TAL Reference Manual

Abstract

This manual provides syntax descriptions and error messages for TAL (Transaction
Application Language) for system and application programmers.

Product Version
TAL D40
Supported Release Version Updates (RVUSs)
This publication supports D40.00 and all subsequent D-series RVUs, and G01.00 and

all subsequent G-series RVUs until otherwise indicated in a new edition.

Part Number Published
526371-001 September 2003

Document History

Part Number Product Version Published
15998 TAL C20 March 1989
065722 TAL D10 January 1993
096255 TAL C30, TAL D10 & TAL D20 September 1993

526371-001

TAL D40

September 2003

— TAL Reference Manual

What's New in This Manual xxxix
Manual Information xxXxix
New and Changed Information xxxix

About This Manual xli
Audience xli
How to Use this Manual Set xli
Manual Organization xlii
System Dependencies xliii
Compiler Dependencies xliv
Additional Information xlv

Notation Conventions xlvii

Railroad Diagrams Xlvii

Branching xlvii
Spacing xlviii
Case Conventions xlviii
Example Diagrams Xlviii
Hypertext Links xlix
General Syntax Notation xlix
Notation for Messages lii
Notation for Management Programming Interfaces liii

1. Introduction

Applications and Uses 1-1
Major Features 1-1
System Services 1-3
System Procedures 1-3
TAL Run-Time Library 1-3
CRE Services 1-4

Hewlett-Packard Company—526371-001
i

Contents 2. Language Elements

2. Language Elements

Character Set 2-1
Declarations 2-1
Statements 2-2
Keywords 2-2
Identifiers 2-4
Identifier Classes 2-4
Constants 2-5
Constant Expressions 2-5
Number Bases 2-5

Variables 2-6
Symbols 2-6

Indirection Symbols 2-7
Base Address Symbols 2-7
Delimiters 2-7

Operators 2-9
3. Data Representation

Data Types 3-1

Specifying Data Types 3-3

Data Type Aliases 3-4

Storage Units 3-5

Address Modes 3-5

Operations by Data Type 3-5

Functions by Data Type 3-6

Address Types 3-7
Syntax for Constants 3-7
Character String Constants 3-8

Character String Length 3-8

Example of Character String Constant 3-9
String Numeric Constants 3-9

Example of STRING Numeric Constants 3-9
INT Numeric Constants 3-10

Examples of INT Numeric Constants 3-11

Storage Format 3-11
INT (32) Numeric Constants 3-11

Examples of INT (32) Numeric Constants 3-12
FIXED Numeric Constants 3-13

Examples of FIXED Numeric Constants 3-14

TAL Reference Manual—526371-001
i

Contents 3. Data Representation (continued)

3. Data Representation (continued)

Storage Format 3-14
REAL and REAL (64) Numeric Constants 3-14
Examples of REAL and REAL (64) Numeric Constants 3-15
Storage Format 3-15
Examples of Storage Formats 3-16
Constant Lists 3-16
Examples of Constant Lists 3-17

4. Expressions

About Expressions 4-1
Data Types of Expressions 4-2
Precedence of Operators 4-3
Arithmetic Expressions 4-5
Examples of Arithmetic Expressions 4-6
Operands in Arithmetic Expressions 4-6
Signed Arithmetic Operators 4-6
Unsigned Arithmetic Operators 4-9
Bitwise Logical Operators 4-11
Conditional Expressions 4-12
Examples of Conditional Expressions 4-13
Conditions 4-13
Boolean Operators 4-14
Relational Operators 4-14
Testing Hardware Indicators 4-16
Condition Code Indicator 4-16
Carry Indicator 4-17
Overflow Indicator 4-17
Special Expressions 4-18
Assignment Expression 4-19
CASE Expression 4-20
IF Expression 4-21
Group Comparison Expression 4-23
Bit Operations 4-27
Bit Extractions 4-28
Usage Considerations 4-28
Examples of Bit Extractions 4-28
Bit Shifts 4-29
Usage Considerations 4-30

TAL Reference Manual—526371-001
i

Contents

4. Expressions (continued)
Examples of Bit Shifts 4-30

5. LITERALSs and DEFINEs

LITERAL Declaration 5-1

Usage Considerations 5-2

Examples of LITERAL Declarations 5-2
DEFINE Declaration 5-3

Usage Considerations 5-4

Examples of DEFINE Declarations 5-5

Invoking DEFINEs 5-6

Compiler Action 5-7

Passing Actual Parameters 5-7

Examples of Passing DEFINE Parameters 5-8

6. Simple Variables

Simple Variable Declaration 6-1
Usage Considerations 6-2
Examples of Simple Variable Declarations 6-2

/. Arrays

Array Declaration 7-1

Usage Considerations 7-3

Examples of Array Declarations 7-3
Read-Only Array Declaration 7-5

Usage Considerations 7-6

Example of Read-Only Array Declaration 7-6

8. Structures

Kinds of Structures 8-1
Structure Layout 8-2
Definition Structure Declaration 8-3

Usage Considerations 8-4

Examples of Definition Structure Declarations 8-4
Template Structure Declaration 8-5

Usage Considerations 8-5

Example of Template Structure Declaration 8-5
Referral Structure Declaration 8-6

Usage Considerations 8-7

Example of Referral Structure Declaration 8-7

TAL Reference Manual—526371-001
iv

4. Expressions (continued)

Contents 8. Structures (continued)

8. Structures (continued)

Simple Variables Declared in Structures 8-7

Usage Considerations 8-8

Example of Simple Variables in Structures 8-8
Arrays Declared in Structures 8-8

Usage Considerations 8-9

Example of Arrays in Structures 8-9
Substructure Declaration 8-9
Definition Substructure Declaration 8-10

Example of Definition Substructure Declaration 8-11
Referral Substructure Definition 8-11

Example of Referral Substructure Declaration 8-12
Filler Declaration 8-12

Usage Considerations 8-13

Examples of Filler Declarations 8-13
Simple Pointers Declared in Structures 8-13

Usage Considerations 8-14

Example of Simple Pointer Declarations 8-15
Structure Pointers Declared in Structures 8-15

Usage Considerations 8-16

Example of Structure Pointer Declaration 8-17
Redefinition Declaration 8-17

Redefinition Rules 8-17

Redefinitions Outside Structures 8-17
Simple Variable Redefinition 8-18

Usage Considerations 8-18

Example of Simple Variable Redefinition 8-18
Array Redefinition 8-19

Usage Considerations 8-19

Example of Array Redefinition 8-20
Definition Substructure Redefinition 8-20

Usage Considerations 8-21

Examples of Definition Substructure Redefinitions 8-21
Referral Substructure Redefinition 8-22

Usage Considerations 8-22

Example of Referral Substructure Declaration 8-23
Simple Pointer Redefinition 8-23

Example of Simple Pointer Redefinition 8-24
Structure Pointer Redefinition 8-24

TAL Reference Manual—526371-001
v

Contents 8. Structures (continued)

8. Structures (continued)

Usage Considerations 8-25
Example of Structure Pointer Redefinitions 8-25

9. Pointers

Simple Pointer Declaration 9-2

Usage Considerations 9-2

Examples of Simple Pointer Declarations 9-4
Structure Pointer Declaration 9-5

Usage Considerations 9-6

Examples of Structure Pointer Declarations 9-7

10. Equivalenced Variables

Equivalenced Variable Declarations 10-1
Equivalenced Simple Variable 10-2

Usage Consideration 10-2

Examples of Equivalenced Simple Variable Declarations 10-3
Equivalenced Simple Pointer 10-3

Usage Consideration 10-4

Example of Equivalenced Simple Pointer Declaration 10-5
Equivalenced Definition Structure 10-5

Usage Considerations 10-6

Example of Equivalenced Definition Structure Declaration 10-7
Equivalenced Referral Structure 10-7

Usage Considerations 10-8

Example of Equivalenced Referral Structure Declaration 10-9
Equivalenced Structure Pointer 10-9

Usage Considerations 10-10

Example of Equivalenced Structure Pointer Declaration 10-11
Base-Address Equivalenced Variable Declarations 10-11
Base-Address Equivalenced Simple Variable 10-12

Considerations 10-12

Example of Base-Address Equivalenced Simple Variable Declaration 10-13
Base-Address Equivalenced Simple Pointer 10-13

Usage Considerations 10-14
Base-Address Equivalenced Definition Structure 10-14

Usage Considerations 10-15
Base-Address Equivalenced Referral Structure 10-16

Usage Considerations 10-17

TAL Reference Manual—526371-001
Vi

Contents 10. Equivalenced Variables (continued)

10. Equivalenced Variables (continued)

Base-Address Equivalenced Structure Pointer 10-17
Usage Considerations 10-18

11. NAMEs and BLOCKSs

NAME Declaration 11-1

Usage Considerations 11-2

Example of NAME Declaration 11-2
BLOCK Declaration 11-2

Usage Considerations 11-3

Examples of BLOCK Declarations 11-4
Coding Data Blocks 11-5
Unblocked Declarations 11-5

12. Statements

Using Semicolons 12-1
Compound Statements 12-2

Usage Considerations 12-2

Examples of Compound Statements 12-2
ASSERT Statement 12-3

Usage Considerations 12-3

Example of ASSERT Statement 12-4
Assignment Statement 12-4

Usage Considerations 12-5

Examples of Assignment Statements 12-6
Bit-Deposit Assignment Statement 12-7

Usage Considerations 12-7

Examples of Bit Deposit Assignments 12-8
CALL Statement 12-9

Usage Considerations 12-10

Examples of CALL Statements 12-10
CASE Statement 12-11
Labeled CASE Statement 12-11

Usage Considerations 12-12

Example of Labeled CASE Statement 12-12
Unlabeled CASE Statement 12-13

Usage Considerations 12-13

Examples of Unlabeled CASE Statements 12-14
CODE Statement 12-15

TAL Reference Manual—526371-001
Vii

Contents

12. Statements (continued)

Usage Considerations 12-16

Examples of CODE Statements 12-18
DO Statement 12-19

Usage Considerations 12-19

Examples of DO Statements 12-19
DROP Statement 12-20

Usage Considerations 12-20

Examples of DROP Statements 12-21
FOR Statement 12-22

Usage Considerations 12-23

Examples of FOR Statements 12-24
GOTO Statement 12-25

Usage Considerations 12-25

Examples of GOTO Statements 12-25
IF Statement 12-26

Usage Considerations 12-26

Example of IF Statements 12-27
MOVE Statement 12-27

Usage Considerations 12-29

Examples of MOVE Statements 12-30
RETURN Statement 12-31

Usage Considerations 12-32

Examples of RETURN Statements 12-33
SCAN Statement 12-34

Usage Considerations 12-35

Example of SCAN Statements 12-36
STACK Statement 12-36

Usage Considerations 12-36

Examples of STACK Statements 12-37
STORE Statement 12-37

Usage Considerations 12-37

Examples of STORE Statements 12-38
USE Statement 12-38

Usage Considerations 12-39

Examples of USE Statements 12-39
WHILE Statement 12-40

Usage Considerations 12-40

Examples of WHILE Statements 12-41

TAL Reference Manual—526371-001

viii

12. Statements (continued)

Contents 13. Procedures

13. Procedures

Procedure Declaration 13-2

Usage Considerations 13-4

Examples of Procedure Declarations 13-4
Procedure Attributes 13-5

MAIN 13-5

INTERRUPT 13-6

RESIDENT 13-6

CALLABLE 13-6

PRIV 13-6

VARIABLE 13-7

EXTENSIBLE 13-7

LANGUAGE 13-8
Formal Parameter Specifications 13-8

Usage Considerations 13-11

Examples of Formal Parameter Specification 13-13
Procedure Body 13-13

Usage Consideration 13-14

Examples of Procedure Declarations 13-14
Subprocedure Declaration 13-15
Subprocedure Body 13-17

Usage Considerations 13-17

Example of Subprocedure Declaration 13-18
Entry-Point Declaration 13-18

Usage Considerations 13-19

Examples of Entry-Point Declarations 13-20
Label Declaration 13-21

Usage Considerations 13-22

Examples of Label Declarations 13-22

14. Standard Functions

Summary of Standard Functions 14-1
Type-Transfer Functions 14-4
Functions by Data Type 14-4
Rounding by Standard Functions 14-5
Scope of Standard Functions 14-5
Expression Arguments 14-5
Data Types of Expression Arguments 14-6
Signedness of Expression Arguments 14-6

TAL Reference Manual—526371-001
iX

Contents 14. Standard Functions (continued)

14. Standard Functions (continued)

$ABS Function 14-6

Usage Considerations 14-7

Example of $ABS Function 14-7
$ALPHA Function 14-7

Usage Considerations 14-7

Example of $ALPHA Function 14-8
$AXADR Function 14-8
$BITLENGTH Function 14-8

Usage Considerations 14-8

Example of $BITLENGTH Function 14-9
$BITOFFSET Function 14-9

Usage Considerations 14-9

Example of $BITOFFSET Function 14-10
$BOUNDS Function 14-10
$CARRY Function 14-10

Usage Considerations 14-10

Example of $CARRY Function 14-11
$COMP Function 14-11

Example of $COMP Function 14-11
$DBL Function 14-11

Usage Consideration 14-12

Example of $DBL Function 14-12
$DBLL Function 14-12

Usage Consideration 14-12

Examples of $DBLL Function 14-13
$DBLR Function 14-13

Usage Consideration 14-13

Examples of $DBLR Function 14-13
$DFIX Function 14-14

Usage Consideration 14-14

Example of $DFIX Function 14-14
$EFLT Function 14-15

Usage Consideration 14-15

Example of $EFLT Function 14-15
$EFLTR Function 14-15

Usage Considerations 14-15

Example of $EFLTR Function 14-16
$FIX Function 14-16

TAL Reference Manual—526371-001
X

Contents

14. Standard Functions (continued)

Usage Consideration 14-16

Example of $FIX Function 14-16
$FIXD Function 14-16

Usage Consideration 14-17

Example of $FIXD Function 14-17
$FIXI Function 14-17

Usage Considerations 14-17

Example of $FIXI Function 14-17
$FIXL Function 14-18

Usage Considerations 14-18

Examples of $FIXL Function 14-18
$FIXR Function 14-18

Usage Considerations 14-18

Example of $FIXR Function 14-19
$FLT Function 14-19

Usage Consideration 14-19

Example of $FLT Function 14-19
$FLTR Function 14-20

Usage Consideration 14-20

Example of $FLTR Function 14-20
$HIGH Function 14-20

Example of $HIGH Function 14-20
$IFIX Function 14-21

Usage Consideration 14-21

Example of $IFIX Function 14-21
$INT Function 14-21

Usage Considerations 14-22

Examples of $INT Function 14-22
$INTR Function 14-22

Usage Considerations 14-22

Example of $INTR Function 14-23
$LADR Function 14-23

Usage Considerations 14-23

Example of $LADR Function 14-24
$LEN Function 14-24

Usage Considerations 14-24

Examples of $LEN Function 14-25
$LFIX Function 14-25

TAL Reference Manual—526371-001
Xi

14. Standard Functions (continued)

Contents 14. Standard Functions (continued)

14. Standard Functions (continued)

Usage Consideration 14-26

Example of $LFIX Function 14-26
$LMAX Function 14-26

Example of $LMAX Function 14-26
$LMIN Function 14-26

Example of $LMIN Function 14-27
$MAX Function 14-27

Example of SMAX Function 14-27
$MIN Function 14-27

Example of $MIN Function 14-28
$NUMERIC Function 14-28

Usage Considerations 14-28

Example of SNUMERIC Function 14-28
$OCCURS Function 14-29

Usage Considerations 14-29

Examples of $OCCURS Function 14-30
$OFFSET Function 14-30

Usage Considerations 14-31

Examples of $OFFSET Function 14-31
$OPTIONAL Function 14-32

Usage Considerations 14-33

Examples of the $OPTIONAL Function 14-33
$OVERFLOW Function 14-35

Usage Considerations 14-35

Example of SOVERFLOW Function 14-36
$PARAM Function 14-36

Usage Considerations 14-36

Example of $PARAM Function 14-37
$POINT Function 14-37

Usage Considerations 14-37

Example of $POINT Function 14-37
$READCLOCK Function 14-38

Usage Considerations 14-38

Example of SREADCLOCK Function 14-38
$RP Function 14-38

Usage Consideration 14-38

Example of $RP Function 14-38
$SCALE Function 14-39

TAL Reference Manual—526371-001
Xii

Contents 14. Standard Functions (continued)

14. Standard Functions (continued)

Usage Considerations 14-39

Example of $SCALE Function 14-39
$SPECIAL Function 14-40

Usage Considerations 14-40

Example of $SPECIAL Function 14-40
$SWITCHES Function 14-40
$TYPE Function 14-41

Usage Considerations 14-41

Example of $TYPE Function 14-41
$UDBL Function 14-41

Usage Consideration 14-42

Example of $UDBL Function 14-42
$USERCODE Function 14-42

Usage Considerations 14-42

Example of SJUSERCODE Function 14-43
$XADR Function 14-43

Usage Considerations 14-43

Examples of $XADR Function 14-44
Built-in Functions 14-44

15. Privileged Procedures

Privileged Mode 15-1

CALLABLE Procedures 15-1

PRIV Procedures 15-1

Nonprivileged Procedures 15-2
Privileged Operations 15-2
System Global Pointer Declaration 15-3

Usage Consideration 15-3

Example of System Global Pointer Declaration 15-3
'SG'-Equivalenced Variable Declarations 15-4
'SG'-Equivalenced Simple Variable 15-4

Example of 'SG'-Equivalenced Simple Variable 15-5
'SG'-Equivalenced Definition Structure 15-5

Usage Consideration 15-6

Example of 'SG'-Equivalenced Definition Structure 15-6
'SG'-Equivalenced Referral Structure 15-6

Usage Considerations 15-7

Example of 'SG'-Equivalenced Referral Structure 15-7

TAL Reference Manual—526371-001
Xiii

Contents

15.

Privileged Procedures (continued)

16.

'SG'-Equivalenced Simple Pointer 15-8
Example of 'SG'-Equivalenced Simple Pointer

'SG'-Equivalenced Structure Pointer 15-9
Usage Considerations 15-10
Example of 'SG'-Equivalenced Simple Pointer

Functions for Privileged Operations 15-11
$AXADR Function 15-11
Usage Considerations 15-11
Example of $AXADR Function 15-11
$BOUNDS Function 15-12
Usage Considerations 15-12
Example of $BOUNDS Function 15-12
$SWITCHES Function 15-13
Usage Considerations 15-13
Example of $SWITCHES Function 15-13
TARGET Directive 15-13
Usage Considerations 15-14
Examples of TARGET Directive 15-15

Compiler Directives

Specifying Compiler Directives 16-1
Compilation Command 16-1
Directive Line 16-2

Directive Stacks 16-3
Pushing Directive Settings 16-3
Popping Directive Settings 16-3

File Names As Directive Arguments 16-4
Partial File Names 16-4
Logical File Names 16-5

Summary of Compiler Directives 16-5

ABORT Directive 16-12
Usage Considerations 16-12
Example of ABORT Directive 16-13

ABSLIST Directive 16-13
Usage Considerations 16-13
Example of ABSLIST Considerations 16-14

ASSERTION Directive 16-14
Usage Considerations 16-14

15. Privileged Procedures (continued)

15-9

15-10

TAL Reference Manual—526371-001

Xiv

Contents 16. Compiler Directives (continued)

16. Compiler Directives (continued)

Example of ASSERTION Directive 16-15
BEGINCOMPILATION Directive 16-16

Usage Considerations 16-16

Example of BEGINCOMPILATION Directive 16-16
CHECK Directive 16-17

Usage Considerations 16-17

Example of CHECK Directive 16-18
CODE Directive 16-18

Usage Considerations 16-19

Example of CODE Directive 16-19
COLUMNS Directive 16-19

Usage Considerations 16-20

Examples of COLUMNS Directive 16-21
COMPACT Directive 16-21

Usage Considerations 16-21

Example of COMPACT Directive 16-22
CPU Directive 16-22

Usage Considerations 16-22
CROSSREF Directive 16-22

Usage Considerations 16-23

Example of CROSSREF Directive 16-25
DATAPAGES Directive 16-25

Usage Considerations 16-26

Example of DATAPAGES Directive 16-26
DECS Directive 16-26

Usage Considerations 16-27

Example of DECS Directive 16-27
DEFEXPAND Directive 16-27

Usage Considerations 16-28

Example of DEFEXPAND Directive 16-28
DEFINETOG Directive 16-29

Usage Considerations 16-29

Examples of DEFINETOG Directive 16-30
DUMPCONS Directive 16-31

Usage Considerations 16-31

Example of DUMPCONS Directive 16-32
ENDIF Directive 16-32
ENV Directive 16-32

TAL Reference Manual—526371-001
XV

Contents 16. Compiler Directives (continued)

16. Compiler Directives (continued)

Usage Considerations 16-33

Examples of ENV Directive 16-34
ERRORFILE Directive 16-34

Usage Considerations 16-35

Example of ERRORFILE Directive 16-36
ERRORS Directive 16-37

Usage Considerations 16-37

Example of ERRORS Directive 16-37
EXTENDSTACK Directive 16-37

Usage Considerations 16-38

Example of EXTENDSTACK Directive 16-38
EXTENDTALHEAP Directive 16-38

Usage Considerations 16-38

Example of EXTENDTALHEAP Directive 16-39
FIXUP Directive 16-39

Usage Considerations 16-39

Example of FIXUP Directive 16-40
FMAP Directive 16-40

Usage Considerations 16-40

Examples of FMAP Directive 16-41
GMAP Directive 16-41

Usage Considerations 16-41

Examples of GMAP Directive 16-41
HEAP Directive 16-42

Usage Considerations 16-42

Example of HEAP Directive 16-43
HIGHPIN Directive 16-43

Usage Considerations 16-43

Examples of Running Object Files at HIGHPIN 16-44
HIGHREQUESTERS Directive 16-45

Usage Considerations 16-45

Examples of HHGHREQUESTERS Directive 16-45
ICODE Directive 16-46

Usage Considerations 16-46

Example of ICODE Directive 16-47
IF and ENDIF Directives 16-47

Usage Considerations 16-48

Examples of IF and ENDIF Directives 16-49

TAL Reference Manual—526371-001
Xvi

Contents

16. Compiler Directives (continued)

INHIBITXX Directive 16-50

Usage Considerations 16-50

Example of INHIBITXX Directive 16-51
INNERLIST Directive 16-52

Usage Considerations 16-53

Example of INNERLIST Considerations 16-53
INSPECT Directive 16-54

Usage Considerations 16-54

Example of INSPECT Directive 16-54
INT32INDEX Directive 16-55

Usage Considerations 16-55

Example of INT32INDEX Directive 16-56
LARGESTACK Directive 16-57

Usage Considerations 16-57

Example of LARGESTACK Directives 16-57
LIBRARY Directive 16-58

Usage Considerations 16-58

Example of LIBRARY Directive 16-58

About User Libraries 16-58
LINES Directive 16-59

Usage Considerations 16-59

Examples of LINES Directive 16-59
LIST Directive 16-59

Usage Consideration 16-60

Examples of LIST Directive 16-60
LMAP Directive 16-61

Usage Considerations 16-61

Example of LMAP Directive 16-62
MAP Directive 16-62

Usage Considerations 16-62

Example of MAP Directive 16-63
OLDFLTSTDFUNC Directive 16-63

Usage Considerations 16-63

Example of OLDFLTSTDFUNC Directive 16-63

OPTIMIZE Directive 16-64
Usage Considerations 16-64
Examples of OPTIMIZE Directive 16-64
PAGE Directive 16-65

TAL Reference Manual—526371-001

XVii

16. Compiler Directives (continued)

Contents

16. Compiler Directives (continued)

Usage Considerations 16-65

Example of PAGE Directive 16-65
PEP Directive 16-66

Usage Considerations 16-66

Example of PEP Directive 16-66
PRINTSYM Directive 16-67

Usage Considerations 16-67

Example of PRINTSYM Directive 16-67
RELOCATE Directive 16-67

Usage Considerations 16-68

Example of RELOCATE Directive 16-68
RESETTOG Directive 16-68

Usage Considerations 16-69
Example of RESETTOG Directive 16-70
ROUND Directive 16-70

