt-In V ariab les
If you type a built-in function that produces a result and you do not enclose it in square
brackets, TACL automatically displays the result; for example:

56> #WIDTH
#WIDTH expanded to:
80

Built-In Variables
TACL built-in variables provide basic elements of TACL on which all other features,
including TACL commands, are based. Unlike TACL commands, which can be
customized or redefined, built-in variables are always available as described in this
manual.

Built-in variable names start with a number sign (#). You can push them (the PUSH
command and #PUSH built-in function create new top levels of variables), pop them
(the POP command and #POP built-in function delete the top level of a variable),
invoke them, and assign values to them, but you cannot delete them. There are certain
other restrictions on their use, explained in individual function and variable descriptions
in Section 9, Built-In Functions and Variables.

Examples of built-in variables include:

This example changes the TACL output file (stored in #OUT) to a spooler location to
receive the list of built-in functions, then restores the output file to its previous identity:

96> #PUSH #OUT
97> #SET #OUT $S.#LP
98> #BUILTINS /FUNCTIONS/
99> #POP #OUT

You can use #PUSH (or PUSH) to save a copy of the existing contents of the top
variable level and #POP (or POP) to restore the previous contents to the top of the
stack. #PUSH, however, does not create such a variable, because it already exists, nor
can #POP delete the variable entirely (you get a “was not pushed” error if you try to
pop the first level).

In addition, pushing a built-in variable copies the pushed contents to the new top level
(the built-in variable and the pushed level then have the same value). Also, many built-
in variables have default values or automatically stored values. Unlike your other
variables, which can be preserved from one TACL session to another, built-in variables
are popped completely and reset to their default values when you log off.

There are restrictions on the use of built-in variables; for example, a built-in variable
cannot be used as a variable in an #ARGUMENT function, nor can you specify an
explicit variable level (for example, #DEFAULTS.-2) for a built-in variable. The

#OUT The name of the OUT file used by TACL

#PMSG The state of the PMSG flag

#MYTERM The name of the home terminal
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-3

S um m ary o f C om m ands and B u ilt-In Functions S um m ary o f Functiona lity
descriptions in Section 9, Built-In Functions and Variables, explain the ways in which
those variables can be used.

Summary of Functionality
The remainder of this section lists commands, built-in functions, and built-in variables
by functional group; the groups are:

 Obtaining help and information

 Interfacing with the operating system

 Managing the TACL environment

 Processing text in variables

 Controlling program flow

 Debugging TACL statements

Obtaining Help and Information

Table 7-1 lists commands that provide general help and information.

Note. A ll TA C L bu ilt-ins a re executed by the TA C L process, w h ich runs on ly on the node w here it w as s tarted ,
regard less o f any S Y S TE M com m ands tha t a re issued . To execu te a bu ilt-in com m and on ano ther system , you
m ust s ta rt a new TA C L process on tha t system .

Table 7-1. Informational Commands (page 1 of 2)

Command Description

BUILTINS Shows TACL built-in functions and variables

COLUMNIZE Displays a list in columnar form

COMMENT Begins comment line in TACL command file

ENV Displays settings of TACL environmental parameters

FC Retrieves, edits, and reexecutes lines in history buffer

FILEINFO Displays information about files

FILENAMES Displays names of files in a subvolume, using a file-name template

FILES Displays names of files in a subvolume

HELP Displays useful information about TACL

HISTORY Displays previously issued command lines

INFO DEFINE Displays attributes and associated values in one or more DEFINEs
residing in process file segment of current TACL process

KEYS Displays current function-key variables

LOADEDFILES Displays the loadfiles used by a selected process

PMSG Controls process-identifier displays of processes you create or delete
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-4

S um m ary o f C om m ands and B u ilt-In Functions O bta in ing H e lp and In fo rm ation
Table 7-2 lists built-in functions and variables that provide general help and
information.

PPD Displays names, cpu,pin designations, and ancestors of processes
currently running

SEGINFO Shows information about TACL segment files

SHOW Displays values of attributes set with SET command

SHOW DEFINE Displays DEFINE attributes in working attribute set and their current
values

STATUS Displays status of running processes

SYSTIMES Displays current date and time, plus date and time of last cold load

TIME Displays current system date and time of day

USERS
(program)

Displays attributes of users and groups

VARIABLES Displays names of all your variables

VARINFO Displays information about specified variables

WHO Displays information about your current default settings

? Displays a previous command line

! Reexecutes a previous command line

Table 7-2. Informational Built-In Functions and Variables (page 1 of 2)

Function Description

#BUILTINS Examines names of TACL built-in functions

#COLDLOADTACL Determines if TACL process is the “cold-load TACL”

#DEVICEINFO Gets detailed information about a device

#FILENAMES Lists file names

#GETCONFIGURATION Obtains settings of flags that affect TACL behavior

#HELPKEY Holds name of current help key

#HISTORY Operates on commands in history buffer

#KEYS Displays defined function keys

#PROCESSORSTATUS Determines status of 16 possible processors on a given system

#PROCESSORTYPE Determines processor type of given system or process

#SEGMENTVERSION Determines whether segment file is C00/C10 format or newer
format

#TACLVERSION Obtains TACL product RVU

#TOSVERSION Obtains current RVU number of the operating system

Table 7-1. Informational Commands (page 2 of 2)

Command Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-5

S um m ary o f C om m ands and B u ilt-In Functions In te rfac ing W ith the O pera ting S ystem
Interfacing With the Operating System

TACL supports three types of operating system interface commands and functions:

 Handling files and devices

 Controlling processes

 Managing the system environment

Handling Files and Devices

Table 7-3 lists the commands that support file and device handling.

#VARIABLES Obtains names of all variables in your home directory

#XFILES Implements FILES command

#XPPD Implements PPD command

#XLOADEDFILES Implements LOADEDFILES command

#XSTATUS Implements STATUS command

Table 7-3. File and Device Commands

Command Description

ALARMOFF
(program)

Turns off HP NonStop VLX system audio alarm

COPYDUMP
(program)

Copies and compresses tape dump file or existing disk dump file into a
disk dump file

CREATE Creates an unstructured disk file

INITTERM Initializes home terminal by reinstating its default SETMODE settings

LIGHTS (program) Controls processor panel lights

PURGE Purges (deletes) a disk file

ALARMOFF
(program)

Turns off NonStop VLX system audio alarm

COPYDUMP
(program)

Copies and compresses tape dump file or existing disk dump file into a
disk dump file

CREATE Creates an unstructured disk file

Table 7-2. Informational Built-In Functions and Variables (page 2 of 2)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-6

S um m ary o f C om m ands and B u ilt-In Functions In te rfac ing W ith the O pera ting S ystem
Table 7-4 lists the built-in functions and variables that support file and device handling.

Table 7-4. File and Device Built-In Functions and Variables

Function Description

#CREATEFILE Creates a file

#EOF Sets flag so that a process receives an end-of-file after reading
all data in a variable

#FILEINFO Gets information about a file

#FILEGETLOCKINFO Gets information about record and file locks

#IN (variable) Holds name of IN file used by TACL

#INITTERM Resets your home terminal to its configured settings

#INPUT Reads information from TACL primary input file

#INPUTEOF (variable) Holds state of INPUTEOF flag

#INPUTV Reads information from TACL primary input file into a variable
level

#LOCKINFO Gets information about record locks

#NEXTFILENAME Determines file following specified file

#OPENINFO Gets information about file openers

#OUT (variable) Holds name of OUT file used by TACL

#OUTPUT Writes data to an output file

#OUTPUTV Writes contents of a variable level to an output file

#PURGE Deletes a file

#RENAME Changes the name of an existing disk file

#REPLY Adds text to reply if TACL IN file is $RECEIVE

#REPLYV Adds copy of text from variable to reply if TACL IN file is
$RECEIVE

#REQUESTER Reads from and writes to files

#WIDTH (variable) Holds value of width register

#XFILEINFO Implements FILEINFO command

#XFILENAMES Implements FILENAMES command
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-7

S um m ary o f C om m ands and B u ilt-In Functions In te rfac ing W ith the O pera ting S ystem
Controlling Processes

Table 7-5 lists the commands that support process control.

Table 7-5. Process Control Commands (page 1 of 2)

Command Description

ACTIVATE Reactivates a previously suspended process

ADD DEFINE Creates one or more DEFINEs

ALTER DEFINE Changes attributes of one or more DEFINEs

ALTPRI Alters execution priority of a process

ASSIGN Gives file attributes to logical-file descriptions used by application
programs

CLEAR Deletes attributes previously set by ASSIGN or PARAM commands

DELETE DEFINE Removes one or more DEFINEs from process file segment (PFS) of
current TACL process

EXIT Used interactively, stops current process; used in a command file,
stops execution of commands

INLECHO Controls copying to TACL OUT file of lines sent to inline process

INLEOF Sends end-of-file indication to an inline process

INLOUT Controls copying to TACL OUT file of lines sent to OUT file of inline
process

INLPREFIX Establishes prefix that identifies lines to be passed to inline process

INLTO Establishes variable to receive copies of lines sent to OUT file of inline
process

PARAM Assigns parameter value to a parameter name, or displays all current
parameters and their values

PAUSE Makes TACL stop prompting for commands and allows another
process to control terminal

RESET DEFINE Restores attributes in DEFINE working set to their initial values

RUN or RUND Runs a program; optionally puts resulting process into debug state

SET DEFINE SET DEFINE establishes a value for one or more DEFINE attributes
in working attribute set

SET DEFMODE Controls whether DEFINEs are enabled for current TACL process and
are propagated to new processes

SET HIGHPIN Sets the default PIN range for processes started by the current TACL
process

SET SWAP Sets swap volume for all subsequent RUN commands (unless swap
volume is explicitly specified in a command)

STOP Stops and deletes a process
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-8

S um m ary o f C om m ands and B u ilt-In Functions In te rfac ing W ith the O pera ting S ystem
Table 7-6 lists the built-in functions and variables that support process control.

SUSPEND Prevents a process from running until it is reactivated by an
ACTIVATE command

TACL (program) Starts TACL process on your local system or a remote system

WAKEUP Sets wakeup mode

Table 7-6. Process Control Built-In Functions and Variables (page 1 of 3)

Function Description

#ABEND Immediately terminates a process

#ABORTTRANSACTION Aborts and backs out a transaction

#ACTIVATEPROCESS Returns process or process pair from suspended state to
ready state

#ALTERPRIORITY Changes execution priority of a process or process pair

#ASSIGN (variable) Holds information about all currently defined unit name

#BEGINTRANSACTION Starts a new transaction

#CREATEPROCESSNAME Creates unique process name

#CREATEREMOTENAME Returns process name unique to specified system

#DEFINEADD Adds a DEFINE to TACL context, using attributes in the
working set

#DEFINEDELETE Deletes a DEFINE from TACL context

#DEFINEDELETEALL Deletes all DEFINEs from TACL context

#DEFINEINFO Gets information about a DEFINE

#DEFINEMODE (variable) Holds flag indicating whether DEFINEs can be used

#DEFINENAMES Gets names of all DEFINEs that match specified template

#DEFINENEXTNAME Gets name of next DEFINE following specified DEFINE in
sequence established by the operating system

#DEFINEREADATTR Gets value of specified attribute

#DEFINERESTORE Creates or replaces active DEFINE, or replaces working
set with contents of DEFINE previously saved with
#DEFINESAVE

#DEFINERESTOREWORK Restores DEFINE working set from background set

#DEFINESAVE Saves copy of active DEFINE or working set for later
restoration with #DEFINERESTORE

#DEFINESAVEWORK Saves DEFINE current working set to background set

#DEFINESETATTR Modifies value of specified DEFINE attribute in current
working set

Table 7-5. Process Control Commands (page 2 of 2)

Command Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-9

S um m ary o f C om m ands and B u ilt-In Functions In te rfac ing W ith the O pera ting S ystem
#DEFINESETLIKE Initializes current working set with attributes of an existing
DEFINE

#DEFINEVALIDATEWORK Checks DEFINE current working set for consistency

#EMSADDSUBJECT Adds subject token to event message buffer

#EMSADDSUBJECTV Adds subject token to event message buffer, obtaining
token values from a STRUCT

#EMSADDSUBJECTV Adds subject token to event message buffer, obtaining
token values from a STRUCT

#EMSGET Retrieves token values from SPI buffer

#EMSGET Retrieves token values from SPI buffer

#EMSGETV Copies token values from SPI buffer to a STRUCT

#EMSINIT Initializes a STRUCT as event message buffer

#EMSINITV Initializes STRUCT as event message buffer, obtaining
initial values from another STRUCT

#EMSTEXT Converts information from event buffer to printable text

#EMSTEXTV Converts information from event buffer to printable text,
copies text to a STRUCT

#ENDTRANSACTION Commits data base changes associated with a transaction

#HIGHPIN (variable) Holds the default PIN range for processes started by the
current TACL process

#INLINEECHO (variable) Controls whether TACL echoes to its OUT file lines passed
as input to inline processes

#INLINEEOF Sends end-of-file to process running under control of
INLINE facility

#INLINEOUT (variable) Controls whether TACL copies to its own OUT file lines
written by inline processes to their OUT files

#INLINEPREFIX (variable) Holds prefix used to identify lines to be passed to inline
processes instead of being acted upon by TACL

#INLINEPROCESS (variable) Holds process ID of current inline process, if such exists

#INLINETO (variable) Holds name of variable, if any, to which TACL appends
lines written by inline processes to their OUT files

#LOOKUPPROCESS Gets information about a PPD entry

#MOM Obtains identity of creator process

#MYPID Obtains your CPU,PIN number

#NEWPROCESS Starts a process

#PARAM Holds list of all your parameters, or a specified parameter

#PAUSE Gives control of your terminal to another process

Table 7-6. Process Control Built-In Functions and Variables (page 2 of 3)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-10

S um m ary o f C om m ands and B u ilt-In Functions In te rfac ing W ith the O pera ting S ystem
Managing the System Environment

Table 7-7 lists the commands that support system environment management.

#PMSG (variable) Holds state of PMSG flag

#PROCESS Obtains identity of last process created or paused for by
TACL

#PROCESSEXISTS Determines whether a process exists

#PROCESSINFO Requests information about a process

#SERVER Creates and deletes servers

Table 7-7. System Environment Management Commands (page 1 of 2)

Command Description

ADDDSTTRANSITION Adds entries to daylight-saving time transition table

ADDUSER (program) Adds new users to a group

BACKUPCPU Specifies backup CPU for current named TACL process, or
deletes existing backup process

BUSCMD (program) Tells operating system that a bus is (or is not) available for use

DEFAULT (program) Changes logon default setting for volume and subvolume
names; sets default disk file security

DELUSER (program) Deletes users from a group

LOGOFF Concludes TACL session

LOGON Begins TACL session

O[BEY] Instructs TACL to execute commands from file you specify

PASSWORD (program) Establishes or changes your password

PMSEARCH Defines subvolumes to be searched for program and macro files

RELOAD (program) Reloads operating system image into a processor that was
previously halted

REMOTEPASSWORD Defines remote password for use in network security (runs
RPASSWRD program)

RPASSWRD (program) Establishes or changes remote password

SETPROMPT Changes TACL prompt

SETTIME Sets system date and time-of-day clocks

SINK Disables the display of the result of the argument to SINK

SWITCH Causes backup TACL process to become primary and primary
process to become a backup

SYSTEM Changes your current default system

Table 7-6. Process Control Built-In Functions and Variables (page 3 of 3)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-11

S um m ary o f C om m ands and B u ilt-In Functions In te rfac ing W ith the O pera ting S ystem
Table 7-8 lists the built-in functions and variables that support system environment
management.

VOLUME Changes your current default volume, subvolume, or security

XBUSDOWN Tells operating system that a bus is not available for use

XBUSUP Tells operating system that a bus is available for use

YBUSDOWN Tells operating system that a bus is not available for use

YBUSUP Tells operating system that a bus is available for use

Table 7-8. System Environment Management Built-In Functions and
Variables (page 1 of 2)

Function Description

#ADDDSTTRANSITION Adds entries to daylight-saving time transition table

#BACKUPCPU Starts or stops the TACL backup process on a specified CPU

#BREAKMODE (variable) Affects BREAK key operation

#CHANGEUSER Logs user on under different user ID

#DEFAULTS (variable) Holds volume or subvolume defaults you set

#DELAY Causes TACL to wait for specified time

#INTERACTIVE Determines whether your TACL is interactive

#LOGOFF Logs off current TACL

#MYGMOM Obtains identity of TACL job ancestor process

#MYSYSTEM Determines name of system executing current TAC

#MYTERM (variable) Holds name of your home terminal

#PMSEARCHLIST
(variable)

Holds list of subvolumes to be searched for program and macro
files

#PREFIX (variable) Holds contents of prefix string

#PROMPT (variable) Represents state of prompt flag

#REPLYPREFIX (variable) Holds value of your reply prefix

#SETSYSTEMCLOCK Changes setting of system clock

#SPIFORMATCLOSE Closes an open EMS formatter template file

#SWITCH Switches TACL to its backup process

#SYSTEM Temporarily changes your default system

#SYSTEMNAME Requests a system by name

#SYSTEMNUMBER Requests a system by number

#TACLOPERATION Determines whether TACL is reading commands from IN or
$RECEIVE

Table 7-7. System Environment Management Commands (page 2 of 2)

Command Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-12

S um m ary o f C om m ands and B u ilt-In Functions M anag ing the TA C L E nvironm ent
Managing the TACL Environment

Table 7-9 lists the commands that support the TACL environment.

Table 7-10 lists the built-in functions and variables that support the TACL environment.

#TACLSECURITY
(variable)

Represents TACL security

#USERID Specifies a user by user ID

#USERNAME Specifies a user by user name

#XLOGON Implements the LOGON command

Table 7-9. TACL Environment Commands

Command Description

ATTACHSEG Provides user access to a TACL segment file

CREATESEG Creates a TACL segment file

DETACHSEG Relinquishes use of a TACL segment file

HOME Specifies directory in which TACL searches first for variables

LOAD Loads all properly formatted definitions from a TACL library

USE Defines one or more directories in which TACL searches to find variables

Table 7-10. TACL Environment Commands

Function Description

#ERRORNUMBERS Holds information about latest error

#GETPROCESSSTATE Obtains process state information about the current TACL
process

#HOME Represents your home directory

#LOAD Processes a TACL library file

#SEGMENT Obtains name of segment file that TACL is using for its
variables

#SEGMENTCONVERT Converts segment file from C00/C10 format to newer format

#SEGMENTINFO Gets information about segments being used by TACL

#SETPROCESSSTATE Sets process state flags for the current TACL process

#SETCONFIGURATION Sets the flag settings that affect TACL behavior

#USELIST Holds your use list

Table 7-8. System Environment Management Built-In Functions and
Variables (page 2 of 2)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-13

S um m ary o f C om m ands and B u ilt-In Functions P rocessing Text in V ariab les
Processing Text in Variables

TACL provides two types of mechanisms that manipulate text in variables:

 Built-in functions and commands

 The #DELTA low-level text processor, accessed through the #DELTA built-in
function

For more information about other functions and commands that process text, see the
individual function and command descriptions in Section 8, UTILS:TACL Commands
and Functions and Section 9, Built-In Functions and Variables. In addition, the TACL
Programming Guide contains examples showing how to use these functions.

The commands in Table 7-11 provide data manipulation capabilities.

Table 7-11. Data Manipulation Commands (page 1 of 2)

Command Description

_COMPAREV Compares two variables

COMPUTE Performs calculation and displays result

_CONTIME_TO_TEXT Converts numeric date and time to text form

_CONTIME_TO_TEXT_DATE Converts numeric date to text form

_CONTIME_TO_TEXT_TIME Converts numeric time to text form

COPYVAR Copies one variable to another

FILETOVAR Copies data from a file and appends it to a variable

JOIN Converts multiple-line variable to single-line variable

KEEP Removes bottom levels from a variable stack

_LONGEST Returns length of longest element in a space-separated
list

_MONTH3 Returns three-letter abbreviation for a month number

OUTVAR Displays contents of a variable

POP Removes top level of variable or built-in function

PUSH A Adds a level to a variable

SET VARIABLE Changes contents of a variable level

VARTOFILE Copies data from a variable to a file

VCHANGE Changes all occurrences of one string to another string
within a range of lines in a variable

VCOPY Copies a range of lines from a variable and inserts it at a
specified line position in another variable

VDELETE Deletes a range of lines from a variable

VFIND Searches a range of lines in a variable for a specified
string
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-14

S um m ary o f C om m ands and B u ilt-In Functions P rocessing Text in V ariab les
Table 7-12 summarizes the built-in functions and variables that manipulate text in
variables.

VINSERT Inserts lines from current TACL IN file at a specified line
position

VLIST Lists a range of lines in a variable

VMOVE Deletes a range of lines from a variable, inserts them at a
specified line position in another variable

Table 7-12. Data Manipulation Built-In Functions and Variables (page 1 of 3)

Function Description

#APPEND Appends additional lines to a variable level

#APPENDV Appends the contents of one variable level to the end of
another variable level

#ARGUMENT Parses arguments to routines

#CHARACTERRULES
(variable)

Holds name of current character-processing rules file

#CHARADDR Converts line address to character address

#CHARBREAK Inserts line break in variable at character address

#CHARCOUNT Obtains number of characters in variable

#CHARDEL Deletes characters from variable at character address

#CHARFIND Locates text in variable, searching forward from character
address

#CHARFINDR Locates text in variable, searching backward from
character address

#CHARFINDRV Locates string in variable, searching backward from
character address

#CHARFINDV Locates string in variable, searching forward from
character address

#CHARGET Obtains copy of specified number of characters from a
variable

#CHARGETV Copies specified number of characters from one variable
to another

#CHARINS Inserts text into a variable at character address

#CHARINSV Inserts string into a variable at character address

#COMPAREV Compares one variable with another

#COMPUTE Returns value of expression

#COMPUTEJULIANDAYNO Converts Gregorian calendar date to a Julian day number

Table 7-11. Data Manipulation Commands (page 2 of 2)

Command Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-15

S um m ary o f C om m ands and B u ilt-In Functions P rocessing Text in V ariab les
#COMPUTETIMESTAMP Converts calendar date to a four-word timestamp

#COMPUTETRANSID Converts separate components of a transaction ID to one
numeric transaction ID

#CONTIME Converts timestamp to seven-digit date and time

#CONVERTPHANDLE Converts process file identifier to process handle or vice
versa

#CONVERTPROCESSTIME Converts time value obtained by PROCESSTIME option of
#PROCESSINFO

#CONVERTTIMESTAMP Converts GMT timestamp to a local-time-based
timestamp, or local-time-based timestamp to a GMT
timestamp

#DEF Defines a variable

#DELTA Acts as a complex character processor

#EMPTY Determines whether specified string contains text

#EMPTYV Determines whether a variable level contains any lines

#EXTRACT Deletes first line of a variable level

#EXTRACTV Moves first line of a variable level to another variable

#FRAME Tracks pushed variables

#GETSCAN Obtains number of characters passed over by
#ARGUMENT

#INFORMAT (variable) Represents formatting mode for #INPUT

#INTERPRETJULIANDAYNO Converts Julian day number to year, month, and day

#INTERPRETTIMESTAMP Breaks down four-word timestamp to its component parts

#INTERPRETTRANSID Converts numeric transaction ID to its separate
component values

#JULIANTIMESTAMP Obtains four-word timestamp

#KEEP Removes all but specified level of a variable

#LINEADDR Converts character address to line address

#LINEBREAK Inserts line break in variable at line address

#LINECOUNT Obtains number of lines in a variable

#LINEDEL Deletes lines from variable at line address

#LINEFIND Locates text in variable, searching forward from line
address

#LINEFINDR Locates text in variable, searching backward from line
address

#LINEFINDRV Locates string in variable, searching backward from line
address

Table 7-12. Data Manipulation Built-In Functions and Variables (page 2 of 3)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-16

S um m ary o f C om m ands and B u ilt-In Functions C on tro lling P rogram F low
Controlling Program Flow

Table 7-13 lists built-in functions and variables that provide program control flow for
TACL programs.

#LINEFINDV Locates string in variable, searching forward from line
address

#LINEGET Gets copy of specified number of lines from a variable

#LINEGETV Copies specified number of lines from one variable to
another

#LINEINS Inserts text into a variable at line address

#LINEINSV Inserts string into a variable at line address

#LINEJOIN Deletes line break at end of a line, joining following line to
it

Table 7-13. Flow Control Built-In Functions and Variables

Function Description

#CASE Chooses one out of a set of options

#ERRORTEXT Used with exception handlers to catch error text

#EXCEPTION Determines why a routine was invoked during exception handling

#EXIT Holds state of exit flag

#FILTER Indicates which exceptions a routine can handle

#IF Executes one of two options

#LOOP Repeatedly executes one or more statements in a function

#RAISE Defines exception to be filtered by routines

#RETURN Exits from a routine immediately

#ROUTINENAME Obtains name of variable in which containing routine resides

#WAIT Specifies variables for which a routine must wait

Table 7-12. Data Manipulation Built-In Functions and Variables (page 3 of 3)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-17

S um m ary o f C om m ands and B u ilt-In Functions D ebugg ing TA C L S ta tem ents
Debugging TACL Statements

Table 7-14 lists the commands that provide debugging support.

Table 7-15 lists built-in functions and variables that provide debugging support.

Table 7-14. Debugging Commands

Command Description

BREAK Sets breakpoint on specified variable or lists all breakpoints

DEBUG Puts a process into debug state

_DEBUGGER Debugs TACL statements

SET INSPECT Specifies whether INSPECT or DEBUG is default debugger for programs
started by TACL

Table 7-15. Debugging Built-In Functions and Variables

Function Description

#BREAKPOINT Sets or deletes _DEBUGGER breakpoint for a specific variable level

#DEBUGPROCESS Calls debugger for specified process

#INSPECT Holds state of INSPECT flag

#TRACE Represents state of TRACE flag
H P N onS top TA C L R e fe rence M anua l — 429513-017
7-18

8
UTILS:TACL Commands and
Functions

This section describes the TACL commands and functions that are located in the
:UTILS:TACL directory. These commands and functions are typically used for
interactive tasks. Each description contains:

 A summary of the action of the command, function, or program

 The syntax of the command, function, or program, including a description of the
syntax of parameters

 The listing format used for output (if the command, function, or program produces
a display or listing output)

 Considerations for the use of the command, function, or program

 Examples of use of the command, function, or program

:UTILS:TACL Command Summary
These tables summarize the :UTILS:TACL commands and functions and the utility
programs that are also available.

Commands and Programs

The commands and functions listed in Table 8-1 are available to all users.

Note. All examples in this section are based on the assumptions that the built-in variable
#INFORMAT has been set to TACL, which enables recognition and processing of the
TACL special characters; that the built-in variable #PMSEARCHLIST has been set to
include $SYSTEM.SYSTEM, and the keyword #DEFAULTS, which enables the use of
implied RUN commands; and that the required TACL library files have been loaded into
memory.

Table 8-1. Commands and Programs (page 1 of 5)

Command or Function Description

ACTIVATE Command Reactivates a previously suspended process

ADD DEFINE Command Creates one or more DEFINEs

ALTER DEFINE Command Changes attributes of one or more DEFINEs

ALTPRI Command Alters execution priority of a process

ASSIGN Command Gives file attributes to logical-file descriptions used by
application programs

ATTACHSEG Command Provides user access to TACL segment file
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-1

U TILS :TA C L C om m ands and Functions C om m ands and P rogram s
BACKUPCPU Command Specifies backup CPU for current named TACL process,
or deletes existing backup process

BREAK Command Sets breakpoint on specified variable or lists all
breakpoints

BUILTINS Command Shows TACL built-in functions and variables

CLEAR Command Deletes attributes previously set by ASSIGN or PARAM
commands

CLICVAL Program Validates the correctness and applicability of the Core
License file for the system.

COLUMNIZE Command Displays a list in columnar form

COMMENT Command Begins comment line in TACL command file

_COMPAREV Function Compares two variables

COMPUTE Command Performs calculation and displays result

_CONTIME_TO_TEXT Function Converts numeric date and time to text form

_CONTIME_TO_TEXT_DATE
Function

Converts numeric date to text form

_CONTIME_TO_TEXT_TIME
Function

Converts numeric time to text form

COPYDUMP Program Copies and compresses tape dump file or existing disk
dump file into a disk dump file.
Not supported on H-series systems.

COPYVAR Command Copies one variable to another

CREATE Command Creates an unstructured disk file

CREATESEG Command Creates a TACL segment file

DEBUG Command Puts a process into debug state

DEBUGGER Function Debugs TACL statements

DEFAULT Program Changes logon default setting for volume or subvolume
names; sets default disk file security

DELETE DEFINE Command Removes one or more DEFINEs from

DETACHSEG Command Relinquishes use of a TACL segment file

ENV Command Displays settings of TACL environmental parameters

EXIT Command Used interactively, stops current process; used in a
command file, stops execution of commands

FC Command Retrieves, edits, and reexecutes lines in history buffer

FILEINFO Command Displays information about files

FILENAMES Command Displays names of files in a subvolume, using a file-
name template

Table 8-1. Commands and Programs (page 2 of 5)

Command or Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-2

U TILS :TA C L C om m ands and Functions C om m ands and P rogram s
FILES Command Displays names of files in a subvolume

FILETOVAR Command Copies data from a file and appends it to a variable

HELP Command Displays useful information about TACL

HISTORY Command Displays previously issued command lines

HOME Command Specifies directory in which TACL searches first for
variables

INFO DEFINE Command Displays attributes and associated values in one or more
DEFINEs residing in process file segment of current
TACL process

INITTERM Command Initializes home terminal by reinstating its default
SETMODE settings

INLECHO Command Controls copying to TACL OUT file of lines sent to inline
process

INLEOF Command Sends end-of-file indication to an inline process

INLOUT Command Controls copying to TACL OUT file of lines sent to OUT
file of inline process

INLPREFIX Command Establishes prefix that identifies lines to be passed to
inline process

INLTO Command Establishes variable to receive copies of lines sent to
OUT file of inline process

IPUCOM Program Displays, sets, or resets an IPU number associated with
a process. Also used to set or display CPU-wide
controls.

JOIN Command Converts multiple-line variable to single-line variable

KEEP Command Removes bottom levels from a variable stack

KEYS Command Displays current function-key variable

LOAD Command Loads all properly formatted definitions from a TACL
library

LOADEDFILES Command Displays all files loaded by a selected process

LOGOFF Command Concludes TACL session

LOGON Command Begins TACL session

_LONGEST Function Returns length of longest element in a space-separated
list

_MONTH3 Function Returns three-letter abbreviation for a month number

O[BEY] Command Instructs TACL to execute commands from file you
specify

OUTVAR Command Displays contents of a variable

Table 8-1. Commands and Programs (page 3 of 5)

Command or Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-3

U TILS :TA C L C om m ands and Functions C om m ands and P rogram s
PARAM Command Assigns parameter value to a parameter name, or
displays all current parameters and their values

PASSWORD Program Establishes or changes your password

PAUSE Command Makes TACL stop prompting for commands and allows
another process to control terminal

PMSEARCH Command Defines subvolumes to be searched for program and
macro files

PMSG Command Controls process-identifier displays of processes you
create or delete

POP Command Removes top level of variable or built-in function

POSTDUMP Utility Enables explicit postdump processing of an existing
full dump file to produce an extracted dump file.

PPD Command Displays names, cpu,pin designations, and ancestors
of processes currently running

PURGE Command Purges (deletes) a disk file

PUSH Command Adds a level to a variable

REMOTEPASSWORD
Command and RPASSWRD
Program

Defines remote password for use in network security
(runs RPASSWRD program)

RENAME Command Renames a disk file

RESET DEFINE Command Restores attributes in DEFINE working set to their initial
values

REMOTEPASSWORD
Command and RPASSWRD
Program

Establishes or changes remote password

RUN[D|V] Command Runs a program; optionally puts resulting process into
debug state

SEGINFO Command Shows information about TACL segment files

SEMSTAT Program Prints BINSEM usage information and statistics for a
process whose ID or process name is provided

SET DEFINE Command Establishes a value for one or more DEFINE attributes in
working attribute set

SET DEFMODE Command Controls whether DEFINEs are enabled for current
TACL process and are propagated to new processes

SET HIGHPIN Command Specifies the default PIN range for processes started by
the TACL process

SET INSPECT Command Specifies whether INSPECT or DEBUG is default for
programs started by TACL

Table 8-1. Commands and Programs (page 4 of 5)

Command or Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-4

U TILS :TA C L C om m ands and Functions R estric ted C om m ands
Restricted Commands

Only group managers (user ID n,255) can execute the commands in Table 8-2.

SET SWAP Command Sets swap volume for all subsequent RUN commands
(unless swap volume is explicitly specified in a
command)

SET VARIABLE Command Changes contents of a variable level

SETPROMPT Command Changes TACL prompt

SHOW Command Displays values of attributes set with SET command

SHOW DEFINE Command Displays DEFINE attributes in working attribute set and
their current values

SINK Command Disables the display of the result of its argument

STATUS Command Displays status of running processes

STOP Command Stops and deletes a process

SUSPEND Command Prevents a process from running until it is reactivated by
an ACTIVATE command

SWITCH Command Causes backup TACL process to become primary, and
primary process to become a backup

SYSTEM Command Changes your current default system

SYSTIMES Command Displays current date and time, plus date and time of
last cold load

TACL Program Starts TACL process on your local system or a remote
system

TIME Command Displays current system date and time of day

USE Command Defines one or more directories in which TACL searches
to find variables

USERS Program Displays attributes of users and groups

VARIABLES Command Displays names of all your variables

VARINFO Command Displays information about specified variable

VARTOFILE Command Copies data from a variable to a file

VCHANGE Command Changes all occurrences of one string to another string
within a range of lines in a variable

Table 8-1. Commands and Programs (page 5 of 5)

Command or Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-5

U TILS :TA C L C om m ands and Functions R estric ted C om m ands
Table 8-2. Group Manager Commands

Command or Function Description

ADDUSER Program (Group
Managers Only)

Adds new users to a group

DELUSER Program (Group
Managers Only)

Deletes users from a group
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-6

U TILS :TA C L C om m ands and Functions :U T ILS :TA C L C om m and D escrip tions
Only super-group users (user ID 255,n) can execute the commands in Table 8-3.

:UTILS:TACL Command Descriptions
The remainder of this section contains descriptions of the syntax for the commands
and functions in :UTILS:TACL and the programs used by TACL.

Table 8-3. Super-Group User Commands

Command or Function Description

ADDDSTTRANSITION
Command (Super-Group Only)

Adds entries to daylight savings time transition table

ALARMOFF Program (Super-
Group Only)

Turns off NonStop VLX system audio alarm

BUSCMD Program (Super-
Group Only)

Alerts operating system that a bus is (or is not) available
for use

LIGHTS Program (Super-Group
Only)

Controls processor panel lights

RCVDUMP Program (Super-
Group or Super ID Only)

Receives a dump from a halted processor over an
interprocessor bus

RECEIVEDUMP Command
(Super-Group Only)

Receives a dump from a halted processor over an
interprocessor bus (runs RCVDUMP).

Not supported on H-series systems.

RELOAD Program (Super-Group
Only)

Reloads operating system image into a processor that
was previously halted

SETTIME Command (Super-
Group Only)

Sets system date and time-of-day clocks

XBUSDOWN/YBUSDOWN
Command (Super-Group Only)

Alerts operating system that a bus is not available for
use

XBUSUP/YBUSUP Command
(Super-Group Only)

Alerts operating system that a bus is available for use
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-7

U TILS :TA C L C om m ands and Functions A C T IV A TE C om m and
ACTIVATE Command

Use the ACTIVATE command to restart a process previously suspended by the
SUSPEND Command on page 8-217 or the #SUSPENDPROCESS Built-In Function
on page 9-394.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair you want to restart.

cpu,pin

is the CPU number and process identification number for the process you want to
restart.

Considerations

 If you omit the process specification, ACTIVATE restarts the last process TACL
started or for which TACL paused, if that process is still running. That process is
called the default process. You can use the #PROCESS Built-In Function on
page 9-290 to determine the name or CPU and PIN of the default process. If no
default process exists, you must include a process specification.

 The super ID can activate any suspended process.

 A group manager whose process accessor ID matches the user ID of any member
of the group can activate any suspended process owned by someone in the group.
(For a discussion of process accessor IDs, see the Guardian User’s Guide. For
restrictions that apply to processes running on remote systems, see the Expand
Network Management and Troubleshooting Guide.)

 Users other than super-group users and group managers can activate only those
processes with a process accessor ID that matches their own user ID.

 A restarted process is placed in the queue of processes that are waiting for
execution. In the queue, the process with the highest priority is executed first, so a
newly activated process immediately begins execution only if it has the highest
execution priority. You can set execution priority with the ALTPRI Command on
page 8-20.

ACTIVATE [[\node-name.]{$process-name | cpu,pin }]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-8

U TILS :TA C L C om m ands and Functions A D D D E F IN E C om m and
ADD DEFINE Command

Use the ADD DEFINE command to create one or more DEFINEs in the process file
segment (PFS) of the current TACL. For a description of DEFINEs, see Section 5,
Statements and Programs.

define-name

is the name to be assigned to the DEFINE created by this command. A DEFINE
name can be from 2 to 24 characters in length; the first character must be an equal
sign (=) and the second must be a letter. The name can contain alphanumeric
characters, hyphens (-), underscores (_), or circumflexes (^).

If you specify neither LIKE clause nor attribute-spec, you create one or more
DEFINEs with the attributes and values of the working attribute set.

LIKE define-name

creates a DEFINE identical to define-name but modified by attribute-spec (if
present). define-name is the name of an existing DEFINE.

attribute-spec

is one or more clauses where each clause specifies the name of a valid DEFINE
attribute and the value you want to associate with it in the new DEFINE. If you
include a LIKE clause, TACL creates a DEFINE with the attributes and values of
that define-name, modified by the content of attribute-spec. If you do not
include a LIKE clause, TACL creates a DEFINE with the attributes and values of
the working attribute set, modified by the content of attribute-spec.

See the SET DEFINE Command on page 8-173 for descriptions of valid DEFINE
attributes.

Considerations

 To modify the working attribute set before you create a DEFINE, use the SET
DEFINE command. To display the working attribute set or the attributes that are
currently set or defaulted, use the SHOW DEFINE command.

 Attributes you set in an ADD DEFINE command (known as the ADD DEFINE
attribute set) do not become part of the working attribute set.

 The ADD DEFINE command checks for consistency among the current attributes
(this includes attributes you set before entering the ADD DEFINE command, as
well as the ADD DEFINE attribute set). If the current attributes are incomplete or
inconsistent, an error occurs and no DEFINE is created. For example, if you enter

ADD DEFINE {define-name}
 {define-name [, define-name] ...)}
 [, LIKE define-name] [, attribute-spec] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-9

U TILS :TA C L C om m ands and Functions A D D D E F IN E C om m and
an ADD DEFINE command that does not make a complete attribute set (that is, if a
required attribute is still missing), TACL displays this message:

Current attribute set is incomplete

 If you include a LIKE clause in an ADD DEFINE command, it is processed first,
before any attribute-spec clauses. Then each attribute-spec clause is
processed in order. The LIKE clause establishes a set of DEFINE attributes for the
new DEFINE; those attributes are then modified by the attribute-spec
clauses, if there are any. If you include a LIKE clause, it must precede any
attribute-spec clauses in the ADD DEFINE command.

If you do not include a LIKE clause, any attribute-spec clauses in your ADD
DEFINE command are processed in order.

 Because the CLASS attribute works like a subtype of DEFINE, CLASS affects the
ADD DEFINE command in these ways:

 Including CLASS in an ADD DEFINE command clears all existing attribute
settings. If you use the CLASS attribute, make it the first attribute in your ADD
DEFINE command or include it in your first SET DEFINE command.

 To avoid errors or unexpected results, do not specify the CLASS attribute in a
command that includes a LIKE clause.

 You cannot specify an attribute that is not valid for the CLASS of the DEFINE
you are adding. For example, when the default CLASS is in effect (CLASS
MAP), entering this command produces this error message:

79> ADD DEFINE =TAPE1, LABELS IBM
There is no attribute "LABELS" for the current class

 When a backup TACL process takes over, TACL deletes existing DEFINEs.

 To obtain error information, use the #ERRORNUMBERS Built-In Variable on
page 9-160.

Examples

1. Suppose that you are using a long file name in a series of commands or procedure
calls. Using a MAP DEFINE for file-name redirection, you can substitute a shorter
name for the long name. For example, this command sets up a MAP DEFINE (by
default) with the name =PLUTO:

80> ADD DEFINE =PLUTO, FILE \FAR.$OFF.WORLDS.PLUTO

Now you can use the name =PLUTO wherever you would have used the longer file
name, and the system knows that you mean \FAR.$OFF.WORLDS.PLUTO.

2. This command sets up a TAPE DEFINE named =S2 that describes a tape file on
the IBM standard labeled tape volume number 58. If you specify LABELS IBM, you
must also specify FILEID. Because the FILESEQ attribute defaults to 1, the file is
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-10

U TILS :TA C L C om m ands and Functions A D D D E F IN E C om m and
the first one on the tape. Data is to be translated from the ASCII format to EBCDIC.
The USE EXTEND attribute indicates that data is to be added to the end of the file.

81> ADD DEFINE =S2, CLASS TAPE, LABELS IBM, FILEID $TAPE,&
81> &VOLUME 58, EBCDIC OUT, USE EXTEND
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-11

U TILS :TA C L C om m ands and Functions A D D D S TTR A N S IT IO N C om m and (S uper-G roup
O nly)
ADDDSTTRANSITION Command (Super-Group Only)

Use the ADDDSTTRANSITION command to add entries to the daylight savings time
(DST) transition table.

start-date-time

is the beginning of the period where offset is applicable. The format is:

{ month day | day month } year,hour:[:sec] GMT | LST

 where month is the first three letters of the name of the month; GMT indicates
Greenwich mean time; and LST indicates local standard time.

stop-date-time

is the end of the period where offset is applicable. The format is:

{ month day | day month } year,hour:[:sec] GMT | LST

 where month is the first three letters of the name of the month; GMT indicates
Greenwich mean time; and LST indicates local standard time.

offset

is the difference between standard time and daylight-saving time. Specify offset
as:

[+ | -] hour: min

The offset must be between -8:59 and +8:59.

Considerations

 To use the ADDDSTTRANSITION command, you must have a super-group ID
(255,n).

 The ADDDSTTRANSITION command can be used only in systems for which the
TABLE option of the DAYLIGHT_SAVINGS_TIME clause was specified when
SYSGEN was run to create the current system image.

 The table of daylight savings time transitions must be initialized with at least one
DST transition that is earlier than the current date and time and with at least two
transitions that are later than the current date and time.

 All time intervals that do not have explicit nonzero offset transition added are
assumed to have a zero offset. Furthermore, all intervals that have a zero offset
transition do not need to be explicitly added.

 You can include ADDDSTTRANSITION commands in a command file that is
invoked as an IN file for the initial TACL process in a system.

ADDDSTTRANSITION start-date-time , stop-date-time , offset
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-12

U TILS :TA C L C om m ands and Functions A D D D S TTR A N S IT IO N C om m and (S uper-G roup
O nly)
Example

To add two periods of daylight savings time (from April 1, 1986, to September 1, 1986,
and from April 1, 1986, to September 1, 1987), enter:

69> ADDDSTTRANSITION 01 APR 1986, 2:00 LST, 01 SEP 1986, &
69> &2:00 LST, 1:00

70> ADDDSTTRANSITION 01 SEP 1986, 2:00 LST, 01 APR 1987, &
70> &2:00 LST, 0:00

71> ADDDSTTRANSITION 01 APR 1987, 2:00 LST, 01 SEP 1987, &
71> &2:00 LST, 1:00
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-13

U TILS :TA C L C om m ands and Functions A D D U S E R P rogram (G roup M anagers O n ly)
ADDUSER Program (Group Managers Only)

Run the ADDUSER program to add new group IDs and user IDs to the system. To use
the ADDUSER program, you must have a group-manager ID (group,255)or the
super ID (255,255).

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

group-name.user-name

are the group and individual names, respectively, of the new user. Each name can
contain from one to eight letters or digits, and the first character must be a letter.

group-id

is an integer in the range from 0 through 255 that uniquely identifies a group. 255
is reserved as the super-group ID.

user-id

is an integer in the range from 0 through 255 that uniquely identifies a user within a
group. 255 is reserved for group managers (group,255) and the super ID
(255,255).

Considerations

 Only a group manager or the super ID can add new users to a system. Group
managers can add new users to their respective groups; the super ID can add new
users to any group.

 The super ID can create a new group by adding a new user with a previously
unused group-id and user-id.

 A group does not need to have a group manager.

 The logon defaults for a new user who was just added to the system are volume
$SYSTEM, subvolume NOSUBVOL, and disk file security “AAAA”.

Examples

1. Assume that there is no group name MANUF and no group ID 8 in the system. In
one ADDUSER command, the super ID can create a new group (MANUF) and add
a new user (STELLA) with group ID 8 and user ID 1:

12> ADDUSER MANUF.STELLA, 8,1
MANUF.STELLA (8,1) HAS BEEN ADDED TO THE USERID FILE.

ADDUSER [/ run-option [, run-option] ... /]
 group-name.user-name , group-id, user-id
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-14

U TILS :TA C L C om m ands and Functions A D D U S E R P rogram (G roup M anagers O n ly)
2. The super ID can also add a manager to the MANUF group by adding a user with
user ID 255 and group ID 8:

13> ADDUSER MANUF.HONCHO, 8,255
MANUF.HONCHO (8,255) HAS BEEN ADDED TO THE USERID FILE.

3. The new manager can now add other users to the group:

14> ADDUSER MANUF.MABEL, 8,2
MANUF.MABEL (8,2) HAS BEEN ADDED TO THE USERID FILE.
15> ADDUSER MANUF.FRED, 8,44
MANUF.FRED (8,44) HAS BEEN ADDED TO THE USERID FILE.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-15

U TILS :TA C L C om m ands and Functions A LA R M O FF P rogram (S uper-G roup O n ly)
ALARMOFF Program (Super-Group Only)

Run the ALARMOFF program to turn off the NonStop VLX system audio alarm. If you
issue this command for systems other than a NonStop VLX, TACL returns the error
message:

 THIS SYSTEM DOES NOT HAVE AN ALARM.

You must use a super-group user ID (255,user-id) to issue this command.

ALARMOFF
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-16

U TILS :TA C L C om m ands and Functions A LTE R D E F IN E C om m and
ALTER DEFINE Command

Use the ALTER DEFINE command to change the attributes of one or more existing
DEFINEs in the process file segment (PFS) of the current TACL. For a description of
DEFINEs, see Section 5, Statements and Programs.

define-name-list

is a list of one or more existing DEFINEs whose attributes you want to alter. For
define-name-list, specify either of these:

define-template
(define-template [, define-template] ...)

define-template

is a DEFINE name that can optionally contain template characters:

 * matches zero or more characters

 ? matches a single character

A DEFINE template that consists entirely of =* or ** causes all existing
DEFINEs to be displayed.

attribute-spec

is a sequence of one or more DEFINE attributes and the value or values you want
to associate with each attribute. You can specify new values for attributes that are
already established in a DEFINE specified in define-name-list, and you can
specify values for new attributes, ones that are not established in the define-
name-list. The syntax of attribute-spec is described in the SET DEFINE
Command on page 8-173.

RESET reset-list

restores the values of one or more attributes associated with the DEFINEs in
define-name-list to their initial settings. For reset-list, specify one or
more DEFINE attributes, in either of these forms:

attribute-name
(attribute-name [, attribute-name]...)

reset-list cannot include any required attribute; see the discussion of
attribute names and values for the SET DEFINE Command on page 8-173.

ALTER DEFINE define-name-list {‚ attribute-spec}
 {‚ RESET reset-list}
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-17

U TILS :TA C L C om m ands and Functions A LTE R D E F IN E C om m and
Considerations

 An ALTER DEFINE command affects existing DEFINE statements only and does
not change the working attribute set. Similarly, an ALTER DEFINE command
affects DEFINEs for the current TACL process only; any DEFINE that was propa-
gated from the current TACL to another process is unchanged.

 Because the CLASS attribute establishes new attributes for a DEFINE, you should
keep these points in mind when you use the ALTER DEFINE command:

 Attributes are altered in the order in which they are specified in the ALTER
DEFINE command.

 If you include the CLASS attribute, all new attributes are established for the
DEFINE; any existing attributes are erased (including any attributes preceding
CLASS in the ALTER command itself). The new attributes are those
associated with the specified CLASS, and each attribute has its initial setting.

 You cannot alter an attribute that is not valid for the class of that DEFINE. For
example, if =DFILE is CLASS TAPE, this command produces this error:

32> ALTER DEFINE =DFILE, FILE $MUNCH.NUMBERS.DIGIT
There is no attribute "FILE" for the current class

 Before a DEFINE is altered, the ALTER DEFINE command checks for consistency
among the new attribute values specified and the other existing attributes of the
DEFINE. If the attributes are incomplete or inconsistent, an error occurs and no
changes are made to the DEFINE.

 When a backup TACL process takes over, TACL deletes existing DEFINEs.

 To obtain error information, use the #ERRORNUMBERS Built-In Variable on
page 9-160.

Example

This ALTER DEFINE command changes the DEVICE attribute in the DEFINEs named
=ONE and =TWO so that when the DEFINE is opened, the tape process searches for
the tape files MAYRCDS and JUNRCDS on the tape mounted on tape drive $TAPE1:

27> INFO DEFINE (=ONE, =TWO), DETAIL
DEFINE NAME=ONE
CLASS TAPEVOLUME 4335
LABELS ANSI
FILEID MAYRCDS
DEVICE $TAPE

DEFINE NAME =TWO
CLASS TAPE
VOLUME 4335
LABELS ANSI
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-18

U TILS :TA C L C om m ands and Functions A LTE R D E F IN E C om m and
FILEID JUNRCDS
DEVICE $TAPE

28> ALTER DEFINE (=ONE, =TWO), DEVICE $TAPE1
29> INFO DEFINE (=ONE, =TWO), DETAIL
DEFINE NAME =ONE
CLASS TAPE
VOLUME 4335
LABELS ANSI
FILEID MAYRCDS
DEVICE $TAPE1

DEFINE NAME =TWO
CLASS TAPE
VOLUME 4335
LABELS ANSI
FILEID JUNRCDS
DEVICE $TAPE1
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-19

U TILS :TA C L C om m ands and Functions A LTP R I C om m and
ALTPRI Command

Use the ALTPRI command to change the execution priority of a process or process
pair.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process identification number for the process.

pri

is the new execution priority of the process. It is an integer in the range from 1
through 199 (1 is lowest priority).

Considerations

If you do not specify a process, ALTPRI changes the priority of the default process.
The default process is the process that was last started by the current TACL or for
which TACL most recently paused, if that process still exists. To determine the default
process, use the #PROCESS Built-In Function on page 9-290.

The super ID can change the priority of any process in the system.

A group manager can alter the priority of any process whose process accessor ID
matches any user ID in the group.

Users other than group managers can change the priority of only those processes
whose process accessor IDs match their user ID. (For a description of process
accessor IDs and creator accessor IDs, see the Guardian User’s Guide.)

Before increasing the priority of a process, carefully consider the effect the change
might have on system performance. For example, assigning a high priority to
processes with a large amount of CPU activity, such as those involving lengthy
arithmetic computations, can significantly degrade system performance.

Example

Assume that a process named $SLOW is currently running with an execution priority of
110. You can raise the execution priority of $SLOW to 140 by entering:

12> ALTPRI $SLOW, 140

ALTPRI [\node-name.]{$process-name | cpu,pin } , pri
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-20

U TILS :TA C L C om m ands and Functions A S S IG N C om m and
ASSIGN Command

Use the ASSIGN command to assign names of actual files to logical file names used in
programs (such as those written in COBOL, FORTRAN, and other programming
languages) and, optionally, to specify the characteristics of such files. If you omit the
parameters of the ASSIGN command, ASSIGN displays the assigned values for all
assignments currently in effect.

logical-unit

is the name to which a file name or file attributes are assigned. For logical-
unit, specify one of these:

*. logical-file
program-unit.logical-file
logical-file

Both program-unit and logical-file names consist of 1 to 31 alphanumeric,
hyphen (-), or circumflex (^) characters.

The exact meanings of program-unit, the asterisk (*), and logical-file depend on the
application; in general:

 program-unit is the name used in the source program to which the file-name
assignment is to apply.

 * applies the assignment to all program units in the object program file being run.

 logical-file is the name of the file as given in the source program.

For details on treatment of ASSIGN and PARAM commands by other programming
languages, see the appropriate language manual.

actual-file-name

is the name of the actual physical file. A partial file name is not expanded; however,
the application process can expand the file name using the default information
passed in the startup message.

If you omit both actual-file-name and create-open-spec, the current
assignment value for logical-unit is displayed.

If you omit actual-file-name but include create-open-spec, spaces are
passed in the actual-file-name field of the assign message.

create-open-spec

is a file-creation or file-open specification that sets certain file attributes. For
create-open-spec, specify one of these:

ASSIGN [logical-unit [, [actual-file-name]
 [, create-open-spec] ...]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-21

U TILS :TA C L C om m ands and Functions A S S IG N C om m and
extent-spec
exclusion-spec
access-spec
CODE file-code
REC record-size
BLOCK block-size

extent-spec

is the size of the file extents allocated to the file. Specify either of these:

EXT [(] pri-extent-size [)
EXT ([pri-extent-size] , sec-extent-size)

pri-extent-size

is the size of the primary file extent to be allocated to the file. It is an
integer in the range from 1 through 65535. (For treatment of pri-
extent-size by applications written in other languages, see the
appropriate language manual.)

sec-extent-size

is the size of the secondary extents, allocated to the file after the primary
extent is allocated. It is an integer in the range from 1 through 65535. (For
details on treatment of sec-extent-size by applications written in other
languages, see the appropriate language manual.)

exclusion-spec

is the exclusion mode for logical-unit. It determines the circumstances under
which other processes can access the file. Specify exclusion-spec as one
of these:

EXCLUSIVE
SHARED
PROTECTED

EXCLUSIVE

means that no other processes can access actual-file-name while the
program that refers to logical-unit has the file open.

SHARED

means that other processes can both read and write to actual-file-
name while the program that refers to logical-unit has the file open.

PROTECTED

means that another process can read, but not write to, actual-file-
name while the program that refers to logical-unit has the file open.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-22

U TILS :TA C L C om m ands and Functions A S S IG N C om m and
For more information about exclusion modes, see the ENSCRIBE
Programmer’s Guide.

access-spec

is the access mode for logical-unit. It specifies the file operations that can
be performed. Specify access-spec as one of these:

I-O
INPUT
OUTPUT

I-O

processes can both read the file and write to it.

INPUT

processes can only write to the file.

OUTPUT

processes can only read the file.

For more information about access modes, see the ENSCRIBE Programmer’s
Guide.

CODE file-code

assigns a file code to logical-unit. Specify file-code as an integer in the
range from 0 through 65535. If file-code is omitted, the code is set to 0.
(See the File Utility Program (FUP) Reference Manual for a table of reserved
codes.)

REC record-size

sets the length of records in logical-unit. Specify record-size as an integer
in the range from 1 through 65535. (For details on FORTRAN or COBOL
application treatment of REC record-size, see the appropriate language
manual.)

BLOCK block-size

sets the size of the data blocks used by logical-unit. Specify block-size as
an integer in the range from 1 through 65535. (For details on FORTRAN or
COBOL application treatment of REC BLOCK record-size, see the appropriate
language manual.)
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-23

U TILS :TA C L C om m ands and Functions A S S IG N C om m and
Considerations

 Use the CLEAR command to delete existing ASSIGNs.

 The ASSIGN command only stores the values it assigns and sends those values to
requesting processes in the form of assign messages; it neither files nor interprets
the assigned values. Those tasks must be done by the application program.

 TACL creates an assign message for each ASSIGN command in effect. A new
process must request its assign messages (if any) following receipt of the startup
message. The COBOL and FORTRAN compilers provide the code for this function.
TAL programs that use ASSIGN commands must provide their own code for
handling assign messages.

 The LOGOFF command deletes existing assignments. If you enter a second
LOGON command without first logging off, however, all assignments are retained,
even if your user ID is changed.

 If you start a new TACL process from your existing TACL process, the new TACL
process does not inherit existing ASSIGN values.

 When a backup TACL process takes over, TACL deletes existing assignments.

 From a TACL macro or routine, you can use the #ASSIGN built-in function to
associate an actual file name with a logical file name.

 The same set of ASSIGN attributes can be configured for a generic process
through SCF. For the syntax, see the SCF Reference Manual for the Kernel
Subsystem.

Examples

1. You can assign an actual file name and file-creation attributes to the logical file
PRTFILE used by a COBOL program by entering:

14> ASSIGN prtfile, myfile, EXT 4096, CODE 9999,&
14> &EXCLUSIVE, OUTPUT

2. You can assign an actual file name and file-creation attributes to the logical file
FT002 used by a FORTRAN program by entering:

15> ASSIGN FT002, datafile, INPUT, EXCLUSIVE

3. You can get a list of the attributes of the logical file PRTFILE by entering:

16> ASSIGN prtfile

Here is an example of the information displayed:

PRTFILE

Physical file: MYFILE
Primary extent: 4096
File code: 9999
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-24

U TILS :TA C L C om m ands and Functions A S S IG N C om m and
Exclusion: EXCLUSIVE
Access: OUTPUT

4. You can list the assigned attributes of all logical files by entering:

17> ASSIGN

Here is an example of the information displayed:

PRTFILE

Physical file: MYFILE
Primary extent: 4096
File code: 9999
Exclusion: EXCLUSIVE
Access: OUTPUT

FT002

Physical file: DATAFILE
Exclusion: EXCLUSIVE
Access: INPUT
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-25

U TILS :TA C L C om m ands and Functions A TTA C H S E G C om m and
ATTACHSEG Command

Use the ATTACHSEG command to load an existing TACL segment file into memory
and associate it with a directory so that TACL can gain quick access to its variables.

PRIVATE

specifies that the segment is to be opened for use by only one process (yours) and
that data can be written into it.

SHARED

specifies that the segment is to be opened in the read-only mode and that other
processes can open the segment for reading only.

file-name

is the name of a TACL segment file, created previously by a CREATESEG
command.

directory-name

is the name of a variable that is to be pushed and set to a directory of the variables
in the segment file.

Considerations

 You cannot attach a segment that resides on another system.

 You cannot attach more than 50 segment files.

 TACL segment files have file code 440.

 If access is PRIVATE:

 You must have both read and write access to the segment file.

 There is a delay while TACL reads the segment file. A segment file typically
contains unused space; TACL reads only the valid data within the file, not the
entire file.

 The segment file remains open and unchanged until you issue a DETACHSEG
command for it. If for any reason TACL stops while updating the file during the
DETACHSEG operation, the file contents are unpredictable, and any future
attempts to attach the file will fail.

 If access is SHARED, you must have at least read access to the segment file.

 To display a table of information about all the segment files in use by your TACL
process, use the SEGINFO Command on page 8-168.

ATTACHSEG {PRIVATE | SHARED} file-name directory-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-26

U TILS :TA C L C om m ands and Functions A TTA C H S E G C om m and
 For more information about segment files, see the CREATESEG Command on
page 8-46.

Examples

This command loads the segment file MYSEGFIL into memory and records the names
of the loaded variables in the directory MYDIR. Other users can access the segment
as well.

23> ATTACHSEG SHARED mysegfil :mydir

These commands attach two segment files to a directory. The second file is attached
through a subdirectory:

23>ATTACHSEG PRIVATE myseg :mydir
24>ATTACHSEG SHARED yourseg :mydir:subdir

Note. The PRIVATE option allows access by only one process. You cannot access a segment
file if you have opened it with PRIVATE access with another TACL process.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-27

U TILS :TA C L C om m ands and Functions B A C K U P C P U C om m and
BACKUPCPU Command

Use the BACKUPCPU command to start a backup process for the current TACL
process or to replace an existing backup process. The BACKUPCPU command is an
alias for the #BACKUPCPU built-in function.

cpu

is the number of the processor where the backup TACL process is to be started.
Specify cpu as an integer in the range from 0 through 15. If you omit cpu,
BACKUPCPU deletes the existing backup process.

Considerations

 BACKUPCPU with no cpu specification has no effect if the current TACL process
has no backup.

 Only a named TACL process can have a backup. (For more information on named
processes, see the NAME option in the description of the RUN[D|V] Command on
page 8-156.)

 The backup CPU cannot be the same as the primary CPU.

 The named CPU need not be running at the time that BACKUPCPU is issued.

 If you specify a backup CPU and a backup process already exists, TACL displays
an error message.

 If the primary CPU becomes unavailable, TACL switches to the backup CPU. After
the primary CPU is reloaded, TACL switches back to the primary CPU. If a user is
logged on, TACL postpones this switch till the user logs off.

 You can force your TACL to switch to the backup CPU by using the SWITCH
command.

 All events, such as a backup-create error or an I/O error event, and the event
details are logged to the primary or $0 collector. This format is used:

TACL BACKUP CREATE ERROR: error, DETAIL: error-detail

error

is the error number returned by PROCESS_CREATE.

error-detail

is the error detail value returned by PROCESS_CREATE.

For more information about the $0 collector, see the EMS Manual.

BACKUPCPU [cpu]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-28

U TILS :TA C L C om m ands and Functions B A C K U P C P U C om m and
 When a backup TACL process takes over, an initial logon state is established. All
variables, ASSIGNs, PARAMs, and DEFINEs are reset, and the TACLLOCL file
and your TACLCSTM file are invoked. The history buffer index is set to 1.

 If an error occurs while TACL is trying to create the backup process or if the
backup CPU is down, TACL waits 3 minutes before trying to create the backup.

Examples

1. Suppose that you are running a TACL process named $CMT1 (the name displayed
by the WHO and PPD commands). When you enter the STATUS *, TERM
command, you see that $CMT1 does not have a backup process:

$E197 10,122 150 001 8,1 $SYSTEM.SYSTEM.TACL $FURD

You start a backup TACL process in CPU 11 by entering:

12> BACKUPCPU 11

TACL displays this response after creating the backup process:

BACKUP PROCESS CREATED IN CPU 11

Entering “STATUS *, TERM” now displays this information:

$E197 10,122 150 001 8,1 $SYSTEM.SYSTEM.TACL $FURD

$E197 B 11,122 150 R 000 8,1 $SYSTEM.SYSTEM.TACL $FURD

This display shows that the primary TACL process (running in processor 10, with
process number 122) now has a backup TACL process (running in processor 11,
with process number 122). Both the primary and backup processes have a priority
of 150. See the STATUS Command on page 8-206 for explanations of the other
categories in the STATUS display.

2. To delete this newly created backup process, enter:

14> BACKUPCPU
15>

which TACL acknowledges with:

STOPPED: 11,122
BACKUP PROCESS DELETED

3. To move your backup process from one CPU to another, enter:

15>BACKUPCPU
STOPPED: 11,111
BACKUP PROCESS DELETED
16>BACKUPCPU 12
BACKUP PROCESS CREATED IN CPU 12
17>
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-29

U TILS :TA C L C om m ands and Functions B R E A K C om m and
BREAK Command

Use the BREAK command to set a debugging breakpoint on a specified variable level.

variable-level

is the name of an existing variable level or built-in variable.

Considerations

 The specified variable level cannot be in a shared segment.

 If you do not specify a variable level, TACL displays a list of all breakpoints
currently set.

 Just before invoking any variable level on which a breakpoint has been set, TACL
automatically invokes _DEBUGGER.

 For additional information about how to debug TACL statements, see the
DEBUGGER Function on page 8-51.

BREAK [variable-level]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-30

U TILS :TA C L C om m ands and Functions B U ILT IN S C om m and
BUILTINS Command

Use the BUILTINS command to display the names of the TACL built-in functions, built-
in variables, or both.

FUNCTIONS

displays a list of the built-in functions.

VARIABLES

displays a list of the built-in variables.

Considerations

If you specify neither FUNCTIONS nor VARIABLES, TACL displays all built-in functions
and variables.

To obtain the list of built-in functions and variables from within a TACL macro or
routine, use the #BUILTINS Built-In Function on page 9-38.

Example

This example illustrates the use of the BUILTINS command:

3> BUILTINS / VARIABLES /

The built in variables are:

BUILTINS [/ { FUNCTIONS | VARIABLES } /]

#ASSIGN #BREAKMODE #CHARACTERRULES

#DEFAULTS #DEFINEMODE #ERRORNUMBERS

#EXIT #HELPKEY #HOME

#IN #INFORMAT #INLINEECHO

#INLINEOUT #INLINEPREFIX #INLINEPROCESS

#INLINETO #INPUTEOF #INSPECT

#MYTERM #OUT #OUTFORMAT

#PARAM #PMSEARCHLIST #PMSG

#PREFIX #PROCESSFILESECURITY #PROMPT

#REPLYPREFIX #SHIFTDEFAULT #TACLSECURITY

#TRACE #USELIST #WAKEUP

#WIDTH
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-31

U TILS :TA C L C om m ands and Functions B U S C M D P rogram (S uper-G roup O n ly)
BUSCMD Program (Super-Group Only)

Use the BUSCMD program to affect the status of the X or Y interprocessor bus (D-
series RVUs) or the X or Y ServerNet fabric (S-series RVUs) between two or more
processors. You must use a super-group user ID (255,your-id) to issue this
command.

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

{ X | Y }

specifies the bus or fabric (X or Y) whose status is to be changed.

{ DOWN | UP }

specifies whether the bus or fabric is to be made unavailable (DOWN) or available
(UP).

from-cpu

is a CPU number in the range from 0 through 15 that is one endpoint of the bus or
fabric whose operational status is to be changed. Specify -1 to indicate all
processors.

to-cpu

is a CPU number in the range from 0 through 15 that is the other endpoint of the
bus or fabric whose operational status is to be changed. Specify -1 to indicate all
processors.

Examples

1. A super-group user in a four-processor system can bring down the X bus from
processor 1 to all other processors by entering:

14> BUSCMD X, DOWN, 1, -1
THE X BUS FROM CPU 01 TO 00 HAS BEEN DOWNED.
THE X BUS FROM CPU 01 TO 01 HAS BEEN DOWNED.
THE X BUS FROM CPU 01 TO 02 HAS BEEN DOWNED.
THE X BUS FROM CPU 01 TO 03 HAS BEEN DOWNED.

2. A super-group user can bring the Y bus up from processor 1 to processor 2 by
entering:

15> BUSCMD Y, UP, 1, 2
THE Y BUS FROM CPU 01 TO 02 HAS BEEN UPPED.

BUSCMD [/ run-option [, run-option] ... /]
 { X | Y } , { DOWN | UP } , from-cpu , to-cpu
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-32

U TILS :TA C L C om m ands and Functions C LE A R C om m and
CLEAR Command

Use the CLEAR command to delete logical-file assignments made with the ASSIGN
command or parameters set with the PARAM command.

ALL

deletes all logical-file assignments and parameters.

ALL ASSIGN

deletes all logical-file assignments made with the ASSIGN command.

ALL PARAM

deletes all parameters set with the PARAM command.

ASSIGN logical-unit

deletes the assignment for logical-unit; see the ASSIGN Command on
page 8-21 for information about logical-unit.

PARAM param-name

deletes param-name; see the PARAM Command on page 8-113 for information
about param-name.

Examples

1. This command deletes all logical-file assignments made with the ASSIGN
command and all parameters set with the PARAM command:

14> CLEAR ALL

2. To delete all logical-file assignments made with the ASSIGN command, enter:

15> CLEAR ALL ASSIGN

3. You can delete the assignment for the logical file PRNTFILE and the information
associated with it by entering:

16> CLEAR ASSIGN prntfile

4. You can delete the parameter SWITCH-1 and its value by entering:

17> CLEAR PARAM switch-1

CLEAR { ALL } | { ALL ASSIGN |
 ALL PARAM |
 ASSIGN logical-unit |
 PARAM param-name }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-33

U TILS :TA C L C om m ands and Functions C LIC V A L P rogram
CLICVAL Program

Use the CLICVAL program to validate a Core License file.

-help or help

displays CLICVAL help text.

CLICVAL validates whether the Core License file is located in the correct location for
use by the operating system and is valid for the system. CLICVAL also displays the
name of the file that was validated along with the validation results such as OK,
Missing, Corrupt, Invalid, Serial Number mismatch, and so on. The CLICVAL program
displays the contents of the license file, wherever possible, including the license file
version number, the system serial number, and the enabled number of IPUs and
CPUs. The contents cannot be displayed if the file is missing or corrupt.

You can use the CLICVAL program on RVUs prior to J06.13, to validate the Core
License file prior to upgrading to J06.13 or later from a prior RVU. If you are on J06.13
or a later RVU, you can use the OSM Service Connection action "Read Core License"
to validate the Core License file instead. See the Read Core License action online
help for more information.

For more information about when to use the CLICVAL tool to validate the core license
file, see the NonStop BladeSystem Planning Guide.

CLICVAL [-help | help]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-34

U TILS :TA C L C om m ands and Functions C O LU M N IZE C om m and
COLUMNIZE Command

Use the COLUMNIZE command to read a list of elements and display those elements
in one or more columns, taking into consideration the widest element in the list and the
value of the #WIDTH Built-In Variable on page 9-419.

list

is a list of elements separated by spaces.

Example

This example has an effect similar to that of the BUILTINS /VARIABLES/ command,
displaying a columnar list of TACL built-in variables.

10>COLUMNIZE [#SHIFTSTRING [#BUILTINS /VARIABLES/]]

TACL adjusts the display to fit the OUT file width. To view the preceding built-in
variables in two columns, set the OUT file width to 60:

10>#SET #WIDTH 60
11>COLUMNIZE [#SHIFTSTRING [#BUILTINS /VARIABLES/]]

COLUMNIZE list

#ASSIGN #BREAKMODE #CHARACTERRULES

#DEFAULTS #DEFINEMODE #ERRORNUMBERS

#EXIT #HELPKEY #HOME

. . .

#ASSIGN #BREAKMODE #CHARACTERRULES

#DEFAULTS #DEFINEMODE #ERRORNUMBERS

#EXIT #HELPKEY #HOME

. . .
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-35

U TILS :TA C L C om m ands and Functions C O M M E N T C om m and
COMMENT Command

The COMMENT command causes TACL to ignore the rest of the command line.

comment-text

is any descriptive text you wish to include.

Considerations

 A space is required between COMMENT and comment-text.

 In most cases, because they require less processing by TACL, it is preferable to
use the comment characters: braces ({ and }) and double equals (==). However,
where TACL statements are input from the IN file, such as in OBEY files, you
should use the COMMENT command because #INFORMAT must be set to TACL
or QUOTED for metacharacters to be recognized as such (but the COMMENT
command is always effective).

 COMMENT is a command, interpreted by TACL, although it does not perform an
action and returns a null result.

For additional information about comments, see Comments on page 2-10.

COMMENT [comment-text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-36

U TILS :TA C L C om m ands and Functions _C O M P A R E V Function
_COMPAREV Function

Use the _COMPAREV function to compare one string with another. The _COMPAREV
function is an alias for the #COMPAREV built-in function.

string-1 and string-2

are the names of existing variable levels or STRUCT items, text enclosed in
quotation marks, or a concatenation of such elements. The concatenation operator
is '+' (the apostrophes are required). Variables must not be of type DIRECTORY.

Result

_COMPAREV returns a nonzero value if the contents of the strings are the same, zero
if they are different.

Considerations

 You can compare any combination of STRUCTs and STRUCT items with each
other. Such comparisons are case-sensitive.

 You can compare any combination of variables that are not of type DIRECTORY or
STRUCT and are not STRUCT items. Such comparisons are not case-sensitive.

 You should use _COMPAREV when a variable level contains text with spaces or
when you do not want to obtain the contents of a variable level.

 The comparison is not case-sensitive; that is, an uppercase character is equivalent
to its lowercase counterpart.

 To compare a text string to a template, use the #MATCH built-in function.

Examples

1. This example illustrates _COMPAREV, using #OUTPUT to display the result:

5> PUSH A B
6> #SET A Hello
7> #SET B Goodbye
8> #OUTPUT [_COMPAREV A B]
0

2. The next example illustrates the use of _COMPAREV within a routine:

#PUSH A B
#SET A Hello
#SET B Goodbye
[#IF [_COMPAREV A B] |THEN|
 #OUTPUT A equals B
 |ELSE|
 #OUTPUT A does not equal B
]

_COMPAREV string-1 string-2
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-37

U TILS :TA C L C om m ands and Functions C O M P U TE C om m and
COMPUTE Command

Use the COMPUTE command to display the value of an expression.

expression

is an expression containing integer or string values and one or more operators, as
defined in Expressions on page 3-1.

Considerations
 To obtain the value of an expression from within a TACL macro or routine, use the

#COMPUTE Built-In Function on page 9-71; it returns the result of the specified
arithmetic expression.

 COMPUTE displays the calculation and its arithmetic result. Comparisons and
logical operators display -1 if the test is true, 0 if the test is false.

 Because COMPUTE performs integer division, the fraction portion of the result is
omitted, as in 3/4 = 0.

Examples

1. This example illustrates simple use of the COMPUTE command:

6> COMPUTE 6 + 4
6 + 4 = 10

2. Equations are evaluated from left to right as indicated by the precedence for
operators. To change the order of evaluation, use parentheses:

7> COMPUTE 4 + 5 * 3
4 + 5 * 3 = 19
8> COMPUTE (4 + 5) * 3
(4 + 5) * 3 = 27

3. This example shows computations involving relational and logical expressions:

9> #PUSH oui,non
10> #SETMANY oui non, 1 0
11> COMPUTE oui < non
oui < non = 0
12> COMPUTE (non OR oui) AND NOT non
(non OR oui) AND NOT non = -1

4. This example illustrates string computations:

13> #PUSH a b
14> #SET a 1
15> #SET b 01
16> COMPUTE a=b
a=b = -1
17> COMPUTE a '=' b
a '=' b = 0

COMPUTE expression
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-38

U TILS :TA C L C om m ands and Functions _C O N TIM E _TO _TE X T Function
_CONTIME_TO_TEXT Function

Use the _CONTIME_TO_TEXT function to convert a numeric date and time to a
textual date and time.

contime-list

is the date and time represented as seven numbers in this format:

yyyy mm dd hh mm ss hh

Result

_CONTIME_TO_TEXT returns the textual date and time representation of the seven-
number date and time returned by the #CONTIME Built-In Function on page 9-75.

Example

This example outputs the date and time in a textual format:

14> PUSH var
15> SET VARIABLE var [#CONTIME [#TIMESTAMP]]
16> #OUTPUT [_CONTIME_TO_TEXT [var]]
November 21, 1992 14:35:20

_CONTIME_TO_TEXT contime-list
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-39

U TILS :TA C L C om m ands and Functions _C O N TIM E _TO _TE X T_D A TE Function
_CONTIME_TO_TEXT_DATE Function

Use the _CONTIME_TO_TEXT_DATE function to convert a numeric date and time to a
textual date.

contime-list

is the date and time represented as seven numbers in this format:

yyyy mm dd hh mm ss hh

Result

_CONTIME_TO_TEXT_DATE returns the textual representation of the date portion of
the seven-number date and time representation returned by the #CONTIME Built-In
Function on page 9-75.

Example

This example outputs the date in a textual format:

14> PUSH var
15> SET VARIABLE var [#CONTIME [#TIMESTAMP]]
16> #OUTPUT [_CONTIME_TO_TEXT_DATE [var]]
November 21, 1990

_CONTIME_TO_TEXT_DATE contime-list
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-40

U TILS :TA C L C om m ands and Functions _C O N TIM E _TO _TE X T_T IM E Function
_CONTIME_TO_TEXT_TIME Function

Use the _CONTIME_TO_TEXT_TIME function to convert a numeric date and time to a
textual time.

contime-list

is the date and time represented as seven numbers in this format:

yyyy mm dd hh mm ss hh

Result

_CONTIME_TO_TEXT_TIME returns the textual representation of the time portion of
the seven-number date and time representation returned by the #CONTIME Built-In
Function on page 9-75.

Example

This example outputs the time in a textual format:

14> PUSH var
15> SET VARIABLE var [#CONTIME [#TIMESTAMP]]
16> #OUTPUT [_CONTIME_TO_TEXT_TIME [var]]
14:35:20

_CONTIME_TO_TEXT_TIME contime-list
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-41

U TILS :TA C L C om m ands and Functions C O P Y D U M P P rogram
COPYDUMP Program

Use the COPYDUMP program to copy a tape dump onto a disk file or to compress an
existing disk dump file that is not compressed.

run-option

is any of the options described for the RUN[D|V] Command on page 8-156.

source-file

specifies the dump file that is to be copied and compressed. Specify either the
name of the tape device where the tape dump file is located or the name of a disk
dump file you want to copy.

If source-file is a disk file, it must be created by using the RCVDUMP program
or the RECEIVEDUMP TACL command. If source-file is a tape file, it must be
created by performing a tape dump.

dest-file

specifies the destination file of the COPYDUMP operation. Specify the name of a
disk file. If this disk file does not exist, it is created during the COPYDUMP
operation. If this disk file does exist, it must be empty (0 EOF) and have file code
9614.

Considerations

COPYDUMP is not supported on H-series systems.

You can also use FUP (CREATE and COPY) to copy tape dump files to disk files. But
COPYDUMP is faster, and generates a smaller disk dump file because it compresses
the dump. Also, COPYDUMP automatically determines the size of the disk dump file,
whereas you must specify the extent size of the disk file if you use FUP. The
COPYDUMP program usually resides in the file $SYSTEM.SYSnn.COPYDUMP.

Examples

If a tape dump file resides on the tape mounted on the tape drive $TAPE2, you can
copy and compress the tape dump file into the disk file $DATA.DUMPS.CPU1 with the
command:

 47> COPYDUMP $TAPE2, $DATA.DUMPS.CPU1

To compress the disk dump file $BAS10.DUMPS.CPU3 into the disk file
$BAS10.CDUMPS.CPU3, enter:

48> COPYDUMP $BAS10.DUMPS.CPU3 , $BAS10.CDUMPS.CPU3

COPYDUMP [/ run-option [, run-option] ... /]
 source-file , dest-file
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-42

U TILS :TA C L C om m ands and Functions C O P Y V A R C om m and
COPYVAR Command

Use the COPYVAR command to copy the contents of one variable level to another.

variable-level-in

is the name of an existing variable level.

variable-level-out

is the name of a variable level. COPYVAR performs an implicit PUSH command to
create a variable-level-out with the same data type as variable-level-in, regardless
of whether variable-level-out already exists.

Result

The COPYVAR command pushes variable-level-out and copies the contents of
variable-level-in to variable-level-out.

Example

This example copies the contents of the variable FIRSTDAY to the variable TEMPDAY.

14> OUTVAR firstday
FRIDAY
15> COPYVAR firstday tempday
16> OUTVAR tempday
FRIDAY

COPYVAR variable-level-in variable-level-out
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-43

U TILS :TA C L C om m ands and Functions C R E A TE C om m and
CREATE Command

Use the CREATE command to create an unstructured disk file. An unstructured disk
file can contain a data-record structure that the file system does not recognize, or it can
be made up of an array of bytes without data-record structure.

file-name

is the name of the file to be created. If no volume or subvolume is specified in
file-name, the current volume name and subvolume name in effect for the TACL
process at the time of the request are used.

parameter

can be any of these:

extent-size

is the size of the file extents that can be allocated to the file. Specify extent-size
as an integer in the range 1 to 65535 for the number of 2048-byte data pages
in each extent. The disk process can allocate up to 16 extents (if the
MAXEXTENTS file attribute has not been altered from its default of 16) to any
file you create with the CREATE command. The default value for extent-
size is 2.

PHYSICALVOLUME physical-volume

is the physical volume on which the logical file-name is to be created. If no
physical volume is specified in file-name, the default volume name in effect
for the TACL process at the time of the request is used.

If a logical volume is specified in file-name, the physical volume on which
the file is created is chosen by the system. The physical-volume parameter
overrides this selection

The PHYSICALVOLUME option should be used only if no physical volume is
specified in file-name. Otherwise, a file-system error is returned.

Considerations

 The security of the file you create is the current default security at the time you
enter the command. See the DEFAULT Program on page 8-53 and VOLUME
Command on page 8-256 for information about changing default security.

 You can change the security of a file with the FUP SECURE command. See the
File Utility Program (FUP) Reference Manual for a description of FUP SECURE.

 FUP also has a CREATE command. When you create a file using the CREATE
command in TACL, the size of the first extent allocated (the primary extent) defines

CREATE file-name [, parameter [, parameter]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-44

U TILS :TA C L C om m ands and Functions C R E A TE C om m and
the size of all extents that are subsequently allocated (secondary extents). With the
FUP CREATE command, however, you can specify different sizes for primary and
secondary extents and can partition files into more than one volume. You can also
create files of a type other than unstructured. See the File Utility Program (FUP)
Reference Manual for a description of the FUP CREATE command.

 If the RVU of the system (system procedure
FILE_GETINFOLISTBYNAME_) does not support INCOMPLETESQLDDL,
UNRECLAIMEDFREESPACE, PHYSICALVOLUME, or PHYSICALFILENAME, this
message is generated:

ERROR FILE_GETINFOLISTBYNAME_ error = 561

Examples

1. To create an unstructured disk file named DATAFL in your current default
subvolume, enter:

14> CREATE datafl

Because the default extent size is two pages (4096 bytes), the largest size
DATAFL can attain (when the maximum of 16 extents is allocated to the file) is 32
pages.

2. To create an unstructured file named BANANA in the subvolume $DSK1.SVOL,
with an extent size of 10,240 bytes (5 pages), enter:

15> CREATE $dsk1.svol.banana, 5

The largest size BANANA can attain (when the maximum of 16 extents is allocated
to the file) is 80 pages.

3. To specify a physical volume name when creating a logical file, enter:

>3 CREATE $v.s.f,2,$mg or CREATE $v.s.f,$mg,2

Either syntax specifies that logical file “$v.s.f” be created with a two-page extent
size on physical volume $mg.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-45

U TILS :TA C L C om m ands and Functions C R E A TE S E G C om m and
CREATESEG Command

Use the CREATESEG command to create a TACL segment file.

file-name

is the name to be assigned to the created segment file.

Considerations

 A segment file is a memory-mapped file that can be loaded rapidly into an
extended memory segment. When you log on, TACL creates a default segment file
to hold the variables in the root (:) directory. TACL then creates the UTILS directory
and attaches the TACLSEGF segment file to it for shared access. The TACLSEGF
file contains directories for all products (that are part of a software RVU) that use
TACL programs and are available on your system. You can add your own library of
variables to the default segment file. If you add variables to the default segment
file, you must do so every time TACL re-creates the file.

 Along with the standard TACL segment files, you can create a segment file that
contains a library of TACL functions. If you create your own segment file, you can
instruct TACL to attach the file to a directory variable and use that directory for
reference to the file. Follow these steps:

1. Use the CREATESEG command to create and initialize a segment file.

2. Use the ATTACHSEG PRIVATE command to associate the segment file with a
directory and to gain write access to the file.

3. Use the HOME command to change the home directory to your new directory.

4. Use the LOAD command to load the contents of an existing file of TACL
routines into the segment file.

5. Use the HOME command to change your home directory back to the root (:)
directory.

6. Use the DETACHSEG command to release the segment file from the directory.
The DETACHSEG command ensures that all data is copied into the segment
file before releasing the file.

7. Use the ATTACHSEG SHARED command to attach the segment file to a
directory so that you can use the functions within the segment file.

8. Set the #USELIST built-in variable to gain access to the segment file.

 These built-in commands are available:

 #SEGMENT returns information about the default segment file.

CREATESEG file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-46

U TILS :TA C L C om m ands and Functions C R E A TE S E G C om m and
 #SEGMENTCONVERT converts a segment file from a C00 or C10 format to a
format version later than C10 or the reverse.

 #SEGMENTINFO returns information about a segment in use by your TACL
process.

 #SEGMENTVERSION returns the format (C00/C10 or later) of a segment file.

 You cannot create a segment on a remote system.

 TACL allocates virtual memory on a demand basis for its own private segment. It
allocates the first extent of 64 pages (131,072 bytes) at process startup. It then
allocates additional virtual memory as needed, in 64 page increments, to a 4 extent
maximum of 1024 pages (2,097,152 bytes).

 TACL allocates additional extents as needed; it never deallocates extents.

 You cannot use the segment file until you issue an ATTACHSEG command to gain
access to it.

 To display a table of information about all the segment files in use by your TACL
process, use the SEGINFO command.

 TACL segment files have file code 440.

Examples

1. This command creates a TACL segment file (file code 440) named MYSEG.

8> CREATESEG myseg
9>

2. These commands create a segment file called MYSEGFIL, attach the segment file
to a directory called :mydir, load a set of routines from a file called
$DATA.TACL.ROUTINES, detach the segment from private use (and complete the
transfer of data to the segment file), and attach the segment for shared use:

8>CREATESEG mysegfil
9>ATTACHSEG PRIVATE mysegfil :mydir
10>HOME :mydir
11>LOAD /KEEP 1/ $DATA.TACL.ROUTINES
12>HOME
13>DETACHSEG :mydir
14>ATTACHSEG SHARED mysegfil :mydir
15>#SET #USELIST [#USELIST] :mydir
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-47

U TILS :TA C L C om m ands and Functions D E B U G C om m and
DEBUG Command

Use the DEBUG command to initiate debugging for a process that is already running.
Entering the DEBUG command is one way to invoke the Debug program or the Inspect
debugger.

If you do not specify a process ($process-name or cpu,pin), the Debug and Inspect
programs begin debugging the process most recently started by TACL, if that process
is still in existence.

For information on the Debug program, see the Debug Manual. For information about
the Inspect symbolic debugger, see the Inspect Manual.

The program DEBUG is not available for use on systems running H-series software.
See the Considerations section on page 8-49 for more details.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process number for the process.

TERM [\node-name.]$terminal-name

is the new home terminal of the process being debugged. To enter DEBUG or
INSPECT commands from a terminal other than the current home terminal of the
process being debugged, you must designate that terminal as the new home
terminal with the TERM option. You must include the node-name if the new home
terminal is connected to a system other than the current default system.

If you omit the TERM option, DEBUG or INSPECT prompts appear on the original
home terminal of the process.

Considerations

 You can enter the DEBUG command interactively only, not in an input file or an
OBEY file.

 Unless you are a group manager or the super ID, you can debug only those
processes with process accessor IDs that match your user ID. You must also have

DEBUG [[\node-name.]{$process-name | cpu,pin }]
 [, TERM [\node-name.]$terminal-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-48

U TILS :TA C L C om m ands and Functions D E B U G C om m and
read access to the program file. (For a description of process accessor IDs, see
the Guardian User’s Guide.)

 A group manager can debug any process whose process accessor ID matches the
user ID of any user in the group. The manager must also have read access to the
program file.

 The super ID can debug any process. Only the super ID can debug privileged
processes.

 The process you name in the DEBUG command does not enter the debug mode
until it executes its next instruction in the user code space. The process cannot
enter the debug state while executing system code.

 DEBUG is the default debugger. When you enter the DEBUG command, DEBUG
is invoked unless INSPECT was designated as the debugger for the process when
the process was created. You can designate INSPECT as the default debugger in
any of these ways:

 Issue a SET INSPECT ON command, and then run the program.

 Use the INSPECT option with the RUN command.

 When compiling a source program, or when using BINDER, include a compiler
directive that specifies that the debugger for the program is to be INSPECT.

H-Series Usage

The program DEBUG is not available for use on systems running H-series software.

The DEBUG command invokes a debugger, it can be Inspect, Native Inspect
(eInspect, which is not in the family of Inspect debuggers), or Visual Inspect.

The rules about which debugger gets invoked are approximately the same as for the
RUND command. That is, if the INSPECT attribute is set ON anywhere (in the object
file during compilation, or on the TACL command line using the SET command), you
will get a debugger in the Inspect family (either Inspect or VI), unless of course neither
of these debuggers is available, and then you get the default debugger, eInspect. If
the Inspect attribute is OFF, you get Native Inspect (eInspect).

Inspect is invoked only for TNS accelerated/interpreted programs (never for TNS/E
native programs), while Visual Inspect can handle both of these. Native Inspect
handles only TNS/E native programs and snapshots.

Examples

 To debug a running process named $ERRER, enter:

14> DEBUG $ERRER

DEBUG or INSPECT then prompts for commands.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-49

U TILS :TA C L C om m ands and Functions D E B U G C om m and
 To use the terminal $WHITE to debug the process whose process ID is 8,45, enter:

15> DEBUG 8,45, TERM $WHITE

A DEBUG or INSPECT prompt then appears on terminal $WHITE.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-50

U TILS :TA C L C om m ands and Functions D E B U G G E R Function
DEBUGGER Function

If tracing is enabled (see #TRACE Built-In Variable on page 9-406), the TACL trace
facility displays the next line to be executed, then immediately invokes the
_DEBUGGER function before executing that code. You can set breakpoints, modify
variables, and invoke TACL commands while debugging.

For an example of _DEBUGGER function use, see the TACL Programming Guide.

current-trace-value

is the value of #TRACE, which always equals -1 (true) when invoked by TACL.

reason-for-entry

is TRACE or BREAK.

Considerations

 When #TRACE is not zero, TACL calls _DEBUGGER immediately after displaying
the code that is next to be invoked. In this case, current-trace-value is always -1
and reason-for-entry is always TRACE.

 It is possible to replace _DEBUGGER with a debugging function of your own
devising.

 If TACL is about to invoke a variable on which you have set a breakpoint, TACL
invokes _DEBUGGER. _DEBUGGER prompts with - num- (the current history
number). At this point you can enter a command. If it is a TACL command, it is
passed on to TACL for execution. If it is a _DEBUGGER command, _DEBUGGER
executes it. The _DEBUGGER commands are:

B[REAK] [variable-level]

sets an invocation breakpoint on a variable level. If you omit variable-
level, the command displays all breakpoints currently set.

C[LEAR] { variable-level | * }

clears the invocation breakpoint for the specified variable-level. If you use
the asterisk (*), the command clears all breakpoints.

D[ISPLAY] variable-level

displays the contents of the specified variable level.

M[ODIFY] variable-level

allows you to modify the contents of the specified variable level.

_DEBUGGER current-trace-value reason-for-entry
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-51

U TILS :TA C L C om m ands and Functions D E B U G G E R Function
R[ESUME]

exits the debugger and continues execution of TACL statements.

ST[EP]

invokes the next function, then waits for you to press RETURN before
performing the next action. You can continue in this way, stepping through the
function.

You can abbreviate each of these commands to the letter or letters outside the
square brackets; that is, you can issue DISPLAY as D or STEP as ST.

Caution. While TACL is in the debugging mode, you can issue any TACL commands that do
not conflict with _DEBUGGER commands. Use extreme care in issuing any commands that
would affect _DEBUGGER or its environment, including altering a variable level that is being
traced. It is unwise to include an #UNFRAME, for instance, because the _DEBUGGER
environment would be destroyed
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-52

U TILS :TA C L C om m ands and Functions D E FA U LT P rogram
DEFAULT Program

Use the DEFAULT program to set your logon (saved) default system, volume, and
subvolume names, and to set your logon disk file security. The logon defaults are in
effect whenever you log on.

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

default-names

are the volume and subvolume names that are to be your logon defaults; that is,
these are the current defaults when you log on or enter the VOLUME command
without any parameters. You can also specify a logon default node name. TACL
uses the current default node, volume, and subvolume names to expand partial file
names.

The form of default-name is:

[\node-name.] volume-or-subvolume-names

\node-name

is the node name that is to be your default when you log on or enter the
SYSTEM command without parameters. If you omit node-name, your logon
default system does not change.

volume-or-subvolume-names

is the name of your logon default volume or subvolume or both. These are your
current defaults when you log on or enter the VOLUME command without any
parameters.

For volume-or-subvolume-names, specify one of:

$default-volume-name
default-subvolume-name
$default-volume-name.default-subvolume-name

$default-volume-name

is the name of your new logon default volume. If you omit $default-
volume-name, the current default volume is your new logon default.

default-subvolume-name

is the name of your logon default subvolume. If you omit default-
subvolume-name, the current default subvolume becomes your new
logon default.

DEFAULT [/ run-option [, run-option] ... /] default-names
 [‚"default-security"] ‚"default-security"
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-53

U TILS :TA C L C om m ands and Functions D E FA U LT P rogram
default-security

is the default disk file security that is to be in effect when you log on or enter the
VOLUME command without any parameters. (The current default file security is
assigned to newly created disk files unless you explicitly assign a different security
setting when you create a file.) For default-security, specify a string of four
characters inside quotation marks; the four characters represent the four security
attributes:

R W E P

R

specifies who can read the file.

W

specifies who can write to the file.

E

specifies who can execute the file.

P

specifies who can purge the file.

Each security attribute (R, W, E, and P) can be any of these characters:

Considerations

 During an operating session, you can change the current default values with the
SYSTEM and VOLUME commands. TACL uses the current default system,
volume, and subvolume names to expand partial file names. When you create a
file, it is assigned the default disk file security unless you explicitly specify a

O (Owner) Only the owner can access the file; the owner must be
logged onto the local system.

G (Group) Anyone in the owner’s group can access the file; the user
must be logged onto the local system.

A (Anyone) Any user can access the file; the user must be logged onto
the local system.

U (User) Only the owner can access the file; the owner may be logged
onto thelocal system or a remote system.

C (Community) Anyone in the owner’s group can access the file; the
user may be logged onto the local system or a remote system.

N (Network) Any user can access the file; the user may be logged onto
the local system or a remote system.

- Only the local super ID can access the file.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-54

U TILS :TA C L C om m ands and Functions D E FA U LT P rogram
different security. For more information about changing the default values and
about disk file security, see the Guardian User’s Guide.

 Any new logon default values you set with the DEFAULT program do not take
effect until the next time you log on or until you enter the VOLUME command with
no parameters.

 The current default settings are often different from your saved logon default
settings. When you log on, your logon default settings are in effect for system (if
you are on a network), volume, subvolume, and file security. After you log on, you
can change the current default volume or system with the VOLUME or SYSTEM
command. Neither of these commands, however, affects your logon default
settings. Every time you log on or enter a VOLUME or SYSTEM command with no
parameters, your logon default settings are restored. If you have changed these
settings with the DEFAULT program, the new values are in effect. For more
information, see the descriptions of the VOLUME Command on page 8-256, and
SYSTEM Command on page 8-221.

 The TACL process creates a root segment, even if the default volume doesn't
exist. Users can logon even if the default volume doesn't exist.

 Avoid specifying your current local system as the default system: Doing so is
unnecessary, and can in fact cause problems with some programs.

 You cannot use the security specifier “-” (allow access to local super ID only) with
the DEFAULT program.

 When a new user is added, the logon defaults are:

 Volume $SYSTEM

 Subvolume NOSUBVOL

 Security “AAAA”

Example

Assume that you want your logon default volume to be $BIG, and your logon default
subvolume to be BAD. You also want your logon default disk file security to:

 Allow any user on any system to read and execute a file with your default security

 Allow only you, the owner of a file, to write to and purge a file with the default
security. (In addition, you must be logged onto the system where the file resides to
be able to write to such a file or to purge it.)

To set these defaults, enter:

14> DEFAULT $BIG.BAD, "NONO"
THE DEFAULT sys-vol-svol HAS BEEN CHANGED TO $BIG.BAD
THE DEFAULT file-security HAS BEEN CHANGED TO "NONO".

To put these new logon defaults into effect, you must either log on again or enter:

15> VOLUME
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-55

U TILS :TA C L C om m ands and Functions D E LE TE D E F IN E C om m and
DELETE DEFINE Command

Use the DELETE DEFINE command to remove one or more existing DEFINEs from
the process file segment (PFS) of the current TACL. For information on DEFINEs, see
Section 5, Statements and Programs.

define-name-list

specifies one or more existing DEFINEs to be deleted. For define-name-list,
specify either of these:

define-template
(define-template [, define-template] ...)

define-template

is a DEFINE name that can optionally contain template characters:

* matches zero or more characters

? matches a single character

A DEFINE template that consists entirely of =* or ** causes all existing
DEFINEs to be displayed.

Considerations

 The DELETE DEFINE command affects only DEFINEs for the current TACL
process. Any DEFINE that was propagated from the current TACL to other
processes is unaffected.

 You cannot delete the =_DEFAULTS DEFINE.

 To obtain error information, use the #ERRORNUMBERS Built-In Variable on
page 9-160.

Example

To delete the DEFINE named =DFILE, enter:

63> DELETE DEFINE =DFILE

DELETE DEFINE define-name-list
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-56

U TILS :TA C L C om m ands and Functions D E LU S E R P rogram (G roup M anagers O n ly)
DELUSER Program (Group Managers Only)

Use the DELUSER program to delete users from a system. To use the DELUSER
program, you must have a user ID of n,255.

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

group-name.user-name

are the group and user names of the user who is to be deleted. Each name can
contain from one to eight letters or digits. The first character must be a letter.

Consideration

Group managers can delete only those users who are members of their respective
groups. The super ID can delete any user in the system.

Example

The group manager of the BIG group (or the super ID) can delete the user BIG.BOZO
(user ID 7,12) by entering:

14> DELUSER BIG.BOZO
BIG.BOZO (7,12) HAS BEEN DELETED FROM THE USERID FILE.

DELUSER [/ run-option [, run-option] ... /]
 group-name.user-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-57

U TILS :TA C L C om m ands and Functions D E TA C H S E G C om m and
DETACHSEG Command

Use the DETACHSEG command to relinquish use of a segment file.

directory-name

is the name of a directory whose variables are in another segment file.

Considerations

 Executing the DETACHSEG command is equivalent to popping the directory.

 The directory must be the top level of its variable because detaching a segment
pops the segment.

 The DETACHSEG command does not allow you to relinquish use of the segment
file whose root is :UTILS because you would lose all your commands if you did so.

 You cannot detach the default private segment file created automatically by TACL
when you log on. This is the segment file that contains the root (:).

 Current or pushed HOME directories that are in the segment being detached are
set to the root directory.

 Current or pushed use-list directories that are in the segment being detached are
removed from those use lists.

 Any #REQUESTER having any of its variables in the segment being detached is
closed.

 Any server, implicit or explicit, having any of its variables in the segment being
detached is deleted; its openers receive error 66 on all subsequent I/O to the
server.

 Active macros and routines whose code is stored in variables in the segment being
detached run to completion before detachment occurs.

 When you detach a private segment file:

 All segment files attached to it are detached from it. If you later attach the
segment file again, those segment files are not automatically attached again.

 All variable levels within the segment are set to frame 0. This does not destroy
any variable levels, but gives the appearance that all variable levels were
created in frame 0.

 There is a delay while TACL writes the segment file. TACL writes only as much
as has been used, not the whole file.

 All breakpoints in that segment file are cleared.

DETACHSEG directory-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-58

U TILS :TA C L C om m ands and Functions D E TA C H S E G C om m and
 If the CPU on which your TACL process is running fails while you are in the act of
detaching a private segment file, the segment file may be corrupted. Any future
attempts to attach that file will fail. You must purge it and re-create it.

Example

This command detaches the segment file that is attached to the directory variable
MYDIR:

25> DETACHSEG :mydir

Note. ATTACHSEG operates by pushing and defining a directory variable that refers to the
specified segment file; DETACHSEG operates by popping that directory variable. Because
#UNFRAME pops all variables pushed since the most recent #FRAME, if you attach a segment
file following a #FRAME, the corresponding #UNFRAME detaches the segment file; its
contents are no longer available. Subsequent attempts to invoke those contents result in
errors.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-59

U TILS :TA C L C om m ands and Functions E N V C om m and
ENV Command

Use the ENV command to display the settings of one or all the environmental
parameters for your TACL.

environment-parameter

is one of these:

HOME
INLECHO
INLOUT
INLPREFIX
INLTO
PMSEARCH
SYSTEM
USE
VOLUME

HOME

displays the name of your current home directory. You set this value with the
HOME command.

INLECHO

displays the setting, OFF or ON, of the #INLINEECHO Built-In Variable on
page 9-200, which controls whether TACL copies to its own OUT file the lines it
sends as input to inline processes.

INLOUT

displays the setting, OFF or ON, of the #INLINEOUT Built-In Variable on
page 9-202, which controls whether TACL copies to its own OUT file lines sent
by inline processes to their OUT files.

INLPREFIX

displays the (possibly null) value of the #INLINEPREFIX Built-In Variable on
page 9-203, which contains the character or characters constituting the prefix
that identifies lines to be passed to inline processes.

INLTO

displays the (possibly null) value of the #INLINETO Built-In Variable on
page 9-206, which contains the name of a variable to which are appended
copies of lines sent by inline processes to their OUT files, if such a variable has
been defined.

ENV [environment-parameter]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-60

U TILS :TA C L C om m ands and Functions E N V C om m and
PMSEARCH

displays the search list that your TACL uses to find program and macro files
when they are invoked implicitly. This list is set with the PMSEARCH
Command on page 8-118.

SYSTEM

displays the (possibly null) name of your current default system. You set and
clear this value with the SYSTEM Command on page 8-221.

USE

displays the directories that TACL searches for variables not found in your
home directory. You set this list with the USE Command on page 8-231.

VOLUME

displays the name of your current default volume, including the name of your
current default system if it is different from your saved default system. Your
current default file security is also defined. You set these values with the
VTREE Command on page 8-258.

Consideration

If you do not specify any parameter, ENV displays the settings of all your TACL
environment parameters.

Examples

 To display your current default system, volume, subvolume, and file security, enter:

14> ENV VOLUME
Volume \MYSYS.$WORK.PROJECT, "NUNU"

 To display all the environment parameters for your TACL process, enter ENV. This
output is returned:

15> ENV

Home :MYDIR
Inlecho OFF
Inlout ON
Inlprefix #
Inlto
Pmsearch #DEFAULTS, $SYSTEM.SYSTEM
System
Use :MYDIR.1, :, :UTILS.1, :UTILS.1:TACL.1
Volume \MYSYS.$WORK.PROJECT, "NUNU"
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-61

U TILS :TA C L C om m ands and Functions E X IT C om m and
EXIT Command

Use the EXIT command to stop the current TACL process or TACL process pair.
Pressing CTRL-y is the same as typing EXIT.

Considerations

 To use the EXIT command to delete a TACL process on your home system, you
must be logged onto that system. You can, however, use EXIT to delete a TACL
process you started on a remote system without logging onto the remote system.

 If TACL encounters an EXIT command or an end-of-file (EOF) while executing an
OBEY command file, command execution halts and control returns to the TACL
process in which the OBEY command was entered.

 If TACL encounters an EXIT command while executing commands from an input
file (such as an IN file named in the command to start a TACL process), and TACL
is not running interactively, the TACL process is deleted. Control returns to the
process from which TACL was started.

 If you enter an EXIT command from the terminal when both IN and OUT refer to
that terminal (the interactive mode), TACL asks:

Are you sure you want to stop this TACL (process-spec)?

To stop the current TACL, enter Y, YE, or YES followed by a RETURN. This may make
your terminal unavailable to the system (see the note, below). If you enter any other
character or only a RETURN, TACL ignores the EXIT command.

EXIT

Note. If you delete your last TACL process, you cannot communicate with the system from
your terminal. You can, however, use another terminal to start a new TACL process on your
terminal. (See the syntax description for the TACL Program on page 8-224.)
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-62

U TILS :TA C L C om m ands and Functions FC C om m and
FC Command

 Use the FC command to retrieve, edit, and reexecute lines in the history buffer.

num

is a positive integer that refers to the specific command-line number you want to
retrieve from the history buffer.

- num

is a negative number that refers to a command line in the history buffer relative to
the current command line.

text

is the most recent command line in the history buffer that begins with the text you
specify. This text need only be as many characters as necessary to identify the
command line.

Consideration

When you enter the FC command, the specified command line is redisplayed (if you do
not specify a line, the most recent command line is redisplayed). A double period
prompt (..) appears below it.

Examples

Suppose that you are renaming the file JUNK to TESTFILE, and make a typing error in
the RENAME command on line 9. Rather than retype the whole line, type FC 9 to fix
the invalid command:

12> FC 9
12> RENMAE JUNK, TESTFILE
12..

You now see your invalid command redisplayed on the screen. The blank line at the
double period prompt is an editing template. In this template, you enter subcommands
that make corrections or additions to the command displayed above the template. The
rules for entering subcommands and for making corrections and additions are
described for the Editing Template on page 8-64.

After you enter the subcommands you want, press the RETURN key. Your edited
command and a new editing template then appear. If you want to make more
corrections to the edited command, you can enter more subcommands in the editing
template and then press RETURN. If the edited command is correct, you can
reexecute it by pressing RETURN without entering any subcommands.

FC [num | -num | text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-63

U TILS :TA C L C om m ands and Functions FC C om m and
To correct the spelling error in this example, you could enter:

12> RENMAE JUNK, TESTFILE
12.. AM
12> RENAME JUNK, TESTFILE
12..

Editing Template

The syntax of the editing template is:

subcommand is any of these:

{ R | r } replacement-text

{ I | i } insertion-text

{ D | d }

replacement-text

//

is a separator, allowing multiple subcommands on a given line. A subcommand
can immediately follow one or more uppercase or lowercase D’s without being
preceded by //.

{ R | r } replacement-text

replaces characters in the previous command, starting with the character
displayed immediately above the R or r. A replacement-text preceded by R or r
can be any string of characters, including spaces, and can itself begin with R, I,
or D (or r, i, or d). Characters in replacement-text replace characters in the
previous command on a one-for-one basis.

If // follows this subcommand, all characters in replacement-text up to //,
including spaces, replace characters in the previous command. Otherwise,
replacement ends with the RETURN.

{ I | i } insertion-text

inserts characters into the previous command in front of the character
displayed above the I or i. If // follows this subcommand, all characters in
insertion-text up to //, including spaces, are inserted into the previous
command. If no // appears, all characters up to the RETURN are inserted.

{ D | d }

deletes characters in the previous command. Any original character displayed
above a D or d that begins a subcommand in the editing template is deleted.

subcommand [// subcommand] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-64

U TILS :TA C L C om m ands and Functions FC C om m and
replacement-text

is any text that does not begin with R, I, or D (or r, i, or d). Characters in
replacement-text replace characters immediately above them on a one-for-
one basis. For example, a D in replacement-text replaces the character
displayed above it instead of deleting it.

Considerations

 If you enter FC alone, the last command entered is displayed.

 You can use the FC command before you are logged on. For example, FC works
to correct errors in the LOGON command. If your password contains control
characters, however, FC might not edit them correctly.

 If you press the BREAK key before completing an editing template, the FC
command is aborted, and the previous command is not reexecuted. The original
command is left unchanged.

 If you enter only the subcommand separator (//) in the editing template and follow it
immediately with a RETURN, the FC command aborts, leaving the original
command unchanged.

 Text arguments are not case-sensitive.

 If you try to retrieve a line that is not in your history buffer, you receive an error.

 FC must be entered from the IN file (normally your terminal); it cannot be included
in a macro, for example. Similarly, you cannot change FC to another name with an
ALIAS, nor can you program a function key to execute FC.

Examples

1. This example demonstrates the use of subcommands D, R, and I and the
subcommand separator (//):

11> COMMENT This are a commnt
12> FC
12> COMMENT This are a commnt
12.. DRis// Ie
12> COMMENT This is a comment

2. This example retrieves the command line numbered 5 in your history buffer:

13> FC 5
13> WHOM
13..

3. This example retrieves the third command back from your current command-line
number:

14> FC -3
14> COMMENT This are a commnt
14..
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-65

U TILS :TA C L C om m ands and Functions FC C om m and
4. This example retrieves the most recent line in your history buffer that begins with
the text “STA”:

15> FC STA
15> STATUS *, TERM
15..
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-66

U TILS :TA C L C om m ands and Functions F ILE IN FO C om m and
FILEINFO Command

Use the FILEINFO command to display information about one or more disk files. The
FILEINFO command allows the use of a file-name template. The FILEINFO command
is an alias for the #XFILEINFO Built-In Function on page 9-420.

OUT list-file

specifies a device, or a sequential file accessible to the sequential I/O (SIO) facility,
that is to receive the output from FILEINFO. If you omit this option, TACL writes the
listing to its current OUT file.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

file-name-template

is a list of one or more disk file specifications separated by commas or spaces.
Each disk file specification must be formatted as follows:

[[[\node.]$volume.] subvolume.] file-name]

If, however, you specify a volume name, you must specify a subvolume name. This
file name is not syntactically correct:

$volume-name.file-name

For a description of filename templates, see File-Name Templates on page 2-7.

Considerations

If you do not specify a file-name template, FILEINFO displays information about all files
in the default volume and subvolume.

When a file is copied from one system to another system in a different time zone
without modifying the source date of the file, the FILEINFO command returns the file
modification time as the local civil time of the system from which the file was copied.

FILEINFO displays information in a form similar to the following:

$SPOOL.LINDA

 CODE EOF LAST MODIFIED OWNER RWEP PExt SExt

AFILE 0 0 07DEC2000 15:58 8,185 NUNU 2 2

showing the name of each file requested, one or more letters identifying the file status,
its file code, the size of the file, the date and time when it was last modified, the user ID

FILEINFO [/ OUT list-file /]
 [file-name-template [[,] file-name-template] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-67

U TILS :TA C L C om m ands and Functions F ILE IN FO C om m and
of its owner, its file security, and the number of primary and secondary extents
allocated to it.

If the request is for a file that does not exist, the TACL process returns an error
message:

No files match \TSII.$SPOOL.LINDA.BFILE

If the request is formatted as $volume.filename, the TACL process returns an error
message:

FILEINFO $SPOOL.A
 ^
Expecting /
Or a valid filename template
Or end

The command output display provides this information:

Character
Position in
Output
Display

Field
Description Field Value

[1 - 8] filename Name of the file whose characteristics are being
displayed, left justified

[9 - 10] blank

[11] CODE:
Open File or
Crash-Open File
Indicator

“ ” File is not open, crashed, or broken.

“O” File is open.

“?” File was open during a crash and therefore the content
might have been compromised.

[12] CODE:
Corrupt File or
SQL DDL Free
Space Status
Indicator

“C” File is corrupt; that is, the file content has been
compromised. Some type of media recovery operation is
required before the file can be accessed.

“D” An SQL DDL operation is currently in progress.

"F" An SQL DDL operation has left unreclaimed free
space in the file.

[14 - 18] CODE:
File Code

“ “ Default file code is assigned to user-created files.

“OSS” An OSS file.

“100 through 999” Reserved - See system file code
definitions, in the File Utility Program (FUP) Reference
Manual to decipher the code. These codes include the
new native object file for TNS/E, the 800 file code.

All other values would be explicitly assigned as part of file
creation by the user.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-68

U TILS :TA C L C om m ands and Functions F ILE IN FO C om m and
[19 - 22] CODE:
FLAGS

"A" File is audited by TMF.

"L" File is licensed. See file licensing information in the
File Utility Program (FUP) Reference Manual.

“P” The PROGID attribute of the file is on. See file
PROGID information in the File Utility Program (FUP)
Reference Manual.

"+" File is a format 2 file. See format 2 file information in
the File Utility Program (FUP) Reference Manual.

[23 - 35] EOF “0” File is empty.

“n through nnnnnnnnnnnnn” File size in bytes

 "*************" File size display exceeds 13 digits.

[36] blank

[37 - 45] LAST
MODIFIED:
day, month, year

 “ddMMMyyyy” The numeric day of the month, three-letter
abbreviation of the month, and calendar year that the file
was last written.

[46] blank

[47 - 51] LAST
MODIFIED:
hour, minute

The hour and minute when the file was last written

[52] blank

[53 - 59] OWNER
ggg,uuu

The group number and user number that identify the file
owner

Note: The super ID (255,255) is displayed as -1.

Character
Position in
Output
Display

Field
Description Field Value
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-69

U TILS :TA C L C om m ands and Functions F ILE IN FO C om m and
Examples

1. This example illustrates the use of FILEINFO with a fully qualified file name:

15> FILEINFO \SOFTW.$BOOKS.TACL.V1SEC2B

2. The next example illustrates the use of the file-name template characters. The
asterisk (*) in the subvolume indicates that you want TACL to search for any
subvolume that begins with BOOK. The question mark (?) in the file name
indicates that you want information about any file whose name has SEC in the first
three positions, any character in the fourth position, and a 2 in the fifth position.

16> FILEINFO BOOK*.SEC?2

3. An even more generalized command is:

17> FILEINFO $VOL*A.*.SEC*2

which searches for any volume whose name begins with $VOL and ends with A,
all subvolumes on those volumes, and any file in those subvolumes whose name
begins with SEC and ends with 2. Note that in the previous example, SEC02,
SEC12, SECT2, and so on, meet the search criteria; in this example, SEC2,
SECT02, and SECT9992 also qualify.

[60] blank

[61 - 64] RWEP File security assigned to the file for read, write, execute,
and purge access.

"****" File access is controlled with Safeguard security.

"####" File access is controlled with OSS security.

“xxxx” File access is controlled with Guardian security:

“-” local super ID only
“O” local owner only
“G” local member of owner's group only
“A” any local user
“U” local or remote owner
“C” local or remote member of owner's group “N” any
local or remote user

For SQL/MX objects, the security options RWEP are
displayed as *SQL.

See file security information in the File Utility Program
(FUP) Reference Manual.

[65] blank

Character
Position in
Output
Display

Field
Description Field Value
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-70

U TILS :TA C L C om m ands and Functions F ILE N A M E S C om m and
FILENAMES Command

Use the FILENAMES command to display the names of all files that satisfy the file-
name specifications in the file-name-template. The FILENAMES command is an
alias for the #XFILENAMES built-in function.

OUT list-file

specifies a device, or a sequential file accessible to the sequential I/O (SIO) facility,
that is to receive the output from FILENAMES. If you omit this option, TACL writes
the listing to its current OUT file.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

file-name-template

is a list of one or more disk file specifications separated by commas or spaces.
Each disk file specification must be formatted as follows:

[[[\ node-name.]$ volume-name.] subvolume-name.] file-name

For a description of file-name templates, see Section 2, Lexical Elements.

Consideration

If you do not include any file-name template, FILENAMES lists all files in your default
volume and subvolume.

Examples

This example illustrates the output of the FILENAMES command:

17> FILENAMES $BOOKS.TACL.SEC*

$BOOKS.TACL

SEC01 SEC02A SEC02B SEC02C SEC02D

18>

The asterisk in the file-name template instructs FILENAMES to display the names of all
files that begin with SEC, regardless of which, or how many, characters follow.

This example illustrates the use of two file-name template characters. The asterisk (*)
in the subvolume indicates that you want TACL to search for any subvolume that
begins with BOOK. The question mark (?) in the file name indicates that you want to

FILENAMES [/ OUT list-file /]
 [file-name-template [[,] file-name-template] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-71

U TILS :TA C L C om m ands and Functions F ILE N A M E S C om m and
list the name of any file whose name has SECT in the first four positions, any character
in the fifth position, and a 2 in the sixth position:

18> FILENAMES $smith.book*.sect?2

$SMITH.BOOK1

SECT02

$SMITH.BOOK2

SECT02 SECT12

19>
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-72

U TILS :TA C L C om m ands and Functions F ILE S C om m and
FILES Command

 Use the FILES command to display the names of files in one or more subvolumes.

OUT list-file

specifies a device, or a sequential file accessible to the sequential I/O (SIO) facility,
that is to receive the output from FILES. If you omit this option, TACL writes the
listing to its current OUT file.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

subvol-template

is a list of one or more disk subvolume specifications separated by commas or
spaces. Each subvolume specification must be formatted as follows:

[[[\node-name.]$volume-name.] subvolume-name]

For a description of subvolume-name templates, see Subvolume Templates on
page 2-7.

Consideration

If you do not include any subvol-template, FILES lists all files in your default volume
and subvolume.

Examples

1. You can list the files in your current default subvolume by entering:

34> FILES

2. To list the files in all subvolumes in your current default volume, enter:

35> FILES *

3. To list the files in all subvolumes that begin with SYS in the volume $SYSTEM,
enter:

36> FILES $SYSTEM.SYS*

4. To list the files in subvolume SUBZ in volume $DISC1 of the system \ROME, enter:

37> FILES \ROME.$DISC1.SUBZ

FILES [/ OUT list-file /]
 [subvol-template [[,] subvol-template] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-73

U TILS :TA C L C om m ands and Functions F ILE TO V A R C om m and
FILETOVAR Command

The FILETOVAR command copies data from a file and appends it to a variable level.

file-name

is the name of an existing file from which data is to be copied. It must be readable
by the sequential I/O facility (SIO). Both format1 and format 2 files are supported.

variable-level

is the name of an existing variable level to which the copied data is to be
appended. The variable must not be in a shared segment and must not be a
directory, a STRUCT, or a STRUCT item.

Considerations

Lines longer than 239 characters in the file are truncated to 239 characters when they
are appended to the variable level.

File I/O appears in PLAIN format, which means that no special interpretation is given to
the TACL metacharacters [,], |, ==, {, and } when they are read. In particular, this
means that you cannot copy TACL statements from a file to a variable unless you
wrote the statements into the file with the VARTOFILE command originally. (When
TACL loads code from a file into a variable, it processes metacharacters to produce
executable code, but FILETOVAR only moves text into the variable.)

Another, faster way to append data to a variable level is to use the #SET command:

#SET /IN file-name/ variable

As with the FILETOVAR command, TACL INFORMAT must be set to PLAIN when
using the #SET function in this manner.

FILETOVAR file-name variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-74

U TILS :TA C L C om m ands and Functions H E LP C om m and
HELP Command

The HELP command displays a single screen of general information about TACL.

HELP
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-75

U TILS :TA C L C om m ands and Functions H IS TO R Y C om m and
HISTORY Command

Use the HISTORY command to display the most recently executed command lines.

num

is the number of commands to display. By default, num is 10.

Considerations

 The HISTORY command displays the specified number of lines in the history
buffer. The history buffer is 1000 characters long and contains zero or more lines.
Each line stored in the history buffer requires as many bytes as the line contains,
plus one extra byte.

 The lines TACL retains in its history buffer are those nonblank lines you type in, not
the lines TACL executes.

 Each line that an FC command or exclamation point command causes to be
repeated becomes a new line in the history buffer, just as if you had typed the
command again.

 If you type a line too long to fit into the history buffer, TACL executes the line
properly but omits it from the buffer.

 If the number is larger than the history buffer, TACL returns the number of available
lines.

 If the number is too large, TACL returns an error.

Example

This example illustrates how to list the last five command lines. TACL lists the previous
five lines, including the HISTORY command:

32> HISTORY 5
28> ENV
29> FILEINFO BOOK*.SEC
30> SET DEFINE CLASS MAP
31> SET DEFINE FILE RSLTS
32> HISTORY 5

33>

HISTORY [num]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-76

U TILS :TA C L C om m ands and Functions H O M E C om m and
HOME Command

Use the HOME command to specify the first directory in which your TACL process
searches for variables before searching any other directories.

directory-name

is the name of an existing variable level of type DIRECTORY. If omitted, the root (:)
is assumed.

Considerations

 TACL is said to be “creating a variable” when using (#)PUSH, #DEF, or (#)LOAD.
Unless the name of a variable to be created begins with a colon, TACL tries to
create the variable in the home directory.

 If this directory is in a shared segment file, TACL cannot create any variables in it.

 You can use the ENV Command on page 8-60 or the #HOME Built-In Variable on
page 9-191 to display the value set by this command.

 You can save and restore the setting of HOME by pushing and popping #HOME.

 If you detach a segment containing the current or pushed HOME directory, that
HOME directory is set to the root.

 For additional information about directories and segment files, see the
CREATESEG Command on page 8-46.

Example

This command establishes the directory variable ANOTHER_DIR, within the directory
variable MYDIR, as the home directory:

24> HOME :mydir:mykeys

To list the home directory, you can use the ENV command. It returns this output:

25> ENV

HOME [directory-name]

Home :MYDIR:mykeys
Inlecho OFF
Inlout ON
Inlprefix
Inlto
Pmsearch $SYSTEM.SYSTEM, $DATA.MYFILES, #DEFAULTS
System
Use :, :UTILS.1, :UTILS.1:TACL.1
Volume $DATA.MYFILES, "AAAA"
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-77

U TILS :TA C L C om m ands and Functions IN FO D E F IN E C om m and
INFO DEFINE Command

Use the INFO DEFINE command to display the attributes and values associated with
one or more existing DEFINEs in the process file segment (PFS) of the current TACL
process. For more information about DEFINEs and their usage, see the Guardian
User’s Guide.

OUT list-file

specifies a device, or a sequential file accessible to the sequential I/O (SIO) facility,
that is to receive the listing from INFO DEFINE. If you omit this option, TACL writes
the listing to its current OUT file.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

define-name-list

is a list of one or more existing DEFINEs whose attributes and values you want to
display. For define-name-list, specify either of these:

define-template
(define-template [, define-template] ...)

define-template

is a DEFINE name that can optionally contain template characters:

* matches zero or more characters

? matches a single character

A DEFINE template that consists entirely of =* or ** causes all existing
DEFINEs to be displayed.

DETAIL

specifies that the listing is to include the entire contents of each DEFINE specified
by define-name-list. That is, all the attributes as well as the values
themselves are displayed.

Considerations

 If you omit the DETAIL option, the INFO DEFINE command displays only three
items: the name of the DEFINE, its CLASS, and an attribute that depends on the
class. If you include the DETAIL option, the display lists every attribute that has a
value, along with that value. The examples that follow show both types of display.

INFO [/ OUT list-file /] DEFINE define-name-list
 [, DETAIL]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-78

U TILS :TA C L C om m ands and Functions IN FO D E F IN E C om m and
 You cannot display the names of attributes to which no values have been
assigned.

 You can display all DEFINEs by entering INFO DEFINE ** or INFO DEFINE =*.
DEFINEs are displayed in ASCII sort sequence by name.

 To obtain error information, use the #ERRORNUMBERS Built-In Variable on
page 9-160.

Examples

1. To display the CLASS and the principal attribute of all DEFINEs enter:

13> INFO DEFINE **
 Define Name =ACK
 CLASS MAP
 FILE $BILL.THECAT.ACKPHTH

 Define Name =_DEFAULTS
 CLASS DEFAULTS
 VOLUME $BILL.THECAT

2. This command displays the principal attributes of all the DEFINEs with names that
match a template pattern:

14> INFO DEFINE =A*
 Define Name =ACK
 CLASS MAP
 FILE $BILL.THECAT.ACKPHTH

3. To display all the attributes (that have values) of an existing DEFINE, enter:

15> INFO DEFINE =TEST3, DETAIL
 DEFINE NAME =TEST3
 CLASS TAPE
 VOLUME SCRATCH
 LABELS OMITTED
 USE IN
 DEVICE $TAPE2
 MOUNTMSG "Transferring files, low pri.-Fred"
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-79

U TILS :TA C L C om m ands and Functions IN ITTE R M C om m and
INITTERM Command

Use the INITTERM (initialize terminal) command to reinstate the default attributes of
your home terminal. The INITTERM command is an alias for the #INITTERM Built-In
Function on page 9-199.

Considerations

Typically, you use the INITTERM command when an application program has left your
terminal in an abnormal state. INITTERM calls the SETMODE procedure, function 28.

For information about setting device attributes, see the description of SETMODE
settings for terminals in the Guardian User’s Guide and the description of the
SETMODE procedure in the Guardian Procedure Calls Reference Manual.

INITTERM
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-80

U TILS :TA C L C om m ands and Functions IN LE C H O C om m and
INLECHO Command

Use the INLECHO command to specify whether lines sent as input to an inline process
are to be copied to the current TACL OUT file. (Use of the INLINE facility is described
in the TACL Programming Guide.)

OFF

disables echoing of input lines.

ON

enables echoing of input lines to the TACL OUT file.

Considerations

 The INLECHO command offers a simplified method of setting the #INLINEECHO
Built-In Variable on page 9-200.

 You can display the current setting for INLECHO with the ENV command.

 You can save the previous echo-control setting by pushing #INLINEECHO; you
can revert to that setting by popping #INLINEECHO.

 Lines copied to the TACL OUT file are preceded by the prompt that the inline
process issued when it requested the line.

INLECHO { OFF | ON }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-81

U TILS :TA C L C om m ands and Functions IN LE O F C om m and
INLEOF Command

Use the INLEOF command to send an end-of-file indication to an inline process. (Use
of the INLINE facility is described in the TACL Programming Guide.)

Considerations

 The INLEOF command is a simplified interface to the #INLINEEOF Built-In
Function on page 9-201.

 TACL waits until the inline process accepts the end-of-file and either prompts again
or terminates.

INLEOF
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-82

U TILS :TA C L C om m ands and Functions IN LO U T C om m and
INLOUT Command

Use the INLOUT command to specify whether lines written by inline processes to their
OUT files are to be copied to the current TACL OUT file as well. (Use of the INLINE
facility is described in the TACL Programming Guide.)

OFF

disables copying of output lines.

ON

enables copying of output lines to the TACL OUT file.

Considerations

 To permit OUT file copying, the inline process must have been started with neither
the OUT option nor the OUTV option.

 The INLOUT command offers a simplified interface to the #INLINEPREFIX Built-In
Variable on page 9-203.

 You can display the current setting for INLOUT with the ENV command.

 You can save the previous copy-control setting by pushing #INLINEOUT; you can
revert to that setting by popping #INLINEOUT.

 CONTROLs and SETMODEs issued by an inline process are ignored.

INLOUT { OFF | ON }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-83

U TILS :TA C L C om m ands and Functions IN LP R E F IX C om m and
INLPREFIX Command

Use the INLPREFIX command to establish the prefix that identifies lines that are to be
passed as input to inline processes. (Use of the INLINE facility is described in the
TACL Programming Guide.)

prefix

is one or more characters constituting a prefix that, when placed at the beginning
of a TACL input line and followed by a space, identifies the remainder of the line as
input to be passed to an inline procedure instead of being acted upon by TACL.

Considerations

 The INLPREFIX command offers a simplified method of setting the
#INLINEPREFIX Built-In Variable on page 9-203.

 If you omit prefix, INLPREFIX sets the inline prefix to its default, a null value (no
prefix). For efficiency, it is a good idea to leave the prefix set to null when you are
not using the INLINE facility.

 You can display the current setting for INLPREFIX with the ENV command.

 You can save the previous prefix value by pushing #INLINEPREFIX; you can revert
to that prefix by popping #INLINEPREFIX.

 You must not use #SET as a prefix because doing so would prevent you from
changing the prefix to anything else. Other problems could arise from using other
TACL entities as prefixes.

 The prefix must not include a space or an end-of-line.

 The prefix is not case-sensitive.

 When used to identify an input line, the prefix must be followed by a space unless
it appears alone on a line. In that case, TACL passes a blank line to the inline
process.

 If a prefixed line appears when no inline process exists, an error occurs.

Example

This command establishes “@@” as the inline prefix:

327> INLPREFIX @@

INLPREFIX [prefix]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-84

U TILS :TA C L C om m ands and Functions IN LTO C om m and
INLTO Command

Use the INLTO command to establish a variable level that is to receive copies of lines
written by inline processes to their OUT files. TACL appends copied lines to the end of
the variable level. (Use of the INLINE facility is described in the TACL Programming
Guide.

variable-level

is the name of an existing variable level.

Considerations

 To permit OUT file copying, the inline process must have been started with neither
the OUT option nor the OUTV option.

 The INLTO command offers a simplified method of setting the #INLINETO Built-In
Variable on page 9-206.

 You can display the current setting for INLTO with the ENV command.

 You can save the previous output variable identity by pushing #INLINETO; you can
revert to that output variable by popping #INLINETO.

 variable-level must not be a DIRECTORY, a STRUCT, or a STRUCT item.

 If you omit variable-level, the copying feature is disabled.

Example

This command defines KEEPER as the variable level to receive inline process output.

329> INLTO keeper

INLTO [variable-level]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-85

U TILS :TA C L C om m ands and Functions IP U C O M P rogram
IPUCOM Program

Use the IPUCOM program for a command line interface which can be used to set,
reset, or display an IPU number associated with a process. It can also be used to set
or display CPU-wide controls.

Syntax to set an IPU association:

Either a process name or a CPU pin can be used to associate a process with an IPU. If
the -cpu option is omitted, then the CPU where the IPUCOM program is running is
used. To ensure that the intended process is set, it is recommended to use the -cpu
option with -pin. This also helps a $CMON process to change the CPU assignment
when IPUCOM is running.

-pin <pin>

specifies the PIN of the process whose association is to be set.

-pname <name>

specifies the primary process named <name> for a process pair.

-bname <name>

specifies the backup process named <name> for a process pair.

Remember that the primary and backup processes are on different CPUs. To set an
association betweem them requires two invocations of IPUCOM. For processes that
are not a part of a process pair, use either the -pname or -bname option to specify the
process name. When -pname or -bname is used with the -cpu option, the process
specified is the process named <name> in the specified CPU regardless of its primary
or backup status.

The specified <name> or <pin> and <cpu-number> are all relative to the system where
IPUCOM is running.

Specifying a system name in <name> (for example: \MYSYS.$XYZ) is not allowed and
results in an error from IPUCOM. IPUCOM expects only a local process name in
<name>.

Note.

 The keyw ords in each o f the com m and line syn taxes such as -pnam e, -bnam e, -p in
and so on a re case-insensitive .

 The num eric va lues (p in , cpu num ber, ipu num ber) m ust be in dec im a l fo rm at.

 The m axim um com m and line leng th supported by IP U C O M is 529 characters .

IPUCOM {-pname <name> | -bname <name> | -pin <pin> } [-cpu
<cpu-number>] <ipu-number>
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-86

U TILS :TA C L C om m ands and Functions IP U C O M P rogram
Syntax to reset an association:

Syntax to display an association:

The IPU associated with the process is displayed, which may dynamically change if the
IPU assignment is not currently set via IPUCOM or IPUAFFINITY_SET_.

Syntax to set CPU wide controls:

-balanceSA option

indicates the process scheduler to enable (on, default) or disable (off) the
balancing of Soft Affinity processes.

-balanceDP2 option

indicates the process scheduler to enable (on, default) or disable (off) the
balancing of DP2 processes.

-initialState option

indicates the process scheduler to put the balancing back to the initial state of the
scheduler, and to clear all associations established via IPUAFFINITY_SET_.

<cpu-number>

indicates the CPU on which to apply the change. A value of -1 indicates that the
change should be applied to all CPUs.

Syntax to display the current IPU control settings:

The IPU control settings for the specified CPU are only displayed. If a CPU value of -1
is specified, the IPU control settings for all the CPUs are displayed. If the -cpu option
is omitted then the CPU where the IPUCOM program is running is displayed.

Syntax to display help text:

IPUCOM {-pname <pname> | -bname <bname> | -pin <pin>} [-cpu
<cpu-number>] unbind

IPUCOM {-pname <pname>|-bname <bname>| -pin <pin> } [-cpu
<cpu-number>] info

IPUCOM [-balanceSA {on|off}] [-balanceDP2 {on|off}] [-
initialState] [-cpu <cpu-number>]

IPUCOM [-cpu <cpu-number>] info

IPUCOM [help]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-87

U TILS :TA C L C om m ands and Functions IP U C O M P rogram
Considerations

 The IPUCOM program can be run without super-group or other privileges, but to
alter any of the process or CPU-wide settings, the user must conform to the
security requirements of a corresponding call to IPUAFFINITY_SET_ or
IPUAFFINITY_CONTROL_.
See the Guardian Procedure Calls Reference Manual for details on the
requirements of those interfaces.
Note that in particular the user of IPUCOM must be locally logged in to alter any of
the process or the CPU-wide settings.

 A customer may choose to give the IPUCOM program to a SUPER group member
and then set PROGID on it. They can then use either Safeguard ACLs or standard
file security to control execution access. It is not shipped with PROGID set.

For more information about the restrictions and requirements on the use of IPUCOM,
see the considerations for the IPUAFFINITY_GET_, _SET_, and _CONTROL_
procedures in the Guardian Procedure Calls Reference Manual.

Examples

The following example sets the primary $XYZ process on IPU 1:

 IPUCOM -pname $xyz 1

The following unbinds the primary $XYZ process, allowing it to be moved again by the
process scheduler:

 IPUCOM -pname $xyz unbind

The following displays the IPU affinity of the $XYZ process:

 IPUCOM -pname $xyz info

The following sets the process that is PIN 456 in CPU 3 on IPU 2:

 IPUCOM -pin 456 -cpu 3 2

The following turns off DP2 balancing in the process scheduler in CPU 5:

 IPUCOM -cpu 5 -balanceDP2 off
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-88

U TILS :TA C L C om m ands and Functions JO IN C om m and
JOIN Command

Use the JOIN command to convert a multiple-line variable level into a single-line
variable level, replacing each internal end-of-line with a single space.

variable-level

is the name of an existing variable level.

JOIN variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-89

U TILS :TA C L C om m ands and Functions K E E P C om m and
KEEP Command

Use the KEEP command to remove all but the top num definition levels of one or more
variables.

LIST

causes KEEP to display each variable name followed by the number of levels
removed from that variable.

num

is the number of levels to keep.

variable

is the name of an existing variable.

Consideration

KEEP 0 deletes the variable.

KEEP [/ LIST /] num variable [variable] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-90

U TILS :TA C L C om m ands and Functions K E Y S C om m and
KEYS Command

Use the KEYS command to display the current function key definitions.