Usage Considerations 16-70

Example of ROUND Directive 16-71
RP Directive 16-71

Usage Considerations 16-71

Example of RP Directive 16-72
RUNNAMED Directive 16-73

Usage Considerations 16-73

Examples of RUNNAMED Directive 16-73
SAVEABEND Directive 16-73

Usage Considerations 16-74

Example of SAVEABEND Directive 16-74
SAVEGLOBALS Directive 16-75

Usage Considerations 16-75

Examples of SAVEGLOBALS Directive 16-78
SEARCH Directive 16-79

Usage Considerations 16-80

Examples of SEARCH Directive 16-81
SECTION Directive 16-81

Usage Considerations 16-81

Example of SECTION Directive 16-82
SETTOG Directive 16-82

Usage Considerations 16-83

Examples of SETTOG Directive 16-83

TAL Reference Manual—526371-001
XViii

16. Compiler Directives (continued)

Contents 16. Compiler Directives (continued)

16. Compiler Directives (continued)

SOURCE Directive 16-84

Usage Considerations 16-85

Examples of SOURCE Directive 16-86
SOL Directive 16-86
SQLMEM Directive 16-86
STACK Directive 16-87

Usage Considerations 16-87

Example of STACK Directive 16-87
SUBTYPE Directive 16-87

Usage Considerations 16-88

Example of SUBTYPE Directive 16-88
SUPPRESS Directive 16-88

Usage Considerations 16-89

Example of SUPPRESS Directive 16-89
SYMBOLPAGES Directive 16-89

Usage Considerations 16-90

Example of SYMBOLPAGES Directive 16-90
SYMBOLS Directive 16-90

Usage Considerations 16-90

Examples of SYMBOLS Directive 16-91
SYNTAX Directive 16-92

Usage Considerations 16-92

Examples of SYNTAX Directive 16-92
TARGET Directive 16-93
USEGLOBALS Directive 16-93

Usage Considerations 16-94

Example of USEGLOBALS Directive 16-95
WARN Directive 16-95

Usage Considerations 16-96

Example of WARN Directive 16-96

A. Error Messages

Compiler Initialization Messages A-1
About Error and Warning Messages A-1
Error Messages A-2

Warning Messages A-40

SYMSERYV Messages A-57

BINSERV Messages A-57

TAL Reference Manual—526371-001
XiX

Contents A. Error Messages (continued)

A. Error Messages (continued)

Common Run-Time Environment Messages A-57

B. TAL Syntax Summary (Railroad Diagrams)

Constants B-1
Character String Constants B-1
STRING Numeric Constants B-2
INT Numeric Constants B-2
INT(32) Numeric Constants B-2
FIXED Numeric Constants B-2
REAL and REAL(64) Numeric Constants B-3
Constant Lists B-3
Expressions B-4
Arithmetic Expressions B-4
Conditional Expressions B-5
Assignment Expressions B-5
CASE Expressions B-5
IF Expressions B-6
Group Comparison Expressions B-6
Bit Extractions B-6
Bit Shifts B-7
Declarations B-7
LITERAL and DEFINE Declarations B-7
LITERALs B-7
DEFINEs B-8
Simple Variable Declarations B-8
Array Declarations B-9
Structure Declarations B-10
Definition Structures B-10
Template Structures B-11
Referral Structures B-11
Simple Variables Declared in Structures B-11
Arrays Declared in Structures B-12
Definition Substructures B-12
Referral Substructures B-12
Fillers in Structures B-13
Simple Pointers Declared in Structures B-13
Structure Pointers Declared in Structures B-13
Simple Variable Redefinitions B-13

TAL Reference Manual—526371-001
XX

Contents B. TAL Syntax Summary (Railroad
Diagrams) (continued)

B. TAL Syntax Summary (Railroad Diagrams) (continued)

Array Redefinitions B-14
Definition Substructure Redefinitions B-14
Referral Substructure Redefinitions B-14
Simple Pointer Redefinitions B-15
Structure Pointer Redefinitions B-15
Pointer Declarations B-15
Simple Pointers B-16
Structure Pointers B-16
Equivalenced Variable Declarations B-16
Equivalenced Simple Variables B-17
Equivalenced Definition Structures B-17
Equivalenced Referral Structures B-18
Equivalenced Simple Pointers B-18
Equivalenced Structure Pointers B-19
Base-Address Equivalenced Variable Declarations B-19
Base-Address Equivalenced Simple Variables B-19
Base-Address Equivalenced Definition Structures B-20
Base-Address Equivalenced Referral Structures B-21
Base-Address Equivalenced Simple Pointers B-21
Base-Address Equivalenced Structure Pointers B-22
NAME and BLOCK Declarations B-22
NAMEs B-22
BLOCKs B-22
Procedure and Subprocedure Declarations B-23
Procedures B-23
Subprocedures B-28
Entry Points B-31
Labels B-31
Statements B-31
Compound Statements B-31
ASSERT Statement B-32
Assignment Statement B-32
Bit Deposit Assignment Statement B-32
CALL Statement B-33
Labeled CASE Statement B-33
Unlabeled CASE Statement B-34
CODE Statement B-34
DO Statement B-35

TAL Reference Manual—526371-001
XXi

Contents

B. TAL Syntax Summary (Railroad
Diagrams) (continued)

B. TAL Syntax Summary (Railroad Diagrams) (continued)

Standard Functions

DROP Statement
FOR Statement
GOTO Statement
IF Statement B-36

Move Statement B-37
RETURN Statement B-38
Scan Statement B-38
STACK Statement B-38
STORE Statement B-39
USE Statement B-39
WHILE Statement B-39
B-39

B-36
B-36
B-36

$ABS Function B-39
$ALPHA Function B-40
$AXADR Function B-40
$BITLENGTH Function
$BITOFFSET Function
$BOUNDS Function
$CARRY Function
$COMP Function
$DBL Function
$DBLL Function
$DBLR Function
$DFIX Function
$EFLT Function B-42
$EFLTR Function B-42
$FIX Function B-42
$FIXD Function B-42
$FIXI Function B-42
$FIXL Function B-43
$FIXR Function B-43
$FLT Function B-43
$FLTR Function B-43
$HIGH Function B-43
$IFIX Function B-44
$INT Function B-44
$INTR Function B-44
$LADR Function B-44

B-40
B-40
B-40
B-40
B-41
B-41
B-41
B-41
B-41

TAL Reference Manual—526371-001
XXii

Contents

B. TAL Syntax Summary (Railroad
Diagrams) (continued)

B. TAL Syntax Summary (Railroad Diagrams) (continued)

$LEN Function B-45
$LFIX Function B-45
$LMAX Function B-45
$LMIN Function B-45
$MAX Function B-45
$MIN Function B-46
$NUMERIC Function B-46
$OCCURS Function B-46
$OFFSET Function B-46
$OPTIONAL Function B-46
$OVERFLOW Function B-47
$PARAM Function B-47
$POINT Function B-47
$READCLOCK Function B-47
$RP Function B-48
$SCALE Function B-48
$SPECIAL Function B-48
$SWITCHES Function B-48
$TYPE Function B-48
$UDBL Function B-49
$USERCODE Function B-49
$XADR Function B-49

Privileged Procedures B-49

System Global Pointers B-49
'SG'-Equivalenced Simple Variables B-50
'SG'-Equivalenced Definition Structures B-50
'SG'-Equivalenced Referral Structures B-51
'SG'-Equivalenced Simple Pointers B-51
'SG'-Equivalenced Structure Pointers B-52
TARGET Directive B-54

Compiler Directives B-54

Directive Lines B-54

ABORT Directive B-54

ABSLIST Directive B-55

ASSERTION Directive B-55
BEGINCOMPILATION Directive B-55
CHECK Directive B-55

CODE Directive B-56

TAL Reference Manual—526371-001
XXiii

Contents

B. TAL Syntax Summary (Railroad
Diagrams) (continued)

B. TAL Syntax Summary (Railroad Diagrams) (continued)

COLUMNS Directive B-56
COMPACT Directive B-57
CPU Directive B-57
CROSSREF Directive B-57
DATAPAGES Directive B-57
DECS Directive B-58
DEFEXPAND Directive B-58
DEFINETOG Directive B-58
DUMPCONS Directive B-59
ENDIF Directive B-59

ENV Directive B-59
ERRORFILE Directive B-60
ERRORS Directive B-60

EXTENDSTACK Directive B-60

EXTENDTALHEAP Directive B-61

FIXUP Directive B-61

FMAP Directive B-61

GMAP Directive B-61

HEAP Directive B-62

HIGHPIN Directive B-62

HIGHREQUESTERS Directive B-62

ICODE Directive B-62

IF and ENDIF Directives B-63

INHIBITXX Directive B-63

INNERLIST Directive B-63

INSPECT Directive B-64

INT32INDEX Directive B-64

LARGESTACK Directive B-65

LIBRARY Directive B-65

LINES Directive B-65

LIST Directive B-65

LMAP Directive B-66

MAP Directive B-66

OLDFLTSTDFUNC Directive B-67

OPTIMIZE Directive B-67

PAGE Directive B-67

PEP Directive B-67

PRINTSYM Directive B-68

TAL Reference Manual—526371-001
XXV

Contents

B. TAL Syntax Summary (Railroad
Diagrams) (continued)

B. TAL Syntax Summary (Railroad Diagrams) (continued)

RELOCATE Directive B-68

RESETTOG Directive B-68

ROUND Directive B-69

RP Directive B-69

RUNNAMED Directive B-69

SAVEABEND Directive B-69

SAVEGLOBALS Directive B-70

SEARCH Directive B-70

SECTION Directive B-70

SETTOG Directive B-71

SOURCE Directive B-71

SQL Directive B-71
SQLMEM Directive B-71
STACK Directive B-72
SUBTYPE Directive B-72
SUPPRESS Directive B-72
SYMBOLPAGES Directive B-72
SYMBOLS Directive B-73
SYNTAX Directive B-73
TARGET Directive B-73
USEGLOBALS Directive B-73
WARN Directive B-74

C. TAL Syntax Summary (Bracket-and-Brace Diagrams)

General Syntax Notation C-1

UPPERCASE LETTERS C-1
lowercase italic letters C-1

Brackets[] C-1
Braces{} C-2
Vertical Line| C-2

Ellipsis ... C-2
Punctuation C-2
Item Spacing C-2
Line Spacing C-3

Constants C-3

Character String Constants C-3
STRING Numeric Constants C-3
INT Numeric Constants C-4

TAL Reference Manual—526371-001

XXV

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

INT(32) Numeric Constants C-4
FIXED Numeric Constants C-4
REAL and REAL(64) Numeric Constants C-4
Constant Lists C-4
Expressions C-5
Arithmetic Expressions C-5
Conditional Expressions C-5
Assignment Expressions C-5
CASE Expressions C-6
IF Expressions C-6
Group Comparison Expressions C-6
Bit Extractions C-6
Bit Shifts C-6
Declarations C-6
LITERAL and DEFINE Declarations C-7
LITERALs C-7
DEFINEs C-7
Simple Variable Declarations C-7
Simple Variables C-7
Array Declarations C-8
Arrays C-8
Read-Only Arrays C-8
Structure Declarations C-9
Definition Structures C-9
Template Structures C-9
Referral Structures C-9
Simple Variables Declared n Structures C-9
Arrays Declared in Structures C-9
Definition Substructures C-10
Referral Substructures C-10
Fillers in Structures C-10
Simple Pointers Declared in Structures C-10
Structure Pointers Declared in Structures C-10
Simple Variable Redefinitions C-11
Array Redefinitions C-11
Definition Substructure Redefinitions C-11

TAL Reference Manual—526371-001
XXVi

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

Referral Substructure Redefinitions C-11
Simple Pointer Redefinitions C-11
Structure Pointer Redefinitions C-11
Pointer Declarations C-12
Simple Pointers C-12
Structure Pointers C-12
Equivalenced Variable Declarations C-12
Equivalenced Simple Variables C-12
Equivalenced Definition Structures C-13
Equivalenced Referral Structures C-13
Equivalenced Simple Pointers C-13
Equivalenced Structure Pointers C-14
Base-Address Equivalenced Variable Declarations C-14
Base-Address Equivalenced Simple Variables C-14
Base-Address Equivalenced Definition Structures C-14
Base-Address Equivalenced Referral Structures C-15
Base-Address Equivalenced Simple Pointers C-15
Base-Address Equivalenced Structure Pointers C-15
NAME and BLOCK Declarations C-16
NAMEs C-16
BLOCKs C-16
Procedure and Subprocedure Declarations C-16
Procedures C-16
Subprocedures C-18
Statements C-19
Compound Statements C-19
ASSERT Statement C-19
Assignment Statement C-19
Bit-Deposit Assignment Statement C-20
CALL Statement C-20
Labeled CASE Statement C-20
Unlabeled CASE Statement C-20
CODE Statement C-21
DO Statement C-21
DROP Statement C-21
FOR Statement C-21

TAL Reference Manual—526371-001
XXVii

Contents

C. TAL Syntax Summary (Bracket-and-Brace

Diagrams) (continued)

GOTO Statement C-21
IF Statement C-22
Move Statement C-22

RETURN Statement C-22

SCAN Statement C-22

STACK Statement C-23
STORE Statement C-23

USE Statement C-23

WHILE Statement C-23

Standard Functions C-23

$ABS Function C-23

$ALPHA Function C-23
$AXADR Function C-24

$BITLENGTH Function
$BITOFFSET Function

$BOUNDS Function C-24
$CARRY Function C-24

$COMP Function C-24
$DBL Function C-24
$DBLL Function C-24
$DBLR Function C-25
$DFIX Function C-25
$EFLT Function C-25
$EFLTR Function C-25
$FIX Function C-25
$FIXD Function C-25
$FIXI Function C-26
$FIXL Function C-26
$FIXR Function C-26
$FLT Function C-26
$FLTR Function C-26
$HIGH Function C-26
$IFIX Function C-26
$INT Function C-27
$INTR Function C-27
$LADR Function C-27

TAL Reference Manual—526371-001

XXVili

C. TAL Syntax Summary (Bracket-and-Brace

Diagrams) (continued)

Contents

C. TAL Syntax Summary (Bracket-and-Brace

C. TAL Syntax Summary (Bracket-and-Brace

Diagrams) (continued)

$LEN Function C-27
$LFIX Function C-27
$LMAX Function C-27
$LMIN Function C-28
$MAX Function C-28
$MIN Function C-28
$NUMERIC Function C-28
$OCCURS Function C-28
$OFFSET Function C-28
$OPTIONAL Function C-28
$OVERFLOW Function C-29
$PARAM Function C-29
$POINT Function C-29
$READCLOCK Function C-29
$RP Function C-29
$SCALE Function C-29
$SPECIAL Function C-30
$SWITCHES Function C-30
$TYPE Function C-30
$UDBL Function C-30
$USERCODE Function C-30
$XADR Function C-30

Privileged Procedures C-30

System Global Pointers C-30
'SG'-Equivalenced Simple Variables C-31
'SG'-Equivalenced Definition Structures C-31
'SG'-Equivalenced Referral Structures C-31
'SG'-Equivalenced Simple Pointers C-31
'SG'-Equivalenced Structure Pointers C-32
$AXADR Function C-32

$BOUNDS Function C-32

$SWITCHES Function C-32

TARGET Directive C-33

Compiler Directives C-33

Directive Lines C-33
ABORT Directive C-33

TAL Reference Manual—526371-001

XXix

Diagrams) (continued)

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

ABSLIST Directive C-33
ASSERTION Directive C-33
BEGINCOMPILATION Directive C-34
CHECK Directive C-34

CODE Directive C-34
COLUMNS Directive C-34
COMPACT Directive C-34
CPU Directive C-34
CROSSREF Directive C-35
DATAPAGES Directive C-35
DECS Directive C-35
DEFEXPAND Directive C-35
DEFINETOG Directive C-35
DUMPCONS Directive C-36
ENDIF Directive C-36

ENV Directive C-36
ERRORFILE Directive C-36
ERRORS Directive C-36
EXTENDSTACK Directive C-36
EXTENDTALHEAP Directive C-36
FIXUP Directive C-37

FMAP Directive C-37

GMAP Directive C-37

HEAP Directive C-37

HIGHPIN Directive C-37
HIGHREQUESTERS Directive C-37
ICODE Directive C-37

IF and ENDIF Directive C-38
INHIBITXX Directive C-38
INNERLIST Directive C-38
INSPECT Directive C-38
INT32INDEX Directive C-39
LARGESTACK Directive C-39
LIBRARY Directive C-39
LINES Directive C-39

LIST Directive C-39

TAL Reference Manual—526371-001
XXX

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

LMAP Directive C-39

MAP Directive C-40
OLDFLTSTDFUNC Directive C-40
OPTIMIZE Directive C-40
PAGE Directive C-40

PEP Directive C-40
PRINTSYM Directive C-40
RELOCATE Directive C-41
RESETTOG Directive C-41
RP Directive C-41
RUNNAMED Directive C-41
SAVEABEND Directive C-41
SAVEGLOBALS Directive C-42
SEARCH Directive C-42
SECTION Directive C-42
SETTOG Directive C-42
SOURCE Directive C-42
SQL Directive C-43
SQLMEM Directive C-43
STACK Directive C-43
SUBTYPE Directive C-43
SUPPRESS Directive C-43
SYMBOLPAGES Directive C-43
SYMBOLS Directive C-43
SYNTAX Directive C-43
USEGLOBALS Directive C-44
WARN Directive C-44

Glossary
Index
Tables
Table i. TAL Manual Set xlii
Table ii. NonStop Systems xliv
Table iii. System Manuals xlv
Table iv. Programming Manuals xlvi

TAL Reference Manual—526371-001
XXX

Contents Tables (continued)

Tables (continued)

Table v. Program Development Manuals Xlvi

Table 1-1. Uses of TAL 1-1

Table 2-1. TAL Statements 2-2

Table 2-2. Keywords 2-3

Table 2-3. Nonreserved Keywords 2-3

Table 2-4. Identifier Classes 2-5

Table 2-5. Variables 2-6

Table 2-6. Indirection Symbols 2-7

Table 2-7. Base Address Symbols 2-7

Table 2-8. Delimiters 2-8

Table 2-9. Operators 2-9

Table 3-1. Data Types 3-2

Table 3-2. Storage Units 3-5

Table 3-3. Operations by Data Type 3-5

Table 3-4. Standard Functions by Data Type 3-6

Table 3-5. Address Types 3-7

Table 4-1. Precedence of Operators 4-3

Table 4-2. Operands in Arithmetic Expressions 4-6

Table 4-3. Signed Arithmetic Operators 4-7

Table 4-4. Signed Arithmetic Operand and Result Types 4-7
Table 4-5. Unsigned Arithmetic Operators 4-9

Table 4-6. Unsigned Arithmetic Operand and Result Types 4-10
Table 4-7. Logical Operators and Result Yielded 4-11

Table 4-8. Conditions in Conditional Expressions 4-13
Table 4-9. Boolean Operators and Result Yielded 4-14
Table 4-10. Signed Relational Operators and Result Yielded 4-15
Table 4-11. Unsigned Relational Operators and Result Yielded 4-15
Table 4-12. Special Expressions 4-19

Table 4-13. Bit - Operations 4-27

Table 4-14. Bit-Shift Operators 4-30

Table 8-1. Kinds of Structures 8-1

Table 8-2. Structure Items 8-2

Table 8-3. Data Accessed by Simple Pointers 8-14

Table 8-4. Addresses in Simple Pointers 8-14

Table 8-5. Addresses in Structure Pointers 8-16

Table 9-1. Data Accessed by Simple Pointers 9-3

Table 9-2. Addresses in Simple Pointers 9-3

Table 9-3. Addresses in Structure Pointers 9-7

TAL Reference Manual—526371-001
XXXii

Contents

Tables (continued)

Table 10-1. Equivalenced Variables 10-1

Table 12-1. Summary of Statements 12-1

Table 13-1. Formal Parameter Specification 13-12
Table 14-1. Summary of Standard Functions 14-2
Table 14-2. Type-Transfer Functions by Data Type 14-4
Table 14-3. Address type-transfer functions 14-45
Table 14-4. pTAL built-ins 14-45

Table 16-1. Summary of Compiler Directives 16-6

TAL Reference Manual—526371-001
XXXili

Tables (continued)

Contents

TAL Reference Manual—526371-001
XXXV

— What’'s New in This Manual

Manual Information

Abstract

This manual provides syntax descriptions and error messages for TAL (Transaction
Application Language) for system and application programmers.

Product Version
TAL D40
Supported Release Version Updates (RVUSs)

This publication supports D40.00 and all subsequent D-series RVUs, and G01.00 and
all subsequent G-series RVUs until otherwise indicated in a new edition.

Part Number Published
526371-001 September 2003

Document History

Part Number Product Version Published
15998 TAL C20 March 1989
065722 TAL D10 January 1993
096255 TAL C30, TAL D10 & TAL D20 September 1993
526371-001 TAL D40 September 2003

New and Changed Information

® Since product names are changing over time, this publication might contain both
HP and Compaq product names.

® Product names in graphic representations are consistent with the current product
interface.

® There was an error in describing the $OPTIONAL function. Hence, this release
ensures the correct description of the SOPTIONAL function.

® Adding a description as to how to write user library code files was an issue, which
has been solved in this release of the manual. Now, it explains the same by
referring it to the Binder manual.

® Compiler error 88 was very complex. Hence, this release ensures that the
explanation has been simplied for easy understanding.

TAL Reference Manual—526371-001
XXXV

What's New in This Manual New and Changed Information

® Added Built-in Functions on page 14-44 to document that TAL directly implements
pTAL built-ins

TAL Reference Manual—526371-001
XXXVi

— About This Manual

The Transaction Application Language (TAL) is a high-level, block-structured language
used to write system software and transaction-oriented applications.

The TAL compiler compiles TAL source programs into executable object programs.
The TAL compiler and the object programs it generates execute under control of the
HP NonStop™ Kernel operating system.

This manual describes the syntax for using TAL and the TAL compiler. It describes:
® The syntax for declaring variables and procedures

® The syntax for specifying expressions, statements, standard functions, and
compiler directives

® Error and warning messages

Audience

This manual is intended for system programmers and application programmers who
are familiar with NonStop systems and the NonStop Kernel operating system.

How to Use this Manual Set

The TAL Programmer’s Guide is a prerequisite to the TAL Reference Manual:

TAL TAL TAL

Programmer's Reference Reference
Guide Manual Summary

1] \] |]

VSTABO1.vsd

TAL Reference Manual—526371-001
XXXVii

About This Manual

Manual Organization

Tablei. TAL Manual Set

Manual

TAL Programmer’s Guide

TAL Reference Manual

TAL Reference Summary

Description

Helps you get started in creating, structuring, compiling,
running and debugging programs. Describes how to
declare and access procedures and variables and how
the TAL compiler allocates storage for variables.

Describes the syntax for declaring variables and
procedures and for specifying expressions, statements,
standard functions, and compiler directives; describes
error and warning messages.

Presents a summary of syntax diagrams.

For more information about TAL, first read the TAL Programmer’s Guide.

If you are familiar with TAL and the process environment, consult the TAL Reference
Manual for the syntax for declarations, statements, and directives and for information
about error messages.

For more information on writing a program that mixes TAL modules with modules
written in other languages, see Section 17, Mixed-Language Programming, in the TAL
Programmer’s Guide.

Manual Organization

This TAL Reference Manual covers these topics:

Section 1,
Introduction

Section 2,
Language
Elements

Section 3, Data
Representation

Section 4,
Expressions
Section 5,

LITERALs and
DEFINEs

Section 6, Simple
Variables

Section 7, Arrays

Section 8,
Structures

Section 9, Pointers

summarizes the features of TAL

summarizes language elements such as reserved words, identifiers,
constants, number bases, symbols, and operators

describes data types, storage units, character strings, numeric
constants, and constant lists

describes the syntax for specifying arithmetic, conditional, and
special expressions

describes the syntax for LITERAL and DEFINE declarations

describes the syntax for declaring simple variables

describes the syntax for declaring arrays and read-only arrays
describes the syntax for declaring structures and structure items

describes the syntax for declaring simple pointers and structure
pointers

TAL Reference Manual—526371-001
XXXViii

About This Manual System Dependencies

Section 10, describes the syntax for declaring equivalenced variables

Equivalenced
Variables

Section 11, describes the syntax for NAME and BLOCK declarations
NAMESs and
BLOCKs

Section 12, describes the syntax for specifying statements
Statements

Section 13, describes the syntax for declaring procedures, subprocedures, entry
Procedures points, and labels

Section 14, describes the syntax for using standard functions
Standard
Functions

Section 15, describes the syntax for declaring system global pointers and 'SG'-
Privileged equivalenced variables and for using privileged standard functions
Procedures

Section 16, describes the syntax for specifying compiler directives
Compiler

Directives

Appendix A, Error describes error and warning messages

Messages

Appendix B, TAL presents a syntax summary
Syntax Summary

(Railroad
Diagrams)

Appendix C, TAL presents the syntax summary in bracket-and-brace format
Syntax Summary

(Bracket-and-

Brace Diagrams)

System Dependencies

The features mentioned in this manual are supported on all currently supported
systems except where noted. Table ii on page -xl lists the systems that TAL supports:

TAL Reference Manual—526371-001
XXXIX

About This Manual Compiler Dependencies

Table ii. NonStop Systems

System Name Description Operating System
HP NonStop Based on complex instruction set G-series

Series (TNS computing (CISC) technology—a large

System) instruction set, numerous addressing

modes, multicycle machine instructions,
and special-purpose instructions

HP NonStop Based on reduced instruction set G-series software on S-
Series/RISC computing (RISC) technology—a small, series hardware
(TNS/R) system simple instruction set, general-purpose

registers, and high-performance

instruction execution

Programs That Run on the TNS System

All programs written for the C-series TNS system can run on a D-series TNS system
without modification. You can modify C-series application programs to take advantage
of S-series features, as described in the Guardian Application Conversion Guide.

Programs That Run on a TNS/R System

Most programs written for TNS systems can run on a TNS/R system without
modification. Low-level programs, however, might need modification as described in
the Guardian Application Conversion Guide.

The Accelerator Manual tells how to accelerate a TNS program to make it run faster on
a TNS/R system. An accelerated object file contains:

® The original TNS object code and related Binder and symbol information

® The accelerated (RISC) object code and related address map tables

Future Software Platforms

The storage allocation conventions described in this manual apply only to current
software platforms. For portability to future software platforms, do not write programs
that rely on the spatial relationships shown for variables and parameters stored in
memory. More specific areas of nonportability are noted in this manual where
applicable.

Compiler Dependencies

The compiler is a disk-resident program on each NonStop system. In general, a
particular version of the compiler runs on the corresponding or later version of the
operating system. For example, the D20 version of the compiler requires at least the
D20 version of the operating system.

TAL Reference Manual—526371-001
x|

About This Manual Additional Information

If you need to develop and maintain C-series TAL applications on a D-series system,
the following files must be restored from the C-series system:

C-Series File to

Restore Description

TAL TAL Compiler

TALERROR TAL Error Messages

TALLIB TAL Run-time Library

TALDECS TAL External Declarations

FIXERRS TACL macro for correcting TAL source files
BINSERV Binder server for compilers

SYMSERV Symbol-table server for compilers

The C-series compiler expects a C-series BINSERV and SYMSERY in the same
subvolume (although you can use the PARAM command to specify a BINSERV and
SYMSERYV in a different subvolume). C-series tool files (such as BIND and
CROSSREF) can also be restored.

To compile a C-series compilation unit on a D-series system, you must use the fully
qualified name of the C-series compiler; for example:

$nyvol . nysubvol . TAL / I N nysrc / nyobj

Additional Information

Table iii describes manuals that provide information about NonStop systems.

Table iii. System Manuals

Manual Description

Introduction to HP Provides an overview of the system hardware and software.
NonStop Systems

Introduction to D- Provides an overview of D-series enhancements to the
Series Systems operating system.

System Description Describes the system hardware and the process-oriented
Manual organization of the operating system.

TACL Reference Describes the syntax for specifying TACL command

Manual interpreter commands.

D-Series System Gives guidelines for migrating from a C-series system to a D-
Migration Planning series system.

Guide

TAL Reference Manual—526371-001
xli

About This Manual

Additional Information

Table iv describes manuals about programming in the NonStop environment.

Table iv. Programming Manuals

Manual

Guardian Procedure
Calls Reference Manual

Guardian Programmer’s
Guide

Guardian Procedure
Errors and Messages
Manual

Guardian Application
Conversion Guide

Accelerator Manual

Common Run-Time
Environment (CRE)
Programmer’s Guide

NonStop SQL
Programming Manual for
TAL

Description

Gives the syntax and programming considerations for using
system procedures.

Tells how to use the programmatic interface of the operating
system.

Describes error codes, error lists, system messages, and
trap numbers for system procedures.

Gives guidelines for converting C-series TNS programs to
D-series TNS programs, and for converting TNS programs
to TNS/R programs.

Tells how to accelerate TNS object files for a TNS/R system.

Tells how to use the CRE for running mixed-language
programs written for D-series systems.

Describes the syntax for embedding SQL statements in TAL
programs.

Table v describes manuals about program development tools.

Table v. Program Development Manuals

Manual

PS Text Edit Reference
Manual

Edit User’s Guide and
Reference Manual
Binder Manual
CROSSREF Manual

Inspect Manual

Debug Manual

Description

Explains how to create and edit a text file using the PS
Text Edit full-screen text editor.

Explains how to create and edit a text file using the Edit
line and virtual-screen text editor.

Explains how to bind compilation units (or modules) using
Binder.

Explains how to collect cross-reference information using
the stand-alone Crossref product.

Explains how to debug programs using the Inspect source-
level and machine-level interactive debugger.

Explains how to debug programs using the Debug
machine-level interactive debugger.

TAL Reference Manual—526371-001
xlii

About This Manual Notation Conventions

Notation Conventions

Railroad Diagrams

This manual presents syntax in railroad diagrams. To use a railroad diagram, follow the
direction of the arrows and specify syntactic items as indicated by the diagram and the
term definitions that follow the diagram. Here is an example of a railroad diagram:

SOURCE

file-name

define-name
._‘ h-
The parts of the diagram have the following meanings:

Specify the keyword as shown, using uppercase or lowercase

@ Specify the symbol or punctuation as shown.

Supply the informatin indicated, using uppercase or lowercase

\ 4

VSTABO2.vsd

Branching

Branching lines indicate a choice, such as:

Required choice. Specify one of the items.
.I

Optional choice. Specify one or none of the items.

Repeatable choice. Specify one or more of the items.

TAL Reference Manual—526371-001
xliii

About This Manual Spacing

Spacing

Where no space is allowed, the notation ns appears in the railroad diagram. Here is an
example of a diagram in which spaces are not allowed:

ns

ns ns
O—>@—>{JefEhi OIS

ns ns ns

(D—»{right-bit|

VSTABO3.vsd

You can prefix identifiers of standard indirect variables with the standard indirection
symbol (.) with no intervening space.

In all other cases, if no separator—such as a comma, semicolon, or parenthesis—is
shown, separate syntactic items with at least one space.

Case Conventions

Case conventions apply to keywords, variable items (information you supply), and
identifiers. This manual presents these terms in uppercase or lowercase as follows:

Term Context Case Example
Keywords In text and in railroad diagrams Uppercase RETURN
Variable Items In railroad diagrams Lowercase file-name
Variable items In text Lowercase italics file-name
Identifiers In examples Lowercase INT total;
Identifiers In text Uppercase TOTAL

Example Diagrams

Some of the examples in this manual include diagrams that illustrate memory
allocation. The diagrams are two bytes wide. Unless otherwise noted, the diagrams
refer to locations in the primary area of the user data segment. The following example
shows allocation of an INT(32) array and its initializing values. In the diagram, solid
lines depict borders of storage units, in this case doublewords. Short lines depict words
within each doubleword:

TAL Reference Manual—526371-001
xliv

About This Manual

Hypertext Links

I NT (32)
["abcd",

c[0:4] :=
1D, 3D, "XYZ",

I Declare an array and initialize
I the array elenments with val ues
I specified in a constant

i st

Clo]

Cl1]

Cl2]

Cl3]

Cl4]

1D

3D

VSTABO4.vsd

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk

Drives on page 3-2.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For

example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.

Items not enclosed in brackets are required. For example:

fil e-nanme

computer type. Conput er type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not

enclosed in brackets are required. For example:

nyfile.c

TAL Reference Manual—526371-001

xlv

About This Manual General Syntax Notation

italic computer type. Italic conputer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pat hname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\ syst em nane.] $t er mi nal - nanme
| NT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
[-num]
[text]

K[X| D] address
{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned

braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LI STOPENS PROCESS { $appl - ngr - nane }
{ $process-nane }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

I NSPECT { OFF | ON | SAVEABEND }

. Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, newvalue]...
[-1 {0]1]2]|3]|4|5|6]7]|8]9}...

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-nane) ;
LI STOPENS SU $pr ocess- nane. #su- nanme

TAL Reference Manual—526371-001
xlvi

About This Manual General Syntax Notation

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process- nane. #su- nane

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OQUT file-spec /] LINE
[, attribute-spec]...

li and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESI ZESEGVENT (segnent-id i
, error) o

li,o. In procedure calls, the !i,0 notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COWRESSEDI T (filenum) ; 'i,o

lizi. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FI LENAME_COVPARE (

filenanel: | ength Fici

filenane2:length) ; Fici

lo:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in

bytes. For example:

error := FILE GETINFO_ (filenum i
[filenane:maxlen]) ; lo:i

TAL Reference Manual—526371-001
xlvii

About This Manual Notation for Messages

Notation for Messages

This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE
?123
CODE RECEI VED: 123. 00
The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-regi ster
process- nane

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event nunber = nunber [Subject = first-subject-val ue]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-nane trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj -type obj-nanme state changed to state, caused by
{ Object | Operator | Service }

process-nane State changed from ol d-objstate to objstate
{ Operator Request. }
{ Unknown. }

TAL Reference Manual—526371-001
xIviii

About This Manual Notation for Management Programming Interfaces

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { K| Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The %
notation precedes an octal number. The %B notation precedes a binary number. The
%H notation precedes a hexadecimal number. For example:

2905400

98101111

W2F

P=%-regi ster E=%e-register

Notation for Management Programming
Interfaces

This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM TKN- SUBJ - SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

t oken-type

Ir. The Ir notation following a token or field name indicates that the token or field is
required. For example:

ZCOM TKN- OBJ NAVE t oken-type ZSPI - TYP- STRI NG Lr

lo. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI - TKN- MANAGER t oken-type ZSPI - TYP- FNAME32. l'o

TAL Reference Manual—526371-001
xlix

About This Manual Notation for Management Programming Interfaces

TAL Reference Manual—526371-001
|

T Introduction

The Transaction Application Language (TAL) is a high-level, block-structured language
that works efficiently with the system hardware to provide optimal object program

performance.

The TAL compiler compiles TAL source programs into executable object programs.The
compiler and the object programs it generates execute under control of the NonStop

Kernel.

Applications and Uses

You use TAL most often for writing systems software or transaction-oriented

applications where optimal performance has high priority. You can, for example, use

TAL to write the kinds of software listed in Table 1-1.

Table 1-1. Uses of TAL

Kind of Software
Systems Software

Applications Software

Examples

Operating System Components

Compilers and Interpreters

Command Interpreters

Special Subsystems

Special routines that support data communication
activities

Server processes used with NonStop data
management software

Conversion routines that allow data transfer between
NonStop software and other applications

Procedures that are callable from programs written in
other languages

Applications that require optimal performance

Many NonStop software products are written in TAL.

Major Features

The major features of TAL are:

® Procedures—Each program contains one or more procedures. A procedure is a
discrete sequence of declarations and statements that performs a specific task. A
procedure is callable from anywhere in the program. Each procedure executes in
its own environment and can contain local data that is not affected by the actions of

other procedures. When a procedure calls another procedure, the operating

system saves the caller’s environment and restores the environment when the

called procedure returns control to the caller.

TAL Reference Manual—526371-001

1-1

Introduction Major Features

® Subprocedures—A procedure can contain subprocedures, callable only from within
the same procedure. When a subprocedure calls another subprocedure, the
caller’s environment remains in place. The operating system saves the location in
the caller to which control is to return when the called subprocedure terminates.

® Private data area—Each activation of a procedure or subprocedure has its own
data area. Upon termination, each activation relinquishes its private data area,
thereby keeping the amount of memory used by a program to a minimum.

® Recursion—Because each activation of a procedure or subprocedure has its own
data area, a procedure or subprocedure can call itself or can call another
procedure that in turn calls the original procedure.

® Parameters—A procedure or subprocedure can have optional or required
parameters. The same procedure or subprocedure can process different sets of
variables sent by different calls to it.

® Data types—You can declare and reference the following types of data:

Data Type Description

String 8-bit integer byte

INT, INT(16) 16-bit integer word

INT(32) 32-bit integer doubleword

FIXED, INT(64) 64-bit fixed-point quadrupleword
REAL, REAL(32) 32-bit floating-point doubleword
REAL(64) 64-bit floating-point quadrupleword
UNSIGNED(n) n-bit field, where 1 <= n<=31

® Data sets—You can declare and use sets of related variables, such as arrays and
structures (records).

® Pointers—You can declare pointers (variables that can contain byte addresses or
word addresses) and use them to access locations throughout memory. You can
store addresses in pointers when you declare them or later in your program.

® Data operations—You can copy a contiguous group of words or bytes and
compare one group with another. You can scan a series of bytes for the first byte
that matches (or fails to match) a given character.

® Bit operations—You can perform bit deposits, bit extractions, and bit shifts.

® Standard functions—You can use built-in functions, for example, to convert data
types and addresses, test for an ASCII character, or determine the length, offset,
type, or number of occurrences of a variable.

® Compiler directives—You can use directives to control a compilation. You can, for
example, check the syntax in your source code or control the content of compiler
listings.

TAL Reference Manual—526371-001
1-2

Introduction System Services

® Modular programming—You can divide a large program into modules, compile
them separately, and then bind the resulting object files into a new object file.

® Mixed-language programming—You can use NAME and BLOCK declarations,
procedure declaration options—such as public name, language attribute, and
parameter pairs—and compiler directives in support of mixed-language
programming.

® NonStop SQL features—You can use compiler directives to prepare a program in
which you want to embed SQL statements.

System Services

Your program can ignore many things such as the presence of other running programs
and whether your program fits into memory. For example, programs are loaded into
memory for you and absent pages are brought from disk into memory as needed.

System Procedures

The file system treats all devices as files, including disk files, disk packs, terminals,
printers, and programs running on the system. File-system procedures provide a file-
access method that lets you ignore the peculiarities of devices. Your program can refer
to a file by the file’s symbolic name without knowing the physical address or
configuration status of the file.

Your program can call system procedures that activate and terminate programs
running in any processor on the system. Your program can also call system
procedures that monitor the operation of a running program or processor. If the
monitored program stops or a processor fails, your program can determine this fact.

For more information on System procedures, see the Guardian Procedure Calls
Reference Manual and the Guardian Programmer’s Guide for your system.

TAL Run-Time Library

The TAL run-time library provides routines that:

® |nitialize the Common Run-Time Environment (CRE) when you use D-series
compilers (as described in the TAL Programmer’s Guide)

® Prepare a program for SQL statements (as described in the NonStop SQL
Programming Manual for TAL)

TAL Reference Manual—526371-001
1-3

Introduction CRE Services

CRE Services

The CRE provides services that support mixed-language programs compiled on D-
series compilers. A mixed-language program can consist of C, COBOL85,FORTRAN,
Pascal, and TAL routines.

A routine is a program unit that is callable from anywhere in your program. The term
routine can represent:

® A C function

¢ A COBOLS8S5 program

® A FORTRAN program or subprogram

® A Pascal procedure or function

® A TAL procedure or function procedure

When you use the CRE, each routine in your program, regardless of language, can:

® Use the routine’s run-time library without overwriting the data of another run-time
library

® Share data in the CRE user heap

® Share access to the standard files—standard input, standard output, and standard
log

® (Call math and string functions provided in the CRELIB file

® (Call Saved Messages Utility (SMU) functions provided in the Common Language
Utility Library (CLULIB file)

Without the CRE, only routines written in the language of the MAIN routine can fully
access their run-time library. For example, if the MAIN routine is written in TAL, a
routine written in another language might not be able to use its own run-time library.
For more information on CRE guidelines for TAL programs, see Section 17, “Mixed-
Language Programming”. The CRE Programmer’s Guide describes the services
provided by the CRE, including the math, string, and SMU functions.

TAL Reference Manual—526371-001
1-4

—2Z— Language Elements

This section lists the elements that make up the TAL language. The elements listed

include:
Character Set 2-1
Declarations 2-1
Statements 2-2
Identifiers 2-4
Keywords 2-2
Constants 2-5
Variables 2-6
Indirection symbols 2-7
Address base symbols 2-7
Delimiters 2-8
Operators 2-9

Character Set

TAL supports the complete ASCII character set, which includes:
® Uppercase and lowercase alphabetic characters

® Numeric characters (0 through 9)

® Special characters

For more information on the ASCII character set, see Appendix D of the TAL
Programmer’s Guide.

Declarations

Declarations allocate storage and associate identifiers with variables and other
declarable objects in a program.

Variables include data items such as simple variables, arrays, structures, pointers, and
equivalenced variables.

Other declarable objects include procedures, LITERALS, DEFINES, labels, and entry
points.

TAL Reference Manual—526371-001
2-1

Language Elements Statements

Statements

Statements specify operations to be performed on declared objects. Statements are
summarized in Table 2-1 and described in Section 12, Statements.

Table 2-1. TAL Statements

Statement Operation

ASSERT Conditionally calls an error-handling procedure

Assignment Stores a value in a variable

CALL Calls a procedure or a subprocedure

CASE Selects a set of statements based on a selector value

CODE * Specifies machine codes or constants for inclusion in the object
code

DO Executes a posttest loop until a condition is true

DROP Frees an index register or removes a label from the symbol table

FOR Executes a pretest loop n times

GOTO Unconditionally branches to a label within a procedure or
subprocedure

IF Selects the THEN statement for a true state or the ELSE
statement for a false state

Move Copies a contiguous group of items from one location to another

RETURN Returns from a procedure or a subprocedure to the caller; returns
a value from a function, and can also return a condition code
value

RSCAN Scans data, right to left, for a test character

SCAN Scans data, left to right, for a test character

STACK * Loads a value onto the register stack

STORE * Stores a register stack value in a variable

USE Reserves an index register

WHILE Executes a pretest loop while a condition is true

* Not portable to future software platforms

Keywords

Keywords have predefined meanings to the compiler when used as shown in the
syntax diagrams in this manual. lists keywords that are reserved by the compiler. Do
not use reserved keywords for your identifiers.

TAL Reference Manual—526371-001
2-2

Language Elements Keywords

Table 2-2. Keywords

AND DO FORWARD MAIN RETURN TO
ASSERT DOWNTO GOTO NOT RSCAN UNSIGNED
BEGIN DROP IF OF SCAN UNTIL

BY ELSE INT OR STACK USE

CALL END INTERRUPT OTHERWISE STORE VARIABLE
CALLABLE ENTRY LABEL PRIV STRING WHILE
CASE EXTERNAL LAND PROC STRUCT XOR
CODE FIXED LITERAL REAL SUBPROC

DEFINE FOR LOR RESIDENT THEN

Table 2-3 lists nonreserved keywords, which you can use as identifiers anywhere
identifiers are allowed, except as noted in the Restrictions column.

Table 2-3. Nonreserved Keywords

Keyword Restrictions

AT

BELOW

BIT_FILLER Do not use as an identifier within a structure.

BLOCK Do not use as an identifier in a source file that contains the
NAME declaration.

BYTES Do not use as an identifier of a LITERAL or DEFINE.

C

COBOL

ELEMENTS Do not use as an identifier of a LITERAL or DEFINE.

EXT

EXTENSIBLE

FILLER Do not use as an identifier within a structure.

FORTRAN

LANGUAGE

NAME

PASCAL

PRIVATE Do not use as an identifier in a source file that contains the
NAME declaration.

UNSPECIFIED

WORDS Do not use as an identifier of a LITERAL or DEFINE.

TAL Reference Manual—526371-001
2-3

Language Elements Identifiers

ldentifiers

Identifiers are names you declare for objects such as variables, LITERALSs, DEFINES,
and procedures (including functions). Identifiers must conform to the following rules:

® They can be up to 31 characters long.
® They can begin with an alphabetic character, an underscore (_), or a circumflex (?).

® They can contain alphabetic characters, numeric characters, underscores, or
circumflexes.

® They can contain lowercase and uppercase characters. The compiler treats them
all as uppercase.

® They cannot be reserved keywords, which are listed in on page 2-2.
® They can be nonreserved keywords, except as noted in Table 2-3 on page 2-3.

To separate words in identifiers, use underscores rather than circumflexes.
International character-set standards allow the character printed for the circumflex to
vary with each country.

Do not end identifiers with an underscore. The trailing underscore is reserved for
identifiers supplied by the operating system.

The following identifiers are correct:

a2

TANDEM

_23456789012_00

nane_wi th_exactly 31 characters

The following identifiers are incorrect:

2abc I Begi ns with nunber
ab%®9 % synbol not all owed
Vari able - ! Reserved word

This _name_is too long_so it _is invalid 'Too | ong

Though allowed as TAL identifiers, avoid identifiers such as:

Nane”Usi ng"Ci rcunf | exes
Nane_Using Trailing_Underscore_

ldentifier Classes

Each identifier is a member of an identifier class such as variable. The compiler
determines the identifier class based on how you declare the identifier. The compiler
stores the identifier information in the symbol table.

TAL Reference Manual—526371-001
2-4

Language Elements Constants

Table 2-4. Identifier Classes

Class Meaning
Block Global Data Block
Code Read-only (P-relative) array
Variable Simple variable, array, simple pointer, structure pointer,
structure, or structure data item
DEFINE Named text
Function Procedure or subprocedure that returns a value
Label Statement Label
LITERAL Named constant
PROC Procedure or subprocedure that does not return a value
Register Index register - R5, R6, or R7
Template Template Structure
Constants

A constant is a value you can store in a variable, declare as a LITERAL, or use as part
of an expression. Constants can be numbers or character strings. The kind and size of
constants a variable can accommodate depends on the data type of the variable, as
described in Data Representation on page 3-1. The following examples show

constants:
654 - !'Nuneric constant
"abc" - !'Character string constant

Constant Expressions

A constant expression is an arithmetic expression that contains only constants,
LITERALSs, and DEFINEs as operands. You can use a constant expression anywhere a
single constant is allowed. The following examples show constant expressions:

255
8 * 5 +45/ 2
For more information, see LITERALs and DEFINEs on page 5-1.

Number Bases

You can specify numeric constants in binary, octal, decimal, or hexadecimal base
depending on the data type of the item, as described in Data Representation on
page 3-1. The default number base in TAL is decimal. The following examples show
constants in each number base:

TAL Reference Manual—526371-001
2-5

Language Elements Variables

Decimal 47

Binary 8101111

Octal Uo7

Hexadecimal oUH2F
Variables

A variable is a symbolic representation of data. It can be a single-element variable or a
multiple-element variable. You use variables to store data that can change during
program execution.

The compiler does not automatically initialize variables. Therefore, before you access
data stored in an a variable, either:

® |nitialize the variable with a value when you declare the variable

® Assign a value to the variable after you declare the variable. Table 2-5 summarizes
variables.

Table 2-5. Variables

Variable Description

Simple Variable A variable that contains one element of a specified data type
Array A variable that contains multiple elements of the same data type
Structure A variable that can contain variables of different data types
Substructure A structure nested within a structure or substructure

Structure data item A simple variable, array, simple pointer, substructure, or structure
pointer declared in a structure or substructure; also known as a
structure field

Simple pointer A variable that contains a memory address, usually of a simple
variable or an array element, which you can access with this simple
pointer

Structure pointer A variable that contains the memory address of a structure, which

you can access with this structure pointer

Symbols

Symbols indicate indirection, address bases, and delimiters.

TAL Reference Manual—526371-001
2-6

Language Elements Indirection Symbols

Indirection Symbols

Indirection symbols let you use indirect addressing to save space in limited storage
areas, as described in the TAL Programmer’s Guide. Indirect addressing requires two
memory references, first to a location that contains an address and then to the data
located at the address. Table 2-6 lists indirection symbols.

Table 2-6. Indirection Symbols

Symbol Meaning

. (period) Declares an array or structure as having standard (16-bit) indirect addressing
Declares a standard (16-bit) simple pointer or structure pointer

EXT Declares an array or structure as having extended (32-bit) indirect addressing
Declares an extended (32-bit) simple pointer or structure pointer
SG Declares a standard (16-bit) system global pointer

Base Address Symbols

Base address symbols let you associate variables with locations relative to the base
address of a storage area, such as the global, local, or sublocal areas of the user data
segment. Table 2-7 lists base address symbols.

Table 2-7. Base Address Symbols

Symbol Meaning

‘P’ P-register addressing (read-only array declaration)

‘G’ Base-address equivalencing, global user data area

L Base-address equivalencing, local user data area

‘'S’ Base-address equivalencing, sublocal user data area

‘SG’ Base address equivalencing, system global space (privileged

procedures only)

The TAL Programmer’s Guide describes the storage areas of the user data segment.