Example

This example is a sample KEYS command display; the values vary depending on how
the TACL environment is set up:

127> KEYS
F16 = (The Help Key)
F1 = #OUTPUT TEDIT %1%; %2 to *%
 TEDIT %1%; %2 to *%
 #OUTPUT Finished editing [#SHIFTSTRING/UP/%1%]
F2 = #OUTPUT TFORM /IN %1%, OUT $S.#%2%, NOWAIT/ %3 to *%
 TFORM /IN %1%, OUT $S.#%2%, NOWAIT/ %3 to *%
F3 = TYPE %1%

SF15 = #OUTPUT VOLUME %1%
 VOLUME %1%
SF16 = #OUTPUT LOGOFF
 [#IF NOT [#MATCH $DECAY [#MYTERM]] |THEN|
 LOGOFF /SEGRELEASE/
 |ELSE|
 LOGOFF
]

KEYS
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-91

U TILS :TA C L C om m ands and Functions LIG H TS P rogram (S uper-G roup O n ly)
LIGHTS Program (Super-Group Only)

Use the LIGHTS program to control the processor panel lights (also known as the
switch-register display). You must use a super-group user ID (255,your-id) to issue
this command.

This command is not supported on NonStop S-series systems after the G06.04 RVU.

ON

enables the display of processor usage in the processor panel lights. ON is the
default if you do not specify any of these parameters in the command that runs the
LIGHTS program.

OFF

stops the lights display and turns off all the processor panel lights.

SMOOTH [num]

reduces the variance in the processor usage display. It causes the lights to show
processor usage over the previous num seconds, where num is a value between 1
and 60, inclusive. The default value of num is 10. Although the processor usage is
averaged over num seconds, the lights display is refreshed every second. LIGHTS
SMOOTH also turns on the processor lights if they are off.

You can include a sys-option, and the ALL and BEAT parameters, only when the
display is enabled (that is, when LIGHTS ON or LIGHTS SMOOTH is in effect).

sys-option

is any of these three:

DISPATCHES

flashes processor light 13 to indicate passage of 100 dispatches. (After 95
dispatches, light 13 is lit for 5 dispatches.)

SYSPROCS

turns on processor light 14 whenever a system process is running.

PAGING

turns on processor light 15 whenever a page fault is being processed (that is,
the memory manager is waiting for a page transfer from a disk process).

LIGHTS [ON | OFF | SMOOTH { num }]
 [[‚ sys-option] | [‚ ALL]]
 [, BEAT]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-92

U TILS :TA C L C om m ands and Functions LIG H TS P rogram (S uper-G roup O n ly)
ALL

turns on every sys-option at once (DISPATCHES, SYSPROCS, and PAGING).

BEAT

flashes light 0 (zero) once every second to indicate that the processor is
functioning.

Considerations

 To run the LIGHTS program, you must have a group ID of 255.

 Processor lights are lit for these reasons:

 Lights 0 through 10 indicate processor usage. Light 0 is always lit (or flashing if
BEAT was specified). One additional light is lit for each 10 percent increase in
processor usage.

 Processor light 11 is always off.

 Light 12 is lit if the processor successfully recovered from a power
failure.When you run the LIGHTS program, light 12 is turned off in all
processors.

 Lights 13 through 15 are lit for the reasons given in the syntax description for
DISPATCHES, SYSPROCS, and PAGING, respectively. Each light is lit for a
larger percentage of the time if more processing time is spent on the
corresponding activity.

 When the system is cold loaded, the default LIGHTS setting is ON, ALL, BEAT.

Examples

1. To turn on the processor lights and have them show processor usage smoothed
over 10-second intervals, enter:

94> LIGHTS SMOOTH

2. To change the display to show processor usage for 25-second intervals, enter:

95> LIGHTS SMOOTH 25

3. To turn on processor light 15 whenever paging activity occurs, enter:

96> LIGHTS ON, PAGING

4. To turn on light 14 whenever a system process is executed, and light 13 after each
100 dispatches, enter:

97> LIGHTS, SYSPROCS, DISPATCHES
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-93

U TILS :TA C L C om m ands and Functions LO A D C om m and
LOAD Command

Use the LOAD command to load one or more TACL library files into the TACL memory.

KEEP num

causes TACL, after executing the LOAD command, to perform an implicit KEEP
command on all the variables modified by the LOAD command.

file-name

is the name of one or more TACL libraries.

Considerations

 Each library consists of one or more ?SECTION directives that specify a variable
and a type associated with that variable, followed by the information (body) to be
put into it when it is created.

 To process a file, TACL does this for each ?SECTION directive: it pushes the
variable, sets its contents to type, and makes body the new top-level definition of
the variable.

 As a library is loaded, comments are removed to conserve variable space. Any line
that is blank, or becomes blank because of comment removal, is discarded.

 If you need to include a blank line (often useful in DELTA type variables), use the
?BLANK directive. ?BLANK causes the loader to insert a blank line in the variable
level.

 To include lines beginning with question marks (for example, you might be loading
DDL commands into a variable level for later use as the IN variable for a DDL run),
double the question mark (??). The first question mark and any spaces adjacent to
it are discarded and the remainder of the line is treated as text.

 The LOAD command reads data from a library file in TACL format unless the file
contains a ?FORMAT PLAIN or ?FORMAT QUOTED directive to specify otherwise.
If changed, the format reverts to TACL at the next ?SECTION directive.

Example

This example illustrates how to load two libraries, retaining only one level of each
variable:

17> LOAD / KEEP 1 / mykeys mymacs

LOAD [/ KEEP num /] file-name [file-name] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-94

U TILS :TA C L C om m ands and Functions LO A D E D FILE S C om m and
LOADEDFILES Command

Use the LOADEDFILES command to display information about the load files that are
being used by the specified process.

OUT list-file

specifies a device or sequential file accessible to the sequential I/O (SIO) facility
that is to receive the output from the command. If you omit this option, TACL writes
the listing to the current OUT file.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

\node-name

is the name of the system on which the specified process executes.

$Process-name or CPU, PIN

is the name of the process or process pair. Alternatively, use the CPU number and
process identification number of the process.

This information is displayed:

Filename - the fully qualified LOADEDFILE name

If the specified process is a Guardian file, the files are reported using a Guardian
format, for example

\BOMBAY.$SYSTEM.SYS01.ZCRESSRL

If the specified process is OSS then path names are reported using the OSS format,
for example

OSS file: /bin/ksh
Guardian file: /G/system/sys01/zcresrl

Type - the type of loaded file; it can be any one of these types:

 N-PROG: a native program (non-PIC).
 P-PROG: a native program (PIC)
 UC-R: a TNS program (accelerated)
 UC: a TNS program (non-accelerated)
 UL-R: a TNS User Library (accelerated)
 UL: a TNS User Library (accelerated)

LOADEDFILES [/ OUT list-file /][\node-name] &
 { $Process-name | CPU, PIN|}
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-95

U TILS :TA C L C om m ands and Functions LO A D E D FILE S C om m and
 SRL: a Shared Run-time Library (including a non-PIC native UL)
 DLL: a Dynamic-Link Library (including a PIC native UL)
 ERR: Loadedfile unloaded in between execution of program
 ERROR: Unrecognized loadfile type

Considerations

 If you do not specify a process ($process-name or CPU, PIN), LOADEDFILES lists
all the loaded files for the current TACL processes.

 If you omit the node name, the default system is assumed.

 If you omit the process name by using CPU, PIN method then the process name
will be displayed as UNNAMED PROCESS.

 If the process is an unnamed process, the process name will be displayed as
UNNAMED PROCESS.

 The LOADEDFILES command lists information for only one process at a time.

Example

 $DATA08 KIRAND 10> loadedfiles \bombay.0,11

 PROCESS NAME = $ZL00
 TYPE FILENAME
 NPROG \BOMBAY.$SYSTEM.SYS01.ROUT
 SRL \BOMBAY.$SYSTEM.SYS01.ZCRESRL
 SRL \BOMBAY.$SYSTEM.SYS01.ZI18NSRL
 SRL \BOMBAY.$SYSTEM.SYS01.ZICNVSRL
 SRL \BOMBAY.$SYSTEM.SYS01.ZCRTLSRL
 SRL \BOMBAY.$SYSTEM.SYS01.ZCPLGSRL
 SRL \BOMBAY.$SYSTEM.SYS01.ZOSSKSRL
 SRL \BOMBAY.$SYSTEM.SYS01.ZTLHGSRL
 Total No. of Loadedfiles = 8
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-96

U TILS :TA C L C om m ands and Functions LO G O FF C om m and
LOGOFF Command

Use the LOGOFF command to log off from the current TACL process. The LOGOFF
command is an alias for the #LOGOFF Built-In Function on page 9-252.

option

is one of these options:

CLEAR

clears the terminal screen after you log off (for use when TACL is not
configured to clear the screen automatically).

NOCLEAR

prevents TACL from clearing the terminal screen after you log off (for use when
TACL is configured to clear the screen automatically, as is usually the case).

PAUSE

causes TACL to execute a PAUSE command immediately following the
LOGOFF command.

SEGRELEASE

causes TACL to release immediately the extended segment that held your
variables. Typically, TACL saves this segment in the event you later log onto
the same TACL; but if you fill up your variable space and processing cannot
proceed, you can log off using the SEGRELEASE option to discard the
variable space.

Considerations

 When you log off, you terminate only your session with the current
TACL.Processes that you started can continue to run after you log off.

 Any macro or routine running at the time #LOGOFF occurs terminates
immediately. A subsequent LOGON does not restart it.

 Before logging off, you should stop processes that you are no longer using. Use
the STATUS Command on page 8-206 to see a list of the processes that are
running. Then use the STOP Command on page 8-215 to stop any unneeded
processes.

 If you enter the LOGOFF command while working through a modem, the modem
disconnects (unless the ancestor of your TACL process is running in another
system, as above).

LOGOFF [/ option [, option] ... /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-97

U TILS :TA C L C om m ands and Functions LO G O FF C om m and
 If the ancestor of your current TACL process is a process running in another
system and you enter the LOGOFF command, the current TACL process is deleted
and control returns to the ancestor process. This message is displayed:

Exiting from TACL on \node-name

 If you are accessing a remote node through a modem on your local node, TACL
does not issue a modem disconnect.

 After you log off, the current TACL process accessor ID and creator accessor ID
are set to NULL.NULL (0,0). This is also the setting of the accessor IDs when an
interactive TACL is started but no user has logged on.

 After you log off, any process that tries to use your variables receives file-system
error 66 on its I/O requests.

 If your TACL is interactive, and your terminal is a 6520 or 6530, and TACL is
configured to clear the terminal screen as a security measure (the default), it does
so when you log off. You can override the automatic screen clearing with the
NOCLEAR option. Conversely, if TACL is configured to omit automatic screen
clearing, you can use the CLEAR option to clear the terminal screen.

Note. The LOGOFF command is an alias for the #LOGOFF built-in function. You can, if
you want, redefine LOGOFF as the name of a routine or macro of your own creation that
checks for variables in use by processes, requesters, and servers. You can then close
associated files and processes before logging off to avoid error-66 conditions.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-98

U TILS :TA C L C om m ands and Functions LO G O N C om m and
LOGON Command

Use the LOGON command to establish communication with a TACL process. To enter
TACL commands interactively, you must first log on. However, when you execute TACL
commands from a command file (by specifying a disk file containing TACL commands
as the IN file when you start a new TACL process), you do not need to include the
LOGON command in the file.

group-name.user-name or group-id,user-id

is the group name and user name, or the group number and user number, of the
user who is logging on. The user identity must already be established. If you do not
have a user account, see your system administrator. To do a blind logon, enter only
LOGON followed by your group-name.user-name or group-id, user-id
and press RETURN. TACL then prompts you for your password.

If the TACL configuration NAMELOGON option is not set to or if Safeguard is
running and the Safeguard NAMELOGON flag is set to 0 (for
USER_AUTHENTICATE_ call), the group number and user number is not
accepted.

alias

is an alternate assigned name. Each alias must be unique within the local system.
An alias is a case-sensitive text string that can be up to 32 alphanumeric
characters in length. In addition to alphabetic and numeric characters, the
characters period (.), hyphen (-), and underscore(_) are permitted within the text
string. The first character of an alias must be alphabetic or numeric. For more
information on aliases, see the Safeguard Reference Manual.

Note. The LOGON command behavior depends on the Safeguard environment. If Safeguard
is not running on your system or if the USER_AUTHENTICATE procedure is not in the system
library, these logon options are not available:

 alias

 old-password, new-password

 old-password, new-password, new-password.

LOGON
 group-name.user-name | group-id,user- id | alias
 [‚ password |
 ‚ old-password‚ new-password |
 ‚ old-password‚ new-password‚ new-password
]
 [; parameter [, parameter]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-99

U TILS :TA C L C om m ands and Functions LO G O N C om m and
password

is the password associated with the user. You must include password if a pass-
word has been established for you. If you have a password, you must separate it
from your user name with a comma if you enter it before pressing RETURN. You
can also use the blind password feature by omitting the comma and password from
the LOGON command, then entering your password when prompted. For more
information about passwords, see the PASSWORD Program on page 8-115.

You can change your password as part of the logon sequence. Initially, the logon
dialog is the same as a normal logon. However, to indicate that you want to change
your password, type a comma at the end of your password. The system prompts
you for a new password and then requests reentry of the new password to verify it.
This dialog shows a sequence in which SUPPORT.JANE changes her password
from alpha4 to BigTop:

TACL 1> LOGON SUPPORT.JANE
Password: alpha4,
Enter new password: BigTop
Reenter new password: BigTop
The password for SUPPORT.JANE has been changed.

An alternative method of changing a password is to enter the current password, the
new password, and the verification of the new password on the same line. This
dialog shows this type of password change:

TACL 1> LOGON SUPPORT.JANE
Password alpha4, BigTop, BigTop
The password for SUPPORT.JANE has been changed.

Another option for changing the password is to enter the current and new
passwords on one line and the verification of the new password on the new line.

TACL 1> LOGON SUPPORT.JANE
Password alpha4, BigTop
Reenter new password: BigTop
The password for SUPPORT.JANE has been changed.

parameter

is an operating parameter for the TACL process. It can be one of these:

ABENDONABEND
HOMETERM
SEGVOL $ volume-name
STOPONABEND

ABENDONABEND

specifies that TACL abends with an abend completion code and displays an
error message to the current OUT file when a process started by this TACL

Note. Parameters can be specified only when you are logging on from the logged-off
state. You cannot specify parameters when you are logging on from the logged-on state.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-100

U TILS :TA C L C om m ands and Functions LO G O N C om m and
abends or stops with an abnormal completion code. If, however, the
subordinate process was started in the NOWAIT mode or with any JOBID
value, including 0, the parent TACL process does not stop. In such a case,
TACL displays the error message but continues to run.

If the CPU of a single process fails, the condition is treated as if the process
abended.

If you start a process pair from this TACL process and the CPU of one of the
processes fails, this has no effect on the TACL process; both processes in the
pair must cease to exist before the ABENDONABEND option applies.

HOMETERM

specifies that TACL is to use the device specified by the TERM run-option as
the home terminal. If you omit HOMETERM, if the TACL IN file is the same as
the TACL OUT file and TACL is not in server mode, TACL uses its IN file
device as the home terminal, regardless of any specification by the TERM
option. If the IN file is the same as the OUT file and the TACL process is not
named, TACL does not set its home terminal.

A process started by TACL inherits its home terminal unless the RUN
command that initiates the process specifies a different home terminal.

SEGVOL $volume-name

can be included only on a “cold” logon (when entering from the logged-off
state); it indicates the name of the disk volume where the extended segment
swap file resides.

STOPONABEND

specifies that TACL abends and displays an error message to the current OUT
file when a process started by this TACL abends or stops with an abnormal
completion code. (If, however, the subordinate process was started in the
NOWAIT mode or with any JOBID value, including 0, the parent TACL process
does not stop. In such a case, TACL displays the error message but continues
to run.)

If the CPU of a single process fails, the condition is treated as if the process
abended. If you start a process pair from this TACL process and the CPU of
one of the processes fails, this has no effect on the TACL process; both
processes in the pair must cease to exist before the STOPONABEND option
applies. For a description of completion codes, see the Guardian Procedure
Calls Reference Manual.

Considerations

 When you log on, the operating system displays a logon message that usually
includes:
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-101

U TILS :TA C L C om m ands and Functions LO G O N C om m and
 The operating system RVU number and date

 The number of the processor in which the primary and backup TACL process is
running

 The current system date and time

 When you enter a full LOGON command, your identity and password are displayed
on the terminal screen; if you want to assure security, you can use the blind
password feature.

 When you enter the LOGON command, your logon (saved) default values are in
effect for system, volume, and subvolume names and for disk file security. (See the
DEFAULT Program on page 8-53 for information about logon default values.)

 After you log on, the current TACL process accessor ID and creator accessor ID
are set to the accessor ID associated with your user name. If your logon fails
because you try an invalid or undefined user name or password, the accessor IDs
remain set at 0,0. (This is the accessor ID setting when an interactive TACL is
started and no user has logged on.)

 A logon failure occurs if either the $CMON process or the
USER_AUTHENTICATE_ procedure denies the logon but not if you make a syntax
error in the LOGON command. If a logon failure occurs, TACL displays an “Invalid
username or password” message, without specifying which element was in error. If
successive logon failures occur, TACL can prevent further logons for a specific
period of time, depending on Safeguard and USER_AUTHENTICATE_ security
logic. Until a successful logon occurs, all subsequent logon failures also initiate this
delay.

 If the USER_AUTHENTICATE_ procedure fails to recognize the user information
given during the logon operation, the TACL built-in variable #ERRORNUMBERS
contains the error information. To display the error information, issue these
commands:

#PUSH n1 n2 n3 n4
#SETMANY n1 n2 n3 n4, [#ERRORNUMBERS]

where:

n1 = 1074 (Invalid user name or password)
n2 = error return from USER_AUTHENTICATE_
n3 = error return detail from USER_AUTHENTICATE_
n4 = 0

If n2 contains 0 (no error state returned), USER_AUTHENTICATE_ is not in the
system library or Safeguard is not running. If Safeguard is not running, n3 and n4
are set to 0.

 If the USER_AUTHENTICATE_ procedure exists in the system library, TACL calls
the USER_AUTHENTICATE_ procedure, a procedure that uses the Safeguard
facility, to verify users logging on. Otherwise, TACL calls the VERIFYUSER system
procedure.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-102

U TILS :TA C L C om m ands and Functions LO G O N C om m and
 When you enter a full LOGON command, your identity and password are displayed
on the terminal screen. You can use the blind password feature in the TACL
configuration or in Safeguard to ensure security.

 The process accessor ID and creator accessor ID of the user logging on are
propagated to any descendant processes of TACL. (For a description of accessor
IDs, see the Guardian User’s Guide.)

 If you are logged on as the super ID, you can log on as any user in your system
without giving that user’s password. Similarly, if you are a group manager, you can
log on as any member of your group without giving that user’s password.

 Entering the LOGON command from a logged-off state clears all assignments you
made with the ASSIGN and PARAM commands, clears all DEFINEs, and resets
the Inspect setting to the default value of OFF (see the SET INSPECT Command
on page 8-193 for information about Inspect settings). But if you log on without
explicitly logging off the previous user, the assignments, parameters, and DEFINEs
are retained, and the current Inspect setting remains in effect (see Example 3 on
page 8-106).

 The ability to log on from a logged-on state can be disabled by setting the TACL
configuration option NOCHANGEUSER to -1. To display the value of
NOCHANGEUSER, use #GETCONFIGURATION /NOCHANGEUSER/.

 If the TACL configuration option BLINDLOGON is not set to 0 or if Safeguard is
running and the Safeguard NAMELOGON flag is not set to 0 (for
USER_AUTHENTICATE_ call), the use of the comma is prohibited. The password
must be entered at its own prompt while echoing is disabled. To display the value
of BLINDLOGON, use #GETCONFIGURATION /BLINDLOGON/.

 If the TACL configuration option REMOTECMONREQUIRED is not set to 0, all
operation requiring approval by remote $CMON are denied if that remote $CMON
is unavailable or is running too slowly. To display the value of
REMOTECMONREQUIRED, use #GETCONFIGURATION
/REMOTECMONREQUIRED/.

 The configuration information in effect for a particular user ID depend on the setting
of the REQUESTCMONUSERCONFIG option.

When a TACL process is started, the configuration information consists of default
values. The process is in the no-user-logged-on state.

If a TACL process is in the no-user-logged-on state when a LOGON command is
received and REQUESTCMONUSERCONFIG is OFF, the TACL process sends an
initial request to the CMON process for configuration information and then sends
the LOGON request.

 If the CMON process does not return configuration information, then the TACL
process uses the configuration information it had for the no-user-logged-on
state.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-103

U TILS :TA C L C om m ands and Functions LO G O N C om m and
 If the CMON process does return the configuration information, then the TACL
process uses this information.

If the TACL process is in the no-user-logged-on state when a LOGON command is
received and REQUESTCMONUSERCONFIG is ON, the TACL process sends a
request to the CMON process for configuration information, then sends the
LOGON request, and then sends an additional request for the configuration
information.

 If the CMON process does not return the configuration information, then the
TACL process uses the information it had for the no-user-logged-on state.

 If the CMON process does return the configuration information, then the TACL
process uses this information. The CMON process has had the opportunity to
change the configuration information that it wants associated with the user ID.

If a TACL process is in the user-logged-on-already state when a LOGON command
is received and REQUESTCMONUSERCONFIG is OFF, the TACL process
authenticates the user ID, and then sends the LOGON request.

 The TACL process uses the configuration information it was using for the
previous user ID.

If the TACL process is in the user-logged-on-already state when a LOGON
command is received and REQUESTCMONUSERCONFIG is ON, the TACL
process authenticates the user ID, then sends the LOGON request, and then
sends a request for the configuration information.

 If the CMON process does not return configuration information, the TACL
process uses the configuration information it was using for the previous user
ID.

 If the CMON process does return information, then the TACL process uses this
information. The CMON process has had the opportunity to change the
configuration information that it wants associated with the user ID.

 ABENDONABEND and STOPONABEND: If you logon with both the
STOPONABEND and ABENDONABEND parameters, the last parameter specified
in the list overrides the earlier ones specified.

 In this case, STOPONABEND overrides ABENDONABEND:

12> TACL /NAME/ ;ABENDONABEND, STOPONABEND

The STOPONABEND or ABENDONABEND parameter specified at TACL startup is
the default setting for all TACL logon sessions started from that TACL. You can
override the default setting by specifying a different parameter in the LOGON
command.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-104

U TILS :TA C L C om m ands and Functions LO G O N C om m and
In this case, ABENDONABEND overrides the default setting (STOPONABEND)
just for this logon session:

12> TACL /NAME/ ;STOPONABEND
TACL 1> LOGON SOFTWARE.JANE ;ABENDONABEND
Password:

When TACL abends as result of the ABENDONABEND being specified at TACL
startup or at logon, and a process started by this TACL abends or stops with an
abnormal completion code, this abend message is displayed.

ABEND
ERROR TACL stopped by a process ABEND/STOP - PID:
ABENDED: $MP

The TACL process abend completion code will be returned in the :_COMPLETION
and :_COMPLETION^PROCDEATH variables.

29> OUTVAR :_COMPLETION
_COMPLETION(0)
 MESSAGECODE(0:0
 -6
 PROCESS(0:0) $MP
 HEADERSIZE(0:0) 0
 CPUTIME(0:0) 1854774
 JOBID(0:0) 0
 COMPLETIONCODE(0:0)
 5
 INTERNAL(0)
 TERMINATIONINFO(0:0)
 0
 SUBSYSTEM(0:0)
 TEXTLENGTH(0:0) 0
 TEXT(0:79)

30> OUTVAR :_COMPLETION^PROCDEATH
 _COMPLETION^PROCDEATH(0)
 Z^MSGNUMBER(0:0)
 -101
 Z^PHANDLE(0:0) 512.675.3.152.0.0.574.34458.0.175
 Z^CPUTIME(0:0) 1854774
 Z^JOBID(0:0) 0
 Z^COMPLETION^CODE(0:0)
 5
 Z^TERMINATION^CODE(0:0)
 0
 Z^SUBSYSTEM(0:0)
 Z^KILLER(0:0) 65535.65535.65535.65535.65535...
 Z^TERMTEXT^LEN(0:0)
 0

 Z^PROCNAME(0)
 ZOFFSET(0:0) 82
 ZLEN(0:0) 20
 Z^FLAGS(0:0) 1
 Z^RESERVED(0:2) 1 1 0
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-105

U TILS :TA C L C om m ands and Functions LO G O N C om m and
 Z^DATA(0)
 BYTE(0:111) \PRUNE.$MP:150608489

Examples

1. User SOFTWARE.JANE, whose password is STAR, can log on interactively by
entering:

TACL 1> LOGON SOFTWARE.JANE,STAR

2. Using the blind logon feature, SOFTWARE.JANE can log on in this sequence:

TACL 1> LOGON SOFTWARE.JANE
Password:

At the “Password:” prompt, she enters her password, which does not appear on
the screen. TACL displays a logon message, followed by its prompt, consisting of a
history number, a greater-than symbol, and a space (1>). SOFTWARE.JANE can
now enter her next command.

3. This example shows how to log on as another user and retain all your current
settings. The user MANUF.FRED has logged on and is using the system. Next he
logs on with the user name MANUF.MABEL (he must know her password); this
LOGON command implicitly logs FRED off. He changes the security of one of
Mabel’s files, and then he logs on again with his own ID. The final logon also logs
off MANUF.MABEL:

7> LOGON MANUF.MABEL
Password:
8> FUP SECURE BIG.FILE, "NNNU"
9> LOGON MANUF.FRED
Password:

All of Fred’s logon defaults remain unchanged, as well as any settings he may
have made with ASSIGN, PARAM, and SET commands.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-106

U TILS :TA C L C om m ands and Functions _LO N G E S T Function
_LONGEST Function

 Use the _LONGEST function to obtain the length of the longest element in a list of
elements.

list

is a list of elements separated by spaces, or a variable level containing such a
list.

Result

_LONGEST returns the length of the longest element supplied in its argument.

Example

This example illustrates the use of _LONGEST to determine the length of the longest
item in a variable level:

12> PUSH do
13> SET VARIABLE do GO RUN EXECUTE
14> #OUTPUT [_LONGEST [do]]
7

_LONGEST list
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-107

U TILS :TA C L C om m ands and Functions _M O N TH 3 Function
_MONTH3 Function

Use the _MONTH3 function to obtain the three-letter abbreviation for month num.

num

is a one- or two-digit number indicating a month.

Result

_MONTH3 returns the three-letter abbreviation for the specified month.

Example

This example illustrates the use of _MONTH3 to convert the numeric representation of
a month to a three-letter textual representation:

13> #OUTPUT [_MONTH3 3]
MAR

_MONTH3 num
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-108

U TILS :TA C L C om m ands and Functions O [B E Y] C om m and
O[BEY] Command

Use the OBEY command to execute a series of TACL commands or built-in functions
contained in a file.

command-file

is either the name of an existing disk file that contains TACL commands or built-in
functions, or the name of a running process.

Considerations

 If command-file is the name of an existing file, TACL opens the file in read-only
mode and interprets each logical line in the file as a command or command
sequence to be executed.

 If command-file is the name of an existing process, TACL performs a WRITEREAD
operation, sending the process a prompt of the form “OBEY> ” and waiting for the
process to reply. The response, presumably a command or command sequence
for TACL to execute, can contain as many as 239 characters. TACL continues to
prompt and accept replies until the process sends back an end-of- file character or
terminates.

 The OBEY command:

 Echoes the line

 Interprets the statement, including metacharacters

 TACL does not check the file type or contents before trying to interpret the file. If
the file does not contain TACL commands, the TACL process tries to interpret each
line and returns errors.

 You cannot include TACL directives (such as ?TACL or ?FORMAT) in an OBEY
command file. For example, the OBEY command returns an error when
interpreting a file that starts with a ?TACL MACRO directive.

 You can stop the execution of commands in an OBEY file by pressing the BREAK
key at the terminal where you entered the OBEY command. TACL closes the
OBEY file and prompts you for the next command. (Note, however, that you can
set the #BREAKMODE built-in variable to disable the BREAK key; in this case,
TACL ignores the BREAK key.)

Example

To execute the commands in the file ALLFILES (assuming that ALLFILES is in the
current subvolume), type:

14> OBEY allfiles

O[BEY] command-file
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-109

U TILS :TA C L C om m ands and Functions O U TV A R C om m and
OUTVAR Command

Use the OUTVAR command to display the contents of a variable without executing or
invoking it. The OUTVAR command is an alias for the #OUTPUTV built-in function.

option

is an option that qualifies the write operation. Options are not permitted if variable
is of type STRUCT. Specify option as one of these:

COLUMN num

begins writing data at column num. If text in the buffer already extends beyond
the specified column, TACL outputs the buffer first and starts a new line.

FILL { SPACE | ZERO }

specifies the character (space or zero) that is to fill the unused character
positions to the right if the output is narrower than the number of columns
specified by WIDTH.

HOLD

holds the last line of the variable output in a buffer until one of these events
occurs:

 OUTVAR, #OUTPUT, or #OUTPUTV is executed without the HOLD option

 The output buffer becomes full

 TACL, #DELTA, #INPUT, or #INPUTV prompts for input

 #DELTA exits

JUSTIFY { LEFT | CENTER | RIGHT }

specifies, if the output is less than the number of columns specified by WIDTH,
whether the output is to be left-justified, right-justified, or centered. If the output
is equal to or greater than the WIDTH specification, JUSTIFY is ignored.

WIDTH num

specifies the width of the field into which the output is to be placed. If omitted,
WIDTH defaults to the actual width of the text to be output.

WORDS

specifies that each line is to be treated as a space-separated list and that the
FILL, JUSTIFY, and WIDTH options are to be applied to the individual
members of the list. If this option is omitted, each line is treated as a single
output item.

OUTVAR [/ option [, option] ... /] string
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-110

U TILS :TA C L C om m ands and Functions O U TV A R C om m and
string

is the data to be output. It is the name of an existing variable level, text enclosed in
quotation marks, or a concatenation of such entities. The concatenation operator is
'+' (the apostrophes are required).

Considerations

 If options are supplied, the options are applied to each line of the variable as
though you had called the #OUTPUT built-in with the same options for each line of
the variable. In particular, the last line of a variable is the only one that the HOLD
option really applies to because each line forces output of any previous line.

 OUTVAR with the HOLD option is useful for constructing lines to be output piece
by piece. For example, when you invoke this macro file, called BUNCHUP:

?TACL MACRO
#PUSH part
#SET part All
OUTVAR /HOLD/ part
#SET part together
OUTVAR /HOLD/ part
#SET part now
OUTVAR part

the text all comes out on one line, as follows:

13> BUNCHUP
Alltogethernow

 No options are allowed when a structure or substructure is being displayed.

 OUTVAR structure is not the same as #OUTPUT [structure]. The former displays
the data of the structure in a stylized format, such as:

14> OUTVAR inventory
INVENTORY(0)
 ITEM(0:0) 123
 PRICE(0:0) 1004
 QUANTITY(0:0) 97

while the latter merely displays the data as a space-separated list of its external
representations.

 OUTVAR does not show redefinitions unless the argument itself is one.

 If #OUTFORMAT is set to PRETTY, you can control output spacing by the use of
tilde-underscore (~_) metacharacters in the data to be displayed by OUTVAR.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-111

U TILS :TA C L C om m ands and Functions O U TV A R C om m and
Example

This example illustrates the use of OUTVAR to display the contents of a variable. First,
define a variable name vara:

15> [#DEF vara MACRO |BODY|
15> #OUTPUT [#FILEINFO / EXISTENCE / tempfile]
15>]

At this point, if you type vara, TACL returns 0 (false) as the result of vara if TEMPFILE
does not exist and -1 (true) if it does exist.

16> vara
0

If you now enter the OUTVAR command for the variable vara, you see the actual
contents of vara:

17> OUTVAR vara
#OUTPUT [#FILEINFO / EXISTENCE / tempfile]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-112

U TILS :TA C L C om m ands and Functions P A R A M C om m and
PARAM Command

Use the PARAM command to create a parameter and give it a value or to display all
current parameters and their values.

param-name

is a user-defined parameter name to be assigned a value. param-name can consist
of 1 to 31 alphanumeric, circumflex (^), and/or hyphen (-) characters.

param-value

is the value assigned to param-name.

Considerations

 Entering PARAM with no arguments displays the names and values of all currently
defined parameters.

 Comments and leading and trailing spaces are deleted in param-value.

 TACL stores the values of parameters assigned by the PARAM command and
sends the values to processes that request parameter values when the processes
are started. The interpretation of parameter values is made by the processes that
request them.

 To delete existing parameters, use the CLEAR command.

 All parameters are deleted when you use the LOGOFF command. Parameters and
their values are retained, however, if you enter a LOGON command without
logging off first.

 If you start a new TACL process from your existing TACL process, the new TACL
process does not inherit existing PARAM values.

 When a backup TACL process takes over, TACL clears all PARAMs.

 TACL reserves 1024 bytes of internal storage for parameters and their values. The
number and length of parameters in effect are limited by this storage area.

 From a TACL macro or routine, use #PARAM to display a list of all parameters or
the value of a specified parameter.

 The same set of PARAM attributes can be configured for a generic process
through SCF. For the syntax, see the SCF Reference Manual for the Kernel
Subsystem.

PARAM [param-name param-value
 [, param-name param-value] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-113

U TILS :TA C L C om m ands and Functions P A R A M C om m and
Example

To assign the value ON to the parameter TRACE:

19> PARAM TRACE ON
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-114

U TILS :TA C L C om m ands and Functions P A S S W O R D P rogram
PASSWORD Program

Use the PASSWORD program to create, change, or delete your password. (Passwords
are optional and might not be required on your system.)

run-option

is any of the options described in the RUN[D|V] Command on page 156.

password

is the new password that you must enter when you log on. If you omit password,
your current password is deleted and no password is required to log on with your
user name. A password can include from one to eight characters, except for
spaces, commas, and null characters. Lowercase letters are not converted to
uppercase. Do not end the password with an ampersand (&) character unless you
intend to continue the password on the next line.

Considerations

 PASSWORD entered with no following parameters deletes your current password.
Thereafter, no password is required to log on with your user name.

 A new user who has just been added to the system has no password.

 Although you can use control characters in your password, entering control
characters might cause undesired changes in terminal operation. On some
terminals, certain control characters cannot be used in passwords. Refer to the
user documentation for your terminal for information about the effect of control
characters on terminal operation.

Example

If you are user 8,44, you can give yourself the password “schubert” (all lowercase) by
entering:

14> PASSWORD schubert
THE PASSWORD FOR USER (008,044) HAS BEEN CHANGED.

You must now enter this password whenever you log on.

PASSWORD [/ run-option [, run-option] ... /][password]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-115

U TILS :TA C L C om m ands and Functions P A U S E C om m and
PAUSE Command

You can run more one or more processes simultaneously from within your TACL
process. Use the PAUSE command to cause TACL to wait for prompting from-or
completion of-another process.

\node-name

is the name of the system where the process identified by $process-name or
cpu,pin is running. If you omit \node-name, the current default system is used.

$process-name

is the name of a process for which TACL is to pause. TACL does not prompt for
commands until it receives a process deletion message from that process.

cpu,pin

is the CPU number and process identification number of a process for which TACL
is to pause. TACL does not prompt for commands until it receives a process
deletion message from that process.

Considerations

 PAUSE with no parameters causes TACL to pause for the last process started from
the current TACL, or the process for which TACL last paused, if that process is still
running.

 If the process is interactive, you can exit the process and regain control of your
terminal by pressing the BREAK key.

 When you enter a PAUSE command, the current TACL process stops prompting
for commands, allowing the specified process (or the default process) to gain
control of your terminal if it needs to use it for communication. When the other
process finishes, or is deleted, the operating system sends a process deletion
message to TACL. When TACL regains control of your terminal, it resumes
prompting.

Assume, for example, that another process controls your terminal, and you press
the BREAK key to regain control of the terminal. To return control to that other
process, enter PAUSE. TACL regains control of your terminal after that other
process finishes or is deleted.

 To list the processes that are currently running on your terminal, use the STATUS *,
TERM command. If a process has a name, you can include its cpu,pin in a PPD
command and obtain its $process-name.

 You can use the WAKEUP command to specify the action TACL takes when it
receives a process deletion message.

PAUSE [[\node-name.]{$process-name | cpu,pin }]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-116

U TILS :TA C L C om m ands and Functions P A U S E C om m and
 If WAKEUP is set to ON, TACL regains control of the terminal when any
process started from it is deleted.

 If WAKEUP is set to OFF (the default setting), TACL regains control of the
terminal when the process specified in the PAUSE command is deleted. If no
process was specified in the PAUSE command, TACL regains control of the
terminal when the last process started from it is deleted.

 If you enter PAUSE with no parameters when the most recent process started from
the current TACL has already been deleted, or if you specify a process that the
current TACL did not create, TACL waits forever (no prompt appears on the
screen) unless you press the BREAK key or TACL receives a wake message,
indicating that a process was deleted.

 You can enter the PAUSE command, without any parameters, even when you are
logged off.

Examples

This example illustrates how to use the BREAK key to temporarily leave a process,
such as EDIT, and return control of your terminal to TACL. After checking the status of
the EDIT process, the user returns to the EDIT process and terminates the EDIT
process:

11>EDIT FILE2
TEXT EDITOR - T9601B30 - (08MAR87)
*

(BREAK pressed)

12> STATUS *,TERM
Process Pri PFR %WT Userid Program file Hometerm
5,49 120 R 000 8,230 $SYSTEM.SYS01.TACL $TE0.#A
5,55 119 000 8,230 $SYSTEM.SYSTEM.EDIT $TE0.#A

13> PAUSE
*EXIT

14> !STA
14> STATUS *,TERM
Process Pri PFR %WT Userid Program file Hometerm
5,49 120 R 000 8,230 $SYSTEM.SYS01.TACL $TE0.#A

The asterisk prompt (*) indicates that EDIT has control of the terminal. Pressing the
BREAK key returns control of the terminal to TACL. When you enter PAUSE, the EDIT
prompt reappears.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-117

U TILS :TA C L C om m ands and Functions P M S E A R C H C om m and
PMSEARCH Command

Use the PMSEARCH command to define the list of subvolumes that TACL is to search
to find program and macro files in response to an implied RUN command.

subvol-spec

specifies a subvolume to be searched. subvol-spec takes one of these forms:

[\node-name.][$volume.] subvol

is a syntactically correct name of an existing subvolume. If you omit \node-
name or $volume, the current default system or volume is assumed.

#DEFAULTS

is a TACL keyword that, in this specific context, represents the default volume
and subvolume in use at the time you issue an implied RUN command.

Considerations

 If $SYSTEM.SYSTEM appears in a search list and TACL searches it but fails to
find the desired file, TACL automatically searches the current $SYSTEM.SYSnn
subvolume as well.

 If you do not define a program and macro search list, TACL searches only in
$SYSTEM.SYSTEM and $SYSTEM.SYS nn to find a file specified in an implied RUN
command.

 If TACL finds the desired file but its security does not allow TACL to invoke it, TACL
stops at that point in the search list.

 When you issue an implied RUN command, TACL searches the first subvolume
specified in the search list. If it fails to find the program or macro file there, it
searches the next subvolume, and so on. After it finds the program or macro file,
the search ends. For example:

27> VOLUME $OLD.HOME
28> PMSEARCH $SYSTEM.SYSTEM #DEFAULTS [#DEFAULTS]
29> VOLUME $NEW.PLACE
30> EDIT FRED

#DEFAULTS is a TACL keyword that, in this specific context, represents the default
volume and subvolume. [#DEFAULTS] represents the defaults at the time the
search list is created; #DEFAULTS represents the defaults at the time the search
list is accessed to find a program or macro to run.

That is, [#DEFAULTS] invokes the keyword when the PMSEARCH command is
executed, returning the current default volume and subvolume names and
including them in the search list. #DEFAULTS is simply the keyword itself, which

PMSEARCH subvol-spec [[,] subvol-spec] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-118

U TILS :TA C L C om m ands and Functions P M S E A R C H C om m and
PMSEARCH places in the search list intact; it is invoked later when an implied
RUN command is executed, causing TACL to access the list.

The PMSEARCH command in the preceding example causes the program/macro
search list to contain:

$SYSTEM.SYSTEM #DEFAULTS $OLD.HOME

At that time, #DEFAULTS also represents $OLD.HOME. The next VOLUME
command changes the current default volume and subvolume; #DEFAULTS now
represents $NEW.PLACE. The implied RUN command causes TACL to search
$SYSTEM.SYSTEM, then $NEW.PLACE, and finally $OLD.HOME for the file
EDIT.

 TACL invokes variables in preference to running programs. If, for example, you
issue an implied RUN command using a name that identifies both a variable
containing a TACL routine and a file containing an executable program, TACL
executes the routine instead of the program.

 If you plan to run any system utilities that have duplicate names in other
subvolumes in your list, place $SYSTEM.SYSTEM first in your search list.

 To see the contents of the program and macro search list, use the ENV Command
on page 8-60 or the #PMSEARCHLIST Built-In Variable on page 9-285.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-119

U TILS :TA C L C om m ands and Functions P M S G C om m and
PMSG Command

Use the PMSG (process message) command to control logging of creation and
deletion messages about processes you create with the RUN command.

ON

specifies that whenever a process started by the current TACL process is created
or deleted, a message is sent to the TACL OUT file (usually the home terminal).

OFF

specifies that process creation and deletion messages are not to be displayed.
(OFF is the default setting.)

The form of process creation messages is:

PID: [\node-name.]{$process-name | cpu,pin } file-name

\node-name

is the name of the system where the process (represented by $process-
name or by cpu,pin) is created.

$process-name

is the process name of the newly created process.

cpu,pin

is the CPU number and process number of the new process.

file-name

is the file name of the new process.

The forms of process deletion messages are:

STOPPED: [\node-name.]{$process-name | cpu,pin }

ABENDED: [\node-name.]{$process-name | cpu,pin }

\node-name

is the name of the system in which the process stopped or abnormally ended.

$process-name

is the name of the process that is to be deleted.

cpu,pin

is the CPU number and process number of the process that is to be deleted.

PMSG { ON | OFF }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-120

U TILS :TA C L C om m ands and Functions P M S G C om m and
Each process deletion message is followed by a CPU time-usage message on the next
line. The form of CPU time-usage messages is:

CPU TIME: hh:mm:ss.fff

hh

is the number of hours since the process started.

mm

is the number of minutes past the number of hours since the process started.

ss

is the number of seconds past the number of hours and minutes since the
process started.

ff

is the number of fractions of a second past the number of hours, minutes, and
seconds since the process started.

Considerations

 TACL always displays an ABENDED message, even if PMSG is set to OFF.

 To determine the setting of PMSG, check the #PMSG built-in variable.

Example

This example shows the type of information you receive when you enter the PMSG ON
command:

21> PMSG ON
22> EDIT
PID: 08,62
TEXT EDITOR - ...
*

*exit
STOPPED: 08,62
CPU TIME 0:00:00.019

The command at history number 21 turns on process messages. The command at
number 22 starts an EDIT process; TACL displays the cpu,pin of the process as EDIT
signs on. When you exit from the EDIT process, TACL displays a process-deletion
message.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-121

U TILS :TA C L C om m ands and Functions P O P C om m and
POP Command

Use the POP command to delete the top-level definition of a variable. The POP
command is an alias for the #POP built-in function.

variable

is the name of an existing variable or the name of a built-in variable.

Considerations

 If the top level is the only level, the POP command deletes the variable, except for
built-in variables. Trying to pop a variable that has not been pushed produces an
“Expecting an existing variable” message. Trying to pop the last level of a built-in
variable produces a “wasn’t pushed” message.

 When TACL encounters an #UNFRAME, it performs an implicit POP for every
PUSH (or #PUSH) that was done since the most recent #FRAME was issued.

 TACL performs an implicit #POP #IN when #INPUT /UNTIL EOF/ or #INPUTV
/UNTIL EOF/ is used.

 If TACL encounters an error, it performs an implicit #POP #OUT.

 Do not try to pop the root directory (:). If you try this, TACL returns:

ERROR Cannot push or pop the root segment's root.

 In addition, to avoid losing standard functionality from your TACL environment, do
not pop the directories supplied as part of a software RVU (such as UTILS).

POP variable [[,] variable] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-122

U TILS :TA C L C om m ands and Functions P O S TD U M P U tility
POSTDUMP Utility

The POSTDUMP utility enables explicit postdump processing of an existing full dump
file to produce an extracted dump file. It is provided for processing an existing full
dump produced by either the TNet dump method or the PARALLEL dump method. You
can use the FULL option of RCVDUMP to do a full dump, reload the halted processor,
and then explicitly run the POSTDUMP utility to create an extracted dump so that the
processor can be reloaded slightly sooner by skipping the implicit postdump
processing step.

The POSTDUMP utility does not need to be licensed because it is allowed to run under
any user ID.

<in file>

 is the name of an existing dump file used for input.

<options>

The format of options is:

OUT <out file>, [+]PIN { ALL | <pin list> },
 ALL_PAGES, [-]DP2_CACHE, [-]DP2_SHARED,
 [-]IMPLICIT_DLLS, [-]LOCKED, [-]OTHER,
 [-]SYS_LIBRARY, [-]SYS_PROCESS, [-]SYSTEM

OUT <out file>

specifies the name of the extracted dump file to be created. The default
value is <in file> name suffixed with 'P', removing the third character, if
necessary, to fit the resulting name within eight characters.

[+]PIN { ALL | <pin list> }

specifies the sponsor pin(s) for which all (except free) pages are to be
included in the extracted dump. Default is processes related to the
processor halt.

 + indicates that the specified pins are additional.

 ALL indicates all (valid) pins.

 <pin list> is a decimal number or is one or more decimal numbers,
comma or space separated within parentheses.

ALL_PAGES

includes all (except free) pages for all (valid) pins.

POSTDUMP <in file> [< options >]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-123

U TILS :TA C L C om m ands and Functions P O S TD U M P U tility
 [-]DP2_CACHE

Exclude | Include DP2 cache pages.

[-]DP2_SHARED

Exclude | Include DP2 shared segment pages.

[-]IMPLICIT_DLLS

Exclude | Include implicit DLL pages.

[-]LOCKED

Exclude | Include locked pages.

[-]OTHER

Exclude | Include possibly unclassified pages.

[-]SYS_LIBRARY

Exclude | Include system/public library pages.

[-]SYS_PROCESS

Exclude | Include sysgenned process pages.

[-]SYSTEM

Exclude | Include KSEG0/VKSEG64 pages.

Considerations

 HP recommends not specifying any of the POSTDUMP options other than OUT (to
specifically name the output file) because the default page selection algorithm is
the same as that used with the implicit postdump processing by RCVDUMP and is
typically the best option.

 The POSTDUMP utility is provided to process an existing full dump produced by
RCVDUMP using either the TNet dump method or the PARALLEL dump method. It
will also accept as input an existing extracted dump or an existing full dump
produced by the ONLINE dump method.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-124

U TILS :TA C L C om m ands and Functions P O S TD U M P U tility
Examples

To process a full dump file CPU01 and create an extracted dump CPU01P, run the
following command:

10> POSTDUMP CPU01

Note. Whether installed by default or explicitly installed, the POSTDUMP utility can be used to
produce an extracted dump from a full dump of any NS-series processor that was running the
H06.13 RVU or later, or from a full dump of any HP Integrity NonStop™ BladeSystems (which
runs a J-series RVU).

The POSTDUMP utility can be run on such a system that was running the H06.13 RVU or later
to process a full dump file from any other NS-series processor or a full dump file from any
NonStop BladeSystems. The POSTDUMP utility does not rely on any of the other files
(RCVDUMP, ONLINDMP, ZDMPDLL).
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-125

U TILS :TA C L C om m ands and Functions P P D C om m and
PPD Command

Use the PPD (process-pair directory) command to display the names, cpu,pin
designations, and ancestors of one or more processes in the destination control table
(DCT). The PPD command is an alias for the #XPPD built-in function.

OUT list-file

specifies a device, or a sequential file accessible to the sequential I/O (SIO) facility,
that is to receive the output from PPD. If you omit this option, TACL writes the
listing to its current OUT file.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process identification number of the process.

*

displays information about all processes, including I/O processes. (This applies to
D-series or later systems only.)

Considerations

 If you do not specify a process ($process-name or cpu,pin), PPD lists all the
current entries in the process-pair directory of the specified system. If you omit the
node name, the default system is assumed.

 If you specify more than one process, PPD lists information for each process.

 The PPD command displays information as shown:

Name Primary Backup Ancestor
pname pcpu bcpu aid

pname pcpu bcpu aid

PPD [/ OUT list-file /]
 [[\node-name] [.{ $process-name | cpu,pin | * }] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-126

U TILS :TA C L C om m ands and Functions P P D C om m and
pname

is the name of the process. The name $Z000 identifies the initial process that
was started when the system was cold loaded from disk.

pcpu

is the CPU number and process number of the primary process in a process
pair, or of the specified process only if it is not a member of a pair.

bcpu

is the CPU number and process number of the backup process in a process
pair. If backup is not displayed, the process has no backup.

aid

is the identity of the ancestor process; that is, the process that created the
process listed under “Name.” If the ancestor is a named process, this field lists
its name; otherwise, this field contains a CPU number and process number. If
the ancestor process node is different from the specified or default node, then
TACL displays the node name. The initial process that was started when the
system was cold loaded from disk has no entry in this field.

There can be three states of an ancestor: AVAILABLE, UNAVAILABLE, and
DEFUNCT.

 An ancestor process is called as DEFUNCT if it is present in the ancestor
phandle. But currently it does not exist.

 When we run a process from one system to another, the ancestor of the
process becomes UNAVAILABLE if they are disconnected manually.

 An ancestor is known to be AVAILABLE if it’s in a runnable condition.

If you include \ node-name in your PPD command, the name of the system is
displayed at the beginning of the command listing.

 The DCT lists only named processes. To name a process that you start with a RUN
command, include the NAME parameter in your command. (For more information
about starting and naming processes, see the description of the RUN[D|V]
Command on page 8-156.)

 The DCT lists named processes that do not have backups as well as named
process pairs.

Examples

You can get a listing of all entries in the DCT and send it to the file PROCESS.PAIR by
entering:

14> PPD / OUT PROCESS.PAIR /
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-127

U TILS :TA C L C om m ands and Functions P P D C om m and
To view the entry in the DCT for the process $WOW, enter:

15> PPD $WOW
Name Primary Backup Ancestor
$WOW 04,054 05,009 $Z000
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-128

U TILS :TA C L C om m ands and Functions P U R G E C om m and
PURGE Command

Use the PURGE command to delete one or more disk files.

option

qualifies the purge operation. Specify option as one of these:

CONFIRM

specifies that TACL is to prompt for confirmation for each file, specified by
name or by matching a template, before purging the file.

NOCONFIRM

specifies that TACL is to purge the file without requesting confirmation. This
option is provided primarily for programmatic applications that do not need
confirmation of the purge operation.

file-name-template

is a file name or partial file name with wild-card characters. For more information
about file-name templates, see Section 2, Lexical Elements.

Considerations

These considerations apply to the PURGE command:

 When you use the PURGE command to delete a disk file, the entry for the file is
deleted from the file directory in the volume where it resides, and any space
previously allocated to that file is made available to other files. Data in the file is not
physically deleted from the disk unless you specified the FUP CLEARONPURGE
option when you created the file. Files that are physically deleted are overwritten
with zeros. For information about the CLEARONPURGE option, see the File Utility
Program (FUP) Reference Manual.

 You can purge a file only if it is not currently open; in addition, you must have purge
access to the file. See the description of the DEFAULT Program on page 8-53 for
information about file-access restrictions.

 If you try to use the PURGE command to delete a file that is being audited by the
TMF subsystem the attempt fails if there are pending transaction-mode records or
file locks; file-system error 12 (file in use) is returned. The purge is successful,
however, if the audited file is inactive.

These considerations apply to the use of the CONFIRM and NOCONFIRM options:

 If you specify a file name with no wild-card characters and do not include
CONFIRM or NOCONFIRM, TACL does not display a confirm prompt.

PURGE [/ option /]
 file-name-template [, file-name-template ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-129

U TILS :TA C L C om m ands and Functions P U R G E C om m and
 If you specify a file-name template with wild-card characters and do not include
CONFIRM or NOCONFIRM, TACL confirms only the template (not individual file
names) before purging all files that match the template.

 CONFIRM and NOCONFIRM are mutually exclusive.

Examples

If you have purge access to the files OCT and NOV (in your current default system,
volume, and subvolume) and to the file $RECORDS.DUE.PAST, you can purge all of
them by entering:

14> PURGE OCT, NOV, $RECORDS.DUE.PAST
$DATA.LNP.OCT Purged
$DATA.LNP.NOV Purged
$RECORDS.DUE.PAST Purged
15>

This command requests confirmation of the PURGE operation:

15> PURGE /CONFIRM/ abc
PURGE $VOL1.SV.ABC (Y/[N])?

If you respond with Y, TACL purges the file. Any other response is treated as N.

This command confirms the file-name template before purging matching files:

16> PURGE abc*

PURGE $VOL1.SV.ABC* (y/[n])?

This command confirms each file that matches a file-name template before purging
matching files:

17> PURGE /CONFIRM/ abc*
PURGE $VOL1.SV.ABC1 (y/[n])? y
$VOL1.SV.ABC2 Purged
PURGE $VOL1.SV.ABC2 (y/[n])? n
18>

This macro alters PURGE confirmation behavior so that TACL confirms purge
operations:

?SECTION purgec MACRO
PURGE /CONFIRM/ %*%

This macro alters PURGE confirmation behavior so that TACL does not confirm purge
operations:

?SECTION purgen MACRO
PURGE /NOCONFIRM/ %*%

To use either of the preceding macros, load the associated file and type PURGEC or
PURGEN, respectively.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-130

U TILS :TA C L C om m ands and Functions P U S H C om m and
PUSH Command

Use the PUSH command to create a new top level for one or more variables or built-in
variables. The PUSH command is an alias for the #PUSH built-in function.

variable

is a valid variable or a built-in variable name.

Considerations

 For existing variables that are not built-in variables, PUSH creates an empty top
level of type TEXT.

 For built-in variables, PUSH creates a new top-level definition, copying the old top
level to the new one (top-level and second-level definitions are now the same).

 If the variable does not exist, PUSH registers the name of the variable, but does
not allocate space until you use SET VARIABLE or a similar command or built-in
function to actually place data into the variable. As a result, you must perform a
SET VARIABLE or related operation prior to using the variable in an #IF call or
other command or function that tests the value of the variable.

 The default type for variables is TEXT. To change this type, use the SET
VARIABLE command.

 Do not try to PUSH the root directory (:). If you try this, TACL returns “*ERROR*
Cannot push or pop the root segment's root.” In addition, to avoid
losing standard functionality from your TACL environment, do not PUSH the
directories supplied as part of a software RVU (such as UTILS).

PUSH variable [[,] variable] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-131

U TILS :TA C L C om m ands and Functions R C V D U M P P rogram (S uper-G roup o r S uper ID
O nly)
RCVDUMP Program (Super-Group or Super ID Only)

Use the RCVDUMP program to dump the memory of a processor to a disk file. The
processor being dumped can be running or halted. The processor from which the
RCVDUMP program is run must have X or Y fabric (G-series and H-series RVUs) or X
bus or Y bus (D-series RVUs) access to the processor being dumped.

For G-series and H-series RVUs, you must have the super ID (255,255) to issue this
command. For D-series RVUs, you must have a super-group user ID (255,user-id-
number).

Beginning with the H06.07 RVU in H-series releases and with all J-series RVUs,
RCVDUMP and ONLINDMP (which is run by RCVDUMP to do an ONLINE dump or a
PARALLEL dump) terminate immediately, if run under other than a super-group user
ID. As normally installed, RCVDUMP can only be run under the super ID (255,255). If
on a particular system you want to allow RCVDUMP to be run under any super-group
user ID (255, user-id-number), you can use FUP to license the RCVDUMP and
ONLINDMP files located in the relevant $SYSTEM.SYSnn subvolume.

When a processor is dumped to disk, the RCVDUMP utility copies the dump in a
compressed format from the specified processor to a disk file.

Pressing the BREAK key while the RCVDUMP program is running causes RCVDUMP
to abend or stop, and leaves the memory dump unfinished. If this happens, you must
purge the dump file and restart the RCVDUMP program

The hardware architecture of H-series systems requires a change of terminology.
H-series uses logical processors that consist of one to three physical processors
known as processor elements (PEs). The logical processor is what used to be called
the CPU. For availability issues, the processor elements are all located on different
circuit boards. These boards are known as blades (or slices) and are identified by the
letters A, B, or C. With this particular command you may be concerned with dumping
one or more PEs from one or more slices. The PARALLEL method is a time-saving way
to dump the memory of a single PE.

Extracted Memory Dump

The RCVDUMP utility enables dumping of a subset of the full memory in an extracted
dump file that should almost always be sufficient to analyze the processor halt. An
extracted dump file may or may not be created in addition to or instead of a full dump
file. An extracted dump file can be transferred to the Global Mission Critical Solution
Center (GMCSC) or Development in a shorter time than it would take to transfer a full
dump file. When a full dump file is not created, overall dumping elapsed time and
overall disk space used are also reduced. If it is determined that a useful extracted
dump file cannot be created, no error is reported and only a full dump file is created
instead.

The RCVDUMP HELP output summarizes when a full dump file or an extracted dump
file or both are created.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-132

U TILS :TA C L C om m ands and Functions R C V D U M P P rogram (S uper-G roup o r S uper ID
O nly)
If on a non-NSAA system, the halted processor to be dumped is running at minimum
the version of Halted State Services included in either the H06.17 RVU on H-series or
the J06.06 RVU on J-series, RCVDUMP by default creates an extracted dump file only,
without first creating a full dump file.

If a full memory dump is to be created, it is created first, followed by implicit postdump
processing of the full dump file to produce a smaller extracted dump file. Although this
additional processing step increases the overall dumping elapsed time and increases
the overall disk space used for the dump files, the benefit is in transferring only the
smaller extracted dump file to GMCSC. The full dump file remains available in case it
needs to be transferred later if information not included in the extracted dump turns out
to be required for the halt analysis.

After performing a TNet dump (full dump), the implicit postdump processing is
executed, by default, when RCVDUMP runs either on an NSAA or non-NSAA system.
On an NSAA system, implicit postdump processing is executed, by default, following a
PARALLEL dump. Implicit postdump processing is not executed following an ONLINE
dump, because the full dump may not provide a complete and consistent set of
information required to select a subset for an extracted dump.

RCVDUMP supports a new option, FULL, that suppresses creation of an extracted
dump file and results in creation of only a full dump file. If only an extracted dump file is
created and the extracted dump information turns out to be insufficient to analyze the
processor halt, it may be necessary to reproduce the halt and use the FULL option of
RCVDUMP to create a full dump file to be used for the analysis.

The files (RCVDUMP, ONLINDMP, POSTDUMP, ZDMPDLL) related to the NonStop
operating system Utilities product, from the H06.14 RVU, can be also be installed to
provide implicit and explicit postdump processing functionality on an HP Integrity
NonStop (NS-series) system running the H06.13 RVU, which does not already have
this functionality by default.

Neither implicit nor explicit postdump processing is supported for a dump of an NS-
series processor that was running a release earlier than the H06.13 RVU, because
insufficient information is available in the full dump to appropriately select a subset for
an extracted dump. For this reason, it is not useful to install the new files on a system
running any release earlier than the H06.13 RVU.

Note. When both full and extracted dump files are created, the full dump file name is changed
to end with an 'F'.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-133

U TILS :TA C L C om m ands and Functions R C V D U M P P rogram (S uper-G roup o r S uper ID
O nly)

H-Series Syntax

filename

is the name of the disk file to which the dump is to be written.

cpuNum

is the number of the logical processor from which a processor element is to be
dumped. Specify cpuNum as an integer in the range from 0 through 15.

SLICE <sliceId>

is the identification of the slice from which the processor element is to be dumped.
Valid values are A or B or C or ALL. The default is ALL. Note that ALL may not
be used with the parallel method of dumping.

START n...

is the byte address where the dump will start. The default value is 0.

END n...

is the byte address where the dump will stop. Using a value of -1 is the same as
specifying the end of memory. The default value is -1.

ONLINE

If this option is specified, the dump of a processor can be taken while it is running
and only a full dump file (excluding free memory) is created. You may use either
PARALLEL or ONLINE but not both.

PARALLEL

If this option is specified, the dump of a single processor element can be taken
while the other PEs in that logical processor are reloaded and continue normal

Caution. This command should be used only as part of a documented processor dumping and
recovery procedure. See the sections Processors: Monitoring and Recovery and Starting and
Stopping the System in the NonStop S-Series Operations Guide or the Integrity NonStop NS-
Series Operations Guide.

If a memory dump is requested as part of a recovery procedure, for processors with more than
2 gigabytes of memory, use the HP Tandem Failure Data System (TFDS) memory dump facility
to ensure that the dump occurs in a timely fashion. Otherwise, use either RCVDUMP or the
TFDS facility. TFDS must be configured on the system before the halt occurs.

RCVDUMP <filename>, cpuNum [, SLICE <sliceId>]
[, START <startAddress>][, END <endAddress>]
[, [ONLINE | PARALLEL] [, FULL]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-134

U TILS :TA C L C om m ands and Functions R C V D U M P P rogram (S uper-G roup o r S uper ID
O nly)
operations. By default, both the full dump and extracted dump files are created.
You may use either PARALLEL or ONLINE but not both.

FULL

Specifies that only a full dump is to be created and not an extracted dump.

G-Series Syntax

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

dump-file

is the name of the disk file to which the dump is to be written.

cpu

is the number of the processor that is to be dumped. Specify cpu as an integer in
the range from 0 through 15.

fabric

specifies the ServerNet fabric to be used for the dump operation. The default fabric
is the X fabric. Possible values are:

X = X fabric

Y = Y fabric

param

is one or more of these parameters:

Note. When neither ONLINE nor PARALLEL is specified:

 On an NSAA system, a full dump file is always created. An extracted dump
file is created, by default.

 On a non-NSAA system, a full dump file is not created if the processor to be
dumped is running a version of Halted State Services that supports direct
creation of an extracted dump without a full dump. Otherwise, a full dump file
is created. An extracted dump file is created, by default.

Note. This option is supported only on systems running J06.03 and later J-series RVUs
and H06.14 and later H-series RVUs.

RCVDUMP [/ run-option [, run-option] ... /]
 dump-file , cpu , [fabric, param [, param]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-135

U TILS :TA C L C om m ands and Functions R C V D U M P P rogram (S uper-G roup o r S uper ID
O nly)
START n...

is the byte address where the dump will start. The default value is 0.

END n...

is the byte address where the dump will stop. Using a value of -1 is the same
as specifying the end of memory. The default value is -1.

ONLINE

If this option is specified, a dump can be taken of a processor while it is
running. Only memory pages are included in this type of dump. No registers,
translation lookaside buffers (TLB) or caches are dumped. All other parameters
are ignored, including fabric.

RESET

If this option is specified, a soft reset is issued to the processor being dumped.
This option is necessary if the processor has experienced a hardware error
freeze instead of a halt.

D-Series Syntax

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

dump-file

is the name of the disk file to which the dump is to be written.

cpu

is the number of the processor that is to be dumped. Specify cpu as an integer in
the range from 0 to 15, inclusive. This processor must be primed for a memory bus
dump before you attempt the dump.

bus

specifies the bus to be used for the dump. The default bus is the X bus. Possible
values are:

0 = X bus

Note. The PRIME and NOPRIME parameters do not have any effect on how the
RCVDUMP command operates. They are therefore no longer described in the RCVDUMP
command description.

RCVDUMP [/ run-option [, run-option] ... /]
 dump-file , cpu , [bus, param [, param]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-136

U TILS :TA C L C om m ands and Functions R C V D U M P P rogram (S uper-G roup o r S uper ID
O nly)
1 = Y bus

param

is either one of these parameters:

FULL

specifies that the entire physical memory is to be dumped. FULL is the default
for a processor if the size of physical memory is less than or equal to sixteen
megabytes. This option is ignored if the processor is not a VLX.

PARTIAL

specifies that only those pages of physical memory that are mapped in the
page table cache are to be dumped. PARTIAL is the default for a processor
with more than sixteen megabytes of physical memory. This option is ignored if
the processor is not a VLX.

Considerations

 If the file dump-file does not already exist, a file with that name is created.

D-series: If dump-file exists, it must be empty (its end-of-file pointer must be set
to zero). If dump-file is not empty, RCVDUMP aborts. Also, if the empty dump-
file exists, but its primary and secondary extent sizes are too small to contain
the entire dump, the file is purged, and a new dump-file with extent sizes of
sufficient size is created.

H-series or G-series: If the file already exists RCVDUMP prompts the user to
specify whether it can overwrite the file. If the answer is ' no', RCVDUMP aborts.
Otherwise it overwrites the existing file and continues.

 Any dump file created with G06.16 RVU or later has a file code of 145. Any dump
file created with an earlier RVU has a file code of 144. Any dump file created with
any J-series RVU or any H-series RVU has a file code of 148.

 In H-series, if the system is not a duplex or triplex configuration, or if the ONLINE
or PARALLEL method is not specified, the default method is to use the TNet dump
method in conjunction with Halted State Services running in the halted processor to
be dumped. For more information on Halted State Services, contact your local HP
service provider.

Note. The PRIME and NOPRIME parameters do not have any effect on how the
RCVDUMP command operates. They are therefore no longer described in the RCVDUMP
command description.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-137

U TILS :TA C L C om m ands and Functions R C V D U M P P rogram (S uper-G roup o r S uper ID
O nly)
Example

For G-series RVUs, if you have the super-group user ID, you can initiate a dump from
processor 6 of your system over the X fabric and send the dump to file
$SYSTEM.DUMP.DUMP1 by entering:

14> RCVDUMP $SYSTEM.DUMP.DUMP1 , 6 , X
CPU 06 HAS BEEN DUMPED TO $SYSTEM.DUMP.DUMP1.

For H-series RVUs, if you have the super-group user ID, you can initiate a dump from
the processor element on slice A that belongs to logical processor 3, while the other
processor elements of logical processor 3 continue normal operations:

10> RCVDUMP $SYSTEM.DUMP.DUMP1 , 3 , SLICE A , PARALLEL
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-138

U TILS :TA C L C om m ands and Functions R E C E IV E D U M P C om m and (S uper-G roup O n ly)
RECEIVEDUMP Command (Super-Group Only)

Use the RECEIVEDUMP command to dump the memory of a processor to a disk file.
The processor being dumped can be running or halted. This command executes the
RCVDUMP program. The processor from which the RECEIVEDUMP command is run
must have X or Y fabric (G-series RVUs) or X bus or Y bus (D-series RVUs) access to
the processor being dumped.

This command is not supported in H-series systems, use RCVDUMP instead.

For G-series RVUs, you must have the super ID (255,255) to issue this command.
For D-series RVUs, you must have a super-group user ID (255,user-id-number).

When a processor is dumped to disk, the RCVDUMP utility copies the dump in a
compressed format from the specified processor to a disk file.

Pressing the BREAK key while the RECEIVEDUMP command is running causes
RCVDUMP to abend or stop, and leaves the memory dump unfinished. If this happens,
you must purge the dump file and restart the RECEIVEDUMP command.

G-Series Syntax

dump-file

is the name of the disk file to which the dump is to be written.

cpu

is the number of the processor that is to be dumped. Specify cpu as an integer in
the range from 0 through 15.

fabric

specifies the ServerNet fabric to be used for the dump operation. The default fabric
is the X fabric. Possible values are:

0 = X fabric

1 = Y fabric

Caution. This command should be used only as part of a documented processor dumping and
recovery procedure. Refer to the sections Processors: Monitoring and Recovery and Starting
and Stopping the System in the NonStop S-Series Operations Guide.

If a memory dump is requested as part of a recovery procedure, for processors with more than
2 gigabytes of memory, use the TFDS memory dump facility to ensure that the dump occurs in
a timely fashion. Otherwise, use either RCVDUMP or the TFDS facility. TFDS must be
configured on the system before the halt occurs.

RECEIVEDUMP / OUT dump-file / cpu , fabric
 [, param [, param]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-139

U TILS :TA C L C om m ands and Functions R E C E IV E D U M P C om m and (S uper-G roup O n ly)
param

is one or both of these parameters:

ONLINE

If this option is specified, a dump can be taken of a processor while it is
running. Only memory pages are included in this type of dump. No registers,
translation lookaside buffers (TLB) or caches are dumped. All other parameters
are ignored, including fabric.

RESET

If this option is specified, a soft reset is issued to the processor being dumped.
This option is necessary if the processor has experienced a hardware error
freeze instead of a halt.

D-Series Syntax

dump-file

is the name of the disk file to which the dump is to be written.

cpu

is the number of the processor that is to be dumped. Specify cpu as an integer in
the range from 0 to 15, inclusive. This processor must be primed for a memory bus
dump before you attempt the dump.

bus

specifies the bus to be used for the dump. The default bus is the X bus. Possible
values are:

0 = X bus

1 = Y bus

Note. The PRIME and NOPRIME parameters do not have any effect on how the
RCVDUMP command operates. They are therefore no longer described in the RCVDUMP
command description.

RECEIVEDUMP / OUT dump-file / cpu , bus
 [, param [, param]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-140

U TILS :TA C L C om m ands and Functions R E C E IV E D U M P C om m and (S uper-G roup O n ly)
param

is either one of these parameters:

FULL

specifies that the entire physical memory is to be dumped. FULL is the default
for a processor if the size of physical memory is less than or equal to sixteen
megabytes. This option is ignored if the processor is not a VLX.

PARTIAL

specifies that only those pages of physical memory that are mapped in the
page table cache are to be dumped. PARTIAL is the default for a processor
with more than sixteen megabytes of physical memory. This option is ignored if
the processor is not a VLX.

Considerations

 If the file dump-file does not exist when you enter the RECEIVEDUMP
command, a new file named dump-file is created.

D-series: If dump-file exists, it must be empty; that is, its end-of-file (EOF)
pointer must be set to zero. If dump-file is not empty, it is not overwritten:
RECEIVEDUMP returns an error message. Also, if the empty dump-file exists,
but its primary and secondary extent sizes are too small to contain the entire dump,
the file is purged and a new dump-file with extent sizes of sufficient size is
created.

G-Series: If the file already exists RCVDUMP prompts the user to specify whether
it can overwrite the file. If the answer is ' no', RCVDUMP aborts. Otherwise it
overwrites the existing file and continues.

 Any dump file created with RVU G06.16 or later has a file code of 145. Any dump
file created with an earlier RVU has a file code of 144.

Example

For G-series RVUs, if you have a super-group user ID, you can initiate a dump from
processor 4 of your system over the Y fabric and send the dump to file
$SYSTEM.DUMP.DUMP2 by entering:

74> RECEIVEDUMP /OUT $SYSTEM.DUMP.DUMP2/ 4,1
CPU 04 HAS BEEN DUMPED TO $SYSTEM.DUMP.DUMP2.

Note. The PRIME and NOPRIME parameters do not have any effect on how the
RCVDUMP command operates. They are therefore no longer described in the RCVDUMP
command description.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-141

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
RELOAD Program (Super-Group Only)

Run the RELOAD program to reload the remaining processors after the first processor
in a system has been brought up, or to recover a processor that has failed. You must
use a super-group user ID (255,your-id) to issue this command.

This command should be used only as part of a documented system startup or
processor recovery procedure. Refer to the sections Processors: Monitoring and
Recovery and Starting and Stopping the System in the NonStop NS-Series Operations
Guide or NonStop S-Series Operations Guide for further details.

The hardware architecture of H-series systems requires a change of terminology.
There are now logical processors that consist of one to three physical processors
known as processor elements (PEs). The logical processor is what used to be called
the CPU. For availability issues, the processor elements are all located on different
circuit boards. These boards are known as blades (or slices) and are identified by the
letters A, B, or C.

The H-series RELOAD program allows you to omit a selected slice from the reload.
This will prevent the selected PE on that slice from reloading. Other PEs on that slice
belong to other logical processors and therefore remain unaffected by these
operations.

You may then perform a parallel dump of that PEs memory while continuing to perform
normal operations on the other newly-reloaded PEs within that logical processor. The
parallel method is a time-saving way to dump the memory of a single PE. See the
RCVDUMP Program (Super-Group or Super ID Only) on page 8-132 for further details.

Note that in the following H-series syntax all references to processor are references to
the logical processor or CPU, except where the term processor element or PE is
explicitly used.

H-Series Syntax

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

cpu-set

is a set of processors (and associated options) to be reloaded. Specify cpu-set
as:

RELOAD [/ run-option [, run-option] ... /]
 cpu-set [; cpu-set] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-142

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
{ cpu-range } [, option, option, ...]
{ (cpu-range, cpu-range, ...) }
{ * }

cpu-range

is one of these:

cpu
cpu-cpu

cpu

is the processor number, an integer from 0 through 15.

cpu-cpu

is two processor numbers separated by a hyphen, specifying a range of
processors. In a range specification, the first processor number must be
less than the second.

option

is one of these:

NOSWITCH
[PRIME|NOPRIME]
<fabric>
OMITSLICE [A|B|C]
<$volume [.sysnn.osdir]>

NOSWITCH

specifies that, when a processor is reloaded, there is no default autoswitch
of controller ownership to the configured primary processor.

[PRIME|NOPRIME]

Sets up the logical processor for the reload operation.

NOPRIME is the default.

fabric

specifies whether the X fabric or Y fabric is used for the transfer of the
operating system image to the processor during the RELOAD operation.

0 = X fabric
1 = Y fabric

The default option is the X fabric.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-143

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
OMITSLICE [A|B|C]

The PE on the selected slice will not be reloaded when other PEs in that
logical processor are reloaded. If you do not provide an argument (A or B
or C) the system will choose a slice to omit.

<$volume [.sysnn.osdir]>

specifies a volume other than $SYSTEM where the operating system
image (sysnn.osdir) to be used for reloading the processor is located.

This specification could take the form of $volume or
$volume.sysnn.osdir or sysnn.osdir or osdir depending on your
requirements.

*

specifies that all failed processors should be reloaded.

A help screen is displayed if you enter RELOAD with no parameters and no IN file-
name.

G-Series Syntax

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

cpu-set

is a set of processors (and associated options) to be reloaded. Specify cpu-set
as:

{ cpu-range } [, option, option, ...]
{ (cpu-range, cpu-range, ...) }
{ * }

cpu-range

is one of these:

cpu
cpu-cpu

cpu

is the processor number, an integer from 0 through 15.

RELOAD [/ run-option [, run-option] ... /]
 cpu-set [; cpu-set] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-144

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
cpu-cpu

is two processor numbers separated by a hyphen, specifying a range of
processors. In a range specification, the first processor number must be
less than the second.

option

is one of these:

NOSWITCH
[PRIME|NOPRIME]
<fabric>
<$volume [.sysnn.osimage]>

NOSWITCH

specifies that, when a processor is reloaded, there is no default autoswitch
of controller ownership to the configured primary processor.

[PRIME|NOPRIME]

Sets up the logical processor for the reload operation.

NOPRIME is the default.

fabric

specifies whether the X fabric or Y fabric is used for the transfer of the
operating system image to the processor during the RELOAD operation.

0 = X fabric
1 = Y fabric

The default option is the X fabric.

<$volume [.sysnn.osimage]>

specifies a volume other than $SYSTEM where the operating system
image (SYSnn.OSIMAGE) to be used for reloading the processor is
located.

This specification could take the form of $volume or
$volume.sysnn.osimage or sysnn.osimage or osimage depending
on your requirements.

 If a subvolume is not specified, the default subvolume in effect at the time
the RELOAD command is issued is used.

*

specifies that all failed processors should be reloaded.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-145

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
A help screen is displayed if you enter RELOAD with no parameters and no IN file-
name.

D-Series Syntax

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

cpu-set

is a set of processors (and associated options) to be reloaded. Specify cpu-set
as:

{ cpu-range } [, option, option, ...]
{ (cpu-range, cpu-range, ...) }
{ * }

cpu-range

is one of these:

cpu
cpu-cpu

cpu

the processor number, an integer from 0 through 15.

cpu-cpu

two processor numbers separated by a hyphen, specifying a range of
processors. In a range specification, the first processor number must be
less than the second.

option

is one of these:

RELOAD [/ run-option [, run-option] ... /]
 cpu-set [; cpu-set] ...
 [HELP]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-146

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
NOSWITCH
bus
$volume
subvolume.filename

NOSWITCH

specifies that, when a VLX, CLX, CYCLONE or NSR-L processor is
reloaded, there is no default autoswitch of controller ownership to the
configured primary processor.

bus

specifies whether the X bus or the Y bus is used for the transfer of the
operating-system image to the processor during the RELOAD operation.

0 = X bus
1 = Y bus

The default option is the X bus.

$volume

specifies a volume other than $SYSTEM where the operating system
image (SYSnn.OSIMAGE) to be used for reloading the processor is
located.

subvolume.filename

specifies a subvolume and file where the operating system image to be
used for reloading the processor is located. If subvolume is not specified,
the default subvolume in effect at the time the RELOAD command is
issued is used.

*

specifies that all failed processors should be reloaded.

HELP

displays a help screen summarizing the RELOAD command syntax and giving an
example of RELOAD. The help screen is also displayed if you enter RELOAD with
no parameters and no IN file-name.

Considerations

 To use the RELOAD command, you must have a group ID of 255.

Note. The PRIME and NOPRIME parameters do not have any effect on how the
RCVDUMP command operates. They are, therefore, no longer described in the
RCVDUMP command description.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-147

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
 If your command repeats a processor number, RELOAD displays:

CPU n already specified

where n is the processor number you specified more than once in the RELOAD
command.

 The alternate operating-system image file (in H-series, the OS FileSet) option:

 Provides additional fault tolerance if the current file is unavailable.

 Distributes paging activity.

The alternate operating-system image file (in H-series, the OS FileSet) you use
must be an exact duplicate of the file being used by the processor from which the
RELOAD command is issued. All processors must be loaded with identical
operating-system images. The alternate operating-system image file (in H-series,
the OS FileSet) option is not a substitute for cold loading the system. It cannot be
used to change the operating-system image.

If an alternate operating-system image file (in H-series, the OS FileSet) is
specified, that file continues to be used by the processor into which it is loaded.
Thus, different processors can be using identical files from various locations.

In addition, if an alternate operating-system image file (in H-series, the OS FileSet)
is specified, all the files in the reloader’s default SYSnn must be present in the
subvolume specified in the alternate fileset option of the RELOAD command.

 G-series and D-series Only. RELOAD checks the operating-system image file to
ensure that it has the same timestamp as the operating-system image in the
processor doing the reload. If the timestamps do not match, and the volume is
already accessible (allowing the timestamp to be immediately checked), reloading
of the affected processors does not occur. If the volume is inaccessible, the
reloaded processor checks the timestamp and halts with a %4016 code if it does
not match.

 You can use an IN file to enter RELOAD command parameters. The IN file can be
a disk file but not a terminal. An IN file can contain multiple lines as long as no
cpu-set is divided between lines. To start a RELOAD process using an IN file,
enter RELOAD with only the IN file-name specification. (For more information, see
the RUN[D|V] Command on page 8-156.)

 When one of the two processors connected to a controller fails, the other
processor gains ownership of the controller. When a failed processor (or one that
has not been loaded) is reloaded:

 If you specify NOSWITCH, no controller ownership switch takes place. The
processor that did not fail retains ownership.

 If you omit NOSWITCH, controller ownership action depends on the type of
controller and whether the processor that was reloaded was configured during
system-image generation as the primary processor for the controller. For
controllers connected to terminals, serial printers, and data communication
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-148

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
lines, no controller ownership switch takes place. For these controllers,
problems can arise if an automatic ownership switch occurs during data
transmission. For other types of controllers (such as those for disks, tape
drives, card readers, and nonserial printers), a controller ownership switch
occurs if the reloaded processor was configured as the primary processor for
the controller.

 The procedures for dumping an entire system that is frozen are described in the
NonStop S-Series Operations Guide or the NonStop NS-Series Operations Guide.

Examples

1. To reload processor 1 using the currently selected bus and to prevent switches in
device ownership, enter:

14> RELOAD 1, NOSWITCH

2. This G-series example uses the Y bus and the alternate operating system image in
the file $DATA.SYS02.OSIMAGE to reload processors 2, 4, 5, 6, and 7. The same
command then reloads all other downed CPUs using the default operating system
image and the currently selected bus:

15> RELOAD (2, 4-7) , $DATA.SYS02.OSIMAGE , 1; *

3. These H-series examples demonstrate use of the OMITSLICE option.

The first command uses a mutiple cpu-set specification, reloading all processor
elements belonging to logical processor 2 with the exception of the PE on slice A,
and the command continues to a second cpu-set specification to reload all PEs
belonging to processor 3.

Caution. For NonStop VLX systems, when using RELOAD in the CIIN file, you should not use
the PRIME option for two reasons: first, the processors are primed automatically in a system
cold load. Second, if you are reloading a single processor, the PRIME option in the CIIN file
causes any other failed processors to come up, thereby erasing their memory contents; you
are then unable to dump these processors to analyze the failure.

Note. When using the CIIN file, you should include in it only those necessary commands
that are restricted to super-group use, such as SETTIME or ADDDSTTRANSITION, and
perhaps a command to start a TACL process. Any other commands can be put into system
startup files. In particular, you should not put commands to start application processes in
the CIIN file, as they can cause CPU halts or system freezes in the event of application
malfunction.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-149

U TILS :TA C L C om m ands and Functions R E LO A D P rogram (S uper-G roup O n ly)
2> reload 2, omitslice A; 3

NONSTOP OS PROCESSOR RELOAD - T9070H02 - (01MAY05)

Reload 2: Fabric: 0 (X)

Reload 3: Fabric: 0 (X)

Omitted slice. (CPU 2, Slice A)
Sent reload start-up packet to cpu 2
Sent reload start-up packet to cpu 3
Sending OS FileSet pages to Reloadee(s)

Integrating CPU 2
Starting system services on CPU 2
PROCESSOR RELOAD: 2

Services started successfully.

Integrating CPU 3
Starting system services on CPU 3
PROCESSOR RELOAD: 3

Services started successfully.

CPU 2: reloaded.
CPU 3: reloaded.

The second example shows a reload of processor 3, with an omitslice option that
allows the system to determine which slice to omit.

5> reload 3, omitslice

NONSTOP OS PROCESSOR RELOAD - T9070H02 - (01MAY05)

Reload 3: Fabric: 0 (X)

Omitted slice. (CPU 3, Slice B)
Sent reload start-up packet to cpu 3
Sending OS FileSet pages to Reloadee(s)

Integrating CPU 3
Starting system services on CPU 3
PROCESSOR RELOAD: 3

Services started successfully.
CPU 3: reloaded.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-150

U TILS :TA C L C om m ands and Functions R E M O TE P A S S W O R D C om m and and R P A S S W R D
P rogram
REMOTEPASSWORD Command and RPASSWRD Program

Use the REMOTEPASSWORD command to run the system program RPASSWRD,
which adds or deletes remote passwords.

\node-name

is the name of the system where the remote password is to be in effect. If this is
your local system, then remote users with your user ID (normally, you) can access
your local system if they have set the same remote password for\node-name on
the remote system.

Conversely, if \ node-name is the name of a remote system, you can gain access
to that system if password matches the remote password established for \node-
name by a person with your user ID on that system.

password

is the remote password. It can contain from one to eight alphanumeric, nonblank
characters. The password is case-sensitive; lowercase letters are not changed to
uppercase.

Considerations

 If you omit password, your remote password for \node-name is deleted. If you
omit \node-name, all of your remote passwords are deleted

If you omit both parameters, TACL returns this prompt:

Do you really want to delete all of your remote passwords?

 If you type y or yes (either uppercase. lowercase, or any combination of
uppercase and lowercase characters), password deletion occurs.

RPASSWRD also prompts first to verify that deleting your remote passwords is
what you actually intend to do.

 You must establish remote passwords before you can access remote systems in a
network. To gain access to a remote system, you must have identical remote
passwords in effect on both the system where you are logged on and the remote
system.

 If RPASSWRD detects a null character in a remote password, it aborts without
changing the remote password. Null characters can inadvertently be included by
entering certain control-character combinations at a terminal. See the user
documentation for your terminal for a list of control characters that might interfere
with your terminal operation.

 See the Guardian User’s Guide for information about the use of remote passwords
in network security.

REMOTEPASSWORD [\node-name [, password]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-151

U TILS :TA C L C om m ands and Functions R E M O TE P A S S W O R D C om m and and R P A S S W R D
P rogram
Examples

1. Suppose that you are user MANUF.FRED on system \ROME, and you need
access to files on system \PARIS. First, log on to the \ROME system and establish
the remote passwords YES for the \PARIS system and OK for the \ROME system
by entering these commands:

14> REMOTEPASSWORD \PARIS, YES
THE \PARIS REMOTE PASSWORD FOR MANUF.FRED (8,44) HAS BEEN
CHANGED.
15> REMOTEPASSWORD \ROME, OK
THE \ROME REMOTE PASSWORD FOR MANUF.FRED (8,44) HAS BEEN
CHANGED.
16>

Now you must log on to the \PARIS system and use the same commands to
establish the same remote passwords. Because you do not yet have access to
\PARIS, you normally need to contact the system manager for the \PARIS system,
who logs on as a super-group user. The system manager then logs on with your
user name and enters the commands for you.

2. To delete the remote password for \PARIS from the \ROME system, log on to
\ROME and enter:

20> REMOTEPASSWORD \PARIS
THE \PARIS REMOTE PASSWORD FOR MANUF.FRED (008,044) HAS
BEEN DELETED.
21>
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-152

U TILS :TA C L C om m ands and Functions R E N A M E C om m and
RENAME Command

Use the RENAME command to change the name of an existing disk file.

old-file-name

is the name of the disk file to be renamed.

new-file-name

is the new name for the file.

Considerations

 You can rename a file only if it is not open with exclusive access, and you either
have purge access to the file or are logged on as a super-group user.

 You can use the RENAME command to change the subvolume name of a file, but
not its volume name. Disk files that are renamed stay on the same disk volume.To
change the volume where a file resides, copy the file to a new volume with the
FUP DUP command, then delete the original file. For details, see the File Utility
Program (FUP) Reference Manual.

 If you try to rename a file being audited by TMF, the attempt fails and file-system
error 80 (operation invalid) is returned.For information about TMF and the AUDIT
option, see the TMF Reference Manual.

 Format 1 files, Format 2 files, and files opened with READ ONLY ACCESS can be
renamed.

Examples

1. To rename the file RECORDS.DATA to STORAGE.OLDDATA, enter:

14> RENAME RECORDS.DATA, STORAGE.OLDDAT
15>

2. To rename the file MYSTUFF in the current default subvolume to be TRASH in the
subvolume EXTRA, enter:

15> RENAME MYSTUFF, EXTRA.TRASH
16>

RENAME old-file-name [,] new-file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-153

U TILS :TA C L C om m ands and Functions R E S E T D E F IN E C om m and
RESET DEFINE Command

Use the RESET DEFINE command to restore one or more DEFINE attributes in the
working attribute set to their initial settings. For more information about DEFINEs, see
Section 5, Statements and Programs and the ADD DEFINE Command on page 8-9.

attribute-name

is the name of a DEFINE attribute whose value is to be reset to its initial value. For
the syntax of attribute-name, see SET DEFINE Command on page 8-173. If you
reset a defaulted attribute, it assumes its default value. If you reset an optional
attribute, it has no value. You cannot reset a required attribute after a value has
been assigned to it.

*

resets all the attributes in the working attribute set to their initial settings. That is,
CLASS is reset to MAP, and the only CLASS MAP attribute, FILE, is reset to have
no value.

Considerations

 If any error occurs on a RESET DEFINE command, the command has no effect on
the working attribute set. The DEFINE command error messages are listed and
described in Appendix B, Error Messages. Entering RESET DEFINE * is equivalent
to specifying SET DEFINE CLASS MAP.

 That is, RESET DEFINE * resets CLASS to MAP (the default value), establishes
the attributes of CLASS MAP as the working attribute set, and restores each of
those attributes to its initial setting; for example:

69> RESET DEFINE *
70> SHOW DEFINE
 CLASS MAP
 FILE ??
Current attribute set is incomplete

 Because the CLASS attribute acts as a DEFINE subtype, you should keep these
points in mind when using the RESET DEFINE command:

 Attributes are reset in the order they are specified in your command.

 Resetting the CLASS attribute establishes a new working attribute set of the
default CLASS (MAP); its single attribute, FILE, has no value.

 An error occurs if you reset an attribute that is not a member of the working
attribute set (such as an attribute that is not associated with the current
CLASS).

RESET DEFINE { attribute-name [‚ attribute-name] ... }
 { * }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-154

U TILS :TA C L C om m ands and Functions R E S E T D E F IN E C om m and
Example

This RESET DEFINE command resets the USE attribute in the current working
attribute set. Because USE is an optional attribute, it ceases to have any value.

71> SHOW DEFINE *
 CLASS TAPE
 VOLUME M5436
 LABELS IBM
 REELS
 OWNER PURCHG
 FILESECT 002
 ...
 USE IN
 DEVICE $TAPE
 ...
 TAPEMODE
72> RESET DEFINE USE
73> SHOW DEFINE *
 CLASS TAPE
 VOLUME M5436
 LABELS IBM
 REELS
 OWNER PURCHG
 FILESECT 002
 ...
 USE
 DEVICE $TAPE
 ...
 TAPEMODE
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-155

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
RUN[D|V] Command

Use the RUN command to run programs or TACL macros. You invoke the RUND or
RUNV command with the same parameters and options as the RUN command, but the
RUND command runs programs under control of the INSPECT symbolic debugger or
DEBUG, while the RUNV command runs programs under the control of the VISUAL
INSPECT symbolic debugger.

A RUN command must name an object file or TACL program file that contains the
program you want to run. You can enter RUN commands either explicitly or implicitly:

For an explicit RUN command, enter the keyword RUN (or RUND or RUNV) followed
by the name of the program file.

For an implicit RUN command, enter the name of the program file. If you omit RUN or
enter a command that TACL does not recognize, TACL assumes you are entering an
implicit run command. TACL searches for program-file in the subvolumes listed in the
#PMSEARCHLIST variable

The program DEBUG is not available for use on systems running H-series software.

The DEBUG command invokes a debugger, it can be Inspect, Native Inspect
(eInspect, which is not in the family of Inspect debuggers), or Visual Inspect.

If the INSPECT attribute is set ON anywhere (in the object file during compilation, or on
the TACL command line using the SET command), you will get a debugger in the
Inspect family (either Inspect or VI), unless of course neither of these debuggers is
available, and then you get the default debugger, eInspect. If the Inspect attribute is
OFF, you get Native Inspect (eInspect).

Inspect is invoked only for TNS accelerated/interpreted programs (never for TNS/E
native programs), while Visual Inspect can handle both of these. Native Inspect
handles only TNS/E native programs and snapshots..

program-file

is the name of the file containing the object program to be run. Partial file names
are expanded using the current TACL default system, volume, and subvolume
names if you enter an explicit RUN command.

run-option

is any of these:

[RUN[D]] program-file
[/ run-option [, run-option] ... /]
[param-set]

CPU HIGHPIN JOBID NAME PRI

DEBUG IN LIB NOWAIT STATUS

DEFMODE INLINE MAXMAINSTACKSIZE* OUT SWAP
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-156

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
CPU cpu-number

specifies the number of the processor where the process is to run. Specify
cpu-number as an integer in the range from 0 through 15. If you omit this
option, the process runs in the same processor as TACL (but if a $CMON
process exists, it might specify a processor other than that one; see the
Guardian Programmer’s Guide for information about $CMON).

DEBUG

causes the process to start in the debug mode. This option is not valid in a
RUND or RUNV command.

RUN program-file / DEBUG / is the same as RUND program-file.

DEFMODE { OFF | ON }

specifies the initial DEFMODE setting (controlling both enabling and
propagation of DEFINEs) for the process you are starting, and determines
which DEFINEs are propagated to the newly started process. If you do not
include the DEFMODE option, the initial DEFMODE setting for the process you
are starting is the DEFMODE setting for the current TACL. The DEFMODE
option has no effect on the DEFMODE setting for the current TACL.

If you specify DEFMODE OFF, all DEFINEs are disabled for the new process,
and no DEFINE is propagated from the current TACL to the new process.

If you specify DEFMODE ON, all DEFINEs are enabled for, and propagated to,
the new process.

EXTSWAP [file-name]

specifies the name of a file to be used as swap space for the default extended
data of the process. The EXTSWAP file must reside on the same node as the
program file.

For processes running with pre-D42 software RVUs, omitting this option
causes the Kernel-Managed Swap Facility (KMSF) to create the default
extended swap file on the volume specified by the SWAP volume in the
=_DEFAULTS DEFINE. If there is no SWAP volume in the =_DEFAULTS
DEFINE, the operating system chooses one. For more information about the
KMSF facility, refer to the Kernel-Managed Swap Facility (KMSF) Manual.

EXTSWAP INSPECT MAXNATIVEHEAPSIZE* OUTV TERM

GUARANTEED-
SWAPSPACE*

INV MEM PFS WINDOW

* These options are available when the default configuration settings of the TACL process are

changed. To change the settings, set the TACL configuration parameter CONFIGRUN to

PROCESSLAUNCH. For more information, see the #SETCONFIGURATION option, CONFIGRUN

[PROCESSCREATE | PROCESSLAUNCH].
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-157

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
For non-native processes running with D42 or later software RVU, omitting this
option causes the Kernel-Managed Swap Facility (KMSF) to allocate swap
space for the default extended data segment of the process. For more
information about the KMSF facility, refer to the Kernel-Managed Swap Facility
(KMSF) Manual.

For native processes running with D42 or later software RVUs, the specified
file-name is ignored because these processes do not need an extended swap
file.

If you omit this option, the extended swap file is created on the volume
specified by the SWAP volume in the =_DEFAULTS DEFINE. If there is no
SWAP volume in the =_DEFAULTS DEFINE, the operating system chooses a
volume for the extended swap file.

GUARANTEEDSWAPSPACE number-of-bytes

where number-of-bytes specifies the size, in bytes, of the space that the
process reserves with the Kernel-Managed Swap Facility for swapping. For
more information on this facility, refer to the Kernel-Managed Swap Facility
(KMSF) Manual. The value provided is rounded up by operating-system
procedures to a page size boundary that is appropriate for the processor. For
more information, see the description of the Z^SPACE^GUARANTEE
parameter of the PROCESS_LAUNCH_ procedure in the Guardian Procedure
Calls Reference Manual.

HIGHPIN { ON | OFF }

specifies the desired PIN range for a new process.

ON

specifies that a process will run at a high PIN if the HIGHPIN bit is enabled
in the object file (and in the library file, if any) and if a high PIN is available.

OFF

specifies that the process runs at a low PIN, regardless of any other
considerations.

The default value for HIGHPIN depends on the values of the Binder

HIGHPIN option and the HIGHPIN variable. If you start a TACL process with
HIGHPIN OFF, any processes started by the TACL process run at a low PIN by
default.

Note. Th is op tion is ava ilab le w hen the de fau lt con figura tion settings o f the TA C L
process a re changed. To change the se ttings, se t the TA C L con figura tion param eter
C O N FIG R U N to P R O C E S S LA U N C H . For m ore in fo rm ation , see the
#S E TC O N FIG U R A TIO N option , C O N FIG R U N [P R O C E S S C R E A TE |
P R O C E S S LA U N C H] on page 9-348 .
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-158

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
IN [file-name | $process-name]

is the IN file for the new process. This file or process name is sent to the new
process in its startup message. If you do not include the IN option, the new
process uses the IN file of the current TACL (usually your home terminal). If
you include IN with no name, spaces are sent as the name of the input file.
TACL allows the IN file to be a DEFINE name, and passes the DEFINE name
to the process being executed. The process is responsible for handling the
DEFINE.

INLINE

specifies that the process is to be run under control of the INLINE facility (for
examples, see the TACL Programming Guide). This option also has the effect
of the NOWAIT option.

INSPECT { OFF | ON | SAVEABEND }

sets the debugging environment for the process being started. ON and
SAVEABEND select the Inspect symbolic debugger as the debugger; OFF
selects the DEBUG facility. SAVEABEND is the same as ON except that it
automatically creates a save file if the program abends (ends abnormally.) The
INSPECT option sets the debugging environment for the process you are
starting and for any descendants of that process. For more information, see the
DEBUG Command on page 8-48, SET INSPECT Command on page 8-193,
and SHOW Command on page 8-200 and the Inspect Manual.

INV variable-level [DYNAMIC [PROMPT variable-level]]

is a variable level whose contents are extracted line by line and passed to the
process as the process reads from its IN file. If you include the word
DYNAMIC, the process waits for the variable to be refilled if it becomes empty
By including the PROMPT option, you can capture prompts in the specified
variable level: The most recent prompt string from the process is put into the
variable level. For additional information about the use of INV, see
Considerations on page 8-163.

JOBID num

specifies the new job ID for the new process.

LIB [file-name]

selects a user library file of object routines that are to be searched before the
system library file for satisfying external references in the program being run. If
you give the name of a library file, the program uses that library until you select
another library file. The library file name is linked to the program file and
remains in use for all runs of the program until you specify LIB without a file
name. If you do not give a file name, LIB deletes the previous selection.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-159

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
To run a program file with a user library, you must have write access to the
program file; the library file name is written into the object-file header of the
program at run time.

To run the program again with the same library, you can omit the LIB
parameter. To run the program again with no library (or with a different library),
include LIB (or LIB file-name).

MAXMAINSTACKSIZE number-of-bytes

where number-of-bytes specifies the maximum size, in bytes, of the
process main stack. The value provided is rounded up by operating-system
procedures to a page size boundary that is appropriate for the processor. The
specified size cannot exceed 32 megabytes (MB). The default value of 0D
indicates that the main stack can grow to 1MB. For most processes, the default
value is adequate.

MAXNATIVEHEAPSIZE number-of-bytes

where number-of-bytes specifies the maximum size, in bytes, of the
process heap. This parameter is valid only for “native” processes (that is,
processes that execute RISC code without interpretation or emulation).

The sum of the size of the heap and the size of global data cannot exceed 384
megabytes (MB). The default value of 0D indicates that the heap can grow to
the default value of 16 megabytes (MB). The initial heap size of a process is
zero bytes. For most processes, the default value is adequate.

MEM num-pages

is the maximum number of virtual data pages to be allocated for the new
process. Specify num-pages as an integer in the range 1 through 64. If you
omit this option, or if num-pages is less than the compilation-time value, the
compilation-time value is used instead.

NAME [$process-name]

is the name you are assigning to the new process. Specify $process-name
as an alphanumeric string of one to five characters (not including the dollar

Note. Th is op tion is ava ilab le w hen the de fau lt con figura tion settings o f the TA C L
process a re changed. To change the se ttings, se t the TA C L con figura tion param eter
C O N FIG R U N to P R O C E S S LA U N C H . For m ore in fo rm ation , see the
#S E TC O N FIG U R A TIO N option , C O N FIG R U N [P R O C E S S C R E A TE |
P R O C E S S LA U N C H] on page 9-348 .

Note. Th is op tion is ava ilab le w hen the de fau lt con figura tion settings o f the TA C L
process a re changed. To change the se ttings, se t the TA C L con figura tion param eter
C O N FIG R U N to P R O C E S S LA U N C H . For m ore in fo rm ation , see the
#S E TC O N FIG U R A TIO N option , C O N FIG R U N [P R O C E S S C R E A TE |
P R O C E S S LA U N C H] on page 9-348 .
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-160

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
sign); the first character must be alphabetic. (For network access, the name
must be no more than four characters.) If you omit this parameter, the new
process is not named and has only a CPU number and process number. If you
include NAME with no $process-name, TACL generates a name for the new
process. The name of the process appears in the destination control table
(DCT).

NOWAIT

means that TACL does not wait while the program runs but returns a command
input prompt after sending the startup message to the new process. If you omit
this option, TACL pauses while the program runs.

OUT [list-file]

is the output file of the new process. If you omit OUT list-file, the new
process uses the OUT file in effect for the current TACL (usually your home
terminal). If you include OUT with no list-file, spaces are sent as the
name of the output file. You cannot specify OUT if you specify OUTV or
WINDOW.

TACL allows the OUT file to be a DEFINE name, and passes the DEFINE
name to the process being executed. The process is responsible for handling
the DEFINE.

OUTV var-name

is a variable whose indicated level is cleared while retaining its type. Lines are
then added to it as the process writes to its OUT file. Prompt strings are not
written to the OUT variable. You cannot specify OUTV if you specify OUT or
WINDOW. For additional information about the use of OUTV, see
Considerations on page 8-163.

PFS num-pages

is the process file segment size, in 2048-byte pages, for the new process.
Specify num-pages as an integer value in the range 64 to 512. If you omit this
option, the number of pages is determined by a value in the program object
file.

PRI priority

specifies the execution priority of the new process; processes with higher
numbers run first. Specify priority as an integer in the range 1 to 199. If you
specify a priority greater than 199, the process runs at priority 199.

If the priority of the TACL process is 1 and priority for the new process is
not specified, TACL starts the new process at the priority of the TACL process.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-161

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
If the priority of the TACL process is greater than 1 and priority for the new
process is not specified, TACL starts the new process at 1 less than the priority
of the TACL process.

If a $CMON process exists, it might specify a different priority for the new
process, depending on how it has been coded. See the Guardian
Programmer’s Guide for information about $CMON processes.

After a process has been started, the ALTPRI command can be used to alter
its priority.

STATUS variable

indicates why a process stops. Sets the variable to one of the values STOP,
ABEND, CPU, or NET when the process ends. To use STATUS, the TACL
process must be named.

SWAP swap-file

specifies the name of the file used to hold the virtual data of the process. When
a process is running, the system allocates a temporary file on the same volume
as the program file for swapping the data stack. When the process terminates,
the temporary swap file is automatically purged. If the swap file has a
permanent name, however, it is not purged.

With the SWAP parameter, you can:

 Specify a permanent file name-the file contains an image of the data stack
when the process terminates.

 Specify a different volume for the swap file (by specifying only a volume
name)-this is useful when the program file volume is full or busy. The
SWAP option also specifies the default volume for extended data
segments; see the Guardian Programmer’s Guide for more details.

 SWAP can be used in debugging or for improving process performance.

For nonnative processes running with D42 or later software RVUs, the swapfile
is not used (or if provided, is ignored). The Kernel-Managed Swap Facility
(KMSF) manages swap space, including the file location, for the process. The
#PROCESSINFO built-in function always returns “$volume.#0” for the SWAP
file-name. For more information about the KMSF facility, refer to the Kernel-
Managed Swap Facility (KMSF) Manual.

TERM [\node-name.]$terminal-name

specifies the name of the home terminal (or a DEFINE that contains the name)
for the new process. If you omit this option, the new process uses the TACL
home terminal. For $terminal-name, specify a valid name for a terminal or
process: following the dollar sign, specify an alphanumeric string of one to six
characters; the first character must be alphabetic. For remote access, you can
have no more than five characters after the dollar sign.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-162

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
WINDOW [" text "]

creates a window for the OUT file of the new process. The quotation marks are
required; otherwise, TACL returns an error message. This option is for use in
an X Windows environment. The home terminal is inherited from the parent
TACL process; any I/O to the home terminal is directed to the parent TACL.
Output to the home terminal is not displayed if there is a read or write pending
on the home terminal. For example, TACL does not display output from the
new process while the parent TACL is prompting the home terminal for input.
You cannot specify WINDOW if you specify OUT or OUTV. When using the
x6530 terminal emulator, you can use text as a parameter list for x6530
configuration. For example:

FUP / WINDOW "-name FUP"/

causes an X Window to be created for a FUP process. Both the icon and the
window banner have the name “FUP.” For additional information, see the
x6530 User’s Guide.

param-set

is one or more program parameters sent to the new process in the startup
message. Leading and trailing spaces are deleted. TACL metacharacters cannot
be included unless they are preceded by tildes or are input under control of PLAIN
or QUOTED format (see the #INFORMAT Built-In Variable on page 9-196).

Considerations

These considerations apply to the RUN command:

 The RUN command runs object files of type 100, 700, 800, or TACL programs.

 You can specify DEBUG as the debugger with the SET INSPECT OFF command
or with the INSPECT OFF option of the RUN command. For more information, see
the SET INSPECT Command on page 8-193. For information about INSPECT, see
the Inspect Manual. For information about DEBUG, see the Debug Manual.

 If you are not the super ID, you can debug only those programs whose process
accessor IDs match your user ID. For a description of process accessor IDs and
process creator IDs, see the Guardian User’s Guide.

 Privileged programs can be licensed (by the super ID) for use by users other than
the super ID. However, only the super ID can debug privileged programs. If you are
not the super ID and you try to use the RUND or RUNV command to debug a
licensed program, the program runs without entering a debug state.

 For TNS/R systems, data swap files require 32,000 bytes more than the amount
specified in the MEM parameter. For example, if you specify MEM 64, TACL
doubles 64,000, rounds up to the next multiple of 4 (resulting in the same number
in this case), and adds 32,000 bytes, resulting in 160,000 bytes. Similarly, for a
MEM 3 setting TACL doubles 3,000 bytes, rounds up to the next multiple of 4
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-163

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
(8,000 bytes), and adds 32,000, resulting in 40,000 bytes. Ensure that your named
swap file has enough extent file space.

 To use either the INV or the OUTV option, your TACL process (the one from which
you are starting the new process) must have a process name.

 To use INV dynamically, you must include the NOWAIT option, so that control
returns to your TACL process. To send information, wait for the prompt variable.If
you plan to wait for more than one prompt, clear the prompt variable prior to the
next wait.

 If you include either the IN or the INV option, you cannot use the INLINE option,
and the reverse. You cannot use the INLINE option if a process started previously
with the INLINE option still exists.

 If you include the INLINE option, TACL waits until the newly started process
prompts for the first time; this guarantees that the initial output of the process is
available in the #INLINETO variable (if any) when TACL resumes operation.

 When running a process that communicates with TACL (such as by setting IN or
OUT to the TACL process name, or by using TACL variables in INV or OUTV, or by
using the INLINE feature), be careful to coordinate TACL functions that enable the
communication (such as #IN or #OUT) with the matching mechanisms in that
process. Deadlock conditions can result if TACL tries to open a process for
communication at the same time that process is trying to open TACL for
communication.

 When you include the LIB option, the operating system tries to resolve external
references to procedures in the program. It searches the library file specified with
the LIB option when the program was run. The date and time of the last
modification of LIB, as well as the disk address of the library file, are stored in the
program file. When you run a program without specifying a library with the LIB
option, the operating system compares the disk address and modification date of
the actual library file with the information about the library in the program file. If
they do not match, the message “LIBRARY FILE CONFLICT” is displayed. This
safe-guard prevents you from inadvertently running the wrong version of the library.

 To use LIB, the user who runs a program should have write access to the program
file. For example, assume these two users:

GROUPA.USER1 GROUPB.USER2

and two files (with security CUCU) owned by USER1:

$DATA.USER1.PROG
$DATA.USER1.LIBFILE

These two attempts to run program PROG by USER1 succeed:

14> RUN PROG
15> RUN PROG / LIB LIBFILE /
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-164

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
USER2 (who does not have write access to PROG) can also run PROG, provided
the library LIBFILE has not been altered since its last use. If LIBFILE has changed,
however, and USER2 enters:

12> RUN PROG / LIB LIBFILE /

the attempt to run the program fails because USER2 does not have write access to
PROG so that external references can be resolved through the changed library file.

 When you give a RUN command and the new process begins execution, TACL
pauses unless your RUN command includes the NOWAIT option. If the new
process does not take over break ownership, you can activate TACL while the
process runs by pressing the BREAK (or interrupt) key. TACL then runs
concurrently with the process. You can return TACL to its waiting state with the
PAUSE command.

 If you specify the NOWAIT option in your RUN command, TACL returns to the
command input mode as soon as the new process reads its startup message.
Thus, NOWAIT means you do not have to wait for the new process to finish before
you can enter other commands. NOWAIT is especially useful when you start
several programs using the IN file-name option. The INLINE option also produces
the effect of the NOWAIT option.

 You can use the STATUS option to avoid race conditions. For example, assume a
macro runs the same program more than once:

RUN laps /INV iv1 DYNAMIC,OUTV ov1,NOWAIT,NAME $z
STOP $z
RUN laps /INV iv2 DYNAMIC,OUTV ov2,NOWAIT,NAME $z/

The second time the program is run, if TACL receives the OPEN system
interprocess message for the second process’s IN file before it receives the STOP
interprocess message for the first process, the process could receive a
“nonexistent file” error when it tries to open its IN file.

Before starting a second process with the same name as the first, the macro must
wait for the STOP command to finish. You can make the macro wait by providing a
STATUS variable in the first RUN command, then using the #WAIT built-in function
to ensure that TACL receives notification that the first process has stopped before
it starts the second one.

For example:

RUN laps /INV iv1 DYNAMIC,OUTV ov1,NOWAIT,NAME $z,STATUS
zs/
STOP $z
#WAIT zs
RUN laps /INV iv2 DYNAMIC,OUTV ov2,NOWAIT,NAME $z/

 To run a process on a remote system, specify \ node-name before the name of a
program file. For example, this command runs a TEDIT process on the \CHICAGO
system:

14> \CHICAGO.TEDIT
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-165

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
Similarly, these commands also run a TEDIT process on the \CHICAGO system,
because the current default node name is used for file-name expansion:

14> SYSTEM \CHICAGO
15> TEDIT

A program file, however, must reside on the system where it runs; the command:

14> RUN \DETROIT.MYPROG

attempts to run a program file named:

\DETROIT. default-volume. default-subvolume.MYPROG

If no such program file exists on the remote system, a message is displayed
indicating that the file does not exist. See the Expand Management Programming
Manual for further information on creating remote processes.

 If you specify more than one out-run-option, TACL returns “Option conflicts with
another option.”

 If the PFS option is out of range, TACL returns “Expecting a number or an
arithmetic expression (Its value must be between 64 and 512 inclusive).”

 Redirection abilities of the OSH command utility can be used. For more information
on redirection, see Section 6, Open System Services Shell and Utilities Reference
Manual.

These conditions apply to the use of the RUN command for starting TACL processes:

 A TACL process starts in a logged-off state. If, however, Safeguard software
authenticates the user and starts the TACL process, that TACL process starts in a
logged-on state.

 To run TACL as a server process, set the IN file to $RECEIVE. For more
information, see the TACL Programming Guide.

 If the IN file is the same as the OUT file and the TACL process is not named, TACL
does not set its home terminal.

 The OSH process should not be started with the INLINE option. If you use the
INLINE option:

 TACL will not be able to detect the end of the INLINE process.

 The output displayed might not be synchronized with the command entered
using the inline prefix.

Examples

1. This implicit RUN command runs the text editor program named TEDIT that
resides in the file $SYSTEM.SYSTEM.TEDIT:

14> TEDIT
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-166

U TILS :TA C L C om m ands and Functions R U N [D |V] C om m and
2. This command runs the program APP1 in the current default subvolume:

15> RUN APP1

3. This command also runs APP1:

16> RUN APP1 / IN APP1IN, OUT APP1OUT, CPU 2, &
16> &NAME $PROC1, NOWAIT /

It also specifies:

 The file APP1IN as the input file for the program

 The file APP1OUT as the output file for the program

 Processor 2 as the processor where the program runs

 $PROC1 as the name of the process that is created

 TACL is to redisplay its command prompt without pausing for APP1 to
complete execution
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-167

U TILS :TA C L C om m ands and Functions S E G IN FO C om m and
SEGINFO Command

Use the SEGINFO command to display a table of information about all the TACL
segment files in use by your TACL process.

SEGINFO displays its information under this heading line:

For more information about segment files, see Section 6, The TACL Environment.

Example

24> SEGINFO

SEGINFO

Pgs Pgs Bytes Bytes

Segment File Access Now Max Now Max % UC Directory

Access is the access mode: PR means private and SH means shared. If
access is shared, the segment file is read-only.

Pgs Now is the number of pages currently allocated for the segment file.
This number can increase as needed while your TACL runs, but
it is never reduced after being allocated.

Pgs Max is the maximum number of pages that could be allocated.

Bytes Now is the number of bytes currently in use in the segment file.

Bytes Max is the maximum number of bytes that the segment file can hold.

% is the percentage of “Bytes Max” that are in use.

UC is the use count for the segment file. Use count is a count of
variables in the segment that are being used by your TACL at
this instant. A variable is in use if it is being invoked, is being
used for process I/O, is in the use list, is in a pushed use list, is
the home directory, or is a pushed home directory. The use
count also includes one count for the segment file being
attached.

Directory is the full path-name of the directory that contains the names of
the variables in the indicated segment file.

Pgs Pgs Bytes Bytes

Segment File Access Now Max Now Max % UC Directory

$EM2.#1242 PR 8 1024 10584 2097152 0 5 :

$SYSTEM.SYSTEM.TACLSEG
F

SH 56 1024 111340 2097152 5 3 :UTILS.1

$EM2.FURD.MYSEG SH 76 1024 29676 2097152 6 1 :MYDIR.1
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-168

U TILS :TA C L C om m ands and Functions S E M S TA T P rogram
SEMSTAT Program

Use the SEMSTAT program to print the Binary Sempahore (BINSEM) usage
information and statistics for a process whose ID or process name is provided.

Syntax to invoke the command:

<name> or <pin>

specifies the process in the CPU where SEMSTAT is running.

-brief or -full or -wide

specifies how much information is displayed and the format used to display the
data.

The -wide option displays information in one line to facilitate further processing.

-clear_stats

resets all BINSEM counters including the maximum number of contenders.

Security Considerations

The SEMSTAT program is accessible to users with appropriate accessibility rights for a
process. The following list describes the accessibility rights for various users:

 Users with the same process access ID as the process of interest. Both GROUP
and USER IDs must match.

 Group Managers of the process of interest (that is GROUP,255).

 Processes that are members of the SUPER group (that is SUPER.*).

SEMSTAT {-procname <name> | -pin <pin> [-brief | -full |
 -wide |-clear_stats]}

Note.

 A ll the above op tions are case insens itive .

 The S E M S TA T program is p rov ided w ith the opera ting system and, if run on tha t
system , w orks w ithou t prob lem s. If the S E M S TA T program is m oved to another
system tha t is runn ing an incom patib le vers ion o f N S K , S E M S TA T ex its w ith an e rro r
m essage.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-169

U TILS :TA C L C om m ands and Functions S E M S TA T P rogram
Examples

The SEMSTAT program prints BINSEM statistics for each BINSEM used by the
specified process. The statistics are printed in a tabular format and are categorized as
the following heading rows:

Samples

1.Brief Format:

semstat /cpu 1/ -pin 843

SEMSTAT utility -- T9050J01 - (01AUG12) - (18JUN12) - (AWT)

(c) Copyright 2011 Hewlett Packard Development Company, L.P.

 --- Binary Semaphore Statistics for Process 1,843 ---

Sem ID Acquisitions Tot. Cont. Mult. Cont. Cur. Cont. Max. Cont

 0 8225 3 0 0 1

 1 8225 0 0 0 0

 2 8225 7851 7833 0 30

 3 8225 0 0 0 0

 4 8225 0 0 0 0

Sem ID The BINSEM ID in this process.

Acquisitions The number of times the BINSEM is acquired.

Tot. Cont. The number of times the BINSEM is found locked.

Mult.Cont. The number of times the BINSEM is found locked and
contended.

Cur. Cont. The number of processes waiting for the BINSEM.

Max. Cont. The maximum number of contenders for a BINSEM.

Create Date The date when the BINSEM is created.

Create Time The time when the BINSEM is created.

Serial Number The serial number of creation (since CPU load) which uniquely
identifies the same semaphore shared by multiple processes.

Timeouts The number of times a timeout occurrs when a process tries to
acquire a BINSEM.

Forced The number of times a process stole the BINSEM from an
unresponsive process.

Forsaken The number of times a process abandoned ownership of a
BINSEM.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-170

U TILS :TA C L C om m ands and Functions S E M S TA T P rogram
2.Full Format

semstat /cpu 1/ -pin 843 -full

SEMSTAT utility -- T9050J01 - (01AUG12) - (18JUN12) - (AWT)

(c) Copyright 2011 Hewlett Packard Development Company, L.P.

 --- Binary Semaphore Statistics for Process 1,843 ---

 Sem ID Acquisitions Tot. Cont. Mult. Cont. Cur. Cont. Max. Cont

Create Date Create Time Serial Number Timeouts Forced Forsaken

 0 8225 3 0 0 1

 06-26-2012 01:30:14 32 0 0 0

 1 8225 0 0 0 0

 06-26-2012 01:30:14 33 0 0 0

 2 8225 7851 7833 0 30

 06-26-2012 01:30:14 34 0 0 0

 3 8225 0 0 0 0

 06-26-2012 01:30:14 35 0 0 0

 4 8225 0 0 0 0

 06-26-2012 01:30:14 36 0 0 0

Note. The de fau lt d isp lay fo rm at is -brief.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-171

U TILS :TA C L C om m ands and Functions S E M S TA T P rogram
The following example first displays BINSEM Statistics for Process 1,945, and then
displays the cleared statistics after using -clear_stats option:

SYSTEM STARTUP 49> semstat -pin 945

SEMSTAT utility -- T9050J01 - (01AUG12) - (18JUN12) - (AWT)

(c) Copyright 2011 Hewlett Packard Development Company, L.P.

 --- Binary Semaphore Statistics for Process 1,945 ---

Sem ID Acquisitions Tot. Cont. Mult. Cont. Cur. Cont. Max. Cont

 0 2593 0 0 0 0

 1 2593 0 0 0 0

 2 2593 0 0 0 0

 3 2593 0 0 0 0

 4 2593 2538 2535 0 31

$SYSTEM STARTUP 50> semstat /cpu 1/ -pin 945 -clear_stat

SEMSTAT utility -- T9050J01 - (01AUG12) - (18JUN12) - (AWT)

(c) Copyright 2011 Hewlett Packard Development Company, L.P.

Statistics counters are cleared

$SYSTEM STARTUP 51> semstat /cpu 1/ -pin 945

SEMSTAT utility -- T9050J01 - (01AUG12) - (18JUN12) - (AWT)

(c) Copyright 2011 Hewlett Packard Development Company, L.P.

 --- Binary Semaphore Statistics for Process 1,945 ---

Sem ID Acquisitions Tot. Cont. Mult. Cont. Cur. Cont. Max. Cont

 0 0 0 0 0 0

 1 0 0 0 0 0

 2 0 0 0 0 0

 3 0 0 0 0 0

 4 0 0 0 0 0
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-172

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
SET DEFINE Command

Use the SET DEFINE command to set a value for one or more DEFINE attributes in
the working attribute set. Values in the working set determine the values for any
attributes you omit from the ADD DEFINE command when you create a DEFINE. For
more DEFINE information, see the Guardian User’s Guide.

attribute-spec

assigns a value or a list of values to a DEFINE attribute. For attribute-spec, specify
either of these:

attribute-name value
attribute-name (value [, value] ...)

attribute-name

is the name of a DEFINE attribute that you want to establish in the working
attribute set. The valid attribute names and the value associated with each are:

 For a SEARCH DEFINE:

RELSUBVOLn subvolume-name
SUBVOLn subvolume-name

 For a SORT DEFINE:

BLOCK size
CPU cpu-number
CPUS { (cpu-number [, cpu-number] ...) | ALL }
MODE { AUTOMATIC | MINSPACE | MINTIME }
NOTCPUS (cpu-number [, cpu-number] ...)
PRI priority
PROGRAM file-name
SCRATCH file-name
SEGMENT size
SUBSORTS (DEFINE-name [, DEFINE-name] ...)
SWAP file-name

 For a SPOOL DEFINE:

BATCHNAME batch-name
COPIES num
FORM form-name
HOLD { ON | OFF }
HOLDAFTER { ON | OFF }
LOC [\node-name.] collector[.#group-name[. dest]]
MAXPRINTLINES num
MAXPRINTPAGES num
OWNER [group-name.user-name | " group-num‚ user-num "]
PAGESIZE num

SET DEFINE { { attribute-spec } | { LIKE define-name } }
 [, attribute-spec] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-173

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
REPORT report-name
SELPRI num

 For a SUBSORT DEFINE:

BLOCK size
CPU cpu-number
PRI priority
PROGRAM file-name
SCRATCH file-name
SEGMENT size
SWAP file-name

 For a TAPE DEFINE:

BLOCKLEN block-length
DENSITY { 800 | 1600 | 6250 }
DEVICE device-name
EBCDIC { IN | OUT | ON | OFF }
EXPIRATION date
FILEID file-name
FILESECT volume-order
FILESEQ file-order
GEN gen-num
LABELS { ANSI | IBM | OMITTED | BYPASS | BACKUP |
IBMBACKUP }
MOUNTMSG " text"
OWNER owner-id
RECFORM { F | U }
RECLEN record-length
REELS volumes
RETENTION days
SYSTEM \node-name
TAPEMODE {STARTSTOP | STREAM }
USE { IN | OUT | EXTEND | OPENFLAG }
VERSION num
VOLUME { vol-id | SCRATCH }

value

is a value to be associated with attribute-name. For value, specify a parameter
that is valid for the specific attribute. The values available for the various
attributes are described in these paragraphs.

LIKE define-name

specifies that the working attribute set is to have the same attributes and values as
the existing DEFINE named in the LIKE clause. You can modify those attributes or
add new attributes with attribute-spec entries that follow the LIKE clause.

Considerations

 There is a special class of DEFINE names that begins with an equal sign plus an
underscore (=_). These names are reserved for TACL use only. Do not try to
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-174

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
create DEFINE names that begin with these two characters, except for specific
purposes that are described in application product documentation.

 When an error occurs for the SET DEFINE command, no attributes or values are
changed in the working attribute set.

 After you have set an attribute value, it persists until you reset it. You can reset an
attribute value explicitly with the RESET DEFINE command or with another SET
DEFINE command. You can reset a value implicitly by changing the CLASS
attribute.

 If you log on from a logged-on TACL process, TACL preserves existing DEFINEs.

 If you start a new TACL process from your existing TACL process, the new TACL
process does not inherit existing PARAM values.

 When a backup TACL process takes over, TACL deletes existing DEFINEs.

 The primary attribute-name value specification is the CLASS attribute, which is
specified as:

CLASS { CATALOG | DEFAULTS | MAP | SEARCH | SORT | SPOOL |
SUBSORT | TAPE }

The default is CLASS MAP. The CLASS attribute works as a DEFINE subtype, and
the seven classes have different uses:

CATALOG

makes a correlation between a logical catalog and an actual subvolume for
NonStop SQL/MP.

DEFAULTS

holds the standard default values of a process (such as the default volume).

MAP

makes a correlation between a logical device and an actual file.

SEARCH

specifies a search list of subvolumes for a program; the SEARCH class is
similar in functionality to the TACL #PMSEARCHLIST built-in variable.

SORT and SUBSORT

set parameters for FastSort processes and parallel SORTPROG processes.

SPOOL

sets parameters for the Spooler subsystem.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-175

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
TAPE

is used for accessing labeled tapes.

The CLASS attribute establishes a different initial working attribute set for each
class:

 For CLASS CATALOG, the working attribute set always consists of the
SUBVOL attribute only (a required attribute that has no default value):

SUBVOL subvol-name

For subvol-name, give the name of an existing subvolume; the format is:

[[\node-name.]$volume.] subvol

The SUBVOL attribute specifies a subvolume to be used as a catalog by
NonStop SQL/MP. When you use the DEFINE name in a command, NonStop
SQL/MP substitutes the catalog subvolume name for the DEFINE name.

 For CLASS DEFAULTS, the working attribute set consists of the CATALOG,
VOLUME, SWAP, LANG, and LC attributes.

The description of these attributes:

VOLUME

specifies the default node, volume, and subvolume names.

SWAP

specifies the node and volume names to be used for a swap file.

CATALOG

specifies the node, volume, and subvolume names of an SQL catalog.

LANG

determines values for all Internationalization (I18N) environment variables
in the absence of other LC variables.

LC_ALL

determines values of all I18N environment variables and has precedence
over all other LC variables and LANG variables.

LC_COLLATE

determines how characters are ordered, sorted, grouped, and translated.

LC_CTYPE

determines character handling.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-176

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
LC_MESSAGES

determines how messages and process interactive responses are
formatted.

LC_MONETARY

determines how currency representations are formatted.

LC_NUMERIC

determines how numbers are represented.

LC_TIME

determines how dates and times are formatted.

Each of these attributes is case-sensitive and can be up to 256 characters.
They can be set to any value, although to be effective, the value must match
one of the values supported in the process it is used. Supported values are
described in the Internationalization library.

 For CLASS MAP, the working attribute set always consists of only the FILE
attribute (a required attribute that has no default value):

FILE file-name

For file-name, specify a file name; the format is:

[[[\node-name.]$volume.] subvol.] file-name

The FILE attribute specifies the file name to be used in place of MAP DEFINE
name. When you use the DEFINE name in a command or procedure call, the
file system substitutes the value associated with the FILE name for the
DEFINE name. (See the examples for the ADD DEFINE Command on
page 8-9.)

You can use a CLASS MAP DEFINE in TACL wherever a file name is
accepted. On a RUN or #NEWPROCESS command, however, the new
process must be able to handle a DEFINE name in place of a file name if you
include a CLASS MAP DEFINE.

 For CLASS SEARCH, the working attribute set consists of up to 21 attributes
named SUBVOL0 through SUBVOL20; the format is:

SUBVOLn subvolume-name

The SUBVOLn attribute specifies a subvolume for resolving file names in a
search list. To specify multiple subvolumes, use multiple SUBVOLn attributes.
All attributes are optional.

 For CLASS SORT, the working attribute set consists of the attributes listed in
Table 8-4 on page 8-179. All attributes are optional.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-177

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
 For CLASS SPOOL, the working attribute set consists of the attributes listed in
Table 8-5 on page 8-182. The only required attribute is the LOC attribute.

 For CLASS SUBSORT, the working attribute set consists of the attributes listed
in Table 8-6 on page 8-184. The only required attribute is the SCRATCH
attribute.

 For CLASS TAPE, the working attribute set consists of all the attributes listed
in Table 8-8 on page 8-186, as well as any values set or defaulted for those
attributes. The only required attribute for a TAPE DEFINE is VOLUME, and
then only when you specify USE IN. Table 8-8 describes the CLASS TAPE
attributes; those marked with an asterisk (*) correspond to fields in the tape
system labels.

 Because the CLASS attribute works as a DEFINE subtype, you should remember
these points when you use SET DEFINE:

 Attributes are set in the order in which they are specified in the SET DEFINE
command.

 Setting the CLASS attribute establishes a new working attribute set that
consists of all the attributes associated with that class, each with its initial
setting.

 You cannot set an attribute that is not associated with the current CLASS. For
example, if the current CLASS is DEFAULTS, you cannot enter SET DEFINE
LABELS IBM.

 To avoid errors or unexpected results with the SET DEFINE command, set the
CLASS attribute first. You can do this in a separate SET DEFINE command,
with a LIKE clause in a SET DEFINE command, or as the first attribute in a
SET DEFINE command. However, be careful not to specify a LIKE clause in
the same SET DEFINE command with a CLASS clause.

 If you enter a SET DEFINE command with a LIKE clause, a later ADD DEFINE
command will create a DEFINE identical to the one named in LIKE define-name as
long as you do not modify any attributes. These points apply:

 If the CLASS of LIKE define-name is the same as the current CLASS, all the
attributes in the working attribute set are set to the values of define-name. For
example, if an attribute has no value in LIKE define-name, that attribute has no
value in the working attribute set.

 If the CLASS of LIKE define-name is different from the current CLASS, a new
working attribute set is established, corresponding to the CLASS of define-
name, and with attribute values set as in define-name.

 Any attribute specifications that follow a LIKE clause in a SET DEFINE command
modify the attribute values established by the LIKE clause.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-178

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
 The same set of DEFINE attributes can be configured for a generic process
through SCF. For the syntax, see the SCF Reference Manual for the Kernel
Subsystem.

Creating a SORT DEFINE

Table 8-4 describes the attributes that apply to the FastSort subsystem, and the values
available for those attributes. See the FastSort Manual for a full description of the
effects of these attributes. All SORT attributes (other than CLASS) are optional.

FastSort always checks for the presence of a DEFINE named =_SORT_DEFAULTS. If
this DEFINE exists and is of CLASS SORT, FastSort reads the attributes from the
DEFINE and uses them to set the sort parameters. =_SORT_DEFAULTS is reserved
for use as the default SORT DEFINE name.

Table 8-4. SORT DEFINE Attributes (page 1 of 3)

Name and Value Function

BLOCK size Specifies the size, in bytes, of input and
output blocks for a SORTPROG scratch file
It can be any multiple of 512 up to 30 KB
and it must be large enough to accept the
largest input record, rounded up to the
nearest even byte, plus 14 bytes overhead.
The default is 16 KB.

CPU cpu-num Specifies the number, in the range from 0
through 15, of the processor in which to run
a SORTPROG process
The default is the same CPU in which
FastSort is running.

CPUS
{ (cpu-num [, cpu-num] ...) | ALL }

Specifies CPU numbers, in the range from
0 through 15, of processors available for
use by subsorts
ALL specifies all processors are available.

MODE
{ AUTOMATIC | MINSPACE | MINTIME }

Specifies FastSort control mode

AUTOMATIC Minimizes elapsed time by using not more
than 50% (90% in parallel sorting) of
memory not appropriated by the operating
system
For files up to 100 KB, FastSort uses an
extended memory segment of 64 pages
and makes no merge pass; for larger files,
FastSort uses enough memory to make
only one merge pass.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-179

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
MINSPACE Limits the size of the extended memory
segment to 64 pages (128 KB)
For files up to 100 KB, FastSort makes no
merge pass (or only one merge pass).

MINTIME Minimizes elapsed time by using not more
than 70% of memory not appropriated by
the operating system

For files up to 200 KB, FastSort uses an
extended memory segment of 64 pages, or
as much memory as needed to avoid a
merge pass; for larger files, FastSort uses
enough memory to make only one merge
pass.

NOTCPUS
(cpu-num [, cpu-num] ...)

Specifies CPU numbers, in the range from
0 through 15, of processors not available
for use by subsorts

PRI priority Specifies the execution priority, in the range
from 1 through 199, for the SORTPROG
process

See PRI run-option for the RUN[D|V]
Command on page 8-156.

PROGRAM file-name Specifies a program file to be run in place
of $SYSTEM.SYSTEM.SORTPROG

SCRATCH file-name Specifies the name of a disk file for use as
a sort work file

If the file already exists, it must be un-
structured. A volume name alone is
acceptable. The default is a temporary file
on $SYSTEM.

Table 8-4. SORT DEFINE Attributes (page 2 of 3)

Name and Value Function
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-180

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
SEGMENT size Specifies the size, in pages, of an extended
memory segment for FastSort to use; it
must be at least 64%, but not over 90% of
the memory not appropriated by the
operating system

If you specify SEGMENT, you must omit
MODE. The default is the same as MODE
AUTOMATIC.

SUBSORTS
(DEFINE-name [, DEFINE-name] ...)

Specifies one or more DEFINE names, of
class SUBSORT, available for use by this
DEFINE

Those DEFINEs must exist, but are not
checked for validity until the sort begins.

SWAP file-name Specifies a swap file for use by the
extended memory segment

If the file already exists, it must be
unstructured. A volume name alone is
acceptable if it is on the local system. The
default is a temporary file on the same
volume as the scratch file, if that file is
local, or a temporary file on $SYSTEM, if it
is not.

Table 8-4. SORT DEFINE Attributes (page 3 of 3)

Name and Value Function
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-181

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
Creating a SPOOL DEFINE

Table 8-5 describes the attributes that apply to the Spooler subsystem, and the values
available for those attributes. The only required SPOOL attribute (other than CLASS) is
LOC.

Table 8-5. SPOOL DEFINE Attributes (page 1 of 2)

Name and Value Function

BATCHNAME batch-name Specifies a batch name for a job

It can be from 1 to 31 characters in length, and can
contain hyphens as well as alphanumeric characters.
It must not begin or end with a hyphen, and must
contain at least one letter. The default is all spaces.

COPIES num Specifies the number of copies, in the range from 1
through 32767, to be printed

The default is 1.

FORM form-name Specifies a form name for jobs created by the
DEFINE, denoting requirements (such as special
paper) associated with a job

It is a string from 1 to 16 characters in length. The
default is all spaces.

HOLD { ON | OFF } Sets the hold flag for jobs created by any process
using the DEFINE

The default is OFF.

HOLDAFTER { ON | OFF } Sets hold-after-printing flag for jobs created by any
process using the DEFINE

The default is OFF (delete job from spooler after
printing).

LOC
[\node-name.] $collector
[.group-name[.dest]]

Specifies a spooler location to which jobs are to be
sent

MAXPRINTLINES num Specifies the maximum number of lines per job, in the
range from 1 through 65534

Exceeding the limit causes a “file full” error. The
default is no limit.

MAXPRINTPAGES num Specifies the maximum number of pages per job, in
the range from 1 through 65534

Exceeding the limit causes a “file full” error. The
default is no limit.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-182

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
OWNER
{ group-name.user-name } |
{ group-num.user-num }

Specifies the owner of all jobs created by any
process using the DEFINE

The numeric form of user ID must be enclosed in
quotes. The default is the user ID of the spooler
request initiator.