Delimiters

Delimiters are symbols that begin, end, or separate fields of information. Delimiters tell
the compiler how to handle the fields of information. Table 2-8 on page 2-8 lists
delimiters.

TAL Reference Manual—526371-001
2-7

Language Elements

Delimiters

Table 2-8. Delimiters (page 1 of 2)

Character
Symbol Representation
! Exclamation mark
-- Two hyphens

, Comma

X Semicolon

Period
<n:n> Angle brackets

Colon

0 Parentheses

[n:n] Square brackets

-> Hyphen plus right
angle bracket

“string” Quotation marks

“ Contiguous quotation
marks

Uses
Begins and optionally ends a comment
Begins a comment

Separates fields of information, such as in
declarations, statements, directives, and
constant lists

Terminates data declarations
Separates statements
Separates declaration options

Separates identifier levels in a qualified
structure item identifier

Delimit a bit field in a bit deposit or bit
extraction

Denotes a statement label

Denotes a procedure entry point
Denotes an ASSERT statement assert
level

Denotes a parameter pair

Delimit subexpressions within an
expression

Delimit instructions in a CODE statement
Delimit the parameter list of a DEFINE,
procedure, subprocedure, or CALL
statement

Delimit the referral in a structure pointer
declaration

Delimit the implied decimal point position
in a FIXED variable

Delimit the bounds specification in the
declaration of an array, structure, or
substructure

Begins one or more labels in a labeled
CASE statement

Begins a next-addr clause in a SCAN or
RSCAN statement

Begins a next-addr clause in a move
statement

Begins a next-addr clause in a group
comparison expression

Delimit a character string

The first quotation mark indicates that the
second quotation mark is not a delimiter in
a character string

TAL Reference Manual—526371-001

2-8

Language Elements

Operators

Table 2-8. Delimiters (page 2 of 2)

Character
Symbol Representation

= Equal sign

=body# Equal sign and hash
mark

Single quotation
marks

$ Dollar sign

? Question mark

Uses

Used in LITERAL declarations
Used in equivalenced variable declarations
Used in redefinition declarations

Delimit the DEFINE body in a DEFINE
declaration

Delimit a comma that is not a delimiter in a
DEFINE parameter

Denotes a standard function, such as
$ABS and $DBL

Begins a directive line

Operators

Operators specify operations—such as arithmetic or assignments—that you want
performed on items. Table 2-9 describes operators.

Table 2-9. Operators (page 1 of 2)

Context Operator
Assignment =

‘

Move statement =

&

Labeled case .. (two periods)

statement
Remove indirection @

Repetition * (asterisk)
Template structure *
FIXED(*) parameter (*)

type

Dereferencing * . (period)
Bit-field acess . (period)

Operation

Data declaration initialization;
assignment statement, FOR
statement, and assignment
expression

Left-to-right move
Right-to-left move
Concatenated move

Inclusive range of case labels

Accesses the address contained in a
pointer or the address of a non-pointer
item

Repetition factor in a repetition
constant list

Template structure declaration

Value parameter to be treated as
FIXED(0)

Converts value of INT simple variable
to standard word address of another
data item.

Accesses a bit-deposit or bit-
extraction field (< n> or < n:n>)

TAL Reference Manual—526371-001

2-9

Language Elements

Operators

Table 2-9. Operators (page 2 of 2)

Context
Bit shift

Arithmetic
expression

Relational
expression

Boolean expression

* Not supported on future software platforms.

Operator

|<:
|>:
|<>|

AND

OR
NOT

Operation

Signed left shift
Signed right shift
Unsigned left shift
Unsigned right shift

Signed addition

Signed subtraction

Signed multiplication

Signed division

Unsigned addition

Unsigned subtraction
Unsigned multiplication
Unsigned division

Unsigned modulo division
Logical OR bit-wise operation
Logical AND bit-wise operation
Exclusive OR bit-wise operation

Signed less than

Signed equal to

Signed greater than

Signed less than or equal to
Signed greater than or equal to
Singed not equal to

Unsigned less than

Unsigned equal to

Unsigned greater than
Unsigned less than or equal to
Unsigned greater than or equal to
Unsigned not equal to

Logical conjunction
Logical disjunction
Logical negation

TAL Reference Manual—526371-001

—3— Data Representation

Data is the information on which a program operates. Your program data includes
variables and constants.

Variables hold values that can change during program execution. When you declare a
variable, you specify a data type that determines the amount of storage the variable
requires, the kind of values it can represent, and other characteristics.

Constants are values that do not change during program execution. The compiler
determines the data type of constants from their size and format. You can assign
constants to variables. You can declare LITERALS, which associate identifiers with
constants.

This section describes:
® Data types of variables and constants
® Storage units in which you can access variables

® Syntax for character string constants, numeric constants, and constant lists

Data Types

When you declare most kinds of variables, you specify a data type. The data type
determines:

® The kind of values the variable can represent
® The amount of storage the compiler allocates for the variable
® The operations you can perform on the variable

® The byte or word addressing mode of the variable

TAL Reference Manual—526371-001
3-1

Data Representation Data Types

Table 3-1 gives information about each data type.

Table 3-1. Data Types

Kind of Values the Data type can
Data Type Storage Unit Represent

STRING Byte An ASCII character
An 8-bit integer in the range 0 through
255 unsigned

INT Word One or two ASCII characters
A 16-bit integer in the range 0 through
65,535 (unsigned) or —32,768 through
32,767 (signed)
A standard (16-bit) address (0 through
65,535)

INT (32) Doubleword A 32-bit integer in the range —
2,147,483,648 through +2,147,483,647
An extended (32-bit) address (0
through 127.5K)

UNSIGNED n-bit field* UNSIGNED(1-15) and
UNSIGNED(17-31) can represent a
positive unsigned integer in the range 0
through (2 n -1)
UNSIGNED(16) can represent an
integer in the range 0 through 65,535
unsigned or —32,768 through 32,767
signed; it can also represent a standard
address

FIXED Quadrupleword A 64-bit fixed-point number; For
FIXED(0) and FIXED (*), the range is —
9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807.

REAL Double word A 32-bit floating-point number in the
range +8.6361685550944446E-78
through £1.15792089237316189E77
precise to approximately 7 significant
decimal digits

REAL (64) Quadrupleword A 64-bit floating-point number in the
same range as data type REAL but
precise to approximately 17 significant
decimal digits

* For an UNSIGNED simple variable, the bit field can be 1 to 31 bits wide.
* For an UNSIGNED array, the element bit field can be 1, 2, 4, or 8 bits wide.

TAL Reference Manual—526371-001
3-2

Data Representation Specifying Data Types

Specifying Data Types

The format for specifying data types in declarations is:

\\s \ () > width
\(@ () > width
e

\

%

fpoint

VST0301.vsd

Wi dt h

is a constant expression that specifies the width, in bits, of the variable. The
constant expression can include LITERALs and DEFINEs (previously declared
constants and text). The result of the constant expression must be one of the
following values:

Data Type Prefix width, in bit
INT 16 *,32,0r64 *
REAL 32 * or 64

UNSIGNED, simple variable, parameter, A value in the range 1 through 31
or function result

UNSIGNED - array element 1,2,4,0r8
* INT(16), INT(64), and REAL(32) are data type aliases, as described in Data Type Aliases on
page 3-4

f poi nt

is the implied fixed-point setting of a FIXED variable. fpoint is an integer in the
range —19 through 19. If you omit fpoint, the default fpoint is 0 (no decimal places).
A positive fpoint specifies the number of decimal places to the right of the decimal
point. A negative fpoint specifies a number of integer places to the left of the
decimal point.

* (asterisk)

is a FIXED data type notation. The asterisk prevents scaling of the initialization
value.

TAL Reference Manual—526371-001
3-3

Data Representation Data Type Aliases

Specifying Widths

When you specify the width of the INT, REAL, or UNSIGNED data type, the constant
expression can include LITERALs and DEFINEs. Here is an example that includes a

LITERAL:
LITERAL int_size = (2 * 4) + 8; 'l NT_SI ZE equal s 16
I NT(int_size) num IData type is | NT(16)

Section 6, Simple Variables describes LITERALs and DEFINES on page 5-1.

Specifying fpoints

For the FIXED data type, you can specify an fpoint, an implied fixed-point setting
specified as an integer in the range —19 through 19.

A positive fpoint specifies the number of decimal places to the right of the decimal
point:

FI XEDX3) x := 0.642F; I Stored as 642

A negative fpoint specifies a number of integer places to the left of the decimal point.
To store a FIXED value, a negative fpoint truncates the value leftward from the decimal
point by the specified number of digits. When you access the FIXED value, zeros
replace the truncated digits:

FI XEIX-3) y := 642945F; I Stored as 642; accessed

I as 642000

Data Type Aliases

The compiler accepts the following aliases for the listed data types:

Data Type Alias

INT INT (16)
REAL REAL (32)
FIXED INT (64)

For consistency, the remainder of this manual avoids using data type aliases. For
example, although the following declarations are equivalent, the manual uses

FIXED(0):
FI XEDX 0) var;
| NT(64) var;

TAL Reference Manual—526371-001
3-4

Data Representation Storage Units

Storage Units

Storage units are the containers in which you can access data stored in memory. The
system fetches and stores all data in 16-bit words, but you can access data as any of
the storage units listed in Table 3-2.

Table 3-2. Storage Units

Number of
Storage Unit Bits Data Type Description
Byte 8 STRING One of two bytes that make up a
word
Word * 16 INT Two bytes, with byte 0 (most
significant) on the left and byte 1
(least significant) on the right
Doubleword 32 INT (32), Two contiguous words
REAL
Quadrupleword 64 REAL (64), Four contiguous words
FIXED
Bit field 1-16 UNSIGNED Contiguous bit fields within a word
Bit field 17-31 UNSIGNED Contiguous bit fields within a

doubleword

* In TAL a word is always 16 bits regardless of the word size used by the system hardware.

Address Modes

The data type of a variable determines byte or word addressing and indexing, as
discussed elsewhere in this manual and in the TAL Programmer’s Guide.

Operations by Data Type

The data type of a variable determines the operations you can perform on the variable.
Table 3-3 lists the operations by data type.

Table 3-3. Operations by Data Type (page 1 of 2)

INT or INT (32) or

Unsigned Unsigned REAL or
Operation STRING (1-16) (17-31) FIXED REAL (64)
Unsigned Yes Yes No No No
arithmetic
Signed Yes Yes Yes Yes Yes
arithmetic
Logical Yes Yes No No No
operations

TAL Reference Manual—526371-001
3-5

Data Representation Functions by Data Type

Table 3-3. Operations by Data Type (page 2 of 2)

INT or INT (32) or

Unsigned Unsigned REAL or
Operation STRING (1-16) (17-31) FIXED REAL (64)
Relational Yes Yes Yes Yes Yes
Operations
Bit shifts Yes Yes Yes No No
Byte scans Yes Yes Yes Yes Yes

Section 4, Expressions, explains how the data type of an operand affects its behavior
in expressions.

Addresses as Data

You can store standard (16-bit) addresses in INT variables. Use only unsigned
operations for standard addresses.

You can store extended (32-bit) addresses in INT(32) variables.

Functions by Data Type

The data type of a variable determines the standard function you can use with the
variable. Table 3-4 lists the function categories by data type.

Table 3-4. Standard Functions by Data Type

INT or INT (32) or

Unsigned Unsigned REAL or
Category STRING (1-16) (17-31) FIXED REAL (64)
Type Yes Yes Yes Yes Yes
Transfer
Character Yes No No No No
Test
Minimum or Yes Yes Yes Yes Yes
Maximum
Scaling No No No Yes No
Variable Yes Yes Yes Yes Yes
Address Yes Yes Yes Yes Yes
Conversion

For more information on the descriptions of each standard function, see Section 14,
Standard Functions.

TAL Reference Manual—526371-001
3-6

Data Representation Address Types

Address Types

TAL supports the following pTAL address types. For further details, see the pTAL
Reference Manual.

PTAL supports 10 address types that control the addresses you store into pointers.
PTAL uses address types to ensure that your program addresses the same relative
data locations on a RISC processor as it does on a CISC processor. Address types are
like data types except that:

® Address types are used primarily to describe the addresses that you assign to a
pointer, not the data your program is processing.

® pTAL implicitly determines the address type of a pointer based on how you declare
the pointer. You cannot explicitly declare a pointer’s address type.

® Only operations that are meaningful for addresses are valid on address types.
® An address type identifies:

° The location of the data to which the pointer points.
° The addressing mode to use when accessing the data.

Address types are summarized in Table 3-5. This table also identifies the target data
that applies to each address when you run pTAL on a CISC processor.

Table 3-5. Address Types

Data Type Type Target Data on a CISC Processor
BADDR Byte 8-bit bytes in the user data segment
WADDR Word 16-bit words in the user data segment
CBADDR Byte 8-bit bytes in the user code segment
CWADDR Word 16-bit words in the user code segment
SGBADDR Byte 8-bit bytes in system globals
SGWADDR Word 16-bit words in system globals
SGXBADDR Byte 8-bit bytes in system globals
SGXWADDR Word 16-bit words in system globals
EXTADDR Byte Data in an extended segment
PROCADDR N.A. Index of a procedure in the PEP table

Syntax for Constants

The remaining pages of this section describe the syntax definitions for specifying
constants in your program. You can specify the following kinds of constants:

® Character string constants (all data types)

® STRING numeric constants

TAL Reference Manual—526371-001
3-7

Data Representation Character String Constants

® [INT numeric constants

® INT(32) numeric constants

® FIXED numeric constants

® REAL and REAL(64) numeric constants

® Constant lists

Character String Constants

A character string constant consists of one or more ASCII characters stored in a
contiguous group of bytes.

>® » string >® >

VST0302.vsd

string

is a sequence of one or more ASCII characters enclosed in quotation mark
delimiters. If a quotation mark is a character within the sequence of ASCII
characters, use two quotation marks (in addition to the quotation mark delimiters).
The compiler does not upshift lowercase characters.

Character String Length

Each character in a character string requires one byte of contiguous storage. The
maximum length of a character string you can specify differs for initializations and for
assignments.

Initializations
You can initialize simple variables or arrays of any data type with character strings.

When you initialize a simple variable, the character string can have the same number
of bytes as the simple variable or fewer.

When you initialize an array, the character string can have up to 127 characters and
must fit on one line. If a character string is too long for one line, use a constant list,
described later in this section, and break the character string into smaller character
strings.

Assignments

You can assign character strings to STRING, INT, and INT(32) variables, but not to
FIXED, REAL, or REAL(64) variables.

TAL Reference Manual—526371-001
3-8

Data Representation Example of Character String Constant

In assignment statements, a character string can contain at most four characters,
depending on the data type of the variable.

Example of Character String Constant

This example declares an INT variable and initializes it with a character string:
I NT chars := "AB";

String Numeric Constants

Representation: Unsigned 8-bit integer
Range: 0 through 255
\» j integer ———»
base VST0303.vsd
base

is %, %B, or %H, which indicates a number base:

Octal %
Binary %B
Hexadecimal %H

If you omit the base, the default base is decimal

i nt eger

is one or more digits. The digits allowed are:

Decimal 0 through 9
Octal 0 through 7
Binary Oor1l

Hexadecimal 0 through 9, A through F

Example of STRING Numeric Constants

Here are examples of STRING numeric constants:

Decimal 255
Octal %42
Binary %8101
Hexadecimal W2A

TAL Reference Manual—526371-001
3-9

Data Representation INT Numeric Constants

INT Numeric Constants

Representation: Signed or Unsigned 16-bit integer
Range (unsigned): 0 through 65,535
Range (signed): —32,768 through 32,767

\ » integer ———»

VST0304.vsd

base
is %, %B, or %H, which indicates a number base:

Octal %
Binary %B
Hexadecimal %H

The default base is decimal. Unsigned integers greater than 32,767 must be in octal,
binary, or hexadecimal base.

i nt eger
is one or more digits. The digits allowed are:

Decimal 0 through 9
Octal 0 through 7
Binary Oor1l

Hexadecimal 0 through 9, A through F

TAL Reference Manual—526371-001
3-10

Data Representation Examples of INT Numeric Constants

Examples of INT Numeric Constants

Here are examples of INT numeric constants:

Decimal 3
- 32045
Octal 077
-9%
Binary %801010
%%1001111000010001
Hexadecimal OHLA
o 2f

Storage Format

The system stores signed integers in two’s complement notation. It obtains the
negative of a number by inverting each bit position in the number, and then adding 1.

2 is stored as 0000000000000010
-2 is stored as 1111111111111110

INT (32) Numeric Constants

Representation: Signed or unsigned 32-bit integer

Range: -2,147,483,648 through 2,147,483,647

J » integer o
=

VST0305.vsd

base

is %, %B, or %H, which indicates a number base:

Octal %
Binary %B
Hexadecimal %H

The default base is decimal

TAL Reference Manual—526371-001
3-11

Data Representation Examples of INT (32) Numeric Constants

i nt eger

is one or more digits. The digits allowed are:

Decimal 0 through 9
Octal 0 through 7
Binary Oor1l

Hexadecimal 0 through 9, A through F

D and %O
are suffixes that specify INT(32) constants:
Decimal D
Octal D
Binary D

Hexadecimal %D

Examples of INT (32) Numeric Constants

Here are examples of INT(32) numeric constants:

Decimal 0]
+14769D
- 327895066d
Octal %4707254361d
-%24700000221D
Binary %8000100101100010001010001001d
Hexadecimal %4096228d%
- %H99FF29%D

For readability, always specify the % in the %D hexadecimal suffix. The following
format, where a space replaces the % in the %D suffix, is allowed but not
recommended:

-%H99FF29 D 'Usi ng space instead of %
Il is not recommended

Storage Format

The system stores signed integers in two’s complement notation.

TAL Reference Manual—526371-001
3-12

Data Representation FIXED Numeric Constants

FIXED Numeric Constants

Representation: Signed 64-bit fixed-point number
Range: —9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807

> integer
\
®—> fraction

VST0306.vsd

base
is %, %B, or %H, which indicates a number base:

Octal %

Binary %B
Hexadecimal %H

The default base is decimal

i nt eger

is one or more digits. The digits allowed are:

Decimal 0 through 9
Octal 0 through 7
Binary Oorl

Hexadecimal 0 through 9, A through F

fraction

is one or more decimal digits. fraction is legal only for decimal base.

F and %
are suffixes that specify FIXED constants:
Decimal F
Octal F
Binary F

Hexadecimal %F

TAL Reference Manual—526371-001
3-13

Data Representation Examples of FIXED Numeric Constants

Examples of FIXED Numeric Constants

Decimal 1200. 09F
0. 1234567F
239840984939873494F
-10. O9F
Octal %'65235512F
Binary %1010111010101101010110F
Hexadecimal %1298756%

Storage Format

The system stores a FIXED number in binary notation. When the system stores a
FIXED number, it scales the constant as dictated by the declaration or expression.
Scaling means the system multiplies or divides the constant by powers of 10 to move
the decimal.

For more information on scaling of FIXED values in expressions, see Section 4,
Expressions.

For more information on scaling of FIXED values in declarations, see Section 6, Simple
Variables.

REAL and REAL (64) Numeric Constants

Representation Signed 32-bit REAL or 64-bit REAL(64) floating-point number

Range +8.6361685550944446 * 10 -78 through
+1.15792089237316189 * 10 +77

Precision REAL—to approximately 7 significant digits

REAL(64)—to approximately 17 significant digits

» integer |—»(. —» fraction
J ~ ~—»{exponent}—>
VST0307.vsd

TAL Reference Manual—526371-001
3-14

Data Representation Examples of REAL and REAL (64) Numeric

Constants

i nt eger

is one or more decimal digits that compose the integer part.

fraction

is one or more decimal digits that compose the fractional part.

E and L
are suffixes that specify floating-point constants:
REAL E
REAL(64) L

exponent

is one or two decimal digits that compose the exponential part.

Examples of REAL and REAL (64) Numeric Constants

Here are the examples of REAL and REAL(64) numeric constants. The examples
show the integer part, the fractional part, the E or L suffix, and the exponent part:

Decimal Value REAL REAL (64)
o] 0. OEO 0. 0LO
2 2.0e0 2.0LO
0. 2E1 0.2L1
20. 0E-1 20.0L-1
-17.2 -17. 2EQ -17. 2L0
-1720. OE- 2 -1720. 0OL-2

Storage Format

The system stores the number in binary scientific notation in the form:
X* 2Y

Xis a value of at least 1 but less than 2. Because the integer part of X is always 1, only
the fractional part of X is stored.

The exponent can be in the range —256 through 255 (%377). The system adds 256
(%400) to the exponent before storing it as Y. Thus, the value stored as Y is in the
range O through 511 (%777), and the exponent is Y minus 256.

If the value of the number to be represented is zero, the sign is 0, the fraction is 0, and
the exponent is 0.

TAL Reference Manual—526371-001
3-15

Data Representation Examples of Storage Formats

The system stores the parts of a floating-point constant as follows:

Data Type Sign Bit Fraction Exponent
REAL <0> <1l:22> <23: 31>
REAL <0> <1: 54> <55: 63>

Examples of Storage Formats

1. Forthe following REAL constant, the sign bit is 0, the fraction bits are 0, and the
exponent bits contain %400 + 2, or %402:

4 =1.0* 2 2 stored as %900000 %©00402

2. For the following REAL constant, the sign bit is 1, the fraction bits contain %.2
(decimal .25 is 2/8), and the exponent bits contain %400 + 3, or %403:

-10 = -(1.25 * 2 3) stored as %420000 %©00403

3. For the following REAL(64) constant, the sign bit is 0, the fraction bits contain the
octal representation of .33333..., and the exponent bits contain %400 — 2, or %376:

1/3 = .33333..* 2 -2 stored as 25252 %125252 9125252 %125376

Constant Lists

A constant list is a list of one or more constants. You can use constant lists in:
® |nitializations of array declarations that are not contained in structures
® Group comparison expressions

® Move statements but not assignment statements

>} repetition-constant-list } >

repetition-constant-list

constant-list-seq

VST0308.vsd

repetition-constant-1i st

has the form:

TAL Reference Manual—526371-001
3-16

Data Representation Examples of Constant Lists

\ »([constant-list-seq |—#(] -
repetition-factor ‘»@—/ VST0309.vsd

repetition-factor

is an INT constant that specifies the number of times constant-list-seq occurs.

constant-list-seq
is a list of one or more constants, each stored on an element boundary.

\»{ F‘ constant = —

repetition-constant-list

(-

VST0310.vsd

const ant

is a character string, a number, or a LITERAL specified as a single operand.
The range and syntax for specifying constants depends on the data type, as
described for each data type on preceding pages.

Examples of Constant Lists

1. The two examples in each of the following pairs are equivalent:

["A", "BCD' , "...", "Z"]
["ABCD...Z"]

10 * [0];
[0,0,0,0,0,0,0,0,0, 0]

[3 * [2* [1], 2 * [0]]]
[1,1,0,0,1,1,0,0,1,1,0, 0]
10 % [*]

["]

2. This example shows how you can break a constant string that is too long to fit on
one line into smaller constant strings specified as a constant list. The system
stores one character to a byte:

STRING a[0:99] := ["These three constant strings wll ",

"appear as if they were one constant ",
"string continued on nmultiple lines."];

TAL Reference Manual—526371-001
3-17

Data Representation Examples of Constant Lists

3. This example initializes a STRING array with a repetition constant list:

STRING b[0:79] := 80 * [" "];

4. This example initializes an INT(32) array with a mixed constant list containing
values of the same data type. The diagram shows how the compiler allocates
storage for the variable and the constant list that initializes the variable:

. o
clo] +— —_—
g -
INT(32) c[0:4] :=
oy — D |
["abcd", 1D, 3D, "XYZ", 90D ;
IM xed constant |i st 3D
Cl2l T —
cp X v
i "
Cl4 +— %200 —
VSTO0311.vsd

TAL Reference Manual—526371-001
3-18

~4 - Expressions

This section describes the syntax for:

® Arithmetic and conditional expressions

® Special expressions (assignment, CASE, IF, group comparison)

® Bit operations (extraction and shift)

Section 5, “Using Expressions,” in the TAL Programmer’s Guide describes:
® Assigning conditional expressions

® Dereferencing simple variables (formerly called temporary pointers)

About Expressions

An expression is a sequence of operands and operators that, when evaluated,
produces a single value. Operands in an expression include variables, constants, and
function identifiers. Operators in an expression perform arithmetic or conditional
operations on the operands.