PAGESIZE num Specifies the number of lines per page, in the range
from 1 through 32767, to be used by PERUSE when
it performs a LIST or PAGE command

The de-fault is a size specified by the creating
process or, if no such process exists, the default
page size of PERUSE.

REPORT report-name Specifies a report name, 1 to 16 characters in length,
to be printed in the job header created by any
process using the DEFINE

It can contain any alphanumeric characters, but must
begin with a letter. If it contains spaces, it must be
enclosed in quotes. The default is the group-
name.user-name of the owner.

SELPRI num Specifies the selection priority, in the range from 0
through 7 (0 is lowest), of jobs created using the
DEFINE

The default is 4.

Table 8-5. SPOOL DEFINE Attributes (page 2 of 2)

Name and Value Function
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-183

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
Creating a SUBSORT DEFINE

Table 8-6 lists the attributes that apply to parallel sorts run under the FastSort
subsystem and the values available for those attributes. See the FastSort Manual for a
full description of the effects of these attributes. The only required attribute (other than
CLASS) is SCRATCH.

Table 8-6. SUBSORT DEFINE Attributes

Name and Value Function

BLOCK size Specifies the size, in bytes, of input and output blocks for a
subsort scratch file

It can be any multiple of 512 up to 30 KB and it must be large
enough to accept the largest input record, rounded up to the
nearest even byte, plus 14 bytes overhead. The default is 16
KB.

CPU cpu-num Specifies the number, in the range from 0 through 15, of the
processor in which to run the subsort process

The default is the same CPU in which the primary disk
process for the scratch file’s volume is running.

PRI priority Specifies the execution priority, in the range from 1 through
199, for the subsort process

See the RUN[D|V] Command on page 8-156.

PROGRAM file-name Specifies a program file to be run in place of
$SYSTEM.SYSTEM.SORTPROG

SCRATCH file-name Specifies the name of a disk file for use as a sort work file

If the file already exists, it must be unstructured. A volume
name alone is acceptable. This attribute is required.

SEGMENT size Specifies the size, in pages, of an extended memory segment
for the subsort to use

It must be at least 64%, but not over 90% of the memory not
appropriated by the operating system. The default is 64
pages.

SWAP file-name Specifies a swap file for use by the extended memory
segment

If the file already exists, it must be unstructured. A volume
name alone is acceptable if it is on the local system. The
default is a temporary file on the same volume as the scratch
file, if that file is local, or a temporary file on $SYSTEM, if it is
not.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-184

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
Creating a TAPE DEFINE

Attribute values for a TAPE DEFINE must meet certain consistency rules, shown in
Table 8-7. The specific rules for particular attributes are listed in Table 8-8 on
page 8-186.

You can display all the attributes that are currently set or defaulted with the SHOW
DEFINE * command. This command also checks these attributes for consistency and
returns the check number of the first consistency check that fails.

Table 8-7. TAPE DEFINE Attribute Consistency Rules

Check
Number Description

001 You can specify either RETENTION or EXPIRATION, but not both.

002 If you specify USE IN or EXTEND, you must include VOLUME and specify
LABELS ANSI or LABELS IBM. If you specify REELS, the value must equal
the number of volumes specified in VOLUME.

003 If you specify VOLUME, you must also specify LABELS ANSI, LABELS IBM,
or LABELS IBMBACKUP. If you specify LABELS, you must also specify
VOLUME.

004 If you specify LABELS ANSI, you must not specify the EBCDIC attribute, and
the reverse.

005 If you specify RECFORM F, you must specify a BLOCKLEN that is a multiple
of RECLEN.

006 If you specify DEVICE, you cannot specify SYSTEM in the same DEFINE,
and the reverse.

007 If you specify LABELS BYPASS or LABELS OMITTED, you must specify a
DEVICE; you must not specify any of these attributes: BLOCKLEN, EBCDIC,
EXPIRATION, FILEID, FILESECT, FILESEQ, GEN, OWNER, RECFORM,
RECLEN, REELS, RETENTION, SYSTEM, USE, VERSION, VOLUME.

008 If you specify VOLUME SCRATCH, you must not specify USE IN or USE
EXTEND.

009 If you specify LABELS IBM or LABELS IBMBACKUP, you must specify a
FILEID.

010 If RECLEN is less than 24, you must specify a BLOCKLEN.

011 If you specify LABELS IBMBACKUP, the system you specify in the SYSTEM
or DEVICE attribute must have an operating system RVU of C20 or later.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-185

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
Table 8-8. TAPE DEFINE Attributes (page 1 of 4)

Name and Value Function

* BLOCKLEN block-length Specifies the data block size, in bytes, in a tape file

The default is that the tape process does not check
block length (input files). If RECFORM is F, BLOCKLEN
must be a multiple of RECLEN.

DENSITY {800 | 1600 | 6250} Specifies the tape density in bits per inch

The specified density appears in mount messages sent
to the operator. The default is the current setting of the
tape drive.

DEVICE $device-name Specifies the name of the tape device where the tape file
is to be mounted

If you specify a tape drive on a remote system, the
system must be a node on your network. If you omit
both DEVICE and SYSTEM attributes, tapes must be
mounted on the local system. If you specify DEVICE,
you must omit SYSTEM.

EBCDIC {IN | OUT | ON | OFF} Specifies whether data is to be translated when
processing an IBM tape (9-track IBM tape labels are
always in EBCDIC)

IN: Data records read from the tape file are translated
from EBCDIC to ASCII.

OUT: Data records written to tape are translated from
ASCII to EBCDIC.

ON: Both IN and OUT; this is the default for IBM tapes.

OFF: Data records are not translated.

* EXPIRATION date Specifies the expiry date for this tape file (the first date
on which the file can be overwritten)

Specify month, day, and year, such as DEC311990. If
you specify EXPIRATION, you must omit RETENTION.

* FILEID file-name * FILEID file-name

* FILESECT volume-order Specifies the position of this volume within a
multivolume file being created at the same time

Specify an integer in the range 0001 to 9999 to indicate
the relative position of the volume. This number is
always 0001 for a single-volume file.

* FILESEQ file-order Specifies the position of this tape file in a multifile
volume

Specify an integer in the range 0001 to 9999 to indicate
the position of the file in the volume. This number is
always 0001 in a single-file organization.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-186

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
* GEN gen-number Indicates that this file is part of a generation group

Specify an integer in the range 0001 to 9999 to indicate
the absolute generation number. The default is 0001.

LABELS
{
ANSI |
IBM |
OMITTED |
BYPASS |
BACKUP |
IBMBACKUP
}

Specifies the type of tape and, for labeled tapes, the
label processing mode to be used

If you specify LABELS, you must also specify VOLUME.

ANSI: The tape file is on an ANSI-standard labeled tape,
and the system is to perform standard label processing
on the file (LP mode).

IBM: The tape file is on an IBM-standard labeled tape,
and the system is to perform standard label processing
on the file (LP mode). Any DEFINE that includes
LABELS IBM must also include RECFORM.

OMITTED: The tape file is not on a standard labeled
tape, and the system does no label processing except to
check that tape is not a standard labeled tape (NL
mode). If you specify LABELS OMITTED, you must also
include DEVICE.

BYPASS: The system does no label processing and
does not check whether tape is labeled (BLP mode). If
you specify LABELS BYPASS, you must also include
DEVICE.

BACKUP: The tape is used for labeled-tape BACKUP or
RESTORE operations. (LABELS BYPASS is also
acceptable for tapes to be read in RESTORE
operations, but not for tapes written by BACKUP
operations.)

IBMBACKUP: Indicates that the tape label is in IBM-
MVS format used by BACKCOPY, BACKUP, and
RESTORE.

* OWNER owner-id Identifies the owner ID in the VOL1 label for IBM labeled
tapes only (LABELS must be IBM or ANSI)

Specify any identifying name or code from 1 to 14
characters long.

MOUNTMSG "text" Specifies an additional mount message to be displayed
along with the system mount message or the drive
usage request printed when this DEFINE is opened

Specify a quoted or unquoted character string of up to
80 characters. Include information such as the length
and urgency of tape job.

Table 8-8. TAPE DEFINE Attributes (page 2 of 4)

Name and Value Function
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-187

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
* RECFORM { F | U } Specifies the record format

If you include LABELS IBM, you must also specify
RECFORM.

F: Indicates fixed-length records (the default for ANSI
tapes).

U: Indicates undefined length (the default for IBM
tapes).

For input files, BLOCKLEN, RECFORM, and RECLEN
values are not checked for consistency. But if you enter
any of these attributes, the corresponding field in the
label must match, or the tape will be rejected.

For output files, if you do not specify BLOCKLEN,
RECFORM, or RECLEN for an IBM-standard labeled
tape, the open is rejected. For an ANSI-standard labeled
tape, these defaults are assumed:

 RECFORM U
 RECLEN 0
 BLOCKLEN as configured for device

If you specify BLOCKLEN, RECFORM, and RECLEN for
a labeled-tape output file, label fields are generated with
those values.

* RECLEN record-length Specifies the record length of the tape file

For ANSI-standard tapes with RECFORM F, the default
RECLEN is the value configured for the device by
SYSGEN; if RECFORM is U, the default RECLEN is 0.
The record length can be in the range from 0 through
32767.

REELS volumes Specifies the number of volumes in a multivolume file

It is mandatory to specify this for any multivolume input
file. Specify an integer in the range from 0 through 255.
The default is 1.

* RETENTION days Specifies the retention period for the tape file

Specify an integer indicating number of days to retain
the tape file. This value is translated to an expiration
date when labels are written on the tape. The expiration
date prevents overwriting the tape contents. The default
is zero (the file expires immediately). If you specify
RETENTION, you must omit EXPIRATION. Specify an
integer in the range from 1 through 32767.

SYSTEM \node-name Gives the name of the system that contains the tape
drive specified in this DEFINE

If you include SYSTEM, you must omit DEVICE.

Table 8-8. TAPE DEFINE Attributes (page 3 of 4)

Name and Value Function
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-188

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
Examples

1. This command establishes a working attribute set that describes a tape file residing
on three ANSI standard tape volumes (1, 2, and 3). This file is to be read (USE IN),
and the system is to do standard label processing:

13> SET DEFINE CLASS TAPE, LABELS ANSI, VOLUME (1,2,3),&
13> &REELS 3, USE IN

2. In this example, a SET DEFINE command establishes a working attribute that
contains the attributes common to two DEFINEs that are to be created. Each is a

TAPEMODE
{ STARTSTOP | STREAM }

Specifies the operating mode for a cartridge tape drive;
for other types of drives, this attribute is ignored

If you specify TAPEMODE, BLOCKSIZE must be greater
than the default of 2 to speed the tape writing process
and to produce a more compact tape. The default is
STARTSTOP.

USE { IN | OUT | EXTEND |
OPENFLAG }

Specifies how the tape file is to be used

IN: The file is to be read from.

OUT: The tape is to be written to.

EXTEND: Data is to be appended to the tape file.

OPENFLAG: Uses the type of access indicated by the
access flag of the OPEN call (it must be either Read or
Write; Read/Write becomes Read).

* VERSION number Indicates a version within one generation

Specify an integer in the range 00 to 99. The default is
00.

VOLUME
{ vol-id | SCRATCH }

Specifies one or more tape volume IDs, or specifies that
any scratch tape is acceptable for a labeled BACKUP or
ANSI tape

Specify a unique one-byte to six-byte identification code
assigned to the volume; for a multivolume file, enclose
the list of volume IDs in parentheses. SCRATCH
represents a scratch tape. If you specify USE IN, you
must include a VOLUME attribute; otherwise, its value is
SCRATCH. If you specify a VOLUME attribute, you must
specify LABELS ANSI, LABELS IBM, or LABELS
BACKUP. If you specify VOLUME SCRATCH, you
cannot specify USE IN or USE EXTEND.

Note: The maximum number of tape volumes that can
be named in a CLASS TAPE DEFINE is 61.

* Attributes marked with an asterisk have corresponding fields in the tape system labels. See the description of
tape label formats in the Guardian User’s Guide.

Table 8-8. TAPE DEFINE Attributes (page 4 of 4)

Name and Value Function
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-189

U TILS :TA C L C om m ands and Functions S E T D E F IN E C om m and
CLASS TAPE DEFINE that describes a tape file residing on volume 30 of an ANSI
standard labeled tape mounted on tape drive $TAPE2.

Next, a SHOW DEFINE command displays the status of the current working
attribute set. Finally, two ADD DEFINE commands create the DEFINEs and set the
attributes that are unique to each DEFINE, which in this case are the file names
MAYRCDS and JUNRCDS:

14> SET DEFINE CLASS TAPE, LABELS ANSI, FILEID empty,&
14> &DEVICE $tape2, VOLUME 30

15> SHOW DEFINE
 CLASS TAPE
 VOLUME 30
 LABELS ANSI
 FILEID empty
 DEVICE $TAPE2

16> ADD DEFINE =one, FILEID mayrcds
17> ADD DEFINE =two, FILEID junrcds

18> INFO DEFINE (=one, =two), DETAIL

 DEFINE NAME =one
 CLASS TAPE
 VOLUME 30
 LABELS ANSI
 FILEID mayrcds
 DEVICE $TAPE2

 DEFINE NAME =two
 CLASS TAPE
 VOLUME 30
 LABELS ANSI
 FILEID junrcds
 DEVICE $TAPE2
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-190

U TILS :TA C L C om m ands and Functions S E T D E FM O D E C om m and
SET DEFMODE Command

Use the SET DEFMODE command to enable or disable the use of DEFINEs in the
current TACL process.

ON

enables the use of DEFINEs in, and the propagation of DEFINEs from, the current
TACL process. This means that unless you change the DEFMODE setting in a
RUN command, the process started by that command has an initial DEFMODE
setting of ON, and all DEFINEs are propagated to that new process.

OFF

disables the use of all DEFINES in the current TACL and the propagation of
DEFINEs from it. When DEFMODE is OFF, the current TACL cannot use any
DEFINEs. Unless you change the DEFMODE setting in a RUN command, the
process started by that command has an initial DEFMODE setting of OFF, and no
DEFINEs are propagated to that new process.

Consideration

DEFMODE is always set ON when TACL is first started, and whenever you log on from
the logged-off state.

SET DEFMODE { ON | OFF }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-191

U TILS :TA C L C om m ands and Functions S E T H IG H P IN C om m and
SET HIGHPIN Command

Use the SET HIGHPIN command to establish the default PIN range for processes
started by the current TACL when there is no HIGHPIN directive on a RUN command
or #NEWPROCESS call.

ON

specifies that a process will run at a high PIN if the HIGHPIN bit is enabled in the
object file (and in the library file, if any) and if a high PIN is available. ON is the
default value for HIGHPIN.

OFF

specifies that processes run at a low PIN, regardless of any other considerations.

Considerations

 This command sets the built-in variable #HIGHPIN. Like other built-in variables,
#HIGHPIN can be set, expanded, pushed, and popped.

 Use SHOW HIGHPIN to display the current value of #HIGHPIN interactively, or
type #HIGHPIN to expand the variable in a routine.

SET HIGHPIN { ON | OFF }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-192

U TILS :TA C L C om m ands and Functions S E T IN S P E C T C om m and
SET INSPECT Command

Use the SET INSPECT command to establish default debugging conditions for
processes started by the current TACL.

OFF

disables the Inspect symbolic debugger and selects the Debug program as the
default debugger. (The Debug program is the system default debugging utility.) The
Debug program then prompts for input when any process created by the current
TACL (or any of its descendants) enters the debug state.

ON

selects the Inspect symbolic debugger as the default debugger for all programs
started by the current TACL. The Inspect debugger then prompts for input when
any process created by the current TACL (or by any descendant of the current
TACL) enters the debug state.

SAVEABEND

establishes the Inspect symbolic debugger as the default debugger and
automatically creates a save file if the program ends abnormally.

Considerations

 The Inspect product is a symbolic debugger. It allows you to control running
processes and SCREEN COBOL programs and to examine memory and modify
data values-all with commands that use your source language.

In addition to the source-language commands, the Inspect debugger supports
machine-level commands for maximum debugging flexibility. (For more
information, see the Inspect Manual. See also DEBUG Command on page 8-48,
RUN[D|V] Command on page 8-156, and SHOW Command on page 8-200.)

 Your selection of the Inspect debugger as the default debugger is effective until
you enter another SET INSPECT command or until you log off. After you log off,
the Debug program once again becomes the default debugger. However, if you
enter a SET INSPECT command and log on again without logging off, Inspect
remains the default debugger.

SET INSPECT { OFF | ON | SAVEABEND }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-193

U TILS :TA C L C om m ands and Functions S E TP R O M P T C om m and
SETPROMPT Command

Use the SETPROMPT command to change the TACL prompt. By default, TACL
prompts with a history number and a greater-than sign (>) followed by a space.

SUBVOL

displays the current subvolume, followed by the command number, a greater-than
sign, and a space.

VOLUME

displays the current volume, followed by the command number, a greater-than
sign, and a space.

BOTH

displays the current volume and subvolume, followed by the command number, a
greater-than sign, and a space.

NONE

displays the command number, a greater-than sign, and a space. NONE is the
default.

Examples

1. This example illustrates how to set your prompt to your current subvolume:

12> SETPROMPT SUBVOL
BOOK 13>

2. You can also set your prompt to both your volume and subvolume by entering:

BOOK 13> SETPROMPT BOTH
$STEIN BOOK 14>

SETPROMPT { SUBVOL | VOLUME | BOTH | NONE }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-194

U TILS :TA C L C om m ands and Functions S E T S W A P C om m and
SET SWAP Command

Use the SET SWAP command to select the swap volume for all subsequent RUN
commands, unless a swap volume is explicitly specified in the RUN command.

$volume-name

is the name of the volume used to hold virtual data during memory swaps of the
user data stack during process execution.

Considerations

 To clear any swap volume previously set, use the SET SWAP command without
the $volume-name parameter.

 Any RUN command that explicitly specifies a swap volume overrides the previous
SET SWAP $volume-name command.

 If no SET SWAP command has been issued, and no swap volume is specified in a
RUN command, the swap volume defaults to the volume in which the program is
stored.

 This command alters the SWAP attribute of the =_DEFAULTS DEFINE.

SET SWAP [$volume-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-195

U TILS :TA C L C om m ands and Functions S E TTIM E C om m and (S uper-G roup O nly)
SETTIME Command (Super-Group Only)

Use the SETTIME command to set the date and time-of-day clock for the system. You
normally use SETTIME after you cold load the first processor from disk, but before you
load the rest of the system using the RELOAD command. You can also use SETTIME
to reset the system clocks after a power failure (the interval clock in a processor
module stops when power is interrupted). To use the SETTIME command, you must
have a group ID of 255.

month

is the name of the month. You must give at least the first three letters of the name
of the month. You can use uppercase or lowercase for month.

day

is the day of the month, specified as an integer in the range from 1 to 31, inclusive.

year

is the 4-digit calendar year, from 1975 through 9999.

hour

is the hour of the day, specified as an integer in the range from 0 to 23, inclusive.

min

is the minute of the hour, specified as an integer in the range from 0 to 59,
inclusive.

sec

is the second of the minute, specified as an optional integer in the range from 0 to
59, inclusive. If you omit sec, 0 is assumed.

GMT

is Greenwich mean time.

LST

is local standard time.

LCT

is local civil time (LST corrected for daylight-saving time). LCT is the default.

SETTIME { month day | day month } year , hour: min[: sec] {
GMT | LST | LCT }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-196

U TILS :TA C L C om m ands and Functions S E TTIM E C om m and (S uper-G roup O nly)
Considerations

 The valid date range is from 01 January 1975 0:00:00.000000 to 31 December
4000 23:59:59.999999.

 If you execute this command while a system monitoring measurement is in process
by the XRAY facility, invalid measurements result.

 The CONVERTTIMESTAMP system procedure is invoked while setting the system
clock. See #CONVERTTIMESTAMP Built-In Function on page 9-79 for
descriptions of the error messages that CONVERTTIMESTAMP could display.

 SETTIME calls the #SETSYSTEMCLOCK built-in function, which in turn calls the
SETSYSTEMCLOCK system procedure. If you use SETTIME to set the system
clock forward or backward two minutes or less, the system adjusts the clock in
small increments rather than setting it to the new time. Adjusting the clock forward
two minutes takes about 33 hours. Adjusting the clock back two minutes takes
about 14 days.

If you issue two SETTIME commands in less than ten seconds, the system stops
any ongoing adjustment and sets the clock to the value specified in the second
call.

 The valid date range is from 01 January 1975 0:00:00.000000 to 31 December
9999 23:59:59.999999. If the system does not support the maximum value for year
(9999), the SETTIME command returns the error message:

 Invalid date and/or time format.

Example

1. To set the system clock to 8:01 p.m. on July 9, 2004, enter:

34> SETTIME JUL 9 2004, 20:01

2. You can see the new time by entering the TIME command:

35> TIME
July 09, 2004 20:01:ss
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-197

U TILS :TA C L C om m ands and Functions S E T V A R IA B LE C om m and
SET VARIABLE Command

Use the SET VARIABLE command to change the contents of a variable level or built-in
variable. The syntax and action of the SET VARIABLE command are the same as the
#SET built-in function.

There are two forms of the SET VARIABLE command:

option

is either of these:

IN file-name

specifies that the named file is to be read into the variable level. If this option is
present, text is not allowed.

TYPE type-name

specifies the type of variable level being set.

type-name

is one of these:

ALIAS

specifies that variable-level is an alias. This implies that text is the
name of a variable level or a file.

DELTA

specifies that variable-level is a #DELTA command variable. This
implies that text must be #DELTA commands.

DIRECTORY

specifies that variable-level is a directory. If you omit text, this option
clears variable-level and establishes an empty directory. If you include
text, it must have a specific form:

mode file-name

where mode is either PRIVATE or SHARED, and file-name is the name
of an existing segment file (code 440); the segment file must not reside
on a remote system. This form of the SET VARIABLE command
associates a directory variable with a segment file in the same way as
an ATTACHSEG command.

SET VARIABLE [/ option [, option] /] variable-level
 [text]
SET VARIABLE built-in-variable [built-in-text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-198

U TILS :TA C L C om m ands and Functions S E T V A R IA B LE C om m and
MACRO

specifies that text is a TACL macro.

ROUTINE

specifies that text is a TACL routine.

TEXT

specifies that text is simply text (it has no special meaning to TACL).

variable-level

is the name of an existing variable level, of the form:

variable-name[. level-num]

If you omit . level-num, the top level of the variable is assumed.

text

is the new contents of the variable level. If the IN option is supplied, you cannot
specify text.

built-in-variable

is the name of a built-in variable.

built-in-text

is the new value for the built-in variable.

Considerations

 The syntax and operation of the SET VARIABLE command is the same as that of
the #SET built-in function.

 The SET VARIABLE command replaces the current contents of variable-level with
the specified text or, if you use the IN option, the contents of the specified file.
Unless you specify a TYPE option, the variable type remains the same.

 You cannot use a text string with the IN option, nor can you use the IN option with
a built-in variable.

 The SET VARIABLE command cannot put leading or trailing spaces into a variable
level.

Example

This example illustrates the use of the SET VARIABLE command. This command sets
a variable level named VARA, of type MACRO, to the text *,USER SUPPORT.ALICE:

25> SET VARIABLE / TYPE MACRO / vara *,USER SUPPORT.ALICE
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-199

U TILS :TA C L C om m ands and Functions S H O W C om m and
SHOW Command

Use the SHOW command to display the values of attributes set with the SET
command.

OUT list-file

specifies a device, or a sequential file accessible to the sequential I/O (SIO) facility,
that is to receive a listing of command output. If you omit this option, TACL writes
the listing to its current OUT file.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

attribute

is any attribute controlled by the SET command. Currently, these attributes are
controlled by SET:

DEFMODE

is the enable mode (ON or OFF) for DEFINEs. For more information, see the
RUN[D|V] Command on page 8-156 and SET DEFINE Command on
page 8-173.

INSPECT

is the name of the alternate symbolic debugging utility. See also the DEBUG
Command on page 8-48, the SET INSPECT Command on page 8-193, the
RUN[D|V] Command on page 8-156, and the Inspect Manual.

HIGHPIN

is used to establish the default PIN range for processes started by the current
TACL when there is no HIGHPIN directive on a RUN command or
#NEWPROCESS call.

SWAP

is the volume that holds virtual data during memory swaps of the user data
stack.

Consideration

Entering SHOW without specifying any attributes causes all SET attributes to be
displayed.

SHOW [/ OUT list-file /] [attribute [, attribute] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-200

U TILS :TA C L C om m ands and Functions S H O W C om m and
Examples

1. This command displays the status of the INSPECT and SWAP attributes:

13> SHOW SWAP,INSPECT

 Swap $RALPH
 Inspect ON

2. To see all attributes currently set, enter:

14> SHOW
 Defmode ON
 Highpin ON
 Inspect ON
 Swap

The display shows that DEBUG is the debugging utility in effect, DEFMODE is set ON,
and that no swap volume has been set.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-201

U TILS :TA C L C om m ands and Functions S H O W D E F IN E C om m and
SHOW DEFINE Command

 Use the SHOW DEFINE command to show the value associated with a specific
DEFINE attribute, to show all attribute values that are currently set or defaulted, or to
show all attributes in the current working set (that is, all the attributes associated with
the current CLASS) and the current value of each. For more information about
DEFINEs, see Section 5, Statements and Programs.

OUT list-file

specifies a device, or a sequential file accessible to the sequential I/O (SIO) facility,
that is to receive the output from SHOW DEFINE. The listing includes line numbers of
the new lines in the destination variable. If you omit this option, TACL writes the listing
to its current OUT file.

If you specify an OUT file that does not exist, TACL creates an EDIT file named list-file.
If you specify an OUT file that already exists, TACL appends the information to the end
of the file.

attribute-name

displays the name and current value of the specified attribute-name, a valid
name for a DEFINE attribute. Valid attribute names are described under the
SET DEFINE command. A required attribute that has no current value is
displayed with ?? as its value.

*

displays all attribute names and current values for the working attribute set (all
attributes associated with the current class); optional attributes that have no
current value are listed with a blank value.

Considerations

 Entering SHOW DEFINE with no parameter produces a display of the names and
current values of all attributes that are currently set or that have default values.
Required attributes that have no current value are listed with ?? as the value.
Optional attributes that have no current value are not listed. Attributes whose
values violate the consistency rules (see Table 8-7 on page 8-185) are flagged with
an asterisk (*).

 The SHOW DEFINE command checks for consistency among the attributes in the
working attribute set. If the attributes are inconsistent (that is, if at least one has a
value that conflicts with that of another attribute), the inconsistent attribute is
flagged with an asterisk, and a warning message is displayed; for example:

81> SHOW DEFINE
 CLASS TAPE
* VOLUME 1265

SHOW [/ OUT list-file /] DEFINE [attribute-name | *]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-202

U TILS :TA C L C om m ands and Functions S H O W D E F IN E C om m and
* LABELS OMITTED
Current attribute set is inconsistent, check number 3

If the attributes are incomplete (that is, if a required attribute is missing), a warning
message is displayed, and the value for the missing attribute is displayed as ??. For
example:

87> SHOW DEFINE
 CLASS MAP
 FILE ??
Current attribute set is incomplete

TACL returns an error if you specify an attribute that is not a member of the working
attribute set (an attribute that is not associated with the current CLASS).

To obtain additional error information, use #ERRORNUMBERS.

Examples

1. To display the value currently set for the DEVICE attribute, enter:

92> SHOW DEFINE DEVICE
 DEVICE $TAPE

2. This SHOW DEFINE command displays a working attribute set that specifies a
CLASS TAPE DEFINE:

95> SHOW DEFINE
CLASS TAPE
VOLUME (25436, 75444, 23121)
LABELS IBM
USE IN

3. This command displays all working attributes and the value for each:

98> SHOW DEFINE *
CLASS TAPE
VOLUME (25436, 75444, 23121)
LABELS IBM
REELS
OWNER
FILESECT
FILESEQ
FILEID
RETENTION
EXPIRATION
GEN
VERSION
RECFORM
BLOCKLEN
RECLEN
DENSITY
RECLEN
USE IN
DEVICE
EBCDIC
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-203

U TILS :TA C L C om m ands and Functions S H O W D E F IN E C om m and
MOUNTMSG
SYSTEM
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-204

U TILS :TA C L C om m ands and Functions S IN K C om m and
SINK Command

Use the SINK command to invoke a function but discard its result. SINK can discard
nonnumeric results as well as numeric ones.

Consideration

Use of the SINK command discards error indications returned by a function. Therefore,
the use of SINK is not recommended unless you do not need to know if an error
occurred. For example, if you want to purge a file but do not care if you try to purge the
file and the file does not exist, use SINK to discard any error that might occur.

Example

This command loads the TACL library file MYMACS into memory, but does not display
the list of variables that were modified:

14> SINK [#LOAD mymacs]

SINK [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-205

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
STATUS Command

Use the STATUS command to display information about one or more running
processes. The STATUS command is an alias for the #XSTATUS built-in function.

OUT list-file

specifies a device, or a sequential file accessible to the sequential I/O (SIO) facility,
that is to receive the STATUS output. If you omit the OUT option, the STATUS
listing goes to the OUT file in effect for the current TACL (usually the home
terminal).

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
status information to the end of the file.

range

is any of these:

[\node-name.] cpu,pin
[\node-name.] cpu-number
[\node-name.]$process-name
[\node-name.]*

\node-name

requests the status of all specified processes running in \ node-name.

cpu,pin

requests the status of a particular process.

cpu-number

requests the status of all processes running in a particular CPU.

$process-name

requests the status of a particular named process or process pair.

*

requests the status of processes running in all CPUs.

If you omit range, STATUS reports on the last process started by the current TACL,
or for which TACL last paused, if that process is still running. is any one of these:

GMOMJOBID $process-name. num
PRI [priority]
PROG [program-file-name | file-name-template]

STATUS [/ OUT list-file /] [range] [, condition] ...
 [, DETAIL] [, STOP] [, FORCED]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-206

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
TERM [$terminal-name]
USER [user-id]

GMOMJOBID $process-name.num

specifies processes with the given job ancestor ID. num is a signed integer.

LOADED [loaded-file-name | file-name-template]

is used to get the information about processes that are using given loaded
files. The same functionality can be used with built-in #XSTATUS.

LOADED specifies processes using the given loaded file name. If you omit the
loaded file specification, LOADED defaults to the program file name of the
current TACL.

You can use file-name-template characters in any field of the file specification
except the system field. The template characters are:

 * Matches zero or more characters
 ? Matches a single character

Template characters cannot match a volume identifier($) of a field separator(.).

PRI [priority]

specifies processes whose execution priority is less than or equal to the priority
given. If you omit priority, STATUS reports on processes whose priorities are
less than that of the current TACL.

PROG [program-file-name | file-name-template]

specifies processes with the given program file name. If you omit the program
file specification, PROG defaults to the program file name of the current TACL.

You can use file-name-template characters in any field of the file specification
except the system field. The template characters are:

Template characters cannot match a volume identifier ($) or a field separator
(.).

TERM [\node-name.$terminal-name]

specifies processes running on a given terminal. If you omit $ terminal-name,
STATUS reports on processes running on the home terminal of the current
TACL process. If you omit node-name, the STATUS command uses the system
specified in range or, if not specified in either argument, uses the default
system.

* Matches zero or more characters

? Matches a single character
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-207

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
USER [ident]

specifies processes created by a particular user, where ident is either group-
name.user-name or group-id, user-id. If you include USER without ident,
STATUS reports on processes whose creator accessor ID matches your user
ID.

If you specify more than one condition, STATUS reports on all processes that
satisfy all the conditions.

DETAIL

gives a detailed display of process status.

STOP

specifies that TACL is to try to stop each process for which information is
displayed (except the TACL process issuing the command), subject to the
normal rules governing which processes you are allowed to stop. TACL
displays a confirmation message asking if you want to stop the processes
specified by the command line. TACL does not indicate whether the STOP
option succeeds or fails.

FORCED

forces TACL to stop the processes specified by the command line. In this case,
TACL will not prompt you with a confirmation message.

Considerations

 STATUS, entered with no range or condition parameters, reports the status of the
last process TACL created, or for which TACL last paused, regardless of the CPU.
If that process is no longer running, STATUS reports nothing.

 The STATUS command displays information for I/O processes when appropriate
(for example, user 255,255 and the $OSP terminal). To eliminate the display of I/O
processes, add PRI 199 to the command. For example:

STATUS *, USER, PRI 199

 A STATUS cpu,pin request displays both processes if the requested process is part
of a process pair. If you request information about a system-image process, TACL
displays the status of the single system-image process.

 If you specify a single process and the process does not exist, TACL returns
“Process does not exist.”

 If the node name for a process cannot be retrieved by the STATUS program, the
node name for the home terminal will be displayed.

 If you specify a range of processes and none of the processes exist, TACL
displays nothing.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-208

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
 File-name-template is not supported for the options PROG and LOADED used
together. For example:

STATUS *, PROG file-name-template, LOADED file-name-template

 will return no information.

 If file-name-template is specified with the LOADED option, STATUS will display all
the processes associated with that loaded file.

 If the program file name for a process cannot be retrieved by the STATUS
program, “path to info down” is displayed in the output instead of the file
name.

For the attenuated display:

> STATUS *,TERM

Process Pri PFR %WT Userid Program file Hometerm

$Y906 1,158 150 001 104,111 <Path to info down> \RCM.$Z1

$MPMA 3,90 129 000 104,111 $A.XTK.XMSGX $Z2

$MP 5,80 150 R 000 104,111 $MG.TEST.TACL $Z3

 For the detailed display:

> STATUS $MP,DETAIL

System: \PRUNE March 29, 2004 15:27

Pid: 5,80 ($MP) Primary

READY

Priority: 150

Wait State: %000

Userid: 104,111 (SDEV.FRED)

Myterm: \PRUNE.$Z3

Program File Name: <Path to info down>

Swap File Name: $MG.#0012980

Current Extended Swap File Name: $MG.TEST.TACLSEGF

Process Time: 0:0:1.974

Process Creation Time: March 29, 2004 15:22:24.101230

Process States: LOGGED ON, FORCED LOW, RUNNABLE

GMOMJOBID:

If the processor for the disk process controlling the disk where the program file
resides fails, the process file name is unavailable.

 If the output of the STATUS command includes the Swap File Name parameter
and no swap file name has been set with either (or both) the SWAP swap-file

option of the RUN command or the SET SWAP [$volume-name] command, a
dummy file name, "$vol.#0", is returned. In this case, #vol is the name of the
physical volume that the operating system has selected for storing the swap file. In
the following example, “$SYSTEM.#0” is a dummy file name. The operating
system is using the $SYSTEM volume if a swap file is required.

Swap File Name: $SYSTEM.#0
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-209

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
 The output from the STATUS command can include information for OSS
processes: the OSS program pathname, OSS arguments, and OSS process ID.
Currently, only local OSS information can be obtained. For pre-D30 software
RVUs, OSS information cannot be obtained.

In the summary form of the STATUS command, the short form of the OSS program
pathname is output. In the detailed form of the STATUS command, the fully
qualified OSS program pathname, the OSS arguments, and the OSS process ID
are output.

The “Program file” display is limited to 26 characters. An OSS pathname can have
a maximum of 1024 characters. If the fully qualified OSS program pathname is 26
or fewer characters, then the entire name is output, as illustrated in this example:

STATUS *,USER

Process Pri PFR %WT Userid Program file Hometerm
$DCED X 0,339 155 004 255,161 /opt/dcelocal/bin/dced $ZTNT.#P

 Otherwise, only the filename portion of the name is output.

If the filename portion of the name is longer than 26 characters, then the filename
is truncated to the first 23 characters and ellipses (...) are appended to the name,
as illustrated in this example:

STATUS *,USER
Process Pri PFR %WT Userid Program file Hometerm
$DCEE X 0,340 155 004 255,161 /opt/dcelocal/bin/abcsd... $ZTNT.#R

If the file name portion of the name is not available, "No OSS file name" is
output for the file name. If no path name is available, a generic ZYQ-file program
file name is output.

The OSS program pathname should not be used as input into a TACL command
because it is not formatted in a way that a TACL process can process.

In the detailed STATUS display, the OSS pathname, the first 1024 bytes of the
arguments of the command that created the OSS process, and the OSS process
ID (a unique identifier for an OSS process) are output:

STATUS 0,339,DETAIL

System: \FOXII November 13, 1995 10:53
Pid: 0,339 ($ZDCED) Primary
Priority: 155
Wait State: %004 (LDONE)
Userid: 255,161 (SUPER.DCE)
Myterm: $ZTNT.#PTY000X
Program File Name: $OSS001.ZYQ00002.Z0000VK0
Swap File Name: $DCE.#0000249
Current Extended Swap File Name: $DCE.#0000250
Library File Name: $SYSTEM.ZSRL.LDCE
Process Time: 0:0:15.859
Process Creation Time: November 13, 1995 10:13:06.028548
Process States: RUNNABLE
GMOMJOBID:
OSS Pathname: /opt/dcelocal/bin/dced
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-210

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
OSS Arguments: -b
OSS PID: 882049029

 The output of the TACL STATUS command along with the DETAIL option now
display ProgramDataModel, IPUAssociation, and IPUNumber depending on the
following criteria:

 ProgramDataModel is displayed for RVUs H06.24/J06.13 or later.

 IPUAssociation is displayed for RVUs J06.16 or later.

 IPUNumber is displayed for RVUs J06.03 or later.

Examples

1. To view the status of user 103, 141 enter:

14> STATUS *, user 103, 141

This information is displayed:

 The process name, if any.

 The process type: If the process is the primary process, nothing is displayed. If
the process is a backup process, “B” is displayed. If the process is an OSS
process, “X” is displayed.

 The CPU and process number.

 The execution priority of the process.

 PFR code: P indicates that the process contains privileged code; F indicates
the process is waiting on a page fault; R indicates the process is on the ready
list.

 The wait state. This value is obtained from the wait field of the awake-wait
word in the process control block (PCB) for the process. The wait field in the
PCB can have these values:

wait-field.<8> wait on PON - CPU power on
.<9> wait on IOPON - I/O power on
.<10> wait on INTR - interrupt
.<11> wait on LINSP - INSPECT event
.<12> wait on LCAN - message system, cancel
.<13> wait on LDONE - message system, done

Process Pri PFR %WT Userid Program file Hometerm

$Y09M B 0,193 168 001 103,141 $SYSTEM.SYS10.TACL $ZTNT.#PTA8AE

9

X 0,611 168 000 103,141 /bin.sh $ZTNT.#PTA8AE

9

$Y09M 1,121 168 R 000 103,141 $SYSTEM.SYS10.TACL $ZTNT.#PTA8AE

9

H P N onS top TA C L R e fe rence M anua l — 429513-017
8-211

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
.<14> wait on LTMF - TMF request

.<15> wait on LREQ - message system, request

 The bits in the wait field are numbered from left to right; thus, a wait state of
%003 means that bits 14 and 15 are set.

 The group-id, user-id of the process accessor.

 The name of the program file. For system processes, prog-name is
$SYSTEM.SYSnn.OSIMAGE. (Subvolume $SYSTEM.SYSnn contains the
operating system image currently in use; nn is a two-digit octal integer that
identifies that subvolume.)

 The home terminal of the process.

 The name of the user library file, swap file, and extended swap file, if you
requested the status of a single process (or a process pair) that is running with
a user library (such as one specified with the LIB option of the RUN command)
or swap files.

2. Including the DETAIL parameter in a STATUS command yields a display such as:

13> STATUS $TA8, DETAIL
System: \NEWYORK November 4, 2002 8:29
Pid: 1,31 ($TA8) Primary
Priority: 150
Wait State: %001 (LREQ)
Userid: 101,93 (SD.JKR)
Myterm: $TPQA8
Program File Name: $SYSTEM.SYS01.TACL
Swap File Name: $SYSTEM.#0000094
Current Extended Swap File Name: $TEMP.#0001203
Process Time: 0:1:47.870
Process Creation Time: October 22, 2002 22:12:19.599414
Process States: NO MESSAGES, LOGGED ON, RUNNABLE
GMOMJOBID:

System: \NEWYORK November 4, 2002 8:29
Pid: 2,35 ($TA8) Backup
Priority: 150
Wait State: %001 (LREQ)
Userid: 101,93 (SD.JKR)
Myterm: $TPQA8
Program File Name: $SYSTEM.SYS01.TACL
Swap File Name: $SYSTEM.#0000094
Current Extended Swap File Name: $TEMP.#0001203
Process Time: 0:0:2.238
Process Creation Time: October 22, 2002 22:12:21.426762
Process States: NO MESSAGES, LOGGED ON, RUNNABLE
GMOMJOBID:

The DETAIL option includes this information for the primary process and the
backup process (if it exists):

 The system on which the process is running.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-212

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
 The current system date and time.

 The CPU and process identification number of the process being displayed,
the process name (if any), and, if named, whether this is the primary or backup
process.

 The execution priority for the process.

 The wait-field value and the event that the process is waiting for. The values
have this meaning:

 User ID and name, Creator access ID (CAID) and its name, and Login name
(ALIAS).

 The home terminal name of the process. If this terminal is connected to a
remote system in a network, the node name precedes the terminal name, as in
\CHICAGO.$TERM49.

 The program file name. For system processes, the program file name is
$SYSTEM.SYSnn.OSIMAGE. This file contains the operating system image
currently in use; num is a two-digit octal integer that identifies the subvolume.

 The swap file name (see RUN[D|V] Command on page 8-156).

 The extended swap file name, if it exists.

 The name of the user library file, if any. This line appears only when you
request the status of a process or process pair that is running with a user
library (such as one specified with the LIB option for the RUN command).

 The process time that has elapsed.

 Process creation time in local civil time format.

%000 Process is running; or process was waiting on an event that
has since occurred and is now ready to run, process is in call
to DELAY, or process is suspended.

%001 Process is waiting for a message to occur on its $RECEIVE
file.

%002 Process is waiting for a TMF subsystem request to finish, or
user process is waiting for ENDTRANSACTION to finish.

%004 Process is waiting for input or output or interprocess request to
finish.

%005 Process is waiting for call to AWAITIO for I/O completion on
any file.

Note. U ser ID is equ iva len t to the P rocess access ID (P A ID). C A ID is d isp layed on ly if
it d iffe rs from P A ID . The Log in nam e is d isp layed on ly if the crea to r o f the process has
logged in us ing the A L IA S nam e.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-213

U TILS :TA C L C om m ands and Functions S TA TU S C om m and
 The current process state, which can be one of these values:

[IN SYSTEM MAB] [,NO MESSAGES]
[,TEMPORARY] [,LOGGED ON] [,PENDING]
STARTING
RUNNABLE
SUSPENDED
CPU BOUND
DEBUG MAB
DEBUG BREAKPOINT
DEBUG TRAP
DEBUG REQUEST
FORCED LOW
INSPECT MAB
INSPECT BREAKPOINT
INSPECT TRAP
INSPECT
REQUEST
SAVE ABEND
TERMINATING
TSN LOGON

 The job ancestor of the process.

3. To stop all of your processes on the terminal where your TACL is running (except
the TACL process itself):

STATUS *, TERM, STOP

The following confirmation message is displayed:

This command will display the processes satisfying the
command parameters and then stop them. Do you really want to
stop the processes (y/[n])?

A process, started by an alias (sspaul) from a progid-ed (super.super) object
owned by support.prs, will have the following as the output to the STATUS
command with the DETAIL option.

Pid: 2,110 ($PIPO) Primary
Priority: 148
Wait State: %004 (LDONE)
Process access id: 20,33 (SUPPORT.PRS)
Creator access id: 255,255 (SUPER.SUPER)
Login name: sspaul
Myterm: $ZN018.#PT05WPE
Program File Name: $SYSTEM.PJ00WTAL.VPROC
Swap File Name: $SYSTEM.#0
Current Extended Swap File Name: $SYSTEM.#0
Process Time: 0:0:0.004
Process Creation Time: April 2, 2009 20:02:36.642570
Process States: RUNNABLE
GMOMJOBID:
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-214

U TILS :TA C L C om m ands and Functions S TO P C om m and
STOP Command

Use the STOP command to request termination of a running process.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process number for the process.

Considerations

If a process terminates successfully, TACL does not display a message. Otherwise, the
STOP command displays information about the outcome of the termination request.
The possible outcomes are listed in Table 8-9.

 If the process cannot be terminated immediately, the STOP operating system
procedure queues the request.

 If you do not specify a process (cpu,pin or $process-name), STOP stops the
process most recently started by TACL or the one for which TACL most recently
paused, if that process is still running.

 The super ID can stop any user process. A group manager can stop any process
whose creator accessor ID matches any user ID in the group. Other users can stop
processes that have creator accessor IDs that match their user IDs or those that
have their stop mode set to zero. (See the Guardian Procedure Calls Reference
Manual for remote process restrictions.)

STOP [[\node-name.]{$process-name | cpu,pin}]

Table 8-9. STOP Command Messages

Message Meaning

Non-existent process-name The process has already stopped.

STOP message has been
queued.

The process was not stopped, but the operating system
queued the request.

Could not stop process-
name; insufficient privilege.

The process could not be stopped because the process
issuing the STOP command did not have sufficient privilege.

Could not stop process-
name; stop error error-
number.

The process could not be stopped, and TACL does not
recognize the reason for the failure.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-215

U TILS :TA C L C om m ands and Functions S TO P C om m and
 STOP cannot stop the current TACL or its backup. Use the built-in function #STOP
instead.

Examples

1. To stop the last process you started from the current TACL, enter:

14> STOP
15>

2. If you started the process whose cpu,pin is 0,18, or if you are the super ID, you
can stop the process by entering:

14> STOP 0,18
15>

3. If you are a group manager and a member of your group started the process
named $END, or if you are the super ID, you can stop the process $END by
entering the process name or cpu,pin:

14> STOP $END 15>
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-216

U TILS :TA C L C om m ands and Functions S U S P E N D C om m and
SUSPEND Command

 Use the SUSPEND command to temporarily suspend a process (or process pair) to
prevent it from competing for system resources.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process number for the process.

Considerations

 A suspended process or process pair cannot execute instructions until you
reactivate it. To reactivate a suspended process or process pair, use the
ACTIVATE command. (Also, another process can call the ACTIVATEPROCESS
procedure to reactivate the suspended process or process pair.)

 If you do not specify a process (cpu,pin or $process-name), SUSPEND
suspends the process most recently started by the current TACL or the one for
which TACL most recently paused, if that process is still running.

 TACL does not suspend the process (or process pair) you name in your SUSPEND
command until that process is ready to execute instructions. Therefore, any
outstanding waits (such as for I/O completion) are satisfied before the process or
process pair is suspended.

 Standard users can suspend only processes that they started (and descendants of
those processes). That is, the current user’s process accessor ID must match the
process accessor ID of the process to be suspended. (See the Expand Network
Management and Troubleshooting Guide for restrictions on remote processes.)

 A group manager can suspend any process whose process accessor ID matches
any user ID in the group.

 The super ID can suspend any process.

 SUSPEND cannot suspend the current TACL or its backup.

SUSPEND [[\node-name.]{$process-name | cpu,pin }]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-217

U TILS :TA C L C om m ands and Functions S U S P E N D C om m and
Examples

1. To suspend the last process you started from the current TACL, enter:

14> SUSPEND
15>

2. If you started a process with cpu,pin 0,18, or if you are the super ID, you can
suspend the process by entering:

14> SUSPEND 0,18
15>

3. If you are a group manager and a member of your group started the process
whose name is $CLOCK, or if you are the super ID, you can suspend the process
by entering the process name or cpu,pin:

15> SUSPEND $CLOCK
16>
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-218

U TILS :TA C L C om m ands and Functions S W ITC H C om m and
SWITCH Command

Use the SWITCH command to make your TACL backup the primary process,
initializing itself as though you had just logged on to it. The former primary process
becomes the backup. The SWITCH command is an alias for the #SWITCH built-in
function.

Considerations

 To use the switch command, your TACL must have a backup process. To create a
backup process, include it in the TACL RUN command or use the BACKUPCPU
command.

 The SWITCH command must be entered interactively. Do not include the SWITCH
command in an IN file specified in a command to run TACL; if you do so, TACL
performs the switch before processing other commands-and each switch causes
an initialization so that the TACL process continues to switch processors.

 SWITCH establishes an initial logon state, resetting all ASSIGNs, PARAMs, and
DEFINEs, invoking the TACLLOCL file and your TACLCSTM file, and setting the
history buffer index to 1.

 If an error occurs while TACL is trying to create the backup process or if the
backup CPU is down, TACL waits 3 minutes before trying to create the backup.

 All events, such as a backup-create error or an I/O error event, and the error
details are logged to the primary or $0 collector. This format is used:

TACL BACKUP CREATE ERROR: error, DETAIL: error-detail

error

is the error returned by PROCESS_CREATE.

error-detail

is the error detail value returned by PROCESS_CREATE.

For more information on the $0 collector, see the EMS Manual.

Example

Assume that the primary TACL process that controls your terminal is running in CPU 5,
and the backup TACL process is running in CPU 4. (To display the CPU numbers of
the processors where your TACL processes are running, use the WHO or STATUS
command.)

SWITCH
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-219

U TILS :TA C L C om m ands and Functions S W ITC H C om m and
You can switch the functions of these processes (make the TACL process running in
CPU 4 the primary process and the process running in CPU 5 the backup) by entering
the SWITCH command:

24> SWITCH
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-220

U TILS :TA C L C om m ands and Functions S Y S TE M C om m and
SYSTEM Command

Use the SYSTEM command to set the default system until you change it again or log
off. This command applies only to systems that are available in a network.

\node-name

is the name of a new default system. If you omit \ node-name, the system on which
your TACL is running becomes the current default.

Considerations

 The system you specify in a SYSTEM command is temporarily in effect. After you
enter a LOGON command, or a SYSTEM or VOLUME command with no following
parameters, your default system is again your logon default. (To change your logon
defaults, use the DEFAULT program.)

 If you are running a remote TACL process, entering SYSTEM with no following
parameters establishes that remote system as your default system, instead of the
local system to which your terminal is connected.

 These commands are not equivalent:

14> SYSTEM \ local-node-name

14> SYSTEM

The first invocation causes the network restrictions on file-name lengths to take
effect; the second does not. See the Expand Network Management and
Troubleshooting Guide for information on network file-name restrictions.

 To view the default system, use the WHO command or the #DEFAULTS built-in
variable. If the WHO command does not display a current system, your current
system is the local system.

Examples

1. To specify \LONDON as the current default system, enter:

14> SYSTEM \LONDON

When you enter the WHO command, the display includes the current default
system (omitted when it is the same as the saved default):

15> WHO
...
Current volume: $BOOKS.TACL Current system: \LONDON

2. To return to your saved default system (established by the DEFAULT command):

16> SYSTEM

SYSTEM [\node-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-221

U TILS :TA C L C om m ands and Functions S Y S T IM E S C om m and
SYSTIMES Command

Use the SYSTIMES command to display the current date and time (in local civil time
and Greenwich mean time), the date and time when the system was last cold loaded,
and the date and time SYSGEN was last run.

Considerations

 The SYSTIMES command displays four lines of information giving you the date
and time as shown here:

ddmmmyyyy, hh:mm:ss.mmmuuu LCT
ddmmmyyyy, hh:mm:ss.mmmuuu GMT
ddmmmyyyy, hh:mm:ss.mmmuuu Cold Load (LCT)
ddmmmyyyy, hh:mm:ss.mmmuuu SYSGEN (LCT)

 The SYSTIMES command applies only to the local system. To obtain the times
from a remote system, you must first start a TACL process there and then enter the
SYSTIMES command.

SYSTIMES

dd The day of the month (01, 02, ... , 31)

mmm The three-letter abbreviation for the month of the year (JAN,
FEB, ... , DEC)

yyyy The 4-digit calendar year from 1975 through 9999

hh The hour of the day (00, 01, ... , 23)

mm The minutes of the hour (00, 01, ... , 59)

ss The seconds of the minutes (00, 01, ... , 59)

mmmuuu The millisecond and microsecond of the second (000000,
000001, ... , 999999)

LCT Indicates that the date and time are shown in local civil time

GMT Indicates that the date and time are shown in Greenwich
mean time

Cold Load
(LCT)

Indicates the date and time of the most recent cold load

This time is given in local civil time.

SYSGEN (LCT) Indicates the date and time that SYSGEN was run to
produce the current system image

This time is given in local civil time.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-222

U TILS :TA C L C om m ands and Functions S Y S T IM E S C om m and
Example

To display the various system times, enter:

37> SYSTIMES
6 Aug 1992, 12:09:54.589512 LCT
6 Aug 1992, 20:09:54.589512 GMT
30 Jul 1992, 19:18:03.750427 Cold Load (LCT)
9 Jul 1992, 11:52:13.090000 SYSGEN (LCT)
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-223

U TILS :TA C L C om m ands and Functions TA C L P rogram
TACL Program

Enter the TACL program name to start a TACL process on your local system or on a
remote system (if your system is part of a network).

\node-name

is the name of the system on which TACL is to run. This parameter is valid only for
systems that have a node name (those that are part of a network). If you omit \
node-name, the TACL process runs on the system from which you issued the
TACL command.

run-option

is any of the options described in the RUN[D|V] Command on page 8-156.

backup-cpu-num

specifies the processor where the backup for the new TACL process is to run.
Specify backup-cpu-num as an integer in the range from 0 through 15. If you
omit this parameter, no backup process is created. You can specify a backup
process only if the TACL process is a named process (see the NAME option of the
RUN[D|V] Command on page 8-156).

parameter

is an operating parameter for the TACL process. It can be one of these:

ABENDONABEND
HOMETERM
PORTTACL
SEGVOL $volume-name
STOPONABEND

ABENDONABEND

specifies that this TACL process writes the message: “TACL stopped by a
process ABEND/STOP” to the current OUT file and terminates abnormally
(ABENDs) with an abend completion code when a child process (a process
started by this TACL process) terminates with no completion code or with an
abnormal completion code.

HOMETERM

specifies that TACL is to use the device specified by the TERM run-option as
the home terminal. If you omit HOMETERM, if the TACL IN file is the same as
the TACL OUT file, and if TACL is not in server mode, TACL uses its IN file
device as the home terminal, regardless of any specification by the TERM

[\node-name.]TACL [/ run-option [, run-option] ... /]
 [backup-cpu-num] [; parameter [, parameter]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-224

U TILS :TA C L C om m ands and Functions TA C L P rogram
option. If the IN file is the same as the OUT file and the TACL process is not
named, TACL does not set its home terminal.

A process started by TACL inherits its home terminal unless the RUN
command that initiates the process specifies a different home terminal.

PORTTACL

specifies that the TACL being started is a port TACL (for example, a modem
port for a dial-in line or an X25 connection).

When using this parameter, the #SETCONFIGURATION option
STOPONFEMODEMERR should be ON. The default setting for the
#SETCONFIGURATION option STOPONFEMODEMERR is OFF.

The relationship between PORTTACL and STOPONFEMODEMERR is
summarized in this table.

 To start a TACL with the PORTTACL parameter, you must have a group ID
of 255, regardless of the setting of the TACL configuration parameter
STOPONFEMODEMERR. If your group ID is not 255, the TACL process
terminates abnormally (ABENDs). It is the responsibility of the super-group

PORTTACL STOPONFEMODEMERR Outcome

Specified ON When error 140 (FEMODEMERR)
is encountered on its input, this
TACL process issues a modem
disconnect message, goes into the
logged-off state, and waits for a
modem connection message.
When this message is received, a
user can log on. The process does
not have to be restarted.

Specified OFF When error 140 (FEMODEMERR)
is encountered on its input, this
TACL process ignores it and
continues in whatever the current
state is at the time.

Absent ON When error 140 (FEMODEMERR)
is encountered on its input, this
TACL process issues a modem
disconnect message, goes into the
logged-off state, and stops.

Absent OFF When error 140 (FEMODEMERR)
is encountered on its input, this
TACL process ignores it and
continues in whatever the current
state is at the time.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-225

U TILS :TA C L C om m ands and Functions TA C L P rogram
user to decide which TACL processes need to be started with the
PORTTACL startup parameter.

 If a backup CPU was specified for the TACL process being started with the
PORTTACL startup option and the primary TACL fails, the backup TACL
process inherits the PORTTACL setting from the primary TACL process.

 The PORTTACL startup parameter is only valid as a TACL process startup
parameter option. It is not a valid LOGON parameter option.

 If a TACL process is not the process controlling modem port access, it
does not receive disconnect or error messages from the port modem,
including error 140 (STOPONFEMODEMERR). It is the responsibility of
the process that controls port access and receives messages from the port
modem to process appropriately disconnect and error messages, including
message140.

 If both TACL and $CMON processes are configured for modem port
connections and the STOPONFEERROR option is enabled, ensure that
the $CMON program can appropriately process the PORTTACL parameter
for TACL process startup.

SEGVOL $volume-name

specifies the name of a volume to be used by your extended segment, which
holds the TACL process variables. The default is the volume that contains the
default subvolume of the user who is logging on to the TACL.

STOPONABEND

specifies that this TACL process sends the message “TACL stopped by a
process ABEND/STOP” to the current OUT file and terminates normally
with a normal completion code when a subordinate process (a process
started by this TACL process) terminates with no completion code or with
an abnormal completion code.

Considerations

 If you start a TACL process with the STOPONABEND option and specify a backup
CPU for the TACL process, and if the CPU fails, the new primary TACL process
initializes itself as if you had just logged on to it. The new process inherits the
STOPONABEND setting and reprocesses the IN file.

Caution. If a port is accessed only by means of a TACL process (that is, there is no Safeguard
or other type of port access control) a potential system security breach exists unless the
PORTTACL option is specified and STOPONFEMODEMERR is set to ON.

In the case where the TACL process stops, a user can then start a TACL process, under the
user’s control. In the cases where the TACL process continues to run in the logged-on state,
and the connection is resumed, any user can access the TACL process without logging on and
assume the identity of the original user.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-226

U TILS :TA C L C om m ands and Functions TA C L P rogram
 To run TACL as a server process, set the IN file to $RECEIVE. For more
information, see the TACL Programming Guide.

 If the IN file is the same as the OUT file and the TACL process is not named, TACL
does not set its home terminal.

 When using the ABENDONABEND and STOPONABEND parameters:

If a TACL process is configured with either ABENDONABEND or STOPONABEND:

 If a child process is started in a different processor and that processor fails, the
TACL process assumes the subordinate process has terminated abnormally
and executes accordingly.

 If a child process is started as a NonStop process pair, both members of the
pair must terminate abnormally, or the processors where these child processes
are running fail before the TACL process assumes the child process pair has
terminated abnormally and executes accordingly.

 If a child process or process pair is started with the NOWAIT option and
terminates, the TACL process displays any error message it may have
received from the child process but continues to execute.

If a TACL process is configured with the STOPONABEND parameter and starts a
child process and this child process is stopped by another process:

 If the JOBID of the of the stopping process is the same as that of the stopped
process, the TACL process executes accordingly. It stops.

 If the JOBID of the of the stopping process is different from that of the stopped
process or 0, the TACL process does not execute accordingly. Instead, it
terminates abnormally (ABENDs).

 If a TACL process is started as a process pair (by specifying a BACKUP CPU
as a startup parameter) and the primary process fails, when the backup
process takes over it inherits the STOPONABEND or ABENDONABEND
setting. This takeover process reprocesses the IN file, and begins execution in
the logged-on state. If. however, the TACL process is the cold load TACL, then
it begins execution in the logged-off state.

 If a TACL process is started as a system load process pair and also controls a
modem port and the primary process fails, when the backup process takes
over, it inherits the STOPONABEND or ABENDONABEND setting. This
takeover process reprocesses the IN file and begins execution in the logged-off
state.

The STOPONABEND or ABENDONABEND parameter specified at TACL startup is
the default setting for all TACL logon sessions started from that TACL. You can
override the default setting by specifying the other parameter in the LOGON
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-227

U TILS :TA C L C om m ands and Functions TA C L P rogram
command. In this case, ABENDONABEND overrides the default setting
(STOPONABEND) just for this logon session.

12> TACL /NAME/ ;STOPONABEND
TACL 1> LOGON SOFTWARE.JANE ;ABENDONABEND
Password:

If you start a TACL process with both the STOPONABEND and ABENDONABEND
parameters, the last parameter specified in the list overrides the first one. In this
example, STOPONABEND overrides ABENDONABEND.

12> TACL /NAME/ ;ABENDONABEND
TACL 1> LOGON SOFTWARE.JANE ;STOPONABEND
Password:

The completion code returned by the TACL process when it generates the
“*ERROR* TACL stopped by a process ABEND/STOP - PID:” message is
specified in the :_COMPLETION (C-series systems) or
:_COMPLETION^PROCDEATH (D-series systems) variable:

ABEND
ERROR TACL stopped by a process ABEND/STOP - PID:
ABENDED: $MP

29> OUTVAR :_COMPLETION
_COMPLETION(0)
 MESSAGECODE(0:0)
 -6
 PROCESS(0:0) $MP
 HEADERSIZE(0:0) 0
 CPUTIME(0:0) 1854774
 JOBID(0:0) 0
 COMPLETIONCODE(0:0)
 5
 INTERNAL(0)
 TERMINATIONINFO(0:0)
 0
 SUBSYSTEM(0:0)
 TEXTLENGTH(0:0) 0
 TEXT(0:79)

30> OUTVAR :_COMPLETION^PROCDEATH
_COMPLETION^PROCDEATH(0)
 Z^MSGNUMBER(0:0)
-101
 Z^PHANDLE(0:0) 512.675.3.152.0.0.574.34458.0.175
 Z^CPUTIME(0:0) 1854774
 Z^JOBID(0:0) 0
 Z^COMPLETION^CODE(0:0)
 5
 Z^TERMINATION^CODE(0:0)
 0
 Z^SUBSYSTEM(0:0)

 Z^KILLER(0:0) 65535.65535.65535.65535.65535...
 Z^TERMTEXT^LEN(0:0)
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-228

U TILS :TA C L C om m ands and Functions TA C L P rogram
 0
 Z^PROCNAME(0)
 ZOFFSET(0:0) 82
 ZLEN(0:0) 20
 Z^FLAGS(0:0) 1
 Z^RESERVED(0:2) 1 1 0
 Z^DATA(0)
 BYTE(0:111) \PRUNE.$MP:150608489

Examples

1. This example shows how to start an interactive TACL process from an existing
TACL process:

13> TACL / IN $term1, OUT $term1, CPU 2, PRI 150, NOWAIT,&
13> &NAME $C106 / 3

After you enter this command:

 A new TACL process starts; it accepts commands from, and displays its output
on, terminal $TERM1.

 The name of the new TACL process is $C106.

 The primary TACL process for $TERM1 is running in processor 2. The backup
process is running in processor 3.

 The execution priority of the new process is 150.

 Because the NOWAIT option was used, you can immediately execute another
command from the current TACL without waiting for the new TACL process to
terminate.

2. This example shows how to start a TACL process that uses a command file for
input:

14> TACL / IN comfile, OUT listing, NOWAIT /

After you enter this command:

 A new TACL process executes the commands contained in the file COMFILE.

 Output from the new TACL process is sent to the file LISTING.

 The NOWAIT option means that control of the terminal returns to the original
TACL process while the new TACL process runs. You can now enter new
commands.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-229

U TILS :TA C L C om m ands and Functions T IM E C om m and
TIME Command

Use the TIME command to display the current setting of the system date and time-of-
day clock in the format:

mmm dd, yyyy, hh:mm:ss

Considerations

 The year is the 4-digit calendar year, from 1975 through 9999.

 You can execute a TIME command without having logged on (with the LOGON
command) to a system.

Examples

If you are logged on, the TIME command displays:

88> TIME
July 9, 2002 15:57:39

If you are logged off, the TIME command uses a slightly different format:

90> TIME
09 JULY 2002, 15:59

TIME
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-230

U TILS :TA C L C om m ands and Functions U S E C om m and
USE Command

The USE command defines the list of directories (in the built-in variable #USELIST)
that your TACL searches to find existing variables if they are not in your home
directory.

directory-name

is the name of an existing variable level of type DIRECTORY. If omitted, the use list
is set to:

:, :UTILS, :UTILS:TACL

Considerations

 When you invoke a name, TACL first searches the home directory for a variable of
that name, and then in #USELIST. If these searches are unsuccessful, TACL
searches #PMSEARCHLIST for a macro or program file of that name.

 The USE command ensures that your use list always includes the directories : (the
root), :UTILS, and :UTILS:TACL. If you omit any of these directories in your
arguments to USE, TACL automatically appends them to the use list in the order
shown. Access to, and operation of, TACL commands depends on their presence.

 Directories are put into #USELIST in the order in which they are specified.

 The list set by this command can be displayed with the ENV command.

 You can save and restore the use list by pushing and popping #USELIST.

 If you detach a segment contained in the current use list or a pushed use list, the
directory is removed from the use list.

 The use list can contain up to 100 directories.

Example

13> USE MYDIR
14> ENV
Home :MYDIR.1
Pmsearch $MYVOL.MINE, $SYSTEM.SYSTEM
System \MYSYS
Use :MYDIR.1, :, :UTILS.1, :UTILS.1:TACL.1
Volume \MYSYS.$WORK.PROJECT, "NUNU"

USE [directory-name [[,] directory-name] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-231

U TILS :TA C L C om m ands and Functions U S E R S P rogram
USERS Program

Use the USERS program to list user attributes for a particular user or range of users.

run-option

is any of the options described in the RUN[D|V] Command on page 156.

range

specifies a particular user or group of users to be listed. Note that range refers to
the local system only. The allowable range specifications and their meanings are:

(blank)

lists current user only.

group-id,user-id

lists user with specified user number.

group-id,*

lists all users in specified group.

group-name.user-name

lists named user only.

[group-name.]*

lists all users in named group. If you omit group-name, USERS,lists users in
your group.

, or *.*

lists all users.

Examples

1. To display the USERS listing for yourself (the currently logged-on user), enter:

13> USERS

2. To find out the user name associated with the user ID 8,44, enter:

14> USERS 8,44

The USERS program displays information such as this:

GROUP USER I.D. # SECURITY DEFAULT VOLUMEID

MANUF .FRED 008,044 NUNU $BIG.BAD

USERS [/ run-option [, run-option] ... /] [range]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-232

U TILS :TA C L C om m ands and Functions U S E R S P rogram
3. You can get this information for all users in the PARTS group by entering:

15> USERS PARTS.*

GROUP USER I.D. # SECURITY DEFAULT VOLUMEID

PARTS .CLYDE 001,000 GGGO $SYSTEM.ENGINE
PARTS .JOE 001,001 CUCU $SYSTEM.TRANS
PARTS .MARY 001,002 AOGO $SYSTEM.WHEELS
PARTS .MANAGER 001,255 GGGA $SYSTEM.PAYROLL
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-233

U TILS :TA C L C om m ands and Functions V A R IA B LE S C om m and
VARIABLES Command

Use the VARIABLES command to display the names of all variables in a directory.

directory-name

is the name of an existing variable level of type DIRECTORY.

Considerations

 If you omit directory-name, the home directory is assumed.

 If the directory being displayed contains a directory, that inner directory name is
flagged with an asterisk (*). The names of variables in that directory are not listed.

Example

This example lists variables in the home directory:

39> VARIABLES

Directory :

*MYSEG NEWPTIME OLDPTIME PROCESSID
*UTILS _PROMPTER _TACLBASE_FILE

VARIABLES [directory-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-234

U TILS :TA C L C om m ands and Functions V A R IN FO C om m and
VARINFO Command

Use the VARINFO command to display attribute information about one or more of your
variables.

variable

is the name of an existing variable.

Considerations

 If you omit variable, VARINFO displays information about all variables in your
home directory.

 VARINFO displays information similar to this:

Variable L/D Type Frm Mode File Process
MYDIR 1/1 DIRECTORY 0 SHARED $V1.SV2.FILE3

Variable

indicates the name of the variable.

L/D L

indicates the specific level of a variable about which you want information; D
(depth) indicates the total number of levels. Type indicates the type of variable
(directory, text, and so on).

Frm

indicates the frame number in which the variable level being examined was
created.

Mode

indicates different types of status of a variable depending on whether it is
associated with #REQUESTER or #SERVER, or with a segment:

 Mode is one of these options for #REQUESTER:

READ WRITE

 Mode is one of these options for #SERVER:

IN IN_DYNAMIC OUT STATUS PROMPT

 Mode is one of these options for a segment:

VARINFO [variable [[,] variable] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-235

U TILS :TA C L C om m ands and Functions V A R IN FO C om m and
PRIVATE SHARED

File

is the name of #SERVER or the file opened by #REQUESTER. In the case of a
segment, it is the name of the segment file with which the variable is
associated.

Process

is the process associated with an implicit #SERVER; that is, the process that
started with INV, OUTV, or STATUS specifying the variable.

 For an unnamed process, a process ID (that is, cpu,pin) is returned in
the Process field.

 For a named process, the process name is returned in the Process field.

 If the process name is not available, nothing is returned in the Process
field.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-236

U TILS :TA C L C om m ands and Functions V A R TO FILE C om m and
VARTOFILE Command

Use the VARTOFILE command to copy the data in a variable to a file.

variable-level

is the name of an existing variable level from which data is to be copied. It must not
be a DIRECTORY, a STRUCT, or a STRUCT item.

file-name

is the name of the file that is to receive the copy. If the file exists, it must be of a
type that can be written to by the sequential I/O (SIO) facility. The new data is
appended to the existing data. If the file does not exist, TACL creates an edit-
format file.

Considerations

 Lines longer than 239 characters are truncated to 239 characters.

 For security, TACL makes a temporary copy of the variable while this command is
being executed.

 I/O is done in PLAIN format. This means that the internal representations of the
metacharacters [, |, and] in TACL statements are not translated to their external
representations when written to the file.

VARTOFILE variable-level file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-237

U TILS :TA C L C om m ands and Functions V C H A N G E C om m and
VCHANGE Command

Use the VCHANGE command to change all occurrences of one string to another string
in a range of lines within a variable.

option

is any of these:

OUT file-name
QUIET
TO variable-level

OUT file-name

specifies a device, or a sequential file accessible to the sequential I/O (SIO)
facility, that is to receive the changed lines. The listing includes line numbers. If
you omit this option, TACL writes the listing to its current OUT file. If the QUIET
option is present, this option is ignored.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

QUIET

suppresses listing of changed lines, even if the OUT option is supplied.

TO variable-level

is the name of an existing variable level to which a listing of all changed lines is
to be appended. Line numbers are not included. The QUIET option has no
affect on this option.

variable-level

is the name of an existing variable level containing the lines to be changed. It must
not be in a shared segment, and must not be a DIRECTORY, a STRUCT, or a
STRUCT item.

string-1

is the string to be changed wherever it occurs in the specified range of lines. A
string is the name of a variable level, text enclosed in quotation marks, or a
concatenation of such entities. The concatenation operator is '+' (the apostrophes
are required).

VCHANGE [/ option [, option] ... /] variable-level
 string-1 string-2 [range]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-238

U TILS :TA C L C om m ands and Functions V C H A N G E C om m and
string-2

is the string that is to replace string-1.

range

specifies the line or lines in which the change is to occur. If you omit it, all lines are
included. A range specification can be any of these:

A
line-num
line-num / line-num

A

specifies all lines in the variable level.

line-num

specifies an individual line number. It can be any of these:

F
L
number

F

specifies the first line in the variable level.

L

specifies the last line in the variable level.

number

is a positive integer identifying a specific line.

Considerations

 VCHANGE is not case-sensitive. If, for example, you specify:

VCHANGE var "The" "A"

VCHANGE changes all occurrences of The, the, THE, or any other combinations
of uppercase or lowercase T, H, and E. For case-sensitive operations, you can use
the string-handling functions.

 If string-1 is empty, no change occurs.

 If string-1 or string-2 contains TACL metacharacters, the setting of the
#INFORMAT built-in variable (for input to the IN file, including input to an
interactive TACL process) or the ?FORMAT Directive on page 5-6 (for text in TACL
programs) can affect how TACL interprets the string. For more information, see the
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-239

U TILS :TA C L C om m ands and Functions V C H A N G E C om m and
#INFORMAT Built-In Variable on page 9-196 or the ?FORMAT Directive on
page 5-6.

Example

If these variables have the contents shown:

then the command:

VCHANGE /TO listvar/ var "THE" "A" 1/4

causes them to contain:

and causes this to be written to the TACL OUT file:

1 A QUICK BROWN
3 A LAZY DOG

Var Listvar

THE QUICK BROWN 12345678910

FOX JUMPED OVER 11121314151617

THE LAZY DOG 18192021

TWICE A DAY

EXCEPT TUESDAYS

Var Listvar

A QUICK BROWN 12345678910

FOX JUMPED OVER 11121314151617

A LAZY DOG 181920217

TWICE A DAY A QUICK BROWN1

EXCEPT TUESDAYS A LAZY DOG
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-240

U TILS :TA C L C om m ands and Functions V C O P Y C om m and
VCOPY Command

Use the VCOPY command to copy a range of lines from one variable and insert them
at a given line position in another variable.

option

is any of these:

OUT file-name
QUIET
TO variable-level

OUT file-name

specifies a device, or a sequential file accessible to the sequential I/O (SIO)
facility, that is to receive the copied lines. The listing includes line numbers. If
you omit this option, TACL writes the listing to its current OUT file. If the QUIET
option is present, this option is ignored.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

QUIET

suppresses listing of copied lines even if the OUT option is supplied.

TO variable-level

is the name of an existing variable level to which a listing of all copied lines is
to be appended. Line numbers are not included. The QUIET option has no
affect on this option.

source-var

is an existing variable level containing the lines to be copied. It must not be in a
shared segment, and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

range

specifies the line or lines to be copied. A range specification can be any of these:

VCOPY [/ option [, option] ... /] source-var range
 dest-var dest-line
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-241

U TILS :TA C L C om m ands and Functions V C O P Y C om m and
A
line-num
line-num / line-num

A

specifies all lines in the variable level.

line-num

specifies an individual line number. It can be any of these:

F
L
number

F

specifies the first line in the variable level.

L

specifies the last line in the variable level.

number

is an integer identifying a specific line.

dest-var

is an existing variable level that is to receive the copy. It must not be in a shared
segment, and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

dest-line

specifies the line number in the destination variable level at which the copied lines
are to be inserted. This entry can be any of these:

F
L
number

F

specifies the first line in the variable level.

L

specifies a new line past the last line in the variable level.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-242

U TILS :TA C L C om m ands and Functions V C O P Y C om m and
number

is an integer identifying a specific line. It must be greater than zero and not
greater than the number of lines in the variable level, plus one (it can specify a
new line past the last existing line).

Considerations

 source-var and dest-var must not be identical.

 Copied lines are inserted immediately preceding dest-line.

Example

If these variables have the contents shown:

the command:

VCOPY /TO listvar/ srcvar 2/4 dstvar 3

causes them to contain:

and causes this to be written to the TACL OUT file:

3 FOX JUMPED OVER
4 THE LAZY DOG
5 TWICE A DAY

Srcvar Dstvar Listvar

THE QUICK BROWN ABCDEFG 12345678910

FOX JUMPED OVER HIJKLMNOPQRST 1121314151617

THE LAZY DOG UVWXYZ 18192021

TWICE A DAY

EXCEPT TUESDAYS

Srcvar Dstvar Listvar

THE QUICK BROWN ABCDEFG 12345678910

FOX JUMPED OVER HIJKLMNOPQRST 11121314151617

THE LAZY DOG FOX JUMPED OVER 18192021

TWICE A DAY THE LAZY DOG FOX JUMPED OVER

EXCEPT TUESDAYS TWICE A DAY THE LAZY DOG

UVWXYZ TWICE A DAY
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-243

U TILS :TA C L C om m ands and Functions V D E LE TE C om m and
VDELETE Command

Use the VDELETE command to delete a range of lines from a variable.

option

is any of these:

OUT file-name
QUIET
TO variable-level

OUT file-name

specifies a device, or a sequential file accessible to the sequential I/O (SIO)
facility, that is to receive the deleted lines. The listing includes line numbers. If
you omit this option, TACL writes the listing to its current OUT file. If the QUIET
option is present, this option is ignored.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

QUIET

suppresses listing of deleted lines even if the OUT option is supplied.

TO variable-level

is the name of an existing variable level to which a listing of all deleted lines is
to be appended. Line numbers are not included. The QUIET option has no
affect on this option.

variable-level

is an existing variable level from which lines are to be deleted. It must not be in a
shared segment, and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

range

specifies the line or lines to be deleted. A range specification can be any of these:

A
line-num
line-num / line-num

A

specifies all lines in the variable level.

VDELETE [/ option [, option] / ...] variable-level range
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-244

U TILS :TA C L C om m ands and Functions V D E LE TE C om m and
line-num

specifies an individual line number. It can be any of these:

F
L
number

F

specifies the first line in the variable level.

L

specifies the last line in the variable level.

number

is an integer identifying a specific line.

Example

If these variables have the contents shown:

the command:

VDELETE /TO listvar/ var 2/4

causes them to contain:

and causes this to be written to the TACL OUT file:

2 FOX JUMPED OVER
3 THE LAZY DOG
4 TWICE A DAY

Var Listvar

THE QUICK BROWN 12345678910

FOX JUMPED OVER 11121314151617

THE LAZY DOG 18192021

TWICE A DAY

EXCEPT TUESDAYS

Var Listvar

THE QUICK BROWN 12345678910

EXCEPT TUESDAYS 11121314151617

18192021

FOX JUMPED OVER

THE LAZY DOG

TWICE A DAY
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-245

U TILS :TA C L C om m ands and Functions V F IN D C om m and
VFIND Command

Use the VFIND command to find all lines containing occurrences of a specified string in
a range of lines within a variable.

option

is any of these:

OUT file-name
QUIET
TO variable-level

OUT file-name

specifies a device, or a sequential file accessible to the sequential I/O (SIO)
facility, that is to receive the listing of lines in which string is found. The listing
includes line numbers. If you omit this option, TACL writes the listing to its
current OUT file. If the QUIET option is present, this option is ignored. If you
specify an OUT file that does not exist, TACL creates an EDIT file named list-
file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

QUIET

suppresses listing of lines in which string appeared even if the OUT option is
supplied.

TO variable-level

is the name of an existing variable level to which a listing is to be appended of
all lines in which string is found. Line numbers are not included. The QUIET
option has no affect on this option.

variable-level

is the name of an existing variable level in which the search is to be made. It must
not be in a shared segment, and must not be a DIRECTORY, a STRUCT, or a
STRUCT item.

string

is the string to be found. A string is the name of a variable level, text enclosed in
quotation marks, or a concatenation of such entities. The concatenation operator is
'+' (the apostrophes are required).

VFIND [/ option [, option] / ...] variable-level string
 [range]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-246

U TILS :TA C L C om m ands and Functions V F IN D C om m and
range

specifies the line or lines in which the search is to be made. If you omit it, TACL
searches all lines. A range specification can be any of these:

A
line-num
line-num / line-num

A

specifies all lines in the variable level.

line-num

specifies an individual line number. It can be any of these:

F
L
number

F

specifies the first line in the variable level.

L

specifies the last line in the variable level.

number

is a positive integer identifying a specific line.

Considerations

 VFIND is not case-sensitive. If, for example, you specify

VFIND var "The"

VFIND locates the first occurrence of The, the, THE, or any other combination of
uppercase or lowercase T, H, and E. For case-sensitive operations, you can use
the string-handling functions.

 If string contains TACL metacharacters, the setting of the #INFORMAT built-in
variable (for input to the IN file, including input to an interactive TACL process) or
the ?FORMAT Directive on page 5-6 (for text in TACL prog the #INFORMAT Built-
In Variable on page 9-196 or the ?FORMAT directive.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-247

U TILS :TA C L C om m ands and Functions V F IN D C om m and
Example

If these variables have the contents shown:

the command:

VFIND /TO listvar/ var "THE" 1/4

causes them to contain:

and causes this to be written to the TACL OUT file:

1 THE QUICK BROWN
3 THE LAZY DOG

Var Listvar

THE QUICK BROWN 12345678910

FOX JUMPED OVER 11121314151617

THE LAZY DOG 18192021

TWICE A DAY

EXCEPT TUESDAYS

Var Listvar

THE QUICK BROWN 12345678910

FOX JUMPED OVER 11121314151617

THE LAZY DOG 18192021

TWICE A DAY THE QUICK BROWN

EXCEPT TUESDAYS THE LAZY DOG
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-248

U TILS :TA C L C om m ands and Functions V IN S E R T C om m and
VINSERT Command

Use the VINSERT command to insert lines from the current TACL IN file into a given
line position in a variable.

variable-level

is an existing variable level into which lines are to be inserted. It must not be in a
shared segment, and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

line-num

specifies the line number at which lines are to be inserted. It can be any of these:

F
L
number

F

specifies the first line in the variable level.

L

specifies a new line past the last line in the variable level.

number

is an integer identifying a specific line. It must be greater than zero and not
greater than the number of lines in the variable level, plus one (it can specify a
new line past the last existing line).

Considerations

 Inserted lines are placed just before the line specified by line-num.

 If the input text contains TACL metacharacters, the setting of the #INFORMAT
built-in variable (for input to the IN file, including input to an interactive TACL
process) or the ?FORMAT Directive on page 5-6 (for text in TACL programs) can
affect how TACL interprets the string. For more information, see the #INFORMAT
Built-In Variable on page 9-196 or the ?FORMAT directive.

Example

If the variable VAR has the contents shown:

THE QUICK BROWN
FOX JUMPED OVER
THE LAZY DOG

VINSERT variable-level line-num
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-249

U TILS :TA C L C om m ands and Functions V IN S E R T C om m and
TWICE A DAY
EXCEPT TUESDAYS.

the command:

VINSERT var 3

causes TACL to prompt with line numbers that the inserted lines will have in the
variable; TACL continues to accept lines until a line consisting solely of two slashes is
entered. The insertion can also be ended by CTRL-y.

In this dialog at the current IN file, TACL prompts with line numbers and the user
responds with text.

3 and over and
4 over and over
5 //

The variable then contains:

THE QUICK BROWN
FOX JUMPED OVER
and over and
over and over
THE LAZY DOG
TWICE A DAY
EXCEPT TUESDAYS.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-250

U TILS :TA C L C om m ands and Functions V LIS T C om m and
VLIST Command

Use the VLIST command to list a range of lines in a variable.

option

is any of these:

OUT file-name
QUIET
TO variable-level

OUT file-name

specifies a device, or a sequential file accessible to the sequential I/O (SIO)
facility, that is to receive the listing. The listing includes line numbers. If you
omit this option, TACL writes the listing to its current OUT file. If the QUIET
option is present, this option is ignored.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

QUIET

suppresses the listing, even if the OUT option is supplied.

TO variable-level

is the name of an existing variable level to which the listing is to be appended.
Line numbers are not included. The QUIET option has no affect on this option.

variable-level

is an existing variable level containing the lines to be listed. It must not be in a
shared segment, and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

range

specifies the line or lines to be listed. If you omit it, all lines are listed. A range
specification can be any of these:

A
line-num
line-num / line-num

A

specifies an individual line number. It can be any of these:

VLIST [/ option [, option] / ...] variable-level
 [range]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-251

U TILS :TA C L C om m ands and Functions V LIS T C om m and
F
L
number

F

specifies the first line in the variable level.

L

specifies the last line in the variable level.

number

is an integer identifying a specific line.

Example

If these variables have the contents shown:

the command:

VLIST /TO listvar/ var 2/4

causes them to contain:

and causes this to be written to the TACL OUT file:

2 FOX JUMPED OVER
3 THE LAZY DOG
4 TWICE A DAY

Var Listvar

THE QUICK BROWN 12345678910

FOX JUMPED OVER 11121314151617

THE LAZY DOG 18192021

TWICE A DAY

EXCEPT TUESDAYS

Var Listvar

THE QUICK BROWN 12345678910

FOX JUMPED OVER 11121314151617

THE LAZY DOG 18192021

TWICE A DAY FOX JUMPED OVER

EXCEPT TUESDAYS THE LAZY DOG

TWICE A DAY
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-252

U TILS :TA C L C om m ands and Functions V M O V E C om m and
VMOVE Command

Use the VMOVE command to delete a range of lines from one variable and insert them
at a given line position in another variable.

option

is any of these:

OUT file-name
QUIET
TO variable-level

OUT file-name

specifies a device, or a sequential file accessible to the sequential I/O (SIO)
facility, that is to receive a listing of moved lines. The listing includes line
numbers of the new lines in the destination variable. If you omit this option,
TACL writes the listing to its current OUT file. If the QUIET option is present,
this option is ignored.

If you specify an OUT file that does not exist, TACL creates an EDIT file named
list-file. If you specify an OUT file that already exists, TACL appends the
information to the end of the file.

QUIET

suppresses listing of moved lines even if the OUT option is supplied.

TO variable-level

is the name of an existing variable level to which a listing of all moved lines is
to be appended. Line numbers are not included. The QUIET option has no
affect on this option.

source-var

is an existing variable level from which lines are to be deleted. It must not be in a
shared segment, and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

range

specifies the line or lines to be moved. A range specification can be any of these:

VMOVE [/ option [, option] / ...] source-var range
 dest-var dest-line
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-253

U TILS :TA C L C om m ands and Functions V M O V E C om m and
A
line-num
line-num / line-num

A

specifies all lines in the variable level.

line-num

specifies an individual line number. It can be any of these:

F
L
number

F

specifies the first line in the variable level.

L

specifies the last line in the variable level.

number

is an integer identifying a specific line.

dest-var

is an existing variable level into which the moved lines are to be inserted. It must
not be in a shared segment, and must not be a DIRECTORY, a STRUCT, or a
STRUCT item.

dest-line

specifies the line number in the destination variable level at which the moved lines
are to be inserted. This entry can be any of these:

F
L
number

F

specifies the first line in the variable level.

L

specifies a new line past the last line in the variable level.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-254

U TILS :TA C L C om m ands and Functions V M O V E C om m and
number

is an integer identifying a specific line. It must be greater than zero and not
greater than the number of lines in the variable level, plus one (it can specify a
new line past the last existing line).

Considerations

 source-var and dest-var must not be the same variable level.

 Moved lines are inserted immediately preceding dest-line.

Example

If these variables have the contents shown:

the command:

VMOVE /TO listvar/ srcvar 2/4 dstvar 3

causes them to contain:

and causes this to be written to the TACL OUT file:

3 FOX JUMPED OVER
4 THE LAZY DOG
5 TWICE A DAY

Srcvar Dstvar Listvar

THE QUICK BROWN ABCDEFG 12345678910

FOX JUMPED OVER HIJKLMNOPQRST 1121314151617

THE LAZY DOG UVWXYZ 18192021

TWICE A DAY

EXCEPT

TUESDAYS

Srcvar Dstvar Listvar

THE QUICK BROWN ABCDEFG 12345678910

EXCEPT HIJKLMNOPQRST 1121314151617

TUESDAYS FOX JUMPED OVER 18192021

THE LAZY DOG FOX JUMPED OVER

 TWICE A DAY THE LAZY DOG

UVWXYZ TWICE A DAY
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-255

U TILS :TA C L C om m ands and Functions V O LU M E C om m and
VOLUME Command

Use the VOLUME command to change temporarily your current settings for default
volume and subvolume or to return to your saved defaults.

\node-name

specifies your default system. If you omit \ node-name, your default system does
not change.

volume

specifies your default volume and subvolume names. volume is one of these:

$volume-name
subvolume-name
$volume-name.subvolume-name

If you omit volume-name or subvolume-name, your logon default volume or
subvolume becomes the current default volume or subvolume.

"security"

sets your current default file security. The system assigns this file security to newly
created files unless you explicitly assign a different security when you create the
file. Specify “security” as a four-character string “rwep” to specify the security for
each type of file access: read, write, execute, and purge. For “rwep” you can
specify A, G, O, N, C, or U. For more information about file security, see the File
Utility Program (FUP) Reference Manual.

Considerations

 Settings made with the VOLUME command are in effect only temporarily-until you
enter a LOGON command or a SYSTEM or VOLUME command with no
parameters. For example, if you log on again, all your current defaults are reset to
the original logon default system, volume, subvolume, and security (or as you
specified in your last DEFAULT command).

 If the current default system is a remote system, you cannot specify a new current
default volume name that has more than six characters after the dollar sign ($).

 Likewise, you cannot specify a new default system with the SYSTEM command if
the current default volume name contains more than six characters after the dollar
sign ($).

 Entering VOLUME with no parameters resets your current default system, volume,
subvolume, and security to the values in effect at logon, or as they were set with
your last DEFAULT command.

VOLUME [[\node-name.] volume] [, "security"]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-256

U TILS :TA C L C om m ands and Functions V O LU M E C om m and
 To display your logon default volume and subvolume names, and your logon
default security, enter the USERS program or use the WHO command.

 The security designations are:

 The security designation “-” (allow access to the local super ID only) is not
permitted in a VOLUME command. Use #SET #PROCESSFILESECURITY
instead.

Examples

1. To change your current default subvolume to $MANUF.BILLS, enter:

14> VOLUME $MANUF.BILLS
15>

2. You can reestablish the default system, volume, and subvolume that were in effect
when you logged on (unless you subsequently changed your saved default setting
with the DEFAULT program) by entering:

14> VOLUME
15>

O (Owner) Only the owner can access the file; the owner must be
logged onto the local system.

G (Group) Anyone in the owner’s group can access the file; the user
must be logged onto the local system.

A (Anyone) Any user can access the file; the user must be logged onto
the local system.

U (User) Only the owner can access the file; the owner may be
logged onto the local system or a remote system.

C (Community) Anyone in the owner’s group can access the file; the user
may be logged onto the local system or a remote system.

N (Network) Any user can access the file; the user may be logged onto
the local system or a remote system.

- Only the local super ID can access the file.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-257

U TILS :TA C L C om m ands and Functions V TR E E C om m and
VTREE Command

Use the VTREE command to list the names of all the variables in a directory, and in
directories below it, and so on.

Considerations

 If you omit directory-name, the home directory is assumed.

 One name is listed on each line.

 If a the name of a directory appears in the list, the names of the variables in it are
indented on subsequent lines.

Example

This example is a sample VTREE listing:

40> VTREE

Directory :

MYSEG
 MYVAR
 ANOTHER^VAR
PROMPT^NEWPTIME
PROMPT^OLDPTIME
PROMPT^PROCESSID
UTILS
 TACL
 ACTIVATE
 ...
 YBUSDOWN
 ^UTILS
 A^UTIL
 ...
PROMPTER
_TACLBASE_FILE
41>

VTREE [directory-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-258

U TILS :TA C L C om m ands and Functions W A K E U P C om m and
WAKEUP Command

You can use the WAKEUP command to set the TACL wakeup mode.

ON

means that TACL is awakened (returned from the paused state) when any process
started by TACL is deleted.

OFF

means that TACL is awakened only when the latest process started by TACL is
deleted or when a process you designate in a PAUSE command is deleted. This is
the logon default setting.

Consideration

A process is deleted when it abends, terminates normally, or a CPU fails. You can also
delete a process by entering the STOP command. You can delete a TACL process with
the EXIT command.

Example

To wake up TACL and return control of the terminal to TACL whenever a process that
you started is deleted, enter:

26> WAKEUP ON

WAKEUP { ON | OFF }
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-259

U TILS :TA C L C om m ands and Functions W H O C om m and
WHO Command

Use the WHO command to display information about your current TACL process.

Considerations

 The WHO command is useful for verifying your current defaults. For example, if
you are on a network and use the SYSTEM command to access another system,
you can issue a WHO command to check your defaults before you run programs or
purge files. Checking defaults helps you avoid errors such as running programs on
the wrong system or purging remote files instead of local files.

 The WHO command displays the name of the current default system if it is
different from your local system.

 If the user logs on with a user name or user ID, Logon name shows group.user
information. If the user logs on with an alias, Logon name shows alias
information. For pre-D30 software RVUs, Logon name shows nothing.

Example

User MANUF.FRED, at \ROME, uses the SYSTEM command to make \NAPLES his
current default system. When he enters WHO, this information is displayed:

12> WHO
Home terminal: $FRED
TACL process: \ROME.$C127
Primary CPU: 4 (TXP) Backup CPU: 5 (TXP)
Default Segment File: $DISK.#6726
 Pages allocated: 8 Pages Maximum: 1024
 Bytes Used: 10644 (0%) Bytes Maximum: 2097152
Current volume: $MORE.CHECK Current system: \NAPLES
Saved volume: $FRED.DATA
Userid: 8,44 Username: MANUF.FRED Security: "NUNU"
Default process: 4,167

or

12> WHO

Home terminal: $FRED
TACL process: \ROME.$C127
Primary CPU: 4 (TXP) Backup CPU: 5 (TXP)
Default Segment File: $DISK.#6726
Pages allocated: 8 Pages Maximum: 1024
Bytes Used: 10644 (0%) Bytes Maximum: 2097152
Current volume: $MORE.CHECK Current system: \NAPLES
Saved volume: $FRED.DATA
Userid: 8,44 Username: MANUF.FRED Security: "NUNU"
Default process: 4,167
Logon name: MYALIAS

WHO
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-260

U TILS :TA C L C om m ands and Functions W H O C om m and
This information is shown in this example:

 The name of the TACL home terminal.

 The process name of the current TACL. If the process is not named, its process ID
(cpu,pin) is displayed.

 The CPU numbers and processor types of the current TACL primary and backup
processes. If the primary TACL process is named but has no backup, the CPU
number for the backup does not appear.

 Information about the TACL default segment file.

 The current default volume, subvolume, and system if remote.

 The saved default volume and subvolume as set by the last DEFAULTS command.

 The user ID including the user’s group number and individual number.

 The user’s name, including group name and the name by which the user is known.

 The current security setting to be assigned to files you create.

 The default process if there is one.
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-261

U TILS :TA C L C om m ands and Functions X B U S D O W N /Y B U S D O W N C om m and (S uper-G roup
O nly)
XBUSDOWN/YBUSDOWN Command (Super-Group Only)

Use the XBUSDOWN or YBUSDOWN command to inform the operating system that
an interprocessor bus is being brought down and should not be used. This command is
equivalent to the BUSCMD process. The system reports the results of an XBUSDOWN
or YBUSDOWN command at the operator console. To use the XBUSDOWN or
YBUSDOWN command, you must have a group ID of 255.

X | Y

specifies the bus (X or Y) to be brought down.

from-cpu and to-cpu

are CPU numbers in the range from 0 through 15. Each CPU number specifies one
endpoint of a segment of the designated bus. On this segment, transfers are not
permitted. Specify -1 to indicate all processors.

Example

In a four-processor system, a super-group user can bring down the X bus from
processor 1 to all other processors by entering:

13> XBUSDOWN 1, -1
THE X BUS FROM CPU 01 TO 00 HAS BEEN DOWNED.
THE X BUS FROM CPU 01 TO 01 HAS BEEN DOWNED.
THE X BUS FROM CPU 01 TO 02 HAS BEEN DOWNED.
THE X BUS FROM CPU 01 TO 03 HAS BEEN DOWNED.

{ X | Y }BUSDOWN from-cpu , to-cpu
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-262

U TILS :TA C L C om m ands and Functions X B U S U P /Y B U S U P C om m and (S uper-G roup O n ly)
XBUSUP/YBUSUP Command (Super-Group Only)

Use the XBUSUP or YBUSUP command to inform the operating system that an
interprocessor bus is available for use. This command is equivalent to the BUSCMD
process. The system reports the results of an XBUSUP or YBUSUP command at the
operator console. To use the XBUSUP or YBUSUP command, you must have a group
ID of 255.

X | Y

specifies the bus (X or Y) to be brought up.

from-cpu and to-cpu

are CPU numbers in the range from 0 through 15. Each CPU number specifies the
endpoint of a segment of the designated bus. On this segment, transfers are now
permitted. Specify -1 to indicate all processors.

Example

A super-group user can bring the Y bus back up from processor 1 to processor 2 by
entering:

15> YBUSUP 1,2
THE Y BUS FROM CPU 01 TO 02 HAS BEEN UPPED.

{ X | Y }BUSUP from-cpu , to-cpu
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-263

U TILS :TA C L C om m ands and Functions E xc lam ation P o in t (!) C om m and
Exclamation Point (!) Command

Use the exclamation point (!) command to reexecute immediately a previous command
line, without modifications.

num

is an absolute history number.

- num

is a number relative to the current history number.

text

is a text string.

Considerations

 If you enter nothing but !, TACL reexecutes the previous command (! is the same
as ! - 1).

 If TACL cannot find a command that matches your specification, whether by
absolute history number, relative history number, or command text, it issues an
error message.

 You must enter the ! command from the IN file (normally your home terminal); you
cannot include it in a macro, for example. Similarly, you cannot change ! to another
name with an ALIAS, nor can you program a function key to execute the !
command.

Examples

1. This example illustrates the use of the ! command to recall and reexecute the
coding at history number 5:

10> !5
10> OUTVAR edstat
STATUS *,PROG $SYSTEM.SYSTEM.TEDIT

2. This example shows the use of the ! command to reexecute the most recent
occurrence of a SET command:

11> !SET
11> SET VARIABLE edstat STATUS *,PROG $SYSTEM.SYSTEM.TEDIT

 !
 [num]
 [- num]
 [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-264

U TILS :TA C L C om m ands and Functions Q uestion M ark (?) C om m and
Question Mark (?) Command

Use the question mark (?) command to display a previous command line.

num

is an absolute history number.

- num

is a number relative to the current history number.

text

is a text string.

Considerations

 If you enter a question mark (?) without an argument, TACL displays the previous
command (? is the same as ? - 1).

 If TACL cannot find a command that matches your specification-whether by
absolute history number, relative history number, or command text-it issues an
error message.

 You must enter the ? command from the IN file (normally your home terminal); you
cannot include it in a macro, for example. Similarly, you cannot change ? to
another name with an ALIAS, nor can you program a function key to execute the ?
command.

 The ? command does not increment the history number in the TACL prompt.

Examples

1. In this example, the user first uses the ? command to determine what command
was issued at history number 5. The user then enters the ! command to reexecute
that command (OUTVAR edstat).

10> ?5
10> OUTVAR edstat
10> !5
STATUS *,PROG $SYSTEM.SYSTEM.TEDIT

 ?
 [num]
 [- num]
 [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-265

U TILS :TA C L C om m ands and Functions Q uestion M ark (?) C om m and
2. This example shows the use of the ? command to see the most recent command
that started with the text string “SET.” The user then enters the ! command to
reexecute the last SET command.

11> ?SET
11> SET VARIABLE edstat STATUS *,PROG $SYSTEM.SYSTEM.TEDIT
11> !SET
11> SET VARIABLE edstat STATUS *,PROG $SYSTEM.SYSTEM.TEDIT
H P N onS top TA C L R e fe rence M anua l — 429513-017
8-266

9
Built-In Functions and Variables

This section contains an alphabetic summary of all built-in functions and variables,
followed by descriptions, in alphabetic order, of the syntax for each built-in function and
built-in variable. Each description (where appropriate) contains:

 A summary of the purpose of the function or variable

 The syntax of the function or variable, including a description of the syntax of
parameters (in the case of a built-in variable, the syntax of the #SET function used
to assign values to the variable is also described)

 The result returned from a function or variable invocation

 The listing format used for output (if a function produces a display or listing output)

 Considerations for the use of the function or variable

 Examples of usage of the function or variable

Many TACL built-in functions access Guardian procedures to provide functionality.
Appendix C, Mapping TACL Built-In Functions to Guardian Procedures, shows whether
a TACL built-in function accesses a Guardian procedure, and if so, which procedure or
procedures. To enhance your understanding of a built-in function, refer to the
description for the corresponding Guardian procedure in the Guardian Procedure Calls
Reference Manual.

Summary of Built-In Functions
Table 9-1 on page 9-2 summarizes the built-in functions and their uses.

Note. All examples in this section are based on the assumptions that the built-in variable
#INFORMAT has been set to TACL, which enables recognition and processing of the TACL
special characters ([and], for example); that the built-in variable #PMSEARCHLIST has been
set to include (at least) $SYSTEM.SYSTEM and the keyword #DEFAULTS, which enables the
use of implied RUN commands; and that the required TACL library files have been loaded into
memory.

Note. A ll TA C L bu ilt-ins a re execu ted by the TA C L process, w h ich runs on ly on the node
w here it w as s ta rted , regard less o f any S Y S TE M com m ands tha t a re issued. To execute a
bu ilt-in com m and on ano ther system , you m ust s ta rt a new TA C L process on tha t system .
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-1

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In Functions
Table 9-1. Built-In Functions (page 1 of 8)

Function Description

#ABEND Built-In Function Immediately terminates a process

#ABORTTRANSACTION Built-In
Function

Aborts and backs out a transaction

#ACTIVATEPROCESS Built-In
Function

Returns process or process pair from suspended state
to ready state

#ADDDSTTRANSITION Built-In
Function (Super-Group Only)

Adds entry to daylight savings time transition table

#ALTERPRIORITY Built-In
Function

Changes execution priority of a process or process pair

#APPEND Built-In Function Appends additional lines to a variable level

#APPENDV Built-In Function Appends a line from one variable level to another

#ARGUMENT Built-In Function Parses arguments to routines

#BACKUPCPU Built-In Function Sets or changes the TACL backup CPU

#BEGINTRANSACTION Built-In
Function

Starts a new transaction

#BREAKPOINT Built-In Function Sets or deletes _DEBUGGER breakpoint for a specific
variable level

#BUILTINS Built-In Function Examines names of TACL built-in functions and
variables

#CASE Built-In Function Chooses one out of a set of options

#CHANGEUSER Built-In
Function

Logs user on under different user ID

#CHARADDR Built-In Function Converts line address to character address

#CHARBREAK Built-In Function Inserts line break in variable at character address

#CHARCOUNT Built-In Function Obtains number of characters in variable

#CHARDEL Built-In Function Deletes characters from variable at character address

#CHARFIND Built-In Function Locates text in variable, searching forward from
character address

#CHARFINDR Built-In Function Locates text in variable, searching backward from
character address

#CHARFINDRV Built-In Function Locates string in variable, searching backward from
character address

#CHARFINDV Built-In Function Locates string in variable, searching forward from
character address

#CHARGET Built-In Function Obtains copy of specified number of characters from a
variable

#CHARGETV Built-In Function Copies specified number of characters from one variable
to another
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-2

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In Functions
#CHARINS Built-In Function Inserts text into a variable at character address

#CHARINSV Built-In Function Inserts string into a variable at character address

#COLDLOADTACL Built-In
Function

Determines if TACL process is the “cold-load TACL”

#COMPAREV Built-In Function Compares one variable with another

#COMPUTE Built-In Function Returns value of expression

#COMPUTEJULIANDAYNO
Built-In Function

Converts Gregorian calendar date to a Julian day
number

#COMPUTETIMESTAMP Built-In
Function

Converts calendar date to a four-word timestamp

#COMPUTETRANSID Built-In
Function

Converts separate components of a transaction ID to
one numeric transaction ID

#CONTIME Built-In Function Converts timestamp to seven-digit date and time

#CONVERTPHANDLE Built-In
Function

Converts a process file identifier to a process handle, or
vice versa

#CONVERTPROCESSTIME
Built-In Function

Converts time value obtained by PROCESSTIME option
of #PROCESSINFO

#CONVERTTIMESTAMP Built-In
Function

Converts GMT timestamp to a local-time-based
timestamp, or a local-time-based timestamp to a GMT
timestamp

#CREATEFILE Built-In Function Creates a file

#CREATEPROCESSNAME
Built-In Function

Creates unique process name

#CREATEREMOTENAME Built-
In Function

Returns process name unique to specified system

#DEBUGPROCESS Built-In
Function

Calls debugger for specified process

#DEF Built-In Function Defines a variable

#DEFINEADD Built-In Function Adds a DEFINE to TACL context, using attributes in the
working set

#DEFINEDELETE Built-In
Function

Deletes a DEFINE from TACL context

#DEFINEDELETEALL Built-In
Function

Deletes all DEFINEs from TACL context

#DEFINEINFO Built-In Function Gets information about a DEFINE

#DEFINENAMES Built-In
Function

Gets names of all DEFINEs that match specified
template

#DEFINENEXTNAME Built-In
Function

Gets name of next DEFINE following specified DEFINE
in sequence established by the operating system

Table 9-1. Built-In Functions (page 2 of 8)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-3

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In Functions
#DEFINEREADATTR Built-In
Function

Gets value of specified attribute

#DEFINERESTORE Built-In
Function

Creates or replaces active DEFINE, or replaces working
set with contents of DEFINE previously saved with
#DEFINESAVE

#DEFINERESTOREWORK Built-
In Function

Restores DEFINE working set from background set

#DEFINESAVE Built-In Function Saves copy of active DEFINE or working set for later
restoration with #DEFINERESTORE

#DEFINESAVEWORK Built-In
Function

Saves DEFINE current working set to background set

#DEFINESETATTR Built-In
Function

Modifies value of specified DEFINE attribute in current
working set

#DEFINESETLIKE Built-In
Function

Initializes current working set with attributes of an
existing DEFINE

#DEFINEVALIDATEWORK Built-
In Function

Checks DEFINE current working set for consistency

#DELAY Built-In Function Causes TACL to wait for specified time

#DELTA Built-In Function Acts as a complex character processor

#DEVICEINFO Built-In Function Gets detailed information about a device

#EMPTY Built-In Function Determines whether specified string contains text

#EMPTYV Built-In Function Determines whether a variable level contains any lines

#EMSADDSUBJECT Built-In
Function

Adds subject token to event message buffer

#EMSADDSUBJECTV Built-In
Function

Adds subject token to event message buffer, obtaining
token values from a STRUCT

#EMSGET Built-In Function Retrieves token values from SPI buffer

#EMSGETV Built-In Function Copies token values from SPI buffer to a STRUCT

#EMSINIT Built-In Function Initializes a STRUCT as event message buffer

#EMSINITV Built-In Function Initializes STRUCT as event message buffer, obtaining
initial values from another STRUCT

#EMSTEXT Built-In Function Converts information from event buffer to printable text

#EMSTEXTV Built-In Function Converts information from event buffer to printable text,
copies text to a STRUCT

#ENDTRANSACTION Built-In
Function

Commits data base changes associated with a
transaction

#EOF Built-In Function Sets flag so that a process receives an end-of-file after
reading all data in a variable

Table 9-1. Built-In Functions (page 3 of 8)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-4

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In Functions
#ERRORTEXT Built-In Function Used with exception handlers to catch error text

#EXCEPTION Built-In Function Determines why a routine was invoked during exception
handling

#EXTRACT Built-In Function Deletes first line of a variable level

#EXTRACTV Built-In Function Moves first line of a variable level to another variable

#FILEGETLOCKINFO Built-In
FunctionO

Obtains information about record locks and file locks

#FILEINFO Built-In Function Gets information about a file

#FILENAMES Built-In Function Lists file names

#FILTER Built-In Function Indicates which exceptions a routine can handle

#FRAME Built-In Function Tracks pushed variables

#GETCONFIGURATION Built-In
Function

Obtains settings of flags that affect TACL behavior

#GETPROCESSSTATE Built-In
Function

Obtains process state information about the current
TACL process

#GETSCAN Built-In Function Obtains number of characters passed over by
#ARGUMENT

#HISTORY Built-In Function Operates on commands in history buffer

#IF Built-In Function Executes one of two options

#INITTERM Built-In Function Resets your home terminal to its configured settings

#INLINEEOF Built-In Function Sends end-of-file to process running under control of
INLINE facility

#INPUT Built-In Function Reads information from TACL primary input file

#INPUTV Built-In Function Reads information from TACL primary input file into a
variable level

#INTERACTIVE Built-In Function Determines whether your TACL is interactive

#INTERPRETJULIANDAYNO
Built-In Function

Converts Julian day number to year, month, and day

#INTERPRETTIMESTAMP Built-
In Function

Breaks down four-word timestamp to its component
parts

#INTERPRETTRANSID Built-In
Function

Converts numeric transaction ID to its separate
component values

#JULIANTIMESTAMP Built-In
Function

Obtains four-word timestamp

#KEEP Built-In Function Removes all but specified level of a variable

#KEYS Built-In Function Displays defined function keys

#LINEADDR Built-In Function Converts character address to line address

Table 9-1. Built-In Functions (page 4 of 8)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-5

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In Functions
#LINEBREAK Built-In Function Inserts line break in variable at line address

#LINECOUNT Built-In unction Obtains number of lines in a variable

#LINEDEL Built-In Function Deletes lines from variable at line address

#LINEFIND Built-In Function Locates text in variable, searching forward from line
address

#LINEFINDR Built-In Function Locates text in variable, searching backward from line
address

#LINEFINDRV Built-In Function Locates string in variable, searching backward from line
address

#LINEFINDV Built-In Function Locates string in variable, searching forward from line
address

#LINEGET Built-In Function Gets copy of specified number of lines from a variable

#LINEGETV Built-In Function Copies specified number of lines from one variable to
another

#LINEINS Built-In Function Inserts text into a variable at line address

#LINEINSV Built-In Function Inserts string into a variable at line address

#LINEJOIN Built-In Function Deletes line break at end of a line, joining following line
to it

#LOAD Built-In Function Processes a TACL library file

#XLOADEDFILES Built-In
Function

Gets information about all LOADFILES associated with a
given process

#LOCKINFO Built-In Function Gets information about record locks

#LOGOFF Built-In Function Logs off current TACL

#LOOKUPPROCESS Built-In
Function

Gets information about a PPD entry

#LOOP Built-In Function Repeatedly executes one or more statements in a
function

#MATCH Built-In Function Determines whether given string satisfies a template

#MOM Built-In Function Obtains identity of creator process

#MORE Built-In Function Determines whether an entire argument has been
consumed

#MYGMOM Built-In Function Obtains identity of TACL job ancestor process

#MYPID Built-In Function Obtains your CPU,PIN number

#MYSYSTEM Built-In Function Determines name of system executing current TACL

#NEWPROCESS Built-In
Function

Starts a process

#NEXTFILENAME Built-In
Function

Determines file following specified file

Table 9-1. Built-In Functions (page 5 of 8)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-6

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In Functions
#OPENINFO Built-In Function Gets information about file openers

#OUTPUT Built-In Function Writes data to an output file

#OUTPUTV Built-In Function Writes contents of a variable level to an output file

#PAUSE Built-In Function Gives control of your terminal to another process

#POP Built-In Function Deletes top level of variables

#PROCESS Built-In Function Obtains identity of last process created or paused for by
TACL

#PROCESSEXISTS Built-In
Function

Determines whether a process exists

#PROCESSINFO Built-In
Function

Requests information about a process

#PROCESSLAUNCH Built-In
Function

Starts a process

#PROCESSORSTATUS Built-In
Function

Determines status of 16 possible CPUs on a given
system

#PROCESSORTYPE Built-In
Function

Determines processor type of given system or process

#PURGE Built-In Function Deletes a file

#PUSH Built-In Function Creates new top level for variables

#RAISE Built-In Function Defines exception to be filtered by routine

#RENAME Built-In Function Changes name of existing disk file

#REPLY Built-In Function Adds text to reply if TACL IN file is $RECEIVE

#REPLYV Built-In Function Adds copy of text from variable to reply if TACL IN file is
$RECEIVE

#REQUESTER Built-In Function Reads from and writes to files

#RESET Built-In Function Sets argument pointer, frame pointer, reply value, and
result text

#REST Built-In Function Obtains remaining argument string for current routine

#RESULT Built-In Function Supplies text that replaces original invocation of routine

#RETURN Built-In Function Exits from a routine immediately

#ROUTINENAME Built-In
Function

Obtains name of variable in which containing routine
resides

#SEGMENT Built-In Function Obtains name of segment file that TACL is using for its
variables

#SEGMENTCONVERT Built-In
Function

Converts segment file between C00/C10 format and
newer format

#SEGMENTINFO Built-In
Function

Gets information about segments being used by TACL

Table 9-1. Built-In Functions (page 6 of 8)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-7

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In Functions
#SEGMENTVERSION Built-In
Function

Determines whether segment file is C00/C10 format or
newer format

#SERVER Built-In Function Creates and deletes servers

#SET Built-In Function Puts data in a variable level

#SETBYTES Built-In Function Copies as many bytes as can fit from one STRUCT or
STRUCT item to another

#SETCONFIGURATION Built-In
Function

Sets the configuration of the running TACL process

#SETMANY Built-In Function Sets more than one variable level

#SETPROCESSSTATE Built-In
Function

Sets a process state flag for the current TACL process

#SETSCAN Built-In Function Indicates position at which next #ARGUMENT is to
resume processing arguments

#SETSYSTEMCLOCK Built-In
Function (Super-Group Only)

Changes setting of system clock

#SETV Built-In Function Use Copies one variable level to another

#SHIFTSTRING Built-In Function Changes text from uppercase to lowercase or from
lowercase to uppercase

#SORT Built-In Function Sorts a list of text

#SPIFORMATCLOSE Built-In
Function

Closes an open EMS formatter template file

#SSGET Built-In Function Retrieves binary token values from an SPI buffer and
returns an external representation of those values

#SSGETV Built-In Function Copies binary token values from an SPI buffer to a
STRUCT

#SSINIT Built-In Function Prepares a STRUCT for use with other #SSxxx built-in
functions

#SSMOVE Built-In Function Copies tokens from one SPI buffer to another

#SSNULL Built-In Function Initializes extensible structured tokens

#SSPUT Built-In Function Converts external representation of token values to
binary form, puts them in SPI buffer

#SSPUTV Built-In Function Copies binary token values from a variable level into an
SPI buffer

#STOP Built-In Function Terminates a process

#SUSPENDPROCESS Built-In
Function

Suspends a process

#SWITCH Built-In Function Switches TACL to its backup process

#SYSTEM Built-In Function Temporarily changes your default system

Table 9-1. Built-In Functions (page 7 of 8)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-8

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In V ariab les
Summary of Built-In Variables
You can use built-in variables anywhere a built-in function can be used and as the
object of #PUSH, #POP, and #SET. In all cases, #PUSH saves a copy of the variable,
#SET assigns a new value to it, and #POP removes that value, restoring the variable
to the value last saved by #PUSH.

Table 9-2 on page 9-10 summarizes the built-in variables and the data they represent.

#SYSTEMNAME Built-In
Function

Requests a system by name

#SYSTEMNUMBER Built-In
Function

Requests a system by number

#TACLOPERATION Built-In
Function

Determines whether TACL is reading commands from IN
or $RECEIVE

#TACLVERSION Built-In
Function

Obtains TACL product number

#TIMESTAMP Built-In Function Obtains internal form of CPU interval clock

#TOSVERSION Built-In Function Obtains current RVU of the operating system

#UNFRAME Built-In Function Pops all variables pushed since #FRAME

#USERID Built-In Function Specifies a user by user ID

#USERNAME Built-In Function Specifies a user by user name

#VARIABLEINFO Built-In
Function

Gets information about a variable

#VARIABLES Built-In Function Obtains names of all variables in your home directory

#VARIABLESV Built-In Function Obtains names of all your variables, puts them on
separate lines in an existing variable level

#WAIT Built-In Function Specifies variables for which a routine must wait

#XFILEINFO Built-In Function Implements FILEINFO command

#XFILENAMES Built-In Function Implements FILENAMES command

#XFILES Built-In Function Implements FILES command

#XLOGON Built-In Function Implements LOGON command

#XPPD Built-In Function Implements PPD command

#XSTATUS Built-In Function Implements STATUS command

Note. A ll TA C L bu ilt-ins a re execu ted by the TA C L process, w h ich runs on ly on the node
w here it w as s ta rted , regard less o f any S Y S TE M com m ands tha t a re issued. To execute a
bu ilt-in com m and on ano ther system , you m ust s ta rt a new TA C L process on tha t system .

Table 9-1. Built-In Functions (page 8 of 8)

Function Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-9

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In V ariab les
Table 9-2. Built-In Variables (page 1 of 2)

Variable Description

#ASSIGN Built-In
Variable

Holds information about all currently defined unit names

#BREAKMODE Built-In
Variable

Affects BREAK key operation

#CHARACTERRULES
Built-In Variable

Holds name of current character-processing rules file

#DEFAULTS Built-In
Variable

Holds volume defaults you set

#DEFINEMODE Built-In
Variable

Holds flag indicating whether DEFINEs can be used

#ERRORNUMBERS
Built-In Variable

Holds information about the latest error detected by the
current TACL process

#EXIT Built-In Variable Holds state of exit flag

#HELPKEY Built-In
Variable

Holds name of current help key

#HIGHPIN Built-In
Variable

Specifies the default PIN range for new processes

#HOME Built-In
Variable

Represents your home directory

#IN Built-In Variable Holds name of IN file used by TACL

#INFORMAT Built-In
Variable

Represents formatting mode for #INPUT

#INPUTEOF Built-In
Variable

Holds state of INPUTEOF flag

#INLINEECHO Built-In
Variable

Controls whether TACL echoes to its OUT file lines passed
as input to inline processes

#INLINEOUT Built-In
Variable

Controls whether TACL copies to its own OUT file lines
written by inline processes to their OUT files

#INLINEPREFIX Built-
In Variable

Holds prefix used to identify lines to be passed to inline
processes instead of being acted upon by TACL

#INLINEPROCESS
Built-In Variable

Holds process ID of current inline process, if such exist

#INLINETO Built-In
Variable

Holds name of variable, if any, to which TACL appends
lines written by inline processes to their OUT files

#INSPECT Built-In
Variable

Holds state of INSPECT flag

#MYTERM Built-In
Variable

Holds name of your home terminal

#OUT Built-In Variable Holds name of OUT file used by TACL
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-10

B u ilt-In Functions and V ariab les S um m ary o f B u ilt-In V ariab les
#OUTFORMAT Built-In
Variable

Represents formatting mode for #OUTPUT

#PARAM Built-In
Variable

Holds list of all your parameters, or a specified parameter

#PMSEARCHLIST
Built-In Variable

Holds list of subvolumes to be searched for program and
macro files

#PMSG Built-In
Variable

Holds state of PMSG flag

#PREFIX Built-In
Variable

Holds contents of prefix string

#PROMPT Built-In
Variable

Represents state of prompt flag

#REPLYPREFIX Built-
In Variable

Holds value of your reply prefix

#ROUTEPMSG Built-In
Variable

Suppresses the outputting of system and process
messages

#SHIFTDEFAULT Built-
In Variable

Holds #SHIFTSTRING default

#TACLSECURITY
Built-In Variable

Represents TACL security

#TRACE Built-In
Variable

Represents state of TRACE flag

#USELIST Built-In
Variable

Holds your use list

#WAKEUP Built-In
Variable

Represents setting of WAKEUP flag

#WIDTH Built-In
Variable

Holds value of width register

Table 9-2. Built-In Variables (page 2 of 2)

Variable Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-11

B u ilt-In Functions and V ariab les B u ilt-In Function and V ariab le D escrip tions
Built-In Function and Variable Descriptions
The remainder of this section lists built-in functions and variables, in alphabetic order.

#ABEND Built-In Function

Use #ABEND to request that a process terminate immediately; you can also specify
values for fields in the resulting process deletion message.

option

is any of these:

COMPLETIONCODE num

specifies the completion code to be returned in the process deletion message;
num is a signed integer from -32768 to +32767. Numbers from -32768 to -1
are reserved for use in the TACL software product. Numbers from 0 to 999 are
reserved for shared use by the TACL software product and the user. Numbers
from 1000 to 32767 are reserved for use by customers. See the Guardian
Procedure Calls Reference Manual for a list of defined completion codes.

ERROR

changes the behavior of #ABEND as described under Result on page 9-13.

SUBSYS ssid

specifies the subsystem for distributed systems management applications; see
the TACL Programming Guide for details on subsystem IDs.

TERMINATIONINFO num

specifies information about the termination; num is a signed integer in the
range -32768 to +32767.

\node-name

is the system where the process to be deleted resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process number for the process.

#ABEND [/ option [, option] ... /]
[[\node-name.]{$process-name | cpu,pin } [text]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-12

B u ilt-In Functions and V ariab les #A B E N D B u ilt-In Function
text

is text, 0 to 80 characters, to be included in the process deletion message. Leading
and trailing spaces are ignored.

Result

 If you do not specify the ERROR option, #ABEND returns -1 if it is successful, 0 if it
is not.

 If you include the ERROR option , #ABEND returns the file-system error code
passed to it by the ABEND operating system procedure. In this case, zero
indicates no error.

 If the #ABEND function terminates the TACL process from which it was issued,
#ABEND returns nothing.

Considerations

 If the process cannot be terminated immediately, the ABEND operating system
procedure queues the request.

 If you do not specify a process, #ABEND terminates the last process started by
TACL or the process for which TACL most recently paused, if that process is still
running. If there is no default process, you must include the process specification.

 You can include the text argument only when a process specification is present.

 COMPLETIONCODE, SUBSYS, TERMINATIONINFO, and text are ignored,
except when terminating your current TACL process (or, if it is a process pair,
either its primary or backup process). If you are abending your TACL, those items
you specify are included in the “abend” system message.

Examples

1. In this macro, TACL terminates $TMP2 after starting it:

?SECTION job^mgr ROUTINE
#FRAME
#PUSH errpm
== Start $TMP2
FUP /NOWAIT, NAME $TMP2/
== Now stop $TMP2:
#OUTPUT Error occurred, abending $TMP2...
#SET errpm [#ABEND /COMPLETIONCODE 20, ERROR/ $TMP2]
#OUTPUT Diagnostics: errpm = [errpm]
#UNFRAME

2. This routine produces this output after loading and invoking job^mgr:

14> job^mgr
Error occurred, abending $TMP2...
Diagnostics: errpm = 0
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-13

B u ilt-In Functions and V ariab les #A B O R TTR A N S A C TIO N B u ilt-In Function
ABENDED: $TMP2
CPU Time 0:00:00.018
Completion Code 20
Termination Info 2278
Subsystem

#ABORTTRANSACTION Built-In Function

Use #ABORTTRANSACTION to abort and back out a transaction. This function
invokes the ABORTTRANSACTION operating system procedure. When the process
that issued #BEGINTRANSACTION (or its backup) calls this procedure, the TMF
subsystem backs out the database changes made for the current transaction identifier
of the process.

Result

#ABORTTRANSACTION returns zero if successful, or a file-system error indicating the
reason the operation failed.

Consideration

To commit the database changes associated with a transaction identifier, use the
#ENDTRANSACTION built-in function.

#ABORTTRANSACTION
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-14

B u ilt-In Functions and V ariab les #A C T IV A TE P R O C E S S B u ilt-In Function
#ACTIVATEPROCESS Built-In Function

Use #ACTIVATEPROCESS to restart a suspended process or process pair. This
function invokes the ACTIVATEPROCESS operating system procedure.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process number for the process.

Result

#ACTIVATEPROCESS returns a nonzero integer if it is successful; otherwise, it returns
zero.

Considerations

 If you omit the process specification, #ACTIVATEPROCESS activates the default
process (the last process started by the current TACL, or the one for which TACL
most recently paused), if that process is still running.

 To find the identity of the default process, use the #PROCESS built-in function.

#ACTIVATEPROCESS [[\node-name.]{$process-name | cpu,pin}]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-15

B u ilt-In Functions and V ariab les #A D D D S TTR A N S IT IO N B u ilt-In Function (S uper-
G roup O n ly)
#ADDDSTTRANSITION Built-In Function (Super-Group Only)

Use #ADDDSTTRANSITION to add an entry to the daylight savings time transition
table.

low-gmt

is an integer (see #COMPUTETIMESTAMP Built-In Function on page 9-73 for its
format) that represents the Greenwich mean time when offset first applies.

high-gmt

is an integer that represents the GMT when offset no longer applies.

offset

is an integer that represents the number of seconds to be added to the local
standard time to produce the local civil time.

Result

#ADDDSTTRANSITION returns a nonzero value if it is successful, zero otherwise.

Considerations

 To use the #ADDDSTTRANSITION function, you must have a group ID of 255.

 The DST transition table must be loaded in time sequence with no gaps: in each
entry after the first, low-gmt must be the same as the high-gmt in the preceding
#ADDDSTTRANSITION call.

 Daylight saving time information is represented as the variable
DAYLIGHT_SAVINGS_TIME in the CONFTEXT file used as part of system
generation. There are three possible values: NONE (do not adjust the time),
USA66 (automatically adjust the time when appropriate), and TABLE. The default
value is NONE. NONE and USA66 require no further user input. TABLE requires
subsequent manipulation of the daylight savings time transition table (DST).

 On D-series RVU systems, the value to be assigned to
DAYLIGHT_SAVING_TIME is set by editing the CONFTEXT configuration file
used during system generation.

 On G-series RVU systems, the value to be assigned to
DAYLIGHT_SAVING_TIME is set with the Subsystem Control Facility (SCF) for
the Kernel Subsystem (rather than in the CONFTEXT file).

If TABLE is specified you must be a super-group user (255, n) to manipulate
entries in the DST. When TABLE is specified:

#ADDDSTTRANSITION low-gmt high-gmt offset
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-16

B u ilt-In Functions and V ariab les #A D D D S TTR A N S IT IO N B u ilt-In Function (S uper-
G roup O n ly)
 For D-series RVUs, manipulate the DST either interactively using the
ADDDSTTRANSITION TACL command or programmatically using the
ADDDSTTRANSITION Guardian procedure.

 For G04.00 and earlier G-series RVUs, manipulate the DST either interactively
using the ADDDSTTRANSITION TACL command or the SCF ALTER
command for the Kernel Subsystem, or programmatically using the
ADDDSTTRANSITION Guardian procedure.

 For G05.00 and later G-series RVUs, DST_TRANSITION_ADD_ supersedes
the ADDDSTTRANSITION Guardian procedure. The TACL product, however,
continues to access the ADDDSTTRANSITION Guardian procedure.

For more information about setting the input variable values when TABLE is
specified, refer to the description of the COMPUTETIMESTAMP procedure in the
Guardian Procedure Calls Reference Manual.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-17

B u ilt-In Functions and V ariab les #A LTE R P R IO R ITY B u ilt-In Function
#ALTERPRIORITY Built-In Function

Use #ALTERPRIORITY to change the priority of a process or process pair. This
function invokes the ALTERPRIORITY operating system procedure.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process number for the process.

pri

is the new execution priority of the process. Specify pri as an integer in the range 1
to 199. (Processes with higher numbers are executed first.)

Result

#ALTERPRIORITY returns a nonzero integer if it is successful; otherwise, it returns
zero.

Considerations

 If you do not specify a process, #ALTERPRIORITY changes the priority of the
process last started by the current TACL or for which TACL most recently paused,
if that process still exists. That process is called the default process. To retrieve the
default process, use the #PROCESS built-in function. If there is no default process,
you must include a process specification or an error will result.

 The super ID can change the priority of any process in the system.

 A group manager can alter the priority of any process whose process accessor ID
matches any user ID in the group.

 Standard users can change the priority of only those processes whose process
accessor IDs match their user ID. (For a description of process accessor IDs and
creator accessor IDs, see the Guardian User’s Guide.)

 Before increasing the priority of a process, carefully consider the effect the change
might have on system performance. For example, assigning a high priority to CPU-
bound processes, such as those involving lengthy arithmetic computations, can
significantly degrade system performance.

 If a CMON process is running, it can affect the range of priorities you can specify.
For more information, see the RUN[D|V] Command on page 8-156.

#ALTERPRIORITY [[\node-name.]{$process-name | cpu,pin}] pri
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-18

B u ilt-In Functions and V ariab les #A P P E N D B u ilt-In Function
#APPEND Built-In Function

Use #APPEND to add a line of text to the end of a variable level.

to-variable-level

is the name of an existing variable level to which text is to be appended.

text

is the text to be added. If you omit text, a blank line is added to the end of the
variable level.

Result

#APPEND returns nothing.

Considerations

 The appended text always starts a new line; #APPEND cannot append text to an
existing line.

 If text is a variable name in brackets, and that variable contains multiple lines,
enclose the entire function call in square brackets. Otherwise, TACL tries to
execute the second line.

Example

This text defines a variable called kingandi, and then appends “Please read the
attached message” to the initial text:

11> [#DEF kingandi TEXT |BODY|Attention managers]
12> #APPEND kingandi Please read the attached message
13> #OUTPUTV kingandi
Attention managers
Please read the attached message
14>

#APPEND to-variable-level [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-19

B u ilt-In Functions and V ariab les #A P P E N D V B u ilt-In Function
#APPENDV Built-In Function

Use #APPENDV to append a string to the contents of a variable level, to append a
copy of the contents of one variable level to the end of another variable level, or to
send data to a file or process opened by #REQUESTER.

to-variable-level

is the name of an existing variable level whose definition is to be modified.

from-variable-level

is the name of an existing variable level whose definition is to be copied. This
variable level is not modified.

string

is an argument of type STRING.

Result

#APPENDV returns nothing.

Considerations

 If from-variable-level is a variable level of type STRUCT, the #APPENDV
function appends a line containing the binary data of the STRUCT to to-
variable-level, which can be of another type. This function is primarily used to
supply structured data to variables associated with servers and requesters.

 If from-variable-level is empty, #APPENDV does nothing.

 The form #APPENDV var struct is not equivalent to #APPEND var [struct], which
appends the STRUCT external representation, rather than its binary data.

 If you are using #APPENDV to access data in a file, check the error variable
(defined with #REQUESTER) to see if a file system error occurred.

Example

Assuming the home terminal name is $MINE, the following:

#PUSH sayterm termname
#SETV sayterm "My terminal is"
#SET termname [#MYTERM]
#APPENDV sayterm termname '+' " at this time."

causes SAYTERM to contain “My terminal is $MINE at this time.”

#APPENDV to-variable-level { from-variable-level | string }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-20

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
#ARGUMENT Built-In Function

Use #ARGUMENT to parse the arguments passed to a routine. #ARGUMENT returns
the position number (in the list of alternatives to #ARGUMENT) of the alternative that
matches the type of the routine argument being examined. You can specify up to eight
alternatives to #ARGUMENT.

Each call to #ARGUMENT implicitly moves an internal pointer (called the current
position) through the list of the routine arguments, unless the PEEK option is used.

The current position can be obtained by #GETSCAN and can be changed with
#SETSCAN or with the START option of the CHARACTERS alternative.

Alternatives are tested, in the order supplied, against the routine argument at the
current position. When an alternative is satisfied, no further alternatives are tried. If
none of the supplied alternatives can be satisfied, the TACL error handler takes over.

option

is any of these:

PEEK

prevents #ARGUMENT from moving the current position. The operation of
#ARGUMENT is normal in all other ways; in particular, if no matching type is
supplied, an error is still generated.

TEXT variable-level

specifies the name of an existing variable level that is to receive an exact copy
(except that leading and trailing spaces and blank lines are suppressed) of the
portion of the argument sequence that was processed in the call to
#ARGUMENT.

If the call to the routine is issued from an IN file or is loaded under control of a
?FORMAT directive in a library file, the setting of the #INFORMAT built-in
variable affects how TACL copies the text. If, for example, TACL is using
PLAIN format, TACL does not recognize square brackets as metacharacters.

VALUE variable-level

specifies the name of an existing variable level that is to receive the TACL
interpretation of the portion of the argument sequence that was processed in
the call to #ARGUMENT. This interpretation can be different from what is
obtained by the TEXT option, depending on the argument type and its options.

If the call to the routine is issued from an IN file or is loaded under control of a
?FORMAT directive in a library file, the setting of the #INFORMAT built-in
variable affects how TACL interprets the argument portion. If, for example,

#ARGUMENT [/ option [, option] ... /]
 alternative [alternative] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-21

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
TACL is using PLAIN format, TACL does not recognize square brackets as
metacharacters.

The identity of the alternative being tested can have an effect on the result of
the VALUE option. For example, if there is a variable FN and a file named FN,
the VALUE option would return different results depending on which type of
argument is expected.

alternative

can be any of these:

ASSIGN [/ SYNTAX /]

matches an existing logical-unit name. The name must be terminated by a
standard TACL separator. The SYNTAX option specifies that any logical-unit
name is acceptable as long as it is formatted correctly.

ATTRIBUTENAME

matches a valid DEFINE attribute name as described in Section 5, Statements
and Programs. The name must be terminated by a standard TACL separator.

ATTRIBUTEVALUE

matches a valid DEFINE attribute value as described in Section 5, Statements
and Programs. The name must be terminated by a standard TACL separator.

CHARACTERS / char-option [, char-option] ... /

matches a contiguous sequence of characters starting at an arbitrary position
in the argument sequence.

char-option is either of these:

START num

specifies the start of the sequence of characters, in the range -1 to +32767.
-1 specifies the current position. Positive numbers specify absolute
character positions: Zero specifies the first character of the argument set
(the space following the routine name); higher numbers specify character
positions to the right of that. If you omit this option, the starting position
defaults to the current position.

WIDTH num

specifies the number of characters to process. If you omit this option, it
defaults to one. If the specified number of characters are found, the current
position moves to the point just beyond the last character processed. If the
portion of the argument beyond the starting point contains fewer characters
than specified by WIDTH, an error occurs.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-22

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
CLOSEPAREN

matches a closing parenthesis.

COMMA

matches a comma.

DEFINENAME

matches a valid DEFINE name as described in Section 5, Statements and
Programs. The name must be terminated by a standard TACL separator.

DEFINETEMPLATE

matches a valid DEFINE template as described in Section 5, Statements and
Programs. The name must be terminated by a standard TACL separator.

DEVICE [/ SYNTAX /]

matches the name of an existing device. The SYNTAX option specifies that
any device name is acceptable as long as it is formatted correctly.

END

matches the closing square bracket, vertical line, or end-of-line (if the routine
invocation is not enclosed in square brackets) that marks the end of the
argument sequence.

FILENAME [/ file-option [, file-option] ... /]

matches the name of an existing file or a DEFINE name that references an
existing file.

file-option can be either of these:

SEARCHLIST search-place [search-place] ...

specifies the locations to be searched for the named file.

search-place can be either of these:

subvol

specifies the subvolume to be searched.

#DEFAULTS

specifies that your current default subvolume is to be searched. Do not
use square brackets around #DEFAULTS.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-23

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
SYNTAX

specifies that any file name or DEFINE name is acceptable as long as it is
formatted correctly. The file need not exist. If you do not include SYNTAX
and you specify a file name, the file name returned by VALUE is fully
qualified, using your current defaults for any missing fields.

GMOMJOBID

matches a valid job ancestor job ID, expressed as one of these:

$process-name. num
cpu,pin, num

such as $XYZ.3 or 2,12,100. num is a positive integer. The value of pin can
range from 0 to 65535.

JOBID

matches a valid job ID expressed as a signed integer.

KEYWORD / WORDLIST keyword [keyword] ... /

matches any one of a specified list of words (WORDLIST is required; it must
precede the first keyword in the list).

NUMBER [/ range-option [, range-option] /]

matches a number, the name of a variable that contains a numeric value, or an
arithmetic expression enclosed in parentheses. It also matches an argument
that begins with one or more numeric digits (0-9); if the argument also contains
nonnumeric data, the current position pointer stops immediately following the
last digit. The VALUE option obtains the value of the number.

range-option can be either of these:

MINIMUM num

specifies the minimum valid number. num is an integer.

MAXIMUM num

specifies the maximum valid number. num is an integer.

OPENPAREN

matches an opening parenthesis.

OTHERWISE

specifies that TACL should not invoke the TACL error handler when
#ARGUMENT detects an error (such as an invalid argument). Instead, TACL
allows that the program to handle the error. TACL does not move the pointer to
the current position argument and does not return the current argument. If you
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-24

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
use OTHERWISE, it must be positioned as the last option in the list of
alternatives.

PARAM [/ SYNTAX /]

matches the name of an existing parameter. The SYNTAX option specifies that
any parameter name is acceptable as long as it is formatted correctly.

PARAMVALUE

matches a text sequence of 1 to 255 characters terminated by a comma,
space, or end-of-line.

If text is enclosed in quotation marks, it can contain spaces and commas, and
can have leading or trailing spaces. Contained quotation marks must be
doubled (””). (The enclosing quotes, and one of each pair of contained quotes,
do not count against the 255-character limit.) Use two adjacent quotation
marks to express an empty argument.

If the argument sequence is received from the IN file and #INFORMAT is set to
TACL, enclosing the text in quotation marks does not override the significance
of the TACL special characters [,], |, ==, {, }, and ~. Precede a special
character with a tilde to make TACL treat it as text (for example, ~~).

PROCESSID [/ SYNTAX /]

matches the process name or cpu, pin of a process. The SYNTAX option
specifies that any process specifier (process name or cpu, pin of a process) is
acceptable as long as it is formatted correctly. The value of pin can range from
0 to 65535. If you do not include the SYNTAX option, TACL matches the
process name or cpu, pin of an existing process.

PROCESSNAME [/ SYNTAX /]

matches the name of a process. The SYNTAX option specifies that any
process name is acceptable as long as it is formatted correctly. If you do not
include the SYNTAX option, TACL matches the process name of an existing
process.

SECURITY [/ LENGTH num /]

matches a security string, which must be enclosed in quotation marks. Unless
the LENGTH option specifies a different length, the security string must have
four characters (the quotation marks are not considered as part of the length).

SEMICOLON

matches a semicolon.

SLASH

matches a slash.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-25

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
STRING

matches the name of a variable level, text enclosed in quotation marks, or a
concatenation of such entities. The concatenation operator is '+'. With this type
of alternative, the TEXT option returns an exact copy of the string as it was
entered; the VALUE option returns the resulting value of the string after it has
been evaluated (enclosing quotation marks removed and all specified
invocation and concatenation performed).

SUBSYSTEM

matches a subsystem ID (for use with #STOP, #ABEND, or the Subsystem
Programmable Interface). See the TACL Programming Guide for a description
of subsystem IDs.

SUBVOL

matches the name of a subvolume.

SUBVOLTEMPLATE

matches a subvolume name that may contain special template characters.

SYSTEMNAME [/ SYNTAX /]

matches the name of a known system. The SYNTAX option specifies that any
node name is acceptable as long as it is formatted correctly.

TEMPLATE

matches a file-name template. The template returned by VALUE has defaults
substituted for fields omitted in the input.

TEXT

matches all remaining arguments. The text returned by VALUE contains
spaces in place of end-of-line delimiters.

TOKEN / TOKEN token-text /

matches a user-specified character sequence regardless of delimiters. The
TOKEN keyword is required preceding the token text. The token text, 1 to 32
characters in length, is not case-sensitive. It cannot include a comma, left or
right parenthesis, semicolon, slash, or space.

TRANSID

matches a TMF transaction ID formatted as follows:

\node-name(crash-count). cpu. sequence

If crash-count is zero, the transaction ID can be formatted as follows:

\node-name. cpu. sequence
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-26

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
If the transaction ID is local, you can omit the node name.

USER [/ { SYNTAX | USERNAME } /]

matches an existing user name or user ID. The SYNTAX option states that the
user name or user ID need not exist but need only be formatted correctly
(#USERNAME or #USERID can determine whether it is defined). The
USERNAME option specifies that the argument must be a user name only; a
user ID is unacceptable.

VARIABLE [/ var-option [, var-option] ... /]

matches the name of an existing variable.

var-option can be any of these:

ALLOW type [type ...]

specifies the type(s) of variables that are acceptable.

FORBID type [type ...]

specifies the type(s) of variables that are unacceptable.

In both of the preceding options, type is one of:

ALIAS
DELTA
DIRECTORY
ITEM (a STRUCT item)
MACRO
ROUTINE
STRUCT
TEXT

If you use ALLOW, only the types listed are allowed; if you use FORBID, all
types except those listed are allowed. If you use neither, all types of variables
are acceptable. You cannot specify both ALLOW and FORBID as options to
the same VARIABLE type.

QUALIFIED

specifies that the variable name must be qualified by a level number.

SYNTAX

specifies that any variable name is acceptable as long as it is formatted
correctly. If you omit the SYNTAX option, the VALUE result is qualified by
an absolute level.

UNQUALIFIED

specifies that the variable name must not be qualified by a level number.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-27

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
If you omit both QUALIFIED and UNQUALIFIED, a variable name is
acceptable with or without a level number.

WORD [/ SPACE /]

matches all text up to the next comma, slash, semicolon, space, left or right
parenthesis, or end-of-line. If you include the SPACE option, space and end-of-
line are the only delimiters.

Result

#ARGUMENT returns the position number of the alternative that matches the type of
the routine argument being examined.

Considerations

 #ARGUMENT can appear only in a routine.

 If the routine argument does not match any of the alternatives tested for by
#ARGUMENT, the TACL error handler takes over. If you include the OTHERWISE
alternative, however, no error can occur; you must construct your own error-
checking mechanism to deal with invalid arguments.

 If the call to a routine is issued from the IN file or is loaded under control of a
?FORMAT directive in a library file, the setting of the #INFORMAT built-in variable
has an effect on the way arguments are processed. This is summarized in
Table 9-3. In each case, the #ARGUMENT function is expecting a STRING
argument. For sake of example, the variable SV is presumed to contain the text
SUBVOL. and the variable FN contains FILENAME.

Under control of PLAIN format, TACL does not recognize square brackets as
metacharacters, so does not invoke the variable. Under QUOTED format, the quotation
marks instruct TACL to treat the square brackets as ordinary text.

For arguments not affected by #INFORMAT, the TEXT and VALUE options behave in
the same way as shown for TACL input format.

 The identity of the alternative being tested can have an effect on the result of the
VALUE option. For example, suppose that in addition to the variable FN, above,
there were a file of the same name. Using a single argument, the VALUE option
could return different results depending on which type of argument is expected;
examples of this are shown in Table 9-4 on page 9-29.

Table 9-3. Effect of #INFORMAT on Argument Processing

#INFORMAT Argument Text Value

Plain or quoted sv’+’”[fn]” sv’+’”[fn]” SUBVOL.[fn]

TACL sv’+’”[fn}” sv’+’”FILENAME” SUBVOL.FILENAME
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-28

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
Other special VALUE results are documented in the descriptions of the individual
alternatives. In the majority of cases, however, TEXT and VALUE results are the same.

 As shown in the preceding table, a given argument can meet the criteria for more
than one alternative. When this occurs, TACL uses the first such alternative tested
and places its interpretation (if any) on the VALUE result. You should, therefore,
order the alternatives in an #ARGUMENT call so that the alternative that
corresponds to the type of argument most likely to be processed by #ARGUMENT
appears first in the alternatives list.

Examples

1. This example shows the use of #ARGUMENT to examine the argument list of a
routine.

#PUSH arg
[#LOOP |DO|
 [#CASE [#ARGUMENT /VALUE arg/ FILENAME SUBVOL END]
 | 1 | #OUTPUT Argument is existing file named [arg].
 | 2 | #OUTPUT Argument is valid subvolume [arg].
 | 3 | #OUTPUT No more arguments to parse.
] == End of case
|UNTIL| NOT [#MORE]
] == End of loop

2. This example shows how a STRING argument can be processed. Assume that
RTN is a routine defined as follows:

#FRAME
#PUSH txt vlu

== Get a string, using #IF to discard #ARGUMENT result
#IF [#ARGUMENT /TEXT txt, VALUE vlu/ STRING]

== Get end-of-args, using #IF to discard #ARGUMENT result
#IF [#ARGUMENT END]

== Show string as originally entered
#OUTPUTV "TEXT: " '+' txt

== Show string after evaluation and concatenation
#OUTPUTV "VALUE: " '+' vlu
#UNFRAME

Table 9-4. Some Effects of Expectation on VALUE Result

Alternative Argument Text Value

String fn fn FILENAME

Variable fn fn :MYDIR:FN.1

Filename fn fn \SYS.$VOL.SUBVOL.FN
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-29

B u ilt-In Functions and V ariab les #A R G U M E N T B u ilt-In Function
Assume also that the variable TERMNAME contains the name of the home terminal,
which currently is $MINE, and that RTN is invoked as follows:

RTN "My terminal is " '+' termname '+' " at this time."

The resulting output is:

TEXT: "My terminal is " '+' termname '+' " at this time."
VALUE: My terminal is $MINE at this time.

For additional examples, see the TACL Programming Guide.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-30

B u ilt-In Functions and V ariab les #A S S IG N B u ilt-In V ariab le
#ASSIGN Built-In Variable

#ASSIGN contains all the defined attributes of all currently defined unit names.

option

specifies one of these types of information:

ACCESS

requests the type of access for the logical unit; it returns I/O, INPUT, OUTPUT,
or nothing.

BLOCK

requests the block size of the logical unit; it returns the block size or nothing.

CODE

requests the file code for the logical unit; it returns the file code or nothing.
(See the FUP INFO command in the File Utility Program (FUP) Reference
Manual.

EXCLUSION

requests the type of exclusion assigned to the logical unit; it returns
EXCLUSIVE, PROTECTED, SHARED, or nothing.

EXISTENCE

returns -1 if the logical unit is defined; if not, it returns 0.

FILENAME

requests the file name of the logical unit; it returns the name of the file or
nothing.

PRIMARY

requests the primary-extent size for the logical unit; it returns the primary-
extent size or nothing.

RECORD

requests the record size for the logical unit; it returns the record size or
nothing.

SECONDARY

requests the secondary-extent size of the logical unit; it returns the secondary-
extent size or nothing.

#ASSIGN [/ option [, option] ... / logical-unit]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-31

B u ilt-In Functions and V ariab les #A S S IG N B u ilt-In V ariab le
specifies the logical-unit name about which you want information. For more
information about logical units, see the ASSIGN Command on page 8-21.

Result

#ASSIGN returns as its result a space-separated list of the requested information
about the specified logical unit. If you do not specify any options, #ASSIGN returns a
space-separated list of all currently defined logical units.

Considerations

 When you first log on, #ASSIGN is initialized to a null value.

 When a backup TACL process takes over, TACL deletes existing assignments.

 All options but EXISTENCE are likely to return nothing if the logical unit is currently
undefined, or if it is defined but the particular information was omitted when it was
defined.

 It is best not to include multiple options as it is difficult to match results with options
when some results are null.

 Use #PUSH #ASSIGN (or PUSH #ASSIGN) to save a copy of all your assigns.

 Use #POP #ASSIGN (or POP #ASSIGN) to replace all your current assigns with
those last pushed.

 Use #SET #ASSIGN (or SET VARIABLE #ASSIGN) to set a logical unit either with
or without definitions:

 If you use #SET #ASSIGN without any arguments, all logical units become
undefined.

 If you supply only a logical-unit name, that logical unit becomes undefined.

 When you supply both a logical-unit name and options, the logical unit
definition is set according to the options; any previous definition of the logical
unit is lost.

 Options are processed in the order supplied.

 If options conflict, the last one to appear is used.

The syntax for #SET #ASSIGN is:

option

specifies the information that is to be defined for the logical unit; it can be any
of these:

#SET #ASSIGN [[/ option [, option] ... /] logical-unit]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-32

B u ilt-In Functions and V ariab les #A S S IG N B u ilt-In V ariab le
ACCESS { I/O | INPUT | OUTPUT }

specifies the type of access for the logical unit.

BLOCK num

specifies the block size of the logical unit.

CODE num

specifies the file code for the logical unit.

EXCLUSION { EXCLUSIVE | PROTECTED | SHARED }

specifies the type of exclusion assigned to the logical unit.

EXISTENCE

specifies that a logical unit can be defined without including any other
information.

FILENAME file-name

specifies the file name of the logical unit.

PRIMARY num

specifies the primary-extent size for the logical unit being assigned.

RECORD num

specifies the record size for the logical unit.

SECONDARY num

specifies the secondary-extent size of the logical unit.

logical-unit

specifies the logical-unit name to be defined with the indicated options.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-33

B u ilt-In Functions and V ariab les #B A C K U P C P U B u ilt-In Function
#BACKUPCPU Built-In Function

Use #BACKUPCPU to start a backup process for the current TACL process or delete
an existing backup process.

cpu

specifies the number, in the range 0 to 15, of the CPU to be used for the
backup. If you omit it, TACL runs without a backup.

Result

#BACKUPCPU returns nothing.

Considerations

 #BACKUPCPU with no CPU specification has no effect if the current TACL process
has no backup. If there is a backup, TACL deletes it.

 Your TACL must be a named process to have a backup.

 The specified CPU module must exist on your system.

 The backup CPU cannot be the same as the primary CPU of your TACL.

 The backup CPU need not be running at the time that #BACKUPCPU is issued.

 If you specify a CPU for a backup process and a backup process already exists in
any CPU, an error message appears.

 TACL switches to the backup process if the primary CPU becomes unavailable.
After the primary CPU is reloaded, TACL switches back to the primary CPU unless
a user is logged on, in which case TACL postpones switching until the user logs
off.

 To force TACL to switch to the backup process, see the #SWITCH Built-In Function
on page 9-395.

 For examples, see the BACKUPCPU Command on page 8-28.

#BACKUPCPU [cpu]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-34

B u ilt-In Functions and V ariab les #B E G IN TR A N S A C TIO N B u ilt-In Function
#BEGINTRANSACTION Built-In Function

Use #BEGINTRANSACTION to start a new transaction. This function invokes the
BEGINTRANSACTION operating system procedure. When you use this function, the
TMF subsystem creates a new transaction identifier that becomes the current
transaction identifier for the process issuing BEGINTRANSACTION.

Result

#BEGINTRANSACTION returns zero if it is successful, or a file-system error indicating
the reason it failed.

#BEGINTRANSACTION
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-35

B u ilt-In Functions and V ariab les #B R E A K M O D E B u ilt-In V ariab le
#BREAKMODE Built-In Variable

Use #BREAKMODE to disable, enable, or temporarily postpone most of the effect of
the BREAK key.

Result

#BREAKMODE returns the current break mode setting: DISABLE, ENABLE, or
POSTPONE.

Considerations

 Use #PUSH #BREAKMODE (or PUSH #BREAKMODE) to save the current break
mode setting.

 Use #SET #BREAKMODE (or SET VARIABLE #BREAKMODE) to establish a new
break mode setting.

 The syntax for #SET #BREAKMODE is:

DISABLE

immediately turns off the BREAK key. Pressing the key has no further effect,
nor is control of the key given to another process. If the previous break mode
was POSTPONE and someone had pressed the BREAK key, TACL discards
the postponed break.

ENABLE

immediately turns on the BREAK key; TACL takes control of the key without
noting whether control had been taken by another process. If the previous
break mode was POSTPONE and someone had pressed the BREAK key, the
postponed break immediately takes effect as though the key had just been
pressed.

POSTPONE

turns on the BREAK key until someone presses the key once. After the key is
pressed, TACL turns off the BREAK key; further breaks have no effect. Control
of the BREAK key is not given to another process. If the previous break mode
was POSTPONE and someone had pressed the BREAK key, TACL discards
the postponed break. If there is active I/O on IN or OUT when BREAK is
pressed the final time before it is turned off, that I/O operation is retried.

 Use #POP #BREAKMODE (or POP #BREAKMODE) to restore the break mode to
its previous setting.

 When you first log on, #BREAKMODE is initialized to ENABLE.

#BREAKMODE

#SET #BREAKMODE { DISABLE | ENABLE | POSTPONE }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-36

B u ilt-In Functions and V ariab les #B R E A K P O IN T B u ilt-In Function
#BREAKPOINT Built-In Function

Use #BREAKPOINT to set or delete a _DEBUGGER breakpoint for a specific variable
level.

variable-level

is the name of an existing variable level.

state

is either a nonzero value, which sets a breakpoint for the variable level, or zero,
which deletes an existing breakpoint.

Result

#BREAKPOINT returns the previous breakpoint state of the variable level: 0 if there
was no breakpoint, -1 if there was one.

Considerations

 A debugging breakpoint causes TACL to invoke _DEBUGGER just before invoking
a variable level having the breakpoint. Only invocation has this effect; no other
usage of the variable level (pushing, setting, and so on) causes TACL to invoke
_DEBUGGER.

 For additional information about the TACL debugger, see the DEBUGGER
Function on page 8-51.

#BREAKPOINT variable-level state
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-37

B u ilt-In Functions and V ariab les #B U ILT IN S B u ilt-In Function
#BUILTINS Built-In Function

Use #BUILTINS to obtain the names of the TACL built-in functions or built-in variables.

FUNCTIONS

displays the built-in functions.

VARIABLES

displays the built-in variables.

If you fail to specify either option, FUNCTIONS is assumed.

Result

#BUILTINS returns a space-separated list of the names of the specified built-in
functions or variables.

#BUILTINS [/ { FUNCTIONS | VARIABLES } /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-38

B u ilt-In Functions and V ariab les #C A S E B u ilt-In Function
#CASE Built-In Function

Use #CASE to return one of a set of alternative text sequences. You provide a set of
labeled options using an enclosure. When TACL evaluates the #CASE statement, it
searches the enclosure for a label that matches some specified text, and returns the
text sequence that follows the label.

text

is the text to be matched to a label in the enclosure; it cannot contain any spaces.

enclosure

is an enclosure consisting of a series of labels and options as follows:

| label-1 | [option-text-1]
| label-2 | [option-text-2]
...
| OTHERWISE | [option-text-n]

The OTHERWISE label, if included, must be listed last. For more information about
enclosures, see Section 5, Statements and Programs.

label-num

is a unique label that identifies an option. TACL searches the labels for one
matching the text. All labels must be outside of any square brackets within
enclosure and between vertical bars. A label can be a space-separated list,
allowing several values of text to match a single label.

option-text-num

is a text sequence, typically one or more functions that can be executed when
returned by #CASE.

Result

#CASE returns all option text that follows a selected label; the text is terminated by the
next label or the end of the enclosure. The result includes any spaces or carriage
returns that precede the text. If text does not match any label, #CASE returns the text
following the OTHERWISE label, up to the next label or to the end of the enclosure.

Considerations

 No label can appear more than once in the enclosure.

 Label evaluation is not case-sensitive. #CASE treats a label of the form | A a | as a
repetition of the same label, resulting in an error.

#CASE text enclosure
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-39

B u ilt-In Functions and V ariab les #C A S E B u ilt-In Function
 You cannot use square brackets in a label-num; no evaluation takes place
between the vertical bars.

 If neither a matching label-num nor OTHERWISE is present, an error occurs.

Examples

1. This macro accepts an argument. If the argument is 0, the macro writes Zero; if the
argument is 1, the macro writes One, and so on.

[#CASE %1%
 | 0 | #OUTPUT Zero
 | 1 | #OUTPUT One
 | 2 | #OUTPUT Two
 | 3 | #OUTPUT Three
 | 4 | #OUTPUT Four
 | 5 | #OUTPUT Five
 | 6 | #OUTPUT Six
 | 7 | #OUTPUT Seven
 | 8 | #OUTPUT Eight
 | 9 | #OUTPUT Nine
 | OTHERWISE | #OUTPUT %1% is not a digit.
]

2. This example illustrates the use of a space-separated list as a label:

[#CASE %1%
 | 0 2 4 6 8 | #OUTPUT Even
 | 1 3 5 7 9 | #OUTPUT Odd
 | OTHERWISE | #OUTPUT Isn't a digit
]

3. This example shows how multiple lines can be used as option text for a label:

[#CASE %1%
 | 1 3 5 7 9 | #OUTPUT Odd
 #OUTPUT Prime
 | 0 2 4 6 8 | #OUTPUT Even
 [#IF [#MATCH %1% 2] |THEN|
 #OUTPUT Prime]
 |OTHERWISE| #OUTPUT Not a digit
]

H P N onS top TA C L R e fe rence M anua l — 429513-017
9-40

B u ilt-In Functions and V ariab les #C H A N G E U S E R B u ilt-In Function
#CHANGEUSER Built-In Function

Use #CHANGEUSER to log on under a different user ID, keeping the current user’s
values.

CHANGEDEFAULTS

causes TACL to set its default node, volume, subvolume, and file security to that of
the new user instead of retaining the current user’s values.

group-name. user-name or group-id, user-id

is the group name and user name, or the group number and user number, of the
user who is logging on. The user identity must already have been established. If
you do not have a user account, see your system administrator.

If the TACL configuration NAMELOGON option is not set to 0, or if Safeguard is
running and the Safeguard NAMELOGON flag is not set to 0 (for the
USER_AUTHENTICATE_call), the group number and user number is not
accepted.

alias

is an alternate assigned name. Each alias must be unique within the local system.
An alias is a case-sensitive text string that can be up to 32 alphanumeric
characters in length. In addition to alphabetic and numeric characters, the
characters period (.), hyphen (-), and underscore(_) are permitted within the text
string. The first character of an alias must be alphabetic or numeric. For more
information on aliases, see the Safeguard Reference Manual.

password

is the password associated with the user.

Result

#CHANGEUSER returns -1 if it is successful; if not, it returns 0.

Considerations

 If the USER_AUTHENTICATE_procedure exists in the system library, TACL calls
the USER_AUTHENTICATE_ procedure. USER_AUTHENTICATE_ uses the

Note. The LOGON command behavior depends on the Safeguard environment. If Safeguard
is not running on your system or if the USER_AUTHENTICATE procedure is not in the system
library, the alias option is not available

#CHANGEUSER [/ CHANGEDEFAULTS /]
group-name.user-name | group-id‚user-id | alias} password
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-41

B u ilt-In Functions and V ariab les #C H A N G E U S E R B u ilt-In Function
Safeguard facility if Safeguard is running. Otherwise, the VERIFYUSER system
procedure is called by TACL.

 If the user ID and password are syntactically correct (but not necessarily valid),
TACL sends a pre-LOGON message to $CMON (if that user-supplied monitoring
process exists) for additional validation before calling VERIFYUSER. In addition,
TACL sends LOGON messages to $CMON during the logon process. For more
information about $CMON, see Section 6, The TACL Environment.

 If the logon operation is rejected, either by the USER_AUTHENTICATE_
procedure or by $CMON, TACL notifies you of the failure but does not specify
whether user-name or password was wrong.

 If the USER_AUTHENTICATE_ procedure fails to recognize the user information
given during the logon operation, the TACL built-in variable #ERRORNUMBERS
contains the error information. To display the error information, issue these
commands:

#PUSH n1 n2 n3 n4
#SETMANY n1 n2 n3 n4, [#ERRORNUMBERS]

where:

n1 = 1074 (Invalid user name or password)
n2 = error return from USER_AUTHENTICATE_
n3 = error return detail from USER_AUTHENTICATE_
n4 = 0

If n2 contains 0 (no error state returned), USER_AUTHENTICATE_ is not in the
system library or Safeguard is not running. If Safeguard is not running, n3 and n4 are
set to 0.

 TACL sends an “illegal LOGON” message (code -53) to $CMON on the third and
all subsequent logon failures until a logon succeeds. Each time it sends the “illegal
LOGON” message, TACL displays the $CMON reply (if not empty). Safeguard and
USER_AUTHENTICATE_ security logic can impose a delay before the next
prompt. You cannot exit from the delay by pressing the BREAK key.

 Both the LOGON command (issued while you are already logged on) and the
#CHANGEUSER built-in function change your identity while keeping your previous
IDs, variables, segment files, and so on. The principal difference is that with
LOGON you assume both the saved (logon) default subvolume and the current
default subvolume of the new ID; with #CHANGEUSER, you assume the saved
default subvolume of the new ID, but remain in the subvolume that was current at
the time you invoked the function.

 You can configure TACL to disable logons from a logged-on state. To alter the
configuration, CMON should reply with the NOCHANGEUSER field set to -1. For
more information, see the Guardian Programmer’s Guide. If the capability is
disabled, #CHANGEUSER fails and returns a zero. To display the value of
NOCHANGEUSER, use #GETCONFIGURATION.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-42

B u ilt-In Functions and V ariab les #C H A N G E U S E R B u ilt-In Function
 The TACL configuration BLINDLOGON option and the Safeguard BLINDLOGON
flag do not affect #CHANGEUSER.

 If the TACL configuration option REMOTECMONREQUIRED is not set to 0, all
operation requiring approval by remote $CMON are denied if that remote $CMON
is unavailable or is running too slowly. To display the value of
REMOTECMONREQUIRED, use #GETCONFIGURATION
/REMOTECMONREQUIRED/.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-43

B u ilt-In Functions and V ariab les #C H A R A C TE R R U LE S B u ilt-In V ariab le
#CHARACTERRULES Built-In Variable

Use #CHARACTERRULES to obtain or set the name of the file that is currently being
used to define the character-processing rules.

Result

#CHARACTERRULES returns the fully qualified name of the file containing the
character-processing rules currently in effect. This name is CPRULES0, CPRULES1,
or the name of a user-supplied file that contains character rules.

Considerations

 When starting a TACL process, if #CHARACTERRULES is empty after TACLLOCL
has been invoked, TACL selects CPRULES0. TACL searches for CPRULES0 in
$SYSTEM.SYSTEM, and if CPRULES is not found there, then TACL searches the
same volume and subvolume in which the TACL program file resides. TACL
reports a warning if a CPRULES file does not exist when the user logs on and
TACL tries to access a CPRULES file.

 Use #PUSH #CHARACTERRULES or (PUSH #CHARACTERRULES) to save a
copy of the current character-processing file name and processing rules. The rules
currently in effect are unchanged. Any error that occurs while pushing
#CHARACTERRULES causes the variable to be popped at once. The current
rules remain unchanged.

 Use #POP #CHARACTERRULES or (POP #CHARACTERRULES) to revert to the
previous character-processing rules file name and its rules. TACL does not reopen
the file and reread the rules; instead, it uses the copy of the rules that it saved
during the previous #PUSH operation.

 Use #SET #CHARACTERRULES (or SET VARIABLE #CHARACTERRULES) to
define the name of the file to use as the character-processing rules file.

The syntax of #SET #CHARACTERRULES is:

file-name

is the name of a file containing character-processing rules. TACL searches for
the file in the subvolumes specified in #PMSEARCHLIST, opens the file, reads
in the character-processing rules, and closes the file. These conditions also
apply:

 TACL maintains an internal copy of the rules.

#CHARACTERRULES

#SET #CHARACTERRULES file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-44

B u ilt-In Functions and V ariab les #C H A R A C TE R R U LE S B u ilt-In V ariab le
 If an error occurs while acquiring the new rules, the character rules already in
effect remain unchanged.

 If a #SET #CHARACTERRULES is never executed, TACL uses default rules.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-45

B u ilt-In Functions and V ariab les #C H A R A D D R B u ilt-In Function
#CHARADDR Built-In Function

Use #CHARADDR to convert a line address to a character address.

variable-level

is an existing variable level to be operated upon. It must not be a DIRECTORY, a
STRUCT, or a STRUCT item.

line-addr

is an integer or a variable level that contains an integer. line-addr specifies the
line number of the line to be converted. The line number must be in the range from
1 to max-int, inclusive.

Result

#CHARADDR returns the address of the first character of the specified line.

Considerations

 If line-addr is greater than the number of lines in the variable, #CHARADDR
returns the character address of the last end-of-line, plus one.

 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

 If variable-level is empty, #CHARADDR returns zero.

Example

Assume that var is a variable level containing these characters:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

The invocation:

#CHARADDR var 2

returns 9; the letter H at the beginning of line 2 is the ninth character in var, counting
the end-of-line between lines 1 and 2 as one character.

The invocation:

#CHARADDR var 100

returns 30: the 26 characters, three end-of-line characters, plus one.

#CHARADDR variable-level line-addr
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-46

B u ilt-In Functions and V ariab les #C H A R B R E A K B u ilt-In Function
#CHARBREAK Built-In Function

Use #CHARBREAK to insert an end-of-line into a variable level at a specified character
position.

variable-level

is the name of an existing variable level into which the end-of-line is to be inserted.
It must not be in a shared segment and must not be a DIRECTORY, a STRUCT, or
a STRUCT item.

char-addr

is the character position at which the end-of-line is to be inserted.

Result

#CHARBREAK returns nothing.

Considerations

 Each line break contains an internal end-of-line character that counts as one byte.

 #CHARBREAK inserts the end-of-line immediately preceding the existing character
at char-addr.

 The end-of-line is inserted regardless of whether there is already an end-of-line at
char-addr.

 If char-addr is 1, an end-of-line is inserted at the beginning of the variable level.

 If char-addr is beyond the end of the variable level, no end-of-line is inserted.

 IF char-addr is less than 1, an error occurs.

Example

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

The invocation:

#CHARBREAK var 13

causes var to contain:

ABCDEFG
HIJK

#CHARBREAK variable-level char-addr
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-47

B u ilt-In Functions and V ariab les #C H A R B R E A K B u ilt-In Function
LMNOPQRST
UVWXYZ
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-48

B u ilt-In Functions and V ariab les #C H A R C O U N T B u ilt-In Function
#CHARCOUNT Built-In Function

Use #CHARCOUNT to obtain the number of characters in a variable level.

variable-level

is the name of an existing variable level whose characters are to be counted. It
must not be a DIRECTORY, a STRUCT, or a STRUCT item.

Result

#CHARCOUNT returns the number of characters in the variable level, counting each
end-of-line except the last as a character and counting each internal representation of
[, |, or] as multiple characters.

Considerations

 To make a quoted string yield the same character count as a variable level
containing the same text (minus the quotation marks), the final end-of-line in a
variable level is not counted. This means that #CHARCOUNT does not necessarily
yield the same result as #VARIABLEINFO /OCCURS/, which includes all end-of-
lines in its count.

 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

1. Assume that var is a variable level containing:

ABCDEFG

The invocation:

#CHARCOUNT var

returns 7; #CHARCOUNT does not count the last end-of-line character in a
variable level as a character.

2. Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

The invocation:

#CHARCOUNT var

#CHARCOUNT variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-49

B u ilt-In Functions and V ariab les #C H A R C O U N T B u ilt-In Function
returns 28; there are 26 letters and 2 internal line breaks. #CHARCOUNT does not
count the last end-of-line character.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-50

B u ilt-In Functions and V ariab les #C H A R D E L B u ilt-In Function
#CHARDEL Built-In Function

Use #CHARDEL to delete characters from a variable level, starting at a character
address.

variable-level

is an existing variable level from which the characters are to be deleted. It must not
be in a shared segment and must not be a DIRECTORY, a STRUCT, or a STRUCT
item.

char-addr-1

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr-1 specifies the character position at which character
deletion is to begin. The character position must be in the range from 0 to max-
int, inclusive.

char-count

is an integer or a variable level that contains an integer. char-count specifies the
number of lines to be deleted. The line count must be in the range from 0 to max-
int, inclusive.

char-addr-2

is an integer or a variable level that contains an integer. char-addr-2 specifies
the line number at which line deletion is to end. The line address must be in the
range from 0 to max-int, inclusive.

Result

#CHARDEL returns nothing.

Considerations

 If you use TO, the character specified by char-addr-2 is included in the deletion.
That is, “x TO y” is equivalent to “x FOR (y-x+1).”

 If you use TO and char-addr-1 is greater than char-addr-2, or if you use FOR
and char-count is zero, no deletion occurs.

 If you omit both FOR and TO, TACL deletes the character specified by char-
addr-1.

 Any part of the specified deletion that lies beyond the end of the variable level is
ignored.

#CHARDEL variable-level char-addr-1
 [[FOR char-count] | [TO char-addr-2]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-51

B u ilt-In Functions and V ariab les #C H A R D E L B u ilt-In Function
 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

Assume that var is a variable level containing the following, including one internal end-
of-line character after each line:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

1. Either of the invocations:

#CHARDEL var 7 TO 9 or #CHARDEL var 7 FOR 3

causes var to contain:

ABCDEFIJKLMNOPQRST
UVWXYZ

2. Either of the invocations:

#CHARDEL var 7 TO 100 or #CHARDEL var 7 FOR 94

causes var to contain:

ABCDEF
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-52

B u ilt-In Functions and V ariab les #C H A R FIN D B u ilt-In Function
#CHARFIND Built-In Function

Use #CHARFIND to find text in a variable level, searching forward from a specified
character address.

EXACT

specifies that the search is to be case-sensitive; if you omit it, the search makes no
distinction between uppercase and lowercase letters.

variable-level

is an existing variable level within which TACL will search for text. It must not be a
DIRECTORY, a STRUCT, or a STRUCT item.

char-addr

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr specifies the character address at which the search is to
begin. The character address must be in the range from 1 to max-int, inclusive.

text

is the text constant to be found. The largest valid text length is 32,000 words minus
the current contents of the stack. The amount of remaining space is typically
25,000 words long.

Result

#CHARFIND returns the character address at which text begins. If text is not found,
#CHARFIND returns zero.

Considerations

 If char-addr is past the end of the variable level, #CHARFIND returns zero.

 A text specification can include internal end-of-line characters if the entire
invocation is enclosed in square brackets, but leading and trailing end-of-lines and
spaces are ignored.

 The search begins immediately at the character address specified. If you make
repeated calls to this function, using the result of each as a starting point for the
next, you must add one to that result before supplying it to a subsequent call.

 If variable-level is empty, #CHARFIND returns zero.

 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of

#CHARFIND [/ EXACT /] variable-level char-addr text
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-53

B u ilt-In Functions and V ariab les #C H A R FIN D B u ilt-In Function
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

1. The invocation:

#CHARFIND var 1 IJK

returns 10; the first occurrence of IJK starting at or after 1 is at character address
10.

2. The invocation:

#CHARFIND var 10 IJK

returns 10; the first occurrence of IJK is exactly at the starting character address,
10.

3. The invocation:

#CHARFIND var 11 IJK

returns 0; there are no occurrences of IJK starting at or after character address 11.

4. The invocation:

#CHARFIND var 1 FOO

returns 0; there are no occurrences of FOO anywhere in var.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-54

B u ilt-In Functions and V ariab les #C H A R FIN D R B u ilt-In Function
#CHARFINDR Built-In Function

Use #CHARFINDR to find text in a variable level, searching backward from a character
address.

EXACT

specifies that the search is to be case-sensitive; if you omit it, the search makes no
distinction between uppercase and lowercase letters.

variable-level

is an existing variable level within which TACL will search for text. It must not be a
DIRECTORY, a STRUCT, or a STRUCT item.

char-addr

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr specifies the character address at which the search is to
begin. The character address must be in the range from 1 to max-int, inclusive.
The search moves backward from this point.

text

is the text constant to be found. The largest valid text length is 32,000 words minus
the current contents of the stack. The amount of remaining space is typically
25,000 words long.

Result

#CHARFINDR returns the character address at which text begins. If text is not found,
#CHARFINDR returns zero.

Considerations

 If char-addr is past the end of the variable level, #CHARFINDR starts the search
at the end of the contents of the variable.

 A text specification can include internal end-of-line characters if the entire
invocation is enclosed in square brackets, but leading and trailing end-of-lines and
spaces are ignored.

 The search begins immediately at the character address specified. Because the
search does not find a match unless the entire matching text appears at or before
char-addr, you must specify a starting address at the end of a variable level
(#CHARCOUNT or greater) to find text at the end of it.

 If variable-level is empty, then #CHARFINDR returns zero.

#CHARFINDR [/ EXACT /] variable-level char-addr text
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-55

B u ilt-In Functions and V ariab les #C H A R FIN D R B u ilt-In Function
 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

1. The invocation:

#CHARFINDR var 28 IJK

returns 10; the nearest occurrence of IJK ending before character address 28
starts at character address 10.

2. The invocation:

#CHARFINDR var 14 IJK

returns 10; the nearest occurrence of IJK ending before character address 14
starts at character address 10.

3. The invocation:

#CHARFINDR var 12 IJK

returns 10.

4. The invocation:

#CHARFINDR var 28 FOO

returns 0; there are no occurrences of FOO anywhere in var.

5. This set of statements returns 3:

#PUSH x
#SET x ABCDEFG
#CHARFINDR x [#CHARCOUNT x] C

The occurrence of C is three characters from the start of the contents of variable x.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-56

B u ilt-In Functions and V ariab les #C H A R FIN D R V B u ilt-In Function
#CHARFINDRV Built-In Function

Use #CHARFINDRV to find a string constant in a variable level, searching backward
from a specified character address.

EXACT

specifies that the search is to be case-sensitive; if you omit it, the search makes no
distinction between uppercase and lowercase letters.

variable-level

is an existing variable level within which TACL will search for string. It must not be
a DIRECTORY, a STRUCT, or a STRUCT item.

char-addr

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr specifies the character address at which the search is to
begin. The character address must be in the range from 1 to max-int, inclusive.
The search moves backward from this point.

string

is the string constant or the name of a variable level that contains text. string
specifies the characters to be found. It must not be in a shared segment, or be a
DIRECTORY, a STRUCT, or a STRUCT item. The largest valid string length is
32,000 words minus the current contents of the stack. The amount of remaining
space is typically 25,000 words long.

Result

#CHARFINDRV returns the character address at which string begins. If string is not
found, #CHARFINDRV returns zero.

Considerations

 If char-addr is past the end of the variable level, #CHARFINDRV starts the
search at the end of the contents of the variable.

 The trailing end-of-line in string is ignored. Leading and trailing spaces are
preserved, as are all other end-of-lines.

 The search begins immediately at the character address specified. Because the
search does not find a match unless the entire matching text appears at or before
char-addr, you must specify a starting address beyond the end of a variable
level ([#CHARCOUNT] or greater) to find text at the end of it.

 If variable-level is empty, then #CHARFINDRV returns zero.

#CHARFINDRV [/ EXACT /] variable-level char-addr string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-57

B u ilt-In Functions and V ariab les #C H A R FIN D R V B u ilt-In Function
 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

and that var2 is a variable level containing:

IJK

1. Either of the invocations:

#CHARFINDRV var 28 "IJK" or #CHARFINDRV var 28 var2

returns 10; the nearest occurrence of IJK ending before character address 28
starts at character address 10.

2. Either of the invocations:

#CHARFINDRV var 11 "IJK" or #CHARFINDRV var 11 var2

returns 0; although an occurrence of IJK starts at character address 10, it does not
end before or at character address 12.

3. The invocation:

#CHARFINDRV var 28 "FOO"

returns 0; there are no occurrences of FOO anywhere in var.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-58

B u ilt-In Functions and V ariab les #C H A R FIN D V B u ilt-In Function
#CHARFINDV Built-In Function

Use #CHARFINDV to find a string constant in a variable level, searching forward from
a specified character address.

EXACT

specifies that the search is to be case-sensitive; if you omit it, the search makes no
distinction between uppercase and lowercase letters.

string-1

is a string constant or an existing variable level in which TACL will search for
string-2. It must not be in a shared segment or be a DIRECTORY, a STRUCT,
or a STRUCT item. The largest valid string length is 32,000 words minus the
current contents of the stack. The amount of remaining space is typically 25,000
words long.

char-addr

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr specifies the character address at which the search is to
begin. The character address must be in the range from 1 to max-int, inclusive.

string-2

is the string constant or the name of a variable level that contains text. string-2
specifies the characters to be found. It must not be in a shared segment or be a
DIRECTORY, a STRUCT, or a STRUCT item. The largest valid string length is
32,000 words minus the current contents of the stack. The amount of remaining
space is typically 25,000 words long.

Result

#CHARFINDV returns the character address at which string-2 begins. If string-2
is not found, #CHARFINDV returns zero.

Considerations

 If char-addr is past the end of the variable level, #CHARFINDV returns zero.

 The search begins immediately at the character address specified. If you make
repeated calls to this function, using the result of each as a starting point for the
next, you must add one to that result before supplying it to a subsequent call.

 If string-1 is empty, #CHARFINDV returns zero.

 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of

#CHARFINDV [/ EXACT /] string-1 char-addr string-2
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-59

B u ilt-In Functions and V ariab les #C H A R FIN D V B u ilt-In Function
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

and that var2 is a variable level containing:

IJK

1. Either of the invocations:

#CHARFINDV var 1 "IJK" or #CHARFINDV var 1 var2

returns 10; the first occurrence of IJK starting at or after 1 is at character address
10.

2. Either of the invocations:

#CHARFINDV var 10 "IJK" or #CHARFINDV var 10 var2

returns 10; the first occurrence of IJK is exactly at the starting character address,
10.

3. Either of the invocations:

#CHARFINDV var 11 "IJK" or #CHARFINDV var 11 var2

returns 0; there are no occurrences of IJK starting at or after character address 11.

4. The invocation:

#CHARFINDV var 1 "FOO"

returns 0; there are no occurrences of FOO anywhere in var.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-60

B u ilt-In Functions and V ariab les #C H A R G E T B u ilt-In Function
#CHARGET Built-In Function

Use #CHARGET to obtain a copy of a set of contiguous characters in a variable level.

variable-level

is an existing variable level from which characters are to be copied. It must not be
a DIRECTORY, a STRUCT, or a STRUCT item.

char-addr-1

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr-1 specifies the character position at which copying is to
begin. The character position must be in the range from 1 to max-int, inclusive.

char-count

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-count specifies the number of characters to be copied. The
character count must be in the range from 0 to max-int, inclusive.

char-addr-2

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr-2 specifies the character position at which copying is to
end. The character position must be in the range from 1 to max-int, inclusive.

Result

#CHARGET returns the copied characters.

Considerations

 If you use TO, the character specified by char-addr-2 is included in the copy:
That is, “x TO y” is equivalent to “x FOR (y-x)+1.”

 If you use TO and char-addr-1 is greater than or equal to char-addr-2, or if
you use FOR and char-count is less than one, no copying occurs.

 If you omit both FOR and TO, one character is copied.

 If char-addr-1 is less than 1, an error occurs.

 If any part of the specified copy lies beyond the end of the variable level, that part
is ignored.

 If the result of #CHARGET might possibly include one or more internal end-of-
lines, you must enclose in square brackets the invocation of the function that
obtains that result.

#CHARGET variable-level char-addr-1
 [[FOR char-count] | [TO char-addr-2]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-61

B u ilt-In Functions and V ariab les #C H A R G E T B u ilt-In Function
 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

1. Either of the invocations:

#CHARGET var 2 TO 4 or #CHARGET var 2 FOR 3

returns:

BCD

2. The invocation:

#CHARGET var 3 FOR 10

returns:

CDEFG
HIJK

and therefore the function invocation producing that result must be enclosed in
square brackets:

[#OUTPUT [#CHARGET var 3 FOR 10]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-62

B u ilt-In Functions and V ariab les #C H A R G E TV B u ilt-In Function
#CHARGETV Built-In Function

Use #CHARGETV to copy a set of contiguous characters from one variable level to
another.

var-1

is an existing variable level from which characters are to be copied. It must not be
a DIRECTORY, a STRUCT, or a STRUCT item.

var-2

is an existing variable level that is to receive the copy. Its original contents are lost
and its type is set to TEXT.

char-addr-1

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr-1 specifies the character position at which copying is to
begin. The character position must be in the range from 1 to max-int, inclusive.

char-count

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-count specifies the number of characters to be copied. The
character count must be in the range from 0 to max-int, inclusive.

char-addr-2

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr-2 specifies the character position at which copying is to
end. The character position must be in the range from 1 to max-int, inclusive.

Result

#CHARGETV returns nothing.

Considerations

 If you use TO, the character specified by char-addr-2 is included in the copy:
That is, “x TO y” is equivalent to “x FOR (y-x)+1.”

 If you use TO and char-addr-1 is greater than or equal to char-addr-2, or if
you use FOR and char-count is less than one, no copying occurs.

 If you omit both FOR and TO, one character is copied.

 If char-addr-1 is less than 1, an error occurs.

#CHARGETV var-1 var-2 char-addr-1
 [[FOR char-count] | [TO char-addr-2]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-63

B u ilt-In Functions and V ariab les #C H A R G E TV B u ilt-In Function
 Any part of the specified copy that lies beyond the end of var-1 is ignored.

 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

1. Either of the invocations:

#CHARGETV var var2 2 TO 4 or #CHARGETV var var2 2 FOR 3

set var2 to:

BCD

2. The invocation:

#CHARGETV var var2 3 FOR 10

sets var2 to:

CDEFG
HIJK
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-64

B u ilt-In Functions and V ariab les #C H A R IN S B u ilt-In Function
#CHARINS Built-In Function

Use #CHARINS to insert text into a variable level at a specified character address.

string

is a string constant or the name of an existing variable level into which text is to be
inserted. It must not be in a shared segment or be a DIRECTORY, a STRUCT, or a
STRUCT item.

char-addr

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr specifies the character position at which text is to be
inserted. The character address must be in the range from 1 to max-int,
inclusive.

text

is the text to be inserted. The largest valid text length is 32,000 words minus the
current contents of the stack. The stack is typically 25,000 words long.

Result

#CHARINS returns nothing.

Considerations

 A text specification can include internal end-of-lines if the entire invocation is
enclosed in square brackets, but leading and trailing spaces and end-of-lines are
ignored.

 If char-addr is beyond the end of the variable level, the text is concatenated with
the last line in the variable level.

 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

#CHARINS string char-addr text
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-65

B u ilt-In Functions and V ariab les #C H A R IN S B u ilt-In Function
1. The invocation:

#CHARINS var 13 NEW TEXT

causes var to contain:

ABCDEFG
HIJKNEW TEXTLMNOPQRST
UVWXYZ

2. The invocation:

[#CHARINS var 13 NEW TEXT]

causes var to contain:

ABCDEFG
HIJKNEW
TEXTLMNOPQRST
UVWXYZ

3. The invocation:

#CHARINS var 100 NEW TEXT

causes var to contain:

ABCDEFG
HIJKLMNOPQRST
UVWXYZNEW TEXT
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-66

B u ilt-In Functions and V ariab les #C H A R IN S V B u ilt-In Function
#CHARINSV Built-In Function

Use #CHARINSV to insert a string into a variable level at a specified character
address.

variable-level

is a string constant or the name of an existing variable level into which a string will
be inserted. It must not be in a shared segment or be a DIRECTORY, a STRUCT,
or a STRUCT item.

char-addr

is an integer greater than zero or a variable level that contains an integer greater
than zero. char-addr specifies the character position at which the string is to be
inserted. The character address must be in the range from 1 to max-int,
inclusive.

string

is the string constant or the name of a variable level that contains text. string
specifies the string to be inserted. It must not be in a shared segment or be a
DIRECTORY, a STRUCT, or a STRUCT item. The largest valid string length is
32,000 words minus the current contents of the stack. The amount of remaining
space is typically 25,000 words long.

Result

#CHARINSV returns nothing.

Considerations

 The trailing end-of-line in string is suppressed. Leading and trailing spaces are
preserved, as are all other end-of-lines.

 If char-addr is beyond the end of the variable level, the string is concatenated
with the last line in the variable level.

 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

#CHARINSV variable-level char-addr string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-67

B u ilt-In Functions and V ariab les #C H A R IN S V B u ilt-In Function
Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

and that var2 is a variable level containing:

NEW
TEXT

1. The invocation:

#CHARINSV var 13 var2

causes var to contain:

ABCDEFG
HIJKNEW
TEXTLMNOPQRST
UVWXYZ

2. The invocation:

#CHARINSV var 13 "NEW TEXT"

causes var to contain:

ABCDEFG
HIJKNEW TEXTLMNOPQRST
UVWXYZ

3. The invocation:

#CHARINSV var 100 "NEW TEXT"

causes var to contain:

ABCDEFG
HIJKLMNOPQRST
UVWXYZNEW TEXT
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-68

B u ilt-In Functions and V ariab les #C O LD LO A D TA C L B u ilt-In Function
#COLDLOADTACL Built-In Function

#COLDLOADTACL indicates whether a TACL process is the cold-load TACL process.

Result

#COLDLOADTACL returns -1 if the TACL process from which it was invoked is the first
TACL process started during the cold-load process, and the TACL process has not
logged off since it was started. Otherwise, #COLDLOADTACL returns zero.

Consideration

#COLDLOADTACL is used primarily by TACLBASE, which performs certain operations
when it is invoked by the cold-load TACL process.

#COLDLOADTACL
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-69

B u ilt-In Functions and V ariab les #C O M P A R E V B u ilt-In Function
#COMPAREV Built-In Function

Use #COMPAREV to compare one string with another.

string-1 and string-2

are the names of variable levels of a type other than DIRECTORY, text enclosed in
quotation marks, or concatenations of such entities. The concatenation operator is
'+' (the apostrophes are required).

Result

#COMPAREV returns a nonzero value if the contents of the two arguments are the
same; it returns zero if they are different.

Considerations

 The comparison is not case-sensitive; that is, an uppercase character is equal to
its lowercase counterpart.

 You can compare any combination of STRUCTs and STRUCT items with each
other; such comparisons are case-sensitive.

 You can compare any combination of variable levels that are not STRUCTs or
STRUCT items (except type DIRECTORY); such comparisons are not case-
sensitive.

 To compare a string to a template, use the #MATCH built-in function.

Example

1. This example shows how a variable level can be compared with quoted text.

#PUSH termname term_is_mine
#SET termname [#MYTERM]

2. This example returns a nonzero value if #MYTERM is "$MINE".

#SET term_is_mine [#COMPAREV termname "$MINE"]

#COMPAREV string-1 string-2
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-70

B u ilt-In Functions and V ariab les #C O M P U TE B u ilt-In Function
#COMPUTE Built-In Function

Use #COMPUTE to obtain the value of an arithmetic expression.

expression

is an expression using integer values and variable levels, arithmetic operators, and
logical operators, as defined in Section 3, Expressions.

Result

 #COMPUTE returns the result of expression; that value can be assigned to a
variable level.

 Logical and comparison operators return -1 if the test is true, 0 if the test is false.

Consideration

#COMPUTE performs integer arithmetic; consequently, it discards any fractional part
resulting from division. For example, #COMPUTE 2 / 3 yields a zero result.

Example

1. This routine computes the sum of two numbers:

?SECTION compute^nums ROUTINE
#FRAME
#PUSH a b c
#SETMANY a b, 1 2
#SET c [#COMPUTE a + b]
#OUTPUTV c

2. The routine produces this output:

12> compute^nums
3
13>

#COMPUTE expression
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-71

B u ilt-In Functions and V ariab les #C O M P U TE JU LIA N D A Y N O B u ilt-In Function
#COMPUTEJULIANDAYNO Built-In Function

Use #COMPUTEJULIANDAYNO to convert a calendar date on or after January 1,
0001, to a Julian day number. A Julian day number is an integral number of days
elapsed since January 1, 4713 B.C.

year

is a four-digit number, from 1975 through 9999, representing the year.

month

is a number in the range 1 to 12 representing the month.

day

is a number in the range 1 to 31 representing the day of the month.

Result

#COMPUTEJULIANDAYNO returns a space-separated list of four numbers. The first
number is the Julian day number. If an error occurs, TACL sets the first number to -1.
The remaining three numbers are error flags that indicate range errors in the three
arguments. A flag is 0 if its matching argument (year, month, or day) is within the range
for the date element it specifies, or -1 if it is outside the range.

Considerations

 Specifying 14 for the month or 87 for the day, for example, causes
#COMPUTEJULIANDAYNO to return a range error in the flag representing that
argument. Specifying 31 for a 30-day month or February 29 in a year other than a
leap year, for example, causes range errors for both month and day because
#COMPUTEJULIANDAYNO is unable to determine which field is actually in error.

 For examples showing the use of time functions, see the TACL Programming
Guide.

Example

This example shows #COMPUTEJULIANDAYNO output:

29> #OUTPUT [#COMPUTEJULIANDAYNO 1994 3 31]
2449078 0 0 0

This example shows #COMPUTEJULIANDAYNO error output:

30> #OUTPUT [#COMPUTEJULIANDAYNO 1993 4 65]
-1 0 0 -1

#COMPUTEJULIANDAYNO year month day
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-72

B u ilt-In Functions and V ariab les #C O M P U TE T IM E S TA M P B u ilt-In Function
#COMPUTETIMESTAMP Built-In Function

Use #COMPUTETIMESTAMP to convert a calendar date to a four-word timestamp.

year

is a four-digit number, from 1975 through 9999, representing the year.

month

is a number in the range 1 to 12 indicating the month.

day

is a number in the range 1 to 31 indicating the day.

hour

is a number in the range 0 to 23 indicating the hour.

min

is a number in the range 0 to 59 indicating the minute.

sec

is a number in the range 0 to 59 indicating the second.

milli

is a number in the range 0 to 999 indicating the millisecond.

micro

is a number in the range 0 to 999 indicating the microsecond.

Result

#COMPUTETIMESTAMP returns a space-separated list of nine numbers. The first
number is the four-word timestamp. If an error occurs, TACL sets the first number to -1.
The other eight numbers are error flags that indicate range errors in the arguments. An
error flag is 0 if its matching argument is within the range for the date/time element it
specifies, or -1 if it is outside the range.

Example

This example shows #COMPUTETIMESTAMP output:

29> #OUTPUT [#COMPUTETIMESTAMP 1992 3 31 15 37 50 273 146]
211568816270273146 0 0 0 0 0 0 0 0

#COMPUTETIMESTAMP year month day hour min sec milli micro
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-73

B u ilt-In Functions and V ariab les #C O M P U TE TR A N S ID B u ilt-In Function
#COMPUTETRANSID Built-In Function

Use #COMPUTETRANSID to convert the separate numeric values for the components
of a transaction ID into a single numeric transaction ID.

system

is the system number of the transaction ID.

cpu

is the CPU number of the transaction ID.

sequence

is the sequence number of the transaction ID.

crash-count

is the crash count of the transaction ID.

Result

#COMPUTETRANSID returns a numeric status code indicating the outcome of the
conversion:

Any other value indicates a TACL problem; contact your service provider.

If the status code is zero, the numeric transaction ID follows the status code, separated
by a space.

Consideration

Use the #INTERPRETTRANSID built-in function to convert a numeric transaction ID to
separate numeric values for the components of the transaction ID.

#COMPUTETRANSID system cpu sequence crash-count

Code Condition

-4 Invalid system

-3 Invalid crash count

-2 Invalid CPU

-1 Invalid sequence

0 Successful conversion
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-74

B u ilt-In Functions and V ariab les #C O N TIM E B u ilt-In Function
#CONTIME Built-In Function

Use #CONTIME to break down a three-word timestamp into a seven-number set of
date and time components.

timestamp

is a decimal number obtained from #TIMESTAMP or from #FILEINFO /
MODIFICATION /.

Result

#CONTIME returns seven numbers representing various components of date and time
(year, month, day, hour, minute, second, hundredths of a second), as shown in the
following examples.

Examples

1. Assuming #INFORMAT is set to TACL, this example illustrates the use of
#CONTIME with #TIMESTAMP:

14> #OUTPUT [#CONTIME [#TIMESTAMP]] 1992 06 27 9 28 16 16

2. This code shows how portions of a timestamp can be extracted and used to create
a file name that includes the month and day the file was created:

#PUSH date month list
#SETMANY _ month date, [#CONTIME [#TIMESTAMP]]
#CHARINSV date 1 month == Insert mm before dd in date
VARTOFILE list TEMP[date] == Output to a file named TEMPmmdd

If, for example, the date were June 10, this code would create a file named
TEMP0610.

#CONTIME timestamp
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-75

B u ilt-In Functions and V ariab les #C O N V E R TP H A N D LE B u ilt-In Function
#CONVERTPHANDLE Built-In Function

Use #CONVERTPHANDLE to convert a process file identifier to a process handle or a
process handle to a process file identifier.

integer-string

is a process handle represented by ten integers, each separated by a period.

process-identifier

is a process name or CPU,PIN.

Results

If you specify PROCESSID, #CONVERTPHANDLE returns a process name for the
specified integer sequence. If the process is not named, TACL returns the CPU and
PIN. The node name is always included. If the specified process handle is not valid,
TACL returns an error.

If you specify INTEGERS, #CONVERTPHANDLE returns a process handle,
represented as ten integers. If the process does not exist, a null process handle,
consisting of the value 65535 in each of the ten integers, is returned.

Considerations

Process handles are the D-series successor to process identifiers (CRTPIDs) for
process-control purposes. Process handles can occur in SPI buffers and in operating
system messages. TACL provides a process handle in the TACL structure
:_COMPLETION^PROCDEATH for completion handling on D-series systems.

Use the external format of a process handle (ten integers separated by periods) if you
need to present a process handle to TACL in external form, as in calls to #SSPUT and
#SET.

Examples

1. This function call converts a ten-integer process handle to its corresponding
process identifier:

10> #CONVERTPHANDLE/PROCESSID/ 512.31.2.18.0.0.11.57728.0.243

\SYS2.$S

#CONVERTPHANDLE
 { / PROCESSID / integer-string } |
 { / INTEGERS / process-identifier }

Note. The format for a process handle is defined by as part of the TACL software product and
is subject to change in future RVUs.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-76

B u ilt-In Functions and V ariab les #C O N V E R TP H A N D LE B u ilt-In Function
2. This function call converts a process name to its corresponding process handle:

11> #CONVERTPHANDLE / INTEGERS / $S

512.31.2.18.0.0.11.57728.0.243

3. This example uses #CONVERTPHANDLE to convert a process handle field in
STRUCT s to a process identifier:

[#CONVERTPHANDLE / PROCESSID / [s:proc]]

where

proc is a process-handle field in the STRUCT named s.

[s:proc] returns the ten-integer format of the process handle, as
obtained from an SPI buffer using the #SSGET built-in
function.

[#CONVERTPHANDLE
/PROCESSID/ [s:p]]

returns the process descriptor; for example:
\SYSTWO.$PROC.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-77

B u ilt-In Functions and V ariab les #C O N V E R TP R O C E S S T IM E B u ilt-In Function
#CONVERTPROCESSTIME Built-In Function

Use #CONVERTPROCESSTIME to convert the time value obtained by the
PROCESSTIME option of #PROCESSINFO.

process-time

is a numeric expression representing a CPU time.

Result

#CONVERTPROCESSTIME returns a space-separated list of the equivalent number
of hours, minutes, seconds, milliseconds, and microseconds in the process-time
argument.

Example

Assuming #INFORMAT is set to TACL, this example converts the value (in
microseconds) obtained by the PROCESSTIME option of #PROCESSINFO:

19> #OUTPUT [#CONVERTPROCESSTIME [#PROCESSINFO
/PROCESSTIME/]]
0 0 4 122 58

#CONVERTPROCESSTIME process-time
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-78

B u ilt-In Functions and V ariab les #C O N V E R TT IM E S TA M P B u ilt-In Function
#CONVERTTIMESTAMP Built-In Function

Use #CONVERTTIMESTAMP to convert a Greenwich mean time (GMT) timestamp to
or from a local time-based timestamp on any accessible node in a network. The
resulting timestamp is still in four-word format (as returned by #JULIANTIMESTAMP),
but its value is adjusted for the time differential between local time and GMT. Local
time can be either standard time or civil time (standard time adjusted for daylight
saving).

gmt-timestamp

is the timestamp to be converted.

direction

is a number that represents the direction of conversion:

\node-name

is the name of the system where conversion is to be done.

Result

#CONVERTTIMESTAMP returns a numeric error code. If the conversion is successful,
the error code (zero) is followed by a space and the converted timestamp.

The codes are:

#CONVERTTIMESTAMP gmt-timestamp direction [\node-name]

Number Conversion

0 GMT to local civil time (LCT)

1 GMT to local standard time (LST)

2 LCT to GMT

3 LST to GMT

Code Condition

-2 Impossible LCT

-1 Ambiguous LCT

0 No errors; successful conversion

1 Daylight-saving time (DST) range error

2 DST table not loaded

>2 File-system error (attempting to reach \ node-name)
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-79

B u ilt-In Functions and V ariab les #C O N V E R TT IM E S TA M P B u ilt-In Function
Example

This example obtains the current Greenwich mean time, converts the timestamp to
local civil time (LCT), and displays the GMT and LCT in component form:

?SECTION convtime ROUTINE
#FRAME
#PUSH gmttime, loctime, err
#SET gmttime [#JULIANTIMESTAMP]
#SETMANY err loctime , [#CONVERTTIMESTAMP gmttime 0]
SINK [IF [err] |THEN|
 #OUTPUT Error occurred: [err]
 |ELSE|
 #OUTPUT GMT = [#INTERPRETTIMESTAMP gmttime]
 #OUTPUT LCT = [#INTERPRETTIMESTAMP loctime]
]
#UNFRAME

When the preceding routine is invoked, TACL displays:

GMT = 2448713 1992 3 31 0 53 47 174 708
LCT = 2448712 1992 3 30 16 53 47 174 708
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-80

B u ilt-In Functions and V ariab les #C R E A TE F ILE B u ilt-In Function
#CREATEFILE Built-In Function

Use #CREATEFILE to create an unstructured file.

option can be:

EXTENT num

the number of data pages allocated for the primary and all secondary extents.

 For format 1 files, specify num as an integer in the range from 1 through
65535.

 For format 2 files, specify num as an integer in the range from 1 through
512000000.

The default value is 2.

FILEFORMAT num

the file format.

 For format 1 files, specify num as 1.

 For format 2 files, specify num as 2.

The default value is 1.

file-name

the name of the file to be created.

If you specify only the volume name, a temporary file is created on the
specified volume. To retrieve this name, use the FILENAMEV option.

FILENAMEV variable-level

the name of an existing variable level into which the filename is to be returned.
The previous contents of the variable are lost if the file is created successfully.
The variable must not be in a shared segment and must not be a DIRECTORY,
a STRUCT, a SUBSTRUCT, or a STRUCT item.

Variable levels are defined in Section 4, Variables.

PHYSICALVOLUME physical-volume

the physical volume on which a logical file is to be created. If no physical
volume is specified in file-name, the default volume name for the TACL
process in effect at the time of the request is used.

#CREATEFILE [/ option [, option] /] file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-81

B u ilt-In Functions and V ariab les #C R E A TE F ILE B u ilt-In Function
If a logical volume is specified in the file name for file creation, the physical
volume on which the file is created is chosen by the system. The physical-
volume parameter overrides this selection.

The PHYSICALVOLUME option should be used only if no physical volume is
specified in file-name. Otherwise, a file-system error is returned.

Result

#CREATEFILE returns zero if it is successful; otherwise, it returns a file-system error
indicating the reason for the failure.

Considerations

 If you specify only the volume for the filename, a temporary file is created on
the specified volume. You should also specify the FILENAMEV to retrieve the
temporary file name.

 The PHYSICALVOLUME option should be used only if a logical volume was
specified for the filename. Otherwise a file-system error is returned.

 If the system does not support the PHYSICALVOLUME option, error 561 is
returned.

 Various failures on a system with a DSM/Storage Manager might result in the
inaccessibility of a logical file.

Example

#CREATEFILE /EXTENT 2,PHYSICALVOLUME $mg/ $v.a.b

Specifies that logical file, $v.s.f, be created with a two-page extent size on physical
volume $mg.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-82

B u ilt-In Functions and V ariab les #C R E A TE P R O C E S S N A M E B u ilt-In Function
#CREATEPROCESSNAME Built-In Function

Use #CREATEPROCESSNAME to create a unique process name that is not in use on
the local system. This function invokes the CREATEPROCESSNAME operating
system procedure.

Result

#CREATEPROCESSNAME returns a unique, unused process name in one of the
forms $Xnnn, $Ynnn, or $Zxxx, where n is any numeric character and x is any
alphanumeric character.

#CREATEPROCESSNAME
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-83

B u ilt-In Functions and V ariab les #C R E A TE R E M O TE N A M E B u ilt-In Function
#CREATEREMOTENAME Built-In Function

Use #CREATEREMOTENAME to create a unique process name not in use on the
specified system. This function invokes the CREATEREMOTENAME operating system
procedure.

\node-name

is the name of an available system to be checked for processes in use.

Result

#CREATEREMOTENAME returns a unique, unused process name in one of the forms
$Xnnn, $Ynnn, or $Zxxx, where n is any numeric character and x is any alphanumeric
character. If \node-name does not exist, TACL returns an error. If \node-name is the
name of the local system, #CREATEREMOTENAME returns a process name for the
local system.

#CREATEREMOTENAME \node-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-84

B u ilt-In Functions and V ariab les #D E B U G P R O C E S S B u ilt-In Function
#DEBUGPROCESS Built-In Function

Use #DEBUGPROCESS to invoke the default debugger, DEBUG or INSPECT, for a
specified process. #DEBUGPROCESS invokes the DEBUGPROCESS operating
system procedure.

NOW

specifies that debugging is to begin immediately. This option is available to super-
group users only.

\node-name

is the system where the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process number of the process.

TERM [\node-name.]$terminal-name

is the terminal where interactive debugging is to take place. It also becomes the
home terminal of the specified process. If \node-name is the current default
system, you can omit it. If you omit this option, DEBUG or INSPECT uses the
existing home terminal of the specified process.

Result

#DEBUGPROCESS returns zero if it is successful; otherwise, it returns the error code
returned by the call to the DEBUGPROCESS procedure.

Considerations

 If you are not a super-group member or a group manager, you can debug only
those processes whose process accessor ID matches your user ID; you must have
read access to the program file.

 If you are a group manager, you can debug any process whose process accessor
ID matches any user ID in your group; you must have read access to the program
file.

#DEBUGPROCESS [/ NOW /]
 [\node-name.]
 {$process-name | cpu,pin}
 [, TERM [\node-name.]$terminal-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-85

B u ilt-In Functions and V ariab les #D E B U G P R O C E S S B u ilt-In Function
 If you are the super ID, you can debug any process. Only the super ID can debug
privileged processes.

 The process to be debugged does not enter the debug state until it executes its
next instruction in the user code space; the process cannot enter the debug state
while executing system code. If you enter the NOW option, however, the process
enters the debug state immediately. To use this option, you must have a group ID
of 255.

 To set or obtain the current value of the INSPECT flag, which determines the
default debugger, use the #INSPECT built-in function.

H-Series Usage

The program DEBUG is not available for use on systems running H-series software.

The DEBUG command invokes a debugger, it can be Inspect, Native Inspect
(eInspect, which is not in the family of Inspect debuggers), or Visual Inspect.

The rules about which debugger gets invoked are approximately the same as for the
RUND command. That is, if the INSPECT attribute is set ON anywhere (in the object
file during compilation, or on the TACL command line using the SET command), you
will get a debugger in the Inspect family (either Inspect or VI), unless of course neither
of these debuggers is available, and then you get the default debugger, eInspect. If
the Inspect attribute is OFF, you get Native Inspect (eInspect).

Inspect is invoked only for TNS accelerated/interpreted programs (never for TNS/E
native programs), while Visual Inspect can handle both of these. Native Inspect
handles only TNS/E native programs and snapshots.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-86

B u ilt-In Functions and V ariab les #D E F B u ilt-In Function
#DEF Built-In Function

Use #DEF to define a variable.

variable

is the name of the variable. If the variable exists, TACL pushes it, creating a new
top level. If the variable does not exist, TACL creates it.

ALIAS

specifies that variable is a command alias.

DELTA

specifies that variable is to contain #DELTA commands.

MACRO

specifies that variable is a TACL macro.

ROUTINE

specifies that variable is a TACL routine.

TEXT

specifies that variable is to contain plain text.

enclosure

has this form (any other labels and associated text are ignored):

|BODY| [text]

It defines the contents of the variable.

DIRECTORY [segment-spec]

specifies that variable is a directory. Use DIRECTORY to create a directory that can
contain a hierarchy of variables or to attach a segment. If you specify segment-spec,
TACL attaches the segment. If you omit segment-spec, TACL pushes the named
variable (in the segment in which it is defined) but does not associate it with a segment
file.

segment-spec

has the form { PRIVATE | SHARED } file-name

#DEF variable {
 { ALIAS | DELTA | MACRO | ROUTINE | TEXT} enclosure}
 DIRECTORY [segment-spec]
 STRUCT structure-body
}

H P N onS top TA C L R e fe rence M anua l — 429513-017
9-87

B u ilt-In Functions and V ariab les #D E F B u ilt-In Function
PRIVATE

specifies that the creator of the segment file has read and write access to
the file and that no other process may open it.

SHARED

specifies that the segment file is a read-only file and that other processes
may open it for read access.

file-name

is the name of a TACL segment file. If file-name does not exist, TACL
creates it and initializes it as an empty TACL segment.

STRUCT structure-body

specifies that variable represents a structure.

structure-body

is a set of declarations for data, substructures, FILLER bytes, or redefinitions,
as described in Section 4, Variables. All internal square brackets in the body
are expanded before the structure is declared.

Result

#DEF returns nothing.

Considerations

 If you specify a segment file in a DIRECTORY definition, the segment file must
reside on the local system (where the TACL process is executing).

 If the #DEF declaration contains a |BODY| label, it must be enclosed in square
brackets. For a DIRECTORY or STRUCT definition, square brackets are required
only if the entire #DEF cannot be contained in one line and you prefer not to use
the ampersand (&) continuation character.

 The |BODY| label, used in the enclosure that defines ordinary variables, is not
used in a DIRECTORY or STRUCT definition.

 #DEF does not always behave exactly the same as a #PUSH-#SET combination:
For example, #SET A BB[CCC]DDDD invokes [CCC] to obtain the contents of the
variable level CCC before assigning the result to the variable level A. On the other
hand, [#DEF A type |BODY| BB[CCC]DDDD] assigns the value BB[CCC]DDDD to
A, including the brackets, leaving the expansion to be done when A is invoked.
This may cause unexpected results, especially if type is DELTA.

 Do not try to use #DEF on the root directory (:). If you try this, TACL returns
“*ERROR* Cannot push or pop the root segment's root.” In addition, to avoid losing
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-88

B u ilt-In Functions and V ariab les #D E F B u ilt-In Function
standard functionality from your TACL environment, do not use #DEF on the
directories supplied as part of the TACL software product (such as UTILS).

 You cannot attach more than 50 segment files.

Examples

1. This example defines a variable, RTN, as a ROUTINE that accepts no arguments
and displays a “thank you” message:

[#DEF rtn ROUTINE
 |BODY|
 SINK [#ARGUMENT END]
 #OUTPUT Thank you!
]

2. The next example sets up the alias P for the PERUSE command:

[#DEF p ALIAS
 |BODY|
 PERUSE
]

3. These examples declare structures:

[#DEF inventory STRUCT
 BEGIN
 INT item;
 INT price;
 INT quantity;
 END;
]

[#DEF obsolete^stuff STRUCT
 LIKE inventory;
]

4. This examples define directories:

PURGE segfl
#DEF :myseg DIRECTORY PRIVATE segfl
#DIR :our^seg DIRECTORY SHARED $system.segs.segfile
#DEF :dir DIRECTORY
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-89

B u ilt-In Functions and V ariab les #D E FA U LTS B u ilt-In V ariab le
#DEFAULTS Built-In Variable

Use #DEFAULTS to set or obtain the saved defaults (set by the DEFAULT program),
the current defaults (set by the VOLUME and SYSTEM commands), or both.

option

is either of these:

CURRENT

specifies your current defaults.

SAVED

specifies your logon defaults.

Result

#DEFAULTS returns the file-name defaults you request. If you specify both options, the
defaults appear in a space-separated list in the order in which you presented the
requests. If you omit both options, #DEFAULTS returns the current defaults.

Considerations

 When you first log on, #DEFAULTS is initialized to your saved default volume and
subvolume (current default and saved default are the same at this time).

 Use #PUSH #DEFAULTS (or PUSH #DEFAULTS) to save a copy of your current
file-name defaults.

 Use #POP #DEFAULTS (or POP #DEFAULTS) to replace your current file-name
defaults with the previously pushed defaults.

 Use #SET #DEFAULTS (or SET VARIABLE #DEFAULTS) to assign your current
defaults to a specified subvolume.

The syntax for #SET #DEFAULTS is:

If you change your defaults to include a node name, you can get them back to local
form only by using the #SYSTEM built-in function or the SYSTEM command.

#DEFAULTS [/ option [, option] /]

#SET #DEFAULTS subvolume-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-90

B u ilt-In Functions and V ariab les #D E FA U LTS B u ilt-In V ariab le
Example

Assuming #INFORMAT is set to TACL, this example displays both your current and
saved defaults:

12> #OUTPUT [#DEFAULTS /SAVED, CURRENT/]
$BUNK.HOUSE $OPEN.RANGE
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-91

B u ilt-In Functions and V ariab les #D E F IN E A D D B u ilt-In Function
#DEFINEADD Built-In Function

Use #DEFINEADD to add a DEFINE to the TACL context, or to replace an existing
DEFINE, using the attributes in the working set. #DEFINEADD invokes the
DEFINEADD operating system procedure.

define-name

is the name of the DEFINE to be added.

flag

is a flag that specifies what to do if a DEFINE with the same name already exists. It
can have either of these values:

If you omit flag, 0 is assumed.

Result

#DEFINEADD returns a numeric error code indicating the outcome of the DEFINEADD
procedure; zero indicates success. See Appendix B, Error Messages for a list of
DEFINE-oriented error codes.

Consideration

When a backup TACL process takes over, TACL deletes existing assignments.

#DEFINEADD define-name [flag]

0 Add a DEFINE if it does not exist. Do not replace the existing
DEFINE.

1 Replace an existing DEFINE.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-92

B u ilt-In Functions and V ariab les #D E F IN E D E LE TE B u ilt-In Function
#DEFINEDELETE Built-In Function

Use #DEFINEDELETE to delete a DEFINE from the TACL context. This function
invokes the DEFINEDELETE operating system procedure.

define-name

is the name of the DEFINE to be deleted.

Result

#DEFINEDELETE returns a numeric error code indicating the outcome of the
DEFINEDELETE procedure. Zero indicates success. See Appendix B, Error Messages
for a list of DEFINE-oriented error codes. If an error occurs, the DEFINE is not deleted.

#DEFINEDELETE define-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-93

B u ilt-In Functions and V ariab les #D E F IN E D E LE TE A LL B u ilt-In Function
#DEFINEDELETEALL Built-In Function

Use #DEFINEDELETEALL to delete all DEFINEs except =_DEFAULTS from the TACL
context (=_DEFAULTS cannot be deleted). This function invokes the
DEFINEDELETEALL operating system procedure.

Result

#DEFINEDELETEALL returns a numeric error code indicating the outcome of the
DEFINEDELETEALL procedure; zero indicates success. See Appendix B, Error
Messages for DEFINE-oriented error codes.

#DEFINEDELETEALL
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-94

B u ilt-In Functions and V ariab les #D E F IN E IN FO B u ilt-In Function
#DEFINEINFO Built-In Function

Use #DEFINEINFO to set or obtain information about a specified DEFINE. The
function invokes the DEFINEINFO operating system procedure.

define-name

is the name of the DEFINE for which information is desired.

Result

#DEFINEINFO returns a numeric error code indicating the outcome of the
DEFINEINFO procedure; zero indicates success. See Appendix B, Error Messages for
a list of DEFINE-oriented error codes.

If the error code is 0, the following are also included as a space-separated list:

 The class of the DEFINE

 The name of the primary attribute (dependent on the class of the DEFINE)

 The (possibly empty) value of the selected attribute

#DEFINEINFO define-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-95

B u ilt-In Functions and V ariab les #D E F IN E M O D E B u ilt-In V ariab le
#DEFINEMODE Built-In Variable

Use #DEFINEMODE to obtain the current setting of DEFMODE (described with the
SET DEFMODE command), which controls the use and propagation of DEFINEs.

Result

#DEFINEMODE returns the current DEFMODE setting: OFF or ON.

Considerations

 When you first log on, #DEFINEMODE is initialized to ON.

 #DEFINEMODE is set to ON when TACL is started and whenever a LOGON is
done from the logged-off state.

 Use #PUSH #DEFINEMODE (or PUSH #DEFINEMODE) to save the current
DEFMODE status.

 Use #POP #DEFINEMODE (or POP #DEFINEMODE) to restore #DEFINEMODE
to its previous setting.

 Use #SET #DEFINEMODE (or SET VARIABLE #DEFINEMODE) to establish
whether DEFINEs can be used by TACL and the processes it starts.

The syntax for #SET #DEFINEMODE is:

OFF

disables the use of DEFINEs in TACL and the propagation of DEFINEs to new
processes started by TACL (such processes have an initial DEFMODE setting
of OFF).

ON

enables the use of DEFINEs in TACL and causes it to propagate all DEFINEs
in use to any process it starts (such processes have an initial DEFMODE
setting of ON).

#DEFINEMODE

#SET #DEFINEMODE { OFF | ON }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-96

B u ilt-In Functions and V ariab les #D E F IN E N A M E S B u ilt-In Function
#DEFINENAMES Built-In Function

Use #DEFINENAMES to find the names of DEFINEs that match a specified DEFINE
template.

define-template

is a template indicating the DEFINE names to search for. The template can include
these template characters:

* matches zero or more characters

? matches any single character

The template can consist entirely of two template characters:

=* or ** matches all DEFINE names

Result

#DEFINENAMES returns a (possibly empty) space-separated list of all DEFINE names
that match the DEFINE template.

#DEFINENAMES define-template
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-97

B u ilt-In Functions and V ariab les #D E F IN E N E X TN A M E B u ilt-In Function
#DEFINENEXTNAME Built-In Function

Use #DEFINENEXTNAME to obtain the name of the DEFINE that follows the specified
DEFINE in the sequence established by the operating system. The function invokes
the DEFINENEXTNAME operating system procedure.

define-name

specifies the name from which to begin searching for the next DEFINE name. If
you omit it, the function returns the first DEFINE name.

Result

#DEFINENEXTNAME returns a numeric error code indicating the outcome of the
DEFINENEXTNAME procedure; zero indicates success. See Appendix B, Error
Messages for a list of DEFINE-oriented error codes.

If the error code is 0, it is followed by a space and the name of the next DEFINE in
sequence.

#DEFINENEXTNAME [define-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-98

B u ilt-In Functions and V ariab les #D E F IN E R E A D A TTR B u ilt-In Function
#DEFINEREADATTR Built-In Function

Use #DEFINEREADATTR to obtain the current value of a specified attribute in the
TACL context or in the working set. This function invokes the DEFINEREADATTR
operating system procedure.

define-name

is the name of the DEFINE in the TACL context from which an attribute is to be
read.

_

An underscore in place of define-name specifies that the attribute is to be read
from the current working set.

attribute-name

is the name of the attribute to be read.

cursor

is a numeric pointer to the attribute to be read; zero indicates the first attribute in
the DEFINE. You can use cursor, along with mode, in place of attribute-name
as an alternative method of attribute specification.

mode

is a numeric indicator used with cursor; it can be any of these:

Result

#DEFINEREADATTR returns a numeric error code indicating the outcome of the
DEFINEREADATTR procedure; zero indicates success. See Appendix B, Error
Messages for a list of DEFINE-oriented error codes.

If the error code is 0 or 2061 (no more attributes), the following are also included as a
space-separated list:

 The cursor value for the next attribute in sequence, consistent with the mode
specification. This is zero if an attribute name, rather than a cursor, was supplied
as an argument.

#DEFINEREADATTR
 { define-name | _ }
 { attribute-name | cursor-mode }

0 Search only attributes that are present

1 Search present attributes, plus required attributes not present

2 Search present attributes, plus required and optional attributes not present
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-99

B u ilt-In Functions and V ariab les #D E F IN E R E A D A TTR B u ilt-In Function
 A number indicating the type of the attribute: 0 if it is optional, 1 if it is defaulted, or
2 if it is required.

 A number indicating the condition of the attribute: 1 if it was inconsistent the last
time attributes were validated, 0 if it was consistent.

 The name of the attribute whose value is being returned.

 The (possibly empty) value of the selected attribute.

Consideration

An error code of 2061 can be considered as indicating a successful operation, but if
you are using a loop to read successive attributes, receipt of the “no more attributes”
code should be a signal to terminate the loop.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-100

B u ilt-In Functions and V ariab les #D E FIN E R E S TO R E B u ilt-In Function
#DEFINERESTORE Built-In Function

Use #DEFINERESTORE to create or replace an active DEFINE, or replace the
working set, with the contents of a DEFINE previously saved with #DEFINESAVE.

option

is either of these:

REPLACE

specifies that if a DEFINE with the same name as the saved DEFINE exists,
the saved DEFINE is to replace the existing DEFINE. If no DEFINE with the
same name exists, an error occurs.

If you omit this option, and no other DEFINE exists with the same name, the
saved DEFINE is added; otherwise, an error occurs.

WORK

specifies that the saved DEFINE is to replace the working set; if the REPLACE
option is also present, it is ignored. If you omit this option, the presence or
absence of the REPLACE option governs restoration of the DEFINE.

buffer

is the name of a STRUCT containing a previously saved DEFINE. The definition of
the STRUCT, except for its length, is irrelevant.

Result

#DEFINERESTORE returns a space-separated list consisting of a numeric error code,
the name of the saved DEFINE, and a numeric consistency-check result. Error codes
are listed in Appendix B; zero indicates a successful operation. Consistency-check
numbers are shown in Table 8-7 on page 8-185; zero indicates no consistency errors.

Considerations

 The buffer must contain a valid internal form of a DEFINE, as created by
#DEFINESAVE. If the buffer appears not to contain a valid DEFINE,
#DEFINERESTORE returns an error and does not restore the buffer contents.

 If the buffer is to be restored as an active DEFINE and no error occurs, the
DEFINE is restored; if the error code is not zero, the DEFINE is not restored. In
either case, the working set and the background set remain unchanged.

 If the buffer is to be restored to the working attribute set and the error code is
anything but 0, 2057, 2058, or 2059, the working set remains unchanged.

#DEFINERESTORE [/ option [, option] /] buffer
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-101

B u ilt-In Functions and V ariab les #D E FIN E R E S TO R E B u ilt-In Function
However, the saved DEFINE is restored to the working set even if it is incomplete,
inconsistent, or invalid.

 If you save the =_DEFAULTS DEFINE, you must use the REPLACE option when
restoring it. Because the =_DEFAULTS DEFINE always exists, it cannot be added.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-102

B u ilt-In Functions and V ariab les #D E F IN E R E S TO R E W O R K B u ilt-In Function
#DEFINERESTOREWORK Built-In Function

Use #DEFINERESTOREWORK to restore the DEFINE working set from the
background set. This function invokes the DEFINERESTOREWORK operating system
procedure.

Result

#DEFINERESTOREWORK returns a numeric error code indicating the outcome of the
DEFINERESTOREWORK procedure; zero indicates success. See Appendix B, Error
Messages for DEFINE-oriented error codes.

#DEFINERESTOREWORK
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-103

B u ilt-In Functions and V ariab les #D E F IN E S A V E B u ilt-In Function
#DEFINESAVE Built-In Function

Use #DEFINESAVE to save a copy of an active DEFINE, or the working set, for later
restoration by #DEFINERESTORE.

WORK

specifies that the working set is to be saved with the specified DEFINE name. If
you omit this option, the DEFINE with the specified name is saved.

define-name

is the name of the DEFINE to be saved.

buffer

is the name of a STRUCT that is to receive a copy of the DEFINE. The definition of
the STRUCT, except for its length, is irrelevant.

Result

#DEFINESAVE returns a numeric error code, a space, and the number of bytes
required to save the DEFINE. The error codes are:

If the error code is any of the above except zero, the DEFINE is not saved.

These codes are warnings only, and are used only when the working set is being
saved; it is saved even if one of the following appears.

#DEFINESAVE [/ WORK /] define-name buffer

Code Condition

0 No error

2049 Invalid DEFINE name

2051 DEFINE does not exist

2052 Unable to obtain file system buffer space

2053 Unable to obtain physical memory

2054 Bounds error on buffer, DEFINE, or saved length

2066 Parameter missing

2076 Buffer too small

2077 Buffer or DEFINE is in invalid segment

Code Condition

2057 Working set is incomplete.

2058 Working set is inconsistent.

2059 Working set is invalid.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-104

B u ilt-In Functions and V ariab les #D E F IN E S A V E B u ilt-In Function
Considerations

 The internal form of the DEFINE is placed in the buffer if it is large enough to hold
it.

 If the buffer is too small, an error occurs; you can use the length field of the result
to determine how large the buffer should have been. The following are estimates of
the maximum buffer size needed for each DEFINE class:

 If the buffer is larger than the DEFINE, the unused portion of the buffer contains
unpredictable data.

 You should not modify the data in the buffer in any way; if it is modified,
#DEFINERESTORE might not be able to restore it.

 If the working set is to be saved, the DEFINE name can be that of an active
DEFINE; the working set is saved regardless.

 The working set can be saved even if it is inconsistent, invalid, or incomplete; an
appropriate error is indicated in the result, however.

Class Estimated Size

CATALOG 202 bytes

DEFAULTS 2300 bytes

MAP 118 bytes

SORT 740 bytes

SPOOL 274 bytes

SUBSORT 226 bytes

TAPE 392 bytes
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-105

B u ilt-In Functions and V ariab les #D E F IN E S A V E W O R K B u ilt-In Function
#DEFINESAVEWORK Built-In Function

Use #DEFINESAVEWORK to save the DEFINE working set in the background set.
This function invokes the DEFINESAVEWORK operating system procedure.

Result

#DEFINESAVEWORK returns a numeric error code indicating the outcome of the
DEFINESAVEWORK procedure; zero indicates success. See Appendix B, Error
Messages for a list of DEFINE-oriented error codes.

#DEFINESAVEWORK
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-106

B u ilt-In Functions and V ariab les #D E F IN E S E TA TTR B u ilt-In Function
#DEFINESETATTR Built-In Function

Use #DEFINESETATTR to modify the value of an attribute in the working set.
#DEFINESETATTR can also be used to reset the value of an attribute to its default
value, if one exists, or to delete the attribute from the working set. This function invokes
the DEFINESETATTR operating system procedure.

attribute-name

is the name of the attribute to be set.

attribute-value

is the value to be assigned to the attribute. If you omit it, DEFINESETATTR resets
the attribute to its default value; if there is no default value, the procedure deletes
the attribute from the working set.

Result

#DEFINESETATTR returns a numeric error code indicating the outcome of the
DEFINESETATTR procedure; zero indicates success. See Appendix B, Error
Messages for a list of DEFINE-oriented error codes.

Considerations

 If the value to be assigned is an unqualified file name, the DEFINESETATTR
procedure supplies the file-name qualification from the default volume information.

 If the CLASS attribute is set, the working set is reinitialized with the attributes of the
new class and their default values (even if the CLASS attribute value is
unchanged).

 Required attributes cannot be reset.

#DEFINESETATTR attribute-name [attribute-value]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-107

B u ilt-In Functions and V ariab les #D E FIN E S E TLIK E B u ilt-In Function
#DEFINESETLIKE Built-In Function

Use #DEFINESETLIKE to initialize the working set with the attributes of an existing
DEFINE. This function invokes the DEFINESETLIKE operating system procedure.

define-name

is the name of the DEFINE whose attributes are to be copied to the working set.

Result

#DEFINESETLIKE returns a numeric error code indicating the outcome of the
DEFINESETLIKE procedure; zero indicates success. See Appendix B, Error Messages
for a list of DEFINE-oriented error codes.

Consideration

#DEFINESETLIKE deletes existing attribute values in the working set. You can save
attributes in the background set by using #DEFINESAVEWORK before invoking this
function.

#DEFINESETLIKE define-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-108

B u ilt-In Functions and V ariab les #D E F IN E V A LID A TE W O R K B u ilt-In Function
#DEFINEVALIDATEWORK Built-In Function

Use #DEFINEVALIDATEWORK to check the DEFINE working set for consistency. This
function invokes the DEFINEVALIDATEWORK operating system procedure.

Result

#DEFINEVALIDATEWORK returns a numeric error code indicating the outcome of the
DEFINEVALIDATEWORK procedure, followed by a space and a check number. If the
error code is 0, the working set is consistent. See Appendix B, Error Messages for a
list of DEFINE-oriented error codes.

The check number is 0 unless the error code is 2058 (working set is inconsistent), in
which case the code value depends on the DEFINE class. See Table 8-7 on
page 8-185 for a list of check numbers.

#DEFINEVALIDATEWORK
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-109

B u ilt-In Functions and V ariab les #D E LA Y B u ilt-In Function
#DELAY Built-In Function

Use #DELAY to cause TACL to delay for a specified number of centiseconds.

centiseconds

is the number of centiseconds for TACL to delay.

Result

#DELAY returns nothing.

Consideration

 You cannot end the #DELAY built-in function using the BREAK key if you specify
#BREAKMODE DISABLE or #BREAKMODE POSTPONE. You can end the
#DELAY built-in function using the BREAK key only when #BREAKMODE
ENABLE is specified.

 If I/O is pending or outstanding on a TACL IN file, you cannot break the delay.

Examples

This list illustrates #DELAY values:

#DELAY centiseconds

#DELAY 100 means delay 1 second

#DELAY 6000 means delay 1 minute

#DELAY 30000 means delay 5 minutes
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-110

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
#DELTA Built-In Function

#DELTA, the TACL character editor, allows you to perform complex operations on text.
Although it is mainly for editing text from within macros and routines, you can use
#DELTA interactively as well. Using #DELTA interactively allows you to observe how
#DELTA works and lets you debug existing #DELTA macros.

You can also use #DELTA to read text from a file, modify the text and write the
modified text to another file.

The #CHARxxx and #LINExxx string-handling functions perform text operations that
are similar to #DELTA capabilities. You might find that you can avoid using #DELTA
altogether, doing all the character processing you need-much more simply-through the
use of the #CHARxxx and #LINExxx string-handling functions.

variable-level

is a variable level whose type must be DELTA. #DELTA executes commands from
this variable level.

text

is a text string that is inserted into the #DELTA buffer before #DELTA starts.

Result

#DELTA returns whatever is left in the #DELTA buffer after editing.

Considerations

 If you include the COMMANDS option, #DELTA executes the commands in
variable-level and exits.

 If you omit the COMMANDS option, #DELTA accepts commands interactively from
the terminal until it receives two consecutive CTRL-y characters.

A detailed description of #DELTA operations and commands follows.

Most of the examples that will be given are interactive (the COMMANDS option, which
allows you to name a variable level containing a set of #DELTA commands, is not used
in this discussion). Using #DELTA interactively allows you to observe how #DELTA
operates, to work on individual parts of #DELTA command variables before formally
defining them as a whole, and to debug existing #DELTA macros.

The #DELTA prompt appears in the form #DELTA n> ; the prompt is displayed only
when you use #DELTA interactively. At the #DELTA prompt, you can enter #DELTA
commands.

#DELTA [/ COMMANDS variable-level /] [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-111

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
About #DELTA Commands

Most #DELTA commands are one or two characters long; #DELTA allows you to enter
as many commands as you want in a command string. The RETURN character can be
a part of a command or a separator between commands. Commands can be
separated by many spaces or no spaces. Because most of the #DELTA commands are
only one character long, spaces are important to writing legible command strings.

Many commands require one or two values to indicate the range of the text that is
affected by the command. #DELTA uses a postfix notation; that is, you enter the
operands (the information on which #DELTA operates) before entering the command.
Some commands return values; you can use the returned values from one command
as input values for the next command.

The RETURN character can be part of a #DELTA command string, so it is not used as
a command-line terminator; instead, you use CTRL-y to end a command line.
Whenever you type CTRL-y, #DELTA responds with EOF!.

These rules apply only to the interactive use of CTRL-y:

 Use CTRL-y to end command strings.

 You must use CTRL-y at a #DELTA n> prompt. If you use CTRL-y anywhere else
in a command line, the commands on the line containing the CTRL-y are lost.

 If you use CTRL-y when there is no command string, #DELTA exits and returns the
contents of the buffer as the result of the #DELTA function.

In the examples that will be given, CTRL-y is not shown (it does not appear on your
terminal). However, because the system responds to a CTRL-y with EOF!, wherever
you see EOF! in an example you can assume that CTRL-y was entered at that point.
For example:

6> #DELTA This is a test string
#DELTA 7> ht
#DELTA 7> EOF!
This is a test string
#DELTA 8> ht EOF!

#DELTA This is a test string expanded to:

This is a test string
8> !6
8> DELTA This is a test string
#DELTA 9> v
#DELTA 9> EOF!
This is a test string(.)
#DELTA 10> EOF!

#DELTA This is a test string expanded to:

This is a test string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-112

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
Comments

Comments help to produce readable #DELTA code. A #DELTA comment is an
exclamation point (!) followed, optionally, by explanatory text to the end of the line. You
can also use the standard TACL “{ }” and “==” comments within #DELTA. (Using TACL
comments could be safer because #DELTA ignores all text within comments; you can
also continue them over additional lines by using ampersands. However, #DELTA
parses “!” comments, so errors within those comments are possible.)

The Buffer

The main work area in #DELTA is a buffer that can contain up to 30,000 characters.
However, there could be fewer than 30,000 characters available because of ongoing
TACL activity. (At the time #DELTA exits, not more than 15,000 characters can remain
in the buffer or a “Text buffer overflow” error occurs.) Use the HT command to display
the contents of the buffer; for example:

10> [#DELTA These characters are the
10> contents of the buffer]
#DELTA 11> HT
#DELTA 11> EOF!
These characters are the
contents of the buffer

#DELTA provides ways of moving all or part of the buffer to or from files or variable
levels. All editing is done on the text in the buffer.

#DELTA does no character translation during file I/O or while accessing variable levels;
all data access is done in the PLAIN mode. For example, when #DELTA reads a file,
square brackets and vertical bars remain ordinary text; they do not become TACL
invocation characters. Comments are not eliminated, nor do ampersands function as
continuation characters.

When #DELTA reads a variable level containing a routine or a macro, special internal
character sequences appear in the buffer. In particular, a square bracket or vertical bar
appears as a pair of bytes, the second of which is the square bracket or vertical bar
(the first is RVU-dependent and subject to change); remember this point when
counting characters.

The Pointer

The pointer indicates your current position in the buffer. Some commands use the
pointer value; others modify the position of the pointer. The #DELTA pointer points
between characters. When you use a command that depends on the pointer value,
#DELTA operates on the characters relative to the pointer position.

You can display the current pointer value by entering a period followed by an equal
sign (.=). The V (view) command shows lines in the buffer and indicates by (.) the
position of the pointer within the buffer; for example:

14> #DELTA Test string
#DELTA 15> .=
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-113

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
#DELTA 15> EOF!
11
#DELTA 16> v
#DELTA 16> EOF!
Test string(.)

When #DELTA is first invoked, the pointer points to the end of the buffer.

The X and Y Registers

As mentioned, you enter the operand values for a #DELTA command before entering
the command. When you enter the values, #DELTA stores them in two internal
registers named X and Y. When you first enter a value, it is stored in the X register. The
comma command (,) moves the X register value into the Y register and clears the X
register; you can then enter a new X register value. (If you enter another comma and
another new X register value, the first Y register value is lost.)

If a command returns one value, the value is stored in the X register. If a command
returns two values, they are stored in the X and Y registers; the individual command
descriptions indicate the register in which each value is stored. Commands that do not
return values clear the X and Y registers.

#DELTA has several shorthand commands for loading the X and Y registers. The B
command loads a 0 into the X register; 0 is the beginning of the buffer. The Z
command loads the number of characters in the buffer into the X register; thus, Z also
specifies the last position in the buffer. To type out the entire buffer, you can enter:

18> #DELTA This is a test string
#DELTA 19> b,zt
#DELTA 19> EOF!
This is a test string
#DELTA 20> EOF
#DELTA This is a test string expanded to:

This is a test string

“B,” in the preceding example loads zero into the Y register; “Z” loads the size of the
buffer into the X register. The H command does both of those functions. So B,Z T and
H T are equivalent.

The period command (.) loads the current pointer position into the X register. The dollar
sign command ($) clears the X and Y registers, as does a RETURN between
commands.

Specifying Ranges of Text

Many of the #DELTA commands operate on ranges of text. There are two ways you
can specify a range of text to these commands:

 If you specify a range of text using an X register value with an empty Y register, the
range is the characters between the pointer position and x number of end-of-lines.
(EOLs) For example, 1T means type the rest of the current line (one EOL); 2T
means type the rest of the current line and the next line (two EOLs). A zero means
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-114

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
the range between the current pointer position and the beginning of the current
line.

 If you specify both X and Y register values, the range is the characters between
the absolute locations y and x. For example, 4,8T means type the characters
between the fourth character and eighth character in the buffer (this can include
end-of-line characters).

X Register Arithmetic

You can do mathematical operations on the contents of the X register. The available
operators are:

In each case, n can be a number or it can be any of these:

For example, these commands display the text from the current pointer position to the
character that is ten characters to the right of the current pointer position (note that the
first command simply displays the pointer location within the line):

#DELTA 24> v
#DELTA 24> EOF!
This is (.)a test string
#DELTA 25> .,.+10t
#DELTA 25> EOF!
a test str

Other examples of X register arithmetic are:

[#DEF zerofill DELTA |BODY|
 0J == Jump to beginning of buffer.
 6-Z,48I == Insert enough zeros to make 6 characters long.
] == End DEF

[#DEF truncate DELTA |BODY|
 Z-79 ?G == If text is longer than 79 characters ...
 79,ZK == ... delete excess characters.
 '
] == End DEF

+ n Addition

- n Subtraction

* n Multiplication

/ n Division

. The current pointer

B The beginning of the buffer

FL The length of the text last inserted by an I command, or the
length of the string last found by an S command

Z The length of the buffer
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-115

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
#DELTA Commands

This subsection describes the commands that you can use in #DELTA. Table 9-5 is a
summary of all #DELTA commands.

Table 9-5. Summary of #DELTA Commands (page 1 of 2)

Command Description

$ Clears X and Y registers

, Moves X into Y

. Gets pointer position

= Displays X or Y,X

\ Converts value between text and X register

? Identifies condition to be tested

:? Negative condition

’ Ends condition

< Begins iteration

; Exits from iteration

> Ends iteration

^\ Exits from current macro defined by M command

A Converts character to its ASCII code

B Sets X to zero (Beginning of buffer)

C Moves pointer X Characters from current position

D Deletes X characters starting at current pointer position

EI Opens a file for Input

EO Opens a file for Output

FC Sets Case of specified range to lowercase

@FC Sets Case of specified range to uppercase

FE Tests a variable level for Emptiness

FF Gets Frame number associated with a variable level

FG Compares range (Group) of text to a variable level

FL Sets X to Length of last text inserted by I command or of last string found by
S command

FO Pops a variable

FT Gets or sets a variable Type

FU Pushes a variable

G Gets text of variable level into buffer

H Sets Y to zero, X to buffer length (wHole buffer)

I Inserts text at pointer position
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-116

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
#DELTA commands can be grouped into four categories:

 Text manipulation

 Variable control

 File manipulation

 #DELTA control

Many commands in #DELTA can be modified by the command flags. The command
flags are the at sign (@) and the colon (:). The meaning and use of the command flags
varies from command to command.

Text Manipulation Commands

Text manipulation commands work with the text in the buffer, finding, inserting,
deleting, altering, and displaying the text, and moving the pointer to pinpoint where its
actions are to occur. Table 9-6 summarizes the syntax and effect of the text
manipulation commands. Full descriptions follow Table 9-9 on page 9-121.

J Jumps pointer to absolute character position

K Deletes (Kill) lines of text

L Moves pointer over X Lines

M Invokes a variable level as a Macro

P Puts a range of text into the output file

Q Loads numeric variable level into X register

S Searches for a string in text

T Types out text

U Unloads X register into a variable level

V Views text, including pointer position

X EXtracts range of text into a variable level

Y Reads (Yank) lines from input file

Z Gets buffer size

Table 9-6. Text Manipulation Commands (page 1 of 3)

Command Description Effect on Buffer Effect on X, Y, and Pointer (P)

xC Moves characters - P = P + x

x:C Moves characters
with return code

- If successful, X=-1 and P=P+X;
if not, X=0

xD Deletes characters x chars deleted -

Table 9-5. Summary of #DELTA Commands (page 2 of 2)

Command Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-117

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
xFC Changes lines to
lowercase

Lines from P to x
EOLs changed to
lowercase

-

y,xFC Changes characters
to lowercase

Chars y through x
changed to
lowercase

-

x@FC Changes lines to
uppercase

Lines from P to x
EOLs changed to
uppercase

-

y,x@FC Changes characters
to uppercase

Chars y through x
changed to
uppercase

-

Itext$ * Inserts text Text inserted at P P = P + size

xI Inserts ASCII
character

Character
inserted at P

P = P + 1

y,xI Inserts y*ASCII
characters

y number of
characters
inserted at P

P = P + y

xJ Jump characters - P = x

xK Kills lines Lines from P to x
EOLs deleted

-

y,xK Kills characters Chars from y to x
deleted

P = y

xL Moves pointer by
lines

- P = x EOLs

xStext$ * Searches - P = xth occurrence

x:Stext$ * Searches with return
code

- P = xth occurrence. If found,
X=-1; if not, X=0

xT Types lines - -

y,x T Types
chars

- -

@Tvar$ Types variable level
contents

- -

:Ttext$ * Types text - -

xV Views lines - -

x:V Views lines and show
ends

- -

Table 9-6. Text Manipulation Commands (page 2 of 3)

Command Description Effect on Buffer Effect on X, Y, and Pointer (P)
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-118

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
Variable Control Commands

Commands in #DELTA macros can push, pop, set, and manipulate variables. All these
commands (except the ^\command) must be immediately followed by a variable name;
the variable name must be terminated by a dollar sign ($). Table 9-7 summarizes the
syntax and effects of these commands. Full descriptions follow Table 9-9 on
page 9-121.

\ Converts number in
text to value in X

- X = (P)

x\ Puts x in text Text value of x
inserted at P

P = P + size

* You can modify the I, S, and :T commands with the @ flag to change the text delimiter from $ to another
character; for example: @I/text/

Table 9-7. Variable Control Commands (page 1 of 2)

Command Description Effect On Buffer
Effect on X, Y, and Pointer
(P)

FEvar$ Tests variable level
for emptiness

- X = -1 if empty, 0 if not

FFvar$ Gets frame number of
variable level

- X=frame number

xFGvar$ Compares lines to
variable level

- If successful, X = -1; if not,
X = 0

y,xFGvar$ Compares range to
variable level

- If successful, X = -1; if not,
X = 0

FOvar$ Pops variable - -

FTvar$ Gets var type - X=variable type

xFTvar$ Sets var type - -

FUvar$ Pushes variable - -

xFUvar$ Pushes and loads
variable with x

- -

Gvar$ Gets text from
variable level

Definition text put at
P

P = P + size

Mvar$ Invokes macro - -

Qvar$ Gets value from
variable level

- X = var

xUvar$ Unloads x into
variable level

- -

Table 9-6. Text Manipulation Commands (page 3 of 3)

Command Description Effect on Buffer Effect on X, Y, and Pointer (P)
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-119

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
File Manipulation Commands

#DELTA can open and close files and transmit data to and from them. This capability is
often useful for editing a document. Table 9-8 summarizes the syntax and effects of
these commands. Full descriptions follow Table 9-9 on page 9-121.

#DELTA Control Commands

The #DELTA control commands are those that you can use to control the execution of
#DELTA commands. The control commands govern conditional operations, iteration,
and macro execution, and the placement of values in the X and Y registers to govern

y,xUvar$ Unloads x into
variable level

- X = y

xXvar$ Extracts lines to
variable level

Lines from P to x
EOLs put into
variable level

-

y,xXvar$ Extracts chars to
variable level

Characters from y to
x put into variable
level

-

^\ Exits from macro - -

Caution. If you used the /COMMANDS/ option when you invoked #DELTA, do not push, pop,
or in any other way modify the variable level from which #DELTA is receiving its commands;
doing so can cause #DELTA, and possibly TACL, to fail.

Table 9-8. File Manipulation Commands

Command
Description Description Effect on Buffer

Effect on X, Y, and
Pointer (P)

EIfile$ * Opens file for input - -

EOfile$ * Opens file for output - -

xP Writes lines Lines from P to x
EOLs sent to output
file

-

y,xP Writes chars Chars from y to x sent
to file

-

xY Reads lines x lines moved from file
to (P)

P = P + size

* You can modify EI and EO commands with the @ flag to change the delimiter; for example: @EI/$trmnl/

Table 9-7. Variable Control Commands (page 2 of 2)

Command Description Effect On Buffer
Effect on X, Y, and Pointer
(P)
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-120

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
command execution. Table 9-9 summarizes the syntax and effects of these
commands.

The following subsections provide full descriptions of all the #DELTA commands, in
alphabetic sequence.

The A Command

The A command loads the X register with a number that corresponds to the position of
a character in the ASCII character set. The X register value (before execution)
specifies the buffer position, relative to the pointer, of the character to be examined; 0A
refers to the character before the pointer, 1A (or A) to the character after the pointer.
The A command does not change the pointer position. For example:

57> #DELTA ARGH!
#DELTA 58> 4JV
#DELTA 58> EOF!
ARGH(.)!
#DELTA 59> 0A=
#DELTA 59> EOF!
72
#DELTA 60> 1A=
#DELTA 60> EOF!
33

“H” is character number 72 in the ASCII set; exclamation point is character number 33.

Table 9-9. #DELTA Control Commands

Command Description Effect on Buffer
Effect on X, Y, and Pointer
(P)

; Exits iteration - -

? Specifies condition - -

:? Specifies NOT
condition

- -

’ Ends condition - -

, Moves X into Y - Y=X; X cleared

$ Clears X, Y - X and Y
segments and
retrieves buffer
position

- X = P

= Displays X or Y,X - -

< Begins iteration - -

x< Iterates x times - -

> Ends iteration - -
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-121

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
If the position specified by the X register is outside the text in the buffer, an error
occurs. However, if you have placed a value in the Y register, #DELTA avoids the error
and loads the Y register value into the X register instead.

The B Command

The B command loads the value 0 into the X register, thus indicating the beginning of
the buffer.

The C Command

The C command moves the pointer the number of positions specified by the contents
of the X register; you can precede the C command with an X register value. The sign of
the number indicates the direction to move: forward (positive) or backward (negative).
You must use a minus sign to indicate a negative number, but positive values are
implied by the absence of a minus sign. If there is no value in the X register, 1 is
assumed.

If you use the : flag before the C command, the command returns -1 if it succeeds, or 0
if the command would try to move the pointer outside the text in the buffer. If the
command is successful, the pointer is moved the specified number of characters; if the
command fails, the pointer is not moved.

For example:

#DELTA 28> v
#DELTA 28> EOF!
This is a test string(.)
#DELTA 29> -2:c = v
#DELTA 29> EOF!
-1
This is a test stri(.)ng
#DELTA 30> 4:c=v
#DELTA 30> EOF!
0
This is a test stri(.)ng
#DELTA 31>

The D Command

The D command moves the pointer a number of characters specified by the contents
of the X register, deleting those characters in the process; you can precede the D
command with an X register value. A minus sign preceding the number specifies that
characters are to be deleted in a backward direction. You must not use a plus sign to
specify forward direction, however; a positive value is implied by the absence of a
minus sign. If there is no value in the X register, 1 is assumed. For example:

65> #DELTA argh!
#DELTA 66> 1jv
#DELTA 66> EOF!
a(.)rgh!
#DELTA 67> dht
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-122

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
#DELTA 67> EOF!
agh!

The EI Command

The EI command opens a file for input. To read a file, you must open the file and
specify that the file is open for input. You cannot open the same file for both input and
output, and you can have only one file open for input and one file open for output at the
same time. If you try to open a nonexistent file for input, an error occurs.

If you follow the EI command with a file name, TACL closes the file currently open for
input and opens the named file. If you omit the file name, TACL closes the file currently
open for input. If you leave a file open when you exit from #DELTA, TACL closes it
automatically.

If you specify a file name with EI, you must end the file name with a dollar sign. If the
file name contains a dollar sign, you must use the @ flag with the command to specify
another delimiter. The delimiter is the first character that follows the command. For
example, the command @EI/$KYRIE.LEE.TESTSRC/ uses slashes (/) as its
delimiters.

This example shows how you can use EI to open a file whose name is supplied as an
argument:

#PUSH fn opfl
#SET fn %1% == Save file name in fn
#SET /TYPE DELTA/ opfl @EI/[fn]/ == Build custom EI command
[#DEF delcomm DELTA |BODY| == Define DELTA commands
 ...
Mopfl$ == Invoke custom EI command
 ...
]
#DELTA /COMMANDS delcomm/ == Invoke DELTA commands

The EO Command

The EO command opens a file for output. To write to a file, you must open the file and
specify that the file is open for output. You cannot open the same file for both input and
output, and you can have only one file open for input and one file open for output at the
same time. If a file opened for output does not exist, TACL creates an edit file with that
name; if the file does exist, #DELTA appends the lines it writes to the end of the file.

If you follow the EO command with a file name, TACL closes the file currently open for
output and opens the named file. If you omit the file name, #DELTA closes the file
currently open for output. If you leave a file open when you exit from #DELTA, TACL
closes it automatically.

If you specify a file name with EO, you must end the file name with a dollar sign. If the
file name contains a dollar sign, you must use the @ flag with the command to specify
another delimiter. The delimiter is the first character that follows the command. For
example, the command @EO’$FURD.UFFDA.TESTSRC’ uses apostrophes (’) as its
delimiters.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-123

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
The FC Command

The FC command changes the case of text within a specified range. You can specify
the range of text either with an X register value (X lines of text, starting at the current
pointer position), or with X and Y register values (from character Y to character X). If
you use the @ flag with the FC command, the text in the range is changed to
uppercase; if you do not use the @ flag, the text is changed to lowercase.

If FC appears at the beginning of an interactive command line, it is the standard FC
(Fix Command) command.

The FE Command

The FE examines a variable level to see if it is empty. If the variable level contains
nothing, FE loads -1 into the X register; if the variable level contains anything, FE loads
0 into the X register. FE considers a variable level to be empty only if it does not
contain anything, even a space or an end-of-line.

The FF Command

The FF command loads the X register with the frame number associated with a
specified variable level. The FF command must be followed by a variable level name.
The variable level name must be terminated by a dollar sign.

The FG Command

The FG command compares a variable level with a specified range of text. You can
specify the range of text either with an X register value or with X and Y register values.
The comparison is not case-sensitive. If the comparison succeeds, FG loads -1 into the
X register; if the comparison fails, it loads 0 into the X register.

The comparison succeeds only if all characters in the variable level agree with the
buffer text. In this example, the comparison fails because DIGITS contains 10
characters (the 8 digits assigned plus a two-byte end-of-line character) and only 9
characters in the buffer are compared with it:

70> #PUSH digits
71> #SET digits 12345678
72> #DELTA
#DELTA 73> Gdigits$ BJ .,.+8FGdigits$ =
#DELTA 73> EOF!
0,0

If you had used this command instead:

#DELTA 73> Gdigits$ BJ HFGdigits$

the comparison would have succeeded because the entire contents of DIGITS were in
the buffer (the end-of-line character is represented by a null character).
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-124

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
The FL Command

The FL command loads the X register with the length of the string last inserted by I or
found by S. This is especially useful for doing text replacement where you do not want
to (or cannot) count the length of the search string. For example, you might use the
following in a TACL macro because the length of the first argument of the macro varies
from call to call:

#SET /TYPE DELTA/ cmds ... J <@:S/%1%/; -FL D> ...
#DELTA / COMMANDS cmds /

The iteration searches the buffer for a string that matches an argument of unknown
length; if it finds the string, it sets the X register to the negative (-FL) value of the string
length and deletes that many characters from the buffer. FL is set to zero whenever
#DELTA prompts.

The FO Command

The FO command pops a TACL variable. If you pop the last level of a variable, that
variable is destroyed.

The FT Command

You use the FT command to get or set the type of a variable level. FT must be followed
by the name of a variable level. If the X register is clear, FT returns a value
representing the variable type in the X register.

The values and their types are:

If the X register contains a value between 1 and 6, FT sets the specified variable level
to the type represented by the value.

The FU Command

The FU command pushes a TACL variable. If you push a variable that does not exist,
#DELTA creates it. If there is a value in the X register when you use the push
command, the new level of the variable contains that value.

Value Type

1 MACRO

2 ROUTINE

3 TEXT

4 DELTA

5 ALIAS

6 DIRECTORY

7 STRUCT
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-125

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
The G Command

The G command copies text from a variable level and inserts it in the buffer, moving
the pointer to the right of the text. The G command must be followed by a variable level
name; that name must be terminated by a dollar sign.

If you precede the G command with the : flag, #DELTA extracts (and deletes) the first
line from the variable level and puts it in the buffer. Without the : flag, #DELTA copies
the entire variable level into the buffer and the variable level remains unchanged.

The X command is the complementary function of the G command.

The H Command

The H command is equivalent to using the commands B,Z; that is, it loads the Y
register with the beginning of the buffer and the X register with the size of the buffer.
You can use the H command in conjunction with other commands to perform an
operation on the whole buffer. For example, the command HT displays the entire
buffer.

The I Command

The I command inserts text into the buffer at the current position. There are three
different ways to use the I command:

 If there is no value in either X or Y registers and the I command is followed by a
text string terminated by a dollar sign, #DELTA inserts that text.

 If there is a value in the X register, #DELTA inserts the ASCII character that
corresponds to that value into the buffer.

 If there are values in the X and Y registers, #DELTA inserts the ASCII character
that corresponds to the X register into the buffer Y number of times.

This example illustrates the three different uses of the I command:

41> #DELTA test
#DELTA 42> j iA $
#DELTA 42> 1j v
#DELTA 42> EOF!
A(.) test
#DELTA 43> 32i v !32 is ASCII code for space
#DELTA 43> EOF!
A (.) test
#DELTA 44> 5,33i v !33 is ASCII code for exclamation point
#DELTA 44> EOF!
A !!!!!(.) test
#DELTA 45>

Only when there is no value in either X or Y register can you follow the I command with
text; in the other two cases, the I command must not be followed by text. If the text
string contains a dollar sign, you can use the @ flag with the I command to specify new
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-126

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
delimiters around the string; the character immediately to the right of the I command is
the new delimiter. The delimiter is changed only for the current I command.

For example:

#DELTA 45> @I/new$/ v
#DELTA 45> EOF!
a !!!!!new$(.) test
#DELTA 46> I string$ v
#DELTA 46> EOF!
a !!!!!new$ string(.) test
#DELTA 47>

#DELTA uses the ASCII code 0 to mean end-of-line; thus, 0I (or I) breaks a line.

The J Command

The J command moves the pointer to an absolute location specified by the contents of
the X register. Thus, 0J jumps to the beginning of the buffer; 23J jumps to the 23rd
character in the buffer. The J command accepts an X register value; if none is
specified, 0 is assumed.

The K Command

Use the K command to delete a specified range of text, in lines or characters. The
range of text can be specified either with an X register value or with X and Y register
values.

If you specify only an X register value, K deletes x lines starting at the current position.
(If x is negative, K deletes x lines preceding the current position.) The K command with
no range is equivalent to 1K; -K is equivalent to -1K.

If you specify both an X register value and a Y register value, K deletes a range of
characters from position y to position x.

The difference between the K and D commands is that K deletes lines or any range of
characters; D deletes only characters, starting at the current position.

The L Command

The L command moves the pointer the number of lines specified by the contents of the
X register. That value indicates the number of end-of-line characters to skip in search
of a new line. The command 0L moves to the beginning of the current line; 1L moves
to the beginning of the next line. The L command accepts an X register value; if none
is specified, 1 is assumed; -L is equivalent to -1L.

The M Command

The M command executes a #DELTA macro. The M command must be followed by a
variable level name, which must be type DELTA. The name must be terminated by a
dollar sign. The macro uses the same buffer and current pointer value as the command
stream that invoked it. The commands in the macro are executed until the macro
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-127

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
encounters the ^\command or the end of the commands in the variable level. When the
macro exits, the buffer and current pointer value remain where the macro left them.

The only way to pass arguments to #DELTA macros is to load the arguments into
variable levels before calling the macro, then, from within the macro, get the contents
of the variables.

The P Command

The P command writes a range of text to the output file. The range of text can be
specified either with an X register value (X lines of text, starting at the current pointer
position) or with X and Y register values (character Y through character X). You cannot
represent a partial line in a file. If you output a line fragment, that fragment becomes a
new line in the output file.

#DELTA does all file I/O in PLAIN mode.

The Q Command

The Q command moves a value from a numeric variable level into the X register. The
variable level name must be terminated by a dollar sign.

To move a numeric variable level into text, you can either insert the variable level
directly with the G command or move the value into the X register with Q and then
insert the contents of the X register into text with the backslash command (that is,
Qvar$\).

The U command is the complementary function of the Q command.

The S Command

The S command searches the buffer for a specified string, starting at the current
position. The search is not case-sensitive. The contents of the X register specify the
search direction-a positive value means search forward; a negative value, backward-
and how many occurrences of the string to search for before stopping. The string to be
sought follows the S command and is normally terminated by a dollar sign. If the
search string contains a dollar sign, you can use the @ flag to specify a different
delimiter; for example:

54> #DELTA This is a $test string
#DELTA 55> bj @s/$test/ v
#DELTA 55> EOF!
This is a $test(.) string
#DELTA 56>

In this example, the string “$test” contains a dollar sign, so you use the @ flag to
specify a slash (/) as the delimiter. The new delimiter must follow the S command.
Using the @ flag changes the delimiter for only the S command that it modifies.

If the search direction is forward, the pointer is set to the right of the matching string; if
the search is backward, the pointer is set to the left of the match.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-128

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
If the search string is not found, #DELTA issues an error message and, if the #DELTA
session is not interactive, #DELTA exits. The pointer does not move. You can use the :
flag to enable your #DELTA code to handle search errors-if the string is found, the X
register is set to -1; if not, it is set to 0.

You can also use S with FL to do text replacement.

The T Command

The T command displays a range of text, the contents of a variable level, or a user-
specified string.

The range of text can be specified either with an X register value or with X and Y
register values.

To display the contents of a variable level, use the @ flag with the T command. The T
command must be immediately followed by the variable level name; the variable level
name must be terminated by a dollar sign.

For example:

60> #PUSH TEST
61> #SET TEST Test string in a variable
62> #DELTA
#DELTA 63> @Ttest$
#DELTA 63> EOF!
Test string in a variable
#DELTA 64>

You can use the : flag to direct the T command to display a text string. The text follows
the T command and must be terminated with a dollar sign. If the text contains a dollar
sign, you can use the @ flag to specify the string delimiter. The delimiter is the first
character after the T command. In this example, the first :T command uses the dollar
sign terminator; the second :T command types out a string that contains a dollar sign,
so it uses the @ flag to specify a different terminator:

#DELTA 64> :TParsing string...$
#DELTA 64> EOF!
Parsing string...
#DELTA 65> @:T/Couldn't open $GERT.STEIN.NEWMACS/
#DELTA 65> EOF!
Couldn't open $GERT.STEIN.NEWMACS
#DELTA 66>

The U Command

The U command moves the value in the X register into a numeric variable level,
consisting of one line, the text of which is the ASCII representation of a number. The
variable level name must be terminated by a dollar sign.

The U command stores the value of the X register in the variable level, stores the Y
register value in the X register, and sets the Y register to a null value. A second U
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-129

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
command could then save the former Y register value in another variable level. For
example:

123,456 Uxval$ Uyval$

puts 456 into XVAL, 123 into YVAL, and clears the X and Y registers.

The U command is the complementary function of the Q command.

The V Command

The V (view) command is most commonly used as an aid in debugging #DELTA
macros and, in general, finding out where you are in the buffer.

The V command displays lines of text and indicates where the pointer is. The X value
determines the number of lines displayed by the V command. 1V (or V) displays the
line that includes the current position; 2V displays the line that includes the current
position, plus one line in either direction.

The number of lines to display is actually determined by the number of end-of-line
characters encountered in either direction from the current position. Note that end-of-
line characters include the ends-of-lines at either end of the current line. If there is no
text in either direction, the V command does not report an error.

If you use the : flag with the V command, #DELTA indicates the beginning (B) or end
(Z) of the buffer, if they are within the range specified with the V command.

The X Command

The X command loads a TACL variable level with a range of text in the buffer. The X
command must be immediately followed by the name of a variable level; the variable
level name must be terminated by a dollar sign.

The range of text can be specified either with an X register value or with X and Y
register values: xX var-name$ loads x number of lines from the buffer into var-
name; y, xX vvar-name$ loads characters from positions y through x into var-
name.

If you precede the X command with the : flag, #DELTA appends the text to that already
in the variable level. Without the colon flag, #DELTA replaces any existing text in the
variable level with text from the buffer.

The Y Command

The Y command reads text from the input file into the buffer. The contents of the X
register indicate the number of lines to read. If there is no value in the X register,
#DELTA reads, or tries to read, all the lines in the file into the buffer (remember that the
buffer is less than 30,000 characters long).

When the Y command succeeds in reading text into the buffer, it loads the number of
lines read into the X register. If the Y command reads past the end of file, it closes the
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-130

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
file. If you use the Y command on a closed file, it loads the value zero into the X
register.

#DELTA does all file I/O in PLAIN mode.

The Z Command

The Z command loads the X register with the size of the currently used portion of the
buffer (in characters). You can use the Z command as a pointer to the end of the buffer.
For example, the commands Z K delete the characters from the current position to the
end of the buffer.

The $ Command

The dollar sign command clears both the X and Y registers.

You may want to use the dollar sign command before a command that can behave
differently depending on whether there are values in the X or Y registers.

The end-of-line following a line of #DELTA commands also clears the X and Y
registers.

The , Command

The comma command moves the contents of the X register to the Y register and clears
the X register. You can then load a second value into the X register. For example:

#DELTA 73> 8 =
#DELTA 73> EOF!
8
#DELTA 74> 8, =

#DELTA 74> EOF!
8,0
#DELTA 75> 8,40 =
#DELTA 75> EOF!
8,40
#DELTA 76>

If you enter another comma and another new X register value, the first Y register value
is lost.

The . Command

The period command loads the current pointer position into the X register.

The = Command

The equal sign command displays the contents of the X and Y registers on your
current output device. The = command is useful for debugging macros. If you are not
sure what value is in the X and Y registers before a command is executed, insert the
equal sign before that command. (Remember to remove the equal sign when you have
finished debugging; the = command destroys the contents of the X and Y registers.)
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-131

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
The \ Command

The backslash command converts a value in the X register to a number in text and vice
versa.

If there is no value in the X register and the text to the right of the pointer is a number,

#DELTA converts the text to a numeric value and loads it into the X register. For
example, if the text is 123ABC, the \ command loads 123 into the X register. If the text
is nonnumeric or is empty, an error occurs.

If there is a value in the X register, #DELTA inserts the textual representation of the
value into the buffer at the current position, moving the pointer to the right of the
inserted number.

If there is a value in the Y register, #DELTA inserts the value from the X register (zero,
if there is none) and right-justifies the inserted number in a field y characters wide. If y
is zero or greater, #DELTA fills the field with leading spaces; if y is less than zero,
leading zeros are used instead. If the absolute value of y is less than or equal to the
number of digits in the value to be inserted, #DELTA simply inserts it.

The ^\ Command

This command terminates a #DELTA macro begun by the M command.

Conditional Processing (? and ’ Commands)

Conditional processing is controlled by a construct that begins with a question mark (?)
followed by a letter indicating the condition to be tested for, then the command(s) to be
conditionally executed, and ends with an apostrophe (’). All tests are done on the
contents of the X register. If the test is successful, #DELTA executes the command or
commands between the test letter and the apostrophe. The test letters are:

The : flag, placed before the question mark, is the NOT operator. For example, 1?E is
false, but 1:?E is true.

In this example, the character before the pointer is converted into its ASCII value and
is loaded into the X register. The conditional test then tests whether the character is an
alphabetic character. If it is not, #DELTA replaces it with a space (-D I $ deletes the
character and inserts a space):

0A :?A -D I $'

Letter Condition to be Tested

A Is X the ASCII value of an alphabetic character?

D Is X the ASCII value of a numeric character?

E Is X equal to zero?

G Is X greater than zero?

L Is X less than zero?

N Is X not equal to zero?
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-132

B u ilt-In Functions and V ariab les #D E LTA B u ilt-In Function
Conditional constructs can be nested.

Iteration (< and >Commands)

Iterations (groups of #DELTA commands to be performed repeatedly) are delimited by
angle brackets. If there is a value in the X register, #DELTA performs the iteration that
number of times. If there is no value in the X register, #DELTA repeats the iteration
until you explicitly end it from within the loop. Each time #DELTA repeats the iteration, it
decrements a counter; if, however, you use the @ flag before the closing greater-than
sign (@>), the iteration count is not decremented.

You can put a conditional construct containing an end-iteration command (>or @>)
within the iteration: If the condition is true, the end-iteration command forces the loop to
start its next execution before reaching the actual end of the iteration.

You can use the semicolon command (;) within an iteration to force its termination,
based on a test of the value in the X register:

You can nest iterations.

The following iterative statement searches for all occurrences of the British spelling of
the word color (colour), and changes it to the American spelling by deleting the letter
“u.” The : flag before the S command directs the search to return a status value. If the
value is zero, the search failed and the semicolon command ends the iteration:

bj <:Scolour$;-c -d>

; Exit if X register is greater than or equal to zero.

@; Exit if X register is equal to zero.

:; Exit if X register is less than zero.

@:; Exit if X register is not equal to zero.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-133

B u ilt-In Functions and V ariab les #D E V IC E IN FO B u ilt-In Function
#DEVICEINFO Built-In Function

Use #DEVICEINFO to obtain information about a device.

option

identifies the specific information you are requesting. It must be one of these:

AUDITED

requests the value of the AUDITED flag of the specified device or file. If the
AUDITED flag is set for a device, files audited by the TMF subsystem can
reside on the device. If the AUDITED flag is set for a file, the file is audited by
TMF. For more information, see the TMF Reference Manual.

DEVICETYPE

requests the device type.

RECORDLENGTH

requests the device physical record length, in bytes.

SUBTYPE

requests the device subtype.

Device type and subtype are represented as decimal integers; see the
Guardian Procedure Calls Reference Manual for the type and subtype values.

device-name

is the syntactically correct name of a device to be examined (or the process that
drives it).

file-name

is the syntactically correct name of a file stored on the device to be examined.

Result

#DEVICEINFO returns the information requested by the options. If you specify more
than one option, #DEVICEINFO lists the items of information, separated by spaces, in
the same order as the option requests. If you specify a device or file that does not
exist, or if an error occurs, #DEVICEINFO returns the following:

 0 for AUDITED, DEVICETYPE, and SUBTYPE

 132 for RECORDLENGTH

#DEVICEINFO / option [, option] ... /
 { device-name | file-name }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-134

B u ilt-In Functions and V ariab les #E M P TY B u ilt-In Function
#EMPTY Built-In Function

Use #EMPTY to determine if some specified text is empty.

text

is the text to be examined.

Result

#EMPTY returns -1 if text is empty; otherwise, it returns 0.

Considerations

 TACL considers text to be empty if it contains nothing but spaces or end-of-lines.

 Use the #EMPTYV built-in function to determine whether a variable level or quoted
text is empty.

Example

This example from a macro verifies that the nth argument contains text before
processing that argument.

[#IF NOT [#EMPTY % n%] |THEN|
 ...
 code for nonempty nth argument
 ...
]

#EMPTY [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-135

B u ilt-In Functions and V ariab les #E M P TY V B u ilt-In Function
#EMPTYV Built-In Function

Use #EMPTYV to determine whether a variable level or quoted text is empty.

BLANK

specifies that a string containing only spaces or end-of-lines is to be considered
empty.

string

is the name of an existing variable level, text enclosed in quotation marks, or a
concatenation of such entities. The concatenation operator is '+' (the apostrophes
are required).

Result

#EMPTYV returns -1 if the string is empty; otherwise, it returns 0.

Consideration

Use the #EMPTY built-in function to determine if specified text is empty.

#EMPTYV [/ BLANK /] string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-136

B u ilt-In Functions and V ariab les #E M S A D D S U B JE C T B u ilt-In Function
#EMSADDSUBJECT Built-In Function

Use #EMSADDSUBJECT to add a subject token to the event message buffer. This
function places the token that you provide, preceded by a subject-mark token, in the
buffer.

SSID ssid

is a subsystem ID that qualifies the token code; if omitted or zero (0.0.0), it defaults
to the subsystem ID of the current list or, if the current position is not in a list, to the
subsystem ID specified in the event message header (ZSPI-TKN-SSID).

buffer-var

is the name of a writable STRUCT used as an EMS buffer. #EMSADDSUBJECT
automatically passes the data length of the STRUCT to the EMSADDSUBJECT
system procedure.

token-id

is the token code of the subject token to be added to the event message.

token-value

is a value to be given to the new token. Include this parameter if a value is
associated with the token.

Result

#EMSADDSUBJECT returns a numeric status code indicating the outcome of the
EMSADDSUBJECT procedure.

The meaning of the status code:

#EMSADDSUBJECT [/ SSID ssid /] buffer-var
 token-id [token-value]

Code Condition

0 No error

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error

-8 Token not found
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-137

B u ilt-In Functions and V ariab les #E M S A D D S U B JE C T B u ilt-In Function
Considerations

 Every event message has at least one subject, which you specify to the #EMSINIT
procedure. Use #EMSADDSUBJECT to specify additional subjects.

 #EMSADDSUBJECT inserts two tokens into the buffer: the ZEMS-TKN-SUBJECT-
MARK token, which always precedes a subject and the subject token you
specified.

 If the subsystem that generates the event message needs to include tokens from
another subsystem (often a lower-level subsystem), its call to #SSPUT(V) must
include the SSID option, which specifies the subsystem ID of the other subsystem.
When you specify the SSID option, every token placed in the buffer on that
procedure call is in an extended form that includes the SSID you specified.

 To supply token values from a variable level, use the #EMSADDSUBJECTV built-in
function.

-9 Invalid token code or map

-10 Invalid subsystem ID

-11 Operation not supported

-12 Insufficient stack space

Code Condition
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-138

B u ilt-In Functions and V ariab les #E M S A D D S U B JE C TV B u ilt-In Function
#EMSADDSUBJECTV Built-In Function

Use #EMSADDSUBJECTV to add a subject token to the event message buffer. This
function places binary token values taken from a variable level, preceded by a subject-
mark token, in the buffer.

SSID ssid

is a subsystem ID that qualifies the token code; if omitted or zero (0.0.0), it defaults
to the subsystem ID of the current list or, if the current position is not in a list, to the
subsystem ID specified in the event message header (ZSPI-TKN-SSID).

buffer-var

is the name of a writable STRUCT used as an EMS buffer. #EMSADDSUBJECTV
automatically passes the data length of the STRUCT to the EMSADDSUBJECT
system procedure.

token-id

is the token code or token map of the subject token to be added to the event
message.

source-var

is the name of a variable level, of type STRUCT, from which #EMSADDSUBJECTV
is to obtain binary token values. The contents of the STRUCT are not altered.

Result

#EMSADDSUBJECTV returns a numeric status code indicating the outcome of the
EMSADDSUBJECT procedure.

The meaning of the status code:

#EMSADDSUBJECTV [/ SSID ssid /] buffer-var
 token-id source-var

Code Condition

0 No error

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-139

B u ilt-In Functions and V ariab les #E M S A D D S U B JE C TV B u ilt-In Function
Considerations

 Every event message has at least one subject, which you specify to the
#EMSINIT(V) procedure. Use #EMSADDSUBJECTV to specify additional subjects.

 #EMSADDSUBJECTV inserts two tokens into the buffer: the ZEMS-TKN-
SUBJECT- MARK token, which always precedes a subject, and the subject token
variable or the STRUCT.

 If the subsystem that generates the event message needs to include tokens from
another subsystem (often a lower-level subsystem), its call to #SSPUT(V) must
include the SSID option, which specifies the subsystem ID of the other subsystem.
When you specify the SSID option, every token placed in the buffer on that
procedure call is in an extended form that includes the SSID you specified.