Expressions, for example, can appear in:

® LITERAL declarations

® Variable initializations and assignments

® Array and structure bounds

® [Indexes to variables

® Conditional program execution

® Parameters to procedures or subprocedures

The compiler at times requires arithmetic or conditional expressions. Where indicated
in this manual, specify one of the following kinds of expressions:

TAL Reference Manual—526371-001
4-1

Expressions

Expression

Arithmetic
expression

Constant expression

Conditional
expression

Description

An expression that computes a
single numeric value and that
consists of operands and arithmetic
operators.

An arithmetic expression that
contains only constants, LITERALS,
and DEFINEs as operands.

An expression that establishes the
relationship between values and
that results in a true or false value. It
consists of relational or Boolean
conditions and conditional
operators.

Data Types of Expressions

The result of an expression can be any data type except STRING or UNSIGNED. The
compiler determines the data type of the result from the data type of the operands in
the expression. All operands in an expression must have the same data type, with the

following exceptions:

Data Types of Expressions

Examples
398 + num/ 84
10 LOR 12

398 + 46 / 84

Relational:a < ¢
Boolean:a OR b

® AnINT expression can include STRING, INT, and UNSIGNED(1-16) operands.
The system treats STRING and UNSIGNED(1-16) operands as if they were 16-bit
values. That is, the system:

° Puts a STRING operand in the right byte of a word and sets the left byte to 0.

° Puts an UNSIGNED(1-16) operand in the right bits of a word and sets the
unused left bits to 0, with no sign extension. For example, for an
UNSIGNED(2) operand, the system fills the 14 leftmost bits of the word with

ZEros.

® AnINT(32) expression can include INT(32) and UNSIGNED(17-31) operands. The
system treats UNSIGNED(17-31) operands as if they were 32-bit values. The
system places an UNSIGNED(17-31) operand in the right bits of a doubleword
and sets the unused left bits to 0, with no sign extension. For example, for an
UNSIGNED(29) operand, the system fills the three leftmost bits of the doubleword

with zeros.

In all other cases, if the data types do not match, use type transfer functions to make
them match. (For more information on Type transfer functions, see Section 14,

Standard Functions.)

TAL Reference Manual—526371-001

4-2

Expressions

Precedence of Operators

Operators in expressions can be arithmetic (signed, unsigned, or logical) or conditional
(Boolean or relational, signed or unsigned). Within an expression, the compiler
evaluates the operators in the order of precedence. Within each level of precedence,
the compiler evaluates the operators from left to right. Table 4-1 shows the level of

precedence for each operator, from highest (0) to lowest (9).

Precedence of Operators

Table 4-1. Precedence of Operators (page 1 of 2)

Operator

[n]

@
+

Operation

Indexing
Dereferencing *
Address of identifier
Unary plus

Unary minus

Bit extraction

Signed left bit shift
Signed right bit shift
Unsigned left bit shift
Unsigned right bit shift
Signed multiplication
Signed division
Unsigned multiplication
Unsigned division
Unsigned modulo division
Signed addition
Signed subtraction
Unsigned addition
Unsigned subtraction
Bitwise logical OR
Bitwise logical AND
Bitwise exclusive OR
Signed less than
Signed equal to

Signed greater than

Signed less than or equal to

Precedence

g o0 o0 o0 A A DM DD DM D D W WWWWDNDNDNDMNDNPREE OO O o o

TAL Reference Manual—526371-001

4-3

Expressions Precedence of Operators

Table 4-1. Precedence of Operators (page 2 of 2)

Operator Operation Precedence
>= Signed greater than or equal to 5
<> Signed not equal to 5
‘<t Unsigned less than 5
=, Unsigned equal to 5
> Unsigned greater than 5
‘= Unsigned less than or equal to 5
‘>z Unsigned greater than or equal to 5
> Unsigned not equal to 5
NOT Boolean negation 6
AND Boolean conjunction 7
OR Boolean disjunction 8
L= Assignment* 9
.<...> := Bitdeposit* 9

* Described in Section 12, Statements.

* Described in the TAL Programmer's Guide.

You can use parentheses to override the precedence of operators. You can nest the
parenthesized operations. The compiler evaluates nested parenthesized operations
outward starting with the innermost level. Here are examples:

c * (@ * b cx (@ + b) / d (@ OR b) AND cC
Result Result
Result VST0401.vsd

TAL Reference Manual—526371-001
4-4

Expressions Arithmetic Expressions

Arithmetic Expressions

An arithmetic expression is a sequence of operands and arithmetic operators that
computes a single numeric value of a specific data type.

operand >
l» arithmetic - operator —# operand ———

VST0402.vsd

+ and -

are unary plus and minus operators applied to the leftmost operand of the
expression. If you do not use the unary plus or unary minus operator, the default is
unary plus.

oper and

is a value in an arithmetic expression. Each operand consists of one or more of the
following syntactic elements. Each syntactic element represents a single value:

Variable

Constant

LITERAL

Function invocation
(expression)

Code space item

arithnetic-operator
is one of the following operators:

Si gned arithnetic operator: +, -, *,
Unsi gned arithnetic operator: B T R AL O
Logi cal operator: LOR, LAND, XOR

TAL Reference Manual—526371-001
4-5

Expressions

Examples of Arithmetic Expressions

Examples of Arithmetic Expressions

Following are examples of arithmetic expressions:

varl
-varl
+varl * 2

varl / var?2

varl * (—var2)

2 * 3 + var
2 * var * 4

I oper and

- operand

'+ operand arithnetic-operator operand

loperand arithmetic-operator operand

/I 2

Operands in Arithmetic Expressions

loperand arithmetic-operator operand

An operand consists of one or more elements that evaluate to a single value. Table 4-2
describes the operands that can make up an arithmetic expression.

Table 4-2. Operands in Arithmetic Expressions

Element
Variable

Constant
LITERAL

Function
invocation

(expression)
Code space item

Description

The identifier of a simple variable, array
element, pointer, structure data item, or
equivalenced variable, with or without @ or
an index

A character string or numeric constant
The identifier of a named constant

The invocation of a procedure that returns a
value

Any expression, enclosed in parentheses

The identifier of a procedure, subprocedure,
or label prefixed with @ or a read-only array
optionally prefixed with @, with or without an
index

Example
var[10]

103375
file_size
$LEN (x)

(x:=y)
@label_a

Signed Arithmetic Operators

Signed arithmetic operators and the operand types on which they can operate are
shown in Table 4-3 on page 4-7

TAL Reference Manual—526371-001
4-6

Expressions Signed Arithmetic Operators

Table 4-3. Signed Arithmetic Operators

Operator Operation Operand Type* Example

+ Unary plus Any data type +5

- Unary minus Any data type -5

+ Binary signed addition Any data type alpha+beta
- Binary signed subtraction Any data type alpha-beta
* Binary signed Any data type alpha*beta

multiplication
/ Binary signed division Any data type alpha/beta

* The data type of the operands must match except as noted in Data Types of Expressions on page 4-2.

Table 4-4 shows the combinations of operand types you can use with a binary signed
arithmetic operator and the result type yielded by such operators. In each combination,
the order of the data types is interchangeable.

Table 4-4. Signed Arithmetic Operand and Result Types
Operand Type Operand Type Result Type Example

STRING STRING INT bytel+byte?2

INT INT INT word1-word 2

INT (32) INT (32) INT (32) dbl1 * dbl2

REAL REAL REAL reall + real2
REAL (64) REAL (64) REAL (64) qguadl + quad2
FIXED FIXED FIXED fixedl * fixed2

INT STRING INT word1 / bytel

INT Unsigned (1-16) INT word + unsignl2
INT (32) Unsigned (17-31) INT (32) double + unsign20
Unsigned (1-16) Unsigned (1-16) INT unsign6 + unsign9
Unsigned (17-31) Unsigned (17-31) INT (32) unsign26 + unsign31

The compiler treats a STRING or UNSIGNED(1-16) operand as an INT operand. If
bit<0> contains a 0, the operand is positive; if bit <O> contains a 1, the operand is
negative.

The compiler treats an UNSIGNED(17-31) operand as a positive INT(32) operand.

Scaling of FIXED Operands

When you declare a FIXED variable, you can specify an implied fixed-point setting
(fpoint)}—an integer in the range —19 through 19, enclosed in parentheses following the
keyword FIXED. If you do not specify an fpoint, the default fpoint is 0 (no decimal
places).

TAL Reference Manual—526371-001
4-7

Expressions Signed Arithmetic Operators

A positive fpoint specifies the number of decimal places to the right of the decimal
point:
FI XEDX3) x := 0. 642F; I Stored as 642

A negative fpoint specifies a number of integer places to the left of the decimal point.
To store a FIXED value, a negative fpoint truncates the value leftward from the decimal
point by the specified number of digits. When you access the FIXED value, zeros
replace the truncated digits:

FI XEDX-3) y := 642945F; I Stored as 642; accessed

I as 642000

When FIXED operands in an arithmetic expression have different fpoints, the system
makes adjustments depending on the operator.

® |n addition or subtraction, the system adjusts the smaller fpoint to match the larger
fpoint. The result inherits the larger fpoint. For example, the system adjusts the
smaller fpoint in 3.005F + 6.01F to 6.010F, and the result is 9.015F.

® In multiplication, the fpoint of the result is the sum of the fpoints of the two
operands. For example, 3.091F * 2.56F results in the FIXED(5) value 7.91296F.

® In division, the fpoint of the result is the fpoint of the dividend minus the fpoint of
the divisor. (Some precision is lost.) For example, 4.05F / 2.10F results in the
FIXED(0) value 1.

To retain precision when you divide operands that have nonzero fpoints, use the
$SCALE standard function to scale up the fpoint of the dividend by a factor equal to the
fpoint of the divisor; for example:

FIXEDX3) result, a, b; I fpoint of 3
result := $SCALE(a, 3) / b; IScale A to FIXED(6); result

I is a FIXED(3) val ue

The following example shows how the system makes automatic adjustments when
operands in an expression have different fpoints:

TAL Reference Manual—526371-001
4-8

Expressions Unsigned Arithmetic Operators

IE: éEB ?;2) b:]— Data declarations
FIXED (-1) c;
a:=2.015F * (b + O);

up 3 <— The fpoint of C is increased by 3

The final result is truncated by 5
places to match the fpoint of A

o — 01—

VST0403.vsd

Effect on Hardware Indicators

Signed arithmetic operators affect the hardware indicators as described in Testing
Hardware Indicators on page 4-16.

Unsigned Arithmetic Operators

Typically, you use binary unsigned arithmetic on operands with values in the range 0O
through 65,535. For example, you can use unsigned arithmetic with pointers that
contain standard addresses. Table 4-5 summarizes unsigned arithmetic operators and
the operand types on which they can operate.

Table 4-5. Unsigned Arithmetic Operators (page 1 of 2)

Operator Operation Operand Type Example
C 4 Unsigned addition STRING, INT, or alpha '+' beta
UNSIGNED(1-16)
fo Unsigned subtraction STRING, INT, or alpha '-' beta
UNSIGNED(1-16)
Lox Unsigned multiplication STRING, INT, or alpha ™' beta

UNSIGNED(1-16)

TAL Reference Manual—526371-001
4-9

Expressions

Unsigned Arithmetic Operators

Table 4-5. Unsigned Arithmetic Operators (page 2 of 2)

Operator
‘ /)

Operation

Unsigned division

Unsigned modulo

division

Operand Type

INT(32) or UNSIGNED
(17-31) dividend and
STRING, INT, or
UNSIGNED(1-16)
divisor

INT(32) or UNSIGNED
(17-31) dividend and
STRING, INT, or
UNSIGNED(1-16)

Example
alpha '/' beta

alpha '\' beta

divisor

* Unsigned modulo operations return the remainder. If the quotient exceeds 16 bits, an overflow condition
occurs and the results will have unpredictable values. For example, the modulo operation 200000D ‘\' 2 causes
an overflow because the quotient exceeds 16 bits.

Table 4-6 shows the combinations of operand types you can use with binary unsigned
arithmetic operators and the result types yielded by such operators. The order of the
operand types in each combination is interchangeable except in the last case.

Table 4-6. Unsigned Arithmetic Operand and Result Types

Operator

] +I

Operand
Type
STRING

INT
INT
INT
STRING

UNSIGNED
(1-16)

STRING
INT
STRING
INT
STRING

UNSIGNED
(1-16)
UNSIGNED
(17-31)

or INT(32)
dividend

Result
Operand Type Type Example
STRING INT bytel '-' byte2
INT INT wordl '+' word2
STRING INT bytel '-' word1
UNSIGNED (1-16) INT wordl '+' uns8
UNSIGNED (1-16) INT bytel '-' uns5
UNSIGNED(1-16) INT unsl '+' uns?
STRING INT (32) bytel ™ byte2
INT INT (32) wrd1 ™" wrd2
INT INT (32) bytel * wrdl
UNSIGNED (1-16) INT (32) wrd1 "' uns9
UNSIGNED (1-16) INT (32) unsl " uns7?
UNSIGNED(1-16) INT (32) unsl '*' uns7
STRING, INT, or INT (32) dbwd '\' wordl
UNSIGNED(1-16) INT

divisor

TAL Reference Manual—526371-001

4-10

Expressions Bitwise Logical Operators

Effect on Hardware Indicators

Unsigned add and subtract operators affect the carry and condition code indicators as
described in Testing Hardware Indicators on page 4-16.

Bitwise Logical Operators

You use logical operators—LOR, LAND, and XOR—to perform bit-by-bit operations on
STRING, INT, and UNSIGNED(1-16) operands only. Logical operators always return
16-bit results. Table 4-7 gives information about these operators.

Table 4-7. Logical Operators and Result Yielded

Operand
Operator Operation Type Bit Operations Example
LOR Bitwise STRING, 1LOR1 =1 10 LOR 12 = 14
Logical INT, or 1LORO0 =1 10 1010
OR UNSIGNED OLORO=0 12 1100
(1-16) 14 1110
LAND Bitwise STRING, 1 LAND1 =1 10 LAND 12 = 8
Logical INT, or 1 LANDO =20 10 1010
ADD UNSIGNED O LAND O =0 12 1100
(1-16) 8 1000
XOR Bitwise STRING, 1 XOR1 =0 10 XOR 12 = 6
Exclusive INT, or 1 XORO0O =1 10 1010
OR UNSIGNED 0 XORO =0 12 1100
(1-16) 6 0110

The Bit Operations column in the table shows the bit-by-bit operations that occur on
16-bit values. Each 1-bit operand pair results in a 1-bit result. The bit operands are
commutative.

Effect of Hardware Indicators

Logical operators set the condition code indicator as described in Testing Hardware
Indicators on page 4-16. Logical operators are always unsigned, however, so condition
codes are not meaningful.

TAL Reference Manual—526371-001
4-11

Expressions Conditional Expressions

Conditional Expressions

A conditional expression is a sequence of conditions and Boolean or relational
operators that establishes the relationship between values. You can use conditional
expressions to direct program flow.

\ NOT

condition

~

o .

N

condition

VST0404.vsd

condi ti on

is an operand in a conditional expression. condition can consist of one or more of
the following syntactic elements:

Relational expression

Group comparison expression
(conditional expression)
Arithmetic expression

Relational operator

AND

is a Boolean operator that produces a true state if both adjacent conditions are
true.

OR
is a Boolean operator that produces a true state if either adjacent condition is true.

NOT
is a Boolean operator that tests the condition for a false state.

TAL Reference Manual—526371-001
4-12

Expressions

Examples of Conditional Expressions

Following are examples of conditional expressions:

a
NOT a

aoRb
a AND b
a AND NOT b OR c

Conditions

Examples of Conditional Expressions

I condition
I NOT condition
lcondition OR condition

I condition AND condition

I condition AND NOT condition ...

A condition is an operand in a conditional expression that represents a true or false
state. A condition can consist of one or more of the elements listed in Table 4-8.

Table 4-8. Conditions in Conditional Expressions

Element

Relational
expression

Group
comparison
expression

(conditional
expression)

Arithmetic
expression

Relational
Operator

Description

Two conditions connected by a relational
operator. The result type is INT; a -1 if true
or a 0 if false. The example is true if A
equals B.

Unsigned comparison of a group of
contiguous elements with another. The result
type is INT; a —1 if true or a O if false. The
example compares 20 words of two INT
arrays.

A conditional expression enclosed in
parentheses. The result type is INT; a -1 if
true or a O if false. The example is true if
both B and C are false. The system
evaluates the parenthesized condition first,
then applies the NOT operator.

An arithmetic, assignment, CASE, or IF
expression that has an INT result * . The
expression is treated as true if its value is
not 0 and false if its value is 0. The example
is true if the value of X is not 0.

A signed or unsigned relational operator that
tests a condition code. Condition code
settings are CCL (negative), CCE (0), or
CCG (positive). The example is true if the
condition code setting is CCL.

Example
Ifa=bTHEN...

IFa=bFOR 20 WORDS
THEN ...

IF NOT (b OR c) THEN

IFXTHEN ...

IF<THEN ...

* |If an arithmetic expression has a result other than INT, use a signed relational expression.

TAL Reference Manual—526371-001

4-13

Expressions Boolean Operators

Boolean Operators

You use Boolean operators—NOT, OR, and AND—to set the state of a single value or
the relationship between two values. Table 4-9 describes the Boolean operators, the
operand types you can use with them, and the results that such operators yield.

Table 4-9. Boolean Operators and Result Yielded

Operator Operation Operand Type Result Example
NOT Boolean negation; STRING, INT, or True/False NOT a
tests condition for UNSIGNED(1-
false state 16)
OR Boolean disjunction; STRING, INT, or True/False aORDb

produces true state if UNSIGNED(1-16)
either adjacent
condition is true

AND Boolean conjunction; STRING, INT, or True/False aANDDb
produces true state if UNSIGNED(1-16)
both adjacent
conditions are true

Evaluations of Boolean Operations

Conditions connected by the OR operator are evaluated from left to right only until a
true condition occurs.

Conditions connected by the AND operator are evaluated from left to right until a false
condition occurs. The next condition is evaluated only if the preceding condition is true.
In the following example, function F will not be called because A <> 0 is false:

a = 0;
IFa<>0 AND f(x) THEN ... ;

Effect on Hardware Indicators

Boolean operators set the condition code indicator as described in Testing Hardware
Indicators on page 4-16.

Relational Operators

Relational operators are signed or unsigned.

Signhed Relational Operators

Signed relational operators perform signed comparison of two operands and return a
true or false state. Table 4-10 describes signed relational operators, operand data
types, and the results yielded by such operators.

TAL Reference Manual—526371-001
4-14

Expressions Relational Operators

Table 4-10. Signed Relational Operators and Result Yielded

Operator Meaning Operand Type Result

< Signed less than Any data type True/False

= Signed equal to Any data type True/False

> Signed greater than Any data type True/False

<= Signed less than or equal Any data type True/False
to

>= Signed greater than or Any data type True/False
equal to

<> Signed not equal to Any data type True/False

* The data type of the operands must match except as noted in Data Types of Expressions on
page 4-2.

Unsigned Relational Operators

Unsigned relational operators perform unsigned comparison of two operands and
return a true or false state. Table 4-11 describes unsigned relational operators,
operand data types, and the results yielded by such operators.

Table 4-11. Unsigned Relational Operators and Result Yielded

Operator Meaning Operand Type Result

‘<t Unsigned less than STRING, INT, True/False
UNSIGNED (1-16)

=, Unsigned equal to STRING, INT, True/False
UNSIGNED (1-16)

£ Unsigned greater than STRING, INT, True/False
UNSIGNED (1-16)

‘= Unsigned less than or STRING, INT, True/False
equal to UNSIGNED (1-16)

‘>z Unsigned greater than or STRING, INT, True/False
equal to UNSIGNED (1-16)

> Unsigned not equal to STRING, INT, True/False

UNSIGNED (1-16)

Effect on Hardware Indicators

Signed and unsigned operators set the condition code indicator as described in Testing
Hardware Indicators.

TAL Reference Manual—526371-001
4-15

Expressions Testing Hardware Indicators

Testing Hardware Indicators

Hardware indicators include condition code, carry, and overflow settings. Arithmetic
and conditional operations, assignments, and some file-system calls affect the setting
of the hardware indicators. To check the setting of a hardware indicator, use an IF
statement immediately after the operation that affects the hardware indicator.

Condition Code Indicator

The condition code indicator is set by a zero or a negative or positive result:

Result State of Condition Code Indicator
Negative CCL
0 CCE
Positive CCG

To check the state of the condition code indicator, use a relational operator (with no
operands) in a conditional expression. Using a relational operator with no operands is
equivalent to using the relational operator in a signed comparison against zero. When
used with no operands, signed and unsigned operators are equivalent. The result
returned by such a relational operator is as follows:

Relational Operator Result Returned
<or '< True if CCL
> or > True if CCG
= or '= True if CCE
<> or '<> True if not CCE
<= or '<=' True if CCL or CCE
>= or '>=' True if CCE or CCG

An example is:

IF < THEN ... ;

File-System Errors

File-system procedures signal their success or failure by returning an error number or
a condition code. Your program can preserve the returned condition code for later
operation as follows:

TAL Reference Manual—526371-001
4-16

Expressions Carry Indicator

CALL WRITE(...);

| F >= THEN

system nessage := -1, I'Tr ue
ELSE

system nessage : = O; I Fal se

| F system nessage =" -1 THEN ... ;

Carry Indicator

The carry indicator is bit 9 in the environment register (ENV.K). The carry indicator is
affected as follows:

Operation Carry Indicator

Integer addition On if carry out of bit <0>

Integer subtraction or negation On if no borrow out from bit <0>
INT(32) multiplication and division Always off

Multiplication and division except INT(32) Preserved

SCAN or RSCAN operation On if scan stops on a 0 (zero) byte
Array indexing and extended structure Undefined

addressing

Shift operations Preserved

To check the state of the carry indicator, use $CARRY in an IF statement immediately
after the operation that affects the carry indicator. If the carry indicator is on, $CARRY
is —1 (true). If the carry indicator is off, $CARRY is O (false). The following example
tests the state of the carry indicator after addition:

INT i, j, k; I Decl are vari abl e
i =] + k;
| F $CARRY THEN ... ; I Test state of carry bit from+

The following operations are not portable to future software platforms:
® Testing $CARRY after multiplication or division
® Passing the carry bit as an implicit parameter into a procedure or subprocedure

® Returning the carry bit as an implicit result from a procedure or subprocedure

Overflow Indicator

The overflow indicator is bit 8 in the environment register (ENV.V). The overflow
indicator is affected as follows:

Operation Overflow Indicator
Unsigned INT addition, subtraction, and negation Preserved
Addition, subtraction, and negation except unsigned INT On or off

Division and multiplication On or off

TAL Reference Manual—526371-001
4-17

Expressions Special Expressions

Operation Overflow Indicator
Type conversions On, off, or preserved
Array indexing and extended structure addressing Undefined
Assignment or shift operation Preserved

For example, the following operations turn on the overflow indicator (and interrupt the
system overflow trap handler if the overflow trap is armed through ENV.T):

® Division by 0

® Floating-point arithmetic result in which the exponent is too large or too small

® Signed arithmetic result that exceeds the number of bits allowed by the data type
of the expression

For overflowed integer addition, subtraction, or negation, the result is truncated. For
overflowed multiplication, division, or floating-point operation, the result is undefined.

A program can deal with arithmetic overflows in one of four ways:

Desired Effect Method
Abort on all overflows Use the system'’s default trap handler.
Recover globally from overflows Use a user-supplied trap handler.

Recover locally from statement Turn off overflow trapping and use $OVERFLOW.
overflows

Ignore all overflows Turn off overflow trapping throughout the program.

For more information on turning off overflow trapping and using $OVERFLOW, see the
description of the SOVERFLOW function in Section 14, Standard Functions.

The following operations are not portable to future software platforms:
® Passing the overflow bit as an implicit parameter into a procedure or subprocedure

® Returning the overflow bit as an implicit result from a procedure or subprocedure

Special Expressions

Special expressions allow you to perform specialized arithmetic or conditional
operations. Table 4-12 on page 4-19 summarizes these special expressions.

TAL Reference Manual—526371-001
4-18

Expressions Assignment Expression

Table 4-12. Special Expressions

Expression Kind of

Form Expression Description Page

Assignment Arithmetic Assigns the value of an expression to a 4-19
variable

CASE Arithmetic Selects one of several expressions 4-20

IF Arithmetic Conditionally selects one of two 4-21
expressions

Group Conditional Does unsigned comparison of two sets of 4-23

comparison data

Assignment Expression

The assignment expression assigns the value of an expression to a variable.