-8 Token not found

-9 Invalid token code or map

-10 Invalid subsystem ID

-11 Operation not supported

-12 Insufficient stack space

Code Condition
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-140

B u ilt-In Functions and V ariab les #E M S G E T B u ilt-In Function
#EMSGET Built-In Function

Use #EMSGET to retrieve binary token values from an SPI buffer, convert them to
external representation, and make that external representation accessible in the result
of the function. #EMSGET invokes the EMSGET operating system procedure.

You cannot use #EMSGET to extract values of extensible structured tokens using a
token map or using a token code of type ZSPI^TDT^STRUCT. Instead, use
#EMSGETV.

option

is any of these:

COUNT count

is the maximum number of token values to be returned. This specifies that the
token value returned is an array of count elements, each of which is described
by token-code. If you omit count, it defaults to 1.

If count is greater than 1, #EMSGET continues searching until it either satisfies
the requested count or reaches the end of the buffer or list.

If count is less than 1, an error occurs.

INDEX index

is the specific occurrence of token-code, starting from the beginning of the
buffer or list (an index of 1 gets the first occurrence of that token code, an
index of 2, the second, and so on).

If you omit this option or if index = 0, #EMSGET returns the next occurrence of
the token code after the current position, and resets the current position to that
of the token value returned. If you want to search from the beginning of the
buffer, you must supply a nonzero index or else have previously reset the initial
position with #SSPUT(V) using ZSPI^TKN^INITIAL^POSITION or
ZSPI^TKN^RESET^BUFFER.

If index is less than zero, an error occurs.

SSID ssid

is a subsystem ID that qualifies the token code; if omitted or zero (0.0.0), it
defaults to the subsystem ID of the current list or, if the current position is not in
a list, to the subsystem ID specified in the SPI message header. The version
field of this parameter is not used when searching the buffer.

#EMSGET [/ option [, option] ... /] buffer-var get-op
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-141

B u ilt-In Functions and V ariab les #E M S G E T B u ilt-In Function
buffer-var

is the name of the message buffer from which information is to be taken; it must be
a writable STRUCT that has been initialized by #SSINIT.

get-op

is one of these:

token-code

directs #EMSGET to return the token value or values associated with token-
code.

If token-code is a token that marks the beginning of a list, #EMSGET selects
the list so that subsequent calls can retrieve tokens within the list. If token-
code is ZSPI^TKN^ENDLIST, #EMSGET pops out of the list.

token-code can be any of the header tokens listed under “Header Tokens
and Special Operation for #SSGET and #SSGETV” in the description of the
#SSGET built-in function. You can also supply the token
ZSPI^TKN^DEFAULT^SSID to obtain the default subsystem ID at the current
position.

ZSPI^TKN^COUNT c-token-id

directs #EMSGET to return the number of occurrences of the token specified
by the token code or the token map c-token-id, starting with the occurrence
specified by index. To count all occurrences in the list, specify an index of 1.

If c-token-id is omitted or equal to ZSPI^VAL^NULL^TOKENCODE, and
index is omitted or zero, #EMSGET counts occurrences of the current token,
including the current occurrence of that token.

ZSPI^TKN^LEN l-token-id

directs #EMSGET to return the byte length of the token specified by the token
code or token map l-token-id. This is the size of the buffer needed to
contain the stated occurrence of the token value. For variable-length token
values, this includes the two bytes required for the length word: The byte
length returned is token-value[0]+2.

If this option is omitted or l-token-id is ZSPI^VAL^NULL^TOKENCODE,
and index is omitted or zero, #EMSGET returns the length of the current
occurrence of the current token.

If l-token-id is a token map, this operation returns the length contained in
that map; the value in the buffer can be longer or shorter than this length. To
get the actual length of the token value, call #EMSGET with ZSPI^TKN^LEN
and a token code made up of ZSPI^TYP^STRUCT and the token number from
the token map. This returns the length of the value, including 2 bytes for the
length field. Subtract 2 from this result to get the length of the value itself.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-142

B u ilt-In Functions and V ariab les #E M S G E T B u ilt-In Function
ZSPI^TKN^NEXTCODE

directs #EMSGET to return the next token code that is different from the
current token code, followed by the subsystem ID. The subsystem ID returned
in the result always has a version field of zero (null).

The index parameter has no effect on this operation, but if you supply it, it must
be zero.

ZSPI^TKN^NEXTTOKEN

directs #EMSGET to return the next token code, followed by the subsystem ID.
The subsystem ID returned always has a version field of zero (null).

This operation differs from ZSPI^TKN^NEXTCODE in that it always returns the
token code of the next token, whether it is the same as that of the current
token or different, and whether the token is within a list or not. The operation
returns multiple occurrences of the same token code in the same order as they
were added to the buffer with #SSPUT(V).

The index and count parameters have no effect on this operation, but if you
use them, index must be zero; count is always returned as 1.

ZSPI^TKN^OFFSET o-token-id

directs #EMSGET to return the byte offset of the token specified by the token
code or token map o-token-id. The value returned is the offset from the
start of the buffer to the value associated with the specified token code and
index. (For variable-length values, the token value begins with the length word;
the offset given is the offset to that length word.)

If you omit this option or if o-token-id is equal to
ZSPI^VAL^NULL^TOKENCODE, and index is omitted or zero, #EMSGET
returns the length of the current occurrence of the current token.

You must supply appropriate token code definitions. TACL supports the special
semantics for only those SPI special token codes shown; any other token
codes are assumed to adhere to standard semantics.

Result

#EMSGET returns a numeric status code indicating the outcome of the SSGET
procedure.

Note. The special operations ZSPI^TKN^NEXTCODE and ZSPI^TKN^NEXTTOKEN
return only token codes. In particular, note that tokens added to the buffer using
#SSPUTV with a token map are carried in the buffer with a token code of type
ZSPI^TYP^STRUCT. The NEXTCODE and NEXTTOKEN operations return that token
code, not the token map used with #SSPUTV.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-143

B u ilt-In Functions and V ariab les #E M S G E T B u ilt-In Function
The meaning of the status code:

If the status code is 0 (no error), it is followed by a space and a space-separated list of
the relevant EMSGET results in the TACL external representation:

 If you specified token-code, #EMSGET returns the number of token values
returned, followed by a space-separated list of those values in external form;
variable-length token values are returned in two parts-the byte length, followed by
the actual value-separated by a space.

 If you specified ZSPI^TKN^COUNT c-token-id, #EMSGET returns the number
of occurrences of the specified token, starting at the occurrence specified by index.

 If you specified ZSPI^TKN^LEN l-token-id, #EMSGET returns the length of the
token specified by the token code or token map l-token-id.

 If you specified ZSPI^TKN^NEXTCODE, #EMSGET returns he next token code
that is different from the current token code, followed by the subsystem ID.

 If you specified ZSPI^TKN^NEXTTOKEN, #EMSGET returns the next token code,
regardless of whether it is different from the current token code, followed by the
subsystem ID.

 If you specified ZSPI^TKN^OFFSET o-token-id, #EMSGET returns the byte
offset of the token specified by o-token-id.

Considerations

 Tokens extracted by #EMSGET are not deleted or removed from the buffer.

Code Description

0 No error

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error

-8 Token not found

-9 Invalid token code or map

-10 Invalid subsystem ID

-11 Operation not supported

-12 Insufficient stack space
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-144

B u ilt-In Functions and V ariab les #E M S G E T B u ilt-In Function
 When the current position is within a particular list, all #EMSGET calls pertain only
to tokens within that list (except that header fields are always accessible). You can
exit from the list by calling #EMSGET to get the ZSPI^TKN^ENDLIST token.

 When token-code is ZSPI^TKN^ENDLIST, the index and count parameters have
no effect. However, if you supply them, index must be 0 or 1; count is always
returned as 1.

 To retrieve token values into a STRUCT, use the #EMSGETV built-in function.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-145

B u ilt-In Functions and V ariab les #E M S G E TV B u ilt-In Function
#EMSGETV Built-In Function

Use #EMSGETV to obtain binary token values from an SPI buffer and put them into a
STRUCT. You can use #EMSGETV with any type of token (in fact, you must use
#EMSGETV with extensible structured tokens and tokens of type
ZSPI^TYP^STRUCT). #EMSGETV invokes the EMSGET procedure.

option

is any of these:

COUNT count
INDEX index
SSID ssid

These are the same as those described for #EMSGET, substituting token-id
for all references to token-code.

buffer-var

is the same as described for #EMSGET.

get-op

is one of these:

token-id

is either a token code or a token map. It directs #EMSGETV to return the token
value or values associated with token-id.

If token-id is a token that marks the beginning of a list, #EMSGETV selects
the list so that subsequent calls can retrieve tokens within the list. If token-
code is ZSPI^TKN^ENDLIST, #EMSGETV pops out of the list.

ZSPI^TKN^COUNT c-token-id
ZSPI^TKN^LEN l-token-id
ZSPI^TKN^NEXTCODE
ZSPI^TKN^NEXTTOKEN
ZSPI^TKN^OFFSET o-token-id

are the same as those defined for #EMSGET, except that #EMSGETV returns
results in result-var, rather than in the function result.

You must supply appropriate token code definitions. TACL supports the special
semantics for only those SPI special token codes shown; any other token
codes are assumed to adhere to standard semantics.

#EMSGETV [/ option [, option] ... /] buffer-var get-op
 result-var
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-146

B u ilt-In Functions and V ariab les #E M S G E TV B u ilt-In Function
result-var

is the name of the writable STRUCT into which #EMSGETV is to store the data
returned. The original contents of the STRUCT are lost.

If the status code in the function result is zero (no error), the result stored in
result-var is:

 If you specified token-id, the result is the value of the token.

 If you specified ZSPI^TKN^COUNT c-token-id, the result is an INT giving
the number of occurrences of the token specified by the token code or token
map c-token-id, starting at the position specified by index.

 If you specified ZSPI^TKN^LEN l-token-id, the result is an INT giving the
length of the specified token.

 If you specified ZSPI^TKN^NEXTCODE, the result is an INT2 giving the next
token code that is different from the current token code, an INT giving the
number of contiguous occurrences of that token code, and the subsystem ID.

 If you specified ZSPI^TKN^NEXTTOKEN, the result is an INT2 giving the next
token code, whether different from or identical to the current token code,
followed by the subsystem ID.

 If you specified ZSPI^TKN^OFFSET o-token-id, the result is an INT2 giving
the byte offset of the token specified by o-token-id.

Result

#EMSGETV returns a numeric status code indicating the outcome of the SSGET
procedure. The meaning of the status code:

Code Description

0 No error

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error

-8 Token not found

-9 Invalid token code or map

-10 Invalid subsystem ID

-11 Operation not supported

-12 Insufficient stack space
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-147

B u ilt-In Functions and V ariab les #E M S G E TV B u ilt-In Function
If no error occurred, and get-op is token-id, the status code is followed by a space
and the number of token values returned.

Considerations

 Tokens extracted by #EMSGETV are not deleted or removed from the buffer.

 When the current position is within a list, all #EMSGETV calls pertain only to
tokens within that list (except that header fields are always accessible). You can
exit from the list by calling #EMSGETV to get the ZSPI^TKN^ENDLIST token.

 When token-id is ZSPI^TKN^ENDLIST, the index and count parameters have
no effect; however, if you supply them, index must be 0 or 1.

 When using #EMSGETV with a token map for the token-id parameter, the map
can specify a structure version that is longer or shorter than the structure contained
in the buffer. If the requested version is longer than the version in the buffer,
#EMSGETV calls SSNULL to set to null values the new fields that are not obtained
from the buffer. If the requested version is shorter than the one in the buffer,
#EMSGETV returns only the requested length.

 If the data returned by #EMSGETV is longer than the data area of the STRUCT
identified by result-var, TACL discards the excess bytes without notification. If
the data is shorter than the data area of result-var, TACL sets the entire
STRUCT to its default values, then overwrites the beginning of the data bytes of
the STRUCT with the returned data. No type conversions of any kind are done.
This means that, for instance, if the token retrieved is of type ZSPI^TYP^INT and
the result-var STRUCT consists of a single field of type INT2, the token value
would be in the high-order 16 bits of the INT2 field, not the low-order 16 bits.

 If you specified the COUNT option, TACL puts all occurrences of the token value
into the STRUCT exactly as returned by #EMSGETV, subject to the size
constraints mentioned in the previous consideration. If the tokens are variable-
length tokens, each token value consists of a length word followed by the actual
value, and the actual value is word-aligned.

 To retrieve tokens and convert them to external representation as the result of the
function call, use the #SSGET built-in function.

 Header tokens, and one special operation, can be passed in token-id to get
corresponding values. They are described under “Header Tokens and Special
Operation for #SSGET and #SSGETV” in the explanation of the #SSGET built-in
function.

Example

To extract a subject token, follow two steps:
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-148

B u ilt-In Functions and V ariab les #E M S G E TV B u ilt-In Function
1. Call #EMSGET to get the subject token:

#SETMANY spi^err _ subject^token [#EMSGET /INDEX 1/ &
event^buf zems^subject^token

2. Call #EMSGETV to get the value:

#SETMANY spi^err _, [#EMSGETV /INDEX 1/ &
event^buf subject^token subject^value]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-149

B u ilt-In Functions and V ariab les #E M S IN IT B u ilt-In Function
#EMSINIT Built-In Function

Use #EMSINIT to initialize a STRUCT as an event message buffer, preparing it for use
with the other #EMSxxx and #SSxxx built-in functions. This operation gives the buffer
an appropriate header and adds event information to the buffer.

option

is either of these:

SSID ssid

is the subsystem ID of the subsystem to which the subject token belongs. If
omitted or zero (0.0.0), it defaults to the SSID of the subsystem generating the
event.

TIMESTAMP timestamp

is the timestamp, in external representation of four-word Greenwich mean time
format, for the event message. If you omit this parameter, the current time is
used.

buffer-var

is the name of a writable STRUCT to be used as an EMS buffer. #EMSINIT
automatically passes the data length of the STRUCT to the EMSINIT procedure.
Any current contents of the STRUCT are lost.

ssid

is the subsystem ID of the subsystem generating the event.

event-number

is a number, specific to this subsystem, that identifies this event message.

token-id

is the token code of the subject of this event message.

token-value

is the token value in external representation. Its data representation is determined
by the token-type field of token-id.

#EMSINIT [/ option [, option] /] buffer-var ssid
 event-number token-id [token-value]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-150

B u ilt-In Functions and V ariab les #E M S IN IT B u ilt-In Function
Result

#EMSINIT returns a numeric status code indicating the outcome of the initialization.
The meaning of the code:

Considerations

 You can omit the token-value parameter if the token length specified by token ID is
zero. Otherwise, the token-value parameter is required.

 To initialize a buffer and supply event information from a variable, use the
#EMSINITV built-in function.

 Buffer length larger than ZEMS-VAL-EVT-BUFLEN indicates that the length of the
STRUCT passed as the buffer-var parameter to the #EMSINIT built in exceeds
ZEMS-VAL-EVT-BUFLEN (whose current value is 4024 bytes).

Example

Here is an example of an #EMSINIT call, using the TMF subsystem:

#PUSH ems^err event^num
[#DEF buf STRUCT
 BEGIN
 INT length;
 CHAR text (0:255);
 END;
]

#SET event^num 1
#SET ems^err &
 [#EMSINIT /SSID/ ZTMF^VAL^SSID TIMESTAMP &
 [#JULIANTIMESTAMP 2] &
 buf [ZTMF^VAL^SSID] [event^num] ZEMS^CMD^CONTROL]

Code Description

0 No error

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-7 Internal error

-10 Invalid subsystem ID

-12 Insufficient stack space

-30 Buffer length larger than ZEMS-VAL-EVT-BUFLEN
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-151

B u ilt-In Functions and V ariab les #E M S IN ITV B u ilt-In Function
#EMSINITV Built-In Function

Use #EMSINITV to initialize a STRUCT as an event message buffer, preparing it for
use with the other #EMSxxx and #SSxxx built-in functions. This operation gives the
buffer an appropriate header and adds event information, taken from a variable level,
to the buffer.

option

is either of these:

SSID ssid

is the subsystem ID of the subsystem to which the subject token belongs. If
omitted or zero (0.0.0), it defaults to the SSID of the subsystem generating the
event.

TIMESTAMP timestamp

is the timestamp, in external representation of Julian GMT format, for the event
message. If you omit this parameter, the current time is used.

buffer-var

is the name of a writable STRUCT to be used as an EMS buffer. #EMSINITV
automatically passes the data length of the STRUCT to the EMSINIT procedure.
Any current contents of the STRUCT are lost.

ssid

is the subsystem ID of the subsystem generating the event.

event-number

is a number, specific to this subsystem, that identifies this event message.

token-id

is the token code or token map of the subject of this event message.

source-var

is the name of a variable level, of type STRUCT, from which #EMSINITV is to
obtain binary token values. The contents of the STRUCT are not altered.

#EMSINITV [/ option [, option] /] buffer-var ssid
 event-number token-id source-var
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-152

B u ilt-In Functions and V ariab les #E M S IN ITV B u ilt-In Function
Result

#EMSINITV returns a numeric status code indicating the outcome of the initialization.
The meaning of the code:

Considerations

 If the data in source-var is longer than the data area expected by #EMSINITV,
the excess bytes are ignored without any notification. If the data in source-var is
shorter than the data area expected, #EMSINITV sets the remainder of the token
value to unspecified values.

 To initialize a buffer and supply event information in external form, use the
#EMSINIT built-in function.

Code Description

0 No error

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-7 Internal error

-10 Invalid subsystem ID

-12 Insufficient stack space
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-153

B u ilt-In Functions and V ariab les #E M S TE X T B u ilt-In Function
#EMSTEXT Built-In Function

Use #EMSTEXT to obtain information from an event buffer and make it available in the
function result as printable text derived from the event.

option

is one of these:

INDENT num-chars

specifies the number of characters to indent the second and subsequent lines
of text generated by the EMSTEXT procedure. INDENT 0 means no
indentation. If you omit this option, or specify INDENT -1, EMSTEXT applies its
own default indentation.

INITTEMPLATE struct

This option is reserved for use by the TACL software product.

LINES num-lines

specifies the number of lines in the print buffer. If you omit it, the default is 10
lines.

OPRLOG num

specifies the format of the printable information. If num is not zero, EMSTEXT
searches for OPMSG and TEXT tokens in the event buffer and, if any are
present, formats the printable result similarly to an operator log message. If
none is found, EMSTEXT applies its own default formatting rules.

If you omit this option, or if num is zero, EMSTEXT uses its default formatting
rules in preference to the OPRLOG format.

WIDTH num-chars

is the width of each line in the print buffer. If you omit this option, 80-character
lines are assumed.

buffer-var

is the name of a STRUCT containing an SPI buffer.

Result

#EMSTEXT returns the formatted text from the event buffer.

#EMSTEXT [/ option [, option] ... /] buffer-var
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-154

B u ilt-In Functions and V ariab les #E M S TE X T B u ilt-In Function
Considerations

 You cannot access the lengths result from the EMSTEXT procedure with
#EMSTEXT; you must use #EMSTEXTV instead.

 The INT(32) result of EMSTEXT is not included in the result of #EMSTEXT; you
must use #EMSTEXTV to access it.

 Because #EMSTEXT can produce more than one line, you should always use
square brackets around the construct containing the invocation of #EMSTEXT:

[#OUTPUT [#EMSTEXT var]] and [#SET var2 [#EMSTEXT var1]]

are correct, whereas

#OUTPUT [#EMSTEXT var] and #SET var2 [#EMSTEXT var1]

would produce TACL errors if #EMSTEXT returned more than a single line.

 #EMSTEXT does not suppress leading and trailing blank lines in the result, but
remember that TACL ignores leading and trailing white space on arguments in
most cases.

 #EMSTEXT does not suppress leading and trailing spaces on nonblank lines in the
result, but remember that TACL ignores leading and trailing white space on
arguments in most cases.

 If a STRUCT is longer than the data it is to contain, the unused bytes are ignored
on input and unchanged on output.

 If a STRUCT is too short, an error results.

 To obtain information from an event buffer and place the printable text into a
STRUCT, use the #EMSTEXTV built-in function.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-155

B u ilt-In Functions and V ariab les #E M S TE X TV B u ilt-In Function
#EMSTEXTV Built-In Function

Use #EMSTEXTV to obtain data from an event buffer and put the printable text derived
from the event into a STRUCT.

option

is one of these:

INDENT num-chars
INITTEMPLATE struct
LINES num-lines
OPRLOG num
WIDTH num-chars

These have the same definitions as those in the #EMSTEXT built-in function.

buffer-var

is the name of a STRUCT containing an SPI buffer.

formatted-var

is the name of a STRUCT that is to receive the formatted text. The STRUCT can
have any definition, but it must be large enough to contain at least num-lines of
num-chars each.

lengths-var

is the name of a STRUCT that is to receive the lengths result from the EMSTEXT
procedure; lengths indicates the actual length of each line in the printable text
result. If, for example, the formatted-var STRUCT can contain 5 lines of 80
characters each, and the formatting of a given message places 75 characters in
the first line, 28 characters in the second, and nothing at all in the remaining three
lines, the EMSTEXT procedure puts [75, 28, -1, -1, -1] into lengths-var. This
STRUCT can have any definition, but it must be at least large enough to contain 2
* num-lines characters.

Result

#EMSTEXTV returns a space-separated pair of signed integers representing the result
of EMSTEXT. Their meaning is:

#EMSTEXTV [/ option [, option] ... /] buffer-var
 formatted-var [lengths-var]

Result Description

0 0 No error

0 22 Invalid parameter address or invalid parameter

0 29 Missing parameter
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-156

B u ilt-In Functions and V ariab les #E M S TE X TV B u ilt-In Function
If error 0 22 or 0 29 occurs, no text appears in the STRUCT. In all other cases,
#EMSTEXTV transfers text to formatted-var, although it might be incomplete or a
default conversion.

Considerations

 If a STRUCT is longer than the data it is to contain, the unused bytes are ignored
on input and unchanged on output.

 If a STRUCT is too short, an error results.

 To obtain information from an event buffer and obtain the printable text as the
function result, use the #EMSTEXT built-in function.

1 code ALLOCATESEGMENT error code

2 +code Template file open failed

2 -code Template file opened, but has improper structure

3 code Template file read error

4 0 buffer-var not a valid SPI buffer

5 code File read error (INITTEMPLATE related)

6 0 Malformed template

7 code MOVEX error code

Result Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-157

B u ilt-In Functions and V ariab les #E N D TR A N S A C TIO N B u ilt-In Function
#ENDTRANSACTION Built-In Function

Use #ENDTRANSACTION to commit the database changes associated with a
transaction identifier. #ENDTRANSACTION invokes the ENDTRANSACTION
operating system procedure. When this procedure is called by the process (or its
backup) that issued #BEGINTRANSACTION, the TMF subsystem tries to commit the
transaction. If it does so successfully, the changes made by the transaction are
permanent, and the locks held for the transaction are released. Locks are held until
#ENDTRANSACTION exits (or until #ABORTTRANSACTION occurs).

Result

#ENDTRANSACTION returns 0, if successful, or a file-system error indicating the
reason ENDTRANSACTION failed.

Consideration

To abort and back out a transaction, use the #ABORTTRANSACTION built-in function.

#ENDTRANSACTION
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-158

B u ilt-In Functions and V ariab les #E O F B u ilt-In Function
#EOF Built-In Function

Use #EOF to set a flag so that a process receives one end-of-file after it reads all the
data in a variable level. That variable level is one that is used either as the IN variable
of a #SERVER or as the DYNAMIC IN variable (see the #NEWPROCESS Built-In
Function on page 9-265) of an implicit server. If the variable level is not being used for
either of these purposes, #EOF does nothing. After a process has read the end-of-file
sent to it, the flag is cleared and subsequent read operations wait for more data or
another #EOF.

variable-level

is the name of a variable level used for DYNAMIC IN.

Result

#EOF returns nothing.

Consideration

Different processes handle end-of-file differently. For example, an EDIT process
started by the command

EDIT /INV in_var DYNAMIC/

stops as soon as it reads an end-of-file produced by

#EOF in_var

#EOF variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-159

B u ilt-In Functions and V ariab les #E R R O R N U M B E R S B u ilt-In V ariab le
#ERRORNUMBERS Built-In Variable

Use #ERRORNUMBERS to get information about the most recent error detected by
your TACL.

Result

#ERRORNUMBERS returns a space-separated list of four integer numbers that
describe the most recent error. If the first number in the list is less than 1024, it is the
number of a file-system error or sequential I/O error. If the number is 1024 or larger, it
is a TACL error number. The other three numbers are used in certain cases to provide
additional information:

 If a #NEWPROCESS operation is unsuccessful, the first number is 1149. The
second number indicates the specific error returned by the PROCESS_CREATE_
procedure. The third number contains error detail information from
PROCESS_CREATE_. The fourth number is not used.

 If your TACL programs use #SET #ERRORNUMBERS in their exception handling,
the numbers will be whatever you set them to.

Considerations

 When you first log on, #ERRORNUMBERS is initialized to 0 0 0 0.

 All syntax errors (“Expecting . . . ”) set #ERRORNUMBERS to 1048 0 0 0.

 Use #PUSH #ERRORNUMBERS (or PUSH #ERRORNUMBERS) to save a copy
of all your current error numbers.

 Use #POP #ERRORNUMBERS (or POP #ERRORNUMBERS) to restore the four
error numbers from the copy last pushed.

 Use #SET #ERRORNUMBERS (or SET VARIABLE #ERRORNUMBERS) to set
the four TACL error numbers to the desired values.

The syntax for #SET #ERRORNUMBERS is:

To create your own error categories, use any numbers in the space-separated list.

 For more information about error messages, see the Guardian Procedure Calls
Reference Manual and the Guardian Procedure Errors and Messages Manual.

#ERRORNUMBERS

Note. D-series TACL returns 1149 for a process creation failure; C-series and earlier
RVUs of TACL return 1101.

#SET #ERRORNUMBERS n n n n
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-160

B u ilt-In Functions and V ariab les #E R R O R N U M B E R S B u ilt-In V ariab le
Example

If you try to create a process that already exists, you receive this error when you output
the error numbers:

37> #OUTPUT [#ERRORNUMBERS]
1149 1 48 0

The first number is a TACL #NEWPROCESS error (1149). The second number is a
PROCESS_CREATE_ error number (1), which usually indicates that a file system error
occurred. The third number is a file-system error number (48), which indicates that a
security violation occurred. The fourth number is not used.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-161

B u ilt-In Functions and V ariab les #E R R O R TE X T B u ilt-In Function
#ERRORTEXT Built-In Function

Use #ERRORTEXT with exception handlers to intercept any error text that might have
been written to OUT if there had been no exception handler.

option

is one of these:

CAPTURE variable-level

indicates that the specified variable level is to be cleared and the current error
text, if any, moved into it.

CLEAR

specifies that the current error text is to be discarded.

Result

#ERRORTEXT returns nothing.

Considerations

 If an error occurs while you are filtering _ERROR (see #EXCEPTION Built-In
Function on page 9-163), TACL stores the resulting error text internally. Previously
stored text is lost, so only the most recent error text is available.

 The captured error text is not fully formatted and usually contains some internal
representations. It is, therefore, suitable only for output with #OUTPUTV or
OUTVAR.

#ERRORTEXT / option /
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-162

B u ilt-In Functions and V ariab les #E X C E P T IO N B u ilt-In Function
#EXCEPTION Built-In Function

Use #EXCEPTION, when exception handling is in effect, to determine why a routine
was invoked.

Result

#EXCEPTION returns _CALL, if the routine issuing #EXCEPTION was invoked
normally, or returns the name of the exception if the routine was invoked in response to
an exception that it had filtered. (See the TACL Programming Guide for a discussion of
exception handling.)

#EXCEPTION
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-163

B u ilt-In Functions and V ariab les #E X IT B u ilt-In V ariab le
#EXIT Built-In Variable

Use #EXIT to determine the current state of the exit flag.

Result

#EXIT returns 0 if the EXIT flag is off and -1 if it is on. If the EXIT flag is on, it causes
TACL to exit as soon as its buffer becomes empty.

Considerations

 When you first log on, #EXIT is initialized to zero.

 Use #PUSH #EXIT (or PUSH #EXIT) to save a copy of your current setting of the
exit flag.

 Use #POP #EXIT (or POP #EXIT) to restore the exit flag from the last copy
pushed.

 Use #SET #EXIT (or SET VARIABLE #EXIT) to turn the exit flag on or off.

The syntax of #SET #EXIT is:

num

is zero to set the flag off, nonzero to set it on.

#EXIT

#SET #EXIT num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-164

B u ilt-In Functions and V ariab les #E X TR A C T B u ilt-In Function
#EXTRACT Built-In Function

Use #EXTRACT to obtain the first line of a variable level.

variable-level

is the name or level of an existing variable level whose first line is to be extracted.

Result

#EXTRACT returns the first line of the specified variable level and deletes the line from
the variable level.

Example

21> #PUSH fline
22> #SET fline [#EXTRACT linevar]

Consideration

To move the first line of a variable level to another variable level, use the #EXTRACTV
built-in function.

#EXTRACT variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-165

B u ilt-In Functions and V ariab les #E X TR A C TV B u ilt-In Function
#EXTRACTV Built-In Function

Use #EXTRACTV to move the first line of a variable level to another variable level. You
can also use #EXTRACTV to set the binary data of a STRUCT directly, by extracting
the first line from a variable level of another type and placing it in the STRUCT. No type
checking is performed. (This use is primarily for accepting structured data from the
variables associated with requesters and servers.)

from-variable-level

is the name of an existing variable level; #EXTRACTV deletes the first line of this
variable level.

to-variable-level

is the name of a variable level. #EXTRACTV puts the deleted line from from-
variable-level into this variable level. If this variable already exists, its
previous contents are lost. If this variable does not exist, an error occurs.

Result

#EXTRACTV returns nothing.

Considerations

 The construct

#EXTRACTV var struct

is not equivalent to

#SET struct [#EXTRACT var]

The former construct is faster and is not subject to errors resulting from type checking.

 If the data supplied exceeds the data area of the specified STRUCT, TACL
discards the excess bytes without any notification.

 If the data supplied is shorter than the data area of the STRUCT, TACL sets the
entire STRUCT to default values and then moves the data into the beginning of the
data bytes of the STRUCT.

 To retrieve the first line of a variable level as the function result, use the
#EXTRACT built-in function.

#EXTRACTV from-variable-level to-variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-166

B u ilt-In Functions and V ariab les #F ILE G E TLO C K IN FO B u ilt-In Function
#FILEGETLOCKINFO Built-In Function

Use #FILEGETLOCKINFO to obtain information about record and file locks.

option

can be one of the following options or can be omitted. If omitted,
#FILEGETLOCKINFO returns information for all locks.

PROCESSID processid

specifies the name or PID (if not named) of an existing process. The
#FILEGETLOCKINFO built-in function will return information about locks held
or requested by the specified process.

TRANSID transid

returns information about locks held or requested by the specified TMF
subsystem transaction. transid is a four-word transaction identifier that
uniquely identifies a specific transaction protected by the TMF subsystem.
transid must have this format:

\node (crash-count). cpu. sequence-number

(crash-count) can be omitted if it equals 0. \node can specify a node
name or node number and can be omitted for a local node if crash-count is
also omitted. For additional information about transaction identifiers, see the
TMF subsystem documentation.

fvname

specifies the name of an existing file or volume for which lock information is
desired. If the PROCESSID or TRANSID is specified, fvname must be a volume
name; otherwise, it can be a volume name or a file name. If the name is not fully
qualified, the current defaults apply.

control

is a STRUCT used to control a series of calls to #FILEGETLOCKINFO. This
STRUCT is updated by #FILEGETLOCKINFO on each call. The contents are for
use by the operating system and should not be modified by the user.

The STRUCT must be defined as an array of ten integers. Example:

[#DEF control STRUCT
 BEGIN
 INT x (0:9);
 END;
]

#FILEGETLOCKINFO [/ option /] fvname control lockdesc
 participants
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-167

B u ilt-In Functions and V ariab les #F ILE G E TLO C K IN FO B u ilt-In Function
The control STRUCT must be initialized prior to a series of calls to
#FILEGETLOCKINFO. This statement initializes the sample STRUCT defined
previously:

#SET control 0

lockdesc

is a STRUCT that is to receive the lock information; it must be defined as follows:

[#DEF lockdesc STRUCT
 BEGIN
 INT lock^type; == 0 = file, 1 = record
 UINT flags; == <0> set if generic lock
 == <1:15> are reserved
 INT n^participants; == number of holders/waiters
 == for lock
 INT2 record^id; == if record lock and not
 == key-sequenced
 INT key^length; == for key-sequenced record
 == locks; 0 if not
 == key-sequenced
 CHAR key(0:255); == key for key-sequenced
 END;
] == record locks

participants

is a STRUCT that is to receive information about processes or transactions
that hold or wait for the lock; it must be defined as follows:

[#DEF participants STRUCT
 BEGIN
 STRUCT locker(0:mp-1); == mp = max participants
 BEGIN
 UINT flags; == <0> set for process
 == clear for
 == transaction
 == <1:3> 0=waiting,
 == 1=granted
 == <4> internal use
 == <5:15> reserved
 FILLER 2; == reserved
 PHANDLE process; == process holding or
 == waiting for the lock
 TRANSID transid == transaction holding or
 REDEFINES process; == waiting for the lock
 END;
 END;
]

Result

The #FILEGETLOCKINFO built-in function returns a number that indicates the status
of the operation.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-168

B u ilt-In Functions and V ariab les #F ILE G E TLO C K IN FO B u ilt-In Function
Status codes are listed in Table 9-10.

If #FILEGETLOCKINFO is called to find locks on a disk volume and the status code is
0 (no error) or 45 (warning; there were more lock holders or waiters than would fit into
the participants structure), the status number is followed by a space and the name of
the locked file. The file name is in the form subvolume.file, without a node name or
volume name.

Considerations

 #FILEGETLOCKINFO replaces #LOCKINFO for D-series operating systems.
Existing #LOCKINFO calls should be converted to #FILEGETLOCKINFO calls for
D-series use.

 A file or record can have one granted lock and several pending locks. Each call to
#FILEGETLOCKINFO returns information about one lock and as many holders or
waiters as permitted by the size of your participants STRUCT. To obtain information
on all locks on a file or volume, make successive calls to #FILEGETLOCKINFO
until the returned status code equals 1. On each call, the file system updates the
control STRUCT and keeps track of information for the next call.

 #FILEGETLOCKINFO uses the D-series FILE_GETLOCKINFO_ procedure.

Table 9-10. #FILEGETLOCKINFO Status Codes

Code Meaning

0 Success

-1 The control STRUCT is of the wrong size.

-2 The lockdesc STRUCT is of the wrong size.

-3 The participants STRUCT is of the wrong size. (This STRUCT can vary in
size, but it must always be a multiple of the size that would be required for
one participant.)

45 The participants STRUCT was too small to hold all the lock holders and
waiters for the locked resource in the lock description STRUCT. The call
was successful, but only the number of participants specified by max
participants were returned.

1 No more locks are available. No information was returned.

0 Success

-1 The control STRUCT is the wrong size.

-2 The lockdesc STRUCT is the wrong size.

-3 The participants STRUCT is the wrong size. (This STRUCT can vary in
size, but it must always be a multiple of the size that would be required for
one participant.)
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-169

B u ilt-In Functions and V ariab les #F ILE IN FO B u ilt-In Function
#FILEINFO Built-In Function

Use #FILEINFO to obtain detailed, specific information about a file.

option

is an information request. It can be any of these:

AUDITED

returns -1 if the file exists and is audited by the TMF subsystem; otherwise, it
returns 0.

BLOCKLENGTH

returns one of these:

 For structured files, the physical block length (in bytes)

 For unstructured files, the length of the system buffer used for the file (in
bytes)

 For non-existent files, 0

CODE

returns the numeric file code (0, if the file does not exist); see the FUP INFO
command in the File Utility Program (FUP) Reference Manual. This output
includes file type 800, the native object file for TNS/E systems.

CORRUPT

returns -1 if the file exists and has been corrupted; otherwise, it returns 0. (If a
FUP DUP operation is writing to the file, it is considered to be corrupt until the
operation is finished.)

CRASHOPEN

returns -1 if the file is marked crash-open, meaning the file was not closed
normally by the disk process; otherwise, it returns 0.

CREATION_GMT

returns the time and date when the file was created, expressed as a four-word
timestamp (0, if the file does not exist or if it was created prior to the B40 RVU).

DATACOMPRESSION

returns -1 if the file exists, is key-sequenced, and uses data compression;
otherwise, it returns 0.

#FILEINFO / option [, option] ... / file-name
 [file-name ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-170

B u ilt-In Functions and V ariab les #F ILE IN FO B u ilt-In Function
DEVICETYPE

returns the numeric device type word (0, if the file does not exist); see the
Guardian Procedure Calls Reference Manual.

EOF

returns the numeric value of the end-of-file pointer, which represents the size of
the file in bytes (0, if the file does not exist).

EXISTENCE

returns -1 if the file exists; if not, it returns 0.

EXTENTSALLOCATED

returns the number of file extents currently allocated (0, if the file does not
exist).

FILE

returns the file-name portion of the fully expanded file name (missing fields in
file-name are supplied by the current defaults); the file need not exist. If the file
is a temporary file, FILE returns nothing.

FILEFORMAT

returns one of these:

FILESTRUCTURE

returns a numeric value that indicates the structure of the file:

FULLNAME

returns the fully expanded file name (missing fields in file-name are supplied by
the current defaults). The define name is returned if a define name is specified.
The file need not exist.

1 if the file is a format 1 file

2 if the file is a format 2 file

0 if the file does not exist

0 Unstructured (or nonexistent)

1 Relative

2 Entry-sequenced

3 Key-sequenced
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-171

B u ilt-In Functions and V ariab les #F ILE IN FO B u ilt-In Function
INCOMPLETESQLDDL

returns -1 if the file exists and an SQL DDL operation is currently in progress.
Otherwise, it returns 0.

INDEXCOMPRESSION

returns -1 if the file exists, is key-sequenced, and uses index compression;
otherwise, it returns 0.

LASTOPEN_GMT

returns the time and date when the file was last opened, expressed as a four-
word timestamp. (If the file does not exist, or has not been opened since before
the B20 software RVU, this option returns 0.)

LICENSED

returns -1 if the file exists and is licensed; otherwise, it returns 0.

MAXBYTES

returns the maximum number of bytes configured for the file (0, if the file does
not exist).

MAXEXTENTS

returns the maximum number of file extents configured for the file (0, if the file
does not exist).

MODIFICATION

returns the numeric modification date (a three-word timestamp); if the file does
not exist, this option returns 0.

When a file is copied from one system to another system in a different time
zone without modifying the source date of the file, the MODIFICATION option
returns the file modification time as the local civil time of the system from which
the file was copied.

MODIFICATION_LCT

returns the time and date when the file was last modified, expressed as a four-
word timestamp. The time is expressed in the local civil time (LCT) of the
system on which the file resides. If the file does not exist, returns 0.

When a file is copied from one system to another system in a different time
zone without modifying the source date of the file, the MODIFICATION_LCT
option returns a timestamp that shows the file modification time as the local
civil time of the system to which the file was copied.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-172

B u ilt-In Functions and V ariab les #F ILE IN FO B u ilt-In Function
ODDUNSTR

returns -1 if the file exists, is unstructured, and was created with the
ODDUNSTR parameter in effect; otherwise, it returns 0.

OPENNOW

returns -1 if the file exists and is currently open; otherwise, it returns 0.

OWNER

returns the owner’s user ID (0,0 if the file does not exist).

PHYSICALFILENAME

returns the physical file name that is associated with the physical file where the
data resides if the specified file is a logical file. If the file is a remote file, the
remote system name is also returned. If the file does not exist, nothing is
returned.

PHYSICALVOLUME

returns the physical volume name that is associated with the physical file
where the data resides if the specified file is a logical file. If the file is a remote
file, the remote system name is also returned. If no physical volume name has
been specified, the physical volume is chosen by the system and this name is
returned. If the file does not exist, nothing is returned.

PRIMARY

returns the primary extent size (0, if the file does not exist).

PROGID

returns -1 if the file exists and has PROGID authority; otherwise, it returns 0.

RECORDLENGTH

returns the logical record length for the file (0, if the file does not exist or is
unstructured).

REFRESH

returns -1 if the file exists and its refresh flag is set; otherwise, it returns 0.

SECONDARY

returns the secondary extent size (0, if the file does not exist).
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-173

B u ilt-In Functions and V ariab les #F ILE IN FO B u ilt-In Function
SECURITY

returns the security established for the file:

SUBVOL

returns the subvolume-name portion of the file name (missing fields in file-
name are supplied by the current defaults); the file need not exist. If the file is a
temporary file, SUBVOL returns the file-name portion (#nnnn).

SYSTEM

returns the node-name portion of the file name (missing fields in file-name are
supplied by the current defaults); the file need not exist. If neither the defaults
nor file-name includes a node name, SYSTEM returns nothing.

UNRECLAIMEDFREESPACE

returns -1 if the file exists and an SQL DDL operation has left unreclaimed free
space. Otherwise, it returns 0.

VOLUME

returns the volume-name portion of the file name, using the current defaults if
not specified in the file name. The define name is returned if a define name is
specified. The file need not exist.

file-name

is the name of the file. More than one file can be specified. When specifying a file
name, TACL requires a subvolume name if you supply a volume name. To obtain
the volume portion of the current defaults, use this command:

#FILEINFO /VOLUME/ [#DEFAULTS].X

The file X does not need to exist.

Result

#FILEINFO returns the information requested.

rwep for a Guardian file

**** for a Safeguard file

for an OSS file

*SQL for SQL/MX objects

blank for a nonexistent file
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-174

B u ilt-In Functions and V ariab les #F ILE IN FO B u ilt-In Function
Considerations

 If you specify more than one request option, the items of information are listed,
separated by spaces, in the same order as the requests.

 Because FILE and SYSTEM can return nothing, you should specify them last in
the list of options to avoid confusion. When assigning results with #SETMANY, for
example, you avoid loss of synchronization between the items returned and the
variable levels that receive them.

 If the RVU of the system (system procedure
FILE_GETINFOLISTBYNAME_) does not support INCOMPLETESQLDDL,
UNRECLAIMEDFREESPACE, PHYSICALVOLUME, or PHYSICALFILENAME, this
message is generated:

ERROR FILE_GETINFOLISTBYNAME_ error = 561
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-175

B u ilt-In Functions and V ariab les #F ILE N A M E S B u ilt-In Function
#FILENAMES Built-In Function

Use #FILENAMES to obtain all file names that satisfy a specified file-name template.

option

specifies the criteria the requested file names must meet; specify one of these
options:

MAXIMUM [num]

specifies the maximum number of file names to be returned on this call. If num
is omitted or is less than 1, all matching file names are returned. If num is
greater than 0, no more than num file names are to be returned; all file names
returned are in the same subvolume.

NEWSUBVOL variable-level

specifies the name of an existing variable level that is to indicate whether the
file-name search started in a new subvolume. If you include PREVIOUS, and if
the first file name returned is in the same subvolume as the file name specified
by PREVIOUS, the variable level is set to 0. In all other circumstances, the
variable level is set to -1.

PREVIOUS [file-name]

specifies a starting point, alphabetically, after which file names are to be
matched. It need not specify an existing file. If you omit file-name, file-name
matching starts with the first file that matches file-name-template.

file-name-template

is a file name. You may include these template characters in any field of the file
specification except the system field:

* matches zero or more characters.

? matches a single character.

Template characters cannot match a volume identifier ($) or a field separator (.).

If you omit file-name-template, #FILENAMES applies to file names in your
current subvolume.

Result

#FILENAMES returns a space-separated list of file names.

#FILENAMES [/ option [, option] ... /]
 [file-name-template]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-176

B u ilt-In Functions and V ariab les #F ILE N A M E S B u ilt-In Function
Consideration

File names within a volume are returned in alphabetical order, but volumes are
processed in logical-device number order.

Examples

This example illustrates the output of the #FILENAMES built-in function:

17> #OUTPUT [#FILENAMES $BOOKS.TACL.SEC*]

$BOOKS.TACL.SEC01 $BOOKS.TACL.SEC02 $BOOKS.TACL.SEC03

18>

The asterisk in the file-name template instructs #FILENAMES to display the names of
all files that begin with SEC, regardless of which, or how many, characters follow. This
example illustrates the use of two file-name template characters. The asterisk (*) in the
subvolume indicates that you want TACL to search for any subvolume that begins with
BOOK. The question mark (?) in the file name indicates that you want to list the name
of any file whose name has SECT in the first four positions, any character in the fifth
position, and a 2 in the sixth position:

18> #OUTPUT [#FILENAMES book*.sect?2]

BOOK1.SECT02 BOOK2.SECT12

19>
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-177

B u ilt-In Functions and V ariab les #F ILTE R B u ilt-In Function
#FILTER Built-In Function

Use #FILTER in a routine to specify the exceptions the routine can handle. An
exception is an unusual event that causes TACL to interrupt the normal flow of
invocations and transfer to special code, known as an exception handler. The event
can be BREAK, a TACL error, or a user-defined exception.

exception

is the name of an unusual event, which can be any of these:

_BREAK

specifies that the BREAK key is to be handled as an exception, when pressed.

_ERROR

specifies that errors detected by TACL are to be handled. In addition, your
code can explicitly raise this exception.

user-exception

specifies a user-defined routine that can be invoked by #RAISE, causing the
routine that handles #FILTER to be reinvoked and to set #EXCEPTION to
user-exception.

Result

#FILTER returns nothing.

Considerations

 A portion of a TACL program that performs the actions required by one or more
exceptions is known as an exception handler. An exception handler must do the
following, within a routine:

 Include a #CASE built-in function call to handle each of the exceptions the
handler supports. The #EXCEPTION built-in function returns the type of
exception that invoked the handler; use it to direct the #CASE function.

 Specify names of exceptions supported by the handler. For this step, use the
#FILTER built-in function to specify the exceptions. TACL does not invoke an
exception handler for an exception unless it is listed in the #FILTER list.

If your code contains these two items and an exception occurs while one of your
functions is executing, the TACL process will invoke the #EXCEPTION built-in function
with the name of the exception that occurred.

#FILTER [exception [exception] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-178

B u ilt-In Functions and V ariab les #F ILTE R B u ilt-In Function
 Only the most recent #FILTER in a routine has any effect. If a routine that contains
a filter list calls another routine that also contains a filter list, the list in the called
routine becomes active. When control is returned from that routine, the filter list in
the calling routine resumes active status. If a routine contains more than one
#FILTER function call, the latest list supersedes all previous lists.

 When an exception occurs, if the current routine has no exception handler, TACL
automatically exits that routine and pops you out of routines until it finds a #FILTER
for that exception and reinvokes the routine containing the #FILTER. If TACL finds
no such routine, it performs its normal exception handling: it resets frames and
results and, if the exception is the predefined _ERROR exception, it displays an
error message.

 To determine why an exception handler was invoked, use the #EXCEPTION built-
in function. To raise an exception, use the #RAISE built-in function.

Example

This example shows a #FILTER call that lists two exceptions:

#FILTER _ERROR userex

For examples showing the use of #FILTER with exception handlers, refer to the TACL
Programming Guide.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-179

B u ilt-In Functions and V ariab les #FR A M E B u ilt-In Function
#FRAME Built-In Function

Use #FRAME to establish a reference point for pushed variables. A subsequent
occurrence of #UNFRAME pops all variable levels pushed since the last #FRAME.

Result

#FRAME returns nothing.

Considerations

 All variables pushed after a #FRAME are automatically popped when a matching
#UNFRAME is executed. This allows you to control local variables without having
to explicitly pop them.

 Nesting of frames is allowed.

 Use #VARIABLEINFO with the / FRAME / option to determine the frame level of a
particular variable.

 #FRAME does not restrict the variable levels you can access. You can always refer
to all existing variable levels regardless of your frame.

 If an error occurs in a macro or routine, TACL restores the frame level of all
variables to the level in effect when the macro or routine was invoked.

#FRAME
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-180

B u ilt-In Functions and V ariab les #G E TC O N FIG U R A TIO N B u ilt-In Function
#GETCONFIGURATION Built-In Function

Use #GETCONFIGURATION to obtain the settings of special TACL flags that can
change the behavior of TACL in certain situations.

option

can be any of these:

AUTOLOGOFFDELAY

if greater than zero, specifies the maximum number of minutes that TACL is to
wait at a prompt. If that time is exceeded, TACL automatically logs off, releases
the default segment, and (if LOGOFFSCREENCLEAR so specifies) clears the
terminal screen. This option is initially set to -1 (disabled).

The TACL process issues a modem disconnect at autologoff.

BLINDLOGON

if not zero, specifies that the LOGON command, whether in the logged-off state
or the logged-on state, prohibits the use of the comma, requiring the password
to be entered at its own prompt while echoing is disabled. The setting does not
change the behavior of #CHANGEUSER. This option is initially set to 0.

CMONREQUIRED

if not zero, specifies that all operations requiring approval by $CMON are
denied if $CMON is not available or is running too slowly. Approval of $CMON
is not required if the TACL is already logged on as the super ID. This option is
initially set to 0.

CMONTIMEOUT

specifies the number of seconds that TACL is to wait for any $CMON
operation. This option is initially set to 30.

Note. These flags can be changed only by users who are authorized to alter the Command
Interpreter Monitor (CMON). For additional information, see Command Interpreter Monitor
Interface (CMON) on page 6-8.

#GETCONFIGURATION / option [, option] ... /

Caution. If you are authorized to change CMONREQUIRED and intend to set it to a
nonzero value, you must keep an unmodified copy of TACL for system operation use;
otherwise, you cannot log on if $CMON is not running or is running too slowly. If the modified
TACL is in $SYSTEM.SYSnn, you cannot even start the system.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-181

B u ilt-In Functions and V ariab les #G E TC O N FIG U R A TIO N B u ilt-In Function
CONFIGRUN

if PROCESSLAUNCH, then the TACL RUN[D] command was configured to call
the system procedure PROCESS_LAUNCH_ to start the process. In this case,
the additional RUN[D] command options, MAXMAINSTACKSIZE,
MAXNATIVEHEAPSIZE, and GUARANTEEDSWAPSPACE, are available.

if PROCESSCREATE, then the TACL RUN[D] command was configured to call
the system procedure PROCESS_CREATE_ to start the process. In this case,
thee additional RUN[D] command options, MAXMAINSTACKSIZE,
MAXNATIVEHEAPSIZE, and GUARANTEEDSWAPSPACE, are not available.

LOGOFFSCREENCLEAR

if not zero, specifies that if TACL is interactive, and the IN file is a 65xx
terminal, the terminal memory is cleared at (#)LOGOFF unless the NOCLEAR
option is supplied. The CLEAR and NOCLEAR options always override the
automatic operation. This option is initially set to -1.

NAMELOGON

if not zero, specifies that the LOGON command, in both the logged-off and
logged-on states, and #CHANGEUSER do not accept user numbers but
require that user names be used. This option is initially set to 0.

NOCHANGEUSER

if not zero, TACL disables the ability to log on from a logged-on state. This
option is initially set to 0.

REMOTECMONREQUIRED

if not zero, specifies that all operations requiring approval by a remote $CMON
are denied if that remote $CMON is unavailable or is running too slowly.
$CMON approval is not needed if the TACL is already logged on as the super
ID. This option is initially set to 0.

REMOTECMONTIMEOUT

specifies the number of seconds that TACL is to wait for any $CMON operation
involving a remote $CMON. This option is initially set to 30.

REMOTESUPERID

if zero, specifies that if TACL is started remotely, any attempt to log on (or use
#CHANGEUSER) with the super ID (255,255) results in an illegal logon. This
option is initially set to -1 (disabled).

REQUESTCMONUSERCONFIG

if not zero, after a LOGON command or #CHANGEUSER built-in function is
executed, the TACL process sends a message to the $CMON process
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-182

B u ilt-In Functions and V ariab les #G E TC O N FIG U R A TIO N B u ilt-In Function
requesting the configuration parameters (the flag settings) in effect for the
current user.

This option is meaningful only if the $CMON process has been coded to return
the appropriate information. Otherwise the request is ignored. Use of this
option allows $CMON to control (and change) the flag settings for each logon
session. These flag settings are then returned to the TACL process.

This option is initially set to 0.

Regardless of the setting, when a LOGOFF command has been executed and
followed (at some point) by a LOGON command or when a noninteractive
TACL process is started, the TACL process requests the configuration
information from the $CMON process.

STOPONFEMODEMERR

if not zero, specifies that the TACL process stops when error 140
(FEMODEMERR) is encountered on its input. If the TACL process is started
with the PORTTACL startup parameter, then this TACL configuration setting is
ignored (TACL goes to the logged off state and waits for a modem connect
when error 140 is encountered).

The option is initially set to 0, meaning the TACL process is put in a logged off
state and waits for a modem connection when an error 140 is encountered.

Result

#GETCONFIGURATION returns a space-separated list of the selected values in the
order of their request.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-183

B u ilt-In Functions and V ariab les #G E TP R O C E S S S TA TE B u ilt-In Function
#GETPROCESSSTATE Built-In Function

Use #GETPROCESSSTATE to obtain process state information for the current TACL
process.

option

can be zero or more of these:

LOGGEDON

requests the logged-on state of the TACL process. A value of 1 indicates that
the TACL process is in a logged-on state and that the TACL process default file
security, process access ID (PAID), creator accessor ID (CAID), and remote
logon flags were set to their appropriate values by the operating system.

The LOGGEDON option always returns a value of 1, because a TACL process
must be in the logged-on state to invoke the #GETPROCESSSTATE built-in
function.

TSNLOGON

requests information about whether or not Safeguard software authenticated
the TACL process. A value of 1 indicates that Safeguard software
authenticated and created the TACL process or that the TACL process is a
descendent of a local process that had the TSNLOGON flag set. A value of 0
indicates that Safeguard software did not authenticate or create the TACL
process.

The default value is 0 for a regular TACL process and 1 for a TSN-TACL
process or a TACL process started by a TSN-TACL process.

TSNLOGOFF

requests information about authentication and logged-on state of the TACL
process. A value of 1 indicates that Safeguard software authenticated the
TACL process and that the process was subsequently logged off.

The TSNLOGOFF option always returns a value of 0, because a TACL process
must be in the logged-on state to invoke the #GETPROCESSSTATE built-in
function.

INHERITEDLOGON

requests information about authentication of the TACL process. A value of 1
indicates that the TACL creator authenticated the user of the TACL process.
When this occurs, the TACL process skips user authentication and the process
starts in the logged-on state. A value of 0 indicates that the process that
created the TACL process did not authenticate the user prior to creating the

#GETPROCESSSTATE [/ option [, option] ... /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-184

B u ilt-In Functions and V ariab les #G E TP R O C E S S S TA TE B u ilt-In Function
TACL process, so the TACL process performs user authentication after
prompting for logon information.

The default value is 0 for a regular TACL process or a TACL process started by
a TSN-TACL process. The default value is 1 for a TSN-TACL process.

STOPONLOGOFF

requests information about whether the current TACL process will be stopped
after it enters a logged-off state. A value of 1 indicates that the current TACL
process will be stopped when it enters a logged-off state. A value of 0 indicates
that the current TACL process will not be stopped; instead, the TACL process
will prompt for another logon.

The default value is 0 for a regular TACL process and 1 for a TSN-TACL
process or a TACL process started by a TSN-TACL process.

PROPAGATELOGON

requests information about how local child TACL processes start. A value of 1
for the current TACL process indicates that the INHERITEDLOGON state of
the child TACL process will be 1. The new process will start in the logged-on
state. A value of 0 for the current TACL process indicates that the
INHERITEDLOGON state of the local child TACL process will be 0. The new
process will start in the logged-off state.

The default value is 0.

For remote child TACL processes, the parent process propagates a value of 0
for the INHERITEDLOGON flag.

PROPAGATESTOPONLOGOFF

returns information about how local child TACL processes stop. A value of 1 for
the current TACL process indicates that the STOPONLOGOFF state of the
child TACL process will be 1. The child process will stop when it enters a
logged-off state. A value of 0 for the current TACL process indicates that the
STOPONLOGOFF state of a local child process will be 0. The child process
will prompt for logon information when it enters a logged-off state.

The default value is 0.

For remote child TACL processes, the parent process propagates a value of 0
for the STOPONLOGOFF flag.

Results

The #GETPROCESSSTATE built-in function returns a space-separated list of the
selected values, in the order of their request.

If you do not specify any options, #GETPROCESSSTATE returns a space-separated
list with a one or zero for each process state option, specified from left to right as
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-185

B u ilt-In Functions and V ariab les #G E TP R O C E S S S TA TE B u ilt-In Function
LOGGEDON, TSNLOGON, TSNLOGOFF, INHERITEDLOGON, STOPONLOGOFF,
PROPAGATELOGON, and PROPAGATESTOPONLOGOFF.

If the #GETPROCESSSTATE built-in function cannot obtain process state information,
the TACL process displays an operating system error and abends.

Considerations

 The term TSN-TACL refers to a TACL process that Safeguard software starts after
authenticating the user of the TACL process.

 The TSNLOGON flag is set as follows for descendent TACL processes:

 When a descendent TACL process is created on the same system as the
parent process, the value of the TSNLOGON flag is propagated from the
parent process to the descendent TACL process.

 When a descendent TACL process is created on a remote system, the
TSNLOGON flag is set to 0 (by the operating system) for that remote process.

 The state of PROPAGATESTOPONLOGOFF in the local parent process
determines the initial value of STOPONLOGOFF in the current TACL. If the parent
TACL process is remote, a value of 0 is propagated to the child process.

 To stop TACL when it enters a logged-off state, use the #SETPROCESSSTATE
built-in function to set STOPONLOGOFF.

 In general, use the #SETPROCESSSTATE built-in function to alter process states
as allowed by security guidelines.

 For more information about process state date, see the Guardian Procedure Calls
Reference Manual.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-186

B u ilt-In Functions and V ariab les #G E TS C A N B u ilt-In Function
#GETSCAN Built-In Function

Use #GETSCAN to obtain the number of characters that #ARGUMENT has processed.

Result

#GETSCAN returns the number of characters that #ARGUMENT has passed over, not
including the routine name and the first character after the name.

Consideration

To determine whether there are more arguments in an argument set, use the #MORE
built-in function. To specify a starting position at which the next #ARGUMENT function
is to resume processing arguments, use the #SETSCAN built-in function.

#GETSCAN
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-187

B u ilt-In Functions and V ariab les #H E LP K E Y B u ilt-In V ariab le
#HELPKEY Built-In Variable

Use #HELPKEY to retrieve the name of the TACL help key. The help key displays
syntax information during an interactive TACL session. You can type part of a
statement, including the full name of a command or built-in function, and then press the
help key. TACL lists what types of elements are expected next.

Result

#HELPKEY returns the name of the current help key or, if there is no help key, returns
nothing.

Considerations

 When you first log on, #HELPKEY is initialized to F16.

 Defining a function key as the help key prevents that key from being programmed
for any other function.

 Use #PUSH #HELPKEY (or PUSH #HELPKEY) to save a copy of the name of the
current help key.

 Use #POP #HELPKEY (or POP #HELPKEY) to restore the help key from the last
copy pushed.

 Use #SET #HELPKEY (or SET VARIABLE #HELPKEY) to define a function key as
the help key.

The syntax of #SET #HELPKEY is:

key-name

is the name of the function key (such as F1 or SF13). If you omit key-name,
you have no help key.

#HELPKEY

#SET #HELPKEY [key-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-188

B u ilt-In Functions and V ariab les #H IG H P IN B u ilt-In V ariab le
#HIGHPIN Built-In Variable

Use the #HIGHPIN built-in variable to establish the default PIN range for processes
started by the current TACL.

Considerations

 The default value for #HIGHPIN depends on the forced-low attribute of the TACL
process. To ensure a default value for #HIGHPIN, set it to the desired value in the
TACLLOCL or TACLCSTM file.

 The #HIGHPIN built-in variable can be pushed, popped, and expanded like any
other built-in variable.

 The HIGHPIN option on a RUN command overrides the value of the #HIGHPIN
variable for the new process. TACL uses the #HIGHPIN setting when there is no
HIGHPIN directive on a RUN command or #NEWPROCESS call.

 Use #PUSH #HIGHPIN (or PUSH #HIGHPIN) to save the current #HIGHPIN
setting.

 Use #POP #HIGHPIN (or POP #HIGHPIN) to restore #HIGHPIN to its previous
identity, the last copy pushed.

 Use #SET #HIGHPIN (or SET VARIABLE #HIGHPIN) to specify the default PIN
range.

The syntax of #SET #HIGHPIN is:

ON

specifies that a process will run at a high PIN if these conditions exist:

 The HIGHPIN bit is enabled in the object file.

 The HIGHPIN bit is enabled in the library file, if any.

 A high PIN is available.

OFF

specifies that processes run at a low PIN regardless of any other
considerations.

#HIGHPIN

#SET #HIGHPIN { ON | OFF }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-189

B u ilt-In Functions and V ariab les #H IS TO R Y B u ilt-In Function
#HISTORY Built-In Function

Use #HISTORY to display and manipulate the commands saved in the history buffer.

option

is an option that specifies the action to perform on the commands in the history
buffer; it can be any of these:

CLEARLAST

deletes the most recent command line from the history buffer. For example, the
TACL LOGON routine uses #HISTORY /CLEARLAST/ to erase the last line
from the history buffer if the password is entered on the same line as the user
ID. This action keeps the password confidential.

When entered from the IN file of a TACL process, #HISTORY /CLEARLAST/
removes itself from the history buffer. If included in a TACL program,
#HISTORY /CLEARLAST/ removes the line entered from the IN file that
caused the #HISTORY /CLEARLAST/ function to be executed.

RESET

deletes all command lines from the history buffer. The history number for the
next TACL prompt is set to 1.

SHOW num

displays the last num command lines in the history buffer.

Result

#HISTORY with the CLEARLAST or RESET options returns nothing. #HISTORY with
the SHOW option returns the last num commands. #HISTORY with no options returns
all previous command lines that are still in the history buffer.

Considerations

 The history buffer is 1000 characters long; it contains zero or more lines. Each line
stored in the history buffer requires as many bytes as the line contains, plus one
extra byte.

 #HISTORY within a TACL macro or routine shows the lines in the history buffer
that lead to the invocation. The result does not include the lines in the macro itself.

#HISTORY [/ option [, option] ... /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-190

B u ilt-In Functions and V ariab les #H O M E B u ilt-In V ariab le
#HOME Built-In Variable

Use #HOME to set or obtain the variable defined as your home directory.

Result

#HOME returns the full path-name of the home directory.

Considerations

 When you first log on, #HOME is initialized to : (the root directory).

 Use #PUSH #HOME (or PUSH #HOME) to save a copy of the name of your home
directory.

 Use #POP #HOME (or POP #HOME) to restore your home directory to its previous
identity, the last copy pushed.

 Use #SET #HOME (or SET VARIABLE #HOME) to define a directory variable as
your home directory.

The syntax of #SET #HOME is:

directory

is the name of an existing variable level of type DIRECTORY.

#HOME

#SET #HOME directory
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-191

B u ilt-In Functions and V ariab les # IF B u ilt-In Function
#IF Built-In Function

Use #IF to obtain one set of text (typically TACL statements), contained within the #IF
construct, if a given condition is met.

NOT

specifies that #IF should negate numeric-expression after evaluating it; that is,
the condition is met if numeric-expression is NOT true.

numeric-expression

is a decimal number, the name of a variable level containing a decimal number, or
an arithmetic, relational, or logical expression that evaluates to true or false:

enclosure

is an enclosure containing a THEN or an ELSE label. Each label is optionally
followed by text that typically consists of one or more functions that can be
executed if the option is chosen.

Result

If the expression evaluation is true, #IF returns the part of the enclosure labeled
|THEN|, if it exists. If the expression is evaluated as being false, #IF returns the part of
the enclosure labeled |ELSE|, if it exists. Any label not chosen is ignored.

Considerations

 #IF statements can be nested.

 The |THEN| and |ELSE| must be outside all square brackets within the enclosure
or they are not recognized.

 You can omit both |THEN| and |ELSE| labels to make, in effect, a “don’t care”
condition. For example, the #IF can be used in this way as a carrier for another
function, deleting any numeric result of that function by testing it without acting on
it.

 As with any function that contains an enclosure, the entire #IF construct must be
enclosed in square brackets.

#IF [NOT] numeric-expression [enclosure]

true = a numeric value other than zero

false = zero
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-192

B u ilt-In Functions and V ariab les # IF B u ilt-In Function
Examples

1. The macro, furd, outputs each of its arguments on a separate line:

[#DEF furd MACRO |BODY|
 == Output current argument
 #OUTPUT %1%
 == Test for more arguments
 [#IF NOT [#EMPTY %2 TO *%] |THEN|
 furd %2 TO *% == Call self without 1st arg
]
]

2. This example illustrates the use of a numeric expression:

[#IF 3 | THEN | . . .

3. This example illustrates the use of a variable name containing a decimal number:

#SET var 3
[#IF var | THEN | . . .

4. This example illustrates the use of an arithmetic expression enclosed in
parentheses:

#SET var 4
[#IF (var-1 = 3) | THEN | . . .

5. This example shows an #IF with a contingent control path, to be taken if the
numeric expression is false:

#SET tversion [#TACLVERSION]
#CHARGETV tversion tgeneric 1 TO 6
[#IF tgeneric '<' "T9205C" |THEN|
 SINK [#LOAD /KEEP 1/ $vol.subvol.firstlib]
 .
 .
 .
|ELSE|
 ATTACHSEG SHARED mysegf :mydir
 USE :mydir
]

6. This example illustrates an #IF with no enclosure, deleting the result of
#ARGUMENT while still allowing #ARGUMENT to accomplish its action, assigning
the argument value to NUM:

#IF [#ARGUMENT /VALUE num/ NUMBER]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-193

B u ilt-In Functions and V ariab les # IN B u ilt-In V ariab le
#IN Built-In Variable

Use #IN to specify or obtain the name of the file currently being used by TACL as its IN
file.

Result

#IN returns the name of the file currently being used for input by TACL.

Considerations

 At TACL startup time, #IN contains the name of the file currently being used as the
TACL IN file. This file is called the primary IN file. To temporarily receive
commands from an alternate source, push #IN and set #IN to another file or
device. To restore the primary IN file, pop #IN.

 The contents of the #IN built-in variable determine the file or process from which
TACL reads commands.

 TACL can store two IN file settings:

 At startup time, the #IN built-in variable contains the name of the file currently
in use as the TACL IN file. For an interactive terminal, #IN is initialized to the
name of your home terminal. This is considered the primary IN file. You cannot
permanently change the IN file for TACL; that is, the primary IN file always
remains the same.

 When you set #IN to a file other than the primary file, this file is known as the
current IN file.

 The default IN file for processes run by TACL is not affected by #IN; it remains
associated with the original TACL IN file. You can, however, use #INPUT or
#INPUTV with the current IN file established by #SET #IN.

 When you use #SET #IN, it does not take effect until the next time TACL prompts
for a command. Therefore, if you include a #SET #IN in a macro or routine, lines
are not read from the new IN file until all lines resulting from the macro or routine
have been processed.

 To set #IN to a disk file, TACL must allocate one of its block buffers internally.
Because these block buffers are large and must be allocated from the first 64,000
bytes in the TACL address space, there are only four of them. (Other consumers of
these blocks include the #OUT and #REQUESTER built-in functions.)

 Any error, including EOF, on a pushed #IN variable causes #IN to be popped at
once. Any other error or break occurring while #IN is pushed causes all but the
bottom level to be popped from #IN.

#IN
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-194

B u ilt-In Functions and V ariab les # IN B u ilt-In V ariab le
 Be careful to coordinate functions that enable the communication (such as #IN or
#OUT) with the counterpart mechanisms in that process (such as IN or OUT

 referring to the TACL process name). Combining different mechanisms can lead to
conflicts in interprocess message handling. For more information, see the TACL
Programming Guide.

 When TACL is started with the IN file set to $RECEIVE, these guidelines apply:

 You can set #IN without first pushing it. This feature, in conjunction with an
equivalent one in #OUT, allows you to run TACL as a server, yet be able to
take over a terminal as though TACL had been run on the terminal in the usual
way.

 When you #SET #IN without pushing it, TACL responds to the BREAK key if
the device to which you set #IN supports BREAK.

 The value of #IN is the default IN file for all processes started while #IN is set
in this way.

 You can revert to reading commands from $RECEIVE by setting #IN to
nothing.

 Use #PUSH #IN (or PUSH #IN) to save the name of the currently open TACL IN
file.

 Use #POP #IN (or POP #IN) to restore the last IN file name pushed.

 Use #SET #IN (or SET VARIABLE #IN) to name the file to be used by TACL as its
IN file.

The syntax of #SET #IN is:

file-name

is the name of the IN file to be set. You can use the name of a process in place
of a disk file name; TACL reads input from the process as if it were a file.

Example

Assuming #INFORMAT is set to TACL and your current IN file is your terminal, the
following displays your terminal name:

67> #OUTPUT [#IN]
$DECAY

#SET #IN file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-195

B u ilt-In Functions and V ariab les # IN FO R M A T B u ilt-In V ariab le
#INFORMAT Built-In Variable

Use #INFORMAT to set or obtain the current input format for the TACL IN file.

Result

#INFORMAT returns the current #INPUT formatting mode-PLAIN, QUOTED, or TACL.

Considerations

 #INFORMAT applies only to input read from the IN file, not to any other input data.
The default format for macro or routine files and function libraries is TACL format;
to change this setting, use a ?FORMAT directive.

 PLAIN format is always in effect for #REQUESTERs, #SERVERs, and #DELTA file
operations, and for the IN option on #SET and SET.

 When you first log on, #INFORMAT is initialized to PLAIN.

 To change the default for your TACL session, use a #SET #IN statement. You can
also specify the IN file when you start a TACL process.

 To read information from the current IN file, use the #INPUT built-in function.

 To set or obtain the current formatting mode for the TACL OUT file, use the
#OUTFORMAT built-in variable.

 If #INFORMAT is TACL, any characters that are converted to internal format on
input are stored with a tilde as a prefix. These characters include {, }, ==, [,], and |.

 #INFORMAT can affect how #ARGUMENT interprets arguments. For more
information, refer to the description of #ARGUMENT Built-In Function on
page 9-21.

 Use #PUSH #INFORMAT (or PUSH #INFORMAT) to save a copy of the current
#INPUT formatting mode.

 Use #POP #INFORMAT (or POP #INFORMAT) to restore the last #INPUT
formatting mode pushed.

 Use #SET #INFORMAT (or SET VARIABLE #INFORMAT) to establish the current
formatting mode.

The syntax of #SET #INFORMAT is:

#INFORMAT

#SET #INFORMAT { PLAIN | QUOTED | TACL }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-196

B u ilt-In Functions and V ariab les # IN FO R M A T B u ilt-In V ariab le
PLAIN

specifies that TACL should not translate characters read from IN, but should
consider everything to be ordinary text; for example, braces and double equal
signs are read as such and are not interpreted as comments in PLAIN mode.

QUOTED

causes TACL to translate metacharacters as if the formatting mode were
TACL, but if text containing such characters is enclosed in quotation marks,
TACL treats embedded metacharacters as if they were ordinary text (no tildes
are needed). The #SET and #SETV built-in functions operate in different ways:
#SET treats quotes as plain text; #SETV does not include the quotes (see
Examples).

TACL

causes TACL to translate the metacharacters [and] (square brackets), { and }
(braces), | (vertical line), == (double equals), and ~ (tilde) into internal notation.
TACL reads square brackets as the beginning and ending of an invocation. A
vertical line indicates a label in an enclosure. TACL reads braces and double
equals as comments.

Using a tilde causes TACL to interpret the next character as plain text, rather
than a delimiter; for example, TACL reads ~[as an ordinary open square
bracket, rather than the beginning of an invocation. To use a tilde character as
text, double it (~~). The tilde has no effect on its own, but only in conjunction
with other characters.

When using the TACL format, you can put several commands on a single line
by separating the commands with a tilde and a semicolon (~;). TACL translates
these into internal end-of-line characters.

You can also use a tilde and an underscore (~_) when #INFORMAT is set to
TACL. TACL translates this notation into an internal space. These metaspaces
are printed as spaces if you use the PRETTY option with #OUTFORMAT;
otherwise, they are treated as ordinary characters.

Examples

If you specify special characters in an IN file, #INFORMAT affects how TACL interprets
the characters. This sends square brackets to TEDIT:

56> TEDIT critique; SEARCH [sic]

If the command is part of an IN file and #INFORMAT is set to TACL (or QUOTED),
TACL tries to invoke SIC, considering it to be a variable, and displays an error
message. If you change the command to

57> TEDIT critique; SEARCH ~[sic~]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-197

B u ilt-In Functions and V ariab les # IN FO R M A T B u ilt-In V ariab le
TACL passes the brackets as text to TEDIT. Preceding any TACL metacharacter
(including the tilde character itself) with a tilde causes TACL to consider it as simple
text.

Table 9-11 lists the difference in text storage between TACL and QUOTED settings
after the variables are initialized as follows (#OUTFORMAT is set to PLAIN):

#PUSH var b
#SET b $

These examples show differences in text storage between #SETV and #SET with the
QUOTED #INFORMAT setting (#OUTFORMAT is set to PLAIN):

15> #PUSH var
16> #SET var “abc[def]ghi“
17> #OUTPUTV var
“abc[def]ghi“

18> #SETV var “abc[def]ghi“
19> #OUTPUTV var
abc[def]ghi

20>

Table 9-11. #INFORMAT Results

TACL Operation #INFORMAT Set to TACL #INFORMAT Set to QUOTED

#SET var a[b]c a$c a$c

#SET var “a[b]c” “a$c” “a[b]c”

#SET var “a~[b~]c” “a[b]c” “a~[b~]c”
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-198

B u ilt-In Functions and V ariab les # IN ITTE R M B u ilt-In Function
#INITTERM Built-In Function

Use #INITTERM to reset your home terminal to its configured settings.

Result

#INITTERM returns nothing.

Considerations

 You typically use this command when an application program leaves your terminal
in an abnormal state.

 The #INITTERM built-in function calls the SETMODE operating system procedure,
function 28. For information about setting device attributes, see the description of
SETMODE setting for terminals in the Guardian User’s Guide and the description
of the SETMODE procedure in the Guardian Procedure Calls Reference Manual.

#INITTERM
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-199

B u ilt-In Functions and V ariab les # IN LIN E E C H O B u ilt-In V ariab le
#INLINEECHO Built-In Variable

Use #INLINEECHO to determine whether TACL copies to its own OUT file the lines it
passes to the IN file of an inline process.

Result

#INLINEECHO returns 0 if echoing is disabled, -1 if it is enabled.

Considerations

 When you first log on, #INLINEECHO is initialized to zero.

 Use #PUSH #INLINEECHO (or PUSH #INLINEECHO) to save a copy of your
current setting of the echo flag.

 Use #POP #INLINEECHO (or POP #INLINEECHO) to restore the echo flag from
the last copy pushed.

 Use #SET #INLINEECHO (or SET VARIABLE #INLINEECHO) to enable or disable
echoing of inline process input.

The syntax of #SET #INLINEECHO is:

num

is zero to set the echo flag off, a nonzero value to set it on.

#INLINEECHO

#SET #INLINEECHO num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-200

B u ilt-In Functions and V ariab les # IN L IN E E O F B u ilt-In Function
#INLINEEOF Built-In Function

Use #INLINEEOF to send an end-of-file character to a process under control of the
INLINE facility.

Result

#INLINEEOF returns nothing.

Considerations

 TACL waits until the inline process prompts for input then sends an EOF indication
to that process.

 Use of #INLINEEOF when no inline process exists causes an error.

#INLINEEOF
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-201

B u ilt-In Functions and V ariab les # IN L IN E O U T B u ilt-In V ariab le
#INLINEOUT Built-In Variable

Use #INLINEOUT to control whether TACL copies to its own OUT file lines that inline
processes write to their OUT files (when neither the OUT nor the OUTV option has
been specified).

Result

#INLINEOUT returns 0 if inline process output copying is disabled, -1 if it is enabled.

Considerations

 When you first log on, #INLINEOUT is initialized to -1.

 To permit OUT file copying, the inline process must not be started with the OUT or
OUTV options.

 Use #PUSH #INLINEOUT (or PUSH #INLINEOUT) to save a copy of your current
setting of the output copy flag.

 Use #POP #INLINEOUT (or POP #INLINEOUT) to restore the copy flag from the
last version pushed.

 Use #SET #INLINEOUT (or SET VARIABLE #INLINEOUT) to enable or disable
copying of inline process output.

The syntax of #SET #INLINEOUT is:

num

is zero to set the copy flag off, a nonzero value to set it on.

#INLINEOUT

#SET #INLINEOUT num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-202

B u ilt-In Functions and V ariab les # IN L IN E P R E F IX B u ilt-In V ariab le
#INLINEPREFIX Built-In Variable

Use #INLINEPREFIX to establish the prefix that identifies lines to be passed to inline
processes. Lines that start with the defined prefix are not processed by TACL.

Result

#INLINEPREFIX returns the character or characters that make up the current inline
prefix, if any.

Considerations

 When using prefixed lines:

 The prefix must be followed by a space unless it appears alone on a line. In
that case, TACL passes a blank line to the inline process.

 If a prefixed line appears when no inline process exists, an error occurs.

 Use #PUSH #INLINEPREFIX (or PUSH #INLINEPREFIX) to save a copy of your
current inline prefix.

 Use #POP #INLINEPREFIX (or POP #INLINEPREFIX) to restore the inline prefix
from the last copy pushed.

 Use #SET #INLINEPREFIX (or SET VARIABLE #INLINEPREFIX) to define an
inline prefix.

The syntax of #SET #INLINEPREFIX is:

prefix

is an optional one-character to four-character prefix. If you omit prefix, it is
set to null.

 The default prefix is a null value (no prefix). For efficiency, you should
leave the prefix set to nothing when you are not using the INLINE facility.

 You must not use “#SET” as the prefix; doing so prevents you from
changing it to anything else.

 The prefix cannot include space or end-of-line characters.

 The prefix is not case-sensitive.

 For additional information and examples showing the use of #INLINEPREFIX, refer
to the TACL Programming Guide.

#INLINEPREFIX

#SET #INLINEPREFIX [prefix]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-203

B u ilt-In Functions and V ariab les # IN L IN E P R O C E S S B u ilt-In V ariab le
#INLINEPROCESS Built-In Variable

Use #INLINEPROCESS to obtain the process ID of the current inline process.

Result

#INLINEPROCESS returns the process ID of the current inline process, if one exists; if
not, #INLINEPROCESS returns nothing.

Considerations

 Use #PUSH #INLINEPROCESS (or PUSH #INLINEPROCESS) to save the
process ID of the current inline process. Pushing #INLINEPROCESS allows you to
create a new inline process while another is still in existence. You cannot
communicate with an inline process while it is pushed.

 Pushing and popping #INLINEPROCESS can help you avoid errors or timing
problems (race conditions) if you stop an inline process and start another in quick
succession. The first process may not stop as soon as you issue an EXIT
command. If you push #INLINEPROCESS before starting the first process, then
pop #INLINEPROCESS after issuing the EXIT command, TACL disassociates itself
from that process without waiting for it to complete. You can then push
#INLINEPROCESS again and start another process immediately.

 You cannot set #INLINEPROCESS. It is set implicitly by the creation and
termination of inline processes.

 Use #POP #INLINEPROCESS (or POP #INLINEPROCESS) to break
communication with the current inline process (if any) and reestablish
communication with the inline process (if any) that was in effect when
#INLINEPROCESS was last pushed.

 When terminating communication with an inline process, TACL waits until the
process prompts for input, then sends an EOF indication to that process.

 Use of #INLINEEOF when no inline process exists results in an error. You can
determine if there is a current INLINE process by testing as shown:

[#IF [#EMPTY [#INLINEPROCESS]] |THEN|
 == does not exist
|ELSE|
 == does exist
]

When you push #INLINEPROCESS, you can create another inline process only if your
total number of #REQUESTERs, implicit and explicit #SERVERs, and inline processes
is less than 100.

#INLINEPROCESS
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-204

B u ilt-In Functions and V ariab les # IN L IN E P R O C E S S B u ilt-In V ariab le
When you pop #INLINEPROCESS (or unframe it) and its corresponding inline process
is still in existence, you can no longer communicate with that process;

 TACL responds to all its I/O requests with error 66. The process is still counted
against the 100-process limit mentioned above, however, until it terminates.

 Pushing and popping #INLINEPROCESS has no effect on any of the other built-in
variables related to inline processes (#INLINEECHO, #INLINEOUT,
#INLINEPREFIX, or #INLINETO).

 When you first log on, #INLINEPROCESS is initialized to a null value.

H P N onS top TA C L R e fe rence M anua l — 429513-017
9-205

B u ilt-In Functions and V ariab les # IN L IN E TO B u ilt-In V ariab le
#INLINETO Built-In Variable

Use #INLINETO to determine whether TACL copies to a variable level the lines that
inline processes write to their OUT files (when neither the OUT nor the OUTV options
have been specified).

Result

#INLINETO returns the fully qualified name of the variable level to which inline process
output is appended, if such a variable has been defined; otherwise, #INLINETO returns
nothing.

Considerations

 When you first log on, #INLINETO is initialized to a null value.

 Use #PUSH #INLINETO (or PUSH #INLINETO) to save a copy of your current
setting of the copy flag.

 Use #POP #INLINETO (or POP #INLINETO) to restore the identity of the output
copy variable to that of the last one pushed.

 Use #SET #INLINETO (or SET VARIABLE #INLINETO) to establish a variable to
which copies of inline process output are to be appended.

The syntax of #SET #INLINETO is:

variable-level

is the name of an existing variable level. It must not be a DIRECTORY, a
STRUCT, or a STRUCT item. If you omit variable-level, you disable this
copying feature.

#INLINETO

#SET #INLINETO [variable-level]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-206

B u ilt-In Functions and V ariab les # IN P U T B u ilt-In Function
#INPUT Built-In Function

Use #INPUT to read information from the TACL IN file.

option

is an option that qualifies the read operation. It can be any of these:

CURRENT

reads input from the current IN file (if #IN was pushed), rather than from the
primary IN file.

FUNCTIONKEY variable-level

sets variable-level to the name of the function key used to terminate
reading. If the RETURN key terminates reading, variable-level is cleared.
Specify variable-level as the name of an existing variable level. When this
option is in effect, text generated by a function key is removed from the input
text.

HISTORY history-prompt

adds the line read to the history buffer. In addition, the history number and
history-prompt are appended to prompt.

HISTORYV variable-level

adds the line read to the history buffer. In addition, the history number and the
value of variable-level are appended to prompt.

NOECHO

suppresses echoing of the input line.

UNTIL { EOF | TACL }

specifies the conditions that terminate reading:

EOF

reads input until end-of-file is reached or, if you specify the FUNCTIONKEY
option, until a function key is pressed.

TACL

reads input until all square brackets balance. While #INPUT is reading
data, it processes function keys immediately and removes comments in the
usual TACL manner.

#INPUT [/ option [, option] ... /] [prompt]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-207

B u ilt-In Functions and V ariab les # IN P U T B u ilt-In Function
If you omit the UNTIL option, pressing a function key or the RETURN key
terminates reading. prompt is one or more characters to be written to the
IN file as a prompt.

Consideration

TACL saves the primary IN file, set at startup time, as the default setting of the #IN
built-in variable. If you set #IN to another file, TACL stores the second file as the
current IN file. You can use the #INPUT built-in function to read from either file.

Result

#INPUT returns the line read from the input file.

Examples

This example illustrates the differences resulting from options in the reactions of
#INPUT to function keys. Each of these read operations is terminated by function key
12:

1. With no options, #INPUT provides no carriage return, so the output in this example
appears as a continuation of the input, though on the next line. Text supplied by the
function key is included with the input text:

24> #OUTPUT [#INPUT ?]
?this
 thisK$%

2. Option processing provides a carriage return, so the output text appears at the
beginning of the next line. With the FUNCTIONKEY option, the identity of the
function key pressed is stored in the specified variable level:

25> #PUSH key
26> #OUTPUT [#INPUT /FUNCTIONKEY key/ ?] , [key]
?that
that , F12

3. With the UNTIL TACL option, the identity of the function key prefaces the input
text:

27> #OUTPUT [#INPUT /UNTIL TACL/ ?]
?the_other
F12 the_other

4. These statements use #INPUT to prompt a user, save the name of the function key
that terminated the input, and place the input into the history buffer:

29> #SET #OUTFORMAT PRETTY
30> #PUSH key text
31> #SET text [#INPUT / FUNCTIONKEY key, HISTORY ~_-->~_/]
32> --> this is a test == terminated with F12 key
33> OUTVAR key
F12
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-208

B u ilt-In Functions and V ariab les # IN P U T B u ilt-In Function
34> OUTVAR text
this is a test
35> HISTORY 4

32> this is a test
33> OUTVAR key
34> OUTVAR text
35> HISTORY 4

If you omit the HISTORY option in the #INPUT function call, "this is a test" does not
appear in the history listing.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-209

B u ilt-In Functions and V ariab les # IN P U TE O F B u ilt-In V ariab le
#INPUTEOF Built-In Variable

Use #INPUTEOF to obtain the current state of the end-of-file flag.

Result

#INPUTEOF returns -1 if TACL reads an end-of-file; otherwise, it returns 0.

Considerations

 When you first log on, #INPUTEOF is initialized to zero.

 Every #INPUT or #INPUTV sets #INPUTEOF to 0. If TACL receives an end-of-file
in response, it then sets #INPUTEOF to -1.

 Use #PUSH #INPUTEOF (or PUSH #INPUTEOF) to save a copy of the current
setting of the INPUTEOF flag.

 Use #POP #INPUTEOF (or POP #INPUTEOF) to restore the INPUTEOF flag from
the copy last pushed.

 Use #SET #INPUTEOF (or SET VARIABLE #INPUTEOF) to set the INPUTEOF
flag to on or off.

The syntax of #SET #INPUTEOF is:

num

is zero to set the flag off or a nonzero value to set the flag on.

#INPUTEOF

#SET #INPUTEOF num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-210

B u ilt-In Functions and V ariab les #IN P U TV B u ilt-In Function
#INPUTV Built-In Function

 Use #INPUTV to read information from the TACL primary or current IN file (typically,
the home terminal) into a variable level.

You can also use #INPUTV to prompt directly with the binary data of a STRUCT or to
set the binary data of a STRUCT directly from the IN file. No type-checking is done on
the input data.

option

is an option that qualifies the read operation. The options available are the same
as described for #INPUT with one addition: the operand of the HISTORYV option
can be a string instead of merely a variable level.

variable-level

is the name of the variable level (which can be of type STRUCT) that is to hold the
input data. If no data is read, variable-level is set to a blank line. The previous
contents of the variable level are lost.

prompt-string

is the name of an existing variable level (not enclosed in square brackets), the first
line of which is to be written to the IN file as a prompt, or text enclosed in quotation
marks to be used for that purpose, or a concatenation of such entities.

The concatenation operator is '+' (the apostrophes must surround the plus
character).

Result

#INPUTV returns nothing.

Considerations

 TACL sets #INPUTEOF to -1 if you type an end-of-file (CTRL-Y); otherwise, it is set
to 0.

 If TACL receives an end-of-file, it clears variable-level.

 The form

#INPUTV struct prompt

is not equivalent to

#SET struct [#INPUT [prompt]]

#INPUTV [/ option [, option] ... /] variable-level
 prompt-string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-211

B u ilt-In Functions and V ariab les #IN P U TV B u ilt-In Function
The former construct is faster and is not subject to errors incurred in type-checking the
input data.

 If the data from IN is longer than the data area of the STRUCT, the excess bytes
are discarded without any notification.

 If the data from IN is shorter than the data area of the STRUCT, TACL sets the
entire STRUCT to its default values and then moves the supplied data into the
beginning of the data bytes of the STRUCT.

Example

This example shows the use of strings in both the HISTORYV operand and the prompt
of an #INPUTV invocation.

#PUSH indata
#INPUTV /HISTORYV " : "/ indata "History line "

The resulting dialog at the IN file appears as:

History line 43 : user input
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-212

B u ilt-In Functions and V ariab les # IN S P E C T B u ilt-In V ariab le
#INSPECT Built-In Variable

Use #INSPECT to set or obtain the current state of the inspect flag.

Result

#INSPECT returns the current state of the inspect flag: OFF, ON, or SAVEABEND.

Considerations

 When you first log on, #INSPECT is initialized to OFF.

 Use #PUSH #INSPECT (or PUSH #INSPECT) to save a copy of the current setting
of the inspect flag.

 Use #POP #INSPECT (or POP #INSPECT) to restore the inspect flag from the
copy last pushed.

 Use #SET #INSPECT (or SET #INSPECT) to set the state of the inspect flag. The
syntax of #SET #INSPECT is:

OFF

disables INSPECT and selects DEBUG as the default debugger. (DEBUG is
the system default debugging utility.) DEBUG then prompts for input when any
process created by the current TACL (or any of its descendants) enters the
debug state.

ON

selects the INSPECT symbolic debugger as the default debugger for all
programs started by the current TACL. INSPECT then prompts for input when
any process created by the current TACL (or by any descendant of the current
TACL) enters the DEBUG state.

SAVEABEND

establishes INSPECT as the default debugger and automatically creates a
save file if the program ends abnormally.

H-Series Usage

The program DEBUG is not available for use on systems running H-series software.

The DEBUG command invokes a debugger, it can be Inspect, Native Inspect
(eInspect, which is not in the family of Inspect debuggers), or Visual Inspect.

#INSPECT

#SET #INSPECT { OFF | ON | SAVEABEND }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-213

B u ilt-In Functions and V ariab les # IN S P E C T B u ilt-In V ariab le
The rules about which debugger gets invoked are approximately the same as for the
RUND command. That is, if the INSPECT attribute is set ON anywhere (in the object
file during compilation, or on the TACL command line using the SET command), you
will get a debugger in the Inspect family (either Inspect or VI), unless of course neither
of these debuggers is available, and then you get the default debugger, eInspect. If
the Inspect attribute is OFF, you get Native Inspect (eInspect).

Inspect is invoked only for TNS accelerated/interpreted programs (never for TNS/E
native programs), while Visual Inspect can handle both of these. Native Inspect
handles only TNS/E native programs and snapshots.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-214

B u ilt-In Functions and V ariab les # IN TE R A C TIV E B u ilt-In Function
#INTERACTIVE Built-In Function

Use #INTERACTIVE to determine whether your TACL is interactive. TACL is
considered to be interactive if its IN and OUT files are the same.

Result

If you include the CURRENT option, #INTERACTIVE returns -1 if the current IN file is
the same as the current OUT file (the contents of #IN are the same as the contents of
#OUT); otherwise, it returns 0.

If you omit the CURRENT option, #INTERACTIVE returns -1 if the primary IN file is the
same as the primary OUT file; otherwise, it returns 0.

The primary IN and OUT files are those in effect when TACL first starts (specified by
the IN and OUT run options in the RUN command that initiates the TACL process). The
current IN and OUT files may be different from those, if #SET #IN or #SET #OUT have
been executed.

Consideration

TACL automatically determines whether it is interactive when it first starts to run.

#INTERACTIVE [/ CURRENT /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-215

B u ilt-In Functions and V ariab les # IN TE R P R E TJU LIA N D A Y N O B u ilt-In Function
#INTERPRETJULIANDAYNO Built-In Function

Use #INTERPRETJULIANDAYNO to convert a Julian day number to its corresponding
calendar date. A Julian day number is an integer representing the number of days from
the arbitrary date January 1, 4713 B.C. to the present day. Julian day numbers are
included in four-word timestamps returned from the #JULIANTIMESTAMP function and
from the CREATION_GMT and LASTOPEN_GMT options of the #FILEINFO function.

julian-day-num

is the Julian day number to be interpreted.

Result

#INTERPRETJULIANDAYNO returns a space-separated list of the numeric year,
month, and day.

Example

24> #OUTPUT [#INTERPRETJULIANDAYNO 2448047]
1990 6 4

#INTERPRETJULIANDAYNO julian-day-num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-216

B u ilt-In Functions and V ariab les # IN TE R P R E TT IM E S TA M P B u ilt-In Function
#INTERPRETTIMESTAMP Built-In Function

Use #INTERPRETTIMESTAMP to convert a four-word timestamp to its date and time
components.

four-word-timestamp

is the timestamp to be converted.

Result

#INTERPRETTIMESTAMP returns a space-separated list of nine numbers, consisting
of the Julian day number, year, month, day, hour, minute, second, millisecond, and
microsecond.

Example

This example illustrates #INTERPRETTIMESTAMP output:

21> #OUTPUT [#INTERPRETTIMESTAMP [#JULIANTIMESTAMP]]
2447701 1991 6 23 22 29 42 784 566

#INTERPRETTIMESTAMP four-word-timestamp
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-217

B u ilt-In Functions and V ariab les # IN TE R P R E TTR A N S ID B u ilt-In Function
#INTERPRETTRANSID Built-In Function

Use #INTERPRETTRANSID to convert a numeric transaction ID into separate numeric
values for the various components of a transaction ID.

transid

is a numeric transaction ID.

Result

#INTERPRETTRANSID returns a numeric status code indicating the outcome of the
conversion:

Any other value indicates a TACL problem and should be reported to your service
provider.

If the numeric status is zero, it is followed by a space and a space-separated list of
these transaction-ID components:

 System number

 CPU number

 Sequence number

 Crash count

Consideration

To convert the components of a transaction ID into a single numeric transaction ID, use
the #COMPUTETRANSID built-in function.

#INTERPRETTRANSID transid

0 Successful conversion

-2 Invalid transaction ID
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-218

B u ilt-In Functions and V ariab les #JU LIA N T IM E S TA M P B u ilt-In Function
#JULIANTIMESTAMP Built-In Function

Use #JULIANTIMESTAMP to obtain a selected four-word timestamp.

type

specifies the particular timestamp desired:

If you omit type, 0 is assumed.

tuid-request

if not zero, specifies that the time update ID is to be included in the result. The
default is zero.

Result

#JULIANTIMESTAMP returns the selected GMT timestamp; if tuid-request is not
zero, the timestamp is followed by a space and the current time update ID.

Examples

This example shows #JULIANTIMESTAMP output:

22> #OUTPUT [JULIANTIMESTAMP]
211481404070538528

This example illustrates the use of four-word timestamps obtained from
#JULIANTIMESTAMP and #FILEINFO to make a decision based on the age of a file
(represented by the dummy argument %1%):

[#IF [#JULIANTIMESTAMP] - [#FILEINFO /CREATION_GMT/.%1%]
 > 31536000000000 == Julian number equivalent to 1 year
|THEN|
 #OUTPUT %1% is more than 1 year old. Purge it?
]

#JULIANTIMESTAMP [type [tuid-request]]

0 current GMT

1 GMT when the system was loaded

2 GMT when SYSGEN was run
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-219

B u ilt-In Functions and V ariab les #K E E P B u ilt-In Function
#KEEP Built-In Function

Use #KEEP to remove all but the top n definition levels of one or more variables.

num

is the number of levels to keep.

variable

is the name of an existing variable.

Result

#KEEP returns as its result the number of levels deleted.

Consideration

#KEEP 0 removes the variable.

#KEEP num variable
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-220

B u ilt-In Functions and V ariab les #K E Y S B u ilt-In Function
#KEYS Built-In Function

Use #KEYS to determine which function keys are currently defined.

Result

#KEYS returns a space-separated list containing the names of all defined function
keys.

Example

Assuming #INFORMAT is set to TACL, this statement displays the currently defined
keys:

14> #OUTPUT [#KEYS]
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 SF1 SF16

#KEYS
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-221

B u ilt-In Functions and V ariab les #L IN E A D D R B u ilt-In Function
#LINEADDR Built-In Function

Use #LINEADDR to convert a character address to a line address.

variable-level

is an existing variable level to be operated upon. It must not be a DIRECTORY, a
STRUCT, or a STRUCT item.

char-addr

is an integer or a variable level that contains an integer. char-addr specifies the
character address of the character to be converted. The character address must
be in the range from 1 to max-int, inclusive.

Result

#LINEADDR returns the line number of the line that contains the specified character.

Considerations

 If char-addr is greater than the number of characters in the variable level,
#LINEADDR returns a value one greater than the number of the last line.

 If variable-level is empty, #LINEADDR returns 0.

 Each logical line contains an end-of-line character that counts as one byte. For
variables that contain TACL statements, each metacharacter uses the number of
visible characters plus one, including unprintable characters that are subject to
change from one TACL RVU to another. Nonmetacharacters use one byte.

Example

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

The invocation:

#LINEADDR var 10

returns 2; the tenth character in var, counting the end-of-line between lines 1 and 2 as
one character, is the “I” in line 2.

#LINEADDR variable-level char-addr
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-222

B u ilt-In Functions and V ariab les #L IN E B R E A K B u ilt-In Function
#LINEBREAK Built-In Function

Use #LINEBREAK to insert an end-of-line into a variable level at a specified point in a
specified line.

variable-level

is the name of an existing variable level into which the end-of-line is to be inserted.
It must not be in a shared segment and must not be a DIRECTORY, a STRUCT, or
a STRUCT item.

line-addr

is an integer or a variable level that contains an integer. line-addr specifies the
line number into which the end-of-line is to be inserted. The line address must be
in the range from 1 to max-int, inclusive.

char-offset

is an integer or a variable level that contains an integer. char-offset is the
position of the character within the specified line at which the end-of-line is to be
inserted.

Result

#LINEBREAK returns nothing.

Considerations

 Each logical line contains an internal end-of-line character that counts as one
byte.When you use the #LINEBREAK built-in function, TACL inserts the end-of-line
character immediately before the specified character.

 If char-offset is greater than the number of characters in the line, the new end-
of- line is inserted immediately before the existing end-of-line.

 If line-addr andchar-offset are both 1, an end-of-line is inserted at the
beginning of the variable level. If line-addr is beyond the end of the variable
level, no end-of-line is inserted.

Example

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

#LINEBREAK variable-level line-addr char-offset
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-223

B u ilt-In Functions and V ariab les #L IN E B R E A K B u ilt-In Function
The invocation:

#LINEBREAK var 2 5

causes var to contain:

ABCDEFG
HIJK
LMNOPQRST
UVWXYZ
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-224

B u ilt-In Functions and V ariab les #LIN E C O U N T B u ilt-In unction
#LINECOUNT Built-In unction

Use #LINECOUNT to obtain the number of lines in a variable level.

variable-level

is the name of an existing variable level whose lines are to be counted. It must not
be a DIRECTORY, a STRUCT, or a STRUCT item.

Result

#LINECOUNT returns the number of lines in the variable level.

Example

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

The invocation:

#LINECOUNT var

returns 3.

#LINECOUNT variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-225

B u ilt-In Functions and V ariab les #L IN E D E L B u ilt-In Function
#LINEDEL Built-In Function

Use #LINEDEL to delete lines from a variable level, starting at a specified line.

variable-level

is an existing variable level from which lines are to be deleted. It must not be in a
shared segment, and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

line-addr-1

is an integer or a variable level that contains an integer. line-addr-1 specifies
the line number at which line deletion is to begin. The line address must be in the
range from 1 to max-int, inclusive.

line-count

is an integer or a variable level that contains an integer. line-count specifies the
number of lines to be deleted. The line count must be in the range from 0 to max-
int, inclusive.

line-addr-2

is an integer or a variable level that contains an integer. line-addr-2 specifies
the line number at which line deletion is to end. The line address must be in the
range from 0 to max-int, inclusive.

Result

#LINEDEL returns nothing.

Considerations

 If you use TO, the line specified by line-addr-2 is included in the deletion: That
is, “x TO y” is equivalent to “x FOR (y-x)+1.”

 If you use TO and line-addr-1 is greater than line-addr-2, no deletion
occurs.

 If you omit both FOR and TO, TACL deletes the line specified by line-addr-1.

Examples

Any part of the specified deletion that lies beyond the end of the variable level is
ignored.

#LINEDEL variable-level line-addr-1
 [[FOR line-count] | TO line-addr-2]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-226

B u ilt-In Functions and V ariab les #L IN E D E L B u ilt-In Function
Assume that var is a variable level containing:

THE QUICK BROWN
FOX JUMPED OVER
THE LAZY DOG
TWICE A DAY
EXCEPT TUESDAYS.

1. Either of the invocations:

#LINEDEL var 2 TO 4 or #LINEDEL var 2 FOR 3

causes var to contain:

THE QUICK BROWN
EXCEPT TUESDAYS.

2. Either of the invocations:

#LINEDEL var 2 TO 50 or #LINEDEL var 2 FOR 49

causes var to contain:

THE QUICK BROWN
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-227

B u ilt-In Functions and V ariab les #L IN E FIN D B u ilt-In Function
#LINEFIND Built-In Function

Use #LINEFIND to find text in a variable level, searching forward from a specified line
number.

EXACT

specifies that the search is to be case-sensitive; if you omit it, the search makes no
distinction between uppercase and lowercase letters.

variable-level

is an existing variable level within which TACL will search for text. It must not be a
DIRECTORY, a STRUCT, or a STRUCT item.

line-addr

is an integer or a variable level that contains an integer. line-addr specifies the
line number at which the search is to begin. The line address must be in the range
from 1 to max-int, inclusive.

text

is the text constant to be found. The largest valid text length is 32,000 words minus
the current contents of the stack. The amount of remaining space is typically
25,000 words long.

Result

#LINEFIND returns the number of the line in which text begins. If text is not found, or if
text is empty, #LINEFIND returns zero.

Considerations

 If line-addr is past the end of the variable level, #LINEFIND returns zero.

 A text specification can include internal end-of-line characters if the entire
invocation is enclosed in square brackets, but leading and trailing spaces and end-
of- lines are ignored.

 The search begins immediately at the line number specified. If you make repeated
calls to this function, using the result of each as a starting point for the next, you
must add 1 to that result before supplying it to a subsequent call.

 If line-addr is empty, #LINEFIND returns zero.

#LINEFIND [/ EXACT /] variable-level line-addr text
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-228

B u ilt-In Functions and V ariab les #L IN E FIN D B u ilt-In Function
Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

1. The invocation:

#LINEFIND var 1 IJK

returns 2; the first occurrence of IJK starting in or after line 1 is in line number 2.

2. The invocation:

#LINEFIND var 2 IJK

returns 2; the first occurrence of IJK is in the specified starting line, line 2.

3. The invocation:

#LINEFIND var 3 IJK

returns 0; there are no occurrences of IJK starting in or after line 3.

4. The invocation:

#LINEFIND var 1 FOO

returns 0; there are no occurrences of FOO anywhere in var.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-229

B u ilt-In Functions and V ariab les #L IN E F IN D R B u ilt-In Function
#LINEFINDR Built-In Function

Use #LINEFINDR to find text in a variable level, searching backward from a specified
line number.

EXACT

specifies that the search is to be case-sensitive; if you omit it, the search makes no
distinction between uppercase and lowercase letters.

variable-level

is an existing variable level within which TACL will search for text. It must not be a
DIRECTORY, a STRUCT, or a STRUCT item.

line-addr

is an integer or a variable level that contains an integer. line-addr specifies the
line number at which the search is to begin. The line address must be in the range
from 1 to max-int, inclusive. The search moves backward from this point.

text

is the text constant to be found. The largest valid text length is 32,000 words minus
the current contents of the stack. The amount of remaining space is typically
25,000 words long.

Result

#LINEFINDR returns the number of the line in which text begins. If text is not found or
text is empty, #LINEFINDR returns zero.

Considerations

 If line-addr is past the end of the variable level, #LINEFINDR starts the search
at the end of the contents of the variable.

 A text specification can include internal end-of-line characters if the entire
invocation is enclosed in square brackets, but leading and trailing spaces and end-
of- lines are ignored.

 The search includes all of the specified line. The search finds a match if the
matching text begins anywhere within, or before, that line (even if the text extends
beyond the line). If you make repeated calls to this function, using the result of one
call as a starting point for the next, you must subtract one from that result before
using it in a subsequent call. This procedure avoids finding the same text again.

#LINEFINDR [/ EXACT /] variable-level line-addr text
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-230

B u ilt-In Functions and V ariab les #L IN E F IN D R B u ilt-In Function
Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

1. The invocation:

#LINEFINDR var 3 IJK

returns 2; the nearest occurrence of IJK beginning in or before line 3 is in line 2.

2. The invocation:

[#LINEFINDR var 2 T
UV]

returns 2; though the text T(end-of-line)UV carries over to line 3, it begins in line 2.

3. The invocation:

#LINEFINDR var 4 FOO

returns 0; there are no occurrences of FOO anywhere in var.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-231

B u ilt-In Functions and V ariab les #L IN E F IN D R V B u ilt-In Function
#LINEFINDRV Built-In Function

Use #LINEFINDRV to find a string in a variable level, searching backward from a
specified line.

EXACT

specifies that the search is to be case-sensitive; if you omit it, the search makes no
distinction between uppercase and lowercase letters.

variable-level

is an existing variable level within which TACL will search for string. It must not be
a DIRECTORY, a STRUCT, or a STRUCT item.

line-addr

is an integer or a variable level that contains an integer. line-addr specifies the
line number at which the search is to begin. The line address must be in the range
from 1 to max-int, inclusive. The search moves backward from this point.

string

is the string constant or the name of a variable level that contains text. string
specifies the characters to be found. It must not be in a shared segment or be a
DIRECTORY, a STRUCT, or a STRUCT item. The largest valid string length is
32,000 words minus the current contents of the stack. The amount of remaining
space is typically 25,000 words long.

Result

#LINEFINDRV returns the number of the line in which string begins. If string is not
found, or if string is empty, #LINEFINDRV returns zero. If variable-level is empty,
then #LINEFINDRV returns zero.

Considerations

 Ifline-addr is past the end of the variable level, #LINEFINDRV starts the search
at the end of the contents of the variable.

 One trailing end-of-line in string is ignored. Leading and trailing spaces are
preserved, as are all other end-of-lines.

 The search includes all of the specified line. The search finds a match if the
matching string begins anywhere within, or before, that line (even if the string
extends beyond the line). If you make repeated calls to this function, using the
result of one call as a starting point for the next, you must subtract one from that

#LINEFINDRV [/ EXACT /] variable-level line-addr string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-232

B u ilt-In Functions and V ariab les #L IN E F IN D R V B u ilt-In Function
result before using it in a subsequent call. This procedure avoids finding the same
string again.

 Each line break contains an internal end-of-line character that counts as one byte.

 For variables that contain TACL statements, each square bracket ([,]), vertical bar
(|), or tilde-space combination (~_) uses two bytes, including unprintable
characters that are subject to change from one TACL RVU to another. Other
characters use one byte.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

and that var2 is a variable level containing:

IJK

1. Either of the invocations:

#LINEFINDRV var 3 "IJK" or #LINEFINDRV var 3 var2

returns 2; the nearest occurrence of IJK beginning in or before line 3 starts in line
2.

2. The invocation:

#LINEFINDRV var 2 "UVW"

returns 0; there are no occurrences of UVW beginning in or before line 2.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-233

B u ilt-In Functions and V ariab les #L IN E FIN D V B u ilt-In Function
#LINEFINDV Built-In Function

Use #LINEFINDV to find a string in a variable level, searching forward from a specified
line.

EXACT

specifies that the search is to be case-sensitive; if you omit it, the search makes no
distinction between uppercase and lowercase letters.

variable-level

is an existing variable level in which TACL will search for string. It must not be a
DIRECTORY, a STRUCT, or a STRUCT item.

line-addr

is an integer or a variable level that contains an integer. line-addr specifies the
line number at which the search is to begin. The line address must be in the range
from 1 to max-int, inclusive.

string

is the string constant or the name of a variable level that contains text. string
specifies the characters to be found. It must not be in a shared segment or be a
DIRECTORY, a STRUCT, or a STRUCT item. The largest valid string length is
32,000 words minus the current contents of the stack. The amount of remaining
space is typically 25,000 words long.

Result

#LINEFINDV returns the number of the line in which string begins. If string is not found
or the string is empty, #LINEFINDV returns zero. If variable-level is empty, then
#LINEFINDV returns zero.

Considerations

If line-addr is past the end of the variable level, #LINEFINDV returns zero. The
search starts immediately at the beginning of the line specified. If you make repeated
calls to this function, using the result of each as a starting point for the next, you must
add 1 to that result before supplying it to a subsequent call.

#LINEFINDV [/ EXACT /] variable-level line-addr string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-234

B u ilt-In Functions and V ariab les #L IN E FIN D V B u ilt-In Function
Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

and that var2 is a variable level containing:

IJK

1. Either of the invocations:

#LINEFINDV var 1 "IJK" or #LINEFINDV var 1 var2

returns 2; the first occurrence of IJK starting in or after line 1 is in line 2.

2. Either of the invocations:

#LINEFINDV var 2 "IJK" or #LINEFINDV var 2 var2

returns 2; the first occurrence of IJK is exactly at the starting point, the beginning of
line 2.

3. Either of the invocations:

#LINEFINDV var 3 "IJK" or #LINEFINDV var 3 var2

returns 0; there are no occurrences of IJK starting in or after line 3.

4. The invocation:

#LINEFINDV var 1 "FOO"

returns 0; there are no occurrences of FOO anywhere in var.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-235

B u ilt-In Functions and V ariab les #L IN E G E T B u ilt-In Function
#LINEGET Built-In Function

Use #LINEGET to obtain a copy of a set of consecutive lines in a variable level.

string

is an existing variable level or quoted text from which lines are to be copied. It must
not be a DIRECTORY, a STRUCT, or a STRUCT item.

line-addr-1

is an integer or a variable level that contains an integer. line-addr-1 specifies
the line number at which copying is to begin. The line address must be in the range
from 1 to max-int, inclusive.

line-count

is an integer or a variable level that contains an integer. line-count specifies the
number of lines to copy. The line count must be in the range from 0 to max-int,
inclusive.

line-addr-2

is an integer or a variable level that contains an integer. line-addr-2 specifies
the line number at which copying is to end. The line address must be in the range
from 1 to max-int, inclusive.

Result

#LINEGET returns as its result the copied lines.

Considerations

 If you use TO, the line specified by line-addr-2 is included in the copy; that is,
“x TO y” is equivalent to “x FOR (y-x)+1.”

 If you use TO and line-addr-1 is greater than or equal to line-addr-2, or if
you use FOR and line-count is zero, no copying occurs.

 If you omit both FOR and TO, one line is copied.

 Any part of the specified copy that lies beyond the end of the variable level is
ignored.

 If #LINEGET is to return more than one line, you must enclose in square brackets
the invocation of the function that obtains that result.

#LINEGET string line-addr-1
 { { FOR line-count } | { TO line-addr-2 } }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-236

B u ilt-In Functions and V ariab les #L IN E G E T B u ilt-In Function
Examples

Assume that var is a variable level containing:

THE QUICK BROWN
FOX JUMPED OVER
THE LAZY DOG
TWICE A DAY
EXCEPT TUESDAYS.

1. The invocation:

#LINEGET var 2

returns:

FOX JUMPED OVER

2. Either of the invocations:

#LINEGET var 2 TO 4 or #LINEGET var 2 FOR 3

returns:

FOX JUMPED OVER
THE LAZY DOG
TWICE A DAY

Therefore, a function invocation producing that result must be enclosed in square
brackets:

[#OUTPUT [#LINEGET var 2 FOR 3]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-237

B u ilt-In Functions and V ariab les #L IN E G E TV B u ilt-In Function
#LINEGETV Built-In Function

Use #LINEGETV to copy a set of consecutive lines from one variable level to another.

string

is an existing variable level or quoted text from which characters are to be copied.
It must not be a DIRECTORY, a STRUCT, or a STRUCT item.

variable-level

is an existing variable level that is to receive the copy. The variable’s original
contents are lost, and its type is set to TEXT.

line-addr-1

is an integer or a variable level that contains an integer. line-addr-1 specifies
the line number at which copying is to begin. The line address must be in the range
from 1 to max-int, inclusive.

line-count

is an integer or a variable level that contains an integer. line-count specifies the
the number of lines to copy. The line count must be in the range from 0 to max-
int, inclusive.

line-addr-2

is an integer or a variable level that contains an integer. line-addr-1 specifies
the line number at which copying is to end. The line address must be in the range
from 0 to max-int, inclusive.

Result

#LINEGETV returns nothing.

Considerations

 If you use TO, the line specified by line-addr-2 is included in the copy: That is,
“x TO y” is equivalent to “x FOR (y-x)+1.”

 If you use TO and line-addr-1 is greater than or equal to line-addr-2, or if
you use FOR and line-countis less than one, no copying occurs.

 If you omit both FOR and TO, one line is copied.

 Any part of the specified copy that lies beyond the end of string is ignored.

#LINEGETV string variable-level line-addr-1
 [[FOR line-count] | [TO line-addr-2]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-238

B u ilt-In Functions and V ariab les #L IN E G E TV B u ilt-In Function
Examples

Assume that var is a variable level containing:

THE QUICK BROWN
FOX JUMPED OVER
THE LAZY DOG
TWICE A DAY
EXCEPT TUESDAYS.

Either of the invocations:

#LINEGETV var var2 2 TO 3 or #LINEGETV var var2 2 FOR 4

set var2 to:

FOX JUMPED OVER
THE LAZY DOG

The invocation:

#LINEGETV var var2 3

sets var2 to:

THE LAZY DOG
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-239

B u ilt-In Functions and V ariab les #L IN E IN S B u ilt-In Function
#LINEINS Built-In Function

Use #LINEINS to insert text into a variable level at a specified line number.

variable-level

is an existing variable level into which text will be inserted. It must not be in a
shared segment, and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

line-addr

is an integer or a variable level that contains an integer. line-addr specifies the
line number at which text is to be inserted. The line address must be in the range
from 1 to max-int, inclusive.

text

is the text constant to be inserted. The largest valid text length is 32,000 words
minus the current contents of the stack. The amount of remaining space is typically
25,000 words long.

Result

#LINEINS returns nothing.

Considerations

 A text specification can include internal end-of-lines if you enclose the entire
invocation in square brackets, but leading and trailing spaces and end-of-lines are
ignored.

 If line-addrr is beyond the end of the variable level, the text is appended to the
end of the variable level, starting on a new line.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

1. The invocation:

#LINEINS var 3 NEW TEXT

causes var to contain:

ABCDEFG
HIJKLMNOPQRST

#LINEINS variable-level line-addr text
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-240

B u ilt-In Functions and V ariab les #L IN E IN S B u ilt-In Function
NEW TEXT
UVWXYZ

2. The invocation:

[#LINEINS var 3 NEW
TEXT]

causes var to contain:

ABCDEFG
HIJKLMNOPQRST
NEW
TEXT
UVWXYZ

3. The invocation:

#LINEINS var 100 NEW TEXT

causes var to contain:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ
NEW TEXT
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-241

B u ilt-In Functions and V ariab les #L IN E IN S V B u ilt-In Function
#LINEINSV Built-In Function

Use #LINEINSV to insert a string into a variable level at a specified line number.

variable-level

is an existing variable level into which string will be inserted. It must not be in a
shared segment and must not be a DIRECTORY, a STRUCT, or a STRUCT item.

line-addr

is an integer or a variable level that contains an integer. line-addr specifies the
line number at which text is to be inserted. The line address must be in the range
from 1 to max-int, inclusive.

string

is the string constant or the name of a variable level that contains text to be
inserted. string specifies the characters to be found. It must not be in a shared
segment or be a DIRECTORY, a STRUCT, or a STRUCT item. The largest valid
string length is 32,000 words minus the current contents of the stack. The amount
of remaining space is typically 25,000 words long.

Result

#LINEINSV returns nothing.

Considerations

 Leading and trailing spaces in string are preserved, as are all end-of-lines.

 If line-addr is beyond the end of the variable level, string is appended to the end
of the variable level, starting on a new line.

Examples

Assume that var is a variable level containing:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

and that var2 is a variable level containing:

NEW
TEXT

1. The invocation:

#LINEINSV var 3 var2

#LINEINSV variable-level line-addr string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-242

B u ilt-In Functions and V ariab les #L IN E IN S V B u ilt-In Function
causes var to contain:

ABCDEFG
HIJKLMNOPQRST
NEW
TEXT
UVWXYZ

2. The invocation:

#LINEINSV var 100 "NEW TEXT"

causes var to contain:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ
NEW TEXT
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-243

B u ilt-In Functions and V ariab les #L IN E JO IN B u ilt-In Function
#LINEJOIN Built-In Function

Use #LINEJOIN to delete the end-of-line at the end of a specified line, thereby joining
the following line to it.

variable-level

is an existing variable level in which joining is to take place.

line-addr

is an integer or a variable level that contains an integer. line-add specifies the
line number from which the end-of-line is to be deleted. The line address must be
in the range from 1 to max-int, inclusive.

Result

#LINEJOIN returns nothing.

Considerations

 If line-addr is equal to or greater than the number of the last line, no joining
occurs.

 Lines are joined with no intervening new character.

 You can use #CHARDEL to delete an end-of-line at a specific character position.

Examples

Assume that var is a variable level containing this:

ABCDEFG
HIJKLMNOPQRST
UVWXYZ

The invocation:

#LINEJOIN var 2

causes var to contain:

ABCDEFG
HIJKLMNOPQRSTUVWXYZ

#LINEJOIN variable-level line-addr
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-244

B u ilt-In Functions and V ariab les #LO A D B u ilt-In Function
#LOAD Built-In Function

Use #LOAD to load variables from a TACL library file into memory. A library file
consists of one or more ?SECTION directives of the form:

?SECTION name type

Each directive is followed by one or more lines of text that are to be associated with the
variable level specified by name. The nature of the text is largely dependent on the
type of the section, which can be ALIAS, DELTA, MACRO, ROUTINE, STRUCT, or
TEXT. The body of text ends with the next ?SECTION directive, or the end of the file,
whichever comes first.

option

can be either of these:

KEEP num

causes TACL to perform an implicit KEEP num command on each variable it
loads.

LOADED variable-level

causes the list of variables loaded to be placed in variable-level rather
than in the result of #LOAD; variable-level must already exist. Its original
contents are lost and its type is set to TEXT. variable-level contains one
variable name per line, so it is suitable for processing by #EXTRACT(V).

file-name

is the name of a TACL library file.

Result

#LOAD returns a space-separated list containing the names of the variables loaded. If
you specify the LOADED option, however, #LOAD returns nothing.

Considerations

 The LOADED option is especially useful for loading libraries containing large
numbers of variables (so many that a “text buffer overflow” error results when they
are placed in the result of #LOAD).

 If you need to include a blank line (often useful in DELTA type variables), use the
?BLANK directive. ?BLANK causes the loader to insert a blank line in the variable
level.

#LOAD [/ option [, option] /] file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-245

B u ilt-In Functions and V ariab les #LO A D B u ilt-In Function
 To include lines beginning with question marks, (for example, you might be loading
DDL commands into a variable level for later use as the IN variable for a DDL run),
double the question mark (??). The first question mark and any spaces adjacent to
it are discarded and the remainder of the line is treated as text.

 For each ?SECTION name type directive in a library file, TACL pushes a variable
named name, sets its type to type, and sets its contents to text (all the text that
follows the ?SECTION directive, until the next directive or the end of the library
file). If the variable name already exists, TACL pushes the variable and puts text in
the new top level.

 #LOAD reads data from a library file in TACL format unless the file contains a
?FORMAT PLAIN or ?FORMAT QUOTED directive to specify otherwise. If
changed, the format reverts to TACL at the next ?SECTION directive.

 The definition of a STRUCT in a library file cannot contain square brackets; the
body of the structure must not be on the same line as the ?SECTION directive.

 If you load a variable that is already loaded, TACL pushes the variable and creates
a new variable level.

 To obtain a list of variables loaded into your home directory, use the VARIABLES
command or the #VARIABLES built-in function.

 To obtain detailed information about a variable in your home directory, use the
VARINFO command or the VARIABLEINFO built-in function.

 To delete a variable, use the KEEP command, the #KEEP built-in function, or the
KEEP option of the #LOAD built-in function (to delete and load a variable
simultaneously):

#SET rslt [#LOAD /KEEP 1/ TESTS]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-246

B u ilt-In Functions and V ariab les #LO A D B u ilt-In Function
Examples

Following are some examples of ?SECTION directives in library files that can be
processed by #LOAD:

?SECTION versnum TEXT
== Version of this library
14OCT91

?SECTION setmacro MACRO
== Creates a macro (%1%) defined by text (%2 to *%)
[#DEF %1% MACRO |BODY|%2 to *%]

?SECTION setvar ALIAS
== Defines a variable
SETMACRO

?SECTION nocommas MACRO
== Turns comma-separated list into space-separated list
[#DELTA /COMMANDS nocommas_d/ %*%]

?SECTION nocommas_d DELTA
== Engine for NOCOMMAS
J<:S,$;-DI $>

?SECTION inventory STRUCT
 BEGIN
 INT item;
 INT price;
 INT quantity;
 END;

?SECTION obsolete^items STRUCT
 LIKE inventory;
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-247

B u ilt-In Functions and V ariab les #LO C K IN FO B u ilt-In Function
#LOCKINFO Built-In Function

Use #LOCKINFO to obtain information about record locks.

lock-spec

consists of a numeral followed by one or more descriptive fields, and specifies the type
of lock information wanted; lock-spec can be any of these:

0 device-name

searches the specified device for all locks.

1 file-name

searches the specified file for all locks.

2 device-name [\node-name.] {$process-name | cpu,pin }

searches the specified device for all locks set by the specified process.

3 device-name transid

searches the specified device for all locks under the specified transaction ID.
transid is a four-word transaction identifier that uniquely identifies a specific
transaction protected by the TMF subsystem. transid must have this format:

\node (crash-count). cpu. sequence-number

(crash-count) can be omitted if it equals 0. \ node can specify a node
name or node number and can be omitted for a local node if crash-
count is also omitted.

tag

is a number identifying a specific set of lock information. If tag is zero, #LOCKINFO
obtains the first lock information. #LOCKINFO includes in its result the tag value
you need to get the next lock information in sequence.

buffer

is a variable level that is to receive the lock information; it must be a writable
STRUCT (see “Example” for a suggested structure definition). The minimum length
for buffer is 294 bytes.

Result

#LOCKINFO returns a file-system error code indicating the outcome of the operation. If
the code is 0 (no error) or 45 (file is full-no error otherwise), it is followed by a space
and the tag to be passed in the next call to #LOCKINFO.

#LOCKINFO lock-spec tag buffer
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-248

B u ilt-In Functions and V ariab les #LO C K IN FO B u ilt-In Function
Consideration

For D-series programs, use the #FILEGETLOCKINFO built-in function.

Example

This routine accepts a volume name and reports all locks for that volume.

?SECTION looklock ROUTINE
#FRAME
== Define buffer into which #LOCKINFO puts lock information.
[#DEF buffer STRUCT
 BEGIN
 STRUCT lib;
 BEGIN
 BYTE type;
 BYTE keylen;
 INT misc;
 CHAR svol^file(0:15);
 INT numlab;
 INT2 laboff; == byte offset of 1st labinfo entry
 BYTE keyval(0:255);
 INT2 recaddr REDEFINES keyval;
 == Be sure there is space for at least 1 labinfo entry.
 == More might fit if keylen < 256.
 FILLER 12;
 END; == lib
 STRUCT generic REDEFINES lib;
 BEGIN
 BYTE onechar (0:293);
 END;
 END; == buffer
] == end #DEF

== Define structure for one labinfo entry.
== One entry at a time is copied here from buffer.
[#DEF labinfo STRUCT
 BEGIN
 INT misc;
 CRTPID locker;
 TRANSID translocker REDEFINES locker;
 INT reserved;
 END; == labinfo
] == end #DEF

== Get byte length of labinfo STRUCT
#PUSH labinfolen
#SET labinfolen [#VARIABLEINFO /LEN/ labinfo]

== Define macro to show information about one locked &
 resource (a file or a record).
[#DEF display_lib MACRO |BODY|
 #OUTPUT
 == Get interesting values from buffer.
 #SET type [buffer:lib:type]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-249

B u ilt-In Functions and V ariab les #LO C K IN FO B u ilt-In Function
 #SET keylen [buffer:lib:keylen]
 #SET fname [vol].[buffer:lib:svol^file(0:7)]
 #SET fname [fname].[buffer:lib:svol^file(8:15)]
 #SET numlab [buffer:lib:numlab]
 #SET laboff [buffer:lib:laboff]

== Display them.
#OUTPUT type: [buffer:lib:type]
#OUTPUT keylen: [keylen]
#OUTPUT laboff: [laboff]
== Is it a record lock or a file lock?
[#IF ([buffer:lib:type]) |THEN|
 #OUTPUT RECORD LOCK on [fname]
 [#IF (keylen = 0) |THEN|
 #OUTPUT ID: [buffer:lib:recaddr]
 |ELSE|
 #OUTPUT ID: [buffer:lib:keyval(0:[#compute (keylen-1)])]
]
|ELSE|
 #OUTPUT FILE LOCK on [fname]
]

== Show number of lockers/waiters.
#OUTPUT [numlab] locks and waits for [fname]
] == end DISPLAY_LIB macro

== Define macro to display all labinfo entries returned for &
 one locked resource (a file or a record).
[#DEF display_lab MACRO |BODY|
 == Loop for each labinfo entry. There are [numlab] entries.
 #SET count 0
 [#LOOP |WHILE| (count < numlab) |DO|
 == Compute location of current labinfo entry.
 #SET start [#COMPUTE laboff + (labinfolen * count)]
 #SET stop [#COMPUTE start + labinfolen-1]

 == Copy entry from buffer to labinfo structure.
 #SETBYTES labinfo buffer:generic:onechar([start]:[stop])

 == Display entry.
 #OUTPUTV labinfo

 == Increment entry number.
 #SET count [#COMPUTE count + 1]

] == end #LOOP
] == end DISPLAY_LAB macro

== Initialize variables
#PUSH vol err tag
#PUSH type keylen fname numlab laboff
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-250

B u ilt-In Functions and V ariab les #LO C K IN FO B u ilt-In Function
#PUSH count start stop
#SET tag 0

== Get name of volume to be searched for locks.
SINK [#ARGUMENT /VALUE vol/ DEVICE]

== Loop through all locks on volume.
[#LOOP |DO|

 == Get lock info.
 #SETMANY err tag, [#LOCKINFO 0 [vol] [tag] buffer]

 == Check if locks found.
 [#IF ((err = 0) OR (err = 45)) |THEN|
 == Display lib info for this resource.
 DISPLAY_LIB
 == Display all labinfo entries obtained on this call &
 to #LOCKINFO.
 DISPLAY_LAB

 == More lockers/waiters for this same resource?
 [#IF (err=45) |THEN|
 #OUTPUT There were more lockers/waiters for this
 #OUTPUT resource than would fit in the buffer.
]
] == Locks found.
 |UNTIL| ((err <> 0) AND (err <> 45))
] == end #LOOP

== Error 1 is normal termination. Otherwise:
[#IF (err <> 1) |THEN|
 #OUTPUT Error [err] on [vol]
]
#UNFRAME

Additional information is available in the Guardian Procedure Calls Reference Manual.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-251

B u ilt-In Functions and V ariab les #LO G O FF B u ilt-In Function
#LOGOFF Built-In Function

Use #LOGOFF to log off the current TACL.

option

is any of these:

CLEAR

clears the terminal screen after you log off (for use when TACL is not
configured to clear the screen automatically).

NOCLEAR

prevents TACL from clearing the terminal screen after you log off (for use when
TACL is configured to clear the screen automatically-the usual case).

PAUSE

causes TACL to execute a PAUSE command immediately following the
LOGOFF command.

SEGRELEASE

immediately releases the extended segment used to hold your variables.
Typically, TACL saves this segment to use in case you are the next user of this
TACL, but if you fill up your variable space and processing cannot proceed,
you can log off using the SEGRELEASE option to discard the variable space.

Result

#LOGOFF returns nothing.

Considerations

 When you log off, any processes that you started continue to run.

 Any macro or routine running at the time #LOGOFF occurs terminates
immediately. A subsequent LOGON does not restart it. For example:

#FRAME
...
#LOGOFF
#UNFRAME

causes the frame counter to remain in its incremented condition because
#UNFRAME is not executed.

#LOGOFF [/ option [, option] ... /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-252

B u ilt-In Functions and V ariab les #LO G O FF B u ilt-In Function
 If you use the #LOGOFF function while working through a modem, the modem
disconnects (unless the ancestor of the TACL process is running in another
system).

 If the ancestor of your current TACL process is a process running in another
system and you enter the LOGOFF command, the current TACL process is deleted
and control returns to the ancestor process. This message is displayed:

Exiting from TACL on \node-name

 If you are accessing a remote node through a modem on your local node, TACL
does not issue a modem disconnect.

 Any process that tries to use your variables after you log off receives error 66 on its
I/O requests.

 If your TACL is interactive and you are using a HP Tandem 6520 or 6530 terminal
emulator, and TACL is configured to clear the screen as a security measure (the
default), it does so when you log off. You can override the automatic screen
clearing with the NOCLEAR option. Conversely, if TACL is configured to omit
automatic screen clearing, you can use the CLEAR option to clear the terminal
screen.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-253

B u ilt-In Functions and V ariab les #LO O K U P P R O C E S S B u ilt-In Function
#LOOKUPPROCESS Built-In Function

Use #LOOKUPPROCESS to request information about a named process or process
pair from the destination control table (DCT).

option

is a request option. It can be any of these:

ANCESTOR

returns the process name, or the CPU number and process identification
number, of the process creator. If the ancestor node is different from the
specified or default node, then TACL displays the node name.

BACKUP

returns the CPU,PIN of the backup process. If there is no backup, TACL
returns 0,0.

ENTRY

returns the number of the DCT entry whose information is being returned. This
option forces specifier to be an entry number.

PRIMARY

returns the CPU,PIN of the primary process in the DCT.

PROCESSID

returns the process name of the DCT entry.

RESULT

returns one of these values:

specifier

is one of these process identifiers:

[\node-name.]{$process-name | cpu,pin }
entry-number [\node-name]

#LOOKUPPROCESS / option [, option] ... / specifier

0 if the requested entry is obtained

1 if an entry number is given but a higher-numbered entry
is being returned because the specified entry is not in
use

2 if the entry is not in the table or the system cannot be
reached
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-254

B u ilt-In Functions and V ariab les #LO O K U P P R O C E S S B u ilt-In Function
\node-name

is the system where the process is running.

$process-name

is the name of the process.

cpu,pin

is the CPU,PIN of the entry.

entry-number [\node-name]

is an entry number in the DCT for the specified system. If you omit\node-
name, the current default is used.

Result

#LOOKUPPROCESS returns a space-separated list of the selected information about
the DCT entry. The information is listed in the order in which the request options
appear.

Considerations

 If a process has no name, it is not listed in the DCT, so #LOOKUPPROCESS
returns no information. If you specified RESULT, TACL returns 2.

 If you use the ENTRY option, use an entry number as the DCT specifier.

 If specifier is an entry number, TACL searches the DCT, starting with that entry
number, until it finds an entry that is actually in use. For example, if the first entry
number in use is 127, the call

#LOOKUPPROCESS /ENTRY/ 1

returns

127

Given the same circumstances, the call

#LOOKUPPROCESS /PROCESSID, RESULT/ 1

returns

$Z001 1

showing the process name of the first process on the list and indicating that it has
a higher entry number than the one specified.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-255

B u ilt-In Functions and V ariab les #LO O P B u ilt-In Function
#LOOP Built-In Function

Use #LOOP to execute one or more statements iteratively within a function.

enclosure

is an enclosure that can contain either of two sets of two labels: WHILE and DO, or
DO and UNTIL.

| WHILE | numeric-expression

or

| UNTIL | numeric-expression

evaluates numeric-expression as either true or false:

| DO | [text]

returns text, typically a sequence of one or more functions to be repeatedly
executed while numeric-expression is true, or until numeric-
expression becomes true. If you omit text, #LOOP merely waits until the
specified criterion is met.

Result

#LOOP evaluates the WHILE or UNTIL text and tests it for inequality to zero.

Depending on the result of that test, #LOOP either returns the DO text (typically TACL
statements for execution) and repeats the test, or terminates.

Considerations

 The WHILE/DO version of #LOOP evaluates the expression first; if the expression
is true, it executes the DO text. It continues to do so as long as the expression is
true. The |WHILE| label must precede the |DO| label.

 The DO/UNTIL version of #LOOP executes the DO text before evaluating the
expression; if the expression is false, #LOOP performs another iteration. #LOOP
continues its iterations until the expression becomes true. This version always
makes at least one loop, even if the expression was initially true. The |DO| label
must precede the |UNTIL| label.

#LOOP enclosure

true = a nonzero value

false = zero
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-256

B u ilt-In Functions and V ariab les #M A TC H B u ilt-In Function
#MATCH Built-In Function

Use #MATCH to determine whether a particular text string satisfies the rules for a
template.

template

is a character sequence that may include these template characters:

text

is a character sequence to be compared to template.

Result

#MATCH returns -1 if the text satisfies the rules for the template; otherwise, it returns
0.

Considerations

 The comparison is not case-sensitive; that is, an uppercase character is equal to
its lowercase counterpart.

 template cannot contain spaces; text can contain spaces, but TACL construes
text with spaces as a space-separated list of multiple arguments. TACL examines
only the first argument and ignores the rest. For example, if the variable LINE
contains a line of text, you can use:

[#IF [#MATCH BEGIN [line]] |THEN| ...]

to determine whether the first word in the line is “begin” (uppercase or lowercase is
not a factor).

 To compare one string with another string, use the #COMPAREV built-in function.
(Strings can contain embedded spaces.).

#MATCH template [text]

* matches zero or more characters

? matches a single character

Note. Use of a large number of wild-card characters (*,?) can use significant processor
resources.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-257

B u ilt-In Functions and V ariab les #M O M B u ilt-In Function
#MOM Built-In Function

Use #MOM to obtain the process name, or CPU number and process identification
number, of the creator, or backup, of your TACL process. #MOM invokes the MOM
operating system procedure.

Result

 If TACL is a named process and the backup does not exist, the result is blank.

 If TACL is a named process and the backup does exist, the result is the process
name itself.

 If TACL is an unnamed single process, the result is the TACL ancestor.

Consideration

To obtain the identity of the job ancestor of your TACL process, if your TACL process is
part of a batch job, use the #MYGMOM built-in function.

#MOM
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-258

B u ilt-In Functions and V ariab les #M O R E B u ilt-In Function
#MORE Built-In Function

Use #MORE in a routine to find out whether an entire argument set has been
processed.

Result

#MORE returns -1 if there are more arguments, 0 if there are none remaining.

Considerations

 To parse the arguments passed to a routine, use the #ARGUMENT built-in
function.

 To examine the unprocessed part of an argument set, use the #REST built-in
function.

 To obtain the number of characters that #ARGUMENT has processed, use the
#GETSCAN built-in function.

 To specify the position for the next #ARGUMENT command to resume processing,
use the #SETSCAN built-in function.

#MORE
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-259

B u ilt-In Functions and V ariab les #M Y G M O M B uilt-In Function
#MYGMOM Built-In Function

Use #MYGMOM to obtain the identity of the job ancestor of your TACL process, if your
TACL process is part of a batch job.

Result

#MYGMOM returns the process name, or the CPU number and process identification
number, of the TACL process job ancestor, if there is one; otherwise, it returns nothing.

Consideration

To obtain the process name, or CPU number and process identification number, of the
creator or backup process associated with your TACL process, use the #MOM built-in
function.

#MYGMOM
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-260

B u ilt-In Functions and V ariab les #M Y P ID B u ilt-In Function
#MYPID Built-In Function

Use #MYPID to obtain your current CPU number and process identification number
(PIN). The number is not qualified with a node name. #MYPID invokes the MYPID
operating system procedure.

Result

#MYPID returns the CPU number and PIN of your TACL process. If it is a process pair,
#MYPID returns the CPU,PIN of the primary process.

#MYPID
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-261

B u ilt-In Functions and V ariab les #M Y S Y S TE M B u ilt-In Function
#MYSYSTEM Built-In Function

Use #MYSYSTEM to obtain the name of the system executing the current TACL.
#MYSYSTEM invokes the MYSYSTEMNUMBER operating system procedure and
converts the resulting number to the node name.

Result

#MYSYSTEM returns the node name.

Consideration

#MYSYSTEM is not affected by #SYSTEM. Although you might be conducting
operations on another system, your TACL continues to run on the system on which it
was started.

#MYSYSTEM
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-262

B u ilt-In Functions and V ariab les #M Y TE R M B u ilt-In V ariab le
#MYTERM Built-In Variable

Use #MYTERM to obtain the name of your current TACL home terminal. The TACL
home terminal is typically the terminal designated by applications to receive critical
system messages (such as abend notifications). A home terminal can be a physical
terminal name or a process name.

Result

#MYTERM returns your current TACL home terminal name.

Considerations

 When you first log on, #MYTERM is initialized to the name of your home terminal.

 Use #MYTERM to direct Inspect and Debug output to your home terminal from a
process running at a different terminal.

 Use #MYTERM to change the home terminal name for backup processes.

 When a process abends, TACL notifies the parent TACL process in addition to the
home terminal.

 The #MYTERM display includes the node name only if the home terminal is
running on a remote system or if the TACL defaults contain a node name.

 Use #PUSH #MYTERM (or PUSH #MYTERM) to save a copy of your current
TACL home terminal name.

 Use #POP #MYTERM (or POP #MYTERM) to restore your current TACL home
terminal to the last home terminal name pushed.

 Use #SET #MYTERM (or SET VARIABLE #MYTERM) to define your current TACL
home terminal name.

The syntax of #SET #MYTERM is:

home-term

is the terminal name or process name that is to become your new home
terminal. This does not affect the location to which TACL writes its output or
from which it reads commands, but it does affect the home terminal
designation for processes TACL starts.

#MYTERM

#SET #MYTERM home-term
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-263

B u ilt-In Functions and V ariab les #M Y TE R M B u ilt-In V ariab le
Examples

1. This example shows how to display the contents of #MYTERM:

10> #MYTERM
#MYTERM expanded to:
$TG0.$G04

2. This example pushes, sets, and pops the value of #MYTERM:

11> #PUSH MYTERM
12> #MYTERM
#MYTERM expanded to:
$TG0.$G04

13> #SET #MYTERM $ZTNT.#PTY46
14> #MYTERM
#MYTERM expanded to:
$ZTNT.#PTY46

15> #POP #MYTERM
16> #MYTERM
#MYTERM expanded to:
$TG0.#G04
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-264

B u ilt-In Functions and V ariab les #N E W P R O C E S S B u ilt-In Function
#NEWPROCESS Built-In Function

Use #NEWPROCESS to start a process (this also establishes the name and CPU,PIN
of the default process; see #PROCESS Built-In Function on page 9-290).
#NEWPROCESS is similar to the RUN command described in Section 8.

program-file

is the name of the file containing the object program to be run. Partial file names
are evaluated using the current default system, volume, and subvolume names.

option

is one of these (see the RUN[D|V] Command on page 8-156 for complete
descriptions):

CPU cpu-number
DEBUG
DEFMODE { OFF | ON }
EXTSWAP [file-name]
HIGHPIN { ON | OFF }
IN [file-name]
INLINE
INSPECT { OFF | ON | SAVEABEND }
INV variable-level [DYNAMIC [PROMPT variable-level]]
JOBID num
LIB [file-name]
MEM num-pages
NAME [$process-name]
NOWAIT
OUT [list-file]
OUTV variable-level
PFS num-pages
PRI priority
STATUS variable-level
SWAP file-name
TERM $terminal-name
WINDOW ["text"]

param-set

is a program parameter or a series of parameters sent to the new process in the
startup message. Leading and trailing spaces are deleted.

Result

 If you specify NOWAIT, #NEWPROCESS returns the name of the created process,
if it is a named process. If it is unnamed, it returns its CPU,PIN.

#NEWPROCESS program-file [/ option [, option]... /]
 [param-set]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-265

B u ilt-In Functions and V ariab les #N E W P R O C E S S B u ilt-In Function
 If TACL waits for completion of the created process, #NEWPROCESS returns a
termination status, a space, and the process identifier of the created process. The
termination status is one of these:

 If TACL is awakened by a WAKE message (code 20) while waiting for completion
of the created process, #NEWPROCESS returns WAKE.

 If you press the BREAK key while #NEWPROCESS is waiting, it returns nothing.

Considerations

These conditions apply to the use of the #NEWPROCESS built-in function:

 When a process terminates, the operating system sends TACL a process deletion
message that contains completion information. TACL places that information in the
variables :_COMPLETION (C-series format) and :_COMPLETION^PROCDEATH
(D-series format), if those variables exist. (For additional information about
completion codes, see Section 5, Statements and Programs.)

 When running a process that is to communicate with TACL (such as by setting IN
or OUT to the TACL process name, or by using TACL variables in INV or OUTV, or
by using the INLINE feature), be careful to coordinate TACL functions that enable
the communication (such as #IN or #OUT) with the counterpart mechanisms in that
process. Deadlock conditions can result if TACL tries to open a process for
communication at the same time that process is trying to open TACL for
communication.

 In NOWAIT mode, TACL does not wait for the process to finish, but prompts the
terminal for the next command immediately. TACL accesses the terminal in
conversational mode. Some processes, such as TEDIT, access the terminal in
page mode. Two processes cannot share a terminal when one uses conversational
mode and the other uses page mode.

 TACL allows IN and OUT files to be DEFINE names, and passes them to the
process being executed. The process is responsible for handling the DEFINEs.

 TACL allows TERM names to be DEFINE names, and passes them to the process
being executed.

 If you start a TACL process with HIGHPIN OFF, any processes started by that
TACL process run at a low PIN by default.

 The #NEWPROCESS built-in function returns the node name only if the process
was started on a remote node.

STOP The process ended normally.

ABEND The process ended abnormally (as the result of an error trap, for
example).

CPU The process was deleted because of a CPU failure.

NET The process was deleted because of a network failure.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-266

B u ilt-In Functions and V ariab les #N E W P R O C E S S B u ilt-In Function
 To obtain additional information about error results, use the #ERRORNUMBERS
built-in variable.

 #ERRORNUMBERS returns different values for C-series and D-series
#NEWPROCESS calls. For more information, see #ERRORNUMBERS Built-In
Variable on page 9-160.

 The #NEWPROCESS built-in function also supports file type 800, the native object
code file for TNS/E systems.

 Redirection abilities of the OSH command utility can be used. For more information
on redirection, see Section 6, Open System Services Shell and Utilities Reference
Manual.

These conditions apply to the use of the RUN command for starting TACL processes:

 A TACL process starts in a logged-off state unless Safeguard software
authenticates users and requests that TACL processes start in a logged-on state.

 To run TACL as a server process, set the IN file to $RECEIVE. For more
information, see the TACL Programming Guide.

 If the IN file is the same as the OUT file and the TACL process is not named, TACL
does not set its home terminal.

 The OSH process should not be started with the INLINE option. If you use the
INLINE option:

 TACL will not be able to detect the end of the INLINE process.

 The output displayed might not be synchronized with the command entered
using the inline prefix.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-267

B u ilt-In Functions and V ariab les #N E X TF ILE N A M E B u ilt-In Function
#NEXTFILENAME Built-In Function

Use #NEXTFILENAME to obtain the file whose name follows the specified file
alphabetically on a given volume. #NEXTFILENAME invokes the NEXTFILENAME
operating system procedure.

file-name

is the file name after which to begin the search for the next file name. Partial file
names are expanded using the current defaults.

Result

#NEXTFILENAME returns the name of the located file.

Consideration

If you omit file-name, #NEXTFILENAME returns the first file in the current default
volume and subvolume.

#NEXTFILENAME [file-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-268

B u ilt-In Functions and V ariab les #O P E N IN FO B u ilt-In Function
#OPENINFO Built-In Function

Use #OPENINFO to obtain information about file openers.

option

is an information request. It can be any of these:

ACCESSID

returns the user number of the opener.

ACCESSMODE

returns the access mode with which the file or device was opened:

BACKUP

returns the CPU,PIN of the backup process, if there is one and that process
has
the file open; otherwise, it returns nothing.

EXCLUSION

returns the exclusion specification under which the file or device was opened:

FILENAME

returns the name of the file opened (can be useful when the argument is a disk
name).

PRIMARY

returns the CPU,PIN of the primary process.

PROCESSID

returns the process name of the opening process, if the process is named;
otherwise, it returns the CPU,PIN of that process.

#OPENINFO / option [, option] /
 { file-name | device-name } tag

0 Read/write

1 Read-only

2 Write-only

0 Shared

1 Exclusive

3 Protected
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-269

B u ilt-In Functions and V ariab les #O P E N IN FO B u ilt-In Function
SYNCDEPTH

returns the sync depth with which the file or device was opened.

file-name or device-name

identifies the file or device for which information is desired. Each call to
#OPENINFO returns information about a single opening of the file or device.

tag

is a number identifying the particular opening for which information is wanted. A
zero value obtains information about the first opening; #OPENINFO includes in its
result the tag value to be used to get information about the next opening in
sequence.

Result

#OPENINFO returns a file-system code indicating the outcome of the operation:

Other file errors may be returned. See the Guardian Procedure Errors and Messages
Manual for the meanings of such messages.

If the result is 0, it is followed by a space, then the tag to be passed in the next call to
#OPENINFO, then another space, and finally a space-separated list of the information
requested by the options you supplied, in the order requested.

Considerations

 Openings are not reported in any defined order. In particular, when #OPENINFO is
retrieving information about all openings of a disk volume, the openings for any
one file are not grouped together in the sequence of calls.

 Because the BACKUP option may return nothing, you should specify it as the last
option to prevent confusion in reading the information list.

0 Success

1 No (more) openings
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-270

B u ilt-In Functions and V ariab les #O P E N IN FO B u ilt-In Function
Example

This routine accepts a file or device name and “processes” (simulation only) all the
openings of that file or device.

?SECTION lookopen ROUTINE
#FRAME

== Make some temps
#PUSH searchname error tag processid primary backup

== Get the argument
#IF [#ARGUMENT/VALUE searchname/ FILENAME DEVICE]
#IF [#ARGUMENT END]

== Start with first opening
#SET tag 0

== Loop until error
[#LOOP |DO|

== Get information using previous tag
[#SETMANY
 error tag processid primary backup
 ,
 [#OPENINFO/PROCESSID,PRIMARY,BACKUP/ [searchname] [tag]]
]
== Check for error
[#IF (error = 0) |THEN|

 == No error; process the open-information
 ...

] { End IF }

|UNTIL| (error <> 0)
] { End LOOP }

== Error 1 is normal termination
[#IF (error <> 1) |THEN|
 #OUTPUT Error [error] on [searchname]
]

== Clean up
#UNFRAME
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-271

B u ilt-In Functions and V ariab les #O U T B u ilt-In V ariab le
#OUT Built-In Variable

Use #OUT to set or obtain the name of the file currently being used by TACL as its
OUT file.

Result

#OUT returns the name of the current TACL OUT file.

Considerations

When you first log on to an interactive TACL, #OUT is initialized to the name of your
home terminal.

You cannot permanently change the primary TACL OUT file; that is the primary OUT
file always remains the same. You must push #OUT before you set it to a new OUT
file.

Setting #OUT to a disk file requires that TACL allocate one of its block buffers
internally. Because these blocks are large and must be allocated from the first 64K
bytes of the TACL address space, there are only four of them. (Other consumers of
these blocks buffers are #IN and #REQUESTER.)

When TACL has been started with its IN set to $RECEIVE, these guidelines apply:

 You can set #OUT without first pushing it. This feature, in conjunction with an
equivalent one in #IN, allows you to run TACL as a server yet be able to take over
a terminal as though TACL had been run on the terminal in the usual way.

 The value of #OUT is the default OUT file for processes started while #OUT is set
in this way.

 You can revert to sending output as a REPLY to $RECEIVE by setting #OUT to a
null value.

 To set or obtain the name of the current IN file, use the #IN built-in variable.

 Lines read from the current IN are appropriately echoed to the current OUT. The
default OUT file to processes started by TACL is not affected by #OUT; the default
remains associated with the original TACL OUT file.

 When communicating with a process, be careful to coordinate functions that
enable the communication (such as #IN or #OUT) with the counterpart
mechanisms in that process (such as IN or OUT referring to the TACL process
name). Deadlock conditions can result if TACL tries to open a process for
communication at the same time that process is trying to open TACL for
communication.

 Use #PUSH #OUT (or PUSH #OUT) to save a copy of the current OUT file name.

#OUT
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-272

B u ilt-In Functions and V ariab les #O U T B u ilt-In V ariab le
Any error while pushing OUT causes #OUT to be popped at once. Any other error
or break occurring while #OUT is pushed causes all but the bottom level of #OUT
to be popped before the error message is printed.

 Use #POP #OUT (or POP #OUT) to restore the last OUT file name pushed.

 Use #SET #OUT (or SET VARIABLE #OUT) to set the name of the file to be used
by TACL for OUT. Before setting #OUT, you must #PUSH #OUT (unless IN is set
to $RECEIVE, as noted previously).

The syntax of #SET #OUT is:

file-name

is the name you give the OUT file. You can use the name of a process in place
of a disk file name; TACL writes output to the process as though it were a file.

If you specify a nonexistent disk file, TACL creates an edit-format file. If you
specify an existing disk file, lines are appended to the existing file.

Example

This example causes TACL to write 002, 040, and 120 to the file OUTFILE, and then
the OUT file reverts to its previous status:

#PUSH #OUT
...
#SET #OUT outfile
#OUTPUT /HOLD,COLUMN 5,JUSTIFY RIGHT,WIDTH 3,FILL ZERO/ 2
#OUTPUT /HOLD,COLUMN 13,JUSTIFY RIGHT,WIDTH 3,FILL ZERO/ 40
#OUTPUT /COLUMN 21, JUSTIFY RIGHT, WIDTH 3, FILL ZERO/ 120
#POP #OUT

#SET #OUT file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-273

B u ilt-In Functions and V ariab les #O U TFO R M A T B u ilt-In V ariab le
#OUTFORMAT Built-In Variable

Use #OUTFORMAT to set or obtain the current formatting mode for the TACL OUT file.

Result

#OUTFORMAT returns the current #OUTPUT formatting mode: PLAIN, PRETTY, or
TACL.

Considerations

 When you first log on, #OUTFORMAT is initialized to PLAIN.

 To set or obtain the current formatting mode for the TACL IN file, use the
#INFORMAT built-in variable.

 When #OUTFORMAT is set to TACL, metacharacters that are stored as plain
characters on input (such as {, }, ==, [,], and |) are preceded with a tilde on output.

 Use #PUSH #OUTFORMAT (or PUSH #OUTFORMAT) to save a copy of the
current #OUTPUT formatting mode.

 Use #POP #OUTFORMAT (or POP #OUTFORMAT) to restore the last #OUTPUT
formatting mode pushed.

 Use #SET #OUTFORMAT (or SET VARIABLE #OUTFORMAT) to set the way
special internal notations are printed by #OUTPUT and by the prompt part of
#INPUT.

The syntax of #SET #OUTFORMAT is:

PLAIN

specifies that TACL should not translate any characters written to the OUT file.
Because internal representations include nonprinting characters, displaying TACL
program data in PLAIN mode can produce illegible output, depending on how your
device interprets nonprinting characters.

PRETTY

causes TACL to display the internal representations of square brackets and vertical
lines, as well as the actual characters, as brackets and vertical lines. The tilde and
underscore combination (~_) produces an ordinary space. You can use this feature
to manage output spacing or to include a trailing space in a prompt, as follows:

#FRAME
#PUSH #OUTFORMAT

#OUTFORMAT

#SET #OUTFORMAT { PLAIN | PRETTY | TACL }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-274

B u ilt-In Functions and V ariab les #O U TFO R M A T B u ilt-In V ariab le
#SET #OUTFORMAT PRETTY
#INPUT Prompt:~_
...
#UNFRAME

TACL

causes TACL to display the internal representations of square brackets ([and])
and the vertical line (|) as those characters. It shows actual metacharacters
preceded by tildes (~).
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-275

B u ilt-In Functions and V ariab les #O U TP U T B u ilt-In Function
#OUTPUT Built-In Function

Use #OUTPUT to write data to the TACL OUT file.

option

qualifies the write operation. It can be any of these:

COLUMN num

begins writing data at column num. If there is already text in the buffer
extending beyond the specified column, the buffer contents are output and a
new line is started, beginning at that column.

FILL { SPACE | ZERO }

specifies the character to be used to fill the unused character positions to the
right if the output is narrower than the number of columns specified by WIDTH.
If the output is wider than the number of columns specified by WIDTH, FILL is
ignored.

HOLD

holds output in a buffer until one of these events occurs:

 #OUTPUT or #OUTPUTV is executed without the HOLD option.

 The buffer becomes full.

 TACL, #DELTA, #INPUT, or #INPUTV prompts for input.

 #DELTA exits.

JUSTIFY { LEFT | RIGHT | CENTER }

specifies whether the output should be left-justified, right-justified, or centered if
the output is narrower than the number of columns specified by WIDTH. If the
output is wider than the number of columns specified by WIDTH, JUSTIFY is
ignored.

WIDTH num

specifies the width of the output field for the FILL and JUSTIFY options. If the
output is wider than the number of columns specified by WIDTH, WIDTH is
ignored. Specify num as an integer in the range from 1 to the current value of
the #WIDTH built-in variable.

#OUTPUT [/ option [, option] ... /] [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-276

B u ilt-In Functions and V ariab les #O U TP U T B u ilt-In Function
WORDS

causes text to be treated as a space-separated list of output items, applying
the FILL, JUSTIFY, and WIDTH options to each item. Without WORDS, text is
treated as a single output item.

text

is the output item. If you omit text, #OUTPUT writes a blank line.

Result

#OUTPUT returns nothing.

Considerations

 This statement outputs the first line of vara and then executes any other lines,
unless vara is a routine:

#OUTPUT [vara]

If vara is a routine, TACL interprets the contents of vara and outputs its results.

 Enclose the variable name in square brackets ([#OUTPUT [vara]]) or use
#OUTPUTV (or OUTVAR) vara to output the contents of a multiple-line variable.

 If text begins with a slash (/), you must supply an option to #OUTPUT so that the
slash at the beginning of text is not interpreted as the start of a list of options.

 #OUTPUT accepts a text argument, which does not include end of line characters.

 When you use the HOLD option, you can construct output lines in pieces. This
code displays “Alltogethernow”:

?TACL MACRO
#OUTPUT /HOLD/ All
#OUTPUT /HOLD/ together
#OUTPUT now

If, however, you want your output on separate lines, you can force separate lines by
specifying the COLUMN option; TACL starts a new line if there is output in the
specified column. This macro:

?TACL MACRO
#OUTPUT /COLUMN 5, HOLD/ This is the first line
#OUTPUT /COLUMN 5, HOLD/ This is the second line
#OUTPUT /COLUMN 5, HOLD/ This is the third line
#OUTPUT
#OUTPUT This is the last line

displays the following:

5> test
 This is the first line
 This is the second line
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-277

B u ilt-In Functions and V ariab les #O U TP U T B u ilt-In Function
 This is the third line
This is the last line

The fourth #OUTPUT call leaves room for the third line; otherwise, it would appear on
the same line as the last line.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-278

B u ilt-In Functions and V ariab les #O U TP U TV B u ilt-In Function
#OUTPUTV Built-In Function

Use #OUTPUTV to write the contents of a string to the OUT file of TACL (typically, the
terminal).

option

qualifies the write operation. It can be any of the following unless string is a
variable level of type STRUCT, in which case no options are allowed.

COLUMN num

begins writing data at column num. If there is already text in the buffer
extending beyond the specified column, the buffer contents are output and a
new line is started, beginning at that column.

FILL { SPACE | ZERO }

specifies the character to be used to fill the unused character positions to the
right if the output is narrower than the number of columns specified by WIDTH.
If the output is wider than the number of columns specified by WIDTH, FILL is
ignored.

HOLD

holds output in a buffer until one of these events occurs:

 #OUTPUT or #OUTPUTV is executed without the HOLD option.

 The buffer becomes full.

 TACL, #DELTA, #INPUT, or #INPUTV prompts for input.

 #DELTA exits.

JUSTIFY { LEFT | RIGHT | CENTER }

specifies whether the output should be left-justified, right-justified, or centered if
the output is narrower than the number of columns specified by WIDTH. If the
output is wider than the number of columns specified by WIDTH, JUSTIFY is
ignored.

WIDTH num

specifies the width of the output field for the FILL and JUSTIFY options. If the
output is wider than the number of columns specified by WIDTH, WIDTH is
ignored. Specify num as an integer in the range from 1 to the current value of
the #WIDTH built-in variable.

#OUTPUTV [/ option [, option] ... /] string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-279

B u ilt-In Functions and V ariab les #O U TP U TV B u ilt-In Function
WORDS

specifies that each line of string is to be treated as a space-separated list and
that the FILL, JUSTIFY, and WIDTH options are to be applied to the individual
members of the list. Without WORDS, string is treated as a single output item.

string

 is the data to be output. It is the name of an existing variable level, text enclosed
in quotation marks, or a concatenation of such entities. The concatenation operator
is '+' (the apostrophes are required).

Result

#OUTPUTV returns nothing.

Considerations

 If you supply options, they are applied to each line of string as though you had
called #OUTPUT with the same options once for each line. In particular, the last
line is the only one that can be held, as each line forces output of any previous
line.

 #OUTPUTV with the /HOLD/ option is useful for constructing lines to be output
piece by piece. For example, this example illustrates how you can do this by
putting the commands into an edit-format file and then invoking the file.

?TACL MACRO
#PUSH vara
#SET vara What a
#OUTPUTV /HOLD/ vara
#SET vara fine
#OUTPUTV /HOLD/ vara
#SET vara day
#OUTPUTV vara

When you invoke the macro, the text all comes out on one line.

 No options are allowed when a STRUCT is being output.

 Redefinitions are not shown unless string is itself a redefinition.

 You can use #OUTPUTV to display the current values of a structure, substructure,
or structure item in a stylized format defined by TACL. For example:

23> #OUTPUTV inventory
item(0:0) 123
price(0:0) 1004
quantity(0:0) 97

Conversely, #OUTPUT [inventory], displays only a space-separated list of the structure
values.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-280

B u ilt-In Functions and V ariab les #O U TP U TV B u ilt-In Function
Example

This example shows the use of a concatenated string containing both a variable name
and quoted text as an argument to #OUTPUTV.

#PUSH termname
#SET termname [#MYTERM]
#OUTPUTV "My terminal is " '+' termname '+' " at this time."

Assuming the home terminal name is $GREEN at the time the #SET function is
executed, the following is written to the OUT file:

My terminal is $GREEN at this time.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-281

B u ilt-In Functions and V ariab les #P A R A M B u ilt-In V ariab le
#PARAM Built-In Variable

Use #PARAM to set or obtain the value of a specified parameter or to obtain a list of all
the parameters you have currently in effect. For a discussion about the use of
PARAMs, see the TACL Programming Guide.

param-name

is the name of the parameter whose value is to be determined.

Result

#PARAM returns the value of the specified parameter or, if you omit param-name, it
returns a space-separated list of all your parameters.

Considerations

 When you first log on, #PARAM is initialized to a null value.

 TACL reserves 1024 bytes of internal storage for parameters and their values. The
number and length of parameters in effect are limited by this storage area.

 When a backup TACL process takes over, TACL clears all parameters.

 Use #PUSH #PARAM (or PUSH #PARAM) to save a copy of all your parameters.

 Use #POP #PARAM (or POP #PARAM) to replace all your current parameters with
those last pushed.

 Use #SET #PARAM (or SET VARIABLE #PARAM) to define a parameter name
and, optionally, assign a value to the parameter. These considerations apply:

 If you supply both a parameter name and value, the specified parameter is set.

 If you omit both the name and the value, all current parameters are cleared.

 If you supply only a parameter name, the parameter is deleted.

The syntax of #SET #PARAM is:

param-name

is the name of the parameter to be assigned a value. It can contain from 1 to
31 alphanumeric characters, including circumflex (^) and hyphen (-).

#PARAM [param-name]

#SET #PARAM [param-name [param-value]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-282

B u ilt-In Functions and V ariab les #P A R A M B u ilt-In V ariab le
param-value

is the value assigned to param-name. It has a maximum length of 255
characters and must be no longer than one logical line. Specify param-value
as either character-sequence or "character-sequence".

If you do not use quotation marks, you cannot include any commas or spaces
as part of the parameter value.

If you do use quotation marks, all characters between the quotation marks are
included as part of the parameter value. To include quotation marks in the
parameter value, enter them twice (““). (The enclosing quotes, and one of each
pair of doubled quotes, do not count against the 255-character size limit.)

Use two adjacent quotes to express an empty param-value.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-283

B u ilt-In Functions and V ariab les #P A U S E B u ilt-In Function
#PAUSE Built-In Function

Use #PAUSE to give control of your terminal to processes other than the current TACL.

\node-name

is the name of the system on which the process resides.

$process-name

is the name of the process or process pair for whose termination TACL is to wait.

cpu,pin

is the CPU number and process identification number of the process.

Result

#PAUSE returns one of these:

 Upon completion of the process, #PAUSE returns a termination status, a space,
and the process name, or the CPU number and the process identification number,
of the process. The termination status is one of these: STOP, ABEND, CPU, or
NET (see #NEWPROCESS Built-In Function on page 9-265).

 If TACL is awakened while waiting for the completion of a process, #PAUSE
returns WAKE.

 If TACL is awakened by the BREAK key, #PAUSE returns nothing.

Considerations

 #PAUSE does not specify which process can access your terminal.

 When you enter #PAUSE, the current TACL stops prompting for commands, thus
allowing any other processes to gain control of your terminal. TACL regains control
of your terminal, again displaying its prompt (n>), when it receives a process
deletion message from the specified process.

 If the process you specify (process-name or cpu,pin) does not exist, or was not
created by the current TACL, #PAUSE waits until you press the BREAK key or
TACL receives a WAKE message.

 If you do not specify a process, #PAUSE waits for the last process created by the
current TACL. If that process has already terminated, #PAUSE waits until you
press the BREAK key or TACL receives a WAKE message.

 A process specification in #PAUSE establishes the identity of the default process;
see the #PROCESS Built-In Function on page 9-290 for information on the default
process.

#PAUSE [[\node-name.]{$process-name | cpu,pin }]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-284

B u ilt-In Functions and V ariab les #P M S E A R C H LIS T B u ilt-In V ariab le
#PMSEARCHLIST Built-In Variable

Use #PMSEARCHLIST to set or obtain the current contents of the search list used for
finding program and macro files.

Result

#PMSEARCHLIST returns the current contents of the search list used for finding
programs and macro files.

Considerations

 #PMSEARCHLIST has a maximum size of 500 characters.

 When you first log on, #PMSEARCHLIST is initialized to $SYSTEM.SYSTEM.

 TACL uses the #PMSEARCHLIST variable for remote program files as well as
local program files. To specify a separate search list for remote files, #PUSH and
#SET #PMSEARCHLIST prior to starting the remote process. When finished,
#POP #PMSEARCHLIST.

 Use #PUSH #PMSEARCHLIST (or PUSH #PMSEARCHLIST) to save a copy of
the current contents of the program and macro search list.

 Use #SET #PMSEARCHLIST (or SET VARIABLE #PMSEARCHLIST) to define a
search list to be used by TACL when searching for a program or macro file. A
search list is a space-separated list of subvolumes.

The syntax of #SET #PMSEARCHLIST is:

searchlist

is a space-separated list of subvolumes to be searched when you give TACL
the name of a program or macro file.

When the search list is used, each of its entries is defaulted with the current
default subvolume and the resulting subvolume is searched for the file. When
the file is found, further subvolumes are not used.

 You can #SET #PMSEARCHLIST #DEFAULTS (no brackets around
#DEFAULTS), which will later use whatever defaults are in effect at the
time you use the search list; for example:

35> VOLUME $guest.alice
36> #SET #PMSEARCHLIST #DEFAULTS
37> VOLUME $new.jones
38> test

#PMSEARCHLIST

#SET #PMSEARCHLIST searchlist
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-285

B u ilt-In Functions and V ariab les #P M S E A R C H LIS T B u ilt-In V ariab le
In this case, TACL searches for $NEW.JONES.TEST.

 You can #SET #PMSEARCHLIST [#DEFAULTS] (with brackets around
#DEFAULTS), which uses whatever your current subvolume is at the time
you set the search list; for example:

39> VOLUME $guest.alice
40> #SET #PMSEARCHLIST [#DEFAULTS]
41> VOLUME $new.jones
42> test

In this case, TACL searches for $GUEST.ALICE.TEST

 Use #POP #PMSEARCHLIST (or POP #PMSEARCHLIST) to restore the
program and macro search list from the last copy pushed.

Note. Only subvolume names are allowed in #PMSEARCHLIST.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-286

B u ilt-In Functions and V ariab les #P M S G B u ilt-In V ariab le
#PMSG Built-In Variable

Use #PMSG to set or obtain the current state of the PMSG flag. If the PMSG flag is on,
TACL outputs a message giving the process name, the CPU number, and process
identification number of each process you start, and another message each time a
process you started stops.

Result

#PMSG returns the current state of the PMSG flag: 0 if it is off, -1 if it is on.

Considerations

 When you first log on, #PMSG is initialized to zero.

 Use #PUSH #PMSG (or PUSH #PMSG) to save a copy of the current setting of the
PMSG flag.

 Use #POP #PMSG (or POP #PMSG) to restore the PMSG flag from the copy last
pushed.

 Use #SET #PMSG (or SET VARIABLE #PMSG) to set the PMSG flag on or off.

The syntax of #SET #PMSG is:

num

is a nonzero value to turn the flag on, zero to turn it off.

#PMSG

#SET #PMSG num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-287

B u ilt-In Functions and V ariab les #P O P B u ilt-In Function
#POP Built-In Function

Use #POP to delete the top level of one or more variables.

variable

is the name of an existing variable or the name of a built-in variable.

Result

#POP returns nothing.

Considerations

 If the top level is the only level, #POP deletes the variable (except for built-in
variables.

 When it encounters an #UNFRAME, TACL performs an implicit #POP for every
#PUSH (or PUSH) that was done since the most recent #FRAME was issued.

 TACL performs an implicit #POP on #IN when #INPUT /UNTIL EOF/ or #INPUTV
/UNTIL EOF/ is used.

 An attempt to pop a variable that has not been pushed produces an “Expecting an
existing variable” message; an attempt to pop a built-in variable that has not been
pushed produces a “Was not pushed” message.

 Do not try to #POP the root directory (:). If you try this, TACL returns "*ERROR*
Cannot push or pop the root segment's root." In addition, to avoid losing standard
functionality from your TACL environment, do not pop the directories supplied as
part of the TACL software product (such as UTILS).

#POP variable [[,] variable] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-288

B u ilt-In Functions and V ariab les #P R E F IX B u ilt-In V ariab le
#PREFIX Built-In Variable

Use #PREFIX to set or obtain the current contents of the prompt prefix string.

Result

#PREFIX returns the current contents of the prompt prefix string.

Considerations

 When you first log on, #PREFIX is initialized to a null value.

 Use #PUSH #PREFIX (or PUSH #PREFIX) to save a copy of the current contents
of the prefix string.

 Use #POP #PREFIX (or POP #PREFIX) to restore the prefix string from the last
copy pushed.

 Use #SET #PREFIX (or SET VARIABLE #PREFIX) to define text to be output by
TACL at the beginning of any prompt (except for those output by #INPUT) if
#PROMPT is not zero. (See #PROMPT Built-In Variable on page 9-312 for a way
to recompute #PREFIX each time it is used as a prompt.)

The syntax of #SET #PREFIX is:

text

is a prefix of up to 40 characters. If you omit text, there is no prefix.

Example

1. This example illustrates the use of #PREFIX to output the current prompt prefix:

MINE 20> #OUTPUT [#PREFIX]
MINE
MINE 21>

2. This example shows the relationship between _PROMPTER, #PREFIX, and
#PROMPT:

63> [#DEF _prompter MACRO |BODY| == Define a macro
63> #SET #PREFIX Number
63>]
64> #SET #PROMPT -1 == Enable the custom prompt
Number 65>

#PREFIX

#SET #PREFIX [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-289

B u ilt-In Functions and V ariab les #P R O C E S S B u ilt-In Function
#PROCESS Built-In Function

Use #PROCESS to obtain the process name, or the CPU number and process
identification number of the last process created by TACL or for which TACL last
paused. This is the default process used by #ABEND, #ACTIVATEPROCESS,
#ALTERPRIORITY, #PAUSE, #STOP, and #SUSPENDPROCESS.

Result

#PROCESS returns the name of the default process or, if it has no name, its CPU,PIN;
if the process has been deleted, #PROCESS returns nothing.

Consideration

The #PROCESS built-in function returns a node name only if the process is running on
a remote node or if a remote node name is specified in the current defaults.

#PROCESS
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-290

B u ilt-In Functions and V ariab les #P R O C E S S E X IS TS B u ilt-In Function
#PROCESSEXISTS Built-In Function

Use #PROCESSEXISTS to find out whether a given process exists.

\node-name

is the name of the system on which the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process identification number of the process.

Result

#PROCESSEXISTS returns -1 (true) if the process exists; otherwise, it returns 0
(false).

Considerations

To obtain information about a process, use the #PROCESSINFO built-in function.

#PROCESSEXISTS [\node-name.]{$process-name | cpu,pin }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-291

B u ilt-In Functions and V ariab les #P R O C E S S F ILE S E C U R ITY B u ilt-In V ariab le
#PROCESSFILESECURITY Built-In Variable

Use #PROCESSFILESECURITY to obtain the current file-creation security for the
current TACL process.

Result

#PROCESSFILESECURITY returns the current file-creation security, enclosed in
quotes, for this TACL process.

Considerations

 When you first log on, #PROCESSFILESECURITY is initialized to your saved
default security.

 Use #PUSH #PROCESSFILESECURITY (or PUSH #PROCESSFILESECURITY)
to save a copy of the current setting of your TACL file-creation security.

 Use #POP #PROCESSFILESECURITY (or POP #PROCESSFILESECURITY) to
restore your TACL file-creation security from the last copy pushed.

 Use #SET #PROCESSFILESECURITY (or SET VARIABLE
#PROCESSFILESECURITY) to set the four-character security string that specifies
the security to be given to each file created by this TACL.

The syntax of #SET #PROCESSFILESECURITY is:

"security"

is a four-character security string enclosed in quotation marks. The four
characters represent the four security attributes:

R W E P

#PROCESSFILESECURITY

#SET #PROCESSFILESECURITY "security"

R Specifies who can read the file

W Specifies who can write to the file

E Specifies who can execute the file

P Specifies who can purge the file
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-292

B u ilt-In Functions and V ariab les #P R O C E S S F ILE S E C U R ITY B u ilt-In V ariab le
 Each security attribute (R, W, E, or P) can be any of these characters:

 When you log on, your security is set to the configuration you last specified
with the DEFAULTS utility.

O (Owner) Only the owner can access the file; the owner
must be logged on to the local system.

G (Group) Anyone in the owner’s group can access the
file; the user must be logged on to the local system.

A (Anyone) Any user can access the file; the user must be
logged on to the local system.

U (User) Only the owner can access the file; the owner
can be logged on to the local system or a remote
system.

C (Community) Anyone in the owner’s group can access
the file; the user can be logged on to the local system or
a remote system.

N (Network) Any user can access the file; the user can be
logged on to the local system or a remote system.

- Only the local super ID can access the file.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-293

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
#PROCESSINFO Built-In Function

Use #PROCESSINFO to request information about a process.

option

is a request option. It can be any of these:

CAID

returns the creator accessor ID as (group-num,user-num).

CONTEXTCHANGES

is the number of changes made to the DEFINE process context since process
creation. The number returned is modulo 65536.

CPU

returns the central processing unit number.

CURRENTMAINSTACKSIZE

returns the current main stack size in bytes. Nothing is returned if the target
system is running an operating system RVU earlier than D40 or the main stack
is currently not used. An error message can be returned, indicating the option
is invalid.

CURRENTNATIVEHEAPSIZE

returns the current size of the native heap area in bytes. Nothing is returned if
the target system is running an operating system RVU earlier than D40 or the
native heap area is currently not used. An error message can be returned,
indicating the option is invalid.

DEFINEMODE

equals 1 if DEFINEs are enabled; otherwise, it equals 0.

EXTSWAP

is the name of the current extended swap file. Nothing is returned if the
process has no extended swap file.

GMOMJOBID

returns the job-ancestor.job-id of the process, if it belongs to a batch job;
otherwise, it returns nothing.

#PROCESSINFO / option [, { option | search-option }] ... /
 [[\node-name.] { $process-name | cpu,pin }]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-294

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
GUARANTEEDSWAPSPACE

returns the amount of swap space reserved for use by the process in bytes. It
returns nothing if the target system is running an operating system RVU earlier
than D40. An error message can be returned, indicating the option is invalid.

HOMETERM

returns the name of the home terminal.

INITPRI

is the initial priority of a process when it begins execution or as changed by a
call to the PRIORITY or PROCESS_SETINFO_ operating system procedures
or related TACL commands and built-in functions such as ALTPRI,
#ALTERPRIORITY, and #PROCESS. (The current priority might be less
because of the sliding priority algorithm used by the operating system.)

IPUASSOCIATION

returns the IPU affinity attributes for the process indicating whether or not the
process is bound to an IPU and whether or not it is bindable. This attribute is
undefined if the system is running an operating system version earlier than
H06.27 or J06.16.

IPUNUMBER

returns the number of the IPU on which the process last ran.

LOGONNAME

returns the user name (group name,user name), user ID (group
number,user number), or user alias specified in the current LOGON
command. For pre-D30 software RVUs, this option returns nothing.

LIBRARY

returns the name of the library file used by the process. If the process has no
associated library file, this option returns nothing.

LICENSES

equals 1 if the object file was licensed at process creation time; otherwise, it
equals 0.

LOGONSTATE

equals 1 if the process is logged on; otherwise, it equals 0.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-295

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
MAXMAINSTACKSIZE

returns the maximum size, in bytes, to which the main stack can grow. It
returns nothing if the target system is running an operating system RVU earlier
than D40. An error message can be returned, indicating the option is invalid.

MAXNATIVEHEAPSIZE

returns the maximum size, in bytes, to which the native heap area can grow. It
returns nothing if the target system is running an operating system RVU earlier
than D40. An error message can be returned, indicating the option is invalid.

MOM

is the process identifier of the MOM of the process. If the process is named,
#PROCESSINFO returns the name; otherwise, CPU and PIN are returned.
The MOM process is always qualified with a node name. If the process has no
existing parent, nothing is returned.

 When a process is part of a process pair, the MOM of the process is the
other member of the pair.

 When a process is unnamed, the MOM of the process is usually the
process that created it.

 For a named single process, nothing is returned.

More information about the MOM process can be found in the Guardian
Procedure Calls Reference Manual and the Guardian Programmer’s Guide.

NATIVE

returns 1 if the process is a “native” process (that is, runs on a RISC-based
operating system without interpretation or translation), returns 0 if the process
is a “non-native” process. For pre-D40 software RVUs, this option returns
nothing.

OSSARGUMENTS

returns the first 80 bytes of the arguments of the command that created the
OSS process. The arguments that are returned may or may not be separated
by spaces. If the process is not an OSS process, this option returns nothing.
For pre-D30 software RVUs, this option returns nothing.

OSSPATHNAME

returns a fully qualified OSS program pathname if the process is an OSS
process. The maximum length of an OSS program pathname (in the OSS file
name format) is 1024 bytes. If the process is not an OSS process or if the OSS
program is running on a remote node, this option returns nothing. For pre-D30
software RVUs, this option returns nothing.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-296

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
OSSPID

returns an OSS process ID if the process is an OSS process. An OSS process
ID is an integer value. If the process is not an OSS process, this option returns
nothing. For software RVUs preceding the D30 RVU, this option returns
nothing.

PAID

returns the process accessor ID as (group-num,user-num).

PFR

(an abbreviation for privileged-fault-ready) returns a three-digit number. If there
is a 1 in the leftmost digit position, it indicates that the process is privileged; a 1
in the second position indicates that the process is waiting because of a page
fault; a 1 in the third position indicates that the process is on the ready list. The
digits are zero otherwise.

PIN

returns the process identification number.

PRI

returns the priority of the process.

PRIMARY

equals 1 if the process is the primary of a named process pair; otherwise, it
equals 0.

PROCESSCREATIONTIME

returns the Julian timestamp that identifies the time when the process was
created. This attribute is supported on H and J series systems.

PROCESSDESCRIPTOR

is a process descriptor that includes the node name and sequence number.

PROCESSFILESECURITY

is the default file security for files created by the specified process. Four
uppercase characters are returned, enclosed in double quotes.

PROCESSID

returns the process name. If the process has no name, PROCESSID returns
the CPU and PIN of the process.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-297

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
PROCESSSTATE

returns a line of twelve space-separated values: eleven flags and a numeric
value. The flags are encoded as -1 (true) or 0 (false), and represent this
information:

The numeric value indicates the state of the process, as follows:

Flag Meaning

1 Privileged process

2 Page fault occurred

3 Process is on the ready list

4 System process

5 Reserved

6 Reserved

7 Memory access breakpoint (MAB) in system code

8 Process not accepting any messages

9 Temporary system process

10 Process has logged on (called VERIFYUSER)

11 In a pending process state

Value State

0 Unallocated

1 Starting

2 Runnable

3 Suspended

4 DEBUG MAB

5 DEBUG breakpoint

6 DEBUG trap

7 DEBUG request

8 INSPECT MAB

9 INSPECT breakpoint

10 INSPECT trap

11 INSPECT request

12 SAVEABEND

13 Terminating

14 XIO initialization (not applicable on G-series RVUs)
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-298

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
PROCESSTIME

returns the central processing unit time in microseconds that the process has
consumed (as opposed to elapsed run time). If the process is remote and is
running on a NonStop 1+ system, it returns 0.

PROCESSTYPE

returns an unsigned integer value that indicates the process type. If the
process is a Guardian process it returns 0. If the process is an OSS process, it
returns 1.

PROGRAMDATAMODEL

returns 1 if the target process is a 64-bit process; otherwise 0 is returned. 0 is
returned if the target system is running an operating system version earlier
than H06.24 or J06.13.

PROGRAMFILE

returns the program file name. If the process is a system process, is remote,
and is running on a NonStop 1+ system, it returns nothing.

If the process is an OSS process, it returns the generic Guardian ZYQ-file
name.

If the program file name for a process cannot be retrieved, “*ERROR* Path
to program file name down” is written to the output file, and the TACL
program stops. This situation can occur if the processor for the disk process
controlling the disk where the program file resides fails, making the process file
name unavailable.

QUALINFOAVAIL

equals 1 if the process has called the PROCESS_SETINFO_ operating system
procedure to declare that it supports qualifier name searches through the
FILENAME_FIND_ operating system procedures; otherwise, it equals 0.

REMOTECREATOR

equals 1 if the process’s creator is remote; otherwise, it equals 0.

RESULT

returns an indication of the success of the #PROCESSINFO call, as follows:

Value Meaning

0 Results refer to the process specified.

1 Results refer to a higher-numbered process, stepping successively
up through PINs and then through CPUs.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-299

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
SRLFILES

returns a list of shared run-time library (SRL) file names used by the process. A
maximum of 32 SRLs can be attached to a process. If the process has no
associated SRLs, this option returns nothing. If the operating system RVU
precedes the D40 RVU, this option returns nothing.

SRLNAMES

returns a list of SRL names used by the process. A maximum of 32 SRLs can
be attached to a process. If the process has no associated SRLs, this option
returns nothing. If the operating system RVU precedes the D40 RVU, this
option returns nothing.

SRLNUMFILES

returns the number of SRL files used by the process. A maximum of 32 SRLs
can be attached to a process. If the process has no associated SRLs, this
option returns 0. This value is the number of SRL files returned from the
system procedure PROCESS_GETINFOLIST_. Some of the SRL file entries
can be empty. If the operating system RVU precedes the D40 RVU, this option
returns nothing.

SRLNUMNAMES

returns the number of SRL names used by the process. A maximum of 32
SRLs can be attached to a process. If the process has no associated SRLs,
this option returns 0. This value is the number of SRL files returned from the
system procedure PROCESS_GETINFOLIST_. Some of the SRL file entries
can be empty. If the operating system RVU precedes the D40 RVU, this option
returns nothing.

SUBDEVICE

is a subdevice type.

SWAP

returns the name of the file used for storing the virtual data of a process. This
name is specified in the SWAP swap-file option of the RUN command or
with the SET SWAP [$volume-name] command. If nothing is specified
with either (or both) the RUN command SWAP option or SET SWAP
command, a dummy file name, "$volume.#0", is returned. In this case,
#volume is the name of the physical volume that the operating system has

2 No such process could be found.

5 The system could not be accessed.

99 The parameters were inconsistent.

Value Meaning
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-300

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
selected for storing the file. For pre-D40 software RVUs, this option returns
nothing. For more information on the swap facility, see the Kernel-Managed
Swap Facility (KMSF) Manual.

SYSTEM

returns the name of the system.

UPB

returns a single character (U, P, or B) that indicates whether the process is
unnamed or, if named, is the primary or backup of the process pair.

WAITSTATE

returns a space-separated list of eight flags encoded as -1 (true) and 0 (false),
as follows:

WT

returns a three-digit octal value, as follows:

Flag Process is Waiting for:

1 PON (CPU power on)

2 IOPON (I/O power on)

3 INTR (interrupt)

4 LINSP (INSPECT event)

5 LCAN (message system, cancel)

6 LDONE (message system, done)

7 LTMF (TMF request)

8 LREQ (message system, request)

Value Meaning

%000 Process is running; or process was waiting for an event that has
since occurred, and is now ready to run; or process is in a call to
DELAY; or process is suspended.

%001 Process is waiting for a message to appear in its $RECEIVE file.

%002 Process is waiting for a TMF request to be completed; or user
process is waiting for ENDTRANSACTION to be completed.

%004 Process is waiting for an I/O or interprocess request to be
completed.

%005 Process is waiting for a call to AWAITIO for I/O completion on any
file.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-301

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
search-option

is a search option for use with one or more of the preceding options, as follows:

SEARCH criterion

specifies a criterion that the process must match; if you specify multiple
SEARCH options, the process must match all the criteria. criterion can be
any of these:

CAID [user]

specifies that the creator accessor ID must match the specified user. If you
omit the user identification, #PROCESSINFO searches for a process with
the same CAID as the TACL process.

GMOMJOBID [job-id]

states that the job-ancestor.job-id must match the specified job-
id. If you omit the job identification, #PROCESSINFO searches for a
process with the same GMOMJOBID as the TACL process.

HOMETERM [$terminal-name]

specifies that the home terminal name must match the specified
$terminal-name. If you omit the terminal identification,
#PROCESSINFO searches for a process with the same CAID as the TACL
process.

HOMETERM [$terminal-name]

specifies that the home terminal name must match the specified
$terminal-name. If you omit the terminal identification,
#PROCESSINFO searches for a process with the same HOMETERM as
the TACL process.

MINPRI num

searches for a process whose priority is greater than or equal to the
specified number. (MINPRI can be used in combination with SEARCH PRI
to search for a process whose priority lies in a specified range.)

PAID [user]

specifies that the process accessor ID must match the specified user. If
you omit the user identification, #PROCESSINFO searches for a process
with the same PAID as the TACL process.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-302

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
PRI [num]

specifies that the priority must be less than or equal to the specified num. If
you omit the priority specification, #PROCESSINFO searches for a
process with a priority less than that of the TACL process.

PROCESSID [[\node-name.]{$process-name | cpu,pin }]

specifies that the process identification must match the specified
$process-name or cpu,pin (if you omit both, the process identification
must match the TACL process ID).

PROGRAMFILE [[\node-name.] file-name-template]

specifies that the name of the program file must match the specified file-
name-template. You can include the template characters:

If you omit the file-name template, #PROCESSINFO searches for a
process with the same program name as the TACL process.

SUBDEVICE subdevice-type

searches for a process whose subdevice type matches the specified
subdevice-type.

SYSTEM \node-name

specifies that the named system is to be used instead of the local system.

\node-name

is the name of the system on which the process resides.

$process-name

is the name of the process or process pair.

cpu,pin

is the CPU number and process identification number for the process.

Result

#PROCESSINFO returns a space-separated list of the information requested.

Considerations

 The information is returned in the order in which you specify the options.

* matches zero or more occurrences of a character

? matches a single occurrence of a character
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-303

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
 The process ID that follows the slashes determines where TACL searches for a
process:

 TACL uses a starting CPU,PIN if specified; otherwise, TACL uses the CPU and
PIN of its own primary process. TACL starts searching at that CPU and PIN,
then searches higher PINs in the same CPU. If no matching process is found,
TACL searches higher-numbered CPUs for a matching process.

 If you specify a $process-name, TACL uses the CPU,PIN of the primary
process of that process pair as the starting point.

 If you specify a process pair, TACL returns information about whichever
process of the pair, primary or backup, it finds first. If, for example, the primary
process of a process pair is running in CPU 4 and the backup process is
running in CPU 2, TACL returns information about the backup process if you
specify the starting point of the search as CPU,PIN 0,0; it would return
information about the primary process if the search were to start at CPU,PIN
3,0.

 If you specify nothing, TACL starts searching from the CPU,PIN of its own
primary process.

 The starting CPU and PIN affect whether #PROCESSINFO returns information
about a primary or backup process. TACL returns information about the first
matching process that occurs at or beyond the starting point of the search.

 If no process can be found that matches the specifications (RESULT returns a
value other than 0 or 1) no other results are returned. Therefore, you should use
the RESULT option first.

 If you include one or more SEARCH options, TACL uses the CPU,PIN as the
beginning search point.

 If you use SEARCH more than once, the process must meet all the specified
criteria.

 To obtain information about a process on a node other than the current default
system, specify the remote node by using a SEARCH SYSTEM or SEARCH
PROCESSID command (see Examples on page 9-306).

You can specify the search system redundantly, using both SEARCH and a system
specification following the option set, but if you give conflicting system
specifications, TACL returns RESULT = 99 (inconsistent parameters).

 Because the home terminal and process-ancestor job ID of a process can reside
on different systems from the process itself, specifying a system by either of:

#PROCESSINFO /SEARCH HOMETERM \system.$terminal-name/
#PROCESSINFO /SEARCH GMOMJOBID \system.$process.job-id/

has no effect on the search system. Note that it is essential to specify a system in
SEARCH HOMETERM or SEARCH GMOMJOBID if the home terminal or process-
ancestor job ID is on a system other than the current default system.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-304

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
 If you do not specify a system in the SEARCH PROGRAMFILE option, TACL does
not assume that you are referring to the current default system; instead, it assumes
that the program file resides on the search system.

 The recommended way to get information about a given process is as follows:

#PROCESSINFO /RESULT, ... ,SEARCH PROCESSID [p]/ 0,0

(assuming the variable P contains the process ID). This search method says
“search for process [p], starting at CPU,PIN 0,0.” Another way of doing this:

#PROCESSINFO /RESULT, ... / [p]

This second method says “start searching for a process at the CPU,PIN of the
primary of [p],” meaning TACL finds [p] itself; but if [p] expands to a CPU,PIN
instead of a process name, and if the process at that location has terminated,
#PROCESSINFO reports on the process at the next higher CPU,PIN.

 Use care in getting several items of information from one call to #PROCESSINFO,
especially if assigning the results to variables with #SETMANY, as some options
may return nothing:

 EXTSWAP is empty if the process does not have an extended swap file.

 GMOMJOBID is empty if the process has no GMOM.

 LIBRARY is empty if the process has no library file.

 MOM is empty if the process is an orphan.

 SYSTEM is empty if the process is local.

List those options last to avoid loss of synchronization between destination
variables and information items.

 To determine whether a given process exists prior to calling #PROCESSINFO, use
the #PROCESSEXISTS built-in function.

 It is possible for a process to have more than one extended data segment.
Therefore, repeated calls to #PROCESSINFO with the EXTSWAP option may
produce different results, depending on which extended segment the process is
using when you request the information. When checking a TACL process,
TACLSEGF can be returned as an extended data segment.

 The home terminal and GMOMJOBID for a process can reside on different
systems from the target process. The SEARCH HOMETERM and SEARCH
GMOMJOBID commands have no effect on the search system.

 If you do not specify a node for SEARCH PROGRAMFILE file or SEARCH
PROGRAMFILE template, TACL treats the program file as if it resides on the
search system. You can qualify the file or template parameter with a node name, if
necessary.

 An OSS program pathname cannot be used as an input file name for a TACL
command.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-305

B u ilt-In Functions and V ariab les #P R O C E S S IN FO B u ilt-In Function
 When retrieving multiple items of information from one call to #PROCESSINFO,
some options may return nothing, depending on the software RVU. Use the
#SETMANY built-in function carefully. List the potentially empty options last to
avoid loss of synchronization between real values and the relative position of these
values in the query structure in which they are returned.

Examples

These examples show three different ways to list the CPU number of process $SPLS
on system \TEST. $SPLS has CPU and PIN numbers 0,33.

15> #PROCESSINFO /SEARCH SYSTEM \TEST, CPU/ $SPLS
#PROCESSINFO expanded to:
0

16> #PROCESSINFO /CPU/ \TEST.$SPLS
#PROCESSINFO expanded to:
0

17> #PROCESSINFO /CPU/ \TEST.0,33
#PROCESSINFO expanded to:
0

H P N onS top TA C L R e fe rence M anua l — 429513-017
9-306

B u ilt-In Functions and V ariab les #P R O C E S S LA U N C H B u ilt-In Function
#PROCESSLAUNCH Built-In Function

Use #PROCESSLAUNCH to start a process. If compared to #NEWPROCESS,
#PROCESSLAUNCH enables the use of three additional configuration options for the
process being started:

 MAXMAINSTACKSIZE, allowing the user to specify the maximum main stack size

 MAXNATIVEHEAPSIZE, allowing the user to specify the maximum size of the
native heap area

 GUARANTEEDSWAPSPACE, allowing the user to specify the amount of space
that the process reserves with the Kernel-Managed Swap Facility for swapping.

program-file

is the name of the file containing the object program to be run. Partial file names
are evaluated using the current default node, volume, and subvolume names.

option

 is one of these options described for the RUN[D] command:

CPU cpu-number
DEBUG
DEFMODE OFF | ON }
EXTSWAP file-name]
GUARANTEEDSWAPSPACE num
HIGHPIN ON | OFF
IN file-name
INLINE
INSPECT OFF | ON | SAVEABEND
INV variable-level [DYNAMIC [PROMPT variable-level]]
JOBID num
LIB file-name
MAXMAINSTACKSIZE num
MAXNATIVEHEAPSIZE num
MEM num-pages
NAME $process-name
NOWAIT
OUT list-file
OUTV variable-level
PFS num-pages
PRI priority
STATUS variable-level
SWAP file-name
TERM $terminal-name
WINDOW "text"

#PROCESSLAUNCH program-file [/ option [, option] ... /]
[param-set]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-307

B u ilt-In Functions and V ariab les #P R O C E S S LA U N C H B u ilt-In Function
param-set

is a program parameter or a series of parameters sent to the new process in the
startup message. Leading and trailing spaces are deleted.

Result

See the #NEWPROCESS Built-In Function on page 9-265.

Considerations

 See the #NEWPROCESS Built-In Function on page 9-265.

 The TACL configuration parameter, CONFIGRUN, must be set to
“PROCESSLAUNCH” to enable execution of the #PROCESSLAUNCH code.
The three additional options: MAXMAINSTACKSIZE, MAXNATIVEHEAPSIZE,
and GUARANTEEDSWAPSPACE, can be specified for the process being
created. If CONFIGRUN is not set or is set to “PROCESSCREATE,” these
options are ignored.

 For pre-D40 software RVUs, the parameters CURRENTMAINSTACKSIZE,
MAXMAINSTACKSIZE, CURRENTNATIVEHEAPSIZE,
MAXNATIVEHEAPSIZE, and GUARANTEEDSWAPSPACE have no meaning.
If specified, an error message can be returned, indicating the option is invalid.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-308

B u ilt-In Functions and V ariab les #P R O C E S S O R S TA TU S B u ilt-In Function
#PROCESSORSTATUS Built-In Function

Use #PROCESSORSTATUS to determine the status of all CPUs on a given system.

\node-name

is the name of the system for which you want the processor status. If you omit it,
the local system is assumed.

Result

#PROCESSORSTATUS returns a space-separated list of 17 numbers. The first
number indicates the highest processor number present in the system, plus one.

The remaining 16 numbers are the status of each of the 16 possible CPUs, starting
with CPU 0. For each running CPU, the status is -1. For each halted or absent CPU,
the status is 0.

If the specified system is unknown or unavailable, TACL returns this message:

Expecting an available system Or End

Example

This example illustrates the result of a #PROCESSORSTATUS call:

15> #OUTPUT [#PROCESSORSTATUS]
16 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

The local system has 16 configured processors and six active processors, running as
CPUs 0 through 5.

#PROCESSORSTATUS [\node-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-309

B u ilt-In Functions and V ariab les #P R O C E S S O R TY P E B u ilt-In Function
#PROCESSORTYPE Built-In Function

Use #PROCESSORTYPE to find out the processor type of a specified CPU or of the
processor in which a given process is running.

BOTH

specifies that #PROCESSORTYPE returns both a number and the name of the
processor, in text.

NAME

specifies that #PROCESSORTYPE returns the name of the processor, in text.

\node-name

is the name of the system on which the specified processor resides.

$process-name

is the name of a process running on the CPU whose type is to be reported. The
primary CPU of the process is assumed.

cpu,pin

is the CPU number and process identification number for the process.

cpu-num

is the number, 0 through 15, of the CPU whose type is to be reported.

Results

 The #PROCESSORTYPE built-in function returns a name, number, or name and
number that indicate the type of the specified processor. If you specify NAME or
BOTH, the name of the processor is returned as an 8-character name (as specified
in the Guardian Procedure Calls Reference Manual). If you specify the BOTH
option, TACL returns the number associated with the type of processor, followed by
a space and the name of the processor. For a detailed list of processor types and
the associated number, see the Guardian Procedure Calls Reference manual.

PROCESSORTYPE [/ BOTH | NAME /]
 { [\node-name.]$process-name } |
 { cpu‚pin } |
 { cpu-num }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-310

B u ilt-In Functions and V ariab les #P R O C E S S O R TY P E B u ilt-In Function
 If an error occurs, the #PROCESSORTYPE built-in function returns a numeric
error code as follows:

Example

If you call #PROCESSORTYPE for CPU 0, and CPU 0 is a NonStop EXT25 processor,
TACL returns the following:

29> #PROCESSORTYPE 0
#PROCESSORTYPE 0 expanded to:
2
30>

Code Meaning

-1 One or more of these:
 You specified BOTH and the CPU does not exist.
 You did not specify an option and the CPU does not exist.
 The system cannot be reached.
 The process does not exist.

-2 The system does not support the #PROCESSORTYPE built-in
function.

-3 You specified the BOTH option, and the system does not support the
option.

If you specify the NAME option and an error occurs, TACL does not
return any text.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-311

B u ilt-In Functions and V ariab les #P R O M P T B u ilt-In V ariab le
#PROMPT Built-In Variable

Use #PROMPT to set or obtain the current state of the prompt flag.

Result

#PROMPT returns -1 if the prompt flag is on, 0 if it is off.

Considerations

 When you first log on, #PROMPT is initialized to zero.

 Use #PUSH #PROMPT (or PUSH #PROMPT) to save a copy of the current setting
of the prompt flag.

 Use #POP #PROMPT (or POP #PROMPT) to restore the prompt flag from the last
copy pushed.

 Use #SET #PROMPT (or SET VARIABLE #PROMPT) to set the prompt flag off or
on.

The syntax of #SET #PROMPT is:

num

is zero to set the flag off, a nonzero value to set it on.

 When it is on, the prompt flag causes TACL to try to invoke a macro or routine
called _PROMPTER just before issuing a prompt. Your _PROMPTER macro
can add text to the standard TACL prompt by using the #PREFIX built-in
variable.

 If you press BREAK or an error occurs during your prompt macro, #PROMPT
is automatically set to zero.

#PROMPT

#SET #PROMPT num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-312

B u ilt-In Functions and V ariab les #P U R G E B u ilt-In Function
#PURGE Built-In Function

Use #PURGE to remove a file from a disk.

file-name

is the name of the file to be removed.

Result

#PURGE returns zero if it removes the file successfully; otherwise, it returns the file-
system error indicating the reason for the failure.

Considerations

 When you use #PURGE to remove a disk file, the file entry is removed from the file
directory in that volume, and any space previously allocated to that file is made
available. Data in the file is not physically removed from the disk unless you
specified the CLEARONPURGE option when you created the file: removed files
are then overwritten with spaces. For information about the

 CLEARONPURGE option, see the FUP CREATE command description in the File
Utility Program (FUP) Reference Manual. You can purge a file only if it is not
currently open. You must have purge access to the file. See the description of the
FUP SECURE command in the File Utility Program (FUP) Reference Manual for
information about file-access restrictions.

 If you try to use the PURGE command to remove a file that is being audited by the
TMF subsystem, the attempt fails, and file-system error 12 (file in use) is returned if
there are pending transaction-mode records or file locks. A PURGE attempt of this
kind is blocked regardless of whether the processes that opened the file still exist.

Example

This example illustrates the use of #PURGE with status reporting:

#PUSH old^file
#SET old^file $DATA.FILES.TEMP1
[#IF [#PURGE [old^file]] |THEN| #OUTPUT **Purge failed**]

#PURGE file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-313

B u ilt-In Functions and V ariab les #P U S H B u ilt-In Function
#PUSH Built-In Function

Use #PUSH to create a new top-level definition for one or more variables or built-in
variables.

variable

is a valid variable name or a built-in variable name.

Result

#PUSH returns nothing.

Considerations

 The PUSH command is an alias for the #PUSH built-in function and can be used
interchangeably with it.

 For variables, #PUSH creates an empty top level of type TEXT.

 For built-in variables, #PUSH creates a new top-level definition, copying the old
top-level definition to the new one (top-level and second-level definitions are now
the same).

 If the variable does not exist, PUSH registers the name of the variable, but does
not allocate space until you use #SET or a similar command or built-in function to
actually place data into the variable. As a result, you must perform a SET
VARIABLE or related operation prior to using the variable in an #IF call or other
command or function that tests the value of the variable.

 Do not try to #PUSH the root directory (:). If you try this, TACL returns "*ERROR*
Cannot push or pop the root segment's root."

 To avoid losing standard functionality from your TACL environment, do not #PUSH
directories supplied as part of the TACL product (such as UTILS).

#PUSH variable [[,] variable] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-314

B u ilt-In Functions and V ariab les #R A IS E B u ilt-In Function
#RAISE Built-In Function

Use #RAISE in a routine to explicitly cause an exception. The exception must be
filtered by some active routine.

exception

can be any of these:

_BREAK

indicates that the BREAK key has been pressed.

_ERROR

indicates that an error has occurred.

user_exception

is any text, 1 to 31 alphanumeric characters in length, of which the first must be
alphabetic.

Result

#RAISE returns nothing.

Consideration

All routines up to and including the one having the exception filter are eliminated, and
the routine that issued #FILTER is reinvoked. You can use #EXCEPTION to deter mine
why the routine was reinvoked. (See the discussion of exception handling in the TACL
Programming Guide and the example fro the #FILTER Built-In Function on
page 9-178.)

#RAISE exception
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-315

B u ilt-In Functions and V ariab les #R E N A M E B u ilt-In Function
#RENAME Built-In Function

Use #RENAME to change the name of an existing disk file.

old-file-name

is the name of the disk file to be renamed.

new-file-name

is the new name for the file.

Result

#RENAME returns zero if it renames the file successfully otherwise, it returns the file-
system error that indicates the reason for the failure. If, however, the error is caused by
a missing old-file-name, or if that file does not exist, TACL displays an
“expecting the name of an existing file” message.

Considerations

 The new file name must be on the same volume as the old file name.

 You can rename a file only if it is not open with exclusive access and you either
have purge access to the file or are logged on as a super-group user.

 You can use the RENAME command to change the subvolume name of a file, but
not its volume name. Disk files that are renamed stay on the same disk volume.

 To change the volume where a file resides, copy the file to a new volume with the
FUP DUP command, then delete the original file. For details, see the File Utility
Program (FUP) Reference Manual.

 If you try to rename a file being audited by the TMF subsystem, the attempt fails
and file-system error 80 (operation invalid) is returned.

 Both format 1 and format 2 files can be renamed.

Example

This code renames a file and checks whether the rename was performed without
errors:

[#IF [#RENAME oldn newn] |THEN|
#OUTPUT Rename Error
]

#RENAME old-file-name new-file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-316

B u ilt-In Functions and V ariab les #R E P LY B u ilt-In Function
#REPLY Built-In Function

Use #REPLY to add text to the reply if the TACL process IN file is $RECEIVE.

text

is the text to be added to the reply.

Result

#REPLY returns nothing.

Considerations

 The #REPLY function is used when TACL functions as a server. For additional
information, see the #SERVER Built-In Function on page 9-339 built-in function.

 If there is already text in the reply, through previous calls to #REPLY or #REPLYV
(or calls to #OUTPUT or #OUTPUTV if the OUT file for TACL is also $RECEIVE), a
space precedes the added text in the accumulated reply.

#REPLY [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-317

B u ilt-In Functions and V ariab les #R E P LY P R E F IX B u ilt-In V ariab le
#REPLYPREFIX Built-In Variable

Use #REPLYPREFIX to examine the current value of the reply prefix, which can be an
integer or empty. The #REPLYPREFIX function adds a prefix to a reply when TACL
functions as a server. For additional information about TACL as a server and an
example showing the use of #REPLYPREFIX, see the TACL Programming Guide.

Result

#REPLYPREFIX returns the current value of the reply prefix.

Considerations

 The #REPLYPREFIX function is used when TACL functions as a server. For
examples of TACL servers, refer to the TACL Programming Guide.

 When you first log on, #REPLYPREFIX is initialized to a null value.

 TACL never changes the value of #REPLYPREFIX unless instructed to do so.

 When a Pathway requester sends a message to a server, the server must return a
reply message that includes a reply prefix. The server can use this reply prefix to
indicate what is in the rest of the message. When the requester receives the
message, it can extract information as indicated by the value of the reply prefix.

 Use #PUSH #REPLYPREFIX (or PUSH #REPLYPREFIX) to save a copy of the
current reply prefix.

 Use #POP #REPLYPREFIX (or POP #REPLYPREFIX) to restore the reply prefix
from the last copy pushed.

 Use #SET #REPLYPREFIX (or SET VARIABLE #REPLYPREFIX) to set an
unsigned 16-bit integer reply prefix. If TACL is in server operation and
#REPLYPREFIX contains a 16-bit integer, each reply to an unqualified (control)
opener of TACL is prefixed by that number.

The syntax of #SET #REPLYPREFIX is:

num

is a 16-bit integer that can be decoded by a Pathway SEND statement. If you
omit num, you do not have a reply prefix.

#REPLYPREFIX

#SET #REPLYPREFIX [num]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-318

B u ilt-In Functions and V ariab les #R E P LY V B u ilt-In Function
#REPLYV Built-In Function

Use #REPLYV to add a copy of the text in a string to the reply if the TACL IN file is
$RECEIVE. You can also use #REPLYV to append the binary data of a STRUCT to the
reply when TACL is operating as a server.

string

is the name of an existing variable level, which can be of type STRUCT, or text
enclosed in quotation marks, or a concatenation of such entities. The
concatenation operator is '+' (the apostrophes are required).

Result

#REPLYV returns nothing.

Considerations

 The #REPLYV function is used when TACL functions as a server. For additional
information, see #SERVER Built-In Function on page 9-339.

 If there is already text in the reply, through previous calls to #REPLY or #REPLYV
(or calls to #OUTPUT or #OUTPUTV if the TACL OUT file is also $RECEIVE), a
space precedes the added text in the accumulated reply.

 The form

#REPLYV struct

is not equivalent to

#REPLY [struct]

The latter appends the external representation of the STRUCT, rather than its actual
binary data, to the reply.

Example

This example shows the use of both quoted text and a variable name in constructing a
reply:

#PUSH termname
#SET termname [#MYTERM]
#REPLYV "My terminal is " '+' termname '+' " at this time."

Assuming that the home terminal is named $WEIRD at the time the #SET function is
invoked, the following is included in the reply:

My terminal is $WEIRD at this time.

#REPLYV string
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-319

B u ilt-In Functions and V ariab les #R E Q U E S TE R B u ilt-In Function
#REQUESTER Built-In Function

Use #REQUESTER to open and close processes, devices, and structured and
unstructured files and to read and write those files.

option

specifies one of these:

EXCLUSION { SHARED | PROTECTED | EXCLUSIVE }

specifies the type of file sharing to be used with the READ or WRITE creation
parameter.

EXCLUSIVE

specifies that others cannot open file-name.

PROTECTED

specifies that others can open file-name for reading, but not for writing.

SHARED

specifies that others can open file-name for reading or writing. This option is
ignored if used with the CLOSE parameter. If omitted, the default parameter for
READ is SHARED, and for WRITE is PROTECTED for disk files.

WAIT [num]

specifies that the requester is to do waited I/O rather than no-wait I/O (the
default). With waited I/O, TACL waits automatically as needed: TACL executes
subsequent functions after initiating an I/O request, but if it encounters an
#APPEND, #APPENDV, #EXTRACT, or #EXTRACTV function that refers to a
requester variable, it stops until the pending I/O operation is finished.

If you do not specify the WAIT option, TACL continues execution immediately
after placing an I/O request. After allowing execution of independent functions,
use the #WAIT function on the requester variable to ensure that the I/O
operation is complete before you access the variable again.

A requester normally uses a buffer length of 239 characters, but you can
exceed that limit by specifying num as a value in the range 132 to 5000. If you
omit num, the requester does waited I/O, but the 239-character default buffer
size remains in effect.

#REQUESTER [/ option [, option] /]
 {
 { CLOSE variable-level } |
 { READ file-name error-var read-var prompt-var } |
 { WRITE file-name error-var write-var }
 }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-320

B u ilt-In Functions and V ariab les #R E Q U E S TE R B u ilt-In Function
CLOSE variable-level

closes the file and deletes the requester associated with variable-level. If it is
a write requester, use #WAIT on write-var to ensure that all data in the write
variable has been written to the file before you delete the requester.

variable-level

is any one of the variable levels used when #REQUESTER was invoked to
open a file. For example, if you start a requester with the READ option, you
can specify the same error-var, read-var, or prompt-var with the
CLOSE option. A given variable level can be associated with only one
requester or server at any time. The variable level must not be a DIRECTORY,
STRUCT, or a STRUCT item.

READ file-name error-var read-var prompt-var

creates a read requester and opens file-name for reading. For each line
appended to prompt-var, the requester reads a record from file-name and
appends it to read-var. If file-name is a terminal or a process, appending a
line to prompt-var causes the value of the variable to be transmitted as a
prompt. If you use the WAIT option, TACL begins executing subsequent code, but
if it encounters #APPEND(V) or #EXTRACT(V) that refers to a requester variable,
it waits until the I/O operation is finished.

If you do not use WAIT, TACL continues execution. To avoid reading incorrect data,
use the #WAIT function. Use #APPEND(V) prompt-var and #EXTRACT(V)
read-var instead of the #SET(V) built-in functions. If an error occurs, error-
var is set to the error number and further I/O operations on the requester stop until
you clear error-var by setting it to a null value.

file-name

is the name of the file to be read. If the file does not exist, an error occurs. Both
format 1 and format 2 files (unstructured, file code 0 format 2 files only) can be
read.

error-var

is the name of a variable level to hold error codes.

read-var

is the name of a variable level to hold the data read.

prompt-var

is the name of a variable level to hold one prompt for each line to be read.

Note. The variable level cannot be a DIRECTORY, STRUCT, or STRUCT item.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-321

B u ilt-In Functions and V ariab les #R E Q U E S TE R B u ilt-In Function
 WRITE file-name error-var write-var

creates a write requester and opens file-name for output. For each line added to
write-var with #APPEND(V), the requester writes a record containing that line to
file-name.

If you include the WAIT option, TACL begins executing subsequent code, but if it
encounters #APPEND(V) or #EXTRACT(V) that refers to a requester variable, it
waits until the I/O operation is finished.

If you do not use WAIT, TACL resumes execution. To avoid writing over valid data,
use #WAIT write-var; use #APPEND(V) write-var instead of using #SET(V).

If an error occurs, error-var is set to the error number and further I/O operations
on the requester stop until you clear error-var by setting it to a null value.

file-name

is the name of the file to be written to. If file-name does not exist, TACL
creates an edit-format file; if it does exist, data is appended to the end of the
file.

error-var

is the name of a variable level to hold error codes.

write-var

is the name of a variable level containing the data that is to be written.

Result

#REQUESTER returns zero if it is successful; otherwise, it returns a file-system error
indicating the reason for failure. A TACL error causes an exception rather than
returning an error.

Considerations

 The #REQUESTER function does not create a separate requester function. It runs
as part of the TACL process. You read and write data through the use of
associated variables (read-var, prompt-var, and write-var).

 The first call to #REQUESTER opens the file and associates the variables with the
file, but does not perform any input or output to the file.

 To initiate input for a READ operation, place data in prompt-var (in this
example, defined as pvar):

#APPEND pvar *read next*

Caution. TA C L truncates da ta appended to a w rite variab le associa ted w ith a #R E Q U E S TE R ,
but does no t re tu rn an e rro r.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-322

B u ilt-In Functions and V ariab les #R E Q U E S TE R B u ilt-In Function
This action triggers a read operation. If you are reading from a file, TACL ignores
the contents of prompt-var. If you are reading from a process or device, TACL
sends the contents of prompt-var to the process or device as part of a
WRITEREAD operation.

 If you specify a WRITE requester for a nonexistent disk file, TACL creates an edit-
format file; if you specify a READ requester for a nonexistent file, a file-system
error occurs.

 If #REQUESTER is unsuccessful in creating a requester, such as in the case
above, it returns the file-system error in its result. If it is successful, any future
errors (such as end-of-file in a read requester) are returned in error-var.

 All I/O for no-wait requesters takes place while normal TACL processing continues.
I/O automatically occurs when information becomes available in the variables and
files specified. To synchronize I/O, use the #WAIT built-in function.

 A requester, waited or no-wait, that does I/O on a disk file requires that TACL
internally allocate one of its block buffers. Because these block buffers are large
and must be allocated from the first 64K bytes of the TACL address space, there
are only four of them. Each block buffer is 1024 bytes. The #IN and #OUT built-in
functions also require these buffers. A block buffer is passed to the SIO procedure
to help perform read and write operations to the file. SIO uses the block buffers
whenever necessary.

 For structured files, block buffers can be used to improve the efficiency of read
operations. For edit-format files, block buffers are required by SIO to perform write
padding of records. For other types of files, block buffers can be used for record
blocking and unblocking.

 If you specify a waited requester with a record length greater than 1024 bytes,
TACL allocates one of its block buffers. SIO automatically turns off block buffering
because the record length is greater than the block buffer length.

 The only way you can use large buffers is by using waited requesters; a waited
requester still counts against the block buffer limit.

 The maximum record lengths are as follows:

 For non-edit disk files, trailing blanks at the end of a STRUCT (for example,
FILLER bytes or trailing blanks in the last STRUCT data item) are not trimmed
from the output record before being written to the file using the #APPENDV built- in
function. For edit-format files, SIO automatically trims trailing blanks from the
output record before it is written to the file.

Edit-format files 239 bytes

No-waited requesters 239 bytes

Unstructured non-edit files 1024 bytes

Other waited requesters 5000 bytes
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-323

B u ilt-In Functions and V ariab les #R E Q U E S TE R B u ilt-In Function
 If the data to be written to an unstructured non-edit file is smaller than the
maximum record length, the remaining bytes of the record are padded with trailing
blanks to fill out the logical record.

 When communicating with a process, be careful to coordinate functions that
enable the communication (such as #REQUESTER) with the counterpart
mechanisms in that process (such as IN or OUT referring to the TACL process
name). Deadlock conditions can result if TACL tries to open a process for
communication at the same time that process is trying to open TACL for
communication.

 For additional information about using #REQUESTER to interact with a TACL
process that uses #SERVER, see #SERVER Built-In Function on page 9-339.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-324

B u ilt-In Functions and V ariab les #R E S E T B u ilt-In Function
#RESET Built-In Function

Use #RESET to reset the argument pointer, frame number, reply value, and result text.

option

is a reset request. It can be any of these:

ARGUMENTS

sets the argument pointer (see #ARGUMENT Built-In Function on page 9-21)
to the beginning of the routine argument list. This option is applicable only
within a routine.

FRAMES

in a routine, invokes #UNFRAME for all frames with frame numbers higher
than they were when the routine was entered. Outside of a routine, it invokes
#UNFRAME for all frames with numbers higher than they were when the last
prompt was issued.

REPLY

discards the reply thus far accumulated. For additional information, see
#REPLY Built-In Function on page 9-317, #REPLYPREFIX Built-In Variable on
page 9-318, and the description in the TACL Programming Guide of TACL
operating as a server.

RESULTS

discards all previous results of #RESULT. This option is applicable only from
within a routine.

Result

#RESET returns nothing.

#RESET option [option] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-325

B u ilt-In Functions and V ariab les #R E S T B u ilt-In Function
#REST Built-In Function

Use #REST to examine the unprocessed portion of the argument set of the current
routine. #REST does not process the remainder of the argument.

Result

#REST returns the remainder of the arguments of the current routine.

Considerations

 An internal end-of-line is a binary zero and is not converted to a space.

 #REST does not advance the current-position pointer.

 To parse a set of arguments passed to a routine, use the #ARGUMENT built-in
function.

 To specify the position at which the next #ARGUMENT function is to resume
processing arguments, use the #SETSCAN built-in function.

 To obtain the number of characters that #ARGUMENT has processed, use the
#GETSCAN built-in function.

#REST
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-326

B u ilt-In Functions and V ariab les #R E S U LT B u ilt-In Function
#RESULT Built-In Function

Use #RESULT to supply the text that is to replace the original invocation of a routine.

text

specifies the text that replaces the original invocation of the routine in which this
function appears.

Result

#RESULT returns nothing.

Considerations

 If your routine contains no calls to #RESULT, the routine returns nothing.

 If your routine contains multiple calls to #RESULT, the text supplied by each call is
separated by spaces from the text supplied by the preceding call to #RESULT.

 A routine can invoke #RESULT at any time during its execution.

 A routine can discard all previous results by invoking #RESET RESULTS.

#RESULT [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-327

B u ilt-In Functions and V ariab les #R E TU R N B u ilt-In Function
#RETURN Built-In Function

Use #RETURN to exit immediately from a routine.

Result

#RETURN returns nothing.

Considerations

 TACL immediately exits from the current routine as though there were no more
code after #RETURN.

 #RETURN does not reset #FRAMEs. If you use #RETURN, be sure to
#UNFRAME any #FRAME within your routine or call #RESET FRAMES to invoke
#UNFRAME for all frames with frame numbers higher than they were when the
routine was entered.

 To provide alternative exits, you can include multiple, conditional #RETURN
commands in a single routine.

#RETURN
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-328

B u ilt-In Functions and V ariab les #R O U TE P M S G B u ilt-In V ariab le
#ROUTEPMSG Built-In Variable

The built-in variable #ROUTEPMSG provides the capability to suppress system and
process messages. Use #ROUTEPMSG to set or obtain the current state of the
#ROUTEPMSG built-in variable.

ALL

suppresses all messages selected by the #PMSG built-in variable setting from
being output.

STANDARD

no suppression occurs. Messages selected by the #PMSG built-in variable setting
are output to the current OUT (default value).

message-type

can be any of these:

SYSTEM

suppresses system messages from being output. Note that the #PMSG built-in
variable setting does not matter, because system messages are output
regardless of the #PMSG built-in variable setting.

NORMAL

suppresses normal process messages, if selected by the #PMSG built-in
variable setting, from being output.

ABNORMAL

suppresses abnormal process messages, if selected by the #PMSG built-in
variable setting, from being output. Like all other TACL built-in variables, if a
backup CPU is specified for the TACL process and the primary TACL process
fails, the backup TACL does not inherit the TACL variables from the primary
TACL.

Considerations

 Use caution when suppressing messages. If messages are suppressed, include
TACL statements that detect abnormal completion of processes by checking the
status of the TACL built-in functions and the process completion variables
(:_completion or :_completion^procdeath). On an abnormal run of TACL programs,
rerun the TACL programs with messages on.

#ROUTEPMSG { ALL | STANDARD |
(message-type [message-type] ...) }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-329

B u ilt-In Functions and V ariab les #R O U TE P M S G B u ilt-In V ariab le
 The output of certain message classes is determined by the #PMSG built-in
variable setting. The #ROUTEPMSG built-in variable allows specified message
classes to be suppressed from being output.

 When you first log on, #ROUTEPMSG is initialized to STANDARD.

 Use #PUSH #ROUTEPMSG (or PUSH #ROUTEPMSG) to save a copy of the
current setting of the #ROUTEPMSG built-in variable.

 Use #POP #ROUTEPMSG (or POP #ROUTEPMSG) to restore the
#ROUTEPMSG built-in variable from the copy last pushed.

 Use #SET #ROUTEPMSG (or SET VARIABLE #ROUTEPMSG) to set the
#ROUTEPMSG built-in variable.

 The classes of message affected by the #ROUTEPMSG built-in function are:

 These tables define the outcome of setting the #PMSG and #ROUTEPMSG built-in
variables. These outcomes are possible:

 This table defines the type of messages output by the #PMSG setting:

 This table defines how the #ROUTEPMSG setting affects message output if
#PMSG is on:

System message CPU down, CPU up, and so forth

Normal process message Process start, stop, and so forth

Abnormal process message Abort process, backup died, and so forth

Yes Message is output to the current OUT file.

No Message is not output.

N.A. Message is not output due to the #PMSG setting.

#PMSG System

Normal
Process

Abnormal
Process

 -1 (on) Yes Yes Yes

0 (off) Yes No Yes

#ROUTEPMSG System
Normal
Process

Abnormal
Process

ALL No No No

SYSTEM No Yes Yes

NORMAL Yes No Yes

ABNORMAL Yes Yes No

SYSTEM NORMAL No No Yes
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-330

B u ilt-In Functions and V ariab les #R O U TE P M S G B u ilt-In V ariab le
 This table defines how the #ROUTEPMSG setting affects message output if
#PMSG is off:

Example

To suppress all messages, enter:

> #SET #ROUTEPMSG ALL

> #ROUTEPMSG

#ROUTEPMSG returns the current state of the #ROUTEPMSG built-in variable, which
could be one of:

ALL
SYSTEM
NORMAL
ABNORMAL
SYSTEM NORMAL
SYSTEM ABNORMAL
NORMAL ABNORMAL
STANDARD

SYSTEM ABNORMAL No Yes No

NORMAL ABNORMAL Yes No No

STANDARD Yes Yes Yes

#ROUTEPMSG System
Normal
Process

Abnormal
Process

ALL No N.A. No

SYSTEM No N.A. Yes

NORMAL Yes N.A. Yes

ABNORMAL Yes N.A. No

SYSTEM NORMAL No N.A. Yes

SYSTEM ABNORMAL No N.A. No

NORMAL ABNORMAL Yes N.A. No

STANDARD Yes N.A. Yes

#ROUTEPMSG System
Normal
Process

Abnormal
Process
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-331

B u ilt-In Functions and V ariab les #R O U TIN E N A M E B u ilt-In Function
#ROUTINENAME Built-In Function

Use #ROUTINENAME to allow a routine to obtain its own name; the routine can then
use this information to invoke itself.

Result

#ROUTINENAME returns the fully qualified name of the variable level holding the
currently active routine. If invoked from a routine stored in a ?TACL ROUTINE file, it
returns the name of the variable TACL created to hold a copy of the routine while it is
active (it cannot obtain the name of the original file).

Considerations

 #ROUTINENAME performs a similar function in TACL routines as %0% performs
in TACL macros (see the detailed descriptions in the TACL Programming Guide of
the differences and similarities between macros and routines). The two features
are not interchangeable, however, as shown by this example.

 To invoke the entire routine from within the routine, obtain the routine name by
calling the #ROUTINENAME built-in function.

Examples

Given this library,

?SECTION rumph ROUTINE
#OUTPUT Percents show name as %0%.
#OUTPUT Routinename shows name as [#routinename].

?SECTION grumph MACRO
#OUTPUT Percents show name as %0%.
#OUTPUT Routinename shows name as [#routinename].

invoking the routine and the macro gives these results:

36> RUMPH
Percents show name as %0%.
Routinename shows name as :RUMPH.1.
37> GRUMPH
Percents show name as :GRUMPH.1.
#OUTPUT Routinename shows name as [#routinename]
 ^
ERROR No routine has been called

You can also use #ROUTINENAME to invoke a variable that will reside in the same
directory as the routine itself, without stating the directory name explicitly:

[#VARIABLEINFO /DIRECTORY/ [#ROUTINENAME]]:elf elf-args

#ROUTINENAME
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-332

B u ilt-In Functions and V ariab les #S E G M E N T B u ilt-In Function
#SEGMENT Built-In Function

Use #SEGMENT to determine the name of the file TACL is using as its default
segment file to hold its variables.

USED

requests an estimate of the number of bytes currently used in your segment.

Result

Without the USED option, #SEGMENT returns the segment file name.

If you include the USED option, #SEGMENT returns an estimate of the number of
bytes currently used in your segment.

Consideration

To obtain information about a segment file, use the #SEGMENTINFO built-in function.

#SEGMENT [/ USED /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-333

B u ilt-In Functions and V ariab les #S E G M E N TC O N V E R T B u ilt-In Function
#SEGMENTCONVERT Built-In Function

#SEGMENTCONVERT converts a segment file from a C00/C10 format version to a
C20 or later version, or the reverse. Segment files created under newer RVUs of TACL
have a different format from those created under earlier RVUs of TACL because of
character changes necessitated by the addition of the international character set with
the C20 RVU.

FORMAT

specifies the format in which new-file-name is to be created.

FORMAT A specifies that new-file-name is a C00/C10 format version.

FORMAT B specifies that new-file-name is a format version C20 or later.

old-file-name

is the name of an existing TACL segment file whose format is to be converted.

new-file-name

is the name to be given to the new segment file that #SEGMENTCONVERT
creates. #SEGMENTCONVERT creates a new segment file, new-file-name, in
the format specified by the FORMAT argument, and copies the contents of the
existing segment file, old-file-name, to it.

Result

#SEGMENTCONVERT returns nothing.

Considerations

 If old-file-name does not exist, cannot be opened, cannot be read, or is not a
segment file (file code 440), or if new-file-name already exists, TACL issues an
appropriate error message.

 If the format specified for new-file-name is the same as that of old-file-
name, #SEGMENTCONVERT only duplicates the file.

 It is possible to use CREATESEG and the same LOAD or #LOAD operations that
originally built an older segment file to re-create the file in the newer format; but if
you no longer have the source code that created the segment file, use
#SEGMENTCONVERT to convert the file.

 It is a good idea to convert C00-format or C10-format segment files for use on
newer systems.

#SEGMENTCONVERT / FORMAT { A | B } /
 old-file-name new-file-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-334

B u ilt-In Functions and V ariab les #S E G M E N TC O N V E R T B u ilt-In Function
 Whenever a RVU of TACL after C10 tries to attach a C00/C10 segment file, it
automatically creates a temporary segment file in format version C20 or later,
copies the older file to it, and attaches the temporary file instead. This typically
happens every time you log on. Converting the older file to the newer format
eliminates this action, as well as the disk space requirements of the temporary
file.

 If you create a variable with a C20 or later RVU of TACL, and the variable
contains a “y-dieresis” character (in the international character set), and you
write the variable to a C00/C10 segment file, it can corrupt the file. Converting
the file to newer format eliminates that risk.

 Conversely, a newer segment file cannot be attached by a C00 or C10 RVU of
TACL. #SEGMENTCONVERT can convert such a file to the older format. To obtain
the version of a segment file, use the #SEGMENTVERSION built-in function.

 You cannot attach more than 50 segment files.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-335

B u ilt-In Functions and V ariab les #S E G M E N TIN FO B u ilt-In Function
#SEGMENTINFO Built-In Function

Use #SEGMENTINFO to obtain information about any of the segments being used by
your TACL process.

option

is an information request. It can be any of these:

ACCESS

returns the access mode of the segment, SHARED or PRIVATE.

DIRECTORY

returns the directory in which the segment file appears.

FILENAME

returns the name of the current segment file.

ID

returns the segment ID for which information is being returned.

PRIMARY

returns the primary extent size of the segment file.

RESULT

returns 0 if the segment ID for which information is sought is the one specified
in the argument, 1 if the information is for the next higher segment ID in use, or
2 if there is no higher segment ID in use.

SECONDARY

returns secondary extent size of the segment file.

USECOUNT

returns the number of pointers in your TACL process that point into the
segment in question. Other TACL processes are not included. Pointers result
from using variables in the segment:

 As the home directory

 In the use list

 For requesters

 For servers (both explicit and implicit)

#SEGMENTINFO / option [, option] / [segment-id]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-336

B u ilt-In Functions and V ariab les #S E G M E N TIN FO B u ilt-In Function
 For execution

 To point to other segments

USED

returns the number of bytes in use in the segment.

segment-id

is the segment ID at which to begin searching. If you omit it, segment zero is
assumed.

Result

#SEGMENTINFO returns a space-separated list of the specified information in the
order it was requested.

Consideration

To obtain the name of your default segment file, use the #SEGMENT built-in function.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-337

B u ilt-In Functions and V ariab les #S E G M E N TV E R S IO N B u ilt-In Function
#SEGMENTVERSION Built-In Function

#SEGMENTVERSION returns the format (C00/C10 or C20 or later) of a segment file.

file-name

is the name of an existing TACL segment file.

Result

#SEGMENTVERSION returns one of these characters:

If the specified file does not exist, cannot be opened, cannot be read, or is not a TACL
segment file (file code 440), TACL issues an appropriate error message.

Consideration

To convert a segment to the other format, use the #SEGMENTCONVERT built-in
function.

#SEGMENTVERSION file-name

A if the segment file is in C00/C10 forma

B if the segment file is a format version C20 or later
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-338

B u ilt-In Functions and V ariab les #S E R V E R B u ilt-In Function
#SERVER Built-In Function

The #SERVER built-in function allows you to use your TACL process to interact with
one or more other processes. This mechanism is an alternative to the use of INV and
OUTV or the use of INLINE commands. Processes open your TACL process as if it
were a file. Your TACL process can then read requests and respond to them. You can
control processes, such as utilities, and interpret their responses.

The name defined by #SERVER remains in existence until you delete it with another
call to #SERVER (with the KILL option).

Your TACL must have a process name for you to be able to use #SERVER.

option

can be any of these:

IN variable-level

specifies a variable level to be used to supply data to WRITEREAD procedures
called by requesters. The first line of the variable level is removed and given to
each WRITEREAD. If the variable level is empty, WRITEREAD waits until data
is placed into the variable level. To avoid race conditions (see Considerations
on page 9-340), use #APPEND or #APPENDV to add data to this variable
level. You cannot read data out of this variable level, as the data might be
passed immediately to a process and therefore be no longer available.

To send an end-of-file, use #EOF. If the IN variable is empty and a process is
waiting, TACL sends an end-of-file immediately; otherwise, TACL sets a flag.
The next time the process tries to read from the empty server file, TACL sends
an end-of-file and clears the flag. #EOF does not alter the state of the server
file or the IN variable, but it can cause the process to terminate, which can alter
the state of the server file.

OUT variable-level

specifies the variable level to be used to accept data from WRITE procedures
called by requesters. WRITEs are appended one line at a time to the variable
level. To avoid race conditions (see Considerations on page 9-340), use
#EXTRACT or #EXTRACTV to obtain data from this variable level. You must
not read and then clear this variable level as more data can arrive between the
read and the clear, and that data is then lost.

PROMPT variable-level

specifies the variable level that is to contain the most recent data sent by a
WRITEREAD. Previous data in the variable level is lost each time a
WRITEREAD occurs.

#SERVER / option [, option] ... / [name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-339

B u ilt-In Functions and V ariab les #S E R V E R B u ilt-In Function
KILL

specifies that the indicated server is to be deleted. You must specify a server-
name for this option. If a server is deleted, any processes that still have the
server open receive file-system error 66 (device downed) on subsequent I/O
operations to the named server.

name

is the access name of your TACL process. This argument is optional unless you
specify the KILL option. The name consists of your TACL process name followed
by a period, a number sign, a letter, and zero to six alphanumeric characters
($D127.#K39, for example); if you want, that can be followed by another period, a
letter, and zero to seven alphanumeric characters ($D127.#K39.ACM48, for
example). If you specify a create option and do not specify a name, TACL creates
one, of the form:

$your-tacl-name.#Snn

where nn is the next available server number.

Result

 If you supply one or more create options, #SERVER returns a name for your TACL
process.

 If you specify the KILL option, #SERVER returns nothing.

Considerations

 When a process writes to your TACL process, the line is appended to the end of
the OUT variable of the server. When a process prompts for input, the prompt is
stored in your PROMPT variable, destroying all previous contents. When a process
reads a line from your TACL process, TACL removes the first line of the IN variable
and passes it to the process. If the IN variable is empty, the requesting process
waits until you put more data into the IN variable.

 A TACL process can have a maximum of 100 simultaneous openers, but only one
process can read from it at a time. If one process has requested data from the IN
variable and a second process tries to retrieve data from the IN variable, the
second process receives a file-system error 28 (attempt to open a disk file or
$RECEIVE with maximum number of concurrent operations greater than one).

 You can use the create options-IN, OUT, and PROMPT-in combination, but KILL
must be used alone.

 There is a potential deadlock situation when using #SERVER to control DEBUG
and INSPECT for a process started by the same TACL. The deadlock occurs
because TACL waits for the program to read its startup messages, which it cannot
do because it is waiting for an R command from DEBUG or INSPECT, which in
turn is waiting for input from a TACL variable. To avoid this situation, before issuing
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-340

B u ilt-In Functions and V ariab les #S E R V E R B u ilt-In Function
#SERVER, initialize the IN variable for #SERVER to contain enough DEBUG or
INSPECT commands to ensure that the program gets past the point where it reads
its startup messages.

 When communicating with a process, be careful to avoid race conditions.
Coordinate functions that enable communication (such as #SERVER) with
counterpart mechanisms in that process. Deadlock conditions can result if TACL
tries to open a process for communication at the same time that process is trying
to open TACL for communication.

 If TACL is unable to allocate space in an OUT or PROMPT variable, the process
doing the WRITE or WRITEREAD receives a file-system error 45 (file is full).

 If a server name is eliminated, any variables associated with the server remain the
same. Any processes that still have it open receive a file-system error 66 (device
downed) on subsequent I/O operations using the server name.

 To create a server implicitly, run a program and supply and accept data using INV
or OUTV. For additional information, see #NEWPROCESS Built-In Function on
page 9-265 or the RUN[D|V] Command on page 8-156. An implicitly created server
remains in existence until its parent process terminates, or you can delete it using
#SERVER with the KILL option.

 If you log off, all server files are deleted immediately.

 To synchronize processes that use your TACL server, use the #WAIT built-in
function.

Examples

To create an access name for your TACL process:

#PUSH access_name in_var out_var prompt_var
#SET access_name [#SERVER /IN in_var, PROMPT prompt_var, &
OUT out_var/]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-341

B u ilt-In Functions and V ariab les #S E R V E R B u ilt-In Function
Table 9-12 lists commands that a TACL process using #REQUESTER and a TACL
process using #SERVER can use to communicate with each other. The decision to use
one-way or two-way communication depends entirely upon how the server responds to
requests.

Table 9-12. Communicating with a TACL Requester

Type of
Communication #Requester #Server

Two-way
communication

Invokes #REQUESTER with
the READ operation to open
the process

(WRITEREAD
operation)

Invokes #APPENDV
prompt^var var (initiates a
WRITEREAD operation)

Invokes #EXTRACTV
prompt^var var (performs a
READUPDATE operation)

Invokes #EXTRACTV
read^var data (retrieves the
response)

Invokes #APPENDV in^var
data (initiates a REPLY
operation)

One-way
communication

Invokes #REQUESTER with
the WRITE option to open the
process

(WRITE operation) Invokes #APPENDV
write^var var (initiates a
WRITE operation)

Invokes #EXTRACTV out^var
data (performs a READ
operation)
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-342

B u ilt-In Functions and V ariab les #S E T B u ilt-In Function
#SET Built-In Function

Use #SET to change the contents of a variable level or built-in variable.

option

is either of these:

IN file-name

specifies that the named file is to be read into the variable level. If this option is
present, text is not allowed.

TYPE type-name

specifies the type of the variable level being set.

type-name

is one of these:

ALIAS

specifies that variable-level is an alias; therefore, text must be a
variable-level name or a file name.

DELTA

specifies that variable-level is a #DELTA command variable;
therefore, text must be #DELTA commands.

DIRECTORY

specifies that variable-level is a directory name. If you omit text,
this option clears variable-level and establishes an empty
directory.

If you include text, it must have this specific form:

mode file-name

where mode is either PRIVATE or SHARED, and file-name is the
name of an existing segment file (code 440). The segment file must not
reside on a remote system. This form of the #SET command
associates a directory variable with the segment file in the same
manner as an ATTACHSEG command.

#SET
 { [/ option [‚ option]/] variable-level [text] } |
 { built-in-variable [built-in-text] }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-343

B u ilt-In Functions and V ariab les #S E T B u ilt-In Function
MACRO

specifies that text is a TACL macro.

ROUTINE

specifies that text is a TACL routine.

TEXT

specifies that text is simply text; that is, it has no special meaning to
TACL.

variable-level

is the name of the existing variable level to be set.

text

is the text to be put into the specified variable level.

built-in-variable

is the name of a built-in variable.

built-in-text

is the new value for the built-in variable.

Result

#SET returns nothing.

Considerations

 #SET replaces the current contents of variable-level with the specified text or,
if you indicate a file with the IN option, with the contents of the specified file.

 You cannot use a text entry with the IN option, nor can you use the IN option with a
built-in variable.

 The IN option reads data in the PLAIN mode. The TACL process does not interpret
metacharacters as metacharacters; nor does it expand variables.

 Unless you specify a TYPE option, the type of the variable level remains
unchanged. You cannot use the TYPE option with a built-in variable.

 When setting a built-in variable, the format of text must be appropriate for that
particular variable. See the description of the built-in variable in question.

 You cannot insert leading or trailing spaces into a variable level with #SET.

 To copy a string to an existing variable level, use the #SETV built-in function.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-344

B u ilt-In Functions and V ariab les #S E T B u ilt-In Function
 To distribute the members of a space-separated list into several individual variable
levels, use the #SETMANY built-in function.

 You cannot attach more than 50 segment files.

Examples

1. This example sets a built-in variable:

32> #SET #WIDTH 132

2. The next example sets a user-defined variable level:

33> #SET vara This is it

3. This example illustrates the use of level specifications to put different information
into different levels of the variable var:

34> #PUSH var
35> #PUSH var
36> #SET / TYPE TEXT / var.1 TIME
37> [#SET / TYPE MACRO / var.2
37> #OUTPUT The first argument is %1%
37>]
38> var.1
July 12, 1990 15:55:51
39> var.2 hardest
The first argument is hardest
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-345

B u ilt-In Functions and V ariab les #S E TB Y TE S B u ilt-In Function
#SETBYTES Built-In Function

#SETBYTES moves data between STRUCTs. Use #SETBYTES to fill one STRUCT or
STRUCT item with as many copies of the data from another STRUCT or STRUCT item
as can fit, without regard to the data types of the fields involved.

destination

is the STRUCT or STRUCT item to receive the copy or copies.

source

is the STRUCT or STRUCT item from which the data is to be copied.

Result

#SETBYTES returns nothing.

Considerations

 If the entire source STRUCT or STRUCT item cannot be copied, #SETBYTES
copies as many bytes as can fit.

 If the move changes the type definitions of the items, TACL might be unable to
display or invoke the STRUCT.

#SETBYTES destination source
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-346

B u ilt-In Functions and V ariab les #S E TC O N FIG U R A TIO N B u ilt-In Function
#SETCONFIGURATION Built-In Function

#SETCONFIGURATION sets the TACL flags that can change the behavior of TACL for
the specified TACL image or that can configure the currently running TACL process.

option

must be one or more of these:

AUTOLOGOFFDELAY delay-value

specifies the maximum number of minutes TACL is to wait at a prompt. If the
specified time is exceeded, TACL automatically logs off, releases the default
segment, and (if LOGOFFSCREENCLEAR is specified) clears the terminal
screen. The default is -1 (disabled).

A TACL process issues a modem disconnect at autologoff.

BLINDLOGON { OFF | ON }

specifies the LOGON command, whether in the logged-off state or the logged-
on state, prohibits the use of the comma, requiring the password to be entered
at its own prompt while echoing is disabled. The default is OFF.

CMONREQUIRED [OFF | ON }

specifies that all operations requiring approval by $CMON be denied if $CMON is not
available or is running too slowly. Approval of $CMON is not required if the TACL is
already logged on as the super ID. The default is OFF.

CMONTIMEOUT timeout-value

specifies the number of seconds that TACL is to wait for any $CMON
operation. The default timeout-value is 30.

Note. These flags can be changed only by users who are authorized to alter the Command
Interpreter Monitor (CMON). For additional information, see Command Interpreter Monitor
Interface (CMON) on page 6-8.

#SETCONFIGURATION / option [, option] .../
[tacl-image-name]

Caution. If you are au thorized to change C M O N R E Q U IR E D and in tend to se t it to O N , you
m ust keep an unm od ified copy o f TA C L for system opera tion use . O therw ise , you cannot log
on if $C M O N is no t runn ing o r is runn ing too s low ly. If the m odified TA C L is in
$S Y S TE M .S Y S nn, you cannot even sta rt the system .
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-347

B u ilt-In Functions and V ariab les #S E TC O N FIG U R A TIO N B u ilt-In Function
CONFIGRUN [PROCESSCREATE | PROCESSLAUNCH]

PROCESSLAUNCH

a TACL RUN[D] command is configured to call the system procedure
PROCESS_LAUNCH_ to start a process. In this case, these additional
RUN[D] command options, MAXMAINSTACKSIZE,
MAXNATIVEHEAPSIZE, and GUARANTEEDSWAPSPACE, are available.

PROCESSCREATE

a TACL RUN[D] command is configured to call the system procedure
PROCESS_CREATE_ to start a process. In this case, three additional
RUN[D] command options, MAXMAINSTACKSIZE,
MAXNATIVEHEAPSIZE, and GUARANTEEDSWAPSPACE, are not
available. This is the default setting.

LOGOFFSCREENCLEAR { OFF | ON }

indicates if TACL is interactive and the IN file is a 65xx terminal, the terminal
memory is cleared at (#)LOGOFF unless the NOCLEAR option is supplied.

The CLEAR and NOCLEAR options always override the automatic operation.
The default is ON.

NAMELOGON { OFF | ON }

specifies the LOGON command, in both the logged-off and logged-on states.
#CHANGEUSER built-in functions do not accept user numbers but rather
require user names. The default is OFF.

NOCHANGEUSER { OFF | ON }

specifies the ability to log on from a logged-on state. The default is OFF.

REMOTECMONREQUIRED { OFF | ON }

specifies that all operations requiring approval by a remote $CMON be denied
if the remote $CMON is unavailable or is running too slowly. $CMON approval
is not needed if the TACL is already logged on as the super ID. The default is
OFF.

REMOTECMONTIMEOUT remote-timeout-value.

specifies the number of seconds that TACL is to wait for any $CMON operation
involving a remote $CMON. The default remote-timeout-value is 30.

REMOTESUPERID { OFF | ON }

specifies whether TACL can be started remotely by the super ID, or user ID
255, 255. The default is ON.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-348

B u ilt-In Functions and V ariab les #S E TC O N FIG U R A TIO N B u ilt-In Function
REQUESTCMONUSERCONFIG [OFF | ON]

if set to ON, then, after every LOGON command or #CHANGEUSER built-in
function is executed, the TACL process sends a request to the $CMON
process for the configuration parameters in effect for this current TACL user.

if set to OFF, then the configuration parameters in effect are always the TACL
process default parameters, parameters obtained when a LOGOFF command
has been executed and is followed (at some point) by a LOGON command, or
parameters obtained when a noninteractive TACL process is started.

This option is initially set to OFF.

This option is meaningful only if the $CMON process has been coded to return
the configuration information. Otherwise, the additional request is ignored. Use
of this option allows $CMON to control (and change) the configuration
parameters for each logon session: for example, for each user ID. These
altered configuration parameters can then be returned to the TACL process.

Regardless of the setting, when a LOGOFF command has been executed and
followed (at some point) by a LOGON command or when a noninteractive
TACL process is started, the TACL process requests configuration information
from the $CMON process.

STOPONFEMODEMERR [OFF | ON]

ON specifies that TACL stops when error 140 (FEMODEMERR) is
encountered on its input. If the TACL process was started with the PORTTACL
startup parameter, this TACL configuration setting is ignored. (TACL goes to
the logged off state and waits for a modem connect message when error 140 is
encountered.) The default is OFF, meaning TACL is put in a logged off state
and waits for a modem connection message when an error 140 is
encountered.

tacl-image-name

is the name of an existing TACL image file to be configured. You must that ensure
a copy of TACL is created before trying to configure it, because TACL does not
create the copy. If you omit tacl-image-name, the built-in function
#SETCONFIGURATION configures the currently running TACL process and the
new configuration values are used for later operations that require these
configuration values.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-349

B u ilt-In Functions and V ariab les #S E TC O N FIG U R A TIO N B u ilt-In Function
Result

#SETCONFIGURATION returns zero if it configures the TACL image or itself
successfully; otherwise, it returns these values:

In addition, the built-in variable #ERRORNUMBERS is set when an error occurs while
executing the #SETCONFIGURATION built-in function (there is no text output):

1165 error-detail-1 error-detail-2 0

The example following this description shows how to code #ERRORNUMBERS with
#SETCONFIGURATION to determine the error. This table describes possible
#ERRORNUMBERS values:

-2 SETCONFIGURATION error The specified image is not a TACL image.

 -1 Insufficient capability error The user does not have user ID 255, 255 .

>0 File system error Number returned indicates the reason for
the failure.

error-
detail-1

error-
detail-2 Cause Effect Recovery

1 file-
system
error

Depends on the error Depends on the
error

Depends on the error

2 0 The user ID is not
255,255.

Requested
operation fails.

Logon using the super
ID (255,255). Retry the
operation.

3 1 Invalid TACL image
file code is not 100.

Requested
operation fails.

Retry the operation
specifying a valid TACL
image file.

3 2 None None Appears in the TACL
code but is not
implemented

3 3 Invalid TACL image
file

Requested
operation fails.

Retry the operation,
specifying a valid TACL
image file.

3 4 Invalid TACL image
file (VPROC does
not contain string
“T9205”.)

Requested
operation fails.

Retry the operation,
specifying a valid TACL
image file.

4 1 None None None

4 2 Invalid TACL image
file

Requested
operation fails.

Retry the operation,
specifying a valid TACL
image file.

5 0 Too many
configuration options

Requested
operation fails.

Retry the operation,
specifying the correct
number of configuration
options.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-350

B u ilt-In Functions and V ariab les #S E TC O N FIG U R A TIO N B u ilt-In Function
Considerations

 If TACL cannot open or read the tacl-image-file or if it is not a TACL image,
an error message results.

 A TACL image must be supplied for the #SETCONFIGURATION built-in function to
configure the TACL. If the TACL image name is omitted, TACL will configure itself
and the new configuration values are used for later operations that require these
configuration values.

 TACL checks the specified image to ensure that it is a TACL image by examining
the version procedure data space within the specified TACL image.

 Only user ID 255, 255 is allowed to modify the TACL configuration. If the user ID is
not 255, 255, the #SETCONFIGURATION built-in function returns -1.

 If any option is not configurable, #SETCONFIGURATION terminates and leaves
the image unmodified. This can occur with older TACL images.

 TACL configures only the specified option. Any options not specified remain
unchanged.

 When starting a new TACL process, calls to the built-in function
#SETCONFIGURATION from $SYSTEM.SYSTEM.TACLLOCL or TACLLOCL in
the cold-loaded system, volume, and subvolume are executed regardless of the
user ID. Placement of this built-in function and securing these TACLLOCL files is
set by user ID 255, 255.

 If you specify the same option more than once, the last specification is the one
used.

 The built-in variable #ERRORNUMBERS is set when an error occurs while
executing the #SETCONFIGURATION.built-in function.

 If directly connected (no Safeguard or modem port control processes) to a
NonStop system by starting a TACL process on a port (for example, a dial-in line or
X.25 connection), the TACL being started on the port should be started with the
PORTTACL startup parameter. TACL processes on all nodes that are accessible
from the port should also have the TACL configuration parameter
STOPONFEMODEMERR set to ON. This setting prevents a security breach
situation caused by the error 140 (FEMODEMERR) processing by TACL. If all
nodes do not have the TACL configuration parameter STOPONFEMODEMERR
set to ON, the security breach situation still exists.

The PORTTACL startup parameter and the STOPONFEMODEMERR TACL
configuration parameter control the behavior of the local TACL process when the
process receives an error 140 (FEMODEMERR) on its input. If TACL is not the
foreground process, it is the responsibility of the foreground process to process
the error 140 correctly. TACL cannot act on an error 140 unless it is the process
that receives error 140.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-351

B u ilt-In Functions and V ariab les #S E TC O N FIG U R A TIO N B u ilt-In Function
If your installation uses $CMON processes and you want to take advantage of the
STOPONFEMODEMERR behavior, your $CMON program must be changed to
specifically include the new configuration parameter.

Example

?TACL MACRO
#FRAME

#PUSH configuration^error

==Make a duplicate TACL from the current TACL
FUP DUP $SYSTEM.SYSTEM.TACL, NEWTACL

==Secure the current TACL so no other users can access it.
FUP SECURE $SYSTEM.SYSTEM.TACL, “----”

==Configure the new TACL with the appropriate options

#SET configuration^error [#SETCONFIGURATION/BLINDLOGON OFF, &
CMONTIMEOUT 50/ NEWTACL]

[#IF configuration^error |THEN|

 == Pick up individual error fields:
 #PUSH tacl^error error^detail1 error^detail2
 #SETMANY tacl^error error^detail1 error^detail2,
 [#ERRORNUMBERS]
 [#CASE [error^detail1]

 |1| error [error^detail2] == File system error

 |2| #OUTPUT *ERROR* Not user 255, 255 == Security violation

 |3| #OUTPUT *ERROR* Incorrect TACL image == vproc error

 |4| == Configuration error
 #OUTPUT *ERROR* Unable to fully configure TACL image

 |5| #OUTPUT *ERROR* Too many configuration options

 |OTHERWISE| #OUTPUT *ERROR* #SETCONFIGURATION
 == Unknown error

]

|ELSE| == No error in configuration

 ==Save the current TACL
 #RENAME $SYSTEM.SYSTEM.TACL, $SYSTEM.SYSTEM.OLDTACL

 ==Make the newly configured TACL the standard TACL
 #RENAME $SYSTEM.SYSTEM.NEWTACL, $SYSTEM.SYSTEM.TACL

]

#UNFRAME
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-352

B u ilt-In Functions and V ariab les #S E TM A N Y B u ilt-In Function
#SETMANY Built-In Function

Use #SETMANY to distribute the members of a space-separated list into individual
variable levels.

variable-name-list

is a space-separated list of one or more existing variable levels or underscores.

text

is a space-separated list of items (if the entire function call is enclosed in square
brackets, end-of-line characters are treated as spaces). Commas may occur in text
because everything after the first comma is considered to be text. Space and end-
of-line are the only characters considered to be separators in the text.

Result

#SETMANY returns nothing.

Considerations

 Each item in text is put into the corresponding variable level. If, however, the
corresponding entry in variable-name-list is an underscore character (_)
instead of a variable level name, the text item is discarded.

 If there are more items in text than there are entries in variable-name-list,
the extra items are ignored. If there are more entries in variable-name-list
than items in text, the unallocated variable levels are cleared.

 Specified variable levels must already exist; their types remain unchanged.

 To copy a string to an existing variable level, use the #SETV built-in function.

 To change the contents of a single variable level or built-in variable, use the #SET
built-in function.

Examples

1. This example illustrates the use of #SETMANY to find out the four parts of a file
name:

[#SETMANY volume subvol file system,
 [#FILEINFO /VOLUME,SUBVOL,FILE,SYSTEM/ fname]
]

The SYSTEM option is specified last because it returns nothing if the file name is
in local form and would cause the correspondence between the two lists to be lost
if it did not occur last.

#SETMANY variable-name-list , [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-353

B u ilt-In Functions and V ariab les #S E TM A N Y B u ilt-In Function
2. This example shows how to find the numeric portion of the current operating
system RVU:

#SETMANY _ number , [#TOSVERSION]

#TOSVERSION returns a letter, a space, and a number; the underscore causes
the letter in the #TOSVERSION result to be discarded.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-354

B u ilt-In Functions and V ariab les #S E TP R O C E S S S TA TE B u ilt-In Function
#SETPROCESSSTATE Built-In Function

Use #SETPROCESSSTATE to alter the value of a process state flag in the Process
Control Block (PCB) of your logged-on TACL process.

The process state flags can only be set by the process owner.

option

is one of these:

LOGGEDON

specifies the logged-on state of the TACL process. A value of 1 indicates that
the TACL process is in a logged-on state and that the TACL process default file
security, process access ID (PAID), creator accessor ID (CAID), and remote
logon flags were set to their appropriate values by the operating system. The
default value is 1.

TSNLOGON

specifies whether or not Safeguard software authenticated the TACL process.
A value of 1 indicates that Safeguard software authenticated and created the
TACL process or that the TACL process is a descendent of a local process that
had the TSNLOGON flag set. The default value is 0 for a regular TACL process
and 1 for a TSN-TACL process or a TACL process started by a TSN-TACL
process.

When a descendent TACL process is created on a remote system, the
TSNLOGON flag is set to 0 (by the operating system) for that remote process.

STOPONLOGOFF

specifies whether the current TACL process will be stopped after it enters a
logged-off state. A value of 1 indicates that the current TACL process will be
stopped when it enters a logged-off state. A value of 0 indicates that the
current TACL process will not be stopped; instead, the TACL process will
prompt for another logon. The default value is 0 for a regular TACL process or
a TACL process started by a TSN-TACL process. The default is 1 for a TSN-
TACL process.

If you set the STOPONLOGOFF flag to 1, the current TACL process stops
when it enters a logged-off state.

PROPAGATELOGON

specifies how local descendent TACL processes start. A value of 1 for the
current TACL process indicates that the INHERITEDLOGON state of the child
TACL process will be 1. The new process will start in the logged-on state. A

#SETPROCESSSTATE / option / { 0 | 1 }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-355

B u ilt-In Functions and V ariab les #S E TP R O C E S S S TA TE B u ilt-In Function
value of 0 for the current TACL process indicates that the INHERITEDLOGON
state of the local child TACL process will be 0. The new process will start in the
logged-off state. The default value is 0.

Remote descendent TACL processes always start in a logged-off state.

You can clear the PROPAGATELOGON state flag in the current TACL process,
which causes local descendent TACL processes to start in a logged-off state
and prompt for logon. Remote descendent TACL processes always start in a
logged-off state.

PROPAGATESTOPONLOGOFF

specifies how local child TACL processes stop. A value of 1 for the current
TACL process indicates that the STOPONLOGOFF state of the child TACL
process will be 1. The child process will stop when it enters a logged-off state.
A value of 0 for the current TACL process indicates that the STOPONLOGOFF
state of a local child process will be 0. The child process will prompt for logon
information when it enters a logged-off state. The default value is 0.

If you set the PROPAGATESTOPONLOGOFF flag to 1, local descendent
TACL processes are stopped when they enter a logged-off state.

For remote child TACL processes, the parent process propagates a value of 0
for the STOPONLOGOFF flag.

Results

The #SETPROCESSSTATE built-in function returns a zero, indicating success, or a
positive number indicating a file system error.

If the user does not have sufficient privilege (as in a security violation), TACL returns a
file system error 48. This error indicates that the user cannot alter the state, although
the user may be the owner of the TACL process.

Considerations

 The term TSN-TACL refers to a TACL process that Safeguard software starts after
authenticating the user of the TACL process.

 For security reasons, most process state flags cannot be altered by non-privileged
users. Table 9-13 on page 9-357 describes valid operations:
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-356

B u ilt-In Functions and V ariab les #S E TP R O C E S S S TA TE B u ilt-In Function
 To retrieve process state information for a TACL process, use the
#GETPROCESSSTATE built-in function. For more information about process state
data, see the PROCESS_GETINFOLIST_ and PROCESS_SETINFO_ procedures
in the Guardian Procedure Calls Reference Manual.

Table 9-13. Valid Operations for #SETPROCESSSTATE Built-In Function

Flag
Regular TACL
Process

TSN-TACL
Process

TACL Process
Started By a
TSN-TACL
Process

LOGGEDON N/A Can be set but
not cleared

N/A

STOPONLOGOFF Can be set and
cleared

Can be set and
cleared

Can be set and
cleared

PROPAGATELOGON Can be cleared
but not set

Can be cleared
but not set

Can be cleared
but not set

PROPAGATESTOPONLOGOFF Can be set and
cleared

Can be set and
cleared

Can be set and
cleared

TSNLOGON Cannot be set or
cleared

Cannot be set or
cleared

Cannot be set or
cleared
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-357

B u ilt-In Functions and V ariab les #S E TS C A N B u ilt-In Function
#SETSCAN Built-In Function

Use #SETSCAN to specify the position at which the next #ARGUMENT function is to
resume processing arguments.

num

specifies the argument position. Position zero is the first character after the routine
name.

Result

#SETSCAN returns nothing.

Considerations

 To obtain the number of characters that #ARGUMENT has processed, use the
#GETSCAN built-in function.

 To determine whether an entire argument set has been processed, use the
#MORE built-in function.

#SETSCAN num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-358

B u ilt-In Functions and V ariab les #S E TS Y S TE M C LO C K B u ilt-In Function (S uper-
G roup O n ly)
#SETSYSTEMCLOCK Built-In Function (Super-Group Only)

Use #SETSYSTEMCLOCK to change the setting of the system clock. To use this
function, you must have a group ID of 255.

julian-gmt

is the current Julian timestamp.

mode

is a number that specifies the mode and source, as follows:

A relative mode implies that the julian-gmt parameter contains a microsecond-based
time adjustment, not a timestamp. This mode is used for precise time synchronization to a
hardware clock or for a moderately precise method for the operator to adjust the time. For
details about these modes, see the description of procedure SYSTEMCLOCK_SET_ in the
Guardian Procedure Calls Reference Manual.

Modes 9 and 10 are valid only if the system library contains the SYSTEMCLOCK_SET_
Guardian procedure.

tuid

is a time update ID obtained from #JULIANTIMESTAMP; use it with modes 2 and 3
to avoid conflicting changes.

Result

#SETSYSTEMCLOCK returns zero if it sets the system clock successfully; otherwise,
it returns a negative error result. If the system library contains the
SYSTEMCLOCK_SET_ Guardian procedure, #SETSYSTEMCLOCK returns the error
result defined in the "Result Codes (Error Returns)" subsection of the

#SETSYSTEMCLOCK julian-gmt mode [tuid]

Number Mode Source

0 Absolute Greenwich mean time Operator input

1 Absolute GMT Hardware clock

2 Relative GMT Operator input

3 Relative GMT Hardware clock

5 Relative GMT Force set

6 Relative GMT Force adjustment

7 Absolute GMT Force set

8 Ignored, optional Stop time adjustment

9 Rate adjustment Adjust rate

10 Ignored, optional Clear rate adjustment
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-359

B u ilt-In Functions and V ariab les #S E TS Y S TE M C LO C K B u ilt-In Function (S uper-
G roup O n ly)
SYSTEMCLOCK_SET_ description in the Guardian Procedure Calls Reference
Manual. If not, the error result is -1.

Considerations

 The #SETSYSTEMCLOCK built-in function calls the SETSYSTEMCLOCK system
procedure.

 If you use #SETSYSTEMCLOCK to set the system clock forward or backward two
minutes or less, the system adjusts the clock in small increments rather than
setting it to the new time. Adjusting the clock forward two minutes takes about 33
hours. Adjusting the clock back two minutes takes about 14 days.

If you issue two SETSYSTEMCLOCK commands in less than ten seconds, the
system stops any ongoing adjustment and sets the clock to the second value.

Example

This example calls #SETSYSTEMCLOCK and returns an error if you do not have
super-group capability:

#FRAME
#PUSH tstamp
[#IF [#SETSYSTEMCLOCK tstamp 0] |THEN|
#OUTPUT System time not changed. Insufficient capability.
]
#UNFRAME
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-360

B u ilt-In Functions and V ariab les #S E TV B u ilt-In Function U se
#SETV Built-In Function Use

#SETV to copy a string to an existing variable level.

dest-variable-level

is the variable level that is to receive the copy; it must already exist. Its original
contents are lost.

source-variable

is the name of an existing variable that contains the string to be copied. source-
string remains unchanged. It must not be of type DIRECTORY, be text enclosed
in quotation marks, or be a concatenation of such entities. The concatenation
operator is '+' (the apostrophes are required).

Result

#SETV returns nothing.

Considerations

 If the destination variable is of a different type than the source variable, the
destination variable inherits the type as well as the contents of the source variable.

 If a variable maintains a connection to a file, device, or process, such as a
connection established by #REQUESTER, and #SETV sets the variable to a new
value, the original connection is dropped because TACL deletes the original
contents of the variable.

 When the source string is a structure, the destination variable level becomes a
structure like the source structure and contains its own copy of the data.

 To change the contents of a variable level or built-in variable, use the #SET built-in
function.

 To distribute the members of a space-separated list into several individual variable
levels, use the #SETMANY built-in function.

Example

This example shows a combination of a variable name and quoted text in the source
string:

#PUSH var termname
#SET termname [#MYTERM]
#SETV var "My terminal is " '+' termname '+' " at this time."

#SETV dest-variable-level source-variable
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-361

B u ilt-In Functions and V ariab les #S E TV B u ilt-In Function U se
Assuming that the home terminal is named $HAPPY at the time the #SET function is
invoked, var then contains:

My terminal is $HAPPY at this time.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-362

B u ilt-In Functions and V ariab les #S H IFTD E FA U LT B u ilt-In V ariab le
#SHIFTDEFAULT Built-In Variable

Use #SHIFTDEFAULT to set or obtain the current default shift direction for
#SHIFTSTRING.

Result

#SHIFTDEFAULT returns DOWN, NOOP, or UP.

Considerations

 When you first log on, #SHIFTDEFAULT is initialized to UP.

 Use #PUSH #SHIFTDEFAULT (or PUSH #SHIFTDEFAULT) to save a copy of your
current default shift setting.

 Use #POP #SHIFTDEFAULT (or POP #SHIFTDEFAULT) to restore the default
shift setting from the last copy pushed.

 Use #SET #SHIFTDEFAULT (or SET VARIABLE #SHIFTDEFAULT) to set the
default shift direction (DOWN, NOOP, or UP) of shifting by #SHIFTSTRING.

The syntax of #SET #SHIFTDEFAULT is:

DOWN

causes #SHIFTSTRINGs with no UP or DOWN option to shift to lowercase.

NOOP

causes #SHIFTSTRINGs with no UP or DOWN option to do no shifting.

UP

causes #SHIFTSTRINGs with no UP or DOWN option to shift to uppercase.

#SHIFTDEFAULT

#SET #SHIFTDEFAULT { DOWN | NOOP | UP }
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-363

B u ilt-In Functions and V ariab les #S H IFTS TR IN G B u ilt-In Function
#SHIFTSTRING Built-In Function

Use #SHIFTSTRING to change text from uppercase to lowercase and from lowercase
to uppercase.

option

specifies how the text should be shifted. If you omit the option, the shift direction
defaults to the current value of the #SHIFTDEFAULT built-in variable. option is
one of these:

DOWN

specifies that the text is to be shifted to lowercase.

NOOP

specifies that the text is not to be shifted.

UP

specifies that the text is to be shifted to uppercase.

text

is the text to be shifted. If not specified, #SHIFTSTRING does nothing.

Result

#SHIFTSTRING returns the text argument, shifted as specified.

Considerations

 If you do not specify a shift direction, it defaults to the current value-DOWN, NOOP,
or UP-of the #SHIFTDEFAULT built-in variable.

 If you specify the NOOP option, or if the current #SHIFTDEFAULT setting is NOOP,
#SHIFTSTRING does nothing.

 If the CPRULES0 character-processing rules are in effect, a number of lowercase
characters (but not all) in the upper half of the international character set lose their
diacritical marks when upshifted. Subsequent downshifting does not restore them.
For example:

When the CPRULES1 rules are in effect, diacritical marks remain intact when
characters that have them are upshifted.

#SHIFTSTRING [/ option /] [text]

Upshift Downshift

ãiú = ÃIU ÃIU = ãiu
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-364

B u ilt-In Functions and V ariab les #S H IFTS TR IN G B u ilt-In Function
Example

This example illustrates the use of #SHIFTSTRING to shift the case of a variable level:

62> #PUSH vara
63> #SET vara this is a test
64> #OUTPUT [#SHIFTSTRING /UP/ [vara]]
THIS IS A TEST
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-365

B u ilt-In Functions and V ariab les #S O R T B u ilt-In Function
#SORT Built-In Function

Use #SORT to sort a space-separated list of text.

option

specifies the order in which the indicated text is to be sorted. If you omit option,
ascending order is the default. If, however, there is any chance that the text may
begin with a slash (/), you must include an option so that the slash in the text is not
interpreted as the beginning of the option. option is one of these:

ASCENDING

specifies that the text is to be sorted in ascending order according to the ASCII
collating sequence.

DESCENDING

specifies that the text is to be sorted in descending order according to the
ASCII collating sequence.

text

specifies a space-separated list to be sorted. If not specified, #SORT does nothing.

Result

#SORT returns a sorted space-separated list.

Considerations

 #SORT upshifts all characters before comparing them, so uppercase and
lowercase forms of the same character sort as equal; equal characters do not
change position with regard to each other during sorting.

 When dealing with characters from the upper half of the international character set,
the character-processing rules in effect have an influence on #SORT (see
Examples).

Examples

1. This example illustrates the use of #SORT on a specified list of characters:

65> [#DEF pogo TEXT |BODY| albert howland churchy
grundoon]
66> #OUTPUT [#SORT /DESCENDING/ [pogo]]
albert churchy grundon howland

#SORT [/ option /] [text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-366

B u ilt-In Functions and V ariab les #S O R T B u ilt-In Function
2. This example illustrates the way in which equal-valued uppercase and lowercase
characters are sorted.

67> #OUTPUT [#SORT /ASCENDING/ a B b A]
a A B b

3. These examples show the influence of character-processing rules. The first
instance shows the result when the CPRULES0 rules, which cause a number of
international characters to lose their diacritical marks when upshifted, are in effect:

68> #OUTPUT [#SORT /ASCENDING/ B a a A b]
a â A B b

The second instance shows the result when CPRULES1 rules, under which
diacritical marks remain intact during upshifting, are in effect:

69> #OUTPUT [#SORT /ASCENDING/ B a â A b]
a A B b â
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-367

B u ilt-In Functions and V ariab les #S P IFO R M A TC LO S E B u ilt-In Function
#SPIFORMATCLOSE Built-In Function

Use #SPIFORMATCLOSE to close an open EMS formatter template file.

Result

#SPIFORMATCLOSE returns nothing.

Consideration

TACL opens the formatter template file associated with =_EMS_TEMPLATES
automatically whenever you invoke a built-in function that uses a formatter file (such as
#EMSTEXT or #EMSINIT). You can use the #SPIFORMATCLOSE built-in function to
close the EMS formatter template file so that you can change the
=_EMS_TEMPLATES DEFINE and open a new template file.

For more information, see the DSM Template Services Manual.

#SPIFORMATCLOSE
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-368

B u ilt-In Functions and V ariab les #S S G E T B u ilt-In Function
#SSGET Built-In Function

Use #SSGET to retrieve binary token values from an SPI buffer, convert them to
external representation, and make that external representation accessible in the
function result.

You cannot use #SSGET to extract values of extensible structured tokens using a
token map or using a token code of type ZSPI^TDT^STRUCT. Use #SSGETV instead.

option

is any of these:

COUNT count

is the maximum number of token values to be returned. This option specifies
that the token value returned is an array of count elements, each of which is
described by token-code. If this option is omitted, it defaults to 1.

If count is greater than 1, #SSGET continues searching until it either satisfies
the requested count or reaches the end of the buffer or list.

If count is less than 1, an error occurs.

INDEX index

is the specific occurrence of token-code, starting from the beginning of the
buffer or list (an index of 1 gets the first occurrence of that token code, 2 the
second, and so on). If you omit this option or if index = 0, #SSGET returns the
next occurrence of the token code after the current position and resets the
current position to that of the token value returned.

If you want to search from the beginning of the buffer, you must supply a
nonzero index or else have previously reset the initial position with #SSPUT(V)
using ZSPI^TKN^INITIAL^POSITION or ZSPI^TKN^RESET^BUFFER.

If index is less than zero, an error occurs.

SSID ssid

is a subsystem ID that qualifies the token code; if it is omitted or zero (0.0.0), it
defaults to the subsystem ID of the current list or, if the current position is not in
a list, to the subsystem ID specified in the SPI message header. The version
field of this parameter is not used when searching the buffer.

buffer-var

is the name of the message buffer from which information is to be taken; it must be
a writable STRUCT that has been initialized by #SSINIT.

#SSGET [/ option [, option] ... /] buffer-var get-op
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-369

B u ilt-In Functions and V ariab les #S S G E T B u ilt-In Function
get-op

is one of these:

token-code

directs #SSGET to return the token value or values associated with token-
code. If token-code is a token that marks the beginning of a list, #SSGET
selects the list so that subsequent calls can retrieve tokens within the list. If
token-code is ZSPI^TKN^ENDLIST, #SSGET pops out of the list.

token-code can be any of the header tokens described for the #SSGET
Built-In Function on page 9-369 and #SSGETV Built-In Function on
page 9-374. You can also supply the token ZSPI^TKN^DEFAULT^SSID to
obtain the default subsystem ID at the current position.

ZSPI^TKN^COUNT c-token-id

directs #SSGET to return the number of occurrences of the token specified by
the token code or the token map c-token-id, starting with the occurrence
specified by index. To count all occurrences in the current list, specify an index
of 1.

If c-token-id is omitted or equal to ZSPI^VAL^NULL^TOKENCODE, and
index is omitted or zero, #SSGET counts occurrences of the current token
beginning with the current occurrence.