7 variable ———» expression ——»
VST0405.vsd

vari abl e

is the identifier of a variable in which to store the result of expression. (variable can
have an optional bit-deposit field.)

expr essi on

is an expression having the same data type as variable. The result of expression
becomes the result of the assignment expression. Expression is either:

® An arithmetic expression

® A conditional expression (excluding a relational operator with no operands), the
result of which has data type INT

Examples of Assignment Expressions
1. This example decrements A. As long as A— 1 is not 0, the condition is true and the
THEN clause is executed:

IF (a:=a- 1) THEN ... ;

2. This example shows the assignment form used as an index. It decrements A and
accesses the next array element:

IF array[a :=a - 1] <> 0 THEN ... ;

TAL Reference Manual—526371-001
4-19

Expressions CASE Expression

3. This example mixes the assignment form with a relational form. It assigns the
value of B to A, then checks for equality with O:

IF (a:=Db) =0 THEN ... ;

CASE Expression

The CASE expression selects one of several expressions.

CASE selector —> BEGIN expression

(- -z
expression »@—/
VST0406.vsd

is an INT arithmetic expression that selects the expression to evaluate.

sel ect or

expr essi on
is either:

® An INT arithmetic expression

® A conditional expression (excluding a relational operator with no operands), the
result of which has data type INT

OTHERW SE expr essi on

specifies the expression to evaluate if selector does not select an expression in the
BEGIN clause. If you omit the OTHERWISE clause and an out-of-range case
occurs, results are unpredictable.

Usage Considerations
All expressions in the CASE expression must have the same data type.

The compiler numbers each expression in the BEGIN clause consecutively, starting
with 0. If the selector matches the compiler-assigned number of an expression, that
expression is evaluated and becomes the result of the CASE expression. If the
selector does not match a compiler-assigned number, the OTHERWISE expression is
evaluated.

TAL Reference Manual—526371-001
4-20

Expressions IF Expression

You can nest CASE expressions. CASE expressions resemble unlabeled CASE
statements except that CASE expressions select expressions rather than statements.

Example of CASE Expression
This example selects an expression based on the value of A and assigns it to X:
INT x, a, b, ¢, d;

ICode to initialize vari abl es
X := CASE a OF

BEG N

b; '"f Ais 0, assign value of Bto X
C; 'f Ais 1, assign value of Cto X
d; 'f Ais 2, assign value of Dto X
OTHERW SE - 1; ''f Ais any other val ue,

END; I assign -1 to X

IF Expression

The IF expression conditionally selects one of two expressions, usually for assignment
to a variable.

condition |—»~THEN)—»{expression | #~(ELSE)-#{ expression -

VST0407.vsd

condi ti on
is either:

® A conditional expression

® An INT arithmetic expression. If the result of the arithmetic expression is not O,
the condition is true. If the result is 0, the condition is false

expr essi on
is either:

® An INT arithmetic expression

® A conditional expression (excluding a relational operator with no operands), the
result of which has data type INT

TAL Reference Manual—526371-001
4-21

Expressions IF Expression

Usage Considerations

If the condition is true, the result of the THEN expression becomes the result of the
overall IF expression.

If the condition is false, the result of the ELSE expression becomes the result of the
overall IF expression.

You can nest IF expressions within an IF expression or within other expressions. The
IF expression resembles the IF statement except that the IF expression:

® Requires the ELSE clause

® Contains expressions, not statements

Examples of IF Expressions

1. This example assigns an arithmetic expression to VAR based on the condition
LENGTH > O:

var := |F length > 0 THEN 10 ELSE 20;
2. This example nests an IF expression (in parentheses) within another expression:

var * index +
(IFFindex > limt THEN var * 2 ELSE var * 3)
3. This example nests an IF expression within another IF expression:

var := |IF length < 0 THEN -1
ELSE IF length = 0 THEN O
ELSE 1;

TAL Reference Manual—526371-001
4-22

Expressions Group Comparison Expression

Group Comparison Expression

The group comparison expression compares a variable with a variable or constant.

—>| varl |—»{relational operator |—>

\ 4

next- J

addr

constant list

VST0408.vsd

var 1l
is the identifier of a variable, with or without an index, that you want to compare to
var2, constant, or constant-list. varl can be a simple variable, array, simple pointer,
structure, structure data item, or structure pointer, but not a read-only array.
rel ati onal - oper at or
is one of the following operators:
Signed relational operator: <, =, >, <=, >=, <>
Unsigned relational operator: '<', '=', '>', '<=", '>=') '<>'

All comparisons are unsigned whether you use a signed or unsigned operator.

var 2

is the identifier of a variable, with or without an index, to which varl is compared.
var2 can be a simple variable, array, read-only array, simple pointer, structure,
structure data item, or structure pointer.

TAL Reference Manual—526371-001
4-23

Expressions Group Comparison Expression

count

is a positive INT arithmetic expression that defines the number of units in var2 to
compare. When count-unit is not present, the units compared are:

var2 Data Type Units Compared
Simple variable, array, simple pointer STRING Bytes
(including those declared in structures) INT Words

INT(32) or REAL Doublewords
FIXED or REAL(64) Quadruplewords

Structure Not applicable Words

Substructure Not applicable Bytes

Structure pointer STRING* Bytes
INT* Words

count -unit
is BYTES, WORDS, or ELEMENTS. count-unit changes the meaning of count to the

following:
BYTES Compares count bytes. If varl and var2 both have word addresses,
BYTES generates a word comparison for (count + 1) / 2 words
WORDS Compares count words

ELEMENTS Compares count elements. The elements compared depend on the
nature of var2 and its data type as follows:

var2 Data Type Units Compared

Simple variable, array, STRING Bytes

simple pointer (including INT Words

those declared in INT (32) or REAL Doublewords

structures) FIXED or REAL (64) Quadruplewords

Structure Not applicable Structure occurrences

Substructure Not applicable Substructure occurrences

Structure pointer STRING* Structure occurrences
INT* Structure occurrences

* For structure pointers, STRING and INT have meaning only in group comparison expressions and move
statements.

If count-unitis not BYTES, WORDS, or ELEMENTS, the compiler issues an error. If
you specify BYTES, WORDS, or ELEMENTS, the term cannot also appear as a
DEFINE or LITERAL identifier in the global declarations or in any procedure or
subprocedure in which the group comparison expression appears.

const ant

is a number, a character string, or a LITERAL to which varl is compared.

TAL Reference Manual—526371-001
4-24

Expressions Group Comparison Expression

If you enclose constant in brackets ([]) and if the destination has a byte address or
is a STRING structure pointer, the system compares a single byte regardless of the
size of constant. If you do not enclose constant in brackets or if the destination has
a word address or is an INT structure pointer, the system compares a word,
doubleword, or quadrupleword as appropriate for the size of constant.

constant-1|i st

is a list of one or more constants, which are concatenated and compared to varl.
Specify constant-list in the form shown in Section 3, Data Representation.

next - addr

is a variable to contain the address of the first byte or word in varl that does not
match the corresponding byte or word in var2. The compiler returns a 16-bit or 32-
bit address as described in Usage Considerations.

Usage Considerations

After a group comparison, you can test the condition code setting by using the
following relational operators (with no operands) in a conditional expression:

< CCL if varl '<' var2
= CCE if varl = var2
> CCG if varl >'var2

The compiler does a standard comparison and returns a 16-bit next-addr if:
® Both varl and var2 have standard byte addresses
® Both varl and var2 have standard word addresses

The compiler does an extended comparison (which is slightly less efficient) and returns
a 32-bit next-addr if:

® Either varl or var2 has a standard byte address and the other has a standard word
address

® FEijther varl or var2 has an extended address

TAL Reference Manual—526371-001
4-25

Expressions Group Comparison Expression

Variables (including structure data items) are byte addressed or word addressed as
follows:

Byte STRING simple variables

addressed STRING arrays
Variables to which STRING simple pointers point
Variables to which STRING structure pointers point
Substructures

Word INT, INT(32), FIXED, REAL(32), or REAL(64) simple variables
addressed INT, INT(32), FIXED, REAL(32), or REAL(64) arrays
Variables to which INT, INT(32), FIXED, REAL(32), or REAL(64) simple
pointers point
Variables to which INT structure pointers point
Structures

After an element comparison, next-addr might point into the middle of an element,
rather than at the beginning of the element.

Examples of Group Comparison Expressions

1. This example compares two arrays and then tests the condition code setting to see
if the value of the element in D_ARRAY that stopped the comparison is less than
the value of the corresponding element in S_ARRAY:

I NT d_array[0:9];
INT s_array[0:9];
I Code to assign values to arrays
IF d array = s_array FOR 10 ELEMENTS -> @oi nter THEN
BEG N I They nmat ched
I Do sonet hing

END
ELSE
IF < THEN ... ; ' PO NTER points to el enent of
Do sonet hi ng el se I D ARRAY that is less than the
I correspondi ng el enent of
IS _ARRAY

2. When you compare array elements (as in the preceding example), the ELEMENTS
keyword is optional but provides clearer source code.

TAL Reference Manual—526371-001
4-26

Expressions Bit Operations

3.

4.

To compare structure or substructure occurrences, you must specify the
ELEMENTS keyword in the group comparison expression:

STRUCT struct_one [0:9];

BEG N

I NT a[0: 2];

I NT b[O:7];

STRI NG c;

END;

STRUCT struct _two (struct_one) [0:9];

I Code here to assign values to structures

| F struct_one = struct_two FOR 10 ELEMENTS THEN ... ;

This example contrasts a comparison to a bracketed (single-byte) constant with a
comparison to an unbracketed (element) constant:

STRI NG var[0: 1];

I'Lots of code

[0O] THEN ... ; !Conpare VAR 0] to one byte

0O THEN ... ; I Conpare VAR[0:1] to two bytes

| F var

| F var

Bit Operations

You can access individual bits or groups of bits in a STRING or INT variable.
Table 4-13 lists bit operations.

Table 4-13. Bit - Operations

Bit Operation Description

Bit extraction Access a bit-extraction field in an INT expression without

altering the expression

Bit shift Shift a bit-shift field in an INT or INT(32) expression to the left

or to the right by a specified number of bits

Bit deposit Assign a bit value to a bit-deposit field in a variable (For more

information, see Section 12, Statements)

TAL Reference Manual—526371-001
4-27

Expressions Bit Extractions

Bit Extractions

A bit extraction lets you access a bit field in an INT expression without altering the
expression.

ns

ns ns
O—>)—>Lem >G>

ns ns ns

° right-it VST0409.vsd

i nt - expression

is an INT expression (which can include STRING, INT, or UNSIGNED(1-16)
values).

left-bit
is an INT constant in the range 0 through 15 that specifies the bit number of either:
® The leftmost bit of the bit-extraction field
® The only bit (if right-bit is the same value as left-bit or is omitted)

If int-expression is a STRING value, left-bit must be in the range 8 through 15. (In a
string value, bit <8> is the leftmost bit and bit <15> is the rightmost bit.)

right-bit
is an INT constant that specifies the rightmost bit of the bit field. If int-expression is
a STRING value, right-bit must be in the range 8 through 15. right-bit must be
equal to or greater than left-bit. To access a single bit, omit right-bit or specify the
same value as left-bit.
Usage Considerations
Specify the bit-extraction format with no intervening spaces, as in:

myvar . <0: 5>

Examples of Bit Extractions

1. This assignment accesses bits in an array element:

STRI NG ri ght _byte;
I NT array[O0:7];
right _byte := array[5].<8: 15>;

TAL Reference Manual—526371-001
4-28

Expressions Bit Shifts

2. This example assigns bits <4.:7> of the sum of two numbers to RESULT. The
parentheses cause the numbers to be added before the bits are extracted:

I NT result;
I NT nunil := 51,
I NT nun® := 28;
result := (numl + nunR).<4:7>;
3. This conditional expression checks bit <15> for a nonzero value:

STRI NG var;
I F var.<15> THEN ... ;

Bit Shifts

A bit shift operation shifts a bit field a specified number of positions to the left or to the
right within a variable without altering the variable.

int-expression shift-operator |—>| positions |—>
dbl-expression VST0410.vsd

i nt - expression

is an INT arithmetic expression. int-expression can contain STRING, INT, or
UNSIGNED(1-16) operands. The bit shift occurs within a word.

dbl - expressi on
is an INT(32) arithmetic expression. dbl-expression can contain INT(32) or
UNSIGNED(17-31) operands. The bit shift occurs within a doubleword.

shi ft-operator
is one of the operators ('<<', '>>', <<, >>) described in Table 4-14.

positions

is an INT expression that specifies the number of bit positions to shift the bit field.
A value greater than 31 gives undefined results (different on TNS and TNS/R
systems).

TAL Reference Manual—526371-001
4-29

Expressions Usage Considerations

Usage Considerations
Table 4-14 lists the bit-shift operators you can specify.

Table 4-14. Bit-Shift Operators

Operator Function Result
<<t Unsigned left shift through Zeros fill vacated bits from the right
bit <0>
>>' Unsigned right shift Zeros fill vacated bits from the left.
<< Signed left shift through Zeros fill vacated bits from the right. In
bit <0> or bit <1> arithmetic overflow cases, the final value of bit

<0> is undefined (different for TNS/R
accelerated mode than for TNS systems).

>> Signed right shift Sign bit (bit <0>) unchanged; sign bit fills
vacated bits from the left

For signed left shifts (<<), programs that run on TNS/R systems use unsigned left shifts
(<<).
Bit-shift operations include:

Operation User Action

Multiplication by powers of 2 For each power of 2, shift the field one bit to the left.
(Some data might be lost.)

Division by powers of 2 For each power of 2, shift the field one bit to the right
(Some data might be lost.)

Word-to-byte address conversion Shift the word address one bit to the left, using an
unsigned shift operator.

Examples of Bit Shifts

1. This unsigned left shift shows how zeros fill the vacated bits from the right:

Initial value = 0 010 111 010 101 000
'<<' 2 =1 011 101 010 100 000
2. This unsigned right shift shows how zeros fill the vacated bits from the left:

Initial value = 1 111 111 010 101 000
'>>' 2 =0 011 111 110 101 010

TAL Reference Manual—526371-001
4-30

Expressions Examples of Bit Shifts

3. This signed left shift shows how zeros fill the vacated bits from the right, while the
sign bit remains the same (TNS systems only):

Initial value = 1 011 101 010 100 000
<< 1 =1 111 010 101 000 000
4. This signed right shift shows how the sign bit fills the vacated bits from the left:

Initial value = 1 111 010 101 000 000
>> 3 =1 111 111 010 101 000
5. These examples show multiplication and division by powers of two:

a: .=b << 1, IMul tiply by 2
a: .=b << 2 IMultiply by 4
a:.:=b > 3 'Divide by 8

a:.:=b > 4 'Divide by 16

6. This unsigned bit shift converts the word address of an INT array to a byte
address, which allows byte access to the INT array:

I NT a[0:5]; F'INT array
STRING .p := @[0] '<<' 1; 'Nnitialize STRING sinple

I pointer with byte address
p[3] := 0; ' Access fourth byte of A

7. This example shifts the right-byte value into the left byte of the same word and sets
the right byte to a zero:

I NT b; 'INT vari abl e
b :=Db'<< 8; IShift right-byte value into
I left byte

TAL Reference Manual—526371-001
4-31

Expressions Examples of Bit Shifts

TAL Reference Manual—526371-001
4-32

5 LITERALS and DEFINES

This section describes LITERAL and DEFINE declarations. A LITERAL declaration
associates identifiers with constant values.

A DEFINE declaration associates identifiers (and parameters if any) with text. (DEFINE
declarations differ from TACL DEFINE commands, which are described in Appendix E,
“File Names and TACL Commands,” in the TAL Programmer’s Guide.)

You can declare LITERALs and DEFINES once in a program, and then refer to them by
identifier many times throughout the program. They allow you to make significant
changes in the source code efficiently. You only need to change the declaration, not
every reference to it in the program.

LITERAL Declaration

A LITERAL declaration specifies one or more identifiers and associates each with a
constant. Each identifier in a LITERAL declaration is known as a LITERAL.

identifier / >)—>

= constant

C)‘ VSTO0501.vsd

identifier
is the identifier of a LITERAL.

const ant
is either:

® AnINT, INT(32), FIXED, REAL, or REAL(64) numeric constant expression that
evaluates to any value except the address of a global variable. (All global
variables are relocatable during binding.)

® A character string of one to four characters.

If you omit any constants, the compiler supplies the omitted numeric constants.
The compiler uses unsigned arithmetic to compute the constants it supplies:

® |f you omit the first constant in the declaration, the compiler supplies a zero.

® |f you omit a constant that follows an INT constant, the compiler supplies an
INT constant that is one greater than the preceding constant. If you omit a
constant that follows a constant of any data type except INT, an error message
results.

TAL Reference Manual—526371-001
5-1

LITERALs and DEFINEs Usage Considerations

Usage Considerations

The compiler allocates no storage for LITERAL constants. It substitutes the constant at
each occurrence of the identifier.

You access a LITERAL constant by using its identifier in declarations and statements.

LITERAL identifiers make the source code more readable. For example, identifiers
such as BUFFER_LENGTH and TABLE_SIZE are more meaningful than their
respective constant values of 80 and 128.

Examples of LITERAL Declarations

1. This example specifies a constant for each identifier:

LI TERAL true = -1,
fal se = 0,
buffer | ength = 80,
tabl e_si ze = 128,
t abl e_base = %4000,
entry_size = 4,
ti meout = %4.00000D,
CR = %45,
LF = %.2;
2. This example specifies no numeric constants; the compiler supplies all the
constants:
LI TERAL a, -- The conpiler assigns O
b, -- The conpiler assigns 1
C; -- The conpil er assigns 2

TAL Reference Manual—526371-001
5-2

LITERALs and DEFINEs

DEFINE Declaration

3. This example specifies two of eight numeric constants; the compiler supplies the
remaining constants:

LI TERAL d,

e,
f,
g
h,
i
i
K;

17,

The
The
The

The

The
The

conmpi | er
conpi | er
conpi | er
conmpi | er
compi | er
conpi | er

4. This example uses a LITERAL identifier in an array declaration:

LI TERAL I ength =
I NT buffer[O:length -
5. This example uses LITERAL identifiers in subsequent LITERAL declarations:

LI TERAL nunber _of file_ extents =
LI TERAL file_extent _size_in
LI TERAL file_size_in_bytes

file_extent_size_ in_pages) * 2048D ! bytes per

50;
1];

DEFINE Declaration

A DEFINE declaration associates an identifier (and parameters if any) with text.

16;

_pages =

32;

I'Length of array
I'Array declaration

assi gns

assigns 1

assigns 2

assi gns

assi gns

assi gns

= (nunber _of file_ extents "*'
page! ;

18
19

—>(DEFINE

identifier

param-
name

2Ca

define-
body

VST0502.vsd

TAL Reference Manual—526371-001

5-3

LITERALs and DEFINEs Usage Considerations

identifier

is the identifier of the DEFINE.

par am nane

is the identifier of a formal parameter. You can specify up to 31 formal parameters.
An actual parameter can be up to 500 bytes long.

defi ne- body

is all characters between the = and # delimiters. define-body can span multiple
source lines. Enclose character strings in quotation marks (). To use # in as part of
the define-body rather than as a delimiter, enclose the # in quotation marks or
embed the # in a character string.

Usage Considerations

DEFINE declarations have the following characteristics:

If a DEFINE and a formal parameter have the same identifier, the formal parameter
has priority during expansion.

A DEFINE must not reference itself.

A DEFINE declaration must not appear within a DEFINE body; that is, do not nest
a DEFINE within a DEFINE.

A DEFINE cannot replace a keyword with another term; for example, a DEFINE
cannot replace BEGIN with START.

To ensure proper grouping and evaluation of expressions in the DEFINE body, use
parentheses around each DEFINE parameter used in an expression.

Within the DEFINE body, place any compound statements within a BEGIN-END
construct.

Directives appearing within a DEFINE body are evaluated immediately; they are
not part of the DEFINE itself.

If the CODE (DECS) and CODE (RP) statements are equivalent to the DECS and
RP directives but do not execute until a reference to the DEFINE identifier occurs.
Statements are part of the DEFINE itself.

TAL Reference Manual—526371-001
5-4

LITERALs and DEFINEs Examples of DEFINE Declarations

* |f expanded DEFINEs must produce correct TAL constructs. To list the expanded
DEFINESs in the compiler listing, specify the DEFEXPAND directive before the
DEFINE declarations. (For more information, see Compiler Action on page 5-7.)

Note. if you use a DEFINE to name and access a structure item, the DEFINE identifier must
be unique among the identifiers of all structure items in the compilation unit. Conversely, if you
use the DEFINE identifier to access a structure item and some other structure item has the
name identifier as the DEFINE, you access the other structure item and the compiler issues a
warning. To access structure bit fields smaller than a byte, use UNSIGNED declarations
instead of DEFINEs.

Examples of DEFINE Declarations

1. This example uses parentheses to direct the DEFINE body evaluation:

DEFI NE value = ((45 + 22) * 8/ 2) #;
2. This example provides incrementing and decrementing utilities:

DEFI NE i ncrement (Xx) X =X + 1 #
DEFI NE decrenent (vy) y =y - 1#

3. This example loads numbers into particular bit positions. To ensure proper
evaluation, parentheses enclose each parameter used in an expression:

DEFI NE word_val (a, b) = ((a) '<<' 12) LOR (b) #;

4. This example shows a CODE (DECS) statement, which is equivalent to the DECS
directive. This example is not portable to future software platforms:

DEFINE call it (x, y) =

BEG N
STACK X;
STACK vy;
CODE (PUSH %/11);
CODE (DPCL) ;
CODE (DECS 2); I Equi val ent to DECS directive
END #;
call it (a, b); I Expands to: STACK a;
I STACK b;
I CODE (PUSH %r11);
I CODE (DPCL);
I ?DECS 2

5. In this example, DEFINE MYNAME accesses the structure item named in the
DEFINE body. However, the compiler issues a warning because 2 is assigned to
MYSTRUCT.YRNAME, not to MYSTRUCT.ITEM2:

TAL Reference Manual—526371-001
5-5

LITERALs and DEFINEs Invoking DEFINES

PROC nyproc MAIN;

BEG N
DEFI NE nynane = i tenl#,
yr nane = it enk#;

STRUCT nystruct;

BEG N

[NT itent;

I NT iteng;

I NT yrnane; I'Structure item has sane

END; I identifier as a DEFINE
nmystruct. nynane := 1; I'Ckay, 1 is assigned to

I MYSTRUCT. | TEML

nystruct.yrnane := 2; I Conpi | er issues warning;

12 is assigned to
I MYSTRUCT. YRNAME, not to
I MYSTRUCT. | TEMR

I More code

END;

Invoking DEFINEs

You invoke a DEFINE by using its identifier in a statement. The invocation can span
multiple lines.

If you invoke a DEFINE within an expression, make sure the expression evaluates as
you intend. For instance, if you want the DEFINE body to be evaluated before it
becomes part of the expression, enclose the DEFINE body in parentheses.

The following example contrasts expansion of parenthesized and nonparenthesized
DEFINE bodies after the identifiers are used in assignment statements:

DEFI NE expr = (5 + 2) #;
j = expr * 4, I Expands to: (5 + 2) * 4;
I assigns 28 to J

DEFI NE expr = 5 + 2 #;
j = expr * 4, Expands to: 5 + 2 * 4;
I assigns 13 to J

DEFINE identifiers are not invoked when specified:
® Within a comment
® Within a character string constant

® On the left side of a declaration

TAL Reference Manual—526371-001
5-6

LITERALs and DEFINEs Compiler Action

For example, the following declaration can invoke a DEFINE named Y but not a
DEFINE named X:

INT X 1 =vy;

Compiler Action

The compiler allocates no storage for DEFINEs. When the compiler encounters a
statement that uses a DEFINE identifier, the compiler expands the DEFINE as follows:

® |t replaces the DEFINE identifier with the DEFINE body, replaces formal
parameters with actual parameters, compiles the DEFINE, and emits any machine
instructions needed.

® |t expands quoted character strings intact.

® |t expands actual parameters after instantiation. Depending on the order of
evaluation, the expansion can change the lexical scope of a DEFINE declaration.

If the DEFEXPAND directive is in effect, the compiler lists each expanded DEFINE in
the compiler listing following the DEFINE identifier. The expanded listing includes:

® The DEFINE body, excluding comments
® The lexical level of the DEFINE, starting at 1
® Parameters to the DEFINE

Parameters are listed as $n (C-series system) or #n (D-series system), where n is the
sequence number of the parameter, starting at 1.