ZSPI^TKN^LEN l-token-id

directs #SSGET to return the byte length of the token specified by the token
code or token map l-token-id. This is the size of the buffer needed to
contain the stated occurrence of the token value. For variable-length token
values, this includes the two bytes required for the length word: The byte
length returned is token-value[0]+2.

If you omit this option, or if l-token-id is equal to
ZSPI^VAL^NULL^TOKENCODE, and index is omitted or zero, #SSGET
returns the length of the current occurrence of the current token.

If l-token-id is a token map, this operation returns the length contained in
that map; the actual value in the buffer can differ from this length. To get the
actual length of the token value in the buffer, invoke #SSGET with
ZSPI^TKN^LEN and a token code made up of ZSPI^TYP^STRUCT and the
token number from the token map. This invocation returns the length of the
structure value, including two bytes for the length field. Subtract 2 from this
value to get the length of the value itself.

ZSPI^TKN^NEXTCODE

directs #SSGET to return the next token code that is different from the current
token code, followed by the subsystem ID. The subsystem ID returned in the
result always has a version field of zero (null).
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-370

B u ilt-In Functions and V ariab les #S S G E T B u ilt-In Function
The index parameter has no effect on this operation, but if you supply it, it must
be zero.

ZSPI^TKN^NEXTTOKEN

directs #SSGET to return the very next token code, followed by the subsystem
ID. The subsystem ID returned always has a version field of zero (null).

This operation differs from ZSPI^TKN^NEXTCODE in that it always returns the
token code of the next token, whether it is the same as that of the current
token or different, and whether the token is within a list or not. The operation
returns multiple occurrences of the same token code in the same order as they
were added to the buffer with #SSPUT(V).

The index and count parameters have no effect on this operation, but if you
use index, it must be zero; count is always returned as 1 in this operation.

ZSPI^TKN^OFFSET o-token-id

directs #SSGET to return the byte offset of the token specified by the token
code or token map o-token-id. The value returned is the offset from the
start of the buffer to the value associated with the specified token code and
index. (For variable-length values, the token value begins with the length word;
the offset given is the offset to that length word.)

If you omit this option or if o-token-id is equal to
ZSPI^VAL^NULL^TOKENCODE, and index is omitted or zero, #SSGET
returns the length of the current occurrence of the current token.

Note that you must supply appropriate token code definitions. TACL merely
keys off the numeric token codes for the special operations.

TACL supports the special semantics for only those SPI special token codes
shown; any other token codes are assumed to adhere to standard semantics.

Result

#SSGET returns a numeric status code indicating the outcome of the SSGET
procedure. If the status code is zero (no error), it is followed by a space and a space-
separated list of the relevant SSGET results in the TACL external representation, as
follows:

 If you specify token-code, the number of token values returned, followed by a
space-separated list of those values in external form; variable-length token values

Note. The special operations ZSPI^TKN^NEXTCODE and ZSPI^TKN^NEXTTOKEN
return only token codes. In particular, note that tokens added to the buffer using
#SSPUTV with a token map are carried in the buffer with a token code of type
ZSPI^TYP^STRUCT. The NEXTCODE and NEXTTOKEN operations return that token
code, not the token map used with #SSPUTV.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-371

B u ilt-In Functions and V ariab les #S S G E T B u ilt-In Function
are returned in two parts-the byte length followed by the actual value-separated by
a space

 If you specify ZSPI^TKN^COUNT c-token-id, the total number of occurrences
of the specified token, starting at the occurrence specified by index If you specify
ZSPI^TKN^LEN l-token-id, the length of the token specified by the token code
or token map l-token-id

 If you specify ZSPI^TKN^NEXTCODE, the next token code that is different from
the current token code, followed by the subsystem ID

 If you specify ZSPI^TKN^NEXTTOKEN, the next token code, regardless of
whether it is different from the current token code, followed by the subsystem ID

 If you specify ZSPI^TKN^OFFSET o-token-id, the byte offset of the token
specified by token code or token map o-token-id

If the status code is not zero, its meaning is:

Considerations

 Tokens extracted by #SSGET are not deleted or removed from the buffer.

 When the current position is within a particular list, all #SSGET calls pertain only to
tokens within that list (except that header fields are always accessible). You can
exit from the list by calling #SSGET to get the ZSPI^TKN^ENDLIST token.

 When token-code is ZSPI^TKN^ENDLIST, the index and count parameters have
no effect. However, if you supply them, index must be 0 or 1; count is always
returned as 1.

Code Condition

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error

-8 Token not found

-9 Invalid token code or map

-10 Invalid subsystem ID

-11 Operation not supported

-12 Insufficient stack space
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-372

B u ilt-In Functions and V ariab les #S S G E T B u ilt-In Function
Header Tokens and Special Operation for #SSGET and #SSGETV

Table 9-14 lists the header tokens used to obtain the values of various fields of the SPI
message header. The index parameter you specify with these token codes must be 0
or 1.

Table 9-14. #SSGET(V) Header Tokens

If you specify ZSPI^TKN^LASTPOSITION or ZSPI^TKN^POSITION, the value
returned is an eight-byte position descriptor that you can later use to reset the position
with the #SSPUT or #SSPUTV special operation ZSPI^TKN^POSITION. For #SSGET,
the position descriptor is returned as a space-separated list of eight one-byte values.
For #SSGETV, the value is returned in a STRUCT consisting of eight bytes.

You can also use the special token code ZSPI^TKN^DEFAULT^SSID to obtain the
default subsystem ID at the current position, preceded by the number of token values
returned (which in this case is always 1). #SSGET(V) and #SSPUT(V) use this value
whenever the SSID parameter is omitted or null.

If the default subsystem ID comes from the owner of a list, the version field of SSID is
set to ZSPI^VAL^NULL^VERSION. Your function should therefore omit the version
field when comparing subsystem ID values for equality.

Token Code Type Item Retrieved

ZSPI^TKN^CHECKSUM INT Checksum flag

ZSPI^TKN^COMMAND ENUM Command number

ZSPI^TKN^HDRTYPE UINT Header type

ZSPI^TKN^LASTERR ENUM Last nonzero SPI status code

ZSPI^TKN^LASTERRCODE INT2 token-code, c-token-id, or
l-token-id on last error call

ZSPI^TKN^LASTPOSITION BYTE:8 Position of last token added with SSPUT

ZSPI^TKN^MAX^FIELD^VERSION UINT Maximum field version

ZSPI^TKN^MAXRESP INT Maximum response records to return

ZSPI^TKN^OBJECT^TYPE ENUM Object-type number

ZSPI^TKN^POSITION BYTE:8 Current position for #SSGET

ZSPI^TKN^SERVER^VERSION UINT Server RVU

ZSPI^TKN^SSID SSID Subsystem ID used with #SSINIT

ZSPI^TKN^USEDLEN UINT Number of bytes used in the buffer
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-373

B u ilt-In Functions and V ariab les #S S G E TV B u ilt-In Function
#SSGETV Built-In Function

Use #SSGETV to obtain binary token values from an SPI buffer and put them into a
STRUCT. You can use #SSGETV with any type of token (you must use #SSGETV with
tokens of type ZSPI^TYP^STRUCT and extensible structured tokens).

option

is any of these:

COUNT count
INDEX index
SSID ssid

These options are the same as those described under #SSGET, substituting
token-id for all references to token-code.

buffer-var

is the same as that described for #SSGET.

get-op

is one of these:

token-id

is either a token code or a token map. It directs #SSGETV to return the token
value or values associated with token-id.

If token-id is a token that marks the beginning of a list, #SSGETV selects
the list so that subsequent calls can retrieve tokens within the list. If token-
code is ZSPI^TKN^ENDLIST, #SSGETV pops out of the list.

ZSPI^TKN^COUNT c-token-id
ZSPI^TKN^LEN l-token-id
ZSPI^TKN^NEXTCODE
ZSPI^TKN^NEXTTOKEN
ZSPI^TKN^OFFSET o-token-id

are the same as those in #SSGET, but #SSGETV returns results in result-
var instead of in the function result.

#SSGETV [/ option [, option] ... /] buffer-var get-op
 result-var

Note. You must supply appropriate token code definitions. TACL supports the special
semantics for only those SPI special token codes shown. Any other token codes are
assumed to adhere to standard semantics.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-374

B u ilt-In Functions and V ariab les #S S G E TV B u ilt-In Function
result-var

is the name of the writable STRUCT into which #SSGETV is to store the data
returned. The original contents of the STRUCT are lost.

If the status code in the function result is zero (no error), the result stored in
result-var is as follows:

 If you specified token-id, the result is the value of the token.

 If you specified ZSPI^TKN^COUNT c-token-id, the result is an INT giving
the number of occurrences of the token specified by c-token-id, starting at
index.

 If you specified ZSPI^TKN^LEN l-token-id, the result is an INT giving the
length of the specified token.

 If you specified ZSPI^TKN^NEXTCODE, the result is an INT2 giving the next
token code that is different from the current token code, an INT giving the
number of contiguous occurrences of that token code, and the subsystem ID.

 If you specified ZSPI^TKN^NEXTTOKEN, the result is an INT2 giving the next
token code, whether different from or identical to the current token code,
followed by the subsystem ID.

 If you specified ZSPI^TKN^OFFSET o-token-id, the result is an INT2 giving
the byte offset of the token specified by o-token-id.

Result

#SSGETV returns a numeric status code indicating the outcome of the SSGET
procedure. The meaning of the status code is as follows:

If no error occurred, and if get-op is token-id, the status code is followed by a
space and the number of token values returned.

Code Condition

0 No error

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error

-8 Token not found

-9 Invalid token code or map

-10 Invalid subsystem ID
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-375

B u ilt-In Functions and V ariab les #S S G E TV B u ilt-In Function
Considerations

 Tokens extracted by #SSGETV are not deleted or removed from the buffer.

 When the current position is within a particular list, all #SSGETV calls pertain only
to tokens within that list (except that header fields are always accessible). You can
exit from the list by calling #SSGETV to get the ZSPI^TKN^ENDLIST token.

 When token-id is ZSPI^TKN^ENDLIST, the index and count parameters have
no effect. However, if you supply them, index must be 0 or 1; count is always
returned as 1.

 When using #SSGETV with a token map for the token-id parameter, the map
can specify a structure version that is longer or shorter than the structure contained
in the buffer. If the requested version is longer than the version in the buffer,
#SSGETV calls SSNULL to set to null values the new fields that are not obtained
from the buffer. If the requested version is shorter than the one in the buffer,
#SSGETV returns only the requested length.

 If the data returned by #SSGETV is longer than the data area of the STRUCT
identified by result-var, TACL discards the excess bytes without notification. If
the data is shorter than the data area of result-var, TACL sets the entire
STRUCT to its default values, then overwrites the beginning of the data bytes of
the STRUCT with the returned data. No type conversions of any kind are done.
Consequently, if the token retrieved is of type ZSPI^TYP^INT, for instance, and the
result-var STRUCT consists of a single field of type INT2, the token value
appears in the high-order 16 bits of the INT2 field, not the low-order 16 bits.

 If you specified the COUNT option, TACL puts all occurrences of the token value
into the STRUCT exactly as returned by #SSGETV, subject to the size constraints
mentioned in the previous consideration. If the tokens are variable-length tokens,
each token value consists of a length word followed by the actual value, and the
actual value is word-aligned.

 You can pass header tokens and one special operation in token-id to get
corresponding values. They are described under “Header Tokens and Special
Operation for #SSGET and #SSGETV” in the explanation of #SSGET.

Examples

1. This example shows how to declare STRUCTs that allow you to extract individual
fields of the token code or the subsystem ID returned by #SSGETV with the
ZSPI^TKN^NEXTCODE or ZSPI^TKN^NEXTTOKEN option:

?SECTION decompose_ssid STRUCT
 BEGIN
 SSID ss;
 STRUCT z^ssid REDEFINES ss;
 BEGIN
 CHAR z^owner(0:7);
 INT z^number;
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-376

B u ilt-In Functions and V ariab les #S S G E TV B u ilt-In Function
 UINT z^version;
 END;
 END;

?SECTION nexttoken_return STRUCT
 BEGIN
 STRUCT tkn ; LIKE zspi^ddl^tokencode;
 STRUCT ssid; LIKE decompose_ssid;
 END;

?SECTION nextcode_return STRUCT
 BEGIN
 STRUCT tkn ; LIKE zspi^ddl^tokencode;
 INT contiguous_occurrences;
 STRUCT ssid; LIKE decompose_ssid;
 END;

2. This routine uses these STRUCT declarations to compare two subsystem IDs
returned by #SSGETV with ZSPI^TKN^NEXTCODE or ZSPI^TKN^NEXTTOKEN,
ignoring the version field:

?SECTION same_ssid ROUTINE == <ssid1> <ssid2>
== Returns TRUE if two SSIDs are the same except for
== the version field
#FRAME
#PUSH sstext
#DEF ss1 STRUCT LIKE decompose_ssid;
#DEF ss2 STRUCT LIKE decompose_ssid;
#IF{SINK} [#ARGUMENT/VALUE sstext/ SUBSYSTEM]
#SET ss1 [sstext]
#IF{SINK} [#ARGUMENT/VALUE sstext/ SUBSYSTEM]
#SET ss2 [sstext]
#RESULT [#COMPUTE [#COMPAREV ss1:z^ssid:z^owner(0:7)
 ss2:z^ssid:z^owner(0:7)]
 AND [#COMPAREV ss1:z^ssid:z^number
 ss2:z^ssid:z^number]]
#UNFRAME
{same_ssid}
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-377

B u ilt-In Functions and V ariab les #S S IN IT B u ilt-In Function
#SSINIT Built-In Function

Use #SSINIT to initialize a STRUCT as an SPI message buffer, preparing it for use
with the other #SSxxx built-in functions. #SSINIT gives the buffer an appropriate
header and, optionally, adds parameter information.

Use #SSINIT only to initialize a buffer for a command or a response; do not use it to
initialize an event-message buffer.

TYPE 0

declares the header type of the SPI message buffer being initialized. Type 0, a
command or response header, is the default. Type 0 is the only type supported by
TACL at this time.

buffer-var

is the name of a writable STRUCT to be used as an SPI buffer. #SSINIT
automatically passes to the SSINIT procedure the data length of the STRUCT. Any
current contents of the STRUCT are lost.

ssid

is the subsystem ID of the subsystem. For requester functions, this subsystem ID
identifies the target subsystem; the version field must identify the version of the
subsystem definitions that your requester function is using. For server functions
(subsystems), this subsystem ID must identify your server, including its version.

command

is the command number.

type-0-option

can be any of these:

CHECKSUM num

is the checksum flag. If num is zero, checksum protection of the data portion of
the buffer is disabled; if it is a nonzero value, checksum protection of the data
portion is enabled. If you omit this option, it defaults to zero.

MAXRESPONSES num

is the maximum number of response records to be returned by the subsystem
in each reply message. A value of zero specifies one response record per
reply, not enclosed in a list. Any value greater than zero specifies up to that
many response records, each enclosed in a list. A value of -1 specifies as

#SSINIT [/ TYPE 0 /] buffer-var ssid command
 [/ type-0-option [, type-0-option] ... /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-378

B u ilt-In Functions and V ariab les #S S IN IT B u ilt-In Function
many response records as can fit in the buffer, each enclosed in a list. If you
omit this option, it defaults to zero.

OBJECT num

is the object type. If you omit this option, it defaults to
ZSPI^VAL^NULL^OBJECT^TYPE (zero).

SERVERVERSION num

is the server version number, normally provided only by subsystems or by
other programs or functions that act as servers. This number is a 16-bit
unsigned integer value representing the RVU of the subsystem or server.
SSINIT puts this value in the header token ZSPI^TKN^SERVER^VERSION for
use in RVU compatibility checking. If you omit this option, the server RVU
defaults to zero.

Result

#SSINIT returns a numeric status code indicating the outcome of the SSINIT
procedure, as follows:

Consideration

For the SSID parameter, you generally use the subsystem ID defined by the target
subsystem. For most subsystems, the subsystem ID has a name of the form
subsys^VAL^SSID.

Example

Here is an example using the TMF subsystem:

#SSINIT buf [ZTMF^VAL^SSID] [ZSPI^VAL^GETVERSION]

Code Condition

0 No error

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-7 Internal error

-10 Invalid subsystem ID

-12 Insufficient stack space
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-379

B u ilt-In Functions and V ariab les #S S M O V E B u ilt-In Function
#SSMOVE Built-In Function

Use #SSMOVE to copy tokens from one message buffer to another. #SSMOVE
performs a sequence of #SSGETV and #SSPUTV operations.

option

can be any of these:

COUNT count

specifies the maximum number of token values to move, unless token-id is
a list token; in that case, count specifies the maximum number of lists to move.
If you omit this option, count defaults to 1.

DINDEX dest-index

if dest-index is greater than zero, it identifies the first occurrence of token-
id to be replaced in the destination buffer. A value of 1 specifies that
replacement is to start with the first occurrence of the token code, 2 specifies
the second occurrence, and so on. If the specified occurrences are not found in
the destination buffer, #SSMOVE appends the tokens being moved to the end
of the buffer.

If dest-index is zero, it directs #SSMOVE to add the tokens from the source
buffer to the end of the destination buffer. If you omit this option, dest-index
defaults to zero.

SINDEX source-index

if source-index is greater than zero, it identifies the first occurrence of
token-id to be copied from the source buffer. One occurrence or multiple
occurrences can be moved, depending on the value of the count parameter. A
source-index value of 1 specifies that copying is to start with the first
occurrence of the token code, 2 specifies the second occurrence, and so on.

If source-index is zero, #SSMOVE selects the next occurrence of the token
code after the current position in the source buffer. If you omit this option,
source-index defaults to zero.

SSID ssid

is a subsystem ID that qualifies the token ID. If you omit it, or if it is equal to
zero (0.0.0), it defaults to the subsystem ID of the current list or, if the current
position is not in a list, to the subsystem ID specified in the SPI message
header (ZSPI^TKN^SSID). The version field of SSID is not used in searching
the source buffer.

#SSMOVE [/ option [, option] ... /]
 source-var dest-var token-id
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-380

B u ilt-In Functions and V ariab les #S S M O V E B u ilt-In Function
source-var

is the name of the source message buffer variable level, from which the specified
token or tokens are to be copied. source-var must be a writable STRUCT that
has been initialized with #SSINIT.

dest-var

is the name of the destination message buffer variable level, to which the specified
token or tokens are to be copied. dest-var must be a writable STRUCT that has
been initialized with #SSINIT.

token-id

is a token code or a token map that identifies the token to be moved. That token
must be present in the source buffer. The token ID can refer to a simple token, an
extensible structured token, or a list token. If token-id identifies a list token,
#SSMOVE moves that token, its associated end-list token, and all tokens in
between.

Result

#SSMOVE returns a numeric status code indicating the outcome of the SSMOVE
procedure, as follows:

If the status code is zero (no error), it is followed by a space and the count of the token
values or lists moved.

Code Condition

0 No error

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error

-8 Token not found

-9 Invalid token code or map

-10 Invalid subsystem ID

-11 Operation not supported

-12 Insufficient stack space
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-381

B u ilt-In Functions and V ariab les #S S M O V E B u ilt-In Function
Considerations

 #SSMOVE does not alter any tokens copied from the source buffer.

 After a successful copy, #SSMOVE changes the source buffer position for a
subsequent #SSGET(V) to the position of the last token moved.

 When #SSMOVE copies a token identified by a token map, it truncates or pads the
value according to the map specifications, and adjusts the
ZSPI^TKN^MAX^FIELD^VERSION header field of the destination buffer
appropriately.

 You can use #SSMOVE to move an incomplete list (one with no end-list token) if,
and only if, you omit the DINDEX option or specify dest-index as zero. If you
supply a nonzero dest-index, meaning that you are requesting a replacement
operation, an incomplete list causes #SSMOVE to return a “token not found” status
code (-8).

 If an error occurs on #SSMOVE, you can set the ZSPI^TKN^LASTERR and
ZSPI^TKN^LASTERRCODE indications in either the source buffer or the
destination buffer, depending on whether the error occurred on the logical
#SSGETV or #SSPUTV part of the copy.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-382

B u ilt-In Functions and V ariab les #S S N U LL B u ilt-In Function
#SSNULL Built-In Function

Use #SSNULL to initialize an extensible structured token before setting values within
the structure.

token-map

is a token map to be used in initializing the fields of the structure.

struct

is the STRUCT to be initialized with null values.

Result

#SSNULL returns a numeric status code indicating the outcome of the SSNULL
procedure, as follows:

Note. A macro or routine must use #SSNULL before you place values in the fields of an
extensible structured token, even if all currently defined fields are to be set explicitly. Using
#SSNULL allows the routine to continue to work with future software RVUs.

#SSNULL token-map struct

Code Condition

0 No error

-3 Missing parameter

-4 Invalid parameter address

-7 Internal error

-9 Invalid token code or map
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-383

B u ilt-In Functions and V ariab les #S S P U T B u ilt-In Function
#SSPUT Built-In Function

Use #SSPUT to convert token values from external representation to binary form and
put them into an SPI buffer previously initialized by #SSINIT.

You cannot use #SSPUT to insert values of extensible structured tokens using a token
map or using a token code of type ZSPI^TDT^STRUCT. Use #SSPUTV instead.

option

is either of these:

COUNT count

is an integer in the range 1 through 65535 that specifies the token count; you
must supply that number of token values. If count is greater than 1, it states
that token-value is a space-separated list of count elements, each of which
is described by token-id. (Note that you must state a variable-length value in
two parts-the byte length, followed by the actual value-separated by a space.)
If you omit COUNT, you must supply exactly one value (the default).

If token-code denotes a special operation whose semantics do not allow a
token value, you must omit COUNT. For the special token code
ZSPI^TKN^DELETE, you must supply a count value; #SSPUT interprets it as
the index value of the token code to be deleted.

SSID ssid

specifies the subsystem ID that qualifies the token code. If you omit this option
or if SSID is zero (0.0.0), ssid defaults to the subsystem ID of the current list
or, if the current position is not in a list, to the subsystem ID specified in the SPI
message header (ZSPI^TKN^SSID).

buffer-var

is the name of the SPI message-buffer variable level into which tokens are to be
placed; the variable level must be a writable STRUCT that has been initialized by
#SSINIT.

token-code

either identifies the token whose token value is being supplied or denotes a special
operation (described under “Header Tokens and Special Operations for #SSPUT
and #SSPUTV,” later in this subsection).

#SSPUT [/ option [, option] ... /] buffer-var
 token-code [token-value [token-value] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-384

B u ilt-In Functions and V ariab les #S S P U T B u ilt-In Function
token-value

is the token value in external representation. Its data representation is determined
by the token-type field of token-code.

Result

#SSPUT returns a numeric status code indicating the outcome of the SSPUT
procedure, as follows:

Considerations

 You can omit the token-value parameter if the token length specified by token-
code is zero; otherwise, the token-value parameter is required.

 Specifying a count value greater than 1 is equivalent to calling #SSPUT count
times in succession without the COUNT option (but supplying a new token-value
before each call).

 If count is greater than 1 and the token is of variable length, each token value must
be an even number of bytes in length to ensure word alignment.

 The order in which tokens are added to the buffer is not significant, except in the
cases of:

 #SSPUT calls that start and end lists (using tokens such as
ZSPI^TKN^DATALIST, ZSPI^TKN^ERRLIST, and ZSPI^TKN^ENDLIST).

 A few subsystem-specific exceptions mentioned in the subsystem manuals
(the ZEMS^TKN^SUBJECT^MARK token in an event message, for example).

Code Condition

0 No error

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error

-8 Token not found

-9 Invalid token code or map

-10 Invalid subsystem ID

-11 Operation not supported

-12 Insufficient stack space
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-385

B u ilt-In Functions and V ariab les #S S P U T B u ilt-In Function
 Adding a token to the buffer with #SSPUT does not affect the current position for
subsequent calls to #SSGET or #SSGETV.

Header Tokens and Special Operations for #SSPUT and #SSPUTV

Header tokens for #SSPUT and #SSPUTV include tokens to enable or disable
checksum protection, specify the maximum-response value, restore the current
position to an earlier value, and specify the server RVU. These tokens are present in
the buffer, but have special characteristics that distinguish them from other tokens.
Special operations for #SSPUT and #SSPUTV include clearing the last-error
information, flushing data from the buffer, deleting tokens, and initializing the current
position. These tokens are not in the buffer, but simply serve as parameters to
#SSPUT and #SSPUTV.

Table 9-15 lists the header tokens you can supply to #SSPUT(V) to set or change the
corresponding values, and also the special tokens you can pass to #SSPUT and
#SSPUTV to perform special operations.

For some of these tokens, when you pass them to #SSPUT or #SSPUTV in the token-
code parameter, special considerations apply to other parameters involved.

ZSPI^TKN^CHECKSUM. Use this token code with a nonzero token-value to
enable checksum protection of the data portion of the buffer; use a zero token-value
to disable it (the header is always protected by a checksum).

Table 9-15. #SSPUT(V) Header Tokens and Special Operations

Token Code Type Item retrieved

ZSPI^TKN^CHECKSUM INT Enables or disables buffer checksum
protection

ZSPI^TKN^CLEARERR none Clears last-error information to zero

ZSPI^TKN^DATA^FLUSH none Flushes all data in message buffer at or
after current position

ZSPI^TKN^DELETE INT2 Deletes specified token code from buffer

ZSPI^TKN^INITIAL^POSITION INT Resets position to start of buffer or start of
current list

ZSPI^TKN^MAXRESP INT Sets maximum-responses header token

ZSPI^TKN^POSITION BYTE:8 Restores position saved earlier with
#SSGET or #SSGETV

ZSPI^TKN^RESET^BUFFER UINT Resets maximum buffer length, clear last-
error information, and reset position to
start in an SPI buffer received from
another process

ZSPI^TKN^SERVER^VERSION UINT Sets server-RVU header token

ZSPI^TKN^CHECKSUM INT Enables or disables buffer checksum
protection
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-386

B u ilt-In Functions and V ariab les #S S P U T B u ilt-In Function
ZSPI^TKN^CLEARERR. Use this token code to clear the last-error information to
zero. When using this token code, you must omit token-value and the COUNT
option. You could use this operation before issuing a series of #SSGET(V) or
#SSPUT(V) calls that are followed by a check of the last error. You need this operation
only if you use #SSPUT or #SSPUTV to check the header token
ZSPI^TKN^LASTERR.

ZSPI^TKN^DATA^FLUSH. Use this token code to flush all information in the message
buffer located at or after the current position. You must omit token-value and the
COUNT option.

ZSPI^TKN^DELETE. Use this token code to delete a token code from the buffer.
Specify the token code to be deleted in token-value. You can use the SSID option, if
needed, to qualify token-code. If token-code is a token that begins a list, the
operation deletes the entire list.

You must use the COUNT option; #SSPUT and #SSPUTV interpret count as the index
value of the token code to be deleted.

ZSPI^TKN^INITIAL^POSITION. Use this token code to reset the current position as
specified by token-value. If token-value is ZSPI^VAL^INITIAL^BUFFER (zero),
the position is reset to the beginning of the buffer. If token-value is
ZSPI^VAL^INITIAL^LIST (-1), the position is reset to the beginning of the current list.

ZSPI^TKN^MAXRESP. Use this token code to set the header field that specifies the
maximum number of responses to return in a single reply message. A token-value
of zero (the default) specifies one response record per reply, not enclosed in a list. Any
token-value greater than zero specifies up to that number of response records,
each enclosed in a list. A token-value of -1 specifies as many response records as
can fit, each enclosed in a list.

You must omit the COUNT option.

ZSPI^TKN^POSITION. Use this token code to restore a position previously saved
using #SSGET or #SSGETV. The token value is a position descriptor (either eight
separate byte values for #SSPUT or an eight-byte STRUCT for #SSPUTV). The buffer
contents that precede the previously saved position must not have been modified by
ZSPI^TKN^DELETE, ZSPI^TKN^DATAFLUSH, or #SSMOVE operations, or this
operation could corrupt the buffer and cause later operations to give unpredictable
results. If token-value is zero or omitted, this operation sets the current position to
the start of the buffer.

ZSPI^TKN^RESET^BUFFER. Use this token before extracting tokens from an SPI
buffer received (in either a request or a reply) from another process. This operation
performs three actions:

 It resets the maximum buffer length to the value given in token-value.

Note. The ZSPI^TKN^DATA^FLUSH and ZSPI^TKN^DELETE operations do not update the
header token ZSPI^TKN^MAX^FIELD^VERSION, which can cause that field to indicate a
higher version level than is actually contained in the buffer.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-387

B u ilt-In Functions and V ariab les #S S P U T B u ilt-In Function
 It clears the last-error information to null values (equivalent to the action of
ZSPI^TKN^CLEARERR).

 It resets the current position to the beginning of the buffer (equivalent to the action
of ZSPI^TKN^INITIAL^POSITION with ZSPI^VAL^INITIAL^BUFFER).

If token-value is less than the actual number of bytes used in the buffer, as given in
the header token ZSPI^TKN^USEDLEN, this operation returns an SPI error -5 (buffer
full). SPI still resets the maximum buffer length in the SPI message header, causing
subsequent calls for that buffer to fail with error -1 (invalid buffer format).

ZSPI^TKN^SERVER^VERSION. Use this token code to set the header field
containing the RVU of the server. For token-value, supply an unsigned integer that
represents the appropriate RVU. For example, if the server is a running RVU C20,
specify token-value as the unsigned integer 17172, representing a “C” (character
number 67) in the left byte (256 x 67 = 17152) and 20 in the right byte.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-388

B u ilt-In Functions and V ariab les #S S P U TV B u ilt-In Function
#SSPUTV Built-In Function

Use #SSPUTV to move binary token values from a variable level into an SPI message
buffer. You can use #SSPUTV with any type of token, but you must use #SSPUTV with
tokens of type ZSPI^TYP^STRUCT and extensible structured tokens).

option

is either of these:

COUNT count

is the token count, an integer in the range 1 through 65535. If greater than 1,
count specifies that source-var contains an array of count elements, each
of which is described by token-id. If you omit this option, it defaults to 1.

If token-id is one of the special SPI token codes whose semantics do not
allow a token value, you must omit the COUNT option. For the special token
code ZSPI^TKN^DELETE, you must supply COUNT; in this case, #SSPUTV
interprets count as the index value of the token code to be deleted.

SSID ssid

specifies a subsystem ID that qualifies the token code. If you omit this option,
or if SSID is zero (0.0.0), it defaults to the subsystem ID of the current list or, if
the current position is not in a list, to the subsystem ID specified in the SPI
message header (ZSPI^TKN^SSID).

buffer-var

is the name of the SPI message-buffer variable level into which tokens are to be
placed.

token-id

is a token code or a token map. It either identifies the token being supplied or
denotes a special operation (described in the previous section under “Header
Tokens and Special Operations for #SSPUT and #SSPUTV” in the description of
the #SSPUT built-in function).

source-var

is the name of the variable level, of type STRUCT, from which #SSPUTV is to
obtain the binary token values. The contents of the STRUCT are not altered.

#SSPUTV [/ option [, option]... /] buffer-var
 token-id source-var
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-389

B u ilt-In Functions and V ariab les #S S P U TV B u ilt-In Function
Result

#SSPUTV returns a numeric status code indicating the outcome of the SSPUT
procedure, as follows:

Considerations

 If the token length specified by token-id is zero, you must supply a variable level for
source-var, but its contents do not matter.

 Specifying a count parameter greater than 1 for #SSPUTV is equivalent to calling
#SSPUTV count times without the COUNT option (but supplying a new token-
value before each call).

 The order in which tokens are added to the buffer is not significant except in the
cases of:

 #SSPUTV calls with token codes for tokens that start and end lists
(ZSPI^TKN^DATALIST, ZSPI^TKN^ERRLIST, ZSPI^TKN^LIST, and
ZSPI^TKN^ENDLIST).

 A few subsystem-specific exceptions mentioned in the subsystem manuals (for
example, the ZEMS^TKN^SUBJECT^MARK token in an event message).

 If the data in source-var is longer than the data area provided by #SSPUTV, the
excess bytes are ignored without any notification. If the data in source-var is
shorter than the data area provided, #SSPUTV sets the remainder of the token
value to unspecified values.

Code Condition

0 No error

-1 Invalid buffer format

-2 Invalid parameter value

-3 Missing parameter

-4 Invalid parameter address

-5 Buffer full

-6 Invalid checksum

-7 Internal error

-8 Token not found

-9 Invalid token code or map

-10 Invalid subsystem ID

-11 Operation not supported

-12 Insufficient stack space
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-390

B u ilt-In Functions and V ariab les #S S P U TV B u ilt-In Function
 If you specify the COUNT option, #SSPUTV expects the value of source-var to
be an array of count values of the type of token-value. Variable-length token
values must be word-aligned.

 Adding a token to the buffer with #SSPUTV does not affect the current position for
subsequent calls to #SSGET or #SSGETV.

 When you supply a token map for token-id, #SSPUTV uses the version and null-
value information in the token map, if necessary, to update the header token
ZSPI^TKN^MAX^FIELD^VERSION. The token map is not stored in the buffer;
instead, #SSPUTV creates a token code consisting of token type
ZSPI^TYP^STRUCT and the token number from the map.

 SPI defines a number of token codes for use with #SSPUT and #SSPUTV to set
the values of header tokens and perform special operations. These are described
in the Section 8 under “Header Tokens and Special Operations for #SSPUT and
#SSPUTV” in the description of the #SSPUT built-in function.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-391

B u ilt-In Functions and V ariab les #S TO P B u ilt-In Function
#STOP Built-In Function

Use #STOP to request termination of a process that you started. #STOP passes the
name or CPU,PIN of the process to the STOP operating system procedure. #STOP
can also pass process deletion message fields that you specify.

option

can be any of these:

COMPLETIONCODE num

specifies the completion code to be placed in the process deletion message;
num is a signed integer from -32768 to +32767. Numbers from -32768 to -1
are reserved for use by the TACL software product. Numbers from 0 to 999 are
reserved for shared use by both the TACL software product and the user.
Numbers from 1000 to 32767 are reserved for use by customers. See the
Guardian Procedure Calls Reference Manual for a list of defined completion
codes.

ERROR

changes the behavior of #STOP as described under “Result.”

SUBSYS ssid

identifies the subsystem associated with the process. For information about
subsystem ID and other SPI constructs, refer to the TACL Programming Guide.

TERMINATIONINFO num

specifies information about the termination; num is a signed integer from -
32768 to +32767.

\node-name

is the name of the system where the process resides.

$process-name

is the name of the process.

cpu,pin

indicates the CPU number and process number for the process you want to stop.

#STOP [/ option [, option] ... /]
 [[\node-name.]{$process-name | cpu,pin } [text]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-392

B u ilt-In Functions and V ariab les #S TO P B u ilt-In Function
text

is text, 1 to 80 characters, for the process deletion message. Leading and trailing
spaces are suppressed.

Result

If you do not specify the ERROR option, the #STOP built-in function returns 0 if the
STOP system procedure cannot make a successful request to stop the process. If the
request is submitted successfully, #STOP returns -1. The designated process might or
might not be stopped, depending on the stop mode of the process and the authority of
the caller.

If you include the ERROR option, the #STOP built-in function returns the file-system
error code passed to it by the STOP system procedure. In this case, zero indicates no
error. The #STOP built-in function returns 638 or 639 if the process is queued for
stopping but has not actually stopped.

If #STOP stops the TACL process from which you issued it, #STOP returns its result
but the TACL process cannot receive it.

Considerations

 A successful #STOP result does not indicate that the process has stopped. A
successful result indicates that the stop request was submitted successfully.

 If the process cannot be terminated immediately, the STOP system procedure
queues the request.

 If you omit the process designation (process name or CPU,PIN) #STOP stops the
current default process (the process last started by TACL or for which TACL most
recently paused), if it is still running. If there is no current default process, you must
include the process designation. You can examine the default process with the
#PROCESS built-in function.

 You must supply the process designation if you wish to include the text argument.

 COMPLETIONCODE, SUBSYS, TERMINATIONINFO, and text are ignored,
except when terminating your current TACL process (or, if it is a process pair,
either its primary or backup process). If you are stopping your TACL, those items
you specify are included in the “stop” system message.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-393

B u ilt-In Functions and V ariab les #S U S P E N D P R O C E S S B u ilt-In Function
#SUSPENDPROCESS Built-In Function

Use #SUSPENDPROCESS to suspend a process that you started. It invokes the
SUSPENDPROCESS operating system procedure.

\node-name

is the name of the system where the process resides.

$process-name

is the name of the process.

cpu,pin

indicates the CPU number and process number for the process you want to
suspend.

Result

#SUSPENDPROCESS returns a nonzero value if successful; otherwise, it returns
zero.

Considerations

 You can omit the process specification ($process-name or cpu,pin) if a current
default process exists. The default process is set by #NEWPROCESS or #PAUSE
and clears when that process terminates. You can examine the default process
with the #PROCESS built-in function.

 Use #ACTIVATEPROCESS to terminate the suspension.

#SUSPENDPROCESS [[\node-name.]{$process-name | cpu,pin}]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-394

B u ilt-In Functions and V ariab les #S W ITC H B u ilt-In Function
#SWITCH Built-In Function

Use #SWITCH to make your TACL backup process become the primary process and
initialize itself as though you had just logged on to it. The former primary process
becomes the backup.

Considerations

 Your TACL must have a backup process. To create a backup process, include a
backup specification in the #NEWPROCESS call or RUN command, or use the
BACKUPCPU command.

 Do not include #SWITCH in an IN file specified in a command to run TACL; if you
do so, TACL performs the switch before processing other commands-and each
switch causes an initialization-so that the TACL process continues to switch
processors.

 #SWITCH establishes an initial logon state, resetting all ASSIGNs, PARAMs, and
DEFINEs, invoking the TACLLOCL file and your TACLCSTM file, and setting the
history buffer index to 1.

#SWITCH
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-395

B u ilt-In Functions and V ariab les #S Y S TE M B u ilt-In Function
#SYSTEM Built-In Function

Use #SYSTEM to change your current default node name. This function is meaningful
only on systems that are in a network.

\node-name

specifies the name of the new current default system.

Result

#SYSTEM returns nothing.

Considerations

 If you omit \node-name, your saved default system becomes your current default
system.

 If you are running a remote TACL process, entering SYSTEM with no following
parameters establishes that remote system (not the local system to which your
terminal is connected) as your current default system.

 These function calls are not equivalent:

14> #SYSTEM \ local-node-name

14> #SYSTEM

The first invocation causes the network restrictions on file-name lengths to take
effect; the second does not. See the Expand Network Management and
Troubleshooting Guide for information on network file-name restrictions.

#SYSTEM [\node-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-396

B u ilt-In Functions and V ariab les #S Y S TE M N A M E B u ilt-In Function
#SYSTEMNAME Built-In Function

Use #SYSTEMNAME to obtain the name of a system, given its network node number.

system-number

is the number of the system whose name is to be found. The system number is an
integer in the range 0 to 254.

Result

#SYSTEMNAME returns the name of the system if the system can be reached, -2 if all
paths to the system are down, or -1 if the system is not defined.

Consideration

To obtain the network node number of a system, use the #SYSTEMNUMBER built-in
function.

Example

These code tests for system availability and displays the node name if the system is
available:

?SECTION getname MACRO
#PUSH name
#SET name [#SYSTEMNAME %1%]
[#CASE [name]
 | -2 | #OUTPUT System %1% is not available
 | -1 | #OUTPUT System %1% is not defined
 |OTHERWISE| #OUTPUT System %1% (node name [name]) is &
 available
]

#SYSTEMNAME system-number
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-397

B u ilt-In Functions and V ariab les #S Y S TE M N U M B E R B u ilt-In Function
#SYSTEMNUMBER Built-In Function

Use #SYSTEMNUMBER to obtain the network node number of a system, given its
name.

\node-name

is the name of the system whose number is to be found.

Result

#SYSTEMNUMBER returns the number of the system if the system can be reached, -2
if all paths to the system are down, or -1 if the system is not defined.

Consideration

To obtain the name of a system, use the #SYSTEMNAME built-in function.

Example

These code tests for system availability and displays the system number if the system
is available:

?SECTION getnum MACRO
#PUSH num
#SET num [#SYSTEMNUMBER %1%]
[#CASE [num]
 | -2 | #OUTPUT %1% is not available
 | -1 | #OUTPUT %1% is not defined
 |OTHERWISE| #OUTPUT %1% (system number [num]) is &
 available
]

#SYSTEMNUMBER \node-name
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-398

B u ilt-In Functions and V ariab les #TA C LO P E R A TIO N B u ilt-In Function
#TACLOPERATION Built-In Function

Use #TACLOPERATION to determine whether TACL is reading commands from IN or
$RECEIVE.

Result

#TACLOPERATION returns REQUESTER or SERVER depending on whether TACL is
receiving its command stream from IN (REQUESTER) or $RECEIVE (SERVER).

#TACLOPERATION
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-399

B u ilt-In Functions and V ariab les #TA C LS E C U R ITY B u ilt-In V ariab le
#TACLSECURITY Built-In Variable

Use #TACLSECURITY to read the current TACL security, which indicates who can
open this TACL process.

Result

#TACLSECURITY returns a pair of characters, enclosed in quotes, that represent the
current TACL security. The first character represents the criterion that determines
whether to allow a process to open the TACL process’s $RECEIVE for writing. The
second character determines whether to allow an opener with a qualifying name to
transfer data to or from a #SERVER. For example:

13> #TACLSECURITY

#TACLSECURITY expanded to:

"NN"

The characters are the same as for operating system file security. They are as follows:

Considerations

 When you first log on, #TACLSECURITY is initialized to “NN.”

 TACL provides an ENQUIRY feature that allows users to obtain the last 22 lines
written to a TACL OUT file. To prevent users from accessing data written by a
TACL process to its OUT file, set TACL security to an appropriate value.

 Use #PUSH #TACLSECURITY (or PUSH #TACLSECURITY) to save a copy of
your current TACL security.

 Use #POP #TACLSECURITY (or POP #TACLSECURITY) to restore the TACL
security from the last copy pushed.

 Use #SET #TACLSECURITY (or SET VARIABLE #TACLSECURITY) to define the
security applied to write operations to your TACL attempted by other processes.

#TACLSECURITY

O allows access only to the Owner on the local system

G allows access to anyone in your Group on your local system

A allows access to Anyone on your local system

U allows access only to the User (owner) on the network

C allows access by any member of your Community on the network

N allows access by anyone on the Network

- allows access only to the local super ID
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-400

B u ilt-In Functions and V ariab les #TA C LS E C U R ITY B u ilt-In V ariab le
The syntax of #SET #TACLSECURITY is:

"security"

is a two-character security definition as described previously. You must include
the quotation marks.

#SET #TACLSECURITY "security"
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-401

B u ilt-In Functions and V ariab les #TA C LV E R S IO N B u ilt-In Function
#TACLVERSION Built-In Function

Use #TACLVERSION to determine which RVU of TACL you are using.

Result

With the REVISION option, #TACLVERSION returns only the RVU-level portion of the
version identifier, followed by a revision level identifier, in the form:

Xnn nnnn

where Xnn is the RVU identifier (C20, for example) and nnnn is a four-digit number
identifying the revision level within that RVU. That number is incremented whenever an
interim product modification is made to the RVU.

This form of revision number can be collated. For example, if a macro operation
depends on a feature released in a particular RVU of TACL, such as C20 0011, the
macro can test to see if the current RVU is equal to or greater than that RVU:

[#IF "[#TACLVERSION/REVISION/]" '>=' "C20 0011" |THEN| ...

Without the REVISION option, #TACLVERSION returns the current TACL RVU
identifier.

Examples

1. This example illustrates the result of #TACLVERSION:

17> #OUTPUT [#TACLVERSION]
T9205D30 - 26MAR1999

1. This code disassembles a complete TACL RVU:

[#DEF break^version MACRO |BODY|

== First argument is var-level to receive product
== Second argument is var-level to receive version
== Third argument is var-level to receive date

#FRAME

== Make a structure to allow access to individual
== characters:

[#DEF tv STRUCT
BEGIN
 CHAR fld (0:19)

#TACLVERSION [/ REVISION /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-402

B u ilt-In Functions and V ariab les #TA C LV E R S IO N B u ilt-In Function
END;
]

== Put TACL version into the structure

#SET tv [#TACLVERSION]

== Obtain the fields

#SET %1% [tv:fld(0:4)] == T9205 Product number
#SET %2% [tb:fld(5:7)] == Xnn Version

== Ignore 8:10 == " - " (formatting)

#SET %3% [tv:fld(11:19)] == ddMMMyyyy Date

== Clean up and exit

#UNFRAME
]

To use this macro, define variables to hold the components of the TACL product
number and invoke the macro to assign those components:

12> #PUSH product version date
13> BREAK^VERSION product version date
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-403

B u ilt-In Functions and V ariab les #T IM E S TA M P B u ilt-In Function
#TIMESTAMP Built-In Function

Use #TIMESTAMP to obtain a three-word timestamp from the CPU interval clock in the
TACL CPU. The three-word timestamp is also known as a local timestamp and
represents the number of centiseconds (.01 second) since 00:00 December 31, 1974.

Result

#TIMESTAMP returns the result of the TIMESTAMP operating system procedure.

Consideration

You can convert the result of #TIMESTAMP to a numeric date and time by using
#CONTIME.

Example

This example illustrates the #TIMESTAMP result:

15> #OUTPUT [#TIMESTAMP]
16> 39950986284

#TIMESTAMP
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-404

B u ilt-In Functions and V ariab les #TO S V E R S IO N B u ilt-In Function
#TOSVERSION Built-In Function

Use #TOSVERSION to obtain an identifying letter and number that indicates which
RVU of the operating system is running.

\node-name

is the name of an available system containing the operating system whose RVU is
to be found.

Result

#TOSVERSION returns the result of the TOSVERSION operating system procedure, in
the form character-space-number. For example:

27> #TOSVERSION

#TOSVERSION expanded to:

M 20

Considerations

 If you omit \node-name, #TOSVERSION returns the RVU of the operating system
running on the default system.

#TOSVERSION [\node-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-405

B u ilt-In Functions and V ariab les #TR A C E B u ilt-In V ariab le
#TRACE Built-In Variable

Use #TRACE to set or obtain the current state of the trace flag.

Result

#TRACE returns -1 (true) if the flag is on, 0 (false) if the flag is off.

Considerations

 When you first log on, #TRACE is initialized to zero.

 If the trace flag is on, TACL invokes _DEBUGGER and displays each line before it
invokes the line.

 Do not use #TRACE and _DEBUGGER to trace #DELTA commands. Instead,
execute #DELTA commands interactively to step through their operation.

 Use #POP #TRACE (or POP #TRACE) to restore the trace flag from the last copy
pushed.

 Use #PUSH #TRACE (or PUSH #TRACE) to save a copy of the current trace flag.

 Use #SET #TRACE (or SET VARIABLE #TRACE) to turn the trace flag off or on.

 The syntax of #SET #TRACE is:

num

is 0 for off and any nonzero value for on.

#TRACE

#SET #TRACE num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-406

B u ilt-In Functions and V ariab les #U N FR A M E B u ilt-In Function
#UNFRAME Built-In Function

Use #UNFRAME to pop all variable levels pushed since the last #FRAME.

Result

#UNFRAME returns nothing.

#UNFRAME

Note. ATTACHSEG operates by pushing and defining a directory variable that refers to the
specified segment file; DETACHSEG operates by popping that directory variable. Because
#UNFRAME pops all variables pushed since the most recent #FRAME, if you attach a segment
file following a #FRAME, the corresponding #UNFRAME detaches the segment file; its
contents are no longer available. Subsequent attempts to invoke those contents result in
errors.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-407

B u ilt-In Functions and V ariab les #U S E LIS T B u ilt-In V ariab le
#USELIST Built-In Variable

Use #USELIST to manage the list of directory variables that you commonly use. If
TACL cannot find a specified variable in your home directory, it searches the
directories named in the use list.

Result

#USELIST returns a space-separated list of full path names of the directories in your
use list.

Considerations

 When you first log on, #USELIST is initialized to

: :UTILS.1 :UTILS.1:TACL.1

 The use list can contain up to 100 directories.

 The directory variable levels you specify in #SET #USELIST become the new use
list; any previous contents are lost. Unlike the USE command, #SET #USELIST
does not automatically include directories. Using #SET #USELIST with no
parameters removes all directories from the use list; if you do this, you no longer
have access to the commands and functions in :UTILS:TACL.

 To keep existing directories and add new ones at the same time, include the
existing #USELIST:

#SET #USELIST [#USELIST] :newdir

 Use #PUSH #USELIST (or PUSH #USELIST) to save a copy of the current use
list.

 Use #POP #USELIST (or POP #USELIST) to restore the use list from the last copy
pushed.

 Use #SET #USELIST (or SET VARIABLE #USELIST) to assign directory names to
the use list.

The syntax of #SET #USELIST is:

directory-name

is the name of a directory variable level to be put in the use list.

#USELIST

#SET #USELIST [directory-name [directory-name] ...]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-408

B u ilt-In Functions and V ariab les #U S E R ID B u ilt-In Function
#USERID Built-In Function

Use #USERID to obtain the user ID (group-num,user-num) of a user, given the user
name, or to determine whether a specified user is defined on the system.

user

is either a user name or a user ID.

Result

#USERID returns the user ID of the specified user, if that user is defined; otherwise, it
returns nothing.

#USERID user
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-409

B u ilt-In Functions and V ariab les #U S E R N A M E B u ilt-In Function
#USERNAME Built-In Function

Use #USERNAME to obtain the user name of a user, given the user ID (group-num,
user-num), or to determine whether a specified user is defined on the system.

user

is either a user name or a user ID.

Result

#USERNAME returns the user name of the specified user, if that user is defined on the
system; otherwise, it returns nothing.

#USERNAME user
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-410

B u ilt-In Functions and V ariab les #V A R IA B LE IN FO B u ilt-In Function
#VARIABLEINFO Built-In Function

Use #VARIABLEINFO to obtain information about a variable level.

option

specifies the type of information requested; it can be any of these:

DEPTH

returns the total number of levels for the specified variable.

DIRECTORY

returns the full name of the directory that contains the specified variable.

EXISTENCE

returns -1 if the variable level exists, 0 otherwise.

FRAME

returns the frame number of the specified variable.

LEN

returns the length of the specified variable level, as modified by its type.

LEVEL

returns the absolute number of the specified variable level. If you do not
specify a level number, the absolute number of the top level is given.

LINES

returns a line count for the specified variable level, as modified by its type.

MODE

returns the I/O mode, if any, of the specified variable level. The I/O modes are
IN, DYNAMIC_IN, OUT, STATUS, PROMPT, READ, WRITE, and ERROR.

If the variable level is a directory whose variables are in a different segment file
from that in which the directory resides, MODE returns the access mode to that
segment file, PRIVATE or SHARED.

OCCURS

returns the number of occurrences of characters, substructures, or simple
items within the specified variable level, depending on its type.

#VARIABLEINFO / option [, option] ... / variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-411

B u ilt-In Functions and V ariab les #V A R IA B LE IN FO B u ilt-In Function
OFFSET

returns the number of bytes between the beginning of the structure and the first
byte of data of the specified variable level (if the specified variable level is a
STRUCT item).

PROCESS

returns the process identification associated with the specified variable level by
means of an implicit server.

 For an unnamed process, a process ID (that is, cpu,pin) is returned.

 For a named process, the process name is returned.

 If the process name is not available, nothing is returned.

REQUESTER

returns the file name associated with the specified variable level, if it is used as
a requester variable.

SEGMENT

returns the name of the segment file that contains the variables of a directory, if
variable-level is a directory and its variables are in a different segment file
from that in which variable-level resides. In all other cases, this option is
inoperative.

SERVER

returns the server process name associated with the specified variable level, if
that variable level is used as an explicit server variable.

TYPE

returns the type of the variable level.

VARIABLE

returns the name of the specified variable, stripped of any level-number
identification.

variable-level

is the name of the variable level about which you are requesting information.

Result

#VARIABLEINFO returns a space-separated list of the requested information about the
variable level.

In the case of the LEN, LINES, OCCURS, OFFSET, and TYPE options, the information
returned is a function of the type of variable level involved.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-412

B u ilt-In Functions and V ariab les #V A R IA B LE IN FO B u ilt-In Function
Table 9-16 lists the result for each of these options depending on the type of argument
given to #VARIABLEINFO.

(a) Number of text lines in the variable level.

(b) Number of characters in the variable level, with each line end counting as a character.

(c) Number of data bytes required to hold the entire structure.

(d) Number of data bytes required to hold one occurrence of the substructure or simple item.

(e) Number of occurrences of the substructure or simple item.

(f) Number of bytes before the first byte of data of the first occurrence of the specified substructure or simple item,
regardless of its declared bounds.

(g) STRUCT for a substructure, or the data type for a simple item. (See Section 3, “Variables,” for a list of data
types.)

Considerations

 The information is returned in the order in which the options are given.

 If the specified variable level does not exist, all options except EXISTENCE return
nothing.

 When you apply the LINES or OCCURS option to a DELTA, MACRO, ROUTINE,
or TEXT variable level, the entire variable level must be read to compute the
specified values.

 OCCURS and LEN ignore bounds specifications when operating with a STRUCT
item.

 Each logical line within a variable contains an internal end-of-line character that
counts as one byte. For variables that contain TACL statements, each square
bracket ([,]), vertical bar (|), or tilde-space combination (~_) uses two bytes,
including unprintable characters that are subject to change from one TACL RVU to
another. Other characters use one byte.

 If you are using #SETMANY to assign a number of results from #VARIABLEINFO
to several variable levels, put those options that can return empty results at the
end of the options to prevent losing the correlation between the two lists.

Table 9-16. #VARIABLEINFO Type-Dependent Results

Variable Type LEN LINES OCCURS OFFSET TYPE

Alias 0 0 0 0 ALIAS

Delta 1 (a) (b) 0 DELTA

Directory 0 0 0 0 DIRECTORY

Macro 1 (a) (b) 0 MACRO

Routine 1 (a) (b) 0 ROUTINE

Structure (c) 1 1 0 STRUCT

Structure Item (d) 1 (e) (f) (g)

Text 1 (a) (b) 0 TEXT
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-413

B u ilt-In Functions and V ariab les #V A R IA B LE S B u ilt-In Function
#VARIABLES Built-In Function

Use #VARIABLES to obtain the names of all variables in your home directory or the
fully qualified names of certain selected variable levels.

BREAKPOINT

specifies that only those variable levels for which debugging breakpoints have
been set are to be listed.

IO

specifies that only the “I/O variables” (variable levels used by processes,
requesters, and servers) are to be listed.

Result

 If you do not specify an option, #VARIABLES returns a space-separated list of the
unqualified names of all variables in your home directory.

 If you include the BREAKPOINT option, #VARIABLES returns a space-separated
list of the fully qualified names of all variable levels that have breakpoints set on
them.

 If you include the I/O option, #VARIABLES returns a space-separated list of the
fully qualified names of the specific variable levels used by processes, #SERVERs,
and #REQUESTERs.

Considerations

 The variable name list is not alphabetically ordered, but you can use the #SORT
built-in function to make it so.

 To obtain the names of variables and store them into a variable level, use the
#VARIABLESV built-in function.

#VARIABLES [/ { BREAKPOINT | IO } /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-414

B u ilt-In Functions and V ariab les #V A R IA B LE S V B u ilt-In Function
#VARIABLESV Built-In Function

Use #VARIABLESV to obtain the names of some or all of the variables in your home
directory and to put them into a variable level, each name on a separate line. The
selection criteria are the same as for #VARIABLES.

BREAKPOINT

specifies that only those variable levels for which debugging breakpoints have
been set are to be listed.

IO

specifies that only the “I/O variables” (variable levels used by processes,
requesters, and servers) are to be listed.

variable-level

is an existing variable level that is to receive the names of the variables. The
names are placed in the variable level one per line, in an unspecified order.

Result

#VARIABLESV returns nothing.

Considerations

 Placing a list of variables in variable-level causes its previous contents, if
any, to be lost.

 This function is most useful when a very large number of variables causes the
#VARIABLES function to produce a “text buffer overflow” error.

 To obtain the names of variables as the result of a function call, use the
#VARIABLES built-in function.

#VARIABLESV [/ { BREAKPOINT | IO } /] variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-415

B u ilt-In Functions and V ariab les #W A IT B u ilt-In Function
#WAIT Built-In Function

Use #WAIT to specify the variable level(s) for which you require TACL to wait. TACL
does not execute the next instruction until the variable is ready. The conditions that
define ready depend on the purpose for which the variable level is used and are listed
under “Considerations.”

variable-level

is the name of a variable level for which the routine must wait.

Result

#WAIT returns the name and level number of the first variable level that is ready.

Considerations

These guidelines apply to the use of the #WAIT built-in function:

 These criteria determine whether a variable level is ready:

 If a variable level is not in use by a process, #SERVER, or #REQUESTER, the
#WAIT built-in function always considers it ready.

 If a variable level is in use by a #SERVER or the DYNAMIC IN of a process, it
is ready if it is empty (all data has been sent and the process is waiting for
input).

 If a variable level is in use by a #SERVER or the OUT or STATUS of a process,
it is ready if it is not empty (data or status is available).

 If a variable level is in use as the error variable of a #REQUESTER, it is ready
if it is not empty (an error has occurred). TACL sets such a variable level only if
an error occurs, not if the I/O operation is successful.

 If a variable level is in use by a READ #REQUESTER read variable, it is ready
if it is not empty (data is available).

 If a variable level is in use by a WRITE #REQUESTER write variable, it is
ready if it is empty (all data has been written).

 If you want to ensure that #WAIT always returns immediately, create an additional
variable level, not used for I/O, and specify its name last in the WAIT list.

 To access only the topmost level of a variable, regardless of its level number, you
could invoke the #WAIT function as follows:

#PUSH error^var read^var prompt^var
[#CASE [#VARIABLEINFO /VARIABLE/
 [#WAIT error^var read^var prompt^var]]

#WAIT variable-level [variable-level] ...
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-416

B u ilt-In Functions and V ariab les #W A IT B u ilt-In Function
 |error^var| == Handle error^var ready condition here
 |read^var| == Handle read^var ready condition here
 |prompt^var| == Handle prompt^var ready condition here
]

 When waiting for a prompt variable, be sure to clear the variable before initiating
the read and #WAIT operations. Otherwise, the variable might be ready despite the
outcome of your operation. For an example, see the TACL Programming Guide.

 To provide thorough error handling when using processes and files accessed by
#REQUESTER or #SERVER, wait for all related variables.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-417

B u ilt-In Functions and V ariab les #W A K E U P B u ilt-In V ariab le
#WAKEUP Built-In Variable

Use #WAKEUP to set or obtain the current state of the WAKEUP flag. If the WAKEUP
flag is on, #PAUSE (or PAUSE) ends when any process you started stops, instead of
when the last process you started stops.

Result

#WAKEUP returns the current state of the WAKEUP flag: -1 if the flag is on, 0 if it is off.

Considerations

 When you first log on, #WAKEUP is initialized to zero.

 Use #PUSH #WAKEUP (or PUSH #WAKEUP) to save a copy of the current setting
of the WAKEUP flag.

 Use #POP #WAKEUP (or POP #WAKEUP) to restore the WAKEUP flag setting
from the last copy pushed.

 Use #SET #WAKEUP (or SET VARIABLE #WAKEUP) to set the state of the
WAKEUP flag.

The syntax of #SET #WAKEUP is:

num

is -1 to set the flag on and 0 to set it off.

#WAKEUP

#SET #WAKEUP num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-418

B u ilt-In Functions and V ariab les #W ID TH B u ilt-In V ariab le
#WIDTH Built-In Variable

Use #WIDTH to set or obtain the current setting of the width register, which indicates
the maximum width of lines TACL writes to its OUT file.

Result

#WIDTH returns the current setting of the width register.

Considerations

 When you first log on, #WIDTH is initialized to 80.

 Use #PUSH #WIDTH (or PUSH #WIDTH) to save a copy of the current width
setting.

 Use #POP #WIDTH (or POP #WIDTH) to restore the width register from the last
copy pushed.

 Use #SET #WIDTH (or SET VARIABLE #WIDTH) to define the maximum number
of characters that TACL is to output before starting a new line.

The syntax of #SET #WIDTH is:

num

is a number in the range 10 to 239.

 For D-series software RVUs, only the default number of characters or number of
characters set using the #set #width command are displayed. Excess characters
are truncated. For the default width (set to 80):

$DATA08 USERX 15> time

February 21, 2001 16:32:49

For G-series software RVUs, the number of characters indicates the number of
characters to be displayed on a line. Excess characters are displayed on a
subsequent line, and so forth. For width set to 10:

$DATA08 USERX 16> #set #width 10
$DATA08 USERX 17> time

February 2
1, 2001 16
:32:58

#WIDTH

#SET #WIDTH num
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-419

B u ilt-In Functions and V ariab les #X F ILE IN FO B u ilt-In Function
#XFILEINFO Built-In Function

#XFILEINFO is the built-in function that implements the FILEINFO command. Its
syntax and use are exactly the same as those of the FILEINFO command.

#XFILENAMES Built-In Function

#XFILENAMES is the built-in function that implements the FILENAMES command. Its
syntax and use are exactly the same as those of the FILENAMES command.

#XFILES Built-In Function

#XFILES is the built-in function that implements the FILES command. Its syntax and
use are exactly the same as those of the FILES command.

#XLOADEDFILES Built-In Function

#XLOADEDFILES is the built-in function that implements the LOADEDFILES
command. Its syntax and use are exactly the same as those of the LOADEDFILES
command.

#XLOGON Built-In Function

#XLOGON is the built-in function that implements the LOGON command. Its syntax
and use are exactly the same as those of the LOGON command.

#XPPD Built-In Function

#XPPD is the built-in function that implements the PPD command. Its syntax and use
are exactly the same as those of the PPD command.

#XSTATUS Built-In Function

#XSTATUS is the built-in function that implements the STATUS command. Its syntax
and use are exactly the same as those of the STATUS command.

For example:

#XSTATUS *, LOADED <FILENAME>

 will return all the processes which are using the given LOAD file.
H P N onS top TA C L R e fe rence M anua l — 429513-017
9-420

A Syntax Summary

The syntax diagrams summarized in this appendix are divided into five categories:

 The command interpreter set of commands and functions, supplied with TACL in
the directory :UTILS:TACL

 The built-in functions and variables that constitute the TACL programming
language

 The specialized forms of the #DEF function used to create and redefine structured
variables (STRUCT declarations)

 The specialized forms of the #SET function used to assign values to TACL built-in
variables

 The commands of the #DELTA character processor

Differences between H-series and G-series command syntax are noted in this section.

Differences between D-series and G-series, if any, may be found in the detailed syntax
contained in Section 8, UTILS:TACL Commands and Functions.
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-1

S yn tax S um m ary :U T ILS :TA C L C om m ands and Functions
:UTILS:TACL Commands and Functions
The following summarizes the syntax of the TACL command interpreter commands
and functions:

ACTIVATE [[\node-name.]{$process-name | cpu,pin }]

ADD DEFINE
 { define-name |(define-name [, define-name]...) }
 [, LIKE define-name] [, attribute-spec] ...}

ADDDSTTRANSITION start-date-time , stop-date-time , offset

ADDUSER [/ run-option [, run-option] ... /]
 group-name.user-name , group-id,user-id

ALARMOFF

ALTER DEFINE define-name-list
 { { , attribute-spec } | { , RESET reset-list } }

ALTPRI [\node-name.]{$process-name | cpu,pin } , pri

ASSIGN [logical-unit [, [actual-file-name]
 [, create-open-spec] ...]]

ATTACHSEG { PRIVATE | { SHARED file-name directory-name } }

BACKUPCPU [cpu]

BREAK [variable-level]

BUILTINS [/ { FUNCTIONS | VARIABLES } /]

BUSCMD [/ run-option [, run-option] ... /]
{ X | Y } , { DOWN | UP } , from-cpu , to-cpu

CLEAR
 ALL | ALL ASSIGN | ALL PARAM | ASSIGN logical-unit |
 PARAM param-name

COLUMNIZE list

COMMENT [comment-text]

_COMPAREV string-1 string-2

COMPUTE expression

_CONTIME_TO_TEXT contime-list

_CONTIME_TO_TEXT_DATE contime-list

_CONTIME_TO_TEXT_TIME contime-list

COPYDUMP [/ run-option [, run-option] ... /]
 source-file , dest-file

COPYDUMP is not supported on H-series systems.

COPYVAR variable-level-in variable-level-out
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-2

S yn tax S um m ary :U T ILS :TA C L C om m ands and Functions
CREATE file-name [, extent-size]

CREATESEG file-name

DEBUG [[\node-name.]{$process-name | cpu,pin }]
 [, TERM [\node-name.]$terminal-name]

_DEBUGGER current-trace-value reason-for-entry

DEFAULT [/ run-option [, run-option] ... /] default-names
 [,"default-security"] ,"default-security"

DELETE DEFINE define-name-list

DELUSER [/ run-option [, run-option] ... /]
 group-name.user-name

DETACHSEG directory-name

ENV [environment-parameter]

EXIT

FC [num | -num | text]

FILEINFO [/ OUT list-file /]
 [file-name-template [[,] file-name-template] ...]

FILENAMES [/ OUT list-file /]
 [file-name-template [[,] file-name-template] ...]

FILES [/ OUT list-file /]
 [subvol-template [[,] subvol-template] ...]

FILETOVAR file-name variable-level

HELP

HISTORY [num]

HOME [directory-name]

INFO [/ OUT list-file /] DEFINE define-name-list
 [, DETAIL]

INITTERM

INLECHO { OFF | ON }

INLEOF

INLOUT { OFF | ON }

INLPREFIX [prefix]

INLTO [variable-level]

JOIN variable-level

KEEP [/ LIST /] num variable [variable] ...

KEYS
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-3

S yn tax S um m ary :U T ILS :TA C L C om m ands and Functions
LIGHTS [/ run-option [, run-option] .../]

 [ON | OFF | SMOOTH [num]]
 [, sys-option | , ALL]
 ... [, BEAT]

LOAD [/ KEEP num /] file-name [file-name] ...

LOGOFF [/ option [, option] ... /]

LOGON
{ group-name.user-name | group-id,user-id | alias }

[[,password] |
[, old-password, new-password] |

[, old-password, new-password, new-password]]
[; parameter [, parameter] ...]

_LONGEST list

_MONTH3 num

O[BEY] command-file

OUTVAR [/ option [, option] ... /] string

PARAM [param-name param-value
 [, param-name param-value] ...]

PASSWORD [/ run-option [, run-option] ... /]
 [password]

PAUSE [[\node-name.]{$process-name | cpu,pin }]

PMSEARCH subvol-spec [[,] subvol-spec] ...

PMSG { ON | OFF }

POP variable [[,] variable] ...

H-Series POSTDUMP

POSTDUMP <in file> [< options >]

PPD [/ OUT list-file /]
 [[\node-name.][{ $process-name | cpu,pin | * }]]

PURGE / option / file-name-template [, file-name-template...]

PUSH variable [[,] variable] ...

G-Series RCVDUMP

RCVDUMP [/ run-option [, run-option] ... /]
 dump-file , cpu , { X | Y } [, param [, param]]

H-Series RCVDUMP

RCVDUMP <filename>, cpuNum [, SLICE <sliceId>]
[, START <startAddress>][, END <endAddress>]
[[, ONLINE | PARALLEL] [, FULL]]

RECEIVEDUMP is not supported on H-series systems.
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-4

S yn tax S um m ary :U T ILS :TA C L C om m ands and Functions
G-Series RECEIVEDUMP

RECEIVEDUMP / OUT dump-file / cpu , fabric
 [, param [, param]]

RELOAD [/ run-option [, run-option] ... /]
 [[cpu-set [; cpu-set]...]

REMOTEPASSWORD [\node-name [, password]]

RENAME old-file-name [,] new-file-name

RESET DEFINE
 { { attribute-name [, attribute-name]... } | * }

[RUN[D]] program-file [/ run-option [, run-option].../]
 [param-set]

SEGINFO

SET DEFINE
 { attribute-spec | LIKE define-name }[, attribute-spec]...

SET DEFMODE { ON | OFF }

SET HIGHPIN { ON | OFF }

SET INSPECT { OFF | ON | SAVEABEND }

SETPROMPT { SUBVOL | VOLUME | BOTH | NONE }

SET SWAP [$volume-name]

SETTIME
 { { month day } | { day month } } year , hour: min[: sec]
 [GMT | LST |LCT]

SET VARIABLE [/ option [, option]/] variable-level
 [text]

SET VARIABLE built-in-variable [built-in-text]

SHOW [/ OUT list-file /] [attribute [, attribute] ...]

SHOW [/ OUT list-file /] DEFINE [attribute-name | *]

SINK [text]

STATUS [/ OUT list-file /] [range] [, condition] ...
 [, DETAIL] [, STOP]

STOP [[\node-name.]{$process-name | cpu,pin }]

SUSPEND [[\node-name.]{$process-name | cpu,pin }]

SWITCH

SYSTEM [\node-name]

SYSTIMES

[\node-name.]TACL [/ run-option [, run-option] ... /]
[backup-cpu-num] [; parameter [, parameter]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-5

S yn tax S um m ary :U T ILS :TA C L C om m ands and Functions
TIME

USE [directory-name [[,] directory-name] ...]

USERS [/ run-option [, run-option] ... /] [range]

VARIABLES [directory-name]

VARINFO [variable [[,] variable] ...]

VARTOFILE variable-level file-name

VCHANGE [/ option [, option] ... /] variable-level
 string-1 string-2 [range]

VCOPY [/ option [, option] ... /] source-var range
 dest-var dest-line

VDELETE [/ option [, option] / ...] variable-level range

VFIND [/ option [, option] / ...] variable-level string
 [range]

VINSERT variable-level line-num

VLIST [/ option [, option] / ...] variable-level [range]

VMOVE [/ option [, option] / ...] source-var range
 dest-var dest-line

VOLUME [[\node-name.] volume] [, "security"]

VTREE [directory-name]

WAKEUP { ON | OFF }

WHO

{ X | Y }BUSDOWN from-cpu , to-cpu

{ X | Y }BUSUP from-cpu , to-cpu

! [num | - num | text]

? [num | - num | text]
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-6

S yn tax S um m ary B u ilt-In Functions and V ariab les
Built-In Functions and Variables
The following summarizes the syntax of the built-in functions and variables used for
programming in TACL:

#ABEND [/ option [, option] ... /]
 [[\node-name.]{$process-name | cpu,pin } [text]]

#ABORTTRANSACTION

#ACTIVATEPROCESS [[\node-name.]{$process-name | cpu,pin}]

#ADDDSTTRANSITION low-gmt high-gmt offset

#ALTERPRIORITY [[\node-name.]{$process-name | cpu,pin }]
 pri

#APPEND to-variable-level [text]

#APPENDV to-variable-level { from-variable-level | string }

#ARGUMENT [/ option [, option] ... /]

alternative [alternative] ...

#ASSIGN [/ option [, option] ... / logical-unit]

#BACKUPCPU [cpu]

#BEGINTRANSACTION

#BREAKMODE

#BREAKPOINT variable-level state

#BUILTINS [/ { FUNCTIONS | VARIABLES } /]

#CASE text enclosure

#CHANGEUSER [/ CHANGEDEFAULTS /]
 { group-name.user-name | group-id,user-id | alias }
 password

#CHARACTERRULES

#CHARADDR variable-level line-addr

#CHARBREAK variable-level char-addr

#CHARCOUNT variable-level

#CHARDEL variable-level char-addr-1
 [FOR char-count | TO char-addr-2]

#CHARFIND [/ EXACT /] variable-level char-addr text

#CHARFINDR [/ EXACT /] variable-level char-addr text

#CHARFINDRV [/ EXACT /] variable-level char-addr string

#CHARFINDV [/ EXACT /] string-1 char-addr string-2
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-7

S yn tax S um m ary B u ilt-In Functions and V ariab les
#CHARGET variable-level char-addr-1
 [FOR char-count | TO char-addr-2]

#CHARGETV var-1 var-2 char-addr-1
 [FOR char-count | TO char-addr-2]

#CHARINS string char-addr text

#CHARINSV variable-level char-addr string

#COLDLOADTACL

#COMPAREV string-1 string-2

#COMPUTE expression

#COMPUTEJULIANDAYNO year month day

#COMPUTETIMESTAMP year month day hour min sec milli micro

#COMPUTETRANSID system cpu sequence crash-count

#CONTIME timestamp

#CONVERTPHANDLE
 { / PROCESSID / integer-string } |
 { / INTEGERS / process-identifier }

#CONVERTPROCESSTIME process-time

#CONVERTTIMESTAMP gmt-timestamp direction [\node-name]

#CREATEFILE [/ option [, option] /] file-name

#CREATEPROCESSNAME

#CREATEREMOTENAME \node-name

#DEBUGPROCESS [/ NOW /]
 [\node-name.]{$process-name | cpu,pin }
 [, TERM [\node-name.]$terminal-name]

#DEF variable
{ { ALIAS | DELTA | MACRO | ROUTINE |TEXT } enclosure } |
 { {DIRECTORY [segment-spec]} | {STRUCT structure-body} }

#DEFAULTS [/ option [, option] /]

#DEFINEADD define-name [flag]

#DEFINEDELETE define-name

#DEFINEDELETEALL

#DEFINEINFO define-name

#DEFINEMODE

#DEFINENAMES define-template

#DEFINENEXTNAME [define-name]

#DEFINEREADATTR
 { define-name | _ } { attribute-name | cursor-mode }
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-8

S yn tax S um m ary B u ilt-In Functions and V ariab les
#DEFINERESTORE [/ option [, option] ... /] buffer

#DEFINERESTOREWORK

#DEFINESAVE [/ WORK /] define-name buffer

#DEFINESAVEWORK

#DEFINESETATTR attribute-name [attribute-value]

#DEFINESETLIKE define-name

#DEFINEVALIDATEWORK

#DELAY csecs

#DELTA [/ COMMANDS variable-level /] [text]

#DEVICEINFO / option [, option] ... /
 { $device-name | file-name }

#EMPTY [text]

#EMPTYV [/ BLANK /] string

#EMSADDSUBJECT [/ SSID ssid /] buffer-var
 token-id [token-value]

#EMSADDSUBJECTV [/ SSID ssid /] buffer-var
 token-id source-var

#EMSGET [/ option [, option] ... /] buffer-var get-op

#EMSGETV [/ option [, option] ... /] buffer-var get-op
 result-var

#EMSINIT [/ option [, option] /] buffer-var ssid
 event-number token-id [token-value] ...]

#EMSINITV [/ option [, option] /] buffer-var ssid
 event-number token-id source-var

#EMSTEXT [/ option [, option] ... /] buffer-var

#EMSTEXTV [/ option [, option] ... /] buffer-var
 formatted-var [lengths-var]

#ENDTRANSACTION

#EOF variable-level

#ERRORNUMBERS

#ERRORTEXT / option [option] ... /

#EXCEPTION

#EXIT

#EXTRACT variable-level

#EXTRACTV from-variable-level to-variable-level
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-9

S yn tax S um m ary B u ilt-In Functions and V ariab les
#FILEGETLOCKINFO [/ option /] fvname control lockdesc
 participants

#FILEINFO / option [, option] ... / file-name

#FILENAMES [/ option [, option] ... /]
 [file-name-template]

#FILTER [exception [exception] ...]

#FRAME

#GETCONFIGURATION / option [, option] ... /

#GETPROCESSSTATE [/ option [, option] ... /]

#GETSCAN

#HELPKEY

#HIGHPIN

#HISTORY [/ option [, option] ... /]

#HOME

#IF [NOT] numeric-expression [enclosure]

#IN

#INFORMAT

#INITTERM

#INLINEECHO

#INLINEEOF

#INLINEOUT

#INLINEPREFIX

#INLINEPROCESS

#INLINETO

#INPUT [/ option [, option] ... /] [prompt]

#INPUTEOF

#INPUTV [/ option [, option] ... /] variable-level
 prompt-string

#INSPECT

#INTERACTIVE [/ CURRENT /]

#INTERPRETJULIANDAYNO julian-day-num

#INTERPRETTIMESTAMP four-word-timestamp

#INTERPRETTRANSID transid

#JULIANTIMESTAMP [type [tuid-request]]
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-10

S yn tax S um m ary B u ilt-In Functions and V ariab les
#KEEP num variable

#KEYS

#LINEADDR variable-level char-addr

#LINEBREAK variable-level line-addr char-offset

#LINECOUNT variable-level

#LINEDEL variable-level line-addr-1
 [FOR line-count | TO line-addr-2]

#LINEFIND [/ EXACT /] variable-level line-addr text

#LINEFINDR [/ EXACT /] variable-level line-addr text

#LINEFINDRV [/ EXACT /] variable-level line-addr string

#LINEFINDV [/ EXACT /] variable-level line-addr string

#LINEGET string line-addr-1
 [FOR line-count | TO line-addr-2]

#LINEGETV string variable-level line-addr-1
 [FOR line-count | TO line-addr-2]

#LINEINS variable-level line-addr text

#LINEINSV variable-level line-addr string

#LINEJOIN variable-level line-addr

#LOAD [/ option [, option] /] file-name

#LOCKINFO lock-spec tag buffer

#LOGOFF [/ option [, option] ... /]

#LOOKUPPROCESS / option [, option] ... / specifier

#LOOP enclosure

#MATCH template [text]

#MOM

#MORE

#MYGMOM

#MYPID

#MYSYSTEM

#MYTERM

#NEWPROCESS program-file [/ option [, option]... /]
 [param-set]

#NEXTFILENAME [file-name]

#OPENINFO / option [, option] / { file-name | device-name }
 tag
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-11

S yn tax S um m ary B u ilt-In Functions and V ariab les
#OUT

#OUTFORMAT

#OUTPUT [/ option [, option] ... /] [text]

#OUTPUTV [/ option [, option] ... /] string

#PARAM [param-name]

#PAUSE [[\node-name.]{$process-name | cpu,pin }]

#PMSEARCHLIST

#PMSG

#POP variable [[,] variable] ...

#PREFIX

#PROCESS

#PROCESSEXISTS [\node-name.]{$process-name | cpu,pin }

#PROCESSFILESECURITY

#PROCESSINFO / option [, option] ... /
 [[\node-name.]{$process-name | cpu,pin }]

#PROCESSORSTATUS [\node-name]

#PROCESSORTYPE [/ BOTH | NAME /]
 { { [\node-name.]{$process-name | cpu, pin } } | cpu-num

#PROMPT

#PURGE file-name

#PUSH variable [[,] variable] …

#RAISE exception

#REPLYV string

#REQUESTER [/ option [, option] /]
{ CLOSE variable-level }

{ READ file-name error-var read-var prompt-var } |
{ WRITE file-name error-var write-var }

#RESET option [option] …

#REST

#RESULT [text]

#RETURN

#ROUTEPMSG { ALL | STANDARD |
(message-type [message-type] ...) }

#ROUTINENAME

#SEGMENT [/ USED /]
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-12

S yn tax S um m ary B u ilt-In Functions and V ariab les
#SEGMENTCONVERT / FORMAT { a | b } / old-file-name
 new-file-name

#SEGMENTINFO / option [, option] / [segment-id]

#SEGMENTVERSION file-name

#SERVER / option [, option] ... / [server-name]

#SET
 { [/ option [, option]/] variable-level [text] } |
 { built-in-variable [built-in-text] }

#SETBYTES destination source

#SETCONFIGURATION / option [, option] .../[tacl-image-name]

#SETMANY variable-name-list , [text]

#SETPROCESSSTATE
 / LOGGEDON | TSNLOGON | STOPONLOGOFF | PROPAGATELOGON |
 PROPAGATESTOPONLOGOFF / { 0 | 1 }

#SETSCAN num

#SETSYSTEMCLOCK julian-gmt mode [tuid]

#SETV dest-variable-level source-string

 #SHIFTDEFAULT

#SHIFTSTRING [/ option /] [text]

#SORT [/ option /] [text]

#SPIFORMATCLOSE

#SSGET [/ option [, option] ... /] buffer-var get-op

#SSGETV [/ option [, option] ... /] buffer-var get-op
 result-var

#SSINIT [/ TYPE 0 /] buffer-var ssid command
 [/ type-0-option [, type-0-option] ... /] token-id

#SSNULL token-map struct

#SSPUT [/ option [, option] ... /] buffer-var token-id
 [token-value [token-value] ...]

#SSPUTV [/ option [, option], /] buffer-var token-id
 source-var

#STOP [/ option [, option] ... /]

[[\node-name.]{$process-name | cpu,pin } [text]]

#SUSPENDPROCESS [[\node-name.]{$process-name | cpu,pin}]

#SWITCH

#SYSTEM [\node-name]

#SYSTEMNAME system-number
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-13

S yn tax S um m ary S TR U C T D ec lara tions
#SYSTEMNUMBER \node-name

#TACLOPERATION

#TACLSECURITY

#TACLVERSION / REVISION /

#TIMESTAMP

#TOSVERSION [\node-name]

#TRACE

#UNFRAME

#USELIST

#USERID user

#USERNAME user

#VARIABLEINFO / option [, option] ... / variable-level

#VARIABLES [/ { BREAKPOINT | IO } /]

#VARIABLESV [/ { BREAKPOINT | IO } /] variable-level

#WAIT variable-level [variable-level] ...

#WAKEUP

#WIDTH

STRUCT Declarations
The following summarizes the forms of the #DEF function used to create and redefine
structured variables:

#DEF variable STRUCT
 { BEGIN declaration [declaration] ... END ; }
 |
 (LIKE structure-identifier ; }

type identifier [VALUE initial-value] ;

type identifier (lower-bound : upper-bound)
 [VALUE initial-value] ;

STRUCT identifier [(lower-bound : upper-bound)] ;
 { BEGIN declaration [declaration] ... END ; }
 |
 { LIKE structure-identifier ; }

FILLER num ;

type identifier [(lower-bound : upper-bound)]
 REDEFINES previous-identifier ;
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-14

S yn tax S um m ary #S E T S um m ary
#SET Summary
The following summarizes the syntax of the #SET function when it is used to assign
values to built-in variables. SET VARIABLE commands used for the same purpose
have the same syntax.

#SET #ASSIGN [[/ option [, option] ... /] logical-unit]

#SET #BREAKMODE { DISABLE | ENABLE | POSTPONE }

#SET #CHARACTERRULES file-name

#SET #DEFAULTS subvolume-name

#SET #DEFINEMODE { OFF | ON }

#SET #ERRORNUMBERS n n n n

#SET #EXIT num

#SET #HELPKEY [key-name]

#SET #HIGHPIN { OFF | ON }

#SET #HOME directory

#SET #IN file-name

#SET #INFORMAT { PLAIN | QUOTED | TACL }

#SET #INLINEECHO num

#SET #INLINEOUT num

#SET #INLINEPREFIX [prefix]

#SET #INLINETO [variable-level]

#SET #INPUTEOF num

#SET #INSPECT { OFF | ON | SAVEABEND }

#SET #MYTERM home-term

#SET #OUT file-name

#SET #OUTFORMAT { PLAIN | PRETTY | TACL }

#SET #PARAM [param-name [param-value]]

#SET #PMSEARCHLIST searchlist

#SET #PMSG num

#SET #PREFIX [text]

#SET #PROCESSFILESECURITY " security"

#SET #PROMPT num

#SET #REPLYPREFIX [num]

#SET #SHIFTDEFAULT { DOWN | NOOP | UP }
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-15

S yn tax S um m ary #D E LTA C om m and S um m ary
#SET #TACLSECURITY "security"

#SET #TRACE num

#SET #USELIST [directory-name [directory-name] ...]

#SET #WAKEUP num

#SET #WIDTH num

#DELTA Command Summary
Table A-1 summarizes the syntax of the #DELTA character processor commands.

Table A-1. #DELTA Commands (page 1 of 3)

Command Description

xA Convert ASCII

y,xA Convert ASCII with error return

B Beginning

xC Character move

x:C Character move with return code

xD Delete

EIfile$ Open file for input

EOfile$ Open file for output

xFC Lowercase lines

y,xFC Lowercase characters

x@FC Uppercase lines

y,x@FC Uppercase characters

FEvar$ Test variable level for emptiness

FFvar$ Get frame number of variable level

xFGvar$ Compare lines to variable level

y,xFGvar$ Compare range to variable level

FL Get length from last I or S operation

FOvar$ Pop variable

FTvar$ Get variable type

xFTvar$ Set variable type

FUvar$ Push variable

xFUvar$ Push and load variable with x

Gvar$ Get text from variable level

H Whole buffer

Itext$ Insert text
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-16

S yn tax S um m ary #D E LTA C om m and S um m ary
xI Insert ASCII

y,xI Insert y*ASCII

xJ Jump characters

xK Kill lines

y,xK Kill characters

xL Move by lines

Mvar$ Invoke macro

xP Write lines

y,xP Write characters

Qvar$ Get value from variable level

xStext$ Search

x:Stext$ Search with return code

xT Type lines

y,xT Type characters

@Tvar$ Type variable level contents

:Ttext$ Type text

xUvar$ Unload x into variable level

y,xUvar$ Unload x into variable level

xV View lines

x:V View lines and show end

xXvar$ Extract lines to variable level

y,xXvar$ Extract characters to variable level

xY Read lines

Z Get buffer size

\ Convert number in text to value in X

x\ Put x in text

^\ Exit from macro

? Condition

:? NOT condition

' End condition

, Move X into Y

$ Clear X and Y

. Get current position

= Display X or Y,X

Table A-1. #DELTA Commands (page 2 of 3)

Command Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-17

S yn tax S um m ary #D E LTA C om m and S um m ary
< Begin iteration

x< Iterate x times

; Exit iteration

> End iteration

@> End iteration, do not decrement iteration count

! Comment

Table A-1. #DELTA Commands (page 3 of 3)

Command Description
H P N onS top TA C L R e fe rence M anua l — 429513-017
A-18

B Error Messages

TACL can generate several types of errors. Table 5-1 on page 5-21 lists the types of
TACL errors and a sample display, description, and typical action for each type of error.

The first subsection describes:

 TACL Error Messages - the text and meaning of each TACL error message and
warning.

Following subsections describe more specialized error messages :

 DEFINE Error Messages on page B-46

 Process Creation Error Messages on page B-50

 RCVDUMP Error Messages on page B-51

 RELOAD Error Messages on page B-58

 EMS Messages on page B-69

Finally, Table B-2 on page B-70 lists error numbers that can be obtained from function
calls, including a call to #ERRORNUMBERS. The explanations of those errors can be
found in the alphabetic listing.

TACL Error Messages
General TACL error messages are preceded by *ERROR*. Some of the messages in
the following list may appear following another error message to give additional
information; when that occurs, the messages appear in parentheses, without the
ERROR prefix.

Cause. For a RUN command with the PORTTACL option, the user must have a 255
group ID.

Effect. The TACL process ABENDs (terminates abnormally).

Recovery. Use a LOGON with a user group ID of 255 and execute the RUN command
again.

Caution. TACL text messages might change at anytime. You should not write TACL macros or
routines that are dependent on the format of text messages.

ABENDED: $XX
CPU time: 0:00:00.018
Termination Info: 24
TACL fatal error: super-group privilege required

ERROR All block buffers in use
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-1

E rror M essages TA C L E rror M essages
Cause. Certain built-in functions that perform I/O, including (#)PUSH #IN, (#)PUSH
#OUT, and #REQUESTER, require block buffers. There are only four available. More
than four block buffers would have been needed to carry out the action you requested.

Effect. The requested operation is ignored.

Recovery. Perform a (#)POP #IN or #OUT or #REQUESTER /CLOSE/ operation as
necessary.

Cause. You attempted to create more than 100 simultaneous requesters and servers
(explicit and implicit).

Effect. The requested operation is ignored.

Recovery. You will have to use no more than 100 simultaneous requesters and
servers.

Cause. You attempted to use a simple item at a place other than the end of a structure
reference.

Effect. The requested operation is ignored.

Recovery. Correct the structure reference.

Cause. An operation has caused a processor-detected arithmetic overflow. (Be sure
you did not try to divide by zero.)

Effect. The requested operation is ignored.

Recovery. There is a pointer that helps you to isolate the place where the overflow
occurred. Make the needed correction and retry the operation.

Cause. In a (#)BACKUPCPU request, you specified that the TACL backup is to be run
in a processor that is down.

Effect. The requested operation is ignored.

Recovery. Specify a different CPU, or wait until the desired processor is back in
operation.

ERROR All possible simultaneous servers and requesters in
use

ERROR A non-STRUCT may appear only at the end

ERROR Arithmetic overflow

ERROR Backup CPU is down
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-2

E rror M essages TA C L E rror M essages
Cause. In a (#)BACKUPCPU request, you specified that the TACL backup is to be run
in the same CPU as its primary.

Effect. The requested operation is ignored.

Recovery. Specify a different processor as the backup CPU.

Cause. You attempted to start a backup process for your TACL, but a backup process
exists already.

Effect. No process is created.

Recovery. A process cannot have more than one backup. If your intent is to move
your TACL backup to another CPU, you must first delete the existing backup process
by issuing a BACKUPCPU command with no argument.

Cause. The system tried to create a process, but the backup process device subtype
is not the same as the primary process device subtype.

Effect. No process is created.

Recovery. Correct the call to #NEWPROCESS. This error can occur if the process
you started tried to create its backup using a program file that has a process subtype
different from that of the program file being run by the primary. In this case, the error
can be corrected only by debugging the program.

Cause. You specified a label in the wrong form.

Effect. The requested operation is ignored.

Recovery. Check the syntax for the operation you are trying to perform and correct
the label format accordingly.

Cause. You formatted a variable name incorrectly.

Effect. The requested operation is ignored.

ERROR Backup CPU may not be same as primary CPU

ERROR Backup process already exists

ERROR Backup process device subtype differs from primary

ERROR Badly formed label

ERROR Badly formed variable name
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-3

E rror M essages TA C L E rror M essages
Recovery. Change the variable name to the correct format.

Cause. #DEF did not contain the required |BODY| label.

Effect. The requested operation is ignored.

Recovery. Add the required |BODY| label to the #DEF function. #DEF requires
|BODY| if the type specified is MACRO, ROUTINE, TEXT, ALIAS, or DELTA. |BODY| is
not allowed if the type is STRUCT or DIRECTORY.

Cause. Insufficient lockable memory for the process file segment.

Effect. The process was not started.

Recovery. Reissue the #NEWPROCESS command with a different CPU number, or
stop other processes that are using lockable memory in the CPU.

Cause. You attempted to perform a #DEF, (#)KEEP, (#)LOAD, (#)POP, or (#)PUSH
operation on the root (:) directory.

Effect. The requested operation is ignored. If you specified the #DEF or (#)PUSH
functions, TACL might lose user variables and TACL variables.

Recovery. Remove all attempts to use these commands and functions with the root
segment directory. Specify the entity to be defined, kept, loaded, pushed, or popped as
something other than the root.

Cause. There was an error in an alias variable.

Effect. The requested operation is ignored.

Recovery. Check that you have correctly indicated the command for which the
variable is an alias.

Cause. You attempted a PPD process, * operation for an I/O process on a C-series
node.

ERROR BODY label not found

ERROR Cannot create Process File Segment

ERROR Cannot push or pop the root segment's root

ERROR Cannot resolve alias

ERROR Cannot retrieve I/O process info from a C-series node
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-4

E rror M essages TA C L E rror M essages
Effect. TACL displays the error.

Recovery. Remove all attempts to retrieve I/O process information from C-series
nodes.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-5

E rror M essages TA C L E rror M essages
Cause. You used a floating-point format in your program that conflicts with the
floating-point format in your user library object file.

Effect. The operating system does not allow the creation of the process.

Recovery. Resolve the conflict.

Cause. A call to the CONVERTPROCESSTIME operating system procedure included
a request to convert more than 3.7 years.

Effect. The requested operation is ignored.

Recovery. Correct the call so that the maximum process execution time does not
exceed 3.7 years.

Cause. Indeterminate.

Effect. The requested operation is ignored.

Recovery. See your service provider to obtain a new copy of the CPRULES file in
question.

Cause. You specified a CPRULES file with a file code other than 199. (TACL also
accepts a file code of 180 for the CPRULES file.)

Effect. The requested operation is ignored.

Recovery. Determine the correct file name.

Cause. An error occurred when the NEWPROCESS or PROCESS_CREATE_
procedure attempted to propagate existing DEFINEs to the new process.

Effect. No process is created.

ERROR Conflicting floating point type in object files

ERROR CONVERTPROCESSTIME argument too large (>3.7 years)

ERROR CPRULES file is corrupt

ERROR CPRULES file must be file code 199

ERROR DEFINE context error
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-6

E rror M essages TA C L E rror M essages
Recovery. Use #ERRORNUMBERS to see the subcode (nnn) that indicates the
specific cause of the error:

Adjust and retry the call to #NEWPROCESS. If errors recur, contact your service
provider.

Cause. The #DELTA command you entered had a syntax error.

Effect. The command is ignored.

Recovery. Correct the command and reissue the request.

Cause. You selected a device that is not on the system. file-name indicates the file
specified.

Effect. The requested operation is ignored.

Recovery. Check that you have the correct device name. Check your defaults.

Cause. You attempted to perform a (#)SET operation on a variable whose type is
DIRECTORY.

Effect. The requested operation is ignored.

Recovery. Specify a variable of a type other than DIRECTORY in the (#)SET
operation.

Cause. You specified the same exception more than once in a #FILTER.

Subcode Meaning

0 Unable to convert a DEFINE name to network form.

1 Indicates that flags.<10> = 1 and flags.<11:12> <> 0 and you are trying
to create a process on a remote system that is a NonStop 1+, or any
other NonStop system operating under operating system RVU B20 or
earlier; the use of DEFINEs is not allowed.

2 Internal context propagation error.

3 Illegal DEFMODE supplied.

ERROR Delta syntax error

ERROR Device does not exist [, File: file-name]

ERROR Directory contents cannot be set

ERROR Duplicate exception in this statement
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-7

E rror M essages TA C L E rror M essages
Effect. The requested operation is ignored.

Recovery. Delete the duplicate exception in your #FILTER.

Cause. You specified the same keyword twice in a place where duplicate keywords
are not allowed.

Effect. The requested operation is ignored.

Recovery. Consult the syntax description for the feature you were trying to use.
Delete the unneeded keyword and reissue the request.

Cause. You specified an enclosure in a #DEF function call that defines a directory
variable or a STRUCT variable.

Effect. TACL displays the error.

Recovery. Remove the enclosure from the definition.

Cause. You specified an enclosure in a statement other than a #CASE, #DEF, #LOOP,
or #IF function call.

Effect. TACL displays the error.

Recovery. Remove the enclosure from the statement.

Cause. You specified an unbracketed line that contains an enclosure. This error can
occur if you use a vertical line as a text character and #INFORMAT is set to TACL,
causing TACL to interpret it as a special character.

Effect. The requested operation is ignored.

Recovery. Add brackets to the line containing your enclosure. Precede the vertical
line with a tilde (~|) to specify that it is to be treated as ordinary text.

Cause. Misspelling of #DEFAULTS in a #PMSEARCHLIST expression.

ERROR Duplicate keyword

ERROR Enclosure not allowed in #DEF of DIR or STRUCT

ERROR Enclosure not allowed in this context

ERROR Enclosure not allowed in unbracketed line

ERROR Expecting a legal subvolume name
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-8

E rror M essages TA C L E rror M essages
Effect. The operation fails.

Recovery. Correct the spelling to “#DEFAULTS”.

Cause. For a RUN command, the PFS <num-pages> value is out of range.

Effect. The RUN command fails.

Recovery. Specify a correct value, from 64 through 512.

Cause. You called #LOOP with |WHILE| but did not include |DO|.

Effect. The requested operation is ignored.

Recovery. Rewrite the loop to include |DO| after |WHILE|.

Cause. You called #IF but did not include |THEN| or |ELSE|.

Effect. The requested operation is ignored.

Recovery. Rewrite the statement to include |THEN| or |ELSE| after #IF.

Cause. You called #LOOP with |DO| but did not include |UNTIL|.

Effect. The requested operation is ignored.

Recovery. Rewrite the loop to include |UNTIL| after |DO|.

Cause. You called #LOOP without including |DO| or |WHILE|.

Effect. The requested operation is ignored.

Recovery. Rewrite the loop to include |DO| or |WHILE| after #LOOP.

ERROR Expecting a number or an arithmetic expression

ERROR Expecting |DO|

ERROR Expecting |THEN| or |ELSE|

ERROR Expecting |UNTIL|

ERROR Expecting |WHILE| or |DO|
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-9

E rror M essages TA C L E rror M essages
Cause. A file-system error occurred while you were setting up the extended data
segment of a program you are trying to run.

Effect. The extended data segment is not initialized.

Recovery. Check that you have specified a valid volume

Cause. A file-system error occurred while you were setting up the swap file of a
program you are trying to run. A secondary message following this one gives the file
name.

Effect. The swap file is not created.

Recovery. Check that you have specified your swap file correctly.

Cause. A file-system error occurred on a pushed OUT file.

Effect. TACL pops #OUT.

Recovery. Check the file-system error that led to this message and handle that error
accordingly. The Guardian Procedure Errors and Messages Manual contains
descriptions of file-system error messages.

Cause. This is a secondary message that names the file involved in an error
described by the message that immediately precedes this one.

Effect. See the description of the primary message.

Recovery. See the description of the primary message.

Cause. You attempted to use an object file that contains C data variables that were
declared with the EXTERN declaration but that were not defined.

Effect. The requested operation is ignored.

Recovery. Define the variable and include a data block with the same name in the
object file.

ERROR Extended data segment initialization error

ERROR Extended data segment swap file error

ERROR File error on previous out file

ERROR File: file-name

ERROR File has undefined data blocks
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-10

E rror M essages TA C L E rror M essages
Cause. The specified file is already open, and shared access is not permitted. If you
get this error with a process name error when creating a new process, another process
is running under that name.

Effect. The file is not opened for you.

Recovery. Find out why the file is open, then close it if possible, or wait until the other
user is finished with the file. You might be trying to open the file twice. If the message
refers to a process, use a different process name.

Cause. No more records could be added to the file.

Effect. The requested operation is ignored.

Create a new file with larger extents and reload the file. See the description of creating
files with FUP in the File Utility Program (FUP) Reference Manual.

Cause. You attempted to invoke a file that is neither a program nor a macro file.

Effect. The requested operation is ignored.

Recovery. Check that you have named the correct file.

Cause. You attempted to build an object file using BINSERV or BIND in conjunction
with the ?FIXUPS OFF directive or the SELECT FIXUPS OFF command.

Effect. The requested operation is ignored.

Recovery. If BINDER does not fix code and data references in the object file, it cannot
be run. Bind the file again without turning off fixing. Fixups are applied by default.

Cause. You specified a file name that could not be found or attempted to read a
record that was not in the file.

Effect. The requested operation is ignored.

ERROR File in use [, File: file-name]

ERROR File is full [, File: file-name]

ERROR File is neither a program nor a TACL macro

ERROR File not fixed-up by binder

ERROR File not in directory or record not in file [, File:
file-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-11

E rror M essages TA C L E rror M essages
Recovery. Check that you have the right file.

Cause. A file-system call used a file number that was not assigned to an open file.

Effect. The requested operation is ignored.

Recovery. Report the problem to your service provider.

Cause. When creating or renaming a file, the name specified was already in use on
the specified subvolume.

Effect. The requested operation is ignored.

Recovery. Select a new name for the new file, or purge or rename the existing file.

Cause. The system monitor encountered a file-system error while accessing the
library file during process creation.

Effect. The requested operation is ignored.

Recovery. Check that you have specified the library file correctly and then retry the
request. The file you specified is not a TACL library file; it is an object file referred to by
a program file.

Cause. Errors encountered by the #SSINIT built-in function can result from the TACL
product calling the Guardian procedure TEXTTOSSID.

Effect. The function fails.

Recovery. Recovery is determined by the context of the error message detail. Refer to
the description of the TEXTTOSSID procedure in the Guardian Procedure Calls
Reference Manual for a description of the possible errors.

Cause. A file-system error occurred for which TACL has no descriptive message.

Effect. The requested operation is ignored.

ERROR File number has not been opened [, File: file-name]

ERROR File or record already exists [, File: file-name]

ERROR File system error occurred on library file

ERROR GUARDIAN call to TEXTTOSSID failure xxx

ERROR GUARDIAN File Error: nnn
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-12

E rror M essages TA C L E rror M essages
Recovery. See the Guardian Procedure Errors and Messages Manual for corrective
action for the error number indicated by nnn.

Cause. TACL could not change its home terminal when you tried to set #MYTERM.

Effect. The requested operation is ignored.

Recovery. Use a terminal name acceptable to the operating system.

Cause. The file was not produced by BINDER, or BINDER malfunctioned.

Effect. The requested operation is ignored.

Recovery. Contact your service provider.

Cause. When starting a process, you specified an illegal home terminal, or the
specified home terminal does not exist.

Effect. The requested operation is ignored.

Recovery. Check that you have correctly identified the home terminal.

Cause. You used IEEE floating-point format in program and attempted to run it in a
processor that does not support IEEE floating-point format.

Effect. The operating system does not allow the creation of the process.

Recovery. The PROCESSOR_GETINFOLIST_ Guardian procedure call can be used
to determine if a processor can run IEEE floating-point instructions. For more
information about this procedure, see the Guardian Procedure Calls Reference
Manual.

Cause. You specified a CPU number that is not in the range 0 through 15.

Effect. The requested operation is ignored.

Recovery. Specify a CPU number within the allowed range.

ERROR GUARDIAN SETMYTERM failed

ERROR Header INITSEGS not consistent with size

ERROR Hometerm error

ERROR IEEE floating point support not available on CPU

ERROR Illegal CPU number
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-13

E rror M essages TA C L E rror M essages
Cause. A file name was specified that was not in the correct file system form.

Effect. The requested operation is ignored.

Recovery. See the appropriate command or function description in this manual for
information about the correct file-name format.

Cause. Internally, TACL represents certain special characters as two bytes, the first
having the value 255. This error results if TACL detects an unexpected value in the
second byte. This value is likely to occur only if you use #DELTA without due caution
when editing a variable that contains TACL statements.

Effect. The requested operation is ignored.

Recovery. Use care when editing a variable containing TACL statements.

Cause. You specified a level number in an incorrect form. A level number consists of a
period and a number, which can be either a literal number or a numeric variable. If you
use a variable name, it must not include any directories, nor can it include a level
number.

Effect. The requested operation is ignored.

Recovery. Correct or remove the level-number specification.

Cause. When you tried to start a new process, the library file associated with the
program file failed the tests that ensure that the file is actually a library. (The file is not
a TACL library.)

Effect. The requested operation is ignored.

Recovery. Check that you specified the correct file in the LIB option when you started
the process. If you did not specify a library file, someone else may have bound in the
incorrect file name using LIB, or the file may have been altered.

ERROR Illegal filename specification [, File: file-name]

ERROR Illegal internal character representation

ERROR Illegal level number syntax

ERROR Illegal library file format
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-14

E rror M essages TA C L E rror M essages
Cause. #NEWPROCESS attempted to run an object file with an illegal device subtype.
The device subtype is an attribute stored in each object file. The process created from
an object file is assigned the device subtype stored in that object file. Only named
processes can have nonzero device subtypes.

Device subtypes in the range 1 through 15 are reserved for processes that are:

 Created by the super ID

 Created from licensed object files

 Created from object files owned and provided by the super ID

Effect. No process is created.

Recovery. Verify that the call to #NEWPROCESS contains the name parameter. If the
name parameter exists, change the device subtype to an unrestricted value, or contact
the super ID.

Cause. An attempt was made to run a program, but the program file failed one of the
tests that ensure that the file is actually a program.

Effect. The requested operation is ignored.

Recovery. Check that you specified the correct file.

Cause. You attempted to assign an invalid value to a built-in variable (for example,
you cannot give the value #SET to the built-in variable #INLINEPREFIX).

Effect. The requested operation is ignored.

Recovery. See the description of the built-in variable in question, in Section 9, Built-In
Functions and Variables.

Cause. You specified a variable name that does not have the correct form.

Effect. The requested operation is ignored.

Recovery. Check the syntax of the variable name and correct it.

ERROR Illegal process device subtype

ERROR Illegal program file format

ERROR Illegal value

ERROR Illegal variable name syntax
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-15

E rror M essages TA C L E rror M essages
Cause. TACL detected an error while processing an OBEY file.

Effect. Depends on the error; TACL attempts to continue processing the file.

Recovery. Review the error information that accompanies this error and correct the
problem. If the error is a process creation error, see Process Creation Error Messages
on page B-50.

Cause. A variable of type ALIAS can contain only a single variable name or a single
file name.

Effect. The requested operation is ignored.

Recovery. Correct the alias variable.

Cause. You entered a comment in an incorrect format.

Effect. The requested operation is ignored.

Recovery. The proper comment formats are the COMMENT command or the
comment characters (braces or double equal signs).

Cause. The file was not produced by BINDER, or BINDER malfunctioned, resulting in
an invalid procedure entry point.

Effect. The requested operation is ignored.

Recovery. Contact your service provider.

Cause. When trying to log on, you gave an incorrect user name or password.

Effect. The requested operation is ignored.

Recovery. Reissue the LOGON command with the correct user name and password.

ERROR In OBEY file file-name: error-information

ERROR Invalid alias format

ERROR Invalid comment format

ERROR Invalid PEP

ERROR Invalid username or password
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-16

E rror M essages TA C L E rror M essages
Cause. An I/O error occurred at the home terminal. Undefined externals exist in the
object file that #NEWPROCESS is attempting to run, so the procedure cannot open, or
write to, the home terminal to display the undefined-externals message.

Effect. No process is created.

Recovery. The file-system error code can be found by the use of
#ERRORNUMBERS. See the Guardian Procedure Errors and Messages Manual for
corrective action for that error number.

Cause. You attempted to reuse an item name already used at the same level of the
current structure.

Effect. The requested operation is ignored.

Recovery. Use an item name that is not already in use.

Cause. You attempted to perform a REDEFINE operation on an item that is not
defined at the same level of the current structure.

Effect. The requested operation is ignored.

Recovery. Check that you have spelled the name correctly. If not, correct it; if so,
ensure that the item is defined, at the same level of the current structure, before you
refer to it in a redefinition.

Cause. You attempted to associate a variable level with more than one server file or
#REQUESTER.

Effect. The requested operation is ignored.

Recovery. A particular variable level can be associated with no more than one server
file or #REQUESTER at a time.

Cause. You specified a user library object file with a MAIN procedure in it.

ERROR I/O error writing to terminal

ERROR Item name already in use

ERROR Item not found in STRUCT

ERROR Level is in use

ERROR LIB file has main procedure
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-17

E rror M essages TA C L E rror M essages
Effect. The requested operation is ignored.

Recovery. Use the LIST command in BIND to determine the MAIN procedure present.
The LIST command also specifies whether the MAIN attribute is set. Either remove the
MAIN procedure or set the MAIN attribute to OFF by using the ALTER command in
BINDER.

Cause. When trying to run a program, you specified a library file that was not the
same as the library file used by another copy of the program. All processes running a
given program must use the same library. This is an operating system problem.

Effect. The requested operation is ignored.

Recovery. Check that you specified the correct library file.

Cause. You attempted to define a structure or item LIKE a structure containing the
LIKE clause.

Effect. The requested operation is ignored.

Recovery. Ensure that the LIKE clause refers to another structure, not the one in
which the LIKE appears.

Cause. You attempted to log on from a logged-on terminal and the NOCHANGEUSER
field of the TACL configuration does not equal zero.

Effect. The requested operation is ignored.

Recovery. Log off before attempting to log on.

Cause. You specified more than the maximum number of allocated segment files.

Effect. The requested operation is ignored.

Recovery. Reduce the number of segment files and reissue the request.

ERROR Library conflict

ERROR LIKE may not refer to any part of STRUCT containing
it

ERROR LOGON has been disabled. Log off first.

ERROR Maximum number of attached segment files exceeded
segment-file-name not attached
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-18

E rror M essages TA C L E rror M essages
Cause. You omitted a closing bracket.

Effect. The requested operation is ignored.

Recovery. Supply the missing bracket and reissue the request.

Cause. You either forgot the closing quotation mark of a string or attempted to include
an end-of-line delimiter in a string.

Effect. The requested operation is ignored.

Recovery. Supply the closing quotation mark and reissue the request.

Cause. You omitted an opening bracket.

Effect. The requested operation is ignored.

Recovery. Supply the missing bracket and reissue the request.

Cause. The same label was present more than once in an enclosure.

Effect. The requested operation is ignored.

Recovery. Either delete or modify the extra copies of the label.

Cause. TACL cannot find anything to invoke by the name you entered.

Effect. The requested operation is ignored.

Recovery. Check that you spelled the name correctly or that you used the name of an
existing variable, built-in, file, or system file. Then reissue the request.

ERROR Missing close bracket

ERROR Missing close quote; must be on same line as open
quote

ERROR Missing open bracket

ERROR Multiply defined label in enclosure

ERROR Name of variable, builtin, file, or system file
needed
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-19

E rror M essages TA C L E rror M essages
Cause. The case label could not be found, and there was no OTHERWISE included in
the CASE statement.

Effect. The requested operation is ignored.

Recovery. Check that you specified the case label correctly, or add an OTHERWISE.

Cause. When you attempted to create a new process, an error occurred for which
TACL has no explanatory text.

Effect. The requested operation is ignored.

Recovery. See the Guardian Procedure Errors and Messages Manual for corrective
action for the error indicated by the first number; see the section on file system errors
in that manual for corrective action for the error indicated by the second number.

Cause. You attempted to do a (#)SWITCH operation while your TACL had no backup
process.

Effect. The requested operation is ignored. Ensure that your TACL has a backup
before requesting a (#)SWITCH operation.

Recovery. Ensure that your TACL has a backup before requesting a (#)SWITCH
operation.

Cause. You attempted to execute a program with less than one data page. Either
there was no global or local data, or data pages were set using the compiler directive
?DATAPAGES or the BIND command SET DATAPAGES.

Effect. The requested operation is ignored.

Recovery. Use the SHOW command with the SET option in BIND to determine the
number of data pages in the object file. Use the CHANGE command in BIND to set the
number of pages.

ERROR Neither case label nor OTHERWISE found

ERROR NEWPROCESS Error: nnn, nnn

ERROR No backup

ERROR No data pages
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-20

E rror M essages TA C L E rror M essages
Cause. You supplied a level number, or a reference to a STRUCT item or
substructure, where TACL accepts only an unqualified variable name.

Effect. The requested operation is ignored.

Recovery. Check the variable reference to ensure that it refers to the correct entity, in
the proper form.

Cause. You attempted to execute a program that either is missing a main procedure
or that has the MAIN attribute set to OFF.

Effect. The requested operation is ignored.

Recovery. Use the LIST command with the CODE option in BIND to verify that the
MAIN procedure was not present in the object file, or that the MAIN attribute for the
procedure was set to OFF. Either add the MAIN procedure or set the MAIN attribute to
ON by using the ALTER command in BINDER.

Cause. You attempted to follow a name that is not of type DIRECTORY with a colon
and another variable name.

Effect. The requested operation is ignored.

Recovery. Ensure that the entity to which you are referring is defined as type
DIRECTORY, or remove the directory reference.

Cause. You attempted to follow a nonexistent variable name with a colon and another
variable name.

Effect. The requested operation is ignored.

Recovery. Define the desired directory before referring to it.

Cause. The system monitor could not create a process control block (PCB) because
all entries in the PCB table are in use.

ERROR No level number or STRUCT qualification allowed

ERROR No main procedure

ERROR Nondirectory may only be at end of variable name

ERROR Nonexistent directory in variable name

ERROR No PCB available
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-21

E rror M essages TA C L E rror M essages
Effect. The requested operation is ignored.

Recovery. Try running the program on a different CPU, or wait until a PCB entry
becomes free.

Cause. You attempted to invoke one of certain built-in functions, such as #RESULT,
that can be called only from within a routine, but the function call is not in a routine.

Effect. The requested operation is ignored.

Recovery. Include the invocation of the built-in function in a routine.

Cause. The line requested with the HISTORY command does not exist. It could be a
line not yet used (number too large) or a line no longer in the history buffer (number too
small), or the text string does not match a line in the buffer.

Effect. The requested operation is ignored.

Recovery. Check that you specified the correct line. Use the HISTORY command to
check for the line you want

Cause. You tried to invoke a variable that does not exist.

Effect. The requested operation is ignored.

Recovery. Change the variable to one that exists.

Cause. The file specified is not a disk file.

Effect. The requested operation is ignored.

Recovery. Check that you specified the correct file. If not, retry the operation with the
correct file; otherwise, corrective action depends on the application.

Cause. You attempted to use a variable or I/O mode that is not allowed.

Effect. The requested operation is ignored.

ERROR No routine has been called

ERROR No such line

ERROR No such variable

ERROR Not a disk file

ERROR Not a legal variable type or IO mode
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-22

E rror M essages TA C L E rror M essages
Recovery. Check that you have correctly specified the variable type or I/O mode.

Cause. The file specified has an incorrect structure.

Effect. The requested operation is ignored.

Recovery. Check that you specified the correct file. If not, retry the operation with the
correct file; otherwise, corrective action depends on the application.

Cause. The file specified has a code other than 100.

Effect. The requested operation is ignored.

Recovery. Check that you specified the correct file. If not, retry the operation with the
correct file; otherwise, corrective action depends on the application.

Cause. The requested search string could not be found. This message results from
the #DELTA S command.

Effect. The requested operation is ignored.

Recovery. Correct the search string if you know it does exist.

Cause. This condition can result from the #DELTA C, L, T, K, D, and J commands.
The indicated characters are not in the buffer.

Effect. The requested operation is ignored.

Recovery. Use the #DELTA HT command to display the contents of the buffer.

Cause. The variable indicated must be or contain a number.

Effect. The requested operation is ignored.

Recovery. Correct the indicated variable.

ERROR Not correct file structure

ERROR Not file code 100

ERROR Not found

ERROR Not in buffer

ERROR Number or numeric variable expected
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-23

E rror M essages TA C L E rror M essages
Cause. There was a problem with a TACL library file that you tried to load.

Effect. The requested operation is ignored.

Recovery. Check your library file and correct the errors.

Cause. You specified an option that conflicts with another option; for example,
specifying IN and INV in the same RUN command or #NEWPROCESS call.

Effect. The requested operation is ignored.

Recovery. Correct the conflict and reissue the request.

Cause. You specified more than one option or specified the same option more than
once with the indicated request.

Effect. The requested operation is ignored.

Recovery. Delete the additional option and reissue the request.

Cause. An OTHERWISE label is not last in a #CASE built-in function.

Effect. The function stops executing.

Recovery. Move the OTHERWISE label to the end of the #CASE function.

Cause. You specified an invalid number of pages for the PFS option of a
#NEWPROCESS call.

Effect. The process was not started.

Recovery. Reissue the RUN or #NEWPROCESS command with PFS num-pages in
the allowable range.

ERROR One or more errors occurred while loading library
file

ERROR Option conflicts with another option

ERROR Option may not appear more than once

ERROR |OTHERWISE|, if present, must be the last label in
#CASE

ERROR Process File Segment size out of range
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-24

E rror M essages TA C L E rror M essages
Cause. TACL received error <n> unexpectedly from operating system procedure
PROCESS_GETINFO_.

Effect. For each of these errors, #ERRORNUMBERS is set:

Recovery. Refer to the Guardian Procedure Errors and Messages Manual for a
description of PROCESS_GETINFO_ errors. The error information and the context in
which the error occurs may suggest a recovery action. If not, contact your service
provider.

Cause. The operating system RVU predates the D40 RVU and does not support the
system procedure PROCESS_LAUNCH_:

Effect. The specified process is not started.

Recovery. None. Either upgrade the system to use the function or do not use it.

Cause. When attempting to start or modify a process, you specified a process name
that is invalid because the name exists already or the name was incorrectly specified.

Effect. The requested operation is ignored.

Recovery. Check that you specified the process name correctly. Use the STATUS
command to see if the process name exists already and who owns the process.

Cause. When trying to run a program, you specified the same name for the program
and the library. This problem is detected by the operating system.

Effect. The requested operation is ignored.

Recovery. Try the command again with the correct program and library names.

ERROR PROCESS_GETINFO_ error = <n>, error^detail = <d>

First number 1150, 1151, 1152, or 1153

Second Number <n>

Third number <d>

Fourth number 0

ERROR #PROCESSLAUNCH built-in not supported in this TOS
version

ERROR Process name error

ERROR Program file and library file specified are same
file: text
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-25

E rror M essages TA C L E rror M essages
Cause. When you attempted to run a program, the program file could not be used for
the reason indicated in text.

Effect. The requested operation is ignored.

Recovery. Check that you specified the correct program file.

Cause. You can specify a range only as the last item in a structure reference.

Effect. The requested operation is ignored.

Recovery. Reformat the structure reference to place the range after the name of the
item containing the range.

Cause. The #REQUESTER built-in function opened an unstructured non-edit file with
a WAIT option of greater than 1024 bytes specified for the record length.

Effect. The requested operation is ignored.

Recovery. Make the original record size smaller.

Cause. You supplied a redefinition whose data area would be larger than the data
area of the item being redefined, starting at offset 0 in the item being redefined.

Effect. The requested operation is ignored.

Recovery. Make the original definition larger, to accommodate the redefinition, or
make the redefinition smaller.

Cause. A REDEFINES clause in a STRUCT declaration called for the placement of a
word-aligned item on an odd-byte boundary.

Effect. The requested operation is ignored.

ERROR Program file error: text

ERROR Range must be last

ERROR RECORD size cannot exceed 1024 bytes for unstructured
non-edit files

ERROR REDEFINE item would extend beyond item being
redefined

ERROR REDEFINES attempted to place word-aligned item on
odd-byte boundary
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-26

E rror M essages TA C L E rror M essages
Recovery. Use a FILLER byte to ensure proper alignment of a STRUCT item and
another item that redefines it.

Cause. You attempted to refer to a structure element outside its defined range. You
can get this error if you define the range of an element so that it does not contain 0,and
you then refer to that element without giving a specific offset.

Effect. The requested operation is ignored.

Recovery. Check the defined range of the structure element and either correct the
range reference to fall within the definition or adjust the definition to accommodate the
reference.

Cause. You attempted to rename a file to another disk volume, which is not possible.

Effect. The requested operation is ignored.

Recovery. Use FUP DUP to copy the file to the other disk volume, then purge the
original.

Cause. The #DELTA command you entered requires a numeric expression.

Effect. The requested operation is ignored.

Recovery. Correct the command and reissue the request.

Cause. You failed to append a level number to a variable name when TACL was
expecting a level specification.

Effect. The requested operation is ignored.

Recovery. Supply the needed level specification.

Cause. Most often caused by attempting to execute a program using BINDER
features that are not supported by the RVU of the operating system in use.

ERROR Reference out of defined bounds

ERROR Rename attempted to another volume [, File: file-
name]

ERROR Requires a numeric argument

ERROR Requires a specific level

ERROR Requires later version of GUARDIAN
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-27

E rror M essages TA C L E rror M essages
Effect. The requested operation is ignored.

Recovery. Check that the RVU of BINDER in use is of the same or earlier RVU as the
operating system in use. If the RVU of BINDER in use is from a later RVU than that of
the operating system, it may include features that are not supported.Rebind the object
file, using a RVU of BINDER that is of the same RVU as the operating system in use.
For additional information, see the Binder Manual.

Cause. The file was not produced by BINDER, or BINDER malfunctioned.

Effect. The requested operation is ignored.

Recovery. Contact your service provider.

Cause. You attempted to use calls between routines resulting in more than 100 layers.

Effect. The requested operation is ignored.

Recovery. Reduce the number of recursive routines.

Cause. You attempted an operation on a file that has a protection specifier that does
not allow the action requested.

Effect. The requested operation is ignored.

Recovery. Use the FILEINFO command to check who owns the file and how the
protection specifier is set. If you own the file, change the protection specifier on the file
(if necessary).

Cause. You attempted to attach a segment file whose file code is 440 but whose
contents are not a valid TACL segment.

Effect. The requested operation is ignored.

Recovery. Check whether you are referring to the correct file; if so, check the file
contents. Repair as the situation indicates.

ERROR Resident size greater than code area

ERROR Routine stack overflow

ERROR Security violation [, File: file-name]

ERROR Segment data structure invalid
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-28

E rror M essages TA C L E rror M essages
Cause. You attempted to attach a segment file whose file code is not 440, the only
valid file code for TACL segment files.

Effect. The requested operation is ignored.

Recovery. Check whether you are referring to the correct file.

Cause. You attempted to attach a segment whose contents are inconsistent. This can
happen if, while detaching a private segment, TACL begins to write the segment out
but fails for any reason to write the entire file.

Effect. The requested operation is ignored.

Recovery. Re-create the segment file.

Cause. You attempted to attach a segment file that was last changed by a newer RVU
of TACL, and the newer RVU has implemented incompatible changes in the segment
file format.

Effect. The requested operation is ignored.

Recovery. Re-create the segment file.

Cause. In an #SSxxx function (other than #SSINIT), you supplied a buffer whose
first16 bits do not contain the value -28.

Effect. The requested operation is ignored.

Recovery. Ensure that each SPI buffer structure begins with -28 in its first 16 bits.

Cause. Indeterminate.

Effect. The requested operation is ignored.

Recovery. See your service provider to obtain a new copy of the CPRULES file in
question.

ERROR Segment file code must be 440

ERROR Segment is inconsistent because its last DETACHSEG
failed to complete

ERROR Segment version incompatible

ERROR SPI buffer does not begin with -28

ERROR Specified character class not present in CPRULES file
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-29

E rror M essages TA C L E rror M essages
Cause. TACL experienced a processor stack overflow, possibly because of a very
large structure or I/O buffer.

Effect. The requested operation is ignored.

Recovery. Reexamine your coding to find ways in which structures or I/O buffers can
be made smaller.

Cause. In an #SSxxx function, you supplied a token map and a structure whose data
area was smaller than that described by the token map.

Effect. The requested operation is ignored.

Recovery. Ensure that the structure involved has enough data area to accommodate
the token map's specifications

Cause. You attempted to use a structure as an SPI buffer, but the structure is either
too short to hold a header or is shorter than the header claims.

Effect. The requested operation is ignored.

Recovery. Ensure that the structure has a data area large enough to accommodate
the header and its requirements.

Cause. You attempted to define a structure whose data area would be longer than the
TACL limit of 5000 bytes per structure.

Effect. The requested operation is ignored.

Recovery. Check and adjust the individual item definitions in the STRUCT to prevent
their aggregate from exceeding the maximum structure size

Cause. The system manager of the remote system where you started your TACL
process has configured that TACL so that the super ID cannot log onto it if it is started
remotely from a remote system.

ERROR Stack overflow

ERROR STRUCT is not long enough to be nulled by given token
map

ERROR STRUCT's data area is not long enough

ERROR STRUCT's data would exceed 5000 bytes

ERROR SUPER.SUPER may not LOGON remotely
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-30

E rror M essages TA C L E rror M essages
Effect. The LOGON operation is ignored.

Recovery. None. (You can, however, log on to the remote system under an allowable
ID, start a TACL process locally on that system, and then log on as the super ID.)

Cause. You attempted to define the lower end of a range in a structure and failed to
supply a number, or the number was not terminated by a colon or closing parenthesis.

Effect. The requested operation is ignored.

Recovery. Correct the range specification.

Cause. You attempted to define the upper end of a range in a structure and failed to
supply a number, or the number was not terminated by a closing parenthesis.

Effect. The requested operation is ignored.

Recovery. Correct the range specification.

Cause. Either all communication paths to the specified system are down, or the
system itself is down.

Effect. The requested operation is ignored.

Recovery. Wait until the system is available.

Cause. The system address for selectable segments has changed.

Effect. The requested operation is ignored.

Recovery. Contact your service provider.

Cause. An internal buffer was exceeded.

Effect. The requested operation is ignored.

ERROR Syntax error in lower bound

ERROR Syntax error in upper bound

ERROR System not available

ERROR System’s base address for selectable segments has
been changed.

ERROR TACL internal buffer too small
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-31

E rror M essages TA C L E rror M essages
Recovery. Decrease the size of macros or routines where possible, avoid excessive
nesting of macros or routines, and structure recursive macros so that they invoke
themselves in their last statements, so that each instance of the macro vanishes from
the text buffer before the next one begins. Use loops to perform operations on large
amounts of data a little at a time. Use options, such as LOADED in the LOAD
command, or other similar means, to direct results to variables. Use the VOLUME
command to reduce the number of template fields you need to pass to #FILENAMES.

Cause. You attempted to define a backup processor with a (#)BACKUPCPU
operation, but your TACL has no process name.

Effect. The requested operation is ignored.

Recovery. Start over with a TACL that is a named process.

Cause. You attempted to use a server from an unnamed TACL process.

Effect. The requested operation is ignored.

Recovery. Certain operations, including #SERVER and the INV, OUTV, and STATUS
options of the RUN command, require that TACL be a named process. Restart the
TACL process with a name.

Cause. You specified STOPONABEND as a parameter to the TACL command, and a
process it started abended or stopped with completion code -1, -2, -3, 2, 3, 4, 5, or 6.

Effect. The TACL that started the abended or stopped process also stops.

Recovery. Determine why the process abended or stopped, correct the problem, and
restart your TACL process.

Cause. You attempted to perform an operation that exceeded the 30,000-byte
capacity of the text buffer, which is used to hold TACL statements while they are being
processed (text is removed from the text buffer when TACL executes it).

Each line break uses one byte; each square bracket, vertical bar, or “~_” space uses
two bytes; other characters use one byte each. Comments of the { text } and == text
forms are omitted, and trailing spaces are nearly always omitted. Other effects on the
text buffer are:

ERROR TACL not named, cannot have a backup

ERROR TACL process must be named

ERROR TACL stopped by a process ABEND/STOP (pid: nn, nnn)

ERROR Text buffer overflow
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-32

E rror M essages TA C L E rror M essages
 The TACL IN file is read into the text buffer until any square brackets have been
balanced.

 File or variable macros, when invoked, are read entirely into the text buffer; dummy
arguments are substituted as they are read in.

 All other variable types, when invoked, are read entirely into the text buffer.

 During execution, the space available in the text buffer diminishes as routines and
macros are nested. Also, TACL can use up to half of the available area of the text
buffer as a scratch area.

Common causes of “Text buffer overflow” are:

 Very large macros or routines. As a rule of thumb, macros should never
exceed15,000 bytes after dummy argument substitution; routines should never
exceed15,000 bytes. Nesting reduces these numbers further.

 Uncontrolled nesting of macros. (If, however, you construct a recursive macro so
that it invokes itself in its last statement, each instance of the macro vanishes from
the text buffer before the next one begins, and it does not overflow the text buffer).

Routine nesting, on the other hand, more commonly runs out of routine stack
space (“Routine stack overflow”) instead of text buffer space.

 Matching too many file names with #FILENAMES

Effect. The requested operation is ignored.

Recovery. Examine your TACL program to look for ways to avoid text buffer overflow:

Decrease the size of macros or routines where possible, avoid excessive nesting of
macros or routines, and structure recursive macros as described above. Use loops to
perform operations on large amounts of data a little at a time. Use options, such as
LOADED in the LOAD command, or other similar means, to direct results to variables
instead of to the text buffer. Use the VOLUME command to reduce the number of
template fields you need to pass to #FILENAMES.

Cause. You indicated an inappropriate type for the variable; for example, it would be
inappropriate to use the DELTA type for any variable other than one that contains
#DELTA commands.

Effect. The requested operation is ignored.

Recovery. Correct the variable type.

ERROR This type of variable is inappropriate here
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-33

E rror M essages TA C L E rror M essages
Cause. You supplied a token map with a format that TACL does not understand. The
token map is probably invalid, corrupted, or includes some new feature unknown to this
RVU of TACL.

Effect. The requested operation is ignored.

Recovery. Examine the token map and repair as the situation indicates.

Cause. In an #SSxxx function, you supplied a token map and a structure whose data
area was smaller than that described by the token map.

Effect. The requested operation is ignored.

Recovery. Ensure that the STRUCT has a large enough data area to accommodate
the requirements of the token map.

Cause. The indicated text is too long for the context in which it is being used.

Effect. The requested operation is ignored.

Recovery. Shorten the text.

Cause. You entered too many arguments for the request; for example, SETMANY
allows not more than 100 variables.

Effect. The requested operation is ignored.

Recovery. Delete the excess arguments.

Cause. You specified more options than are allowed.

Effect. The requested operation is ignored.

Recovery. Delete the additional options and reissue the request

ERROR Token map contains a specification unknown to TACL

ERROR Token map would overflow its STRUCT

ERROR Too long

ERROR Too many arguments

ERROR Too many options
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-34

E rror M essages TA C L E rror M essages
Cause. You specified more PARAMs than are allowed.

Effect. The requested operation is ignored.

Recovery. Your PARAM assignments must not exceed 1024 bytes of internal storage

Cause. Too many exceptions have been filtered.

Effect. The requested operation is ignored.

Recovery. You are allowed a cumulative total of 32 different exceptions.

Cause. You attempted to invoke more than 16 successive aliases, which are referring
to each other in an endless chain.

Effect. The requested operation is ignored.

Recovery. Reduce the number of successive aliases so there are no more than 16.

Cause. An address was specified that was not within either the virtual code area or
the virtual data area allocated to the TACL process.

Effect. Indeterminate. Depending on context, the trap handler either recovers or
abends the TACL process.

Recovery. None. Notify your service provider.

ERROR Too many PARAMs

ERROR Too many simultaneous exceptions

ERROR Too many successive aliases or alias loop

Note . Each of these trap-related messages is followed by a line showing the register
contents at the time the trap occurred:

Trap information: S = % nnnnn, P = % nnnnnn, CS = % nnn,
E = % nnnnnn, L = % nnnnnn

S, P, E, and L are the TACL registers; CS is the code segment for the P register.

Additional information about trap errors and trap handling is given in the Guardian
Programmer’s Guide and the Guardian Procedure Calls Reference Manual.

ERROR TRAP 0 in TACL: Illegal address reference
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-35

E rror M essages TA C L E rror M essages
Cause. An attempt was made to execute a code word that is not an instruction, or an
illegal extended address reference was made.

Effect. Indeterminate. Depending on context, the trap handler either recovers or
abends the TACL process.

Recovery. None. Notify your service provider.

Cause. Either the result of a signed arithmetic operation could not be represented with
the number of bits available for the particular data type, or division by zero was
attempted.

Effect. Indeterminate. Depending on context, the trap handler either recovers or
abends the TACL process.

Recovery. None. Notify your service provider.

Cause. An attempt was made to execute a procedure or subprocedure whose
(sub)local data area extends into the upper 32KB of the data area. Stack overflow can
also occur when calling a system procedure without sufficient remaining virtual data
space for that procedure to run (the procedure is not executed).

Effect. Indeterminate. Depending on context, the trap handler either recovers or
abends the TACL process.

Recovery. None. Notify your service provider.

Cause. TACL has issued a call to the SETLOOPTIMER procedure and the time limit
specified in the latest call has expired.

Effect. Indeterminate. Depending on context, the trap handler either recovers or
abends the TACL process.

Recovery. None. Notify your service provider.

ERROR TRAP 1 in TACL: Instruction failure

ERROR TRAP 2 in TACL: Arithmetic overflow

ERROR TRAP 3 in TACL: Stack overflow

ERROR TRAP 4 in TACL: Process loop timer timeout
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-36

E rror M essages TA C L E rror M essages
Cause. An unrecoverable read error occurred while attempting to bring in a page from
virtual memory.

Effect. Indeterminate. Depending on context, the trap handler either recovers or
abends the TACL process.

Recovery. None. Notify your service provider.

Cause. A page fault occurred, but no physical memory page is available for overlay, or
the swap volume is full, preventing the memory manager from saving the memory
page.

Effect. Indeterminate. Depending on context, the trap handler either recovers or
abends the TACL process.

Recovery. Delete some swap volume contents to make room for TACL usage.

Cause. An uncorrectable memory error was detected.

Effect. Indeterminate. Depending on context, the trap handler either recovers or
abends the TACL process.

Recovery. None. Notify your service provider.

Cause. TACL was unable to access the system USERID file.

Effect. The requested operation is ignored.

Recovery. If you are the super ID (user 255,255), check the status of the user ID file
and take appropriate action. If you are not the super ID, you cannot access the user ID
file.

Cause. There was not enough contiguous word space available.

Effect. The requested operation is ignored.

ERROR TRAP 11 in TACL: Memory manager disk read error

TRAP 12 in TACL: No memory available or swap volume full

ERROR TRAP 13 in TACL: Uncorrectable memory error

ERROR Unable to access userid file

ERROR Unable to allocate contiguous word space
(Hint: You probably should #LOGOFF and then LOGON)
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-37

E rror M essages TA C L E rror M essages
Recovery. Use #LOGOFF, then log on again.

Cause. When attempting to run a program, there was not enough space in the
MAPPOOL of the processor.

Effect. The requested operation is ignored.

Recovery. Run the program on another CPU, or wait until there is room on the chosen
CPU.

Cause. Your use of variables has consumed all of the 1024 pages that can be
allocated to one private segment.

Effect. The requested operation is ignored.

Recovery.

 If TACL is interactive, use #LOGOFF/SEGRELEASE/, then log on again.
Analyze your usage and either reduce it or distribute it among multiple private
segments.

 If TACL is noninteractive, TACL abends with an abnormal completion code.

Cause. When you attempted to run a program, TACL could not communicate with the
system monitor process in the requested CPU, possibly because the CPU did not exist
or was down.

Effect. The requested operation is ignored.

Recovery. Try running the program on another CPU.

Cause. TACL could not return the result of the indicated macro because a syntax error
occurred in a dummy argument.

Effect. The requested operation is ignored.

Recovery. A prior message indicates the specific problem.

ERROR Unable to allocate map

ERROR Unable to allocate space in segment: seg-file-name
(HINT: You probably should #LOGOFF/SEGRELEASE/)

ERROR Unable to communicate with system monitor process:
text

ERROR Unable to expand macro
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-38

E rror M essages TA C L E rror M essages
Cause. The default volume is not in the correct format for network usage.

Effect. The requested operation is ignored.

Recovery. For network access, device names, including names of disk volumes, can
have no more than six characters (not including $).

Cause. The specified file name is not in the correct format for network usage.

Effect. The requested operation is ignored.

Recovery. Check that you have specified the file name correctly. For network access,
device names, including names of disk volumes, can have no more than six
characters. Process names can have no more than four characters.

Cause. When attempting to run a program, there was not enough disk space or there
was an error in the swap file for the user data memory.

Effect. The requested operation is ignored.

Recovery. Specify a different volume for the swap file.

Cause. TACL was unable to load the library file section.

Effect. The requested operation is ignored.

Recovery. A prior message indicates the specific problem.

Cause. The file system attempted to add another extent to the file, but there was no
available space on the disk.

Effect. The requested operation is ignored.

Recovery. Purge any unnecessary files and try the operation again. If it still fails,
contact your system manager.

ERROR Unable to express default volume in network form

ERROR Unable to express a filename in network form

ERROR Unable to get virtual disk space or error on swap
file: text

ERROR Unable to load SECTION

ERROR Unable to obtain disk space for extent [, File:
file-name]
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-39

E rror M essages TA C L E rror M essages
Cause. #DELTA was unable to perform the requested edit.

Effect. The requested operation is ignored.

Recovery. A prior message indicates the specific problem.

Cause. The command you entered is not a valid #DELTA command.

Effect. The requested operation is ignored.

Recovery. A prior message indicates the specific problem.

Cause. You pressed a function key (CTRL/A, for example) that is not recognized by
TACL.

Effect. The requested operation is ignored.

Recovery. Reissue the function key, making sure that it is valid.

Cause. You attempted to run a program that calls procedures it is not authorized to
call. The super ID must license program files, by means of the FUP LICENSE
command, to enable them to execute such procedures.

Effect. The requested operation is ignored.

Recovery. Check the name of the program. If you need to run the program, have the
super ID license the program.

Cause. You used a floating-point format that is not recognized by the system.

Effect. The operating system does not allow the creation of the process.

Recovery. Use an appropriate floating-point format.

ERROR Unable to perform edit

ERROR Unknown delta command

ERROR Unknown function key

ERROR Unlicensed privileged program: text

ERROR Unrecognised floating point type in object file

ERROR Unsupported CPRULES file version
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-40

E rror M essages TA C L E rror M essages
Cause. The CPRULES file version is no longer supported by this RVU of TACL.

Effect. The requested operation is ignored.

Recovery. See your service provider to obtain a new copy of the CPRULES file in
question.

Cause. You referred to a nonexistent variable. (This problem also occurs if you embed
a dollar sign in a text argument that is terminated by a dollar sign.)

Effect. The requested operation is ignored.

Recovery. Check the spelling of the variable reference; if it is correct, ensure that you
define the variable before referring to it. (Check to see if the argument can be bounded
by alternative delimiters.)

Cause. You referred to a nonexistent level of an existing variable.

Effect. The requested operation is ignored.

Recovery. Check the level specification, and check your method of creating levels for
the variable, to ensure that they correspond.

Cause. You attempted to push, pop, change the value of, or set a breakpoint on a
variable in a shared segment. The contents of shared segments cannot be changed.
(Setting a breakpoint forces TACL to turn on a flag in the variable, thus changing it.)

Effect. The requested operation is ignored.

Recovery. First detach the segment, then reattach it in the private mode before
attempting to change any variables in it. Return the segment to the shared mode
afterward.

Cause. A numeric variable is required.

Effect. The requested operation is ignored.

Recovery. Correct the indicated variable. A numeric variable can contain nothing
other than a single decimal number, optionally preceded or followed by spaces and
blank lines.

ERROR Variable does not exist

ERROR Variable does not have that level

ERROR Variable is in a shared segment making it read-only

ERROR Variable is not numeric
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-41

E rror M essages TA C L E rror M essages
Cause. There is an internal problem within the VTLAUNCH procedure at code location
nnn.

Effect. VTLAUNCH did not create the window or start the process.

Recovery. Report this error and code location to your service provider.

Cause. TELNET returned an SCP ADD error.

Effect. VTLAUNCH was unable to add a new TELNET window. The window was not
created, and the x6530 emulator process was not started.

Recovery. Refer to TELNET documentation for recovery details and information about
the TELNET error code.

Cause. The x6530 emulator was unable to make a clone of itself.

Effect. The x6530 emulator process for the virtual terminal window was not started.

Recovery. Refer to the appropriate UNIX reference manual for recovery details and
information about the UNIX error code.

Cause. VTLAUNCH was unable to communicate with the windowing system
communications process.

Effect. The virtual terminal window was not created.

Recovery. Refer to the Guardian Procedure Errors and Messages Manual for
recovery and file system error information.

Cause. VTLAUNCH was unable to open the windowing system communications
process.

Effect. The virtual terminal window was not created.

ERROR VT Internal error VTLAUNCH: at code location nnn

ERROR VT TELNET SCP window add failure TELNET: code

ERROR VT Unable to clone x6530 emulator
Unix: code

ERROR VT Unable to communicate with windowing comm process
GUARDIAN: file system error

ERROR VT Unable to open windowing comm process
GUARDIAN: file system error
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-42

E rror M essages TA C L E rror M essages
Recovery. Refer to the Guardian Procedure Errors and Messages Manual for
recovery and file system error information.

Cause. VTLAUNCH was unable to communicate with the emulator whose file number
was specified.

Effect. The virtual terminal window was not created.

Recovery. Refer to the Guardian Procedure Errors and Messages Manual for
recovery and file system error information.

Cause. VTLAUNCH was unable to determine the proper window controller process
with which to communicate.

Effect. The virtual terminal window was not created.

Recovery. Refer to the Guardian Procedure Errors and Messages Manual for
recovery and file system error information.

Recovery. The virtual terminal window facility is not supported. One or more of the
components (VTLNCH object, x6530 emulator, or TELNET) is missing or is the wrong
version.

Cause. The virtual terminal window was not created.

Recovery. Ensure that the required version of each component is installed and
running.

Cause. There is an internal problem in TACL or the operating system.

Effect. The window was not created and the process was not started.

Recovery. Report the message and error code to your service provider.

ERROR VT Unable to communicate with emulator
GUARDIAN: file system error

ERROR VT Cannot determine proper window controller process
GUARDIAN: file system error

ERROR VT Virtual Terminal Launch not supported by:
VTLAUNCH object, communication controller or emulator

ERROR VT Illegal terminal name passed
GUARDIAN XBOUNDS: Xbounds-error
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-43

E rror M essages TA C L E rror M essages
Cause. A window process was successfully added but could not be started.

Effect. The window was not created and the process was not started.

Recovery. Refer to TELNET documentation for recovery details and information about
the TELNET error code.

Cause. You attempted to set a variable that had not been pushed.

Effect. The requested operation is ignored.

Recovery. Push the variable and then set it.

Cause. You specified a year that does not contain 4 digits.

Effect. The command fails.

Recovery. Specify a 4-digit number for the year.

Cause. You attempted to start a process using the INLINE option while an inline
process already exists (#INLINEPROCESS is not empty).

Effect. The requested operation is ignored.

Recovery. Push #INLINEPROCESS before starting an inline process, or finish
activities with the current inline process before starting another one.

Cause. You attempted to assign a value to a built-in variable that can only receive a
value as a side effect of some other operation. For example, you cannot explicitly set
#INLINEPROCESS; it receives its value as the result of starting a process with the
INLINE option, or terminating such a process.

Effect. The requested operation is ignored.

Recovery. None; the attempted operation is prohibited.

ERROR VT Unable to start the newly added TELNET window
TELNET: code

ERROR Was not pushed

ERROR Year must be four digits

ERROR You already have a current INLINE process

ERROR You cannot explicitly set this variable
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-44

E rror M essages TA C L E rror M essages
Cause. You began an input line with the current INLINE prefix, or you issued an
INLEOF command or #INLINEEOF invocation while no inline process exists.

Effect. The requested operation is ignored.

Recovery. Start a process with the INLINE option before attempting to use the INLINE
feature.

Cause. A line beginning with ? appeared in a place where such a line is not allowed.

Effect. The requested operation is ignored.

Recovery. Remove the line and retry the operation.

Cause. An error occurred while accessing the CPRULES0 file.

Effect. TACL continues initialization.

Recovery. Correct the error condition described in text-reason.

Cause. For a large macro file there are too many variables to be columnized.

Effect. The variables are loaded but remain uncolumnized

Recovery. None.

Cause. For a large segment file there are too many variables to be columnized.

Effect. The variables are sorted but remain uncolumnized and the final result does not
flag directory names with an asterisk (*).

Recovery. None.

ERROR You have no INLINE process

ERROR ? line not allowed here

WARNING Could not access CPRULES0 file
text-reason
Using internal character processing rules tables

WARNING text buffer overflow, could not columnize the
variables.

WARNING VARIABLES okay, but text buffer overflowed. Could
not columnize variables.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-45

E rror M essages D E F IN E E rror M essages
DEFINE Error Messages
The following messages relate specifically to DEFINEs. Each (except the first, which is
a TACL message) is associated with a numeric error code returned by the DEFINE-
oriented procedure invoked. If one of these operating system procedures returns an
error number that TACL does not recognize, TACL simply displays:

DEFINE error num

See the Guardian Procedure Errors and Messages Manual for additional details about
these messages.

Cause. A DEFINE attribute value returned by the operating system is too long for the
buffer TACL uses in obtaining such information. This can occur when the operating
system reformats an attribute on output into a form different from that in which the
attribute was input, such as when a value is input as a comma-separated list without
spaces and the operating system inserts a space after each comma, causing the value
to exceed the TACL limit of 1024 bytes.

Effect. The requested operation is ignored.

Recovery. Decrease the size of the original value to allow for reformatting by the
operating system.

Cause. The working set is invalid.

Effect. The operation is ignored.

Recovery. Correct the working set, then retry the operation.

Cause. A required attribute is missing from the current CLASS in the working set.

Effect. The operation is ignored.

Recovery. Add the attribute for the current CLASS, then retry the operation

Cause. The working set is inconsistent for the current CLASS.

Effect. The operation is ignored.

Attribute value too long for TACL

Current attribute is incomplete and inconsistent

Current attribute set is incomplete

Current attribute set is inconsistent, check number num
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-46

E rror M essages D E F IN E E rror M essages
Recovery. Correct the working set, then retry the operation. See Table 8-7 on
page 8-185 for consistency rules.

Cause. You attempted to add a DEFINE name that already exists.

Effect. The operation is ignored.

Recovery. Correct or change the DEFINE name, then reissue the request.

Cause. You attempted to delete a DEFINE that cannot be deleted: for example, the
=_DEFAULTS DEFINE.

Effect. The DEFINE is not deleted.

Recovery. None; the operation is not allowed.

Cause. A DEFINE could not be found.

Effect. The operation is ignored.

Recovery. Check to be sure you are specifying the correct DEFINE name, then
reissue the request.

Cause. There was a bounds error (in a parameter) for which TACL has no descriptive
text.

Effect. The operation is ignored.

Recovery. This is a coding error; corrective action is application dependent.

Cause. An attribute was missing; TACL has no descriptive text to add.

Effect. The operation is ignored.

Recovery. Add the attribute, then retry the operation.

DEFINE already exists " name"

DEFINE cannot be deleted " name"

DEFINE does not exist " name"

DEFINE error 2054

DEFINE error 2056
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-47

E rror M essages D E F IN E E rror M essages
Cause. You attempted to replace the =_DEFAULTS DEFINE with a DEFINE having
the same name but a class other than DEFAULTS.

Effect. The operation is ignored.

Recovery. Specify the DEFINE with a DEFAULTS class, then retry the operation.

Cause. The DEFMODE setting for the process does not allow the addition of a
DEFINE type.

Effect. The operation is ignored.

Recovery. Change the DEFMODE setting to allow the desired operation.

Cause. There was a syntax error in an attribute name.

Effect. The operation is ignored.

Recovery. Correct the syntax, then reissue the operation.

Cause. The CLASS name identified a nonexistent class.

Effect. The operation is ignored.

Recovery. Correct the CLASS name, then reissue the request.

Cause. There was a syntax error in the DEFINE name.

Effect. The requested operation is ignored.

Recovery. Correct the syntax error, then reissue the request.

Cause. You supplied an invalid value for an attribute.

DEFINE error 2073

DEFINE name not allowed under current defmode setting

Illegal attribute name " attr"

Illegal class name " name"

Illegal DEFINE name " name"

Illegal value for " attr"
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-48

E rror M essages D E F IN E E rror M essages
Effect. The operation is ignored.

Recovery. Correct the value, then reissue the request.

Cause. You attempted to reset a required DEFINE attribute.

Effect. The operation is ignored.

Recovery. None; you cannot reset a required DEFINE attribute.

Cause. You failed to supply a required parameter.

Effect. The operation is ignored.

Recovery. Add the missing parameter, then reissue the request.

Cause. You supplied an attribute that is not allowed for the current CLASS.

Effect. The operation is ignored.

Recovery. Correct the attribute for the current CLASS, then retry the operation.

Cause. Either file-system buffer space was not available or there is not enough room
in the process file segment (PFS). For example, too many files are open or too many
no-wait I/O operations are outstanding.

Effect. The operation is ignored.

Recovery. Close some files, wait for no-wait I/O to finish, then try again. Check the
system for processes that use too much buffer space. If the problem persists, call your
service provider.

Cause. There was not enough memory available to perform the requested operation.

Effect. The operation is ignored.

Recovery. Wait, then try again. If the problem persists, check the system for
processes that use too much memory.

Required attribute - Cannot be reset

Required parameter is not supplied

There is no attribute " attr" for the current class

Unable to obtain file system buffer space

Unable to obtain physical memory
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-49

E rror M essages P rocess C rea tion E rror M essages
Process Creation Error Messages
If you receive a message indicating that the program file or library file has an illegal
format (*ERROR* NEWPROCESS error 006, nnn), TACL follows that message with an
error that describes why the file is unacceptable. Following is a partial list of errors:

ERROR Not a disk file
ERROR Not file code 100 or 700
ERROR Not correct file structure
ERROR Requires later version of GUARDIAN
ERROR No main procedure
ERROR LIB file has main procedure
ERROR No data pages
ERROR Invalid PEP
ERROR Header INITSEGS not consistent with size
ERROR Resident size greater than code area
ERROR File not fixed-up by binder
ERROR File has undefined data blocks
ERROR Unresolved references from data block to code block
ERROR Too many code spaces
ERROR Bad file or Bad target

See the Guardian Procedure Errors and Messages Manual for a description of the
subcode, and of process creation error messages in general.

If the error is not in a defined category, TACL displays *ERROR* Subcode nnn.

The #ERRORNUMBERS built-in variable stores four space-separated numbers after a
process creation operation. The first of the four numbers returned, 1101, represents
the process creation error (if no error occurred, all four numbers are zero). The second
number identifies the specific error, as listed in Table B-1.

Note. "*E R R O R * B ad file o r B ad ta rge t" occurs w hen try ing to run a 700 code file on a TN S /E system
rem ote ly from a TN S /R system .

Table B-1. #ERRORNUMBERS Results (page 1 of 2)

Number Error

1 Process has undefined externals (warning only; process was started)

2 No process control block available

3 File-system error occurred on program file

4 Unable to allocate map

5 File-system error occurred on swap file

6 Illegal file format

7 Unlicensed privileged program

8 Process name error

9 Library conflict

10 Unable to communicate with system monitor process
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-50

E rror M essages R C V D U M P E rror M essages
If the second number is 3, 5, 8, 11, 13, 14, or 15, the third number contains a file-
system error number identifying the specific error condition.

If the second number is 6, the third number contains either 0, specifying that the
program file is in error, or 1, specifying that the library file is in error. The fourth number
contains a value in the range 1-14 that specifies why the file format is invalid. The
numbers correspond to the positions in the list of process creation “illegal format” error
messages given in the preceding list; for example, 3 indicates the main procedure is
missing.

RCVDUMP Error Messages
The following messages are returned by the RCVDUMP procedure. Use of the
RCVDUMP and RECEIVEDUMP commands is restricted to super-group users only.

RCVDUMP error messages are divided into two subsections:

 Messages for H-series only. These are all designated by the prefix ‘DUMP_’.

 Messages common to all systems, H-series, G-series and D-series. The wording
may differ slightly between systems.

RCVDUMP Error Messages for H-Series Only

Cause. You specified a parallel dump without the slice option, but more than one slice
is in a stopped state.

Effect. RCVDUMP does not continue processing.

Recovery. Specify the slice from which the PE is to be dumped.

Cause. You specified both parallel and online options. This is not possible.

Effect. RCVDUMP does not continue processing.

11 File-system error occurred on library file

12 Program file and library file specified are the same file

13 Extended data segment initialization error

14 Extended segment swap file error

15 Illegal home terminal

 DUMP _SLICE_NOT_SPECIFIED

 DUMP_PARAM_CONFLICT

Table B-1. #ERRORNUMBERS Results (page 2 of 2)

Number Error
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-51

E rror M essages R C V D U M P E rro r M essages fo r H -S eries O n ly
Recovery. Redo the command with only one of these options.

Cause. Receive dump was not started by super user id. Your current id cannot
perform this operation.

Effect. RCVDUMP does not continue processing.

Recovery. Log in as the super user.

Cause. You cannot dump a remote system.

Effect. RCVDUMP does not continue processing.

Recovery. Run RCVDUMP on the remote system.

Cause. The PE on the slice you specified has not been stopped.

Effect. RCVDUMP does not continue processing.

Recovery. You must stop that PE or specify an alternative.

Cause. The logical cpu has not halted.

Effect. RCVDUMP does not continue processing.

Recovery. Either halt that cpu or specify another one.

Cause. There is not enough space on the disk that contains your designated dump
file.

Effect. RCVDUMP does not continue processing.

Recovery. Select a dump file on another disk.

DUMP_INSUFFICIENT_PRIVILEGE

 DUMP_NOT_LOCAL

 DUMP_SLICE_NOT_STOPPED

 DUMP_CPU_NOT_HALTED

 DUMP_NO_DISK_SPACE

 DUMP_PRIME_FAILED
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-52

E rror M essages R C V D U M P E rro r M essages fo r H -S eries O n ly
Cause. Priming the CPU for an HSS dump failed.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

Cause. Couldn’t allocate memory for internal data buffers.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

Cause. RCVDUMP couldn’t talk to the downed CPU.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

Cause. Memory configuration check failed.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

Cause. Compressed data received from HSS is not correct.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

Cause. Receive dump has received invalid starter packet from HSS.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

DUMP_NO_MEMORY

DUMP_COMM_FAILURE

 DUMP_MEM_CONFIG_ERROR

 DUMP_COMPRESSED_DATA_ERROR

 DUMP_INVALID_STARTER_PKT

 DUMP_PROCESS_CREATE_ERROR
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-53

E rror M essages R C V D U M P E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Cause. Online dump start failed.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

Cause. Online dump process abended.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

Cause. Already one instance of receive dump is running on this logical CPU.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

Cause. Internal error like disk file open failed or write to the disk file failed with any
error other than no disk space.

Effect. RCVDUMP does not continue processing.

Recovery. Contact your HP service provider.

RCVDUMP Error Messages for H-Series, G-Series and
D-Series

Cause. The processor has been successfully dumped to the specified file.

Effect. This is an informative message.

Recovery. Informative message only; no corrective action needed.

 DUMP_ONLINE_PROCESS_ABEND

 DUMP_DUPLICATE_INVOCATION

 DUMP_INTERNAL_ERROR

CPU nn HAS BEEN DUMPED TO file-name.

CPU nn HAS NOT BEEN RESET-LOAD.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-54

E rror M essages R C V D U M P E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Cause. You attempted to dump a processor that had not been through the reset-load
sequence.

Effect. No processor is dumped.

Recovery. Do the reset-load and then retry the command.

Cause. You attempted to dump a processor that is running.

Effect. No processor is dumped.

Recovery. Specify the number of a processor that is not running.

Cause. A partial dump may have been taken of the specified processor.

Effect. The CPU may or may not have been dumped, as shown in the displayed
lights.

Recovery. Check the lights. If they are %177777, the dump was taken successfully; if
they are not %177777, reset-load the processor and reenter the command.

Cause. You specified an invalid file name.

Effect. No processor is dumped.

Recovery. Specify a valid file name.

Cause. You specified an invalid CPU number.

Effect. No processor is dumped.

Recovery. Specify a valid CPU number

Cause. You specified something else when only PRIME or NOPRIME was expected.

CPU nn IS RUNNING, CANNOT BE DUMPED.

CPU nn MAY HAVE BEEN PARTIALLY DUMPED TO
file-name. IF THE LIGHTS OF THE DUMPED
CPU ARE NOT %177777, THEN PLEASE REDO THE
RESET-LOAD AND RECEIVEDUMP SEQUENCE.

INVALID dump-file-name.

INVALID cpu NUMBER, THE ALLOWED VALUES ARE 0: nn.

INVALID PARAMETER, THE ALLOWED VALUES ARE
[PRIME NOPRIME].
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-55

E rror M essages R C V D U M P E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Effect. No processor is dumped.

Recovery. Reenter the command specifying PRIME or NOPRIME.

Cause. You specified an invalid bus.

Effect. No processor is dumped.

Recovery. Specify a valid bus.

Cause. You attempted to dump a processor to a nondisk file.

Effect. No processor is dumped.

Recovery. Retry the operation specifying a disk file

Cause. You attempted to dump a processor to a nonempty disk file.

Effect. No processor is dumped.

Recovery. Either purge the old file or specify a different file, then reenter the
command.

Cause. You attempted to dump a processor to an existing file whose file code was not
that of a dump file.

Effect. No processor is dumped.

Recovery. Purge the old file or specify a file with the correct file code.

Cause. You specified an invalid CPU number.

Effect. No processor is dumped.

Recovery. Specify a valid CPU number.

INVALID bus id, THE ALLOWED VALUES ARE [X Y].

IS NOT A DISK FILE.

file-name IS NOT EMPTY.

file-name IS NOT FILE CODE nnnn.

INVALID cpu NUMBER, THE ALLOWED VALUES ARE 0: nn.

INVALID dump-file-name.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-56

E rror M essages R C V D U M P E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Cause. You specified an invalid file name.

Effect. No processor is dumped.

Recovery. Specify a valid file name.

Cause. You did not specify the bus through which to dump the processor.

Effect. No processor is dumped.

Recovery. Specify a bus

Cause. You did not specify a dump file name.

Effect. No processor is dumped.

Recovery. Specify a file in the command.

Cause. You did not specify a processor to dump.

Effect. No processor is dumped.

Recovery. Specify a CPU number in the command.

Cause. The specified file could not be created because file-system error nnnn
occurred.

Effect. No processor is dumped.

Recovery. Correct the cause of the file-system error and reenter the command.

Cause. The specified file could not be opened because file-system error nnnn
occurred.

Effect. No processor is dumped.

Recovery. Correct the cause of the file-system error and reenter the command.

MISSING bus id.

MISSING dump-file-name.

MISSING cpu NUMBER.

UNABLE TO CREATE file-name, ERROR nnnn.

UNABLE TO OPEN file-name, ERROR nnnn.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-57

E rror M essages R E LO A D E rror M essages
Cause. The specified file could not be purged because file-system error nnnn
occurred

Effect. No processor is dumped.

Recovery. Correct the cause of the file-system error and reenter the command.

Cause. The specified file could not be written to because file-system error nnnn
occurred.

Effect. No processor is dumped.

Recovery. Correct the cause of the file-system error and reenter the command.

Cause. You specified PRIME or NOPRIME and this feature is not supported for the
type of processor.

Effect. No processor is dumped.

Recovery. Reenter the command without PRIME or NOPRIME.

RELOAD Error Messages
The following messages are returned by the RELOAD procedure. Use of the RELOAD
command is restricted to super-group users only.

RELOAD error messages are divided into two subsections:

 Messages for H-series only

 Messages common to all systems, H-series, G-series and D-series. The wording
may differ slightly between systems.

RELOAD Error Messages for H-Series Only

RELOAD prints several error messages at different stages. Many of these give
reasons as to why the RELOAD of a particular CPU failed. The RELOAD process will
still continue, since failure for one CPU does not indicate that other CPUs won’t
RELOAD. There are other error messages which indicate general problems (like file
system errors) that are more likely in the initial stages of RELOAD. Such errors would

UNABLE TO PURGE file-name, ERROR nnnn.

UNABLE TO WRITE TO file-name, ERROR nnnn.

** WARNING ** PRIME/NOPRIME IS NOT VALID FOR

THIS PROCESSOR TYPE: IGNORED.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-58

E rror M essages R E LO A D E rro r M essages fo r H -S eries O n ly
usually prevent RELOAD from going any farther. A third class of messages are
warnings, which don’t indicate the failure of RELOAD of any CPU, but indicate
something amiss in the system.

Cause. RELOAD is trying to open the alternate file specified on the command line.

Effect. This is a command-line error. RELOAD will not continue processing that CPU
specification.

Recovery. Make sure the alternate osdir file, its volume and its subvolume are
properly specified in the command line.

Cause. RELOAD is trying to open the alternate file specified on the command line.

Effect. This is a command-line error. RELOAD will not continue processing that CPU
specification.

Recovery. Make sure the alternate osdir file, its volume and its subvolume are
properly specified in the command line.

Cause. RELOAD is trying to open the alternate file specified on the command line.

Effect. This is a command-line error. RELOAD will not continue processing that CPU
specification.

Recovery. Make sure the alternate osdir file, its volume and its subvolume are
properly specified in the command line.

Cause. RELOAD is trying to open the alternate file specified on the command line.

Effect. This is a command-line error. RELOAD will not continue processing that CPU
specification.

Recovery. Make sure the alternate osdir file, its volume and its subvolume are
properly specified in the command line.

Alternate OS FileSet name should be specified as :
$VOLUME.SYSnn.OSDIR or $VOLUME or SYSnn.OSDIR or OSDIR

String Too Long: <File name>

Remote alternate files not supported: <File name>

Multiple alternate files not supported: <File name>

Unable to FILENAME_EDIT_ <File name>
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-59

E rror M essages R E LO A D E rro r M essages fo r H -S eries O n ly
Cause. RELOAD is trying to FILENAME_EDIT_ the alternate filename specified on
the command line.

Effect. This is a command-line error. RELOAD will not continue processing that CPU
specification.

Recovery. Make sure the alternate osdir file, its volume and its subvolume are
properly specified in the command line.

Cause. RELOAD is trying to FILENAME_DECOMPOSE_ the alternate filename
specified on the command line.

Effect. This is a command-line error. RELOAD will not continue processing that CPU
specification.

Recovery. Make sure the alternate osdir file, its volume and its subvolume are
properly specified in the command line.

Cause. RELOAD is parsing the OMITSLICE parameter.

Effect. This is a command-line error. RELOAD will not continue processing that CPU
specification.

Recovery. You must type on the command line one of A, B, or C, or no argument.

Cause. RELOAD is parsing the command line options.

Effect. This is a command-line error. RELOAD will not continue processing that CPU
specification.

Recovery. You must type only one instance of OMITSLICE per CPU specification.

Cause. RELOAD is trying to open the alternate file specified on the command line.

Effect. This error occurs while opening or reading from the OS Fileset. RELOAD will
not continue processing that CPU specification.

Unable to FILENAME_DECOMPOSE_ <File name>

Invalid OMITSLICE argument: <user specified slice>.

Repeated OMITSLICE option: <command line text>.

Alternate OS FileSet name should be specified as :
$VOLUME.SYSnn.OSDIR or $VOLUME or SYSnn.OSDIR or OSDIR
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-60

E rror M essages O m its lice In fo rm ation and E rror M essages
Recovery. Make sure the alternate osdir file, its volume and its subvolume are
properly specified in the command line. If they are, see if the file is open, unreadable or
of the wrong type.

Cause. RELOAD is trying to open one of the OS Fileset files and gets an error. The
possible reasons include an internal error in RELOAD itself or a corrupted OS Fileset.

Effect. RELOAD does not continue processing.

Recovery. Contact your HP service representative.

Omitslice Information and Error Messages

TFDS is the usual method for using the omitslice option, but if you use a TACL
command line method of controlling RELOAD you may encounter some of the
following messages.

Cause. These two informational messages tell you to wait while the process is
executing.

Effect. No effect. You must continue awaiting the outcome.

Recovery. No recovery. You must continue awaiting the outcome.

Cause. These two error messages tell you what happened in the case of an
unsuccessful action. There are several other variations of these messages depending
on how far the RELOAD process got in execution.

Effect. The message text will tell you about the effect.

Recovery. You must decide whether to repeat the operation with different parameters,
or contact your HP service representative

Unable to open <file name>, file-system error: #<error
number>

Warning: In reintegration. Retrying in one minute.
(CPU X, SLICE X)
or
Warning: Slice still in reintegration.

Failed to omit slice. Continuing with Reload of CPU. (CPU X)
or
Failed to omit slice. Aborting Reload of CPU. (CPU X)
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-61

E rror M essages
RELOAD Error Messages for H-Series, G-Series and D-Series

Cause. There was an error (nnn) with the alternate system-image file.

Effect. What you typed (XXXXXX) is returned in uppercase along with the error.

Recovery. Specify a different file or make the desired file accessible.

Cause. The alternate system-image file was not compatible.

Effect. What you typed (XXXXXX) is returned in uppercase along with the error.

Recovery. Specify a different file.

Cause. The indicated CPU was already specified earlier in the RELOAD command.

Effect. The CPU is reloaded only once.

Recovery. Correct and reissue the command.

Cause. An attempt was made to reload the indicated CPU, which was already up.

Effect. CPU nn is not reloaded.

Recovery. Correct the CPU number and reissue the command.

Cause. An invalid CPU number was specified.

Effect. The RELOAD operation aborts.

Recovery. Correct the CPU number and reissue the command.

XXXXXX: alternate osimage file error code nnn.

XXXXXX: alternate osimage file is incompatible.

CPU nn already specified.

CPU nn is already up.

CPU nn is illegal.

CPU nn is not configured.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-62

E rror M essages R E LO A D E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Cause. An attempt was made to reload the indicated CPU, but the CPU was not
configured at system generation time.

Effect. CPU nn is not reloaded.

Recovery. Correct the CPU number and reissue the command.

Cause. A bad CPU number was indicated. The optionally supplied step # nn indicates
the execution step where the problem occurred:

Effect. The reload of the indicated CPU fails.

Recovery. Correct the CPU number and reissue the command.

CPU nn reload FAILED: bad cpu number [, step # nn].

01 to 09 Initialization and sending initial boots (microcode and bootstraps)

20 to 29 Common logic for sending packets over the bus (either initial boots or
CPU image)

30 to 39 Setting breakpoints

80 to 99 Starting processing in the reloaded CPU, including sending the
destination control table (DCT) starting processes, TMF initialization,
setting the clock, and so on.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-63

E rror M essages R E LO A D E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Cause. A bad system-image file was indicated. The optionally supplied step # nn
indicates the execution step where the problem occurred:

Effect. The reload of the indicated CPU fails.

Recovery. Check that you used the correct alternate system-image file. Correct it or
try a different one, and reissue the command.

Cause. The attempted reload was aborted because of a bus or loading error, or the
default bus is down. There may have been a failure of another CPU during the reload.

The optionally supplied step # nn indicates the execution step where the problem
occurred:

Effect. The reload of the indicated CPU fails.

Recovery. Prime the CPU and retry the command. If this does not work, the CPU or
bus could be bad; try another bus.

CPU nn reload FAILED: bad file type [, step # nn].

01 to 09 Initialization and sending initial boots (microcode and bootstraps)

20 to 29 Common logic for sending packets over the bus (either initial boots or
CPU image)

30 to 39 Setting breakpoints

80 to 99 Starting processing in the reloaded CPU, including sending the
destination control table (DCT) starting processes, TMF initialization,
setting the clock, and so on.

CPU nn reload FAILED: bus or loading error [, step nn].

01 to 09 Initialization and sending initial boots (microcode and bootstraps)

20 to 29 Common logic for sending packets over the bus (either initial boots or
CPU image)

30 to 39 Setting breakpoints

80 to 99 Starting processing in the reloaded CPU, including sending the
destination control table (DCT) starting processes, TMF initialization,
setting the clock, and so on.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-64

E rror M essages R E LO A D E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Cause. There was a file-system error, probably with the system-image file, on the
attempted reload. The optionally supplied step # nn indicates the execution step where
the problem occurred:

Effect. The reload of the indicated CPU fails.

Recovery. See “File-System Errors” in the Guardian Procedure Errors and Messages
Manual for corrective action for the error indicated by nnn. If this does not correct the
problem, reprime the CPU and run RELOAD in a different CPU.

Cause. There were not enough LCBs to handle the reload. The optionally supplied
step # nn indicates the execution step where the problem occurred:

Effect. The reload of the indicated CPU fails.

Recovery. Retry the command. If that does not work, use PEEK to determine which
CPUs have LCBs available and run RELOAD in a different CPU.

CPU nn reload FAILED: File system error # nnn [, step # nn].

01 to 09 Initialization and sending initial boots (microcode and bootstraps)

20 to 29 Common logic for sending packets over the bus (either initial boots or
CPU image)

30 to 39 Setting breakpoints

80 to 99 Starting processing in the reloaded CPU, including sending the
destination control table (DCT) starting processes, TMF initialization,
setting the clock, and so on.

CPU nn reload FAILED: LCB allocation failed [, step # nn].

01 to 09 Initialization and sending initial boots (microcode and bootstraps)

20 to 29 Common logic for sending packets over the bus (initial boots or CPU
image)

30 to 39 Setting breakpoints

80 to 99 Starting processing in the reloaded CPU, including sending the
destination control table (DCT) starting processes, TMF initialization,
setting the clock, and so on.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-65

E rror M essages R E LO A D E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Cause. An attempt was made to do more than one reload at the same time. The
optionally supplied step # nn indicates the execution step where the problem occurred:

Effect. The reload of the indicated CPU fails.

Recovery. Coordinate your reload with anyone else who is also attempting a reload.

Cause. The attempted reload of the indicated CPU was successful.

Effect. The indicated CPU is reloaded.

Recovery. Informative message; no corrective action needed.

Cause. The same system-image file name was indicated more than once.

Effect. What you typed (XXXXXX) is returned in uppercase along with the error.

Recovery. Correct the file name for the system-image and reissue the command.

Cause. The indicated command was ignored.

Effect. What you typed (XXXXXX) is returned in uppercase along with the error.

Recovery. Correct and reissue the command.

CPU nn reload FAILED: simultaneous RELOAD attempted [, step #
nn].

01 to 09 Initialization and sending initial boots (microcode and bootstraps)

20 to 29 Common logic for sending packets over the bus (initial boots or CPU
image)

30 to 39 Setting breakpoints

80 to 99 Starting processing in the reloaded CPU, including sending the
destination control table (DCT) starting processes, TMF initialization,
setting the clock, and so on.

CPU nn reloaded successfully.

duplicate osimage filename.

XXXXXX: ignored
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-66

E rror M essages R E LO A D E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Cause. An invalid bus was indicated.

Effect. The RELOAD command aborts. What you typed (XXXXXX) is returned in
uppercase along with the error.

Recovery. Correct and reissue the command.

Cause. An invalid CPU was indicated.

Effect. What you typed (XXXXXX) is returned in uppercase along with the error.

Recovery. Correct and reissue the command.

Cause. The list of CPUs supplied to RELOAD was unacceptable.

Effect. The RELOAD command aborts.

Recovery. Correct and reissue the command.

Cause. An invalid option was specified.

Effect. What you typed (XXXXXX) is returned in uppercase along with the error.

Recovery. Valid options are NOSWITCH, bus, volume, and file-name. Correct the
option and reissue the command.

Cause. The indicated CPU range was unacceptable.

Effect. The RELOAD command aborts.

Recovery. Correct and reissue the command.

Cause. The indicated command is not recognized by RELOAD.

XXXXXX: invalid bus.

XXXXXX: invalid cpu.

Invalid cpu list.

XXXXXX: invalid option.

Invalid range.

XXXXXX: is not a recognized command.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-67

E rror M essages R E LO A D E rro r M essages fo r H -S eries, G -S eries
and D -S eries
Effect. What you typed (XXXXXX) is returned in uppercase along with the error.

Recovery. Correct and reissue the command.

Cause. No configured and nonrunning CPUs were specified in the RELOAD
command.

Effect. No CPUs are reloaded.

Recovery. Reissue the command, including the configured and nonrunning CPU.

Cause. The operand was unacceptable.

Effect. The RELOAD command aborts.

Recovery. Correct and reissue the command.

Cause. There was a scanner error scanning the command as indicated by the decimal
number nnn.

Effect. The RELOAD command aborts.

Recovery. Correct or simplify the command and reissue it.

Cause. There was a syntax error in the indicated command line at or before the point
shown by the arrow.

Effect. The command is ignored.

Recovery. Correct and reissue the command.

Cause. The alternate system-image SYS nn does not match the SYS nn of the
reloader.

Effect. The CPU is not reloaded.

No configured and down cpus were selected.

Operand error.

Scanner error:nnn.

Syntax error:
(command line)
^

Warning: Alternate OSIMAGE SYSNN does not match reloader's
SYSNN.
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-68

E rror M essages E M S M essages
Recovery. Specify a different CPU or none.

EMS Messages
These Event Management Service (EMS) messages can be generated by a TACL
process.

001

file-system-error

the I/O error.

device-name

the device name.

Cause. An I/O error occurred when a TACL process attempted to communicate with a
device. The message is generated only for the first occurrence of the error. For more
information about file-system error messages, see the Guardian Procedure Calls
Reference Manual and the Guardian Procedure Errors and Messages Manual.

This error is defined as ZTAC-EVT-IO-ERROR in the ZSPIDEF.ZTACDDL file.

Effect. Depends on the error.

Recovery. Depends on the error.

002

process-create-error

the process-creation error.

error-detail

the process-creation error detail.

Cause. A process creation error occurred when a TACL process attempted to create a
backup process. The message is generated only for the first occurrence of the error.
For more information about file-system error messages, see the Guardian Procedure
Calls Reference Manual and the Guardian Procedure Errors and Messages Manual.

This error is defined as ZTAC-EVT-CREATE-ERROR in the ZSPIDEF.ZTACDDL file.

Effect. Depends on the error.

TACL DEVICE I/O ERROR: file-system-error, device-name

TACL BACKUP CREATE ERROR: process-create-error, error-detail
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-69

E rror M essages E rro r N um bers
Recovery. Depends on the error.

Error Numbers
Some TACL functions (#ERRORNUMBERS in particular) return an error number as
part of their result. Table B-1 on page B-50 lists the TACL error numbers and their
meanings. More complete descriptions of the errors can be found earlier in this section.

Numbers lower than 1024 are issued by the file system or the sequential I/O facility
(SIO) and are described elsewhere. If you receive an error greater than 1024 that is
not included in this table, call your service provider.

Table B-2. Error Numbers Associated With TACL Messages (page 1 of 5)

Error
Number Error Text

1024 Missing close bracket

1025 Missing open bracket

1026 Text buffer overflow

1027 No routine has been called

1028 String variable may not contain more than one line

1029 Directory contents cannot be set

1030 Nondirectory may only be at end of variable name

1031 No such variable

1032 Nonexistent directory in variable name

1033 Badly formed variable name

1034 One or more errors occurred while loading library file

1035 File is neither a program nor a TACL macro

1036 Option may not appear more than once

1037 Arithmetic overflow

1038 Number or numeric variable expected

1039 Variable is not numeric

1040 Variable does not exist

1041 Disallowed by $CMON

1042 Variable does not have that level

1043 Duplicate keyword

1044 Unable to express a file name in network form

1045 Requires a numeric argument

1046 Delta syntax error

1047 Unable to expand macro
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-70

E rror M essages E rro r N um bers
1048 Syntax error (any “Expecting ..." message)

1049 Too many options

1050 File error on previous out file

1051 Too many PARAMs

1053 Was not pushed

1054 Unable to express default volume in network form

1055 No level number or STRUCT qualification allowed

1056 Too long

1057 Multiply defined label in enclosure

1058 Badly formed label

1059 Unable to perform edit

1060 Unknown DELTA command

1061 Not found

1062 Not in buffer

1063 Unable to allocate contiguous word space

1064 Requires a specific level

1065 Invalid comment format

1066 Unable to load SECTION

1067 No such line

1068 Neither case label nor OTHERWISE found

1069 Enclosure not allowed in unbracketed line

1070 Level is in use

1071 All possible simultaneous servers and requesters in use

1073 System not available

1074 Invalid user name or password

1075 SETMYTERM operating system procedure failed

1076 Option conflicts with another option

1077 Unable to allocate space in segment

1078 Illegal level number syntax

1079 Variable is in a shared segment making it read-only

1080 Illegal variable name syntax

1081 Cannot push or pop the root segment's root

1082 BODY label not found

1083 This type of variable is inappropriate here

Table B-2. Error Numbers Associated With TACL Messages (page 2 of 5)

Error
Number Error Text
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-71

E rror M essages E rro r N um bers
1084 Invalid alias format

1085 Too many successive aliases or alias loop

1086 Cannot resolve alias

1087 Not a legal variable type or I/O mode

1088 Too many arguments

1089 TACL process must be named

1090 Stack overflow

1091 Unknown function key

1092 Syntax error in lower bound

1093 Routine stack overflow

1094 Duplicate exception in this statement

1095 Too many simultaneous exceptions

1096 Syntax error in upper bound

1097 All block buffers in use

1098 Range must be last

1099 A non-STRUCT can appear only at the end

1101 Any #NEWPROCESS error (C-series only)

1107 Reference out of defined bounds

1108 CONVERTPROCESSTIME argument too large (>3.7 years)

1109 ? line not allowed here

1110 Illegal internal character representation

1111 REDEFINE item would extend beyond item being redefined

1112 Item not found in STRUCT

1113 Segment file code must be 440

1114 Segment data structure invalid

1115 Segment version incompatible

1116 TACL not named, cannot have a backup

1117 Illegal CPU number

1118 Backup CPU may not be same as primary CPU

1119 Backup CPU is down

1120 No backup

1121 STRUCT’s data would exceed 5000 bytes

1122 SPI buffer does not begin with -28

1123 STRUCT’s data area is not long enough

Table B-2. Error Numbers Associated With TACL Messages (page 3 of 5)

Error
Number Error Text
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-72

E rror M essages E rro r N um bers
1124 Token map would overflow its STRUCT

1125 Token map contains a specification unknown to TACL

1126 STRUCT is not long enough to be nulled by given token map

1127 Any DEFINE-oriented error

1128 Missing close quote; must be on same line as open quote

1129 You have no INLINE process

1130 SUPER.SUPER may not LOGON remotely

1131 Backup process already exists

1132 LIKE may not refer to any part of STRUCT containing it

1133 Segment is inconsistent because its last DETACHSEG failed to complete

1135 Item name already in use

1136 Unable to access userid file

1137 Illegal value

1138 You already have a current INLINE process

1139 You cannot explicitly set this variable

1140 Attribute value too long for TACL

1141 REDEFINE attempted to place word-aligned item on odd-byte boundary

1142 CPRULES file is corrupt

1143 Unsupported CPRULES file version

1144 Specified character class not present in CPRULES file

1145 CPRULES file size exceeds TACL buffer

1146 CPRULES file size exceeds CPRO buffer

1147 CPRULES filename error

1148 CPRULES file must be file code 199

1149 D-series newprocess error

1150 PROCESS_GETINFO_ error = n, error^detail = d

1151 PROCESS_GETINFOLIST_ error = n, error^detail = d

1152 PROCESS_GETPAIRINFO_ error = n, error^detail = d

1153 PROCESS_SETSTRINGINFO_ error = n, error^detail = d

1154 Expecting |WHILE| or |DO|

1155 Expecting |DO|

1156 Expecting |UNTIL|

1157 Enclosure not allowed in #DEF of DIRECTORY or STRUCT

1158 |OTHERWISE|, if present, must be the last label in #CASE

Table B-2. Error Numbers Associated With TACL Messages (page 4 of 5)

Error
Number Error Text
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-73

E rror M essages E rro r N um bers
1159 TACL internal buffer too small

1160 This built-in variable cannot be pushed or popped

1161 Enclosure not allowed in this context

1162 Could not open window

1163 Expecting |THEN| or |ELSE|

1164 Label may not appear more than once

1165 Refer to #SETCONFIGURATION Built-In Function on page 9-347 for a
complete description of this error. There is no text output for this error.

1166 Record size cannot exceed 1024 bytes for unstructured non-edit files

1167 Maximum number of attached segment files exceeded

1168 System’s base address for selectable segments has been changed

2059 Current attribute set is incomplete and inconsistent

2060 No more DEFINEs

2061 No more attributes

2062 Illegal attribute name

2064 Required attribute-cannot be reset

2066 Required parameter is not supplied

2067 Illegal value for attribute

2068 Illegal class name

2069 DEFINE name not allowed under current DEFMODE setting

2073 Attempt to redefine =_DEFAULTS to another class

2074 DEFINE cannot be deleted

2049 Illegal DEFINE name

2050 DEFINE already exists

2051 DEFINE does not exist

2052 Unable to obtain file system buffer space

2053 Unable to obtain physical memory

2054 DEFINE bounds error

2055 There is no attribute “attr” for the current class

2056 Attribute missing

2057 Current attribute set is incomplete

2058 Current attribute set is inconsistent, check number num

Table B-2. Error Numbers Associated With TACL Messages (page 5 of 5)

Error
Number Error Text
H P N onS top TA C L R e fe rence M anua l — 429513-017
B-74

C
Mapping TACL Built-In Functions to
Guardian Procedures

Many TACL built-in functions access Guardian procedures to provide functionality.
Table C-1 lists the TACL built-in functions and specifies whether each TACL built-in
function accesses a Guardian procedure, and if so, which procedure or procedures.

Table C-1. TACL Built-In Functions and Guardian Procedures (page 1 of 7)

TACL Built-In Guardian Procedure

#ABEND PROCESS_STOP_

#ABORTTRANSACTION ABORTTRANSACTION

#ACTIVATEPROCESS PROCESS_ACTIVATE_

#ADDDSTTRANSITION ADDDSTTRANSITION

#ALTERPRIORITY PROCESS_SETINFO_

#APPEND None

#APPENDV None

#ARGUMENT None

#BACKUPCPU PROCESS_GETINFO_,
PROCESSHANDLE_DECOMPOSE_

#BEGINTRANSACTION BEGINTRANSACTION

#BREAKPOINT None

#BUILTINS None

#CASE None

#CHANGEUSER PROCESSACCESSID

#CHARADDR None

#CHARBREAK None

#CHARCOUNT None

#CHARDEL None

#CHARFIND None

#CHARFINDR None

#CHARFINDRV None

#CHARFINDV None

#CHARGET None

#CHARGETV None

#CHARINS None

#CHARINSV None
H P N onS top TA C L R e fe rence M anua l — 429513-017
C-1

M apping TA C L B u ilt-In Functions to G uard ian
P rocedures
#COLDLOADTACL None

#COMPAREV None

#COMPUTE None

#COMPUTEJULIANDAYNO COMPUTEJULIANDAYNO

#COMPUTETIMESTAMP COMPUTETIMESTAMP

#COMPUTETRANSID COMPUTETRANSID API

#CONTIME The time is computed with conversion logic.

#CONVERTPHANDLE PROCESSHANDLE_TO_STRING_

#CONVERTPROCESSTIME CONVERTPROCESSTIME

#PROCESSINFO FILENAME_DECOMPOSE_,
PROCESSHANDLE_DECOMPOSE_,
PROCESS_GETPAIRINFO_, PROCESS_GETINFOLIST_,
PROCESS_GETINFO_,
PROCESSHANDLE_TO_STRING_, FILENAME_EDIT_,
FILENAME_DECOMPOSE_

#CONVERTTIMESTAMP CONVERTTIMESTAMP

#CREATEFILE FILE_CREATELIST_, FILENAME_DECOMPOSE_

#CREATEPROCESSNAME CREATEPROCESSNAME

#CREATEREMOTENAME CREATEREMOTENAME

#DEBUGPROCESS PROCESS_DEBUG_

#DEF None

#DEFINEADD DEFINEADD

#DEFINEDELETE DEFINEDELETE

#DEFINEDELETEALL DEFINEDELETEALL

#DEFINEINFO DEFINEINFO

#DEFINENAMES GETSYSTEMNAME, DEFINENEXTNAME

#DEFINENEXTNAME DEFINENEXTNAME

#DEFINEREADATTR DEFINEREADATTR

#DEFINERESTORE DEFINERESTORE

#DEFINERESTOREWORK DEFINERESTOREWORK

#DEFINESAVE DEFINESAVE

#DEFINESAVEWORK DEFINESAVEWORK

#DEFINESETATTR DEFINESETATTR

#DEFINESETLIKE DEFINESETLIKE

#DEFINEVALIDATEWORK DEFINEVALIDATEWORK

#DELAY SIGNALTIMEOUT, AWAITIO

Table C-1. TACL Built-In Functions and Guardian Procedures (page 2 of 7)

TACL Built-In Guardian Procedure
H P N onS top TA C L R e fe rence M anua l — 429513-017
C-2

M apping TA C L B u ilt-In Functions to G uard ian
P rocedures
#DELTA None

#DEVICEINFO FILE_GETINFOLISTBYNAME_

#EMPTY None

#EMPTYV None

#EMSADDSUBJECT EMSADDSUBJECT (EMS PROCEDURE)

#EMSADDSUBJECTV EMSADDSUBJECT (EMS PROCEDURE)

#EMSGET EMSGET (EMS PROCEDURE)

#EMSGETV EMSGET (EMS PROCEDURE)

#EMSINIT None

#EMSINITV None

#EMSTEXT EMSTEXT (EMS PROCEDURE)

#EMSTEXTV EMSTEXT (EMS PROCEDURE)

#ENDTRANSACTION ENDTRANSACTION API

#EOF None

#ERRORTEXT None

#EXCEPTION None

#EXTRACT None

#EXTRACTV None

#FILEGETLOCKINFO FILE_GETLOCKINFO_

#FILEINFO FILEINQUIRE, FILENAME_UNRESOLVE_, FILEINFO,
FILE_GETINFOLISTBYNAME_,

#FILENAMES None

#FILTER None

#FRAME None

#GETCONFIGURATION None

#GETPROCESSSTATE PROCESS_GETINFOLIST_

#GETSCAN None

#HISTORY None

#IF None

#INITTERM None

#INLINEEOF None

#INPUT None

#INPUTV None

#INTERACTIVE FNAMECOMPARE

#INTERPRETJULIANDAYNO INTERPRETJULIANDAYNO

Table C-1. TACL Built-In Functions and Guardian Procedures (page 3 of 7)

TACL Built-In Guardian Procedure
H P N onS top TA C L R e fe rence M anua l — 429513-017
C-3

M apping TA C L B u ilt-In Functions to G uard ian
P rocedures
#INTERPRETTIMESTAMP INTERPRETTIMESTAMP

#INTERPRETTRANSID INTERPRETTRANSID (TM/MP API)

#JULIANTIMESTAMP JULIANTIMESTAMP

#KEEP None

#KEYS None

#LINEADDR None

#LINEBREAK None

#LINECOUNT None

#LINEDEL None

#LINEFIND None

#LINEFINDR None

#LINEFINDRV None

#LINEFINDV None

#LINEGET None

#LINEGETV None

#LINEINS None

#LINEINSV None

#LINEJOIN None

#LOAD None

#LOCKINFO PROCESSHANDLE_TO_FILENAME_,
FILENAME_TO_OLDFILENAME_, LOCKINFO

#LOGOFF None

#LOOKUPPROCESS PROCESSHANDLE_DECOMPOSE_,
FILENAME_DECOMPOSE_, PROCESS_GETPAIRINFO_,
GETSYSTEMNAME,

#LOOP None

#MATCH None

#MOM PROCESS_GETINFO_

#MORE None

#MYGMOM PROCESS_GETINFO_

#MYPID PROCESSHANDLE_DECOMPOSE_

#MYSYSTEM MYSYSTEMNUMBER

#NEWPROCESS FILENAME_DECOMPOSE_, PROCESS_GETINFO_,
OLDFILENAME_TO_FILENAME_, PROCESS_CREATE_,
PROCESSHANDLE_TO_STRING_, FILE_OPEN_,
FILE_CLOSE_

Table C-1. TACL Built-In Functions and Guardian Procedures (page 4 of 7)

TACL Built-In Guardian Procedure
H P N onS top TA C L R e fe rence M anua l — 429513-017
C-4

M apping TA C L B u ilt-In Functions to G uard ian
P rocedures
#NEXTFILENAME NEXTFILENAME, FNAMECOLLAPSE

#OPENINFO FILENAME_DECOMPOSE_, FILE_GETOPENINFO_,
FILENAME_UNRESOLVE_

#OUTPUT None

#OUTPUTV None

#PAUSE PROCESSHANDLE_TO_STRING_, AWAITIO, FILEINFO

#POP None

#PROCESS MYSYSTEMNUMBER,
PROCESSHANDLE_DECOMPOSE_,
PROCESSHANDLE_TO_STRING_

#PROCESSEXISTS None

#PROCESSINFO PROCESS_GETPAIRINFO_, PROCESS_GETINFOLIST_ ,
PROCESS_GETINFO_ ,
PROCESSHANDLE_TO_STRING_ ,
FILENAME_DECOMPOSE_, FILENAME_EDIT_,
PROCESSHANDLE_DECOMPOSE_

#PROCESSORSTATUS PROCESSORSTATUS, REMOTEPROCESSORSTATUS

#PROCESSORTYPE PROCESSOR_GETNAME_ ,
PROCESSHANDLE_DECOMPOSE_

#PURGE PURGE, FILEINFO

#PUSH None

#RAISE None

#RENAME FILE_GETINFOLISTBYNAME_, FILE_OPEN_, FILEINFO,
FILE_RENAME_, CLOSE

#REPLY None

#REPLYV None

#REQUESTER DEVICEINFO2, OLDFILENAME_TO_FILENAME_,
FILENAME_COMPARE_, FILEINFO

#RESET None

#REST None

#RESULT None

#RETURN None

#ROUTINENAME None

#SEGMENT None

#SEGMENTCONVERT None

#SEGMENTINFO None

#SEGMENTVERSION OPEN, FILEINFO, READ, CLOSE

Table C-1. TACL Built-In Functions and Guardian Procedures (page 5 of 7)

TACL Built-In Guardian Procedure
H P N onS top TA C L R e fe rence M anua l — 429513-017
C-5

M apping TA C L B u ilt-In Functions to G uard ian
P rocedures
#SERVER FILENAME_TO_OLDFILENAME_

#SET None

#SETBYTES None

#SETCONFIGURATION PROCESSACCESSID, FILE_GETINFOBYNAME_,
FILE_OPEN_, FILE_CLOSE_, READX, POSITION,
WRITEX

#SETMANY None

#SETPROCESSSTATE PROCESS_SETINFO_

#SETSCAN None

#SETSYSTEMCLOCK SETSYSTEMCLOCK

#SETV None

#SHIFTSTRING SHIFTSTRING

#SORT No GPC Used

#SPIFORMATCLOSE SPI_FORMAT_CLOSE_ (DSM PROCEDURE)

#SSGET SSGET (EMS PROCEDURE)

#SSGETV SSGET (EMS PROCEDURE)

#SSINIT SSINIT (SPI PROCEDURE)

#SSMOVE SSMOVE (SPI PROCEDURE)

#SSNULL SSNULL (SPI PROCEDURE)

#SSPUT SSPUT (SPI PROCEDURE)

#SSPUTV SSPUT (SPI PROCEDURE)

#STOP PROCESS_STOP_, PROCESS_GETPAIRINFO_

#SUSPENDPROCESS PROCESS_SUSPEND_

#SWITCH PROCESS_STOP_, CHECKPOINT

#SYSTEM None

#SYSTEMNAME GETSYSTEMNAME

#SYSTEMNUMBER LOCATESYSTEM

#TACLOPERATION None

#TACLVERSION None

#TIMESTAMP None

#TOSVERSION TOSVERSION

#UNFRAME None

#USERID None

#USERNAME None

#VARIABLEINFO None

Table C-1. TACL Built-In Functions and Guardian Procedures (page 6 of 7)

TACL Built-In Guardian Procedure
H P N onS top TA C L R e fe rence M anua l — 429513-017
C-6

M apping TA C L B u ilt-In Functions to G uard ian
P rocedures
#VARIABLES No GPC Used.

#VARIABLESV No GPC Used.

#WAIT No GPC Used.

#XFILEINFO FILE_GETINFOLISTBYNAME_,
OLDFILENAME_TO_FILENAME_ ,
FILENAME_DECOMPOSE_

#XFILENAMES No GPC Used.

#XFILES No GPC Used.

#XLOGON PROCESSACCESSID, USER_AUTHENTICATE_

#XPPD PROCESS_GETPAIRINFO_, MYSYSTEMNUMBER,
PROCESSHANDLE_DECOMPOSE_,
FILENAME_DECOMPOSE_

#XSTATUS PROCESS_GETINFO_, PROCESS_GETPAIRINFO_,
PROCESS_GETINFOLIST_, PROCESS_STOP_, UNUMZ,
SHIFTSTRING, GETSYSTEMNAME,
PROCESSHANDLE_DECOMPOSE_

Table C-1. TACL Built-In Functions and Guardian Procedures (page 7 of 7)

TACL Built-In Guardian Procedure
H P N onS top TA C L R e fe rence M anua l — 429513-017
C-7

M apping TA C L B u ilt-In Functions to G uard ian
P rocedures
H P N onS top TA C L R e fe rence M anua l — 429513-017
C-8

Glossary
access mode. A file attribute that determines what operations you can perform on the file,

like reading and writing.

alias. An alternative name for a given function.

ancestor. The process that is notified when a named process or process pair is deleted.
The ancestor is usually the process that created the named process or process pair.

argument. A parameter that you specify when you invoke a macro or routine.

array data item. A portion of a STRUCT that is treated as an array; that is, you can refer to
the whole item, or you can refer to individual elements of it.

ASSIGN. An association of a physical file name with a logical file name made by the TACL
ASSIGN command. The physical file name is any valid file name. The logical file name
is used within a program. The ASSIGN is therefore used to pass file names to
programs.

Blade Element. See slice. Also known as a NonStop Blade Element.

BREAK mode. A mode of process execution where a process gains exclusive access to a
terminal when the BREAK key is pressed. BREAK mode is established using
SETPARAM function 3 or SETMODE function 11.

BREAK owner. The process that receives the break-on-device message when the BREAK
key is pressed. The establishment of BREAK ownership is achieved using SETPARAM
function 3 or SETMODE function 11.

breakpoint. A location (or point) in a program where execution is to be suspended so that
you can then examine and perhaps modify the state of the program. You can set and
clear breakpoints with _DEBUGGER commands.

built-in. A function or variable built into TACL; a built-in cannot be modified. Other variables
can be modified by the user.

C-series system. A system that is running a C-series RVU.

CAID. See creator access ID (CAID).

child process. A process created by the current process.

code segment. An area of memory that contains program instructions to be executed, plus
related information. An absolute segment whose logical pages are read from but never
written back to the swap file. command. A text string that directs the computer to
perform a task. Commands are usually composed of a verb that tells the computer
what to do and an object or list of objects that is acted on by the verb. TACL
commands are interpreted by TACL and are extensible.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-1

G lossary com m and-in te rp re te r m on ito r ($C M O N).
command-interpreter monitor ($CMON). A server process that monitors requests made
to the TACL process and affects the way TACL responds.

completion code. A value used to return information about a process to its ancestor
process when the process is deleted. This value is returned in the process deletion
message, system message -101.

condition code. A status returned by some file-system procedure calls to indicate whether
the call was successful. A condition-code-greater-than (CCG) indicates a warning, a
condition-code-less-than (CCL) indicates an error, and a condition-code-equal (=)
indicates successful execution.

conversational mode. A mode of communication between a terminal and its I/O process in
which each byte is transferred from the terminal to the processor I/O buffer as it is
typed. Each file-transfer operation finishes when a line-termination character is typed
at the terminal. Contrast with page mode.

creator. The process that initiates execution of another process. Compare with mom and
ancestor.

creator access ID (CAID). A process attribute that identifies, by user ID, the user who
initiated the process creation. Contrast with process access ID.

data segment. A type of absolute segment whose logical pages contain information to be
processed by the instructions in the related code segment.

deadlock. A situation in which two processes or two transactions cannot continue because
they are each waiting for the other to release a lock.

default process. The process whose name is returned by the #PROCESS function. It is
the process most recently created by a RUN or RUND command, an implied RUN, or a
#NEWPROCESS built-in function, or for which TACL was most recently paused by a
PAUSE proc-spec command or a #PAUSE proc-spec built-in function; if that process is
no longer running, there is no default process.

DEFINE. A named set of attributes and values.

DEFINE name. An identifier preceded by an equal sign that can be used in place of an
actual name to identify a DEFINE in a procedure call. See DEFINE.

Delta. The low-level character editor provided by TACL.

destination control table (DCT). A collection of operating system data structures that
serves as a directory of named processes and logical devices.

device. A peripheral hardware attachment used for input and output; for example, a printer
or a disk.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-2

G lossary device sub type .
device subtype. A value that further qualifies a device type. For example, a device type of
4 indicates a magnetic tape drive; if the same device has a device subtype of 2, then
the magnetic tape drive has a 3206 controller.

disk volume. Also called a disk or a volume; a magnetic storage medium. Disk names
consist of a dollar sign ($) followed by one to seven alphanumeric characters (network)
or one to eight alphanumeric characters (local), the first of which must be alphabetic.

EDIT file. . A file in a format defined by the EDIT product.

enclosure. A unit composed of one or more labels, such as |THEN| or |DO|, and the text
associated with each label. Enclosures are found only in the TACL built-in functions
#DEF, #IF, #CASE, and #LOOP, which are enclosed in brackets to provide boundaries
for their enclosures. TACL defers execution of text that is associated with labels until it
determines the correct label to use.

Enscribe. A database record management system.

exception. An unusual event that causes TACL to interrupt the normal flow of invocations
and transfer to special code. (See exception handler.) This unusual event could be
BREAK, a TACL error, or a user-defined exception.

exception handler. A series of TACL statements that perform resource deallocation and
cleanup after an exception.

exclusion mode. The attribute of a lock that determines whether any process except the
lock holder can access the locked data.

expand. A type of invocation. (See invoke.) To expand a variable, specify the variable
name in brackets; TACL returns the expansion in place of the variable name.

expression. A text, string, or integer constant, a variable, or a value obtained by combining
constants, variables, and other expressions with operators. Expressions are used as
arguments to commands and built-in functions.

extended data segment. One or more consecutive absolute segments that are
dynamically allocated by a process.

extensible data segment. An extended data segment for which swap file extents are not
allocated until needed.

extent. A contiguous area of a disk allocated to the same file.

fault tolerance. The ability of a computer system to continue operating during and after a
fault (the failure of a system component).

file code. An integer value assigned to a file for application-dependent purposes.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-3

G lossary file lock.
file lock. A mechanism that restricts access to a file by all processes except the lock
owner.

file. As used here, a file refers to an organized collection of data stored on a disk. In
general, a file can be a disk file, a process, or a device.

file name. A unique name for a file. This name is used to open a file and thereby provides
a connection between the opening process and the file. File names consist of one to
eight alphanumeric characters, the first of which must be alphabetic. file name
template. A sequence of characters including the asterisk (*) and question mark (?)
that matches existing file names by expanding each asterisk to zero or more letters,
digits, dollar signs ($), and pound signs (#) and replacing each question mark with
exactly one letter, digit, dollar sign, or pound sign.

file system. A set of operating system procedures and data structures that provides for
communication between a process and a file, which can be a disk file, a device other
than a disk, or another process.

FILLER byte. A portion of a STRUCT that is used only to maintain the alignment of
adjacent STRUCT items.

frame. A local environment managed by the #FRAME, #UNFRAME, and #RESET built-in
functions.

fully qualified file name. The complete name of a file, including the node name. For
permanent disk files, this file name consists of a node name, volume name, subvolume
name, and file ID. For temporary disk files, the file name consists of a node name, a
subvolume name, and a temporary file ID. For a device, the file name consists of a
node name and a device name or logical device number. For a named process, the file
name consists of a node name, and a process name. For an unnamed process, the file
name consists of a node name, CPU number, PIN, and sequence number. Contrast
with partially qualified file name.

function. An operation or set of operations that is invoked by the appearance of the
function name and its arguments at the point where the result of the function is wanted.
A built-in function is hard coded into TACL; users can define other functions. Variable
types for functions include TEXT, MACRO, and ROUTINE.

GMT. See Greenwich mean time (GMT).

godmother. See job ancestor.

Greenwich mean time (GMT). The mean solar time for the meridian at Greenwich,
England.

Gregorian date. A date specified according to the common calendar using the month of
the year (January through December), the day of the month, and the year A.D.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-4

G lossary hom e te rm ina l.
home terminal. The terminal whose name is returned by a call to the MYTERM procedure,
or the name returned in the hometerm parameter of the PROCESS_GETINFO_
procedure. The home terminal is often the terminal from which the process or
process’s ancestor was started.

interprocess communication (IPC). The exchange of messages between processes in a
system or network. interrupt. The mechanism by which a processor module is notified
of an asynchronous event that requires immediate processing.

invoke. A request to execute TACL code. To invoke a variable, (1) list its name (like an
implied RUN statement) without regard to results or (2) surround the variable name in
square brackets ([]) to replace the name with its expansion (text or macro variable) or
results (routine).

IPC. See interprocess communication (IPC).

job ancestor. A process that is notified when a process that is part of a job is deleted. The
job ancestor of a process is the process that created the job to which the process
belongs.

Julian timestamp. The number of microseconds since midnight January 1, 4713 B.C. at
the Greenwich meridian.

LCT. See local civil time (LCT).

LDEV. See logical device (LDEV).

level. One element of the set of values stored in a stack and known as a variable.

local civil time (LCT). Wall-clock time in the current time zone, including any
compensation for daylight-saving time.

local standard time (LST). The time of day in the local time zone excluding any
compensation made for daylight-saving time.

logical device (LDEV). (1) An addressable device, independent of its physical
environment. Portions of the same logical device can be located in different physical
devices, or several logical devices or parts of logical devices can be located in one
physical device. (2) A process that can be accessed as if it were an I/O device; for
example, the operator process is logical device LDEVOPR.

logical device number. A number that identifies a configured logical device. A logical
device number can be used instead of a device file name when opening a device file.

logical processor. The combination of equivalent processor elements in the processor
slices that are running in the same instruction stream in loose lock-step.

LST. See local standard time (LST).
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-5

G lossary m acro .
macro. A named sequence of one or more instructions invoked by the appearance of the
macro name. When a macro is invoked, TACL replaces arguments of the form %n%
with actual arguments passed to it and returns, as a result, the instructions that define
the macro, including argument values.

message system. A set of operating system procedures and data structures that handles
the mechanics of exchanging messages between processes.

metacharacter. A character that directs TACL to evaluate subsequent text in a special way.

mom. A process that is notified when certain other processes are deleted. When a process
is part of a process pair, the mom of the process is the other member of the pair. When
a process is unnamed, its mom is usually the process that created it. monitor. A
process that, among other functions, is responsible for checking that certain other
processes continue to run. If a process should stop, it is the monitor’s responsibility to
restart it.

multibyte character set. A means for identifying written characters for national languages
that require more than one byte to represent a single character.

named process. A process to which a process name was assigned when the process was
created. Contrast with unnamed process.

node. A system of one or more processor modules. Typically, a node is linked with other
nodes to form a network.

node name. The portion of a file name that identifies the system through which the file can
be accessed.

nonretryable error. An error condition returned by the file system that cannot be recovered
by retrying the operation even after operator intervention. Contrast with retryable error.

NonStop Advanced Architecture. The H-series architecture that allows up to three levels
of redundancy. Logical processors consist of one to three physical processors known
as processor elements (PEs). The logical processor is equivalent to the term CPU. For
availability issues, the processor elements are all located on different circuit boards.
These boards are known as blade elements (or slices) and are identified by the letters
A, B, or C.

NonStop Blade Element. See slice. Also known as Blade Element.

NonStop SQL/MP. A relational database management system that provides efficient online
access to large distributed databases.

nowait I/O. An operation with an I/O device where the process does not wait for the I/O
operation to finish. Contrast with waited I/O.

NSAA. See NonStop Advanced Architecture.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-6

G lossary one-w ay com m unica tion .
one-way communication. A form of interprocess communication where the sender of a
message (the requester) does not expect any data in the reply from the receiver of the
message (the server). Contrast with two-way communication.

operator. Perform mathematical or logical operations on values.

page. 1,024 words of contiguous data.

page mode. A mode of communication between a terminal and its I/O process in which the
terminal stores up to a full page of data (1,920 bytes) in its own memory before
sending the page to the I/O process. Contrast with conversational mode.

PAID. See process access ID (PAID).

parallel (method of dumping). The NSAA design of multiple physical processors linked
together as a logical processor allows for parallel operations. A single processor
element, omitted from a reload of a logical processor, can be dumped and reintegrated
without affecting the other PEs in that logical processor. In this way the NonStop
operating system can perform a dump and continue application-level processing at the
same time.

PARAM. An association of an ASCII value with a parameter name made by the TACL

PARAM command. You can use PARAMs to pass parameter values to processes. partially
qualified file name. A file name in which only the right-hand file name parts are
specified. The remaining parts of the file name assume default values. Contrast with
fully qualified file name.

partitioned file. A logical file made up of several partitions that can reside on different
disks. Generic key values determine the partition on which a given record resides.
permanent disk file. A file that remains on disk until it is explicitly purged.

PE. See processor element

PFS. See process file segment (PFS).

PIN. See process identification number (PIN).

primary extent. The first contiguous area of disk allocated to a file. See also secondary
extent.

priority. An indication of the precedence with which a process gains access to the
instruction processing unit.

process. A program that has been submitted to the operating system for execution.

processor element. A single microprocessor or microprocessor core, with its associated
memory, capable of executing a single instruction stream.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-7

G lossary p rocess access ID (P A ID).
process access ID (PAID). A user ID used to determine whether a process can make
requests to the system; for example, to open a file, stop another process, and so on.
The process access ID is usually the same as the creator access ID, but it can be
different; the owner of the corresponding object file can set the object file security such
that it runs with a process access ID equal to the user ID of the file owner, rather than
the creator of the process. Contrast with creator access ID.

process file name. A file name that identifies a process.

process file segment (PFS). An extended data segment that is automatically allocated to
every process and contains operating system data structures, file-system data
structures, and memory-management pool data structures.

process ID. A C-series structure that serves as an address of a process.

process identification number (PIN). An unsigned integer that identifies a process in a
processor module.

process name. A name that can be assigned to a process when the process is created. A
process name uniquely identifies a process or process pair in a system. A process
name consists of a dollar sign ($), followed by one to five alphanumeric characters, the
first of which must be alphabetic.

process pair. Two processes created from the same object file running in a way that
makes one process a backup process of the other in case of failure. Periodic
checkpointing ensures that the backup process is always ready to take over from the
primary if the primary process should fail. The process pair has one process name, but
each process has a different process identification number (PIN).

process qualifier. A suffix to a process file name that gets passed to a process when the
process is opened; its use is application-dependent.

process time. The amount of time a process has been active while the processor module
was in the environment of the process.

processor clock. A hardware timer on each processor module that keeps processor time;
the number of microseconds since cold load.

processor time. The time represented by a processor clock.

program. A sequence of instructions and data. In TACL, variables of type TEXT, MACRO,
and ROUTINE can define programs.

real time. See wall-clock time.

record lock. A lock held by a process or a transaction that restricts access to that record
by other processes.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-8

G lossary redefin ition .
redefinition. A STRUCT declaration that gives a new definition, such as a different data
type or a different alignment, to an existing STRUCT or STRUCT item. All definitions
are valid concurrently, allowing a STRUCT or STRUCT item to be used in a variety of
ways.

reply. A response to a requester process by a server process. Contrast with request.

request. A message formatted and sent to a server by a requester. Requests also include
status messages such as CPU up and CPU down messages, which are placed on the
intended recipient’s process message queue ($RECEIVE file) by the operating system.
Contrast with reply.

requester. A process that initiates interprocess communication by sending a request to
another process. Contrast with server.

response. See reply.

retryable error. An error condition returned by the file system that can be corrected by
repeating the operation that caused the error. Sometimes operator intervention is
required before the retry; for example, to put paper into an empty printer. Contrast with
nonretryable error.

secondary extent. A contiguous area of disk storage allocated to a file. A file is made up of
one or more extents; the first extent is the primary extent, and other extents are
secondary extents. The secondary extents are all the same size for a specific file; the
primary extent can be a different size. See also primary extent.

segment. A unit of storage consisting of up to 64 pages of 1,024 words each.

segment file. As used by TACL, a file accessible by TACL that can contain TACL code and
data.

server. The process that receives, acts upon, and replies to messages from requesters.
Contrast with requester.

shared data segment. An extended data segment that can be accessed by more than one
process.

simple data item. A STRUCT item that contains a single value of a specific type.

slice. A portion of one or more logical processors and one part of a processor complex. A
slice consists of a chassis, processor board containing one or more processor
elements and memory, I/O interface board, midplane, optics adapters, fans, and power
supplies. Also called a processor slice. Also known as a blade element.

space-separated list. A list whose entries are separated from each other by a space.
Several built-in functions accept space-separated lists of values.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-9

G lossary startup sequence .
startup sequence. A convention for sending and receiving certain messages while starting
a new process. By convention, the new process receives an Open message, followed
by a startup message, an assign message for each ASSIGN in effect, a param
message if there are any PARAMs in effect, and then a Close message string. A type
of argument that some commands and functions accept in place of a variable. A string
can be the name of a variable, text enclosed in quotation marks, or a concatenation of
such entities. The concatenation operator is '+' (the single quotes are part of the
operator). Under control of the QUOTED input format, a quoted string can contain
TACL metacharacters.

STRUCT. A variable that is structured into individual components that can be accessed
individually. Items within a STRUCT can be simple data items, arrays (which can be
further broken down into individual elements), or substructures.

STRUCT item. An element of a structure that can be individually accessed by a name of
the form structure-name:item-name.

substructure. A STRUCT item that is itself a STRUCT.

subvolume. A group of files stored on disk. These files all have the same subvolume
name, but each has a different file ID. A subvolume name consist of one to eight
alphanumeric characters, the first of which must be alphabetic. An example of a
subvolume name is $DATA.INFO. An example of a file name in this subvolume is
$DATA.INFO.RESULTS.

swapping. The process of copying information between physical memory and disk storage.

system process. A process whose primary purpose is to manage system resources rather
than to solve a user’s problem. A system process is essential to a system-provided
service. Failure of a system process often causes the processor module to fail. Most
system processes are automatically created when the processor module is cold
loaded. Contrast with user process.

system time. The time represented by any synchronized processor clock in the system.

template. A string of characters, including the special characters * and ?, used to match
another string of characters. Templates can be used in place of file names and
DEFINE names in some commands and built-in functions.

temporary disk file. A file stored on disk that will be purged automatically as soon as the
process that created it stops.

terminal-simulation process. A process that is made to behave like a terminal file.

text. A set of characters from the ISO 8859.1 character set. The length of text can be
limited by a specific function or command. TACL interprets a text argument as all
remaining text on the line, with leading and trailing spaces and end-of-line characters
removed.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-10

G lossary tim ekeep ing .
timekeeping. A function performed by the operating system that involves initializing and
maintaining the correct time in a processor module.

timestamp. An item containing a representation of the time. A timestamp can be applied to
an object at a critical point, such as the last modification time of a file. transaction
identifier. A four-word identifier that uniquely identifies a transaction within the
Transaction Management Facility (TMF) subsystem.

TMF. See Transaction Management Facility (TMF).

Transaction Management Facility (TMF). HP software that provides transaction protection
and database consistency in demanding online transaction processing (OLTP) and
decision-support environments. It gives full protection to transactions that access
distributed SQL and Enscribe databases, as well as recovery capabilities for
transactions, online disk volumes, and entire databases.

transfer mode. The protocol by which data is transferred between a terminal and the
computer system. See conversational mode and page mode.

two-way communication. A form of interprocess communication in which the sender of a
message (requester process) expects data in the reply from the receiver (server
process). Contrast with one-way communication.

unnamed process. A process to which a process name was not assigned when the
process was created. Contrast with named process.

user ID. A unique pair of numbers that identify a user. A user ID has the form group-
id,user-id, where the group-id identifies the user’s group, and user-id identifies the user
within the group.

user process. A process whose primary purpose is to solve a user’s problem. A user
process is not essential to the availability of a processor module and is created only
when the user explicitly creates it. Contrast with system process.

variable. A named quantity that can assume any of a given set of values.

variable level. A portion of a variable that can be individually addressed. New levels can
be added to the top of a variable stack, pushing down earlier levels, and can be
popped off the top of the stack. When the last level is popped, the variable ceases to
exist. For simplicity, variable levels are referred to as variables in many descriptions in
this manual.

variable line. A portion of a variable level that ends with a binary zero (an internal end-of-
line character). Lines can be removed from the beginning of a variable level with the
#EXTRACT and #EXTRACTV functions and can be added to the end of a variable
level with the #APPEND and #APPENDV function.

variable type. The designation (MACRO, DELTA, STRUCT, TEXT, and so on) of a variable
level that describes its contents and the use for which it is designated.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-11

G lossary v irtua l m em ory.
virtual memory. A range of addresses that processes use to reference real storage, where
real storage consists of physical memory and disk storage.

volume. A disk drive or a pair of disk drives that forms a mirrored disk.

waited I/O. An operation with an I/O device where the process waits until the operation
finishes. Contrast with nowait I/O.

waiting process. A process that cannot execute until an event occurs, a resource
becomes available, or an interval of time passes.

wall-clock time. The local time of day, including any adjustment for daylight-saving time.

working set. A collection of DEFINE attributes that have been assigned values.

$CMON. See command-interpreter monitor ($CMON).

$RECEIVE. A special file name through which a process receives messages from other
processes.
H P N onS top TA C L R e fe rence M anua l — 429513-017
Glossary-12

Index

A
Access a variable 4-5
ACTIVATE command 8-8
ADD DEFINE command 8-9
Add new users 8-14
ADDDSTTRANSITION command 8-12
ADDUSER program 8-14
ALARMOFF program 8-16
ALIAS 4-6
Alias variable 4-6
Allocate a variable 4-3
ALTER DEFINE command 8-17
Alter process priority 8-20
Alter status of bus 8-32
Alter status of ServerNet fabric 8-32
ALTPRI command 8-20
Ampersand 2-6
Arithmetic operators 3-1
Array data item 4-18
ASSIGN command 8-21
Assign logical file name 8-21
ATTACHSEG command 8-26

B
Background TACL process 6-11
Backup TACL process 8-28
BACKUPCPU command 8-28
BOOL data type 4-15
BREAK command 8-30
BREAK key 6-7
Breakpoint setting 8-30
BUILTINS command 8-31
Built-in functions

description of 7-2

#ABEND 9-12

#ABORTTRANSACTION 9-14

#ACTIVATEPROCESS 9-15

#ADDDSTTRANSITION 9-16

#ALTERPRIORITY 9-18

#APPEND 9-19

#APPENDV 9-20

#ARGUMENT 9-21

#BACKUPCPU 9-34

#BEGINTRANSACTION 9-35

#BREAKPOINT 9-37

#BUILTINS 9-38

#CASE 9-39

#CHANGEUSER 9-41

#CHARADDR 9-46

#CHARBREAK 9-47

#CHARCOUNT 9-49

#CHARDEL 9-51

#CHARFIND 9-53

#CHARFINDR 9-55

#CHARFINDRV 9-57

#CHARFINDV 9-59

#CHARGET 9-61

#CHARGETV 9-63

#CHARINS 9-65

#CHARINSV 9-67

#COLDLOADTACL 9-69

#COMPAREV 9-70

#COMPUTE 9-71

#COMPUTEJULIANDAYNO 9-72

#COMPUTETIMESTAMP 9-73

#COMPUTETRANSID 9-74

#CONTIME 9-75

#CONVERTPHANDLE 9-76

#CONVERTPROCESSTIME 9-78

#CONVERTTIMESTAMP 9-79

#CREATEFILE 9-81

#CREATEPROCESSNAME 9-83

#CREATEREMOTENAME 9-84

#DEBUGPROCESS 9-85

#DEF 9-87
HP NonStop TACL Reference Manual—429513-017

Index-1

Index B
#DEFINEADD 9-92

#DEFINEDELETE 9-93

#DEFINEDELETEALL 9-94

#DEFINEINFO 9-95

#DEFINENAMES 9-97

#DEFINENEXTNAME 9-98

#DEFINEREADATTR 9-99

#DEFINERESTORE 9-101

#DEFINERESTOREWORK 9-103

#DEFINESAVE 9-104

#DEFINESAVEWORK 9-106

#DEFINESETATTR 9-107

#DEFINESETLIKE 9-108

#DEFINEVALIDATEWORK 9-109

#DELAY 9-110

#DELTA 9-111

#DEVICEINFO 9-134

#EMPTY 9-135

#EMPTYV 9-136

#EMSADDSUBJECT 9-137

#EMSADDSUBJECTV 9-139

#EMSGET 9-141

#EMSGETV 9-146

#EMSINIT 9-150

#EMSINITV 9-152

#EMSTEXT 9-154

#EMSTEXTV 9-156

#ENDTRANSACTION 9-158

#EOF 9-159

#ERRORTEXT 9-162

#EXCEPTION 9-163

#EXTRACT 9-165

#EXTRACTV 9-166

#FILEGETLOCKINFO 9-167

#FILEINFO 9-170

#FILENAMES 9-176

#FILTER 9-178

#FRAME 9-180

#GETCONFIGURATION 9-181

#GETPROCESSSTATE 9-184

#GETSCAN 9-187

#HISTORY 9-190

#IF 9-192

#INITTERM 9-199

#INLINEEOF 9-201

#INPUT 9-207

#INPUTV 9-211

#INTERACTIVE 9-215

#INTERPRETJULIANDAYNO 9-216

#INTERPRETTIMESTAMP 9-217

#INTERPRETTRANSID 9-218

#JULIANTIMESTAMP 9-219

#KEEP 9-220

#KEYS 9-221

#LINEADDR 9-222

#LINEBREAK 9-223

#LINECOUNT 9-225

#LINEDEL 9-226

#LINEFIND 9-228

#LINEFINDR 9-230

#LINEFINDRV 9-232

#LINEFINDV 9-234

#LINEGET 9-236

#LINEGETV 9-238

#LINEINS 9-240

#LINEINSV 9-242

#LINEJOIN 9-244

#LOAD 9-245

#LOCKINFO 9-248

#LOGOFF 9-252

#LOOKUPPROCESS 9-254

#LOOP 9-256

#MATCH 9-257

#MOM 9-258

#MORE 9-259

#MYGMOM 9-260

#MYPID 9-261

#MYSYSTEM 9-262
HP NonStop TACL Reference Manual—429513-017

Index-2

Index B
#NEWPROCESS 9-265

#NEXTFILENAME 9-268

#OPENINFO 9-269

#OUTPUT 9-276

#OUTPUTV 9-279

#PAUSE 9-284

#PROCESS 9-290

#PROCESSEXISTS 9-291

#PROCESSINFO 9-294

#PROCESSLAUNCH 9-306

#PROCESSORSTATUS 9-308

#PROCESSORTYPE 9-309

#PUSH 9-313

#RAISE 9-314

#RENAME 9-315

#REPLY 9-316

#REPLYV 9-318

#REQUESTER 9-319

#RESET 9-324

#REST 9-325

#RESULT 9-326

#RETURN 9-327

#ROUTINENAME 9-331

#SEGMENT 9-332

#SEGMENTCONVERT 9-333

#SEGMENTINFO 9-335

#SEGMENTVERSION 9-337

#SERVER 9-338

#SET 9-342

#SETBYTES 9-345

#SETCONFIGURATION 9-346

#SETMANY 9-352

#SETPROCESSSTATE 9-354

#SETSCAN 9-357

#SETSYSTEMCLOCK 9-358

#SETV 9-360

#SHIFTSTRING 9-363

#SORT 9-365

#SPIFORMATCLOSE 9-367

#SSGET 9-368

#SSGETV 9-373

#SSINIT 9-377

#SSMOVE 9-379

#SSNULL 9-382

#SSPUT 9-383

#SSPUTV 9-388

#STOP 9-391

#SUSPENDPROCESS 9-393

#SWITCH 9-394

#SYSTEM 9-395

#SYSTEMNAME 9-396

#SYSTEMNUMBER 9-397

#TACLOPERATION 9-398

#TACLVERSION 9-401

#TIMESTAMP 9-403

#TOSVERSION 9-404

#UNFRAME 9-406

#USERID 9-408

#USERNAME 9-409

#VARIABLEINFO 9-410

#VARIABLES 9-413

#VARIABLESV 9-414

#WAIT 9-415

#XFILEINFO 9-419

#XFILENAMES 9-419

#XFILES 9-419

#XLOADEDFILES 9-419

#XLOGON 9-419

#XPPD 9-419

#XSTATUS 9-419

Built-in variables
description 7-3

#ASSIGN 9-31

#BREAKMODE 9-36

#CHARACTERRULES 9-44

#DEFAULTS 9-90

#DEFINEMODE 9-96

#ERRORNUMBERS 9-160
HP NonStop TACL Reference Manual—429513-017

Index-3

Index C
#EXIT 9-164

#HELPKEY 9-188

#HIGHPIN 9-189

#HOME 9-191

#IN 9-194

#INFORMAT 9-196

#INLINEECHO 9-200

#INLINEOUT 9-202

#INLINEPREFIX 9-203

#INLINEPROCESS 9-204

#INLINETO 9-206

#INPUTEOF 9-210

#INSPECT 9-213

#MYTERM 9-263

#OUT 9-272

#OUTFORMAT 9-274

#PARAM 9-282

#PMSEARCHLIST 9-285

#PMSG 9-287

#POP 9-288

#PREFIX 9-289

#PROCESSFILESECURITY 9-292

#PROMPT 9-311

#REPLYPREFIX 9-317

#ROUTEPMSG 9-328

#SHIFTDEFAULT 9-362

#TACLSECURITY 9-399

#TRACE 9-405

#USELIST 9-407

#WAKEUP 9-417

#WIDTH 9-418

Bus 8-32
BUSCMD program 8-32
BYTE data type 4-15

C
Change DEFINE 8-17
Change disk-file name 8-152
Change process priority 8-20

Change TACL prompt value 8-193
Change variable content 8-197
CHAR data type 4-15
Character set

ASCII 2-1

ECMA-94 2-1

ISO 8859.1 2-1

supported 2-1

upshifting 2-1

Clear ASSIGN 8-33
CLEAR command 8-33
Clear DEFINE 8-56
Clear PARAM 8-33
COLUMNIZE command 8-35
Command interpreter monitor
($CMON) 6-7
Commands

ACTIVATE 8-8

ADD DEFINE 8-9

ADDDSTTRANSITION 8-12

ALTER DEFINE 8-17

ALTPRI 8-20

ASSIGN 8-21

ATTACHSEG 8-26

BACKUPCPU 8-28

BREAK 8-30

BUILTINS 8-31

CLEAR 8-33

COLUMNIZE 8-35

COMMENT 8-36

COMPUTE 8-38

COPYVAR 8-43

CREATE 8-44

CREATESEG 8-46

DEBUG 8-48

DELETE DEFINE 8-56

DETACHSEG 8-58

ENV 8-60

Exclamation point (!) 8-263

EXIT 8-62
HP NonStop TACL Reference Manual—429513-017

Index-4

Index C
FC 8-63

FILEINFO 8-67

FILENAMES 8-71

FILES 8-73

FILETOVAR 8-74

HELP 8-75

HISTORY 8-76

HOME 8-77

INFO DEFINE 8-78

INITTERM 8-80

INLECHO 8-81

INLEOF 8-82

INLOUT 8-83

INLPREFIX 8-84

INLTO 8-85

JOIN 8-89

KEEP 8-90

KEYS 8-91

LOAD 8-94

LOGOFF 8-97

LOGON 8-99

OBEY 8-109

OUTVAR 8-110

PARAM 8-113

PAUSE 8-116

PMSEARCH 8-118

PMSG 8-120

POP 8-122

PPD 8-126

PURGE 8-128

PUSH 8-130

Question mark (?) 8-264

RECEIVEDUMP 8-138

REMOTEPASSWORD 8-150

RENAME 8-152

RESET DEFINE 8-153

RUN 8-155

SEGINFO 8-167

SET DEFINE 8-172

SET DEFMODE 8-190

SET HIGHPIN 8-191

SET INSPECT 8-192

SET SWAP 8-194

SET VARIABLE 8-197

SETPROMPT 8-193

SETTIME 8-195

SHOW 8-199

SHOW DEFINE 8-201

SINK 8-204

STATUS 8-205

STOP 8-214

SUSPEND 8-216

SWITCH 8-218

SYSTEM 8-220

SYSTIMES 8-221

TIME 8-229

USE 8-230

VARIABLES 8-233

VARINFO 8-234

VARTOFILE 8-236

VCHANGE 8-237

VCOPY 8-240

VDELETE 8-243

VFIND 8-245

VINSERT 8-248

VLIST 8-250

VMOVE 8-252

VOLUME 8-255

VTREE 8-257

WAKEUP 8-258

WHO 8-259

XBUSDOWN 8-261

XBUSUP 8-262

YBUSDOWN 8-261

YBUSUP 8-262

COMMENT command 8-36
Comments 2-10
Compare strings 8-37
HP NonStop TACL Reference Manual—429513-017

Index-5

Index D
Completion code 5-16
Compress disk dump 8-42
COMPUTE command 8-38
Control process creation and deletion
messages 8-120
Convert

numeric date-time to text date 8-40

numeric date-time to text date-
time 8-39

numeric date-time to text time 8-41

Copy file data to variable 8-74
Copy tape dump 8-42
Copy variable 8-43
COPYDUMP program 8-42
COPYVAR command 8-43
CPRULES0 2-1
CPRULES0 file 6-1
CPRULES1 2-1
CPRULES1 file 6-1
CREATE command 8-44
Create DEFINE 8-9
Create disk file 8-44
Create parameter 8-113
Create TACL segment file 8-46
Create variable level 8-130
CREATESEG command 8-46
CRTPID data type 4-15
Customizing the TACL environment 6-6

D
Data type

BOOL 4-15

BYTE 4-15

CHAR 4-15

CRTPID 4-15

DEVICE 4-15

ENUM 4-15

FNAME 4-15

FNAME32 4-16

identifier 4-17

INT 4-16

INT2 4-16

INT4 4-16

PHANDLE 4-16

SSID 4-16

SUBVOL 4-16

TRANSID 4-16

TSTAMP 4-16

UINT 4-16

USERNAME 4-17

VALUE 4-17

Data, allowed characters 2-1
Daylight savings time transition (DST)
table 8-12
DEBUG command 8-48
Debug program 8-48
Debugging breakpoint 8-30
DEFAULT program 8-53
Default settings 8-53
DEFINE

altering 8-17

clearing 8-56

creating 8-9

deleting 8-56

disabling 8-190

displaying content 8-78

enabling 8-190

removing 8-56

restoring attributes 8-153

setting attribute values 8-172

SORT 8-178

SPOOL 8-181

SUBSORT 8-183

TAPE 8-184

Define a variable 4-3
DEFINE templates 2-7
Delete a variable 4-5
Delete ASSIGN 8-33
Delete DEFINE 8-56
DELETE DEFINE command 8-56
HP NonStop TACL Reference Manual—429513-017

Index-6

Index E
Delete disk file 8-128
Delete PARAM 8-33
Delete users 8-57
Delete variable level 8-90, 8-122
DELTA variable 4-30
DELUSER program 8-57
DETACHSEG command 8-58
DEVICE data type 4-15
Directives

?BLANK 5-6

?FORMAT 5-6

?SECTION 5-8

?TACL 5-9

Directories 6-8
Personal 6-9

TACL 6-9

DIRECTORY
accessing variables 4-29

declaring variables 4-29

TACL product

:UTILS 4-30

:UTILS_GLOBALS 4-30

variables 4-28

Directory specification 8-77
Disable default debugger 8-192
Disable DEFINE use 8-190
Disable INSPECT 8-192
Disk file

changing name 8-152

creating 8-44

deleting 8-128

information about 8-67

Display DEFINE content 8-78
Display disk-file information 8-67
Display files 8-71
Display function-key definitions 8-91
Display PARAMS 8-113
Display process pairs 8-126
Display subvolume files 8-73
Display TACL built-in functions 8-31

Display TACL built-in variables 8-31
Display TACL environment
parameters 8-60
Display TACL output 8-35
Display TACL segment file
information 8-167
Display variable contents 8-110
DST table 8-12
Dump memory 8-131, 8-138

E
Editing template 8-64
Enable default debugger 8-192
Enable DEFINE use 8-190
Enable INSPECT 8-192
End-of-line character 2-5
ENUM data type 4-15
ENV command 8-60
Errors 5-21
Exclamation point (!) command 8-263
EXIT command 8-62
Expression evaluation 3-2

F
FALSE result 3-2
FastSort attributes 8-178, 8-183
FC command 8-63
File display 8-71
File listing 8-71
FILEINFO command 8-67
Filename templates 2-7
FILENAMES command 8-71
FILES command 8-73
FILETOVAR command 8-74
FILLER byte 4-20
FNAME data type 4-15
FNAME32 data type 4-16
Function call

DEFINE argument 5-5

device name argument 5-4

filename argument 5-3
HP NonStop TACL Reference Manual—429513-017

Index-7

Index H
general syntax 5-1

process identifier argument 5-4

Function key definitions 8-91
Functions

_COMPAREV 8-37

_CONTIME_TO_TEXT 8-39

_CONTIME_TO_TEXT_DATE 8-40

_CONTIME_TO_TEXT_TIME 8-41

_DEBUGGER 8-51

_LONGEST 8-107

_MONTH3 8-108

H
HELP command 8-75
HIGHPIN range setting 8-191
HISTORY command 8-76
HOME command 8-77

I
Identify a data type 4-17
INFO DEFINE command 8-78
Initialize terminal 8-80
Initiate debugging 8-48
INITTERM command 8-80
INLECHO command 8-81
INLEOF command 8-82
INLOUT command 8-83
INLPREFIX command 8-84
INLTO command 8-85
Inspect program 8-48
INT data type 4-16
INT2 data type 4-16
INT4 data type 4-16
Interactive TACL 1-1
Invoke Debug 8-48
Invoke Inspect 8-48
IPUCOM 8-86

J
JOIN command 8-89
Joining variables 8-89

K
KEEP command 8-90
KEYS command 8-91

L
Levels of variables 4-3
LIGHTS program 8-92
List files 8-71
List logical file names 8-21
List process pairs 8-126
List subvolume files 8-73
List TACL built-in functions 8-31
List TACL built-in variables 8-31
LOAD command 8-94
Load TACL library files 8-94
Load TACL segment file 8-26
LOADEDFILES 8-95
Logical file name assignment 8-21, 8-33
Logical operators 3-1
LOGOFF command 8-97
LOGON command 8-99

M
MACRO 4-7
Macro variable 4-7
Memory dump 8-131, 8-138
Metacharacters 2-2

O
OBEY command 8-109
Operators

arithmetic 3-1

description 2-8

logical 3-1

order of precedence 3-1
HP NonStop TACL Reference Manual—429513-017

Index-8

Index P
relational 3-1

string 3-1

types 3-1

OUTVAR command 8-110

P
PARAM command 8-113
Parameter creation 8-113
PASSWORD program 8-115
PAUSE command 8-116
PHANDLE data type 4-16
PINs and TACL processes 6-2
PMSEARCH command 8-118
PMSG command 8-120
POP command 8-122
Popping variables 4-3
PPD command 8-126
Process completion code 5-16
Process completion-code display 5-20
Process creation and deletion
messages 8-120
Process priority 8-20
Process (suspended) restarting 8-8
Process-pair directory 8-126
Program

file 5-12

extended memory segment 5-13

library 5-13

single variable 5-12

interpretation 5-11

structure 5-9

Programmatic TACL 1-2
Programs

ADDUSER 8-14

ALARMOFF 8-16

BUSCMD 8-32

COPYDUMP 8-42

DEFAULT 8-53

DELUSER 8-57

LIGHTS 8-92

PASSWORD 8-115

RCVDUMP 8-131

RELOAD 8-141

RPASSWRD 8-150

TACL 8-223

USERS 8-231

PURGE command 8-128
PUSH command 8-130
Pushing variables 4-3

Q
Question mark 2-6
Question mark (?) command 8-264

R
RCVDUMP program 8-131
RECEIVEDUMP command 8-138
Relational operators 3-1
Relinquish TACL segment file 8-58
RELOAD program 8-141
Remote password 8-150
REMOTEPASSWORD command 8-150
Remove DEFINE 8-56
RENAME command 8-152
Rename disk file 8-152
Reserved words 2-9
RESET DEFINE command 8-153
Restart suspended process 8-8
Restore DEFINE attribute 8-153
ROUTINE 4-9
Routine variable 4-9
RPASSWRD program 8-150
RUN command 8-155

S
Search subvolume 8-118
Secure a TACL process 6-7
SEGINFO command 8-167
Select swap volume 8-194
SEMSTAT Program 8-168
HP NonStop TACL Reference Manual—429513-017

Index-9

Index T
Separator character 2-5
ServerNet fabric 8-32
Set breakpoint 8-30
Set date 8-195
Set defaults 8-53
Set DEFINE attribute value 8-172
SET DEFINE command 8-172
SET DEFMODE command 8-190
SET HIGHPIN command 8-191
Set HIGHPIN range 8-191
SET INSPECT command 8-192
SET SWAP command 8-194
Set TACL prompt value 8-193
Set time 8-195
SET VARIABLE command 8-197
SETPROMPT command 8-193
SETTIME command 8-195
SHOW command 8-199
SHOW DEFINE command 8-201
SINK command 8-204
Software release files 6-1
SORT DEFINE 8-178
Space character 2-5
Special characters

ampersand 2-6

interpretation 2-2

metacharacters 2-2

operator 2-8

question mark 2-6

separator 2-5

square brackets 2-3

string constant 2-9

template 2-6

text constant 2-8

tilde 2-5

Specify a variable level 4-4
Specify an argument 4-6
SPOOL DEFINE 8-181
Spooler attributes 8-181
Square brackets 2-3
SSID data type 4-16

Stack organization of variables 4-3
Start a TACL process 6-2
STATUS command 8-205
STOP command 8-214
String comparison 8-37
String constants 2-9
String operators 3-1
STRUCT

body 4-13

data type 4-15

description 4-12

display 4-26

filler byte 4-20

redefinition 4-23

substructure 4-19

variable 4-12

SUBSORT DEFINE 8-183
Substructure 4-19
SUBVOL data type 4-16
Subvolume file list 8-73
Subvolume search 8-118
Subvolume templates 2-7
SUSPEND command 8-216
Swap volume selection 8-194
SWITCH command 8-218
SYSTEM command 8-220
SYSTIMES command 8-221

T
TACL

interactive 1-1

programmatic 1-2

TACL built-in functions 7-2
TACL built-in variables 7-3
TACL commands 7-1
TACL environment

customizing 6-6

TACL environment parameters
display 8-60
TACL file 6-1
HP NonStop TACL Reference Manual—429513-017

Index-10

Index U
TACL library files 8-94
TACL output display 8-35
TACL process

and PINs 6-2

initialization 6-3

logging on 6-3

new process PINs 6-5

securing 6-7

starting 6-2

starting a new process from 6-4

TACL program 8-223
TACL segment file

create 8-46

information about 8-167

loading 8-26

relinquishing 8-58

TACL variables
naming conflicts 6-10

overview 4-1

TACLBASE file 6-1
TACLCOLD file 6-1
TACLCSTM file 6-1
TACLINIT file 6-1
TACLLOCL file 6-1
TACLSEGF file 6-1
TAPE DEFINE 8-184
Template characters 2-6
Templates

DEFINE 2-7

filename 2-7

subvolume 2-7

Terminal defaults 8-80
Text constant 2-8
TEXT variable 4-6
Tilde 2-5
TIME command 8-229
TRANSID data type 4-16
TRUE result 3-2
TSTAMP data type 4-16

U
UINT data type 4-16
Upshifting

characters 2-1

CPRULES0 2-1

CPRULES1 2-1

USE command 8-230
User access

creating 8-14

deleting 8-57

USERNAME data type 4-17
USERS program 8-231
Using TACL

interactively 1-1

programmatically 1-2

V
VALUE data type 4-17
Variable

accessing 4-5

ALIAS 4-6

alias 4-6

allocating 4-3

as an argument 4-6

breakpoint 8-30

changing content 8-197

copy 8-43

creating levels 8-130

declaring 4-3

defining 4-3

deleting 4-5

deleting levels 8-90, 8-122

DELTA 4-30

description 4-7

DIRECTORY 4-28

displaying contents 8-110

joining 8-89

level of 4-3

levels 4-3
HP NonStop TACL Reference Manual—429513-017

Index-11

Index W
MACRO 4-7

names 4-2

naming conflicts 6-10

overview 4-1

popping 4-3

pushing 4-3

ROUTINE 4-9

routine 4-9

specifying a level 4-4

STRUCT 4-12

TEXT 4-6

text 4-6

variable stack 4-3

_EXECUTE 6-11

VARIABLES command 8-233
VARINFO command 8-234
VARTOFILE command 8-236
VCHANGE command 8-237
VCOPY command 8-240
VDELETE command 8-243
VFIND command 8-245
VINSERT command 8-248
VLIST command 8-250
VMOVE command 8-252
VOLUME command 8-255
VTREE command 8-257

W
WAKEUP command 8-258
WHO command 8-259

X
XBUSDOWN command 8-261
XBUSUP command 8-262

Y
YBUSDOWN command 8-261
YBUSUP command 8-262

Special Characters
! command 8-263
#ABEND built-in function 9-12
#ABORTTRANSACTION built-in
function 9-14
#ACTIVATEPROCESS built-in
function 9-15
#ADDDSTTRANSITION built-in
function 9-16
#ALTERPRIORITY built-in function 9-18
#APPEND built-in function 9-19
#APPENDV built-in function 9-20
#ARGUMENT built-in function 9-21
#ASSIGN built-in variable 9-31
#BACKUPCPU built-in function 9-34
#BEGINTRANSACTION built-in
function 9-35
#BREAKMODE built-in variable 9-36
#BREAKPOINT built-in function 9-37
#BUILTINS built-in function 9-38
#CASE built-in function 9-39
#CHANGEUSER built-in function 9-41
#CHARACTERRULES built-in
variable 9-44
#CHARADDR built-in function 9-46
#CHARBREAK built-in function 9-47
#CHARCOUNT built-in function 9-49
#CHARDEL built-in function 9-51
#CHARFIND built-in function 9-53
#CHARFINDR built-in function 9-55
#CHARFINDRV built-in function 9-57
#CHARFINDV built-in function 9-59
#CHARGET built-in function 9-61
#CHARGETV built-in function 9-63
#CHARINS built-in function 9-65
#CHARINSV built-in function 9-67
#COLDLOADTACL built-in function 9-69
#COMPAREV built-in function 9-70
#COMPUTE built-in function 9-71
#COMPUTEJULIANDAYNO built-in
function 9-72
HP NonStop TACL Reference Manual—429513-017

Index-12

Index Special Characters
#COMPUTETIMESTAMP built-in
function 9-73
#COMPUTETRANSID built-in function 9-74
#CONTIME built-in function 9-75
#CONVERTPHANDLE built-in
function 9-76
#CONVERTPROCESSTIME built-in
function 9-78
#CONVERTTIMESTAMP built-in
function 9-79
#CREATEFILE built-in function 9-81
#CREATEPROCESSNAME built-in
function 9-83
#CREATEREMOTENAME built-in
function 9-84
#DEBUGPROCESS built-in function 9-85
#DEF built-in function 9-87
#DEFAULTS built-in variable 9-90
#DEFINEADD built-in function 9-92
#DEFINEDELETE built-in function 9-93
#DEFINEDELETEALL built-in function 9-94
#DEFINEINFO built-in function 9-95
#DEFINEMODE built-in variable 9-96
#DEFINENAMES built-in function 9-97
#DEFINENEXTNAME built-in function 9-98
#DEFINEREADATTR built-in function 9-99
#DEFINERESTORE built-in function 9-101
#DEFINERESTOREWORK built-in
function 9-103
#DEFINESAVE built-in function 9-104
#DEFINESAVEWORK built-in
function 9-106
#DEFINESETATTR built-in function 9-107
#DEFINESETLIKE built-in function 9-108
#DEFINEVALIDATEWORK built-in
function 9-109
#DELAY built-in function 9-110
#DELTA built-in function 9-111
#DEVICEINFO built-in function 9-134
#EMPTY built-in function 9-135
#EMPTYV built-in function 9-136
#EMSADDSUBJECT built-in function 9-137

#EMSADDSUBJECTV built-in
function 9-139
#EMSGET built-in function 9-141
#EMSGETV built-in function 9-146
#EMSINIT built-in function 9-150
#EMSINITV built-in function 9-152
#EMSTEXT built-in function 9-154
#EMSTEXTV built-in function 9-156
#ENDTRANSACTION built-in
function 9-158
#EOF built-in function 9-159
#ERRORNUMBERS built-in variable 9-160
#ERRORTEXT built-in function 9-162
#EXCEPTION built-in function 9-163
#EXIT built-in variable 9-164
#EXTRACT built-in function 9-165
#EXTRACTV built-in function 9-166
#FILEGETLOCKINFO built-in
function 9-167
#FILEINFO 9-216
#FILEINFO built-in function 9-170
#FILENAMES built-in function 9-176
#FILTER built-in function 9-178
#FRAME built-in function 9-180
#GETCONFIGURATION built-in
function 9-181
#GETPROCESSSTATE built-in
function 9-184
#GETSCAN built-in function 9-187
#HELPKEY built-in variable 9-188
#HIGHPIN built-in variable 9-189
#HISTORY built-in function 9-190
#HOME built-in variable 9-191
#IF built-in function 9-192
#IN built-in variable 9-194
#INFORMAT 9-274
#INFORMAT built-in variable 9-196
#INITTERM built-in function 9-199
#INLINEECHO built-in variable 9-200
#INLINEEOF built-in function 9-201
#INLINEOUT built-in variable 9-202
#INLINEPREFIX built-in variable 9-203
HP NonStop TACL Reference Manual—429513-017

Index-13

Index Special Characters
#INLINEPROCESS built-in variable 9-204
#INLINETO built-in variable 9-206
#INPUT built-in function 9-207
#INPUTEOF built-in variable 9-210
#INPUTV built-in function 9-211
#INSPECT built-in variable 9-213
#INTERACTIVE built-in function 9-215
#INTERPRETJULIANDAYNO built-in
function 9-216
#INTERPRETTIMESTAMP built-in
function 9-217
#INTERPRETTRANSID built-in
function 9-218
#JULIANTIMESTAMP 9-216
#JULIANTIMESTAMP built-in
function 9-219
#KEEP built-in function 9-220
#KEYS built-in function 9-221
#LINEADDR built-in function 9-222
#LINEBREAK built-in function 9-223
#LINECOUNT built-in function 9-225
#LINEDEL built-in function 9-226
#LINEFIND built-in function 9-228
#LINEFINDR built-in function 9-230
#LINEFINDRV built-in function 9-232
#LINEFINDV built-in function 9-234
#LINEGET built-in function 9-236
#LINEGETV built-in function 9-238
#LINEINS built-in function 9-240
#LINEINSV built-in function 9-242
#LINEJOIN built-in function 9-244
#LOAD built-in function 9-245
#LOCKINFO built-in function 9-248
#LOGOFF built-in function 9-252
#LOOKUPPROCESS built-in
function 9-254
#LOOP built-in function 9-256
#MATCH built-in function 9-257
#MOM built-in function 9-258
#MORE built-in function 9-259
#MYGMOM built-in function 9-260
#MYPID built-in function 9-261

#MYSYSTEM built-in function 9-262
#MYTERM built-in variable 9-263
#NEWPROCESS built-in function 9-265
#NEXTFILENAME built-in function 9-268
#OPENINFO built-in function 9-269
#OUT built-in variable 9-272
#OUTFORMAT built-in variable 9-274
#OUTPUT built-in function 9-276
#OUTPUTV built-in function 9-279
#PARAM built-in variable 9-282
#PAUSE built-in function 9-284
#PMSEARCHLIST built-in variable 9-285
#PMSG built-in variable 9-287
#POP built-in variable 9-288
#POP #ASSIGN 9-32
#POP #BREAKMODE 9-36
#POP #CHARACTERRULES 9-44
#POP #DEFAULTS 9-90
#POP #DEFINEMODE 9-96
#POP #ERRORNUMBERS 9-160
#POP #EXIT 9-164
#POP #HELPKEY 9-188
#POP #HIGHPIN 9-189
#POP #HOME 9-191
#POP #IN 9-195
#POP #INFORMAT 9-196
#POP #INLINEECHO 9-200
#POP #INLINEOUT 9-202
#POP #INLINEPREFIX 9-203
#POP #INLINEPROCESS 9-204
#POP #INLINETO 9-206
#POP #INPUTEOF 9-210
#POP #INSPECT 9-213
#POP #MYTERM 9-263
#POP #OUT 9-273
#POP #OUTFORMAT 9-274
#POP #PARAM 9-282
#POP #PMSEARCHLIST 9-285
#POP #PMSG 9-287
#POP #PREFIX 9-289
#POP #PROCESSFILESECURITY 9-292
HP NonStop TACL Reference Manual—429513-017

Index-14

Index Special Characters
#POP #PROMPT 9-311
#POP #REPLYPREFIX 9-317
#POP #ROUTEPMSG 9-329
#POP #SHIFTDEFAULT 9-362
#POP #TACLSECURITY 9-399
#POP #TRACE 9-405
#POP #USELIST 9-407
#POP #WAKEUP 9-417
#POP #WIDTH 9-418
#PREFIX built-in variable 9-289
#PROCESS built-in function 9-290
#PROCESSEXISTS built-in function 9-291
#PROCESSFILESECURITY built-in
variable 9-292
#PROCESSINFO built-in function 9-294
#PROCESSLAUNCH built-in
function 9-306
#PROCESSORSTATUS built-in
function 9-308
#PROCESSORTYPE built-in
function 9-309
#PROMPT built-in variable 9-311
#PUSH built-in function 9-313
#PUSH #ASSIGN 9-32
#PUSH #BREAKMODE 9-36
#PUSH #CHARACTERRULES 9-44
#PUSH #DEFAULTS 9-90
#PUSH #DEFINEMODE 9-96
#PUSH #ERRORNUMBERS 9-160
#PUSH #EXIT 9-164
#PUSH #HELPKEY 9-188
#PUSH #HIGHPIN 9-189
#PUSH #HOME 9-191
#PUSH #IN 9-195
#PUSH #INFORMAT 9-196
#PUSH #INLINEECHO 9-200
#PUSH #INLINEOUT 9-202
#PUSH #INLINEPREFIX 9-203
#PUSH #INLINEPROCESS 9-204
#PUSH #INLINETO 9-206
#PUSH #INPUTEOF 9-210
#PUSH #INSPECT 9-213

#PUSH #MYTERM 9-263
#PUSH #OUT 9-272
#PUSH #OUTFORMAT 9-274
#PUSH #PARAM 9-282
#PUSH #PMSEARCHLIST 9-285
#PUSH #PMSG 9-287
#PUSH #PREFIX 9-289
#PUSH #PROCESSFILESECURITY 9-292
#PUSH #PROMPT 9-311
#PUSH #REPLYPREFIX 9-317
#PUSH #ROUTEPMSG 9-329
#PUSH #SHIFTDEFAULT 9-362
#PUSH #TACLSECURITY 9-399
#PUSH #TRACE 9-405
#PUSH #USELIST 9-407
#PUSH #WAKEUP 9-417
#PUSH #WIDTH 9-418
#RAISE built-in function 9-314
#RENAME built-in function 9-315
#REPLY built-in function 9-316
#REPLYPREFIX built-in variable 9-317
#REPLYV built-in function 9-318
#REQUESTER built-in function 9-319
#RESET built-in function 9-324
#REST built-in function 9-325
#RESULT built-in function 9-326
#RETURN built-in function 9-327
#ROUTEPMSG built-in variable 9-328
#ROUTINENAME built-in function 9-331
#SEGMENT built-in function 9-332
#SEGMENTCONVERT built-in
function 9-333
#SEGMENTINFO built-in function 9-335
#SEGMENTVERSION built-in
function 9-337
#SERVER built-in function 9-338
#SET built-in function 9-342
#SET #ASSIGN 9-32
#SET #BREAKMODE 9-36
#SET #CHARACTERRULES 9-44
#SET #DEFAULTS 9-90
#SET #DEFINEMODE 9-96
HP NonStop TACL Reference Manual—429513-017

Index-15

Index Special Characters
#SET #ERRORNUMBERS 9-160
#SET #EXIT 9-164
#SET #HELPKEY 9-188
#SET #HIGHPIN 9-189
#SET #HOME 9-191
#SET #IN 9-195
#SET #INFORMAT 9-196
#SET #INLINEECHO 9-200
#SET #INLINEOUT 9-202
#SET #INLINEPREFIX 9-203
#SET #INLINETO 9-206
#SET #INPUTEOF 9-210
#SET #INSPECT 9-213
#SET #MYTERM 9-263
#SET #OUT 9-273
#SET #OUTFORMAT 9-274
#SET #PARAM 9-282
#SET #PMSEARCHLIST 9-285
#SET #PMSG 9-287
#SET #PREFIX 9-289
#SET #PROCESSFILESECURITY 9-292
#SET #PROMPT 9-311
#SET #REPLYPREFIX 9-317
#SET #ROUTEPMSG 9-329
#SET #SHIFTDEFAULT 9-362
#SET #TACLSECURITY 9-399
#SET #TRACE 9-405
#SET #USELIST 9-407
#SET #WAKEUP 9-417
#SET #WIDTH 9-418
#SETBYTES built-in function 9-345
#SETCONFIGURATION built-in
function 9-346
#SETMANY built-in function 9-352
#SETPROCESSSTATE built-in
function 9-354
#SETSCAN built-in function 9-357
#SETSYSTEMCLOCK built-in
function 9-358
#SETV built-in function 9-360
#SHIFTDEFAULT built-in variable 9-362
#SHIFTSTRING built-in function 9-363

#SORT built-in function 9-365
#SPIFORMATCLOSE built-in
function 9-367
#SSGET built-in function 9-368
#SSGETV built-in function 9-373
#SSINIT built-in function 9-377
#SSMOVE built-in function 9-379
#SSNULL built-in function 9-382
#SSPUT built-in function 9-383
#SSPUTV built-in function 9-388
#STOP built-in function 9-391
#SUSPENDPROCESS built-in
function 9-393
#SWITCH built-in function 9-394
#SYSTEM built-in function 9-395
#SYSTEMNAME built-in function 9-396
#SYSTEMNUMBER built-in function 9-397
#TACLOPERATION built-in function 9-398
#TACLSECURITY built-in variable 9-399
#TACLVERSION built-in function 9-401
#TIMESTAMP built-in function 9-403
#TOSVERSION built-in function 9-404
#TRACE built-in variable 9-405
#UNFRAME built-in function 9-406
#USELIST built-in variable 9-407
#USERID built-in function 9-408
#USERNAME built-in function 9-409
#VARIABLEINFO built-in function 9-410
#VARIABLES built-in function 9-413
#VARIABLESV built-in function 9-414
#WAIT built-in function 9-415
#WAKEUP built-in variable 9-417
#WIDTH built-in variable 9-418
#XFILEINFO built-in function 9-419
#XFILENAMES built-in function 9-419
#XFILES built-in function 9-419
#XLOADEDFILES built-in function 9-419
#XLOGON built-in function 9-419
#XPPD built-in function 9-419
#XSTATUS built-in function 9-419
$CMON 6-7
& 2-6
HP NonStop TACL Reference Manual—429513-017

Index-16

Index Special Characters
:UTILS 4-30
:UTILS_GLOBALS 4-30
== 2-10
? 2-6
? command 8-264
?BLANK 5-6
?FORMAT 5-6
?SECTION 5-8
?TACL 5-9
_COMPAREV function 8-37
_CONTIME_TO_TEXT function 8-39
_CONTIME_TO_TEXT_DATE
function 8-40
_CONTIME_TO_TEXT_TIME function 8-41
_DEBUGGER function 8-51
_EXECUTE variable 6-11
_LONGEST function 8-107
_MONTH3 function 8-108
~ 2-5
~_ 2-5
HP NonStop TACL Reference Manual—429513-017

Index-17

Index Special Characters
HP NonStop TACL Reference Manual—429513-017

Index-18

	HP NonStop TACL Reference Manual
	Legal Notices
	Table of Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information

	About This Manual
	Audience
	Organization
	Related Reading
	Notation Conventions
	HP Encourages Your Comments

	1 Overview of TACL
	Using TACL Interactively
	Developing TACL Programs
	Language Features
	Program Development Tools

	Using TACL With Other Subsystems

	2 Lexical Elements
	Character Set
	Data
	Variable Names
	Upshifting

	Special Characters
	Metacharacters
	Separator Characters
	Question Mark (?)
	Ampersand (&)
	Template Characters
	Operators

	Constants
	Text Constants
	String Constants

	Reserved Words
	Comments

	3 Expressions
	Operators
	Arithmetic Operations
	Logical Operations

	4 Variables
	An Overview of TACL Variables
	Variable Names
	Variable Levels
	Declaring a Variable
	Specifying a Level of a Variable
	Deleting a Variable
	Accessing Variable Contents
	Using a Variable as an Argument

	TEXT Variables
	Sample Declarations

	ALIAS Variables
	Sample Declarations
	Limitations

	MACRO Variables
	Macro Arguments
	Sample Declarations

	ROUTINE Variables
	Routine Arguments
	Sample Declaration
	Comparing Argument Handling in Macros and Routines

	STRUCT Variables
	Elements of STRUCT Variables
	Limitations on the Use of STRUCT Variables
	Declaring a Structure Body
	Declaring a Simple Data Item
	Declaring an Array Data Item
	Declaring a Substructure
	Declaring FILLER Bytes
	Redefining a Structure
	Setting or Altering Structured Data
	Accessing Structured Data

	DIRECTORY Variables
	Declaring a Directory Variable
	Accessing a Directory Variable
	Directories Supplied With TACL

	DELTA Variables

	5 Statements and Programs
	Function Calls
	Directives
	?BLANK Directive
	?FORMAT Directive
	?SECTION Directive
	?TACL Directive

	TACL Programs
	Program Structure
	How TACL Interprets Statements
	Creating Program Files
	Handling TACL Errors

	6 The TACL Environment
	Installation Instructions
	TACL Software RVU Files
	Starting a TACL Process
	Logging On
	TACL Initialization
	Starting New Processes
	Customizing the TACL Environment
	Personal Customization
	Local Customization

	Managing the BREAK Key
	Security
	Command Interpreter Monitor Interface (CMON)
	Using Directories
	A Sample Directory Structure
	Creating Your Own Directories
	Directories Supplied by TACL

	Avoiding Naming Conflicts With TACL
	_EXECUTE Variables
	Running a TACL Process in the Background
	Initializing TACL and Specifying Input
	Default Files

	7 Summary of Commands and Built-In Functions
	TACL Commands
	Built-In Functions
	Built-In Variables
	Summary of Functionality
	Obtaining Help and Information
	Interfacing With the Operating System
	Managing the TACL Environment
	Processing Text in Variables
	Controlling Program Flow
	Debugging TACL Statements

	8 UTILS:TACL Commands and Functions
	:UTILS:TACL Command Summary
	Commands and Programs
	Restricted Commands

	:UTILS:TACL Command Descriptions
	ACTIVATE Command
	ADD DEFINE Command
	ADDDSTTRANSITION Command (Super-Group Only)
	ADDUSER Program (Group Managers Only)
	ALARMOFF Program (Super-Group Only)
	ALTER DEFINE Command
	ALTPRI Command
	ASSIGN Command
	ATTACHSEG Command
	BACKUPCPU Command
	BREAK Command
	BUILTINS Command
	BUSCMD Program (Super-Group Only)
	CLEAR Command
	CLICVAL Program
	COLUMNIZE Command
	COMMENT Command
	_COMPAREV Function
	COMPUTE Command
	_CONTIME_TO_TEXT Function
	_CONTIME_TO_TEXT_DATE Function
	_CONTIME_TO_TEXT_TIME Function
	COPYDUMP Program
	COPYVAR Command
	CREATE Command
	CREATESEG Command
	DEBUG Command
	DEBUGGER Function
	DEFAULT Program
	DELETE DEFINE Command
	DELUSER Program (Group Managers Only)
	DETACHSEG Command
	ENV Command
	EXIT Command
	FC Command
	FILEINFO Command
	FILENAMES Command
	FILES Command
	FILETOVAR Command
	HELP Command
	HISTORY Command
	HOME Command
	INFO DEFINE Command
	INITTERM Command
	INLECHO Command
	INLEOF Command
	INLOUT Command
	INLPREFIX Command
	INLTO Command
	IPUCOM Program
	JOIN Command
	KEEP Command
	KEYS Command
	LIGHTS Program (Super-Group Only)
	LOAD Command
	LOADEDFILES Command
	LOGOFF Command
	LOGON Command
	_LONGEST Function
	_MONTH3 Function
	O[BEY] Command
	OUTVAR Command
	PARAM Command
	PASSWORD Program
	PAUSE Command
	PMSEARCH Command
	PMSG Command
	POP Command
	POSTDUMP Utility
	PPD Command
	PURGE Command
	PUSH Command
	RCVDUMP Program (Super-Group or Super ID Only)
	RECEIVEDUMP Command (Super-Group Only)
	RELOAD Program (Super-Group Only)
	REMOTEPASSWORD Command and RPASSWRD Program
	RENAME Command
	RESET DEFINE Command
	RUN[D|V] Command
	SEGINFO Command
	SEMSTAT Program
	SET DEFINE Command
	SET DEFMODE Command
	SET HIGHPIN Command
	SET INSPECT Command
	SETPROMPT Command
	SET SWAP Command
	SETTIME Command (Super-Group Only)
	SET VARIABLE Command
	SHOW Command
	SHOW DEFINE Command
	SINK Command
	STATUS Command
	STOP Command
	SUSPEND Command
	SWITCH Command
	SYSTEM Command
	SYSTIMES Command
	TACL Program
	TIME Command
	USE Command
	USERS Program
	VARIABLES Command
	VARINFO Command
	VARTOFILE Command
	VCHANGE Command
	VCOPY Command
	VDELETE Command
	VFIND Command
	VINSERT Command
	VLIST Command
	VMOVE Command
	VOLUME Command
	VTREE Command
	WAKEUP Command
	WHO Command
	XBUSDOWN/YBUSDOWN Command (Super-Group Only)
	XBUSUP/YBUSUP Command (Super-Group Only)
	Exclamation Point (!) Command
	Question Mark (?) Command

	9 Built-In Functions and Variables
	Summary of Built-In Functions
	Summary of Built-In Variables
	Built-In Function and Variable Descriptions
	#ABEND Built-In Function
	#ABORTTRANSACTION Built-In Function
	#ACTIVATEPROCESS Built-In Function
	#ADDDSTTRANSITION Built-In Function (Super-Group Only)
	#ALTERPRIORITY Built-In Function
	#APPEND Built-In Function
	#APPENDV Built-In Function
	#ARGUMENT Built-In Function
	#ASSIGN Built-In Variable
	#BACKUPCPU Built-In Function
	#BEGINTRANSACTION Built-In Function
	#BREAKMODE Built-In Variable
	#BREAKPOINT Built-In Function
	#BUILTINS Built-In Function
	#CASE Built-In Function
	#CHANGEUSER Built-In Function
	#CHARACTERRULES Built-In Variable
	#CHARADDR Built-In Function
	#CHARBREAK Built-In Function
	#CHARCOUNT Built-In Function
	#CHARDEL Built-In Function
	#CHARFIND Built-In Function
	#CHARFINDR Built-In Function
	#CHARFINDRV Built-In Function
	#CHARFINDV Built-In Function
	#CHARGET Built-In Function
	#CHARGETV Built-In Function
	#CHARINS Built-In Function
	#CHARINSV Built-In Function
	#COLDLOADTACL Built-In Function
	#COMPAREV Built-In Function
	#COMPUTE Built-In Function
	#COMPUTEJULIANDAYNO Built-In Function
	#COMPUTETIMESTAMP Built-In Function
	#COMPUTETRANSID Built-In Function
	#CONTIME Built-In Function
	#CONVERTPHANDLE Built-In Function
	#CONVERTPROCESSTIME Built-In Function
	#CONVERTTIMESTAMP Built-In Function
	#CREATEFILE Built-In Function
	#CREATEPROCESSNAME Built-In Function
	#CREATEREMOTENAME Built-In Function
	#DEBUGPROCESS Built-In Function
	#DEF Built-In Function
	#DEFAULTS Built-In Variable
	#DEFINEADD Built-In Function
	#DEFINEDELETE Built-In Function
	#DEFINEDELETEALL Built-In Function
	#DEFINEINFO Built-In Function
	#DEFINEMODE Built-In Variable
	#DEFINENAMES Built-In Function
	#DEFINENEXTNAME Built-In Function
	#DEFINEREADATTR Built-In Function
	#DEFINERESTORE Built-In Function
	#DEFINERESTOREWORK Built-In Function
	#DEFINESAVE Built-In Function
	#DEFINESAVEWORK Built-In Function
	#DEFINESETATTR Built-In Function
	#DEFINESETLIKE Built-In Function
	#DEFINEVALIDATEWORK Built-In Function
	#DELAY Built-In Function
	#DELTA Built-In Function
	#DEVICEINFO Built-In Function
	#EMPTY Built-In Function
	#EMPTYV Built-In Function
	#EMSADDSUBJECT Built-In Function
	#EMSADDSUBJECTV Built-In Function
	#EMSGET Built-In Function
	#EMSGETV Built-In Function
	#EMSINIT Built-In Function
	#EMSINITV Built-In Function
	#EMSTEXT Built-In Function
	#EMSTEXTV Built-In Function
	#ENDTRANSACTION Built-In Function
	#EOF Built-In Function
	#ERRORNUMBERS Built-In Variable
	#ERRORTEXT Built-In Function
	#EXCEPTION Built-In Function
	#EXIT Built-In Variable
	#EXTRACT Built-In Function
	#EXTRACTV Built-In Function
	#FILEGETLOCKINFO Built-In Function
	#FILEINFO Built-In Function
	#FILENAMES Built-In Function
	#FILTER Built-In Function
	#FRAME Built-In Function
	#GETCONFIGURATION Built-In Function
	#GETPROCESSSTATE Built-In Function
	#GETSCAN Built-In Function
	#HELPKEY Built-In Variable
	#HIGHPIN Built-In Variable
	#HISTORY Built-In Function
	#HOME Built-In Variable
	#IF Built-In Function
	#IN Built-In Variable
	#INFORMAT Built-In Variable
	#INITTERM Built-In Function
	#INLINEECHO Built-In Variable
	#INLINEEOF Built-In Function
	#INLINEOUT Built-In Variable
	#INLINEPREFIX Built-In Variable
	#INLINEPROCESS Built-In Variable
	#INLINETO Built-In Variable
	#INPUT Built-In Function
	#INPUTEOF Built-In Variable
	#INPUTV Built-In Function
	#INSPECT Built-In Variable
	#INTERACTIVE Built-In Function
	#INTERPRETJULIANDAYNO Built-In Function
	#INTERPRETTIMESTAMP Built-In Function
	#INTERPRETTRANSID Built-In Function
	#JULIANTIMESTAMP Built-In Function
	#KEEP Built-In Function
	#KEYS Built-In Function
	#LINEADDR Built-In Function
	#LINEBREAK Built-In Function
	#LINECOUNT Built-In unction
	#LINEDEL Built-In Function
	#LINEFIND Built-In Function
	#LINEFINDR Built-In Function
	#LINEFINDRV Built-In Function
	#LINEFINDV Built-In Function
	#LINEGET Built-In Function
	#LINEGETV Built-In Function
	#LINEINS Built-In Function
	#LINEINSV Built-In Function
	#LINEJOIN Built-In Function
	#LOAD Built-In Function
	#LOCKINFO Built-In Function
	#LOGOFF Built-In Function
	#LOOKUPPROCESS Built-In Function
	#LOOP Built-In Function
	#MATCH Built-In Function
	#MOM Built-In Function
	#MORE Built-In Function
	#MYGMOM Built-In Function
	#MYPID Built-In Function
	#MYSYSTEM Built-In Function
	#MYTERM Built-In Variable
	#NEWPROCESS Built-In Function
	#NEXTFILENAME Built-In Function
	#OPENINFO Built-In Function
	#OUT Built-In Variable
	#OUTFORMAT Built-In Variable
	#OUTPUT Built-In Function
	#OUTPUTV Built-In Function
	#PARAM Built-In Variable
	#PAUSE Built-In Function
	#PMSEARCHLIST Built-In Variable
	#PMSG Built-In Variable
	#POP Built-In Function
	#PREFIX Built-In Variable
	#PROCESS Built-In Function
	#PROCESSEXISTS Built-In Function
	#PROCESSFILESECURITY Built-In Variable
	#PROCESSINFO Built-In Function
	#PROCESSLAUNCH Built-In Function
	#PROCESSORSTATUS Built-In Function
	#PROCESSORTYPE Built-In Function
	#PROMPT Built-In Variable
	#PURGE Built-In Function
	#PUSH Built-In Function
	#RAISE Built-In Function
	#RENAME Built-In Function
	#REPLY Built-In Function
	#REPLYPREFIX Built-In Variable
	#REPLYV Built-In Function
	#REQUESTER Built-In Function
	#RESET Built-In Function
	#REST Built-In Function
	#RESULT Built-In Function
	#RETURN Built-In Function
	#ROUTEPMSG Built-In Variable
	#ROUTINENAME Built-In Function
	#SEGMENT Built-In Function
	#SEGMENTCONVERT Built-In Function
	#SEGMENTINFO Built-In Function
	#SEGMENTVERSION Built-In Function
	#SERVER Built-In Function
	#SET Built-In Function
	#SETBYTES Built-In Function
	#SETCONFIGURATION Built-In Function
	#SETMANY Built-In Function
	#SETPROCESSSTATE Built-In Function
	#SETSCAN Built-In Function
	#SETSYSTEMCLOCK Built-In Function (Super-Group Only)
	#SETV Built-In Function Use
	#SHIFTDEFAULT Built-In Variable
	#SHIFTSTRING Built-In Function
	#SORT Built-In Function
	#SPIFORMATCLOSE Built-In Function
	#SSGET Built-In Function
	#SSGETV Built-In Function
	#SSINIT Built-In Function
	#SSMOVE Built-In Function
	#SSNULL Built-In Function
	#SSPUT Built-In Function
	#SSPUTV Built-In Function
	#STOP Built-In Function
	#SUSPENDPROCESS Built-In Function
	#SWITCH Built-In Function
	#SYSTEM Built-In Function
	#SYSTEMNAME Built-In Function
	#SYSTEMNUMBER Built-In Function
	#TACLOPERATION Built-In Function
	#TACLSECURITY Built-In Variable
	#TACLVERSION Built-In Function
	#TIMESTAMP Built-In Function
	#TOSVERSION Built-In Function
	#TRACE Built-In Variable
	#UNFRAME Built-In Function
	#USELIST Built-In Variable
	#USERID Built-In Function
	#USERNAME Built-In Function
	#VARIABLEINFO Built-In Function
	#VARIABLES Built-In Function
	#VARIABLESV Built-In Function
	#WAIT Built-In Function
	#WAKEUP Built-In Variable
	#WIDTH Built-In Variable
	#XFILEINFO Built-In Function
	#XFILENAMES Built-In Function
	#XFILES Built-In Function
	#XLOADEDFILES Built-In Function
	#XLOGON Built-In Function
	#XPPD Built-In Function
	#XSTATUS Built-In Function

	A Syntax Summary
	:UTILS:TACL Commands and Functions
	Built-In Functions and Variables
	STRUCT Declarations
	#SET Summary
	#DELTA Command Summary

	B Error Messages
	TACL Error Messages
	DEFINE Error Messages
	Process Creation Error Messages
	RCVDUMP Error Messages
	RCVDUMP Error Messages for H-Series Only
	RCVDUMP Error Messages for H-Series, G-Series and D-Series

	RELOAD Error Messages
	RELOAD Error Messages for H-Series Only
	Omitslice Information and Error Messages
	RELOAD Error Messages for H-Series, G-Series and D-Series

	EMS Messages
	Error Numbers

	C Mapping TACL Built-In Functions to Guardian Procedures
	Glossary
	Index