Passing Actual Parameters

If the DEFINE declaration has formal parameters, you supply the actual parameters
when you use the DEFINE identifier in a statement.

The number of actual parameters can be less than the number of formal parameters. If
actual parameters are missing, the corresponding formal parameters expand to empty
strings. For each missing actual parameter, you can use a placeholder comma. For
example:

I NT PROC d (a, b, c) EXTENSIBLE;, EXTERNAL;
DEFI NE sonething (a, b, ¢) =d (a, b, c) #

nothing := sonmething (, , c); !Placehol der conmas

If a DEFINE has formal parameters and you pass no actual parameters to the DEFINE,
you must specify an empty actual parameter list. You can include commas between the
list delimiters, but need not. For example:

DEFI NE sonething (a, b, ¢c) = anything and everything #;
nothing := sonething (); !'Enpty paraneter |ist

TAL Reference Manual—526371-001
5-7

LITERALs and DEFINEs Examples of Passing DEFINE Parameters

If the number of actual parameters exceeds the number of formal parameters, the
compiler issues an error. For example:

DEFI NE sonething (a, b, c¢c) = anything and everything #;

nothing := sonething (a, b, c, d); !Too many paraneters
You can pass a DEFINE that has no formal parameters as an actual parameter. For
example:
defmacro (DEFINE x =y + vy #); !lnvocation

If an actual parameter in a DEFINE invocation requires commas, enclose each comma
in apostrophes (*). An example is an actual parameter that is a parameter list:

DEFI NE varproc (procl, param = CALL procl (paran) #;

varproc (nmyproc, i '," j "," k); !'Expands to:
I CALL MYPRCC (I, J, K);"

An actual parameter in a DEFINE invocation can include parentheses. For example:
DEFI NE varproc (procl, param = CALL procl (paran) #;
varproc (nmyproc, (i +j) * k); !Expands to:

I' CALL MYPRCC ((I+J)*K);

Examples of Passing DEFINE Parameters
Here are more examples of passing actual parameters.

1. This example shows a DEFINE declaration that has one formal parameter and an
assignment statement that uses the DEFINE identifier, passing a parameter of 3:

DEFI NE cube (x) = (x * X * X) #
I NT result;

result := cube (3) '>>" 1;
Expands to: (3 * 3 * 3) '>> 1 =27 '">>"' 1 =13

2. This example provides incrementing and decrementing utilities and a statement
that uses one of the utilities:

DEFINE increment (x) = Xx :=x + 1 #

DEFI NE decrenment (y) =y =y - 1 #

I NT i ndex := O;

i ncrenment (i ndex) ; I Expands to: INDEX := I NDEX + 1;

TAL Reference Manual—526371-001
5-8

LITERALs and DEFINEs Examples of Passing DEFINE Parameters

3. This example fills an array with zeros:

DEFI NE zero_array (array, length) =
BEG N
array[0] := O;
array[1] ':=" array FOR length - 1;
END #;

LI TERAL | en = 50;
INT buffer[O:len - 1];

zero_array (buffer, len); 'Fill buffer with zeros

4. This example displays a message, checks the condition code, and assigns an error
if one occurs:

I NT error;

INT file;

I NT . buffer[0:50];
I NT count_written;

I NT i;
DEFINE emt (filenum text, bytes, count, err) =
BEG N
CALL WRITE (filenum text, bytes, count);
| F < THEN
BEG N

CALL FILEINFO (filenum err);
' Process errors if any
END;

END #;

I'Lots of code.
IFi =1 THEN
emt (file, buffer, 80, count_witten, error);

TAL Reference Manual—526371-001
5-9

LITERALs and DEFINEs Examples of Passing DEFINE Parameters

TAL Reference Manual—526371-001
5-10

—6— Simple Variables

A simple variable is a single-element data item of a specified data type. After you
declare a simple variable, you can use its identifier in statements to access or change
the data contained in the variable. You must declare variables before you use them to
access data.

This section defines the syntax for declaring simple variables. The declaration
determines:

® The kind of values the simple variable can represent

® The amount of storage the compiler allocates for the variable
® The operations you can perform on the variable

® The byte or word addressing mode of the variable

® The direct or indirect addressing mode of the variable

The TAL Programmer’s Guide describes:

®* How the compiler allocates storage for simple variables

® How you access the variables

Simple Variable Declaration

The simple variable declaration associates an identifier with a single-element data item
and optionally initializes it.

—» type identifier | }@—»
" e
2

VST0601.vsd

type
is any data type described in Section 3, Data Representation.

identifier

is the identifier of the simple variable, specified in the form described in Section 2,
Language Elements.

initialization
is an expression that represents the value to store in identifier. The default number

base is decimal. The kind of expression you can specify depends on the scope of
the simple variable:

TAL Reference Manual—526371-001
6-1

Simple Variables Usage Considerations

® For a global simple variable, use a constant expression.

® For alocal or sublocal simple variable, use any arithmetic expression including
variables.

You can initialize simple variables of any data type except UNSIGNED.

Usage Considerations

Simple variables are always directly addressed.

Initializing With Numbers

When you initialize with a number, it must match the data type specified for the simple
variable. The data type determines what kind of values the simple variable can store:

® STRING, INT, and INT(32) simple variables can contain integer constants in binary,
decimal, hexadecimal, or octal base.

® REAL and REAL(64) simple variables can contain signed floating-point numbers.

® FIXED simple variables can contain signed 64-bit fixed-point numbers in binary,
decimal, hexadecimal, or octal base. For decimal numbers, you can also specify a
fractional part, preceded by a decimal point. If a FIXED number has a different
decimal setting than the specified fpoint, the system scales the number to match
the fpoint. If the number is scaled down, some precision is lost.

For more information on syntax specifying numeric constants in each number base by
data type, see Section 3, Data Representation.

Initializing With Character Strings

When you initialize a simple variable with a character string, the character string can
contain the same number of bytes as the simple variable or fewer. Each character in a
character string requires one byte of contiguous storage. The values of any
uninitialized bytes are undefined.

Examples of Simple Variable Declarations

1. The following examples declare simple variables of different data types without
initializing them:

STRI NG b;

| NT(32) dbl wdl;
REAL(64) | ong;

UNSI GNED(5) fl avor;

TAL Reference Manual—526371-001
6-2

Simple Variables Examples of Simple Variable Declarations

2. The following examples declare and initialize simple variables:

STRINGy := "A"; I Character string

STRING z : = 255; I Byte val ue

INT a := "AB"; I Character string

INT b :=5 * 2 I EXpr essi on

INT ¢ := 9%8110; 'Word val ue

I NT(32) dblwd2 := %B81011101D; I Doubl eword val ue
I NT(32) dblwd3 := $DBL(%77775); I Standard function
REAL flt1l := 365335. 6E-3; I Doubl eword val ue

REAL(64) flt2 := 2718.2818284590452L-3; ! Quadrupl eword val ue

3. These examples declare FIXED simple variables and show how the fpoint affects
storage (and scaling):

FIXEDX-3) f := 642987F; I Stored as 642; accessed
I as 642000

FIXEDX3) g := 0.642F; I Stored as 642, accessed
I as 0.642

FIXED(2) h := 1.234F; I Stored as 123; accessed
I as 1.23

4. This example illustrates use of constants (any level) and variables (local or
sublocal only) as initialization values:

I NT gl obal := 34; IOnly constants al |l owed
I in global initialization
PROC nymai n MAI N;
BEG N
I NT | ocal := global + 10; ' Any expression all owed
INT |ocal2 := global * Iocal; 'in | ocal or subloca
FI XED | ocal 3 : = $FI X(| ocal 2); Finitialization
I'Lots of code
END; 'End of MYMAI N procedure

TAL Reference Manual—526371-001
6-3

Simple Variables Examples of Simple Variable Declarations

TAL Reference Manual—526371-001
6-4

% Arrays

In TAL, an array is a one-dimensional set of elements of the same data type. Each
array is stored as a collective group of elements. Once you declare an array, you can
use its identifier to access the array elements individually or as a group.

This section defines the syntax for declaring arrays. The declaration determines:
® The kind of values the array can represent

® The amount of storage the compiler allocates for the array

® The operations you can perform on the array

® The byte or word addressing mode of the array

® The direct or indirect addressing mode of the array

You can declare:

® Arrays—which are stored in the user data segment or in an extended data
segment

® Read-only arrays—which are stored in a user code segment

For more information on syntax for declaring arrays within structures, see Section 8,
Structures. This section also explains how to declare structures that simulate arrays of
arrays or arrays of structures (including multidimensional arrays).

The TAL Programmer’s Guide describes:
® How to make assignments to arrays
® How to copy, scan, or compare data in arrays

® How the compiler allocates storage for arrays

Array Declaration

An array declaration associates an identifier with a set of elements of the same data
type. The array elements are contiguously stored in the user data segment or in an
extended data segment.

TAL Reference Manual—526371-001
7-1

Arrays

Array Declaration
i ifi lower- upper-
—>type] 4 lidentifier}—(D— bound _’®_>bound
ey
o >O—>
@4 VST0701.vsd
type

is any data type described in Section 3, Data Representation.

(a period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal or UNSIGNED arrays.

. EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal or UNSIGNED arrays.

i dentifier
is the identifier of the array.

| ower - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the first array element you want
allocated.

upper - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the last array element you want
allocated. For arrays declared outside of structures, upper-bound must be equal to
or greater than lower-bound.

initialization
is a constant or a constant list of values to assign to the array elements, beginning

with the lower-bound element. (Constant lists are described in Section 3, Data
Representation.) If you specify fewer initialization values than the number of

TAL Reference Manual—526371-001
7-2

Arrays

Usage Considerations

elements, the values of uninitialized elements are undefined. You cannot initialize
extended indirect local arrays or UNSIGNED arrays.

Specify initialization values that are appropriate for the data type of the array. For
example, if the decimal setting of an initialization value differs from the fpoint of a
FIXED array, the system scales the initialization value to match the fpoint. If the
initialization value is scaled down, some precision is lost.

Usage Considerations

UNSIGNED arrays and sublocal arrays must be directly addressed. For most other
arrays, you should use indirection because storage areas for direct global and local
data are limited. For very large arrays, use extended indirection. You access indirect
data by identifier as you do direct data.

The data type determines:

The kind of values that are appropriate for the array

The storage unit the compiler allocates for each array element as follows:

Data Type Storage Unit

STRING Byte

INT Word

INT (32) or REAL Doubleword

REAL (64) or FIXED Quadrupleword

UNSIGNED Sequence of 1, 2, 4, or 8 bits

Examples of Array Declarations

1.

2.

These examples declare arrays with various bounds. The arrays are indirectly
addressed except the UNSIGNED array, which must be directly addressed:

FI XED .array_a[0:3]; !'Four-elenent array
| NT .array_b[0:49]; 'Fifty-elenent array
UNSI GNED(1) flags[0: 15]; l'Array of 16 one-bit elenents

These examples declare arrays and initialize them with constants:

I NT a_array[0: 3] = -1; !Store -1 in elenent [0];
I'values in elenments [1: 3]
lare undefi ned

INT b_array[0:1] := "abcd"; I Store one character per byte

TAL Reference Manual—526371-001
7-3

Arrays

Examples of Array Declarations

These examples declare and initialize arrays using constant lists:

I NT .c_array[0: 5] [1,2,3,4,5,6]; !Constant I|ist

STRI NG . buffer[0:102] .= ["A constant |ist can consist ",
"of several character string constants, ",
"one to a line, separated by conmas."];

I NT(32) . mixed[O: 3] := ["abcd", 1D, 9%B0101011D, 9%20D];

I'M xed constant i st
LI TERAL | en = 80; I'Length of array
STRING . buffer[O:len - 1] :=1len * [" "];

’!Repetition factor

FIXED . f[0:35] := 3*[2*[1F, 2F], 4*[3F, 4F]];
 Repetition factors

LI TERAL cr = %5,
I f = %2,
STRING . err_nsg[0: 9] = [cr, If, "ERROR', cr, If, O];

I Constant |ist
This example initializes all arrays except the local extended indirect array:

INT(32) .a[0:1] :=[5D, 7D; 'lnitialize global array
PROC ny_procedure;
BEG N
STRING .b[0:1] :=["A","B"]; 'lnitialize |ocal standard
I indirect array
FI XED . EXT c[0: 3]; I'Cannot initialize |ocal

l'extended indirect array
SUBPROC ny_subpr oc;

BEG N
I NT d[0: 2] = ["Hello!'"]; 'l'nitialize sublocal array
I'Lots of code
END;
END;

The following examples show how positive and negative fpoints affect storage and
access of FIXED values. A positive fpoint specifies the number of decimal places
to the right of the decimal point for storage and access. The system truncates any
value that does not fit:

FI XED(2) x[0:1] = [0.64F, 2.348F];
I Stored as 64 and 234; accessed as 0.64 and 2. 34
A negative fpoint specifies the number of integer places to the left of the decimal

point to truncate when the value is stored. When you access the value, the system
replaces the truncated digits with zeros:

FI XED(-3) y[O0:1] = [642913F, 1234F];
I Stored as 642 and 1; accessed as 642000 and 1000

TAL Reference Manual—526371-001
7-4

Arrays Read-Only Array Declaration

Read-Only Array Declaration

A read-only array declaration allocates storage for a nonmodifiable array in a user
code segment. Read-only arrays are sometimes referred to as P-relative arrays,
because they are addressed using the program counter (the P register).

—> type identifier| >
\ C lower- C upper- C)
bound bound

(B> —»{ nitalization [<—>()

VST0702.vsd
o "
)

type
is any data type except UNSIGNED.

i dentifier
is the identifier of the read-only array.

| ower - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the first array element you want
allocated. The default value is 0.

upper - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the last array element you want
allocated. The default value is the number of elements initialized minus one.

1 Pl
specifies a read-only array. Read-only arrays are addressed using the program
counter (the P register).

initialization
is a constant list to assign to the array elements. You must initialize read-only

arrays when you declare them. (Constant lists are described in Section 3, Data
Representation.)

Specify initialization values that are appropriate for the data type of the array. For
example, if the decimal setting of an initialization value differs from the fpoint of a

TAL Reference Manual—526371-001
7-5

Arrays Usage Considerations

FIXED array, the system scales the initialization value to match the fpoint. If the
initialization value is scaled down, some precision is lost.

Usage Considerations

Because code segments have no primary or secondary areas, read-only arrays must
be direct. If you declare an indirect read-only array, the compiler ignores the indirection
symbol and issues warning 37 (array access changed from indirect to direct).

You must initialize read-only arrays. UNSIGNED read-only arrays are not allowed,
because they cannot be initialized.

If you declare a read-only array in a RESIDENT procedure, the array is also resident in
main memory.

Binder binds each global read-only array into any code segment containing a
procedure that references the array.

The TAL Programmer’s Guide gives information on accessing read-only arrays. In
summary, you can access read-only arrays as you access any other array, except that:

® You cannot modify a read-only array; that is, you cannot specify a read-only array
on the left side of an assignment or move operator.

® You cannot specify a read-only array on the left side of a group comparison
expression.

® In a SCAN or RSCAN statement, you cannot use next-addr to read the last
character of a string. You can use next-addr to compute the length of the string.

Example of Read-Only Array Declaration

This example declares read-only arrays using default lower and upper bounds and
initializes them with constant lists:

STRI NG pronpt = "'FP
INT error ="'P

["Enter Character: ", 0];
["1 NCORRECT | NPUT"];

TAL Reference Manual—526371-001
7-6

8 structures

A structure is a collectively stored set of data items that you can access individually or
as a group. Structures contain structure items (fields) such as simple variables, arrays,
simple pointers, structure pointers, and nested structures (called substructures). The
structure items can be of different data types.

Structures usually contain related data items such as the fields of a file record. For
example, in an inventory control application, a structure can contain an item number,
the unit price, and the quantity on hand.

This section describes the syntax for declaring:
® Definition structures

® Template structures

® Referral structures

® Structure items—simple variables, arrays, substructures, filler bytes, filler bits,
simple pointers, structure pointers, and redefinitions

Section 8, “Using Structures,” in the TAL Programmer’s Guide describes:

® How the compiler aligns structures and structure items

® How the compiler allocates storage for structures

® How to declare arrays of arrays, arrays of structures, and multidimensional arrays

® How you can access structures and structure items

Kinds of Structures

A structure declaration associates an identifier with any of three kinds of structures, as
listed in Table 8-1.

Table 8-1. Kinds of Structures

Structure Description

Definition Describes a structure layout and allocates storage for it
Template Describes a structure layout but allocates no storage for it
Referral Allocates storage for a structure whose layout is the same as the layout of a

previously declared structure

TAL Reference Manual—526371-001
8-1

Structures Structure Layout

Structure Layout

The structure layout (or body) is a BEGIN-END construct that contains declarations of
structure items. Table 8-2 lists structure items.

Table 8-2. Structure Iltems

Structure Item Description
Simple Variable A single-element variable

Array A variable that contains multiple elements of the same data type
Substructure A structure nested within a structure (to a maximum of 64 levels)
Filler Byte A place-holding byte

Filler Bit A place-holding bit

Simple Pointer A variable that contains a memory address, usually of a simple

variable or array, which you can access with this simple pointer

Structure Pointer A variable that contains the memory address of a structure, which
you can access with this structure pointer

Redefinition A new identifier and sometimes a new description for a substructure,
simple variable, array, or pointer declared in the same structure

You can nest substructures within structures up to 64 levels deep. That is, you can
declare a substructure within a substructure within a substructure, and so on, for up to
64 levels. The structure and each substructure has a BEGIN-END level depending on
the level of nesting.

The limit is 64 for direct substructures such as:

STRUCT A
BEG N
STRUCT B;
BEG N

END;
END;

However, for indirect substructures, this limit is smaller depending on the complexity of
the structure.

The syntax for declaring each structure item is described after the syntax for declaring
structures. The following rules apply to all structure items:

® You can declare the same identifier in different structures and substructures, but
you cannot repeat an identifier at the same BEGIN-END level.

® You cannot initialize a structure item when you declare it. After you have declared
it, however, you can assign a value to it by using an assignment or move
statement.

TAL Reference Manual—526371-001
8-2

Structures Definition Structure Declaration

Definition Structure Declaration

A definition structure declaration describes a structure layout and allocates storage for
it.

—»(STRUCT } »| identifier

C /. structure- ’<) l
'(’)) layout
\®_> lower upper 4»®J
bound _>®_> bound

VST0801.vsd

(a period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal structures.

. EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal structures.

identifier

is the identifier of the definition structure.

| ower - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth structure occurrence) of the first structure
occurrence you want allocated. Each occurrence is one copy of the structure. The
default value is O.

upper - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth structure occurrence) of the last structure
occurrence you want allocated. The default value is 0. For a single-occurrence
structure, omit both bounds or specify the same value for both bounds.

TAL Reference Manual—526371-001
8-3

Structures Usage Considerations

structure-| ayout

is a BEGIN-END construct that can contain declarations for simple variables,
arrays, substructures, filler bits, filler bytes, redefinitions, simple pointers, and
structure pointers. The size of one occurrence of the structure is the size of the
layout. A single structure occurrence must not exceed 32,767 bytes.

Usage Considerations

Structures declared in subprocedures must be directly addressed. For most other
structures, you should use indirection because storage areas for direct global and local
variables are limited. You access indirect structures by identifier as you do direct
structures.

For very large structures, you should use the .EXT symbol to declare extended indirect
structures. When you declare one or more extended indirect structures (or arrays), the
compiler allocates the automatic extended data segment. If you also must allocate an
extended data segment yourself, follow the instructions given in the TAL Programmer’s
Guide in Appendix B, “Managing Addressing.”

Structures always start on a word boundary.

Examples of Definition Structure Declarations

This example declares indirect definition structures:

STRUCT . inventoryl[0:49]; I Standard indirect structure
BEG N
INT item
FI XED(2) price;
I NT quantity;
END;

STRUCT . EXT inventory2[0:9999]; !Extended indirect structure
BEG N
INT item
FI XED(2) price;
I NT quantity;
END;

TAL Reference Manual—526371-001
8-4

Structures Template Structure Declaration

Template Structure Declaration

A template structure declaration describes a structure layout but allocates no space for
it. You use the template layout in subsequent structure, substructure, or structure
pointer declarations.

—»('STRUCT }—| identifier —>.—>.—>.—>.—> ° o o structure- 1y (>
layout

VST0802.vsd

identifier

is the identifier of the template structure, with no indirection symbol.

(*)

is the symbol for a template structure.

structure-| ayout

is a BEGIN-END construct that can contain declarations for simple variables,
arrays, substructures, filler bits, filler bytes, redefinitions, simple pointers, and
structure pointers. The size of one structure occurrence is the size of the layout
and must not exceed 32,767 bytes.

Usage Considerations

A template structure has meaning only when you refer to it in the subsequent
declaration of a referral structure, referral substructure, or structure pointer. The
subsequent declaration allocates space for a structure whose layout is the same as the
template layout.

Example of Template Structure Declaration

This declaration associates an identifier with a template structure layout but allocates
no space for it:

STRUCT inventory (*); I Tenpl ate structure
BEG N I'Structure | ayout
INT item
FI XED(2) price;

I NT quantity;
END;

TAL Reference Manual—526371-001
8-5

Structures Referral Structure Declaration

Referral Structure Declaration

A referral structure declaration allocates storage for a structure whose layout is the
same as the layout of a previously declared structure or structure pointer.

identifier

STRUCT

lower upper
bound bound

VST0803.vsd

(a period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal structures.

EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal structures.

identifier
is the identifier of the new referral structure.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for this structure.

| ower - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth structure occurrence) of the first structure
occurrence you want to allocate. Each occurrence is one copy of the structure. The
default value is O.

upper - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth structure occurrence) of the last structure

TAL Reference Manual—526371-001
8-6

Structures Usage Considerations

occurrence you want to allocate. The default value is 0. For a single-occurrence
structure, omit both bounds or specify the same value for both bounds.

Usage Considerations

The compiler allocates storage for the referral structure based on the following
characteristics:

® The addressing mode and number of occurrences specified in the new declaration
® The layout of the previous declaration

Structures declared in subprocedures must be directly addressed. For most other
structures, you should use indirection because storage areas for direct global and local
variables are limited. You access indirect structures by identifier as you do direct
structures.

For very large structures, you should use the .EXT symbol to declare extended indirect
structures. When you declare one or more extended indirect structures (or arrays), the
compiler allocates the automatic extended data segment. If you also must allocate an
extended data segment yourself, follow the instructions given in the TAL Programmer’s
Guide, in Appendix B, “Managing Addressing.”

Structures always start on a word boundary.

Example of Referral Structure Declaration

This example declares a template structure and a referral structure that references the
template structure. The referral structure imposes its addressing mode and number of
occurrences on the layout of the template structure:

STRUCT record (*); I Decl are tenplate structure
BEG N
STRI NG nane[0: 19] ;
STRI NG addr [0: 29];
| NT acct;
END;

STRUCT . customer(record)[1:50];!Declare referral structure

Simple Variables Declared in Structures

The simple variable declaration associates a name with a single-element data item.
When you declare a simple variable inside a structure, the form is:

identifier

VST0804.vsd

TAL Reference Manual—526371-001
8-7

Structures Usage Considerations

type
is any data type described in Section 3, Data Representation.

identifier

is the identifier of the simple variable.

Usage Considerations

You cannot initialize a simple variable when you declare it inside a structure. You can
subsequently assign a value to the simple variable by using an assignment statement.

Example of Simple Variables in Structures

This example declares simple variables in a structure:

STRUCT . inventory[O0:49]; I Decl are definition structure
BEG N
INT item I Decl are three sinple
FI XED(2) price; I variables within the
I NT quantity; I structure | ayout
END;

Arrays Declared in Structures

An array declaration associates an identifier with a collectively stored set of elements
of the same data type. When you declare an array inside a structure, the form is:

oo lower- upper-
—>» type identifier —}@—-V bound _>©—> bound ‘»®j'@_>
(N

U‘ VST0805.vsd

type
is any data type described in Section 3, Data Representation.

identifier
is the identifier of the array.

| ower - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth array element) of the first array element you want
allocated. Both lower and upper bounds are required.

TAL Reference Manual—526371-001
8-8

Structures Usage Considerations

upper - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth array element) of the last array element you want
allocated. Both lower and upper bounds are required.

Usage Considerations

When you declare arrays inside a structure, the following guidelines apply:

® You cannot initialize arrays declared in structures. You can assign values to such
arrays only by using assignment statements.

® You cannot declare indirect arrays or read-only arrays in structures.
® You can specify array bounds of [n : n-1] in structures as described in the TAL
Programmer’s Guide. Such an array is addressable but uses no memory.

Example of Arrays in Structures

This example declares arrays in a structure:

STRUCT record,; I Decl are definition structure
BEG N
STRI NG nane[0: 19]; I Decl are arrays within the
STRI NG addr [0: 29]; I structure | ayout
I NT acct;
END;

Substructure Declaration

A substructure is a structure embedded within another structure or substructure. You
can declare substructures that have the following characteristics:

® Substructures must be directly addressed.
® Substructures have byte addresses, not word addresses.
® Substructures can be nested to a maximum of 64 levels.

® Substructures can have bounds of [n : n-1] as described in the TAL Programmer’s
Guide. Such a substructure is addressable but uses no memory.

You can declare definition substructures or referral substructures, described next.

TAL Reference Manual—526371-001
8-9

Structures Definition Substructure Declaration

Definition Substructure Declaration

A definition substructure describes a layout and allocates storage for it.

—>(STRUCT)—>| identifier |
\@_’ lower- 3 C) 3 upper- "@J
bound bound

substructure- C)
layout

VST0806.vsd

identifier
is the identifier of the definition substructure.

| ower - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the first substructure
occurrence you want allocated. Each occurrence is one copy of the substructure.
The default value is 0.

upper - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the last substructure
occurrence you want allocated. The default value is 0. For a single-occurrence
substructure, omit both bounds or specify the same value for both bounds.

substructure-| ayout

is the same BEGIN-END construct as for structures. It can contain declarations for
simple variables, arrays, substructures, filler bits, filler bytes, redefinitions, simple
pointers, and structure pointers. The size of one substructure occurrence is the
size of the layout, either in odd or even bytes. The total layout for one occurrence
of the encompassing structure must not exceed 32,767 bytes.

TAL Reference Manual—526371-001
8-10

Structures Example of Definition Substructure Declaration

Example of Definition Substructure Declaration

This example declares two occurrences of a structure, each of which contains 50
occurrences of a definition substructure:

STRUCT . war ehouse[0: 1] ; ' Two war ehouses
BEG N
STRUCT inventory [0:49]; ' Definition substructure
BEG N 50 itens in each warehouse

I NT item nunber;
FI XEIX 2) price;
I NT on_hand;
END;

END;

Referral Substructure Definition

A referral substructure allocates storage for a substructure whose layout is the same
as the layout of a previously declared structure or structure pointer.

—»(STRUCTH identifier 0 0

\@_} lower- upper- ‘>®/
bound ’()) bound

VST0807.vsd

identifier
is the identifier of the referral substructure.

referral

is the identifier of a structure that provides the structure layout. You can specify any
previously declared structure (except the encompassing structure) or structure
pointer. If the previous structure has an odd-byte size, the compiler rounds the size
of the new substructure up so that it has an even-byte size.

| ower - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth occurrence) of the first substructure occurrence
you want allocated. Each occurrence is one copy of the substructure. The default
value is 0.

TAL Reference Manual—526371-001
8-11

Structures Example of Referral Substructure Declaration

upper - bound

is an INT constant expression (in the range —32,768 through 32,767) that specifies
the index (relative to the zeroth occurrence) of the last substructure occurrence
you want allocated. The default value is 0. For a single-occurrence substructure,
omit both bounds or specify the same value for both bounds.

Example of Referral Substructure Declaration

This example declares a referral substructure that uses a template structure layout:

STRUCT tenp(*); I Decl are tenplate structure
BEG N
STRI NG a[0: 2] ; I'No space allocated for
| NT b; I this |ayout
STRI NG c;
END;

STRUCT .ind_struct; I Decl are definition structure
BEG N
| NT header[O0:1]; I Space allocated for this |ayout
STRI NG abyt e;
STRUCT abc (tenp) [0:1];!Declare referral substructure
END; ' The size of | ND_STRUCT. ABC[0]

I is eight bytes

Filler Declaration

A filler declaration allocates a byte or bit place holder in a structure.

constant-expression

FILTER

BIT_FILTER

VST0808.vsd

FI LLER
allocates the specified number of byte place holders.

BI T_FILLER
allocates the specified number of bit place holders.

const ant - expr essi on
is a positive integer constant value that specifies a number of filler units in one of
the following ranges:

FILLER 0 through 32,767 bytes
BIT_FILLER 0 through 255 bits

TAL Reference Manual—526371-001
8-12

Structures

Usage Considerations

Usage Considerations

You can declare filler bits and filler bytes, but you cannot access such filler locations.

If the structure layout must match a structure layout defined in another program, your
structure declaration need only include data items used by your program and can use
filler bits or bytes for the unused space. You can also use filler bytes to document
compiler-allocated alignment pad bytes (described in the TAL Programmer’s Guide).

Examples of Filler Declarations

1. This example shows filler byte declarations:

2.

LI TERAL | ast = 11; I Last occurrence
STRUCT .x[1:last];

BEG N

STRI NG byt e[0: 2] ;

FI LLER 1; I Docunent wor d-al i gnnent pad byte
I NT wordl;

I NT wor d2;

| NT(32) integer32;

FI LLER 30; ' Pl ace hol der for unused space
END;

This example shows a filler bit declaration:

STRUCT . fl ags;

BEG N
UNSI GNED(1) fl agl;
UNSI GNED(1) fl ag2;

UNSI GNED(2) st at e; IState = 0, 1, 2, or 3
BIT FILLER 12; ' Pl ace hol der for unused space
END;

For more information, see the filler byte example in Definition Substructure Redefinition
on page 8-20.

Simple Pointers Declared in Structures

A simple pointer is a variable that contains the memory address of a simple variable or
an array.

VST0809.vsd

TAL Reference Manual—526371-001
8-13

Structures Usage Considerations

type

is any data type except UNSIGNED. The data type determines how much data the
simple pointer can access at a time—a byte, word, doubleword, or quadrupleword.

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of the simple pointer.

Usage Considerations

The data type determines the size of data a simple pointer can access at a time, as
listed in Table 8-3:

Table 8-3. Data Accessed by Simple Pointers

Data Type Accessed Data
STRING Byte

INT Word

INT (32) Doubleword
REAL Doubleword
REAL (64) Quadrupleword
FIXED Quadrupleword

The addressing mode and data type determines the kind of address the simple pointer
can contain, as described in Table 8-4.

Table 8-4. Addresses in Simple Pointers

Addressing
Mode Data Type Kind of Addresses
Standard STRING 16-bit byte address in the lower 32K-

word area of the user data segment.

TAL Reference Manual—526371-001
8-14

Structures Example of Simple Pointer Declarations

Table 8-4. Addresses in Simple Pointers

Addressing

Mode Data Type Kind of Addresses

Standard Any except STRING 16-bit word address in the user data
segment.

Extended STRING 32-bit byte address, normally in the
automatic extended data segment.

Extended Any except STRING 32-bit even-byte address, normally in

the automatic extended data segment.
(If you specify an odd-byte address,
results are undefined.)

Before you reference a pointer declared in a structure, be sure to assign an address to
it by using an assignment statement, as described in Section 8, “Using Structures,” in
the TAL Programmer’s Guide.

Example of Simple Pointer Declarations
This example shows simple pointer declarations within a structure:

STRUCT ny_struct;

BEG N

FI XED . std_poi nter; I Standard si npl e pointer
STRI NG . EXT ext _poi nter; I Ext ended si npl e pointer
END;

Structure Pointers Declared in Structures

A structure simple pointer is a variable that contains the address of a structure. When
you declare a structure pointer inside a structure, the form is:

referral

VST0810.vsd

STRI NG
is the STRING attribute.

| NT
is the INT attribute

TAL Reference Manual—526371-001
8-15

Structures Usage Considerations

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

i dentifier
is the identifier of the structure pointer.

referral

is the identifier of a structure that provides the structure layout. You can specify any
previously declared structure (including the encompassing structure) or structure
pointer.

Usage Considerations

The addressing mode and STRING or INT attribute determine the kind of addresses a
structure pointer can contain, as described in Table 8-5.

Table 8-5. Addresses in Structure Pointers

STRING or INT

Addressing Mode Attribute Kinds of Address

Standard STRING * 16-bit byte address of a substructure,
STRING simple variable, or STRING
array declared in a structure located
in the lower 32K-word area of the
user data segment

Standard INT ** 16-bit word address of any structure

data item located anywhere in the
user data segment

Extended STRING * 32-bit byte address of any structure
data item located in any segment,
normally the automatic extended
data segment

Extended INT ** 32-bit byte address of any structure
data item located in any segment,
normally the automatic extended
data segment

* |f the pointer is the source in a move statement or group comparison expression that omits a count-unit,

the count-unit is BYTES.

** |f the pointer is the source in a move statement or group comparison expression that omits a count-
unit, the count-unit is WORDS.

TAL Reference Manual—526371-001
8-16

Structures Example of Structure Pointer Declaration

Before you reference a pointer declared in a structure, be sure to assign an address to
it by using an assignment statement, as described in Section 8, “Using Structures,” in
the TAL Programmer’s Guide.

Example of Structure Pointer Declaration
This example shows a structure pointer declaration within a structure:

STRUCT struct _a,; I Decl are STRUCT_A
BEG N
I NT a;
I NT b;
END;

STRUCT struct _b; I Decl are STRUCT_B
BEG N
I NT . EXT struct_pointer (struct_a);

I Decl are STRUCT_PO NTER
STRI NG a;
END;

Redefinition Declaration

A redefinition declares a new identifier and sometimes a new description for a previous
item in the same structure. You can declare these kinds of redefinitions:

® Simple variable redefinition
® Array redefinition

® Substructure redefinition

® Simple pointer redefinition

® Structure pointer redefinition

Redefinition Rules

The following rules apply to all redefinitions in structures:
® The new item must be of the same length or shorter than the previous item.

® The new item and the previous item must be at the same BEGIN-END level of a
structure.

Additional rules are given in subsections that describe each kind of redefinition in the
following pages.

Redefinitions Outside Structures

For information on redefinitions outside structures, see Section 10, Equivalenced
Variables.

TAL Reference Manual—526371-001
8-17

Structures Simple Variable Redefinition

Simple Variable Redefinition

A simple variable redefinition associates a new simple variable with a previous item at
the same BEGIN-END level of a structure.

—)I type |——>| identifier |—>®—-}| previous-identifier |——}®—-}

VST0811.vsd

type
is any data type except UNSIGNED.

identifier

is the identifier of the new simple variable.

previ ous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. You cannot specify an index with this identifier.

Usage Considerations

In a redefinition, the new item and the previous (nonpointer) item both must have a
byte address or both must have a word address. If the previous item is a pointer, the
data it points to must be word addressed or byte addressed to match the new item.

Example of Simple Variable Redefinition

This declaration redefines the left byte of INT_VAR as STRING_VAR:

STRUCT . nystruct;
BEG N
I NT int_var;
STRING string var = int_var; !Redefinition
END;

TAL Reference Manual—526371-001
8-18

Structures Array Redefinition

Array Redefinition

An array redefinition associates a new array with a previous item at the same BEGIN-
END level of a structure.

—>| type |——>| identifierl
\®_> lower- upper- -)@J
bound) ()) bound
(® i previous- @ i
identifier

VST0812.vsd

type
is any data type except UNSIGNED.

identifier

is the identifier of the new array.

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the first array element you want
allocated. The default value is 0.

upper - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the last array element you want
allocated. The default value is 0.

previ ous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. You cannot specify an index with this identifier.

Usage Considerations

In a redefinition, the new item and the previous (nonpointer) item both must have a
byte address or both must have a word address. If the previous item is a pointer, the
data it points to must be word addressed or byte addressed to match the new item.

TAL Reference Manual—526371-001
8-19

Structures Example of Array Redefinition

Example of Array Redefinition

This declaration redefines an INT array as an INT(32) array:

STRUCT . s;
BEG N
I NT a[0: 3];
I NT(32) b[0:1] = a; I Redefinition
E 9

Definition Substructure Redefinition

A definition substructure redefinition associates a new definition substructure with a
previous item at the same BEGIN-END level of a structure.

—>(sTRUCT] identifer |
lower- @ i upper-
bound bound

previous- l() ’ substructure-
identifier layout

VST0813.vsd

identifier
is the identifier of the new substructure.

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the first substructure
occurrence you want allocated. Each occurrence is one copy of the substructure.
The default value is 0.

upper - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the last substructure
occurrence you want allocated. The default value is 0. To declare a single-
occurrence substructure, omit both bounds or specify the same value for both
bounds.

previ ous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. No index is allowed with this identifier.

TAL Reference Manual—526371-001
8-20

Structures Usage Considerations

substruct ure-| ayout

is the same BEGIN-END construct as for structures. It can contain declarations for
simple variables, arrays, substructures, filler bits, filler bytes, redefinitions, simple
pointers, and structure pointers. The size of one substructure occurrence is the
size of the layout, either in odd or even bytes. The total layout for one occurrence
of the encompassing structure must not exceed 32,767 bytes.

Usage Considerations

If the previous item is a substructure and you omit the bounds or if either bound is 0O,
the new substructure and the previous substructure occupy the same space and have
the same offset from the beginning of the structure.

Examples of Definition Substructure Redefinitions

1. Inthis example, both substructures (B and C) have odd-byte alignments.

STRUCT a;

BEG N

STRI NG X;

STRUCT b; IB starts on odd byte
BEG N
STRI NG v;
END;

STRUCT ¢ = b; | Redefine B as C, al so on
BEG N I odd byte
STRI NG z;
END;

END;

2. In this example, MYSUB2 redefines the left byte of the INT variable in MYSUBL1 as
a STRING variable:

STRUCT nystruct;

BEG N

STRUCT nysubl,; I Decl are MYSUB1
BEG N
I NT int_var;
END;

STRUCT nysub2 = nysubl,; | Redefi ne MYSUBL as MYSUB2
BEG N
STRI NG string_var;
END;

END;

TAL Reference Manual—526371-001
8-21

Structures Referral Substructure Redefinition

Referral Substructure Redefinition

A referral substructure redefinition associates a new referral substructure with a
previous item at the same BEGIN-END level of a structure.

—>(sTRUCT }—» ideniifier —(() O)

C - <:> 5| previous- __»C)_>
” identifier
lower- _>®__> upper-
bound bound VST0814.vsd

identifier

is the identifier of the new substructure.

referral

is the identifier of a structure that provides the structure layout. You can specify any
previously declared structure (except the encompassing structure) or structure
pointer. If the previous structure has an odd-byte size, the compiler rounds the size
of the new substructure up so it has an even-byte size.

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the first substructure
occurrence you want allocated. Each occurrence is one copy of the substructure.
The default value is 0.

upper - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the last substructure
occurrence you want allocated. The default value is 0. To declare a single-
occurrence substructure, omit both bounds or specify the same value for both
bounds.

previ ous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. No index is allowed with this identifier.

Usage Considerations

If the previous item is a substructure and you omit the bounds or if either bound is 0O,
the new substructure and the previous substructure occupy the same space and have
the same offset from the beginning of the structure.

TAL Reference Manual—526371-001
8-22

Structures Example of Referral Substructure Declaration

Example of Referral Substructure Declaration

This example declares a referral substructure redefinition that uses a template
structure layout:

STRUCT tenp(*); I Decl are tenplate structure
BEG N
STRI NG a[0: 2] ;
| NT b;
STRI NG c;
END;
STRUCT .ind_struct; I Decl are definition structure
BEG N
| NT header[O0:1];
STRI NG abyt e;

STRUCT abc (tenp) ; | Decl are ABC

[0:1]
STRUCT xyz (tenp) [0:1] = abc;
| Redefi ne ABC as XYZ

END;

Simple Pointer Redefinition

A simple pointer redefinition associates a new simple pointer with a previous item at
the same BEGIN-END level of a structure.

‘oq O it O
. EXT

VST0815.vsd

type
is any data type except UNSIGNED. The data type determines how much data the
simple pointer can access at a time—a byte, word, doubleword, or quadrupleword.

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier
is the identifier of the new simple pointer.

previ ous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. No index is allowed with this identifier.

TAL Reference Manual—526371-001
8-23

Structures Example of Simple Pointer Redefinition

Example of Simple Pointer Redefinition

This example declares new simple pointer EXT_POINTER to redefine simple variable
VAR:

STRUCT ny_struct;
BEG N
STRI NG var [0: 5] ;
STRI NG . EXT ext _poi nter = var; I Redefinition
END;

Structure Pointer Redefinition

A structure pointer redefinition associates a new structure pointer with a previous item
at the same BEGIN-END level of a structure.

STRING \@ » identifier —>@—> referral

INT
i C) previous - ()
identifier

VST0816.vsd

EXT

STRI NG
is the STRING attribute.

| NT
is the INT attribute.

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier
is the identifier of the new structure pointer.

TAL Reference Manual—526371-001
8-24

Structures Usage Considerations

referral

is the identifier of a structure that provides the structure layout. You can specify any
previously declared structure (including the encompassing structure) or structure
pointer.

previ ous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. No index is allowed with this identifier.

Usage Considerations

The addressing mode and STRING or INT attribute determine the kind of addresses a
structure pointer can contain, as described in Table 8-5 on page 8-16.

Example of Structure Pointer Redefinitions

This example declares new standard and extended structure pointers to redefine
simple variables as follows:

STRUCT record;
BEG N
FI XEX 0) dat a;
I NT std_|ink_addr;
INT .std link (record) = std_link_addr; I Redefinition
I NT(32) ext_link_addr;
I NT . EXT ext _link (record) = ext_link_addr; !Redefinition
END;

TAL Reference Manual—526371-001
8-25

Structures Example of Structure Pointer Redefinitions

TAL Reference Manual—526371-001
8-26

% Pointers

This section describes the syntax for declaring and initializing pointers you manage
yourself. You can declare the following kinds of pointers:

® Simple pointer—a variable into which you store a memory address, usually of a
simple variable or array, which you can access with this simple pointer.

® Structure pointer—a variable into which you store the memory address of a
structure which you can access with this structure pointer.

Pointers—simple pointers and structure pointers—can be standard or extended:
® Standard (16-bit) pointers can access data only in the user data segment.

® Extended (32-bit) pointers can access data in any segment, normally the automatic
extended data segment.

Other information on pointers appears in the TAL manual set as follows:

Information Manual Section/Appendix

Pointer assignments and TAL Programmer’s Guide 9, “Using Pointers”
access of data to which the
pointer ‘points

Pointers declared inside TAL Programmer’s Guide 8, “Using Structures”
structures TAL Reference Manual Section 8, Structures
Pointer access to the upper TAL Programmer’s Guide B, “Managing Addressing”

32K-word area of the user data
segment, to the user code
segment, or to an explicit (user-
allocated) extended data
segment

Implicit pointers (those TAL Programmer’s Guide 7, “Using Arrays”
generated by the compiler
when you declare indirect
arrays and structures)

8, “Using Structures”

Dereferencing (formerly known TAL Programmer’s Guide 5, “Using Expressions”
as temporary pointers)

TAL Reference Manual—526371-001
9-1

Pointers Simple Pointer Declaration

Simple Pointer Declaration

A simple pointer declaration associates an identifier with a memory location that
contains the user-initialized address of a simple variable or array.

—» type ‘ identifier

EXT \®—> initialization
@4 VST0901.vsd

/ e

type
is any data type except UNSIGNED. The data type determines how much data the
simple pointer can access at one time—byte, word, doubleword, or quadrupleword.

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier
is the identifier of the simple pointer.
initialization

is an expression that represents a memory address, as described in Simple
Pointer Initializations on page 9-3.

Usage Considerations

Extended pointer declarations should precede other global or local declarations. The
compiler emits more efficient machine code if it can allocate extended pointers
between G[0] and G[63] or between L[0] and L[63].

The data type determines the size of data a simple pointer can access at a time, as
listed in Table 9-1 on page 9-3.

TAL Reference Manual—526371-001
9-2

Pointers Usage Considerations

Table 9-1. Data Accessed by Simple Pointers

Data Type Accessed Data
STRING Byte

INT Word

INT (32) Doubleword
REAL Doubleword
REAL (64) Quadrupleword
FIXED Quadrupleword

Simple Pointer Initializations

The addressing mode and data type of the simple pointer determines the kind of
address the pointer can contain, as described in Table 9-2.

Table 9-2. Addresses in Simple Pointers

Addressing

Mode Data Type Kinds of Addresses

Standard STRING 16-bit byte address in the lower 32K-word area
of the user data segment.

Standard Any except STRING 16-bit word address in the user data segment

Extended STRING 32-bit byte address, normally in the automatic

extended data segment.

Extended Any except STRING 32-bit even-byte address, normally in the
automatic extended data segment. (If you
specify an odd-byte address, results are
undefined.)

Furthermore, the kind of expression you can specify for the address depends on the
level at which you declare the pointer:

® Atthe global level, use a constant expression. See also Global Standard Pointer
Initializations.

® Atthe local or sublocal level, you can use any arithmetic expression.

Global Standard Pointer Initializations

You can initialize global standard pointers by using constant expressions such as:

Expression Meaning
@identifier Accesses address of variable
@identifier ‘<<’1 Converts word address to byte address

TAL Reference Manual—526371-001
9-3

Pointers

Examples of Simple Pointer Declarations
Expression Meaning
@identifier * >>'1 Converts byte address to word address
@identifier[index] Accesses address of variable indicated by index
Standard function Any that return a constant value, such as $OFFSET

The following table shows the kinds of global variables to which you can apply the @

operator:
Variable @identifier?
Direct array Yes
Standard indirect array Yes
Extended indirect array No
Direct structure Yes
Standard indirect structure Yes
Extended indirect structure No
Simple pointer No
Structure pointer No

When Pointers Receive Initial Values

Global simple pointers receive their initial values when you compile the source code.
Local or sublocal simple pointers receive their initial values at each activation of the
encompassing procedure or subprocedure.

Examples of Simple Pointer Declarations

1.

2.

This example declares but does not initialize a simple pointer:

I NT(32) .ptr; I Decl are sinple pointer

This example declares a simple pointer and initializes it with the address of the last
element in an indirect array:

STRI NG . bytes[0: 3]; ' Decl are indirect array
STRING .s_ptr := @ytes[3]; I Decl are sinple pointer
linitialized with address
l'of BYTES[3]

TAL Reference Manual—526371-001
9-4

Pointers Structure Pointer Declaration

3. This example declares a STRING simple pointer and initializes it with the
converted byte address of an INT array. This allows byte access to the word-
addressed array:

I NT .a[0:39]; I Decl are I NT array

STRING .ptr := @[0] '<<' 1; I Decl are STRI NG sinple
I'pointer initialized with
byte address of Al 0]
4. This example declares an array and simple pointers at the local or sublocal level
and initializes the pointers with values derived from the array:

INT a[0:1] := [%00000, 9%410000]; !Declare array

INT .int_ptrl := a[0]; I Decl are sinple pointer
linitialized wth 9400000

INT .int_ptr2 := a[l1]; I Decl are sinple pointer

linitialized with 24410000

5. This example declares an array and an extended simple pointer at the local or
sublocal level. The pointer is initialized with the byte address of an indexed
element, assuming the object being indexed has a 32-bit address:

I NT . EXT x[-100:100]; I Decl are array

I NT . EXT x_ptr := @[-5]; I Decl are extended sinple
I'pointer initialized with
132-bit byte address of

IX[- 5]

Structure Pointer Declaration

The structure pointer declaration associates a previously declared structure with the
memory location to which the structure pointer points. You access data in the
associated structure by referencing the qualified structure pointer identifier.

INT

€
\. O<

(-0
)

VST0902.vsd

TAL Reference Manual—526371-001
9-5

Pointers Usage Considerations

STRI NG
is the STRING attribute.

| NT
is the INT attribute.

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier
is the identifier of the structure pointer.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for this structure pointer.

initialization
is an expression that represents a memory address, as described in Structure
Pointer Initializations.

Usage Considerations

Extended pointer declarations should precede other global or local declarations. The
compiler emits more efficient machine code if it can store extended pointers between
G[0] and G[63] or between L[0] and L[63].

Structure Pointer Initializations

The addressing mode and STRING or INT attribute determine the kind of addresses a
structure pointer can contain, as described in Table 9-3 on page 9-7.

TAL Reference Manual—526371-001
9-6

Pointers Examples of Structure Pointer Declarations

Table 9-3. Addresses in Structure Pointers

Addressing STRING or INT
Mode Attribute Kind of Addresses

Standard STRING * 16-bit byte address of a substructure, STRING
simple variable, or STRING array declared in a
structure located in the lower 32K-word area of the
user data segment

Standard INT ** 16-bit word address of any structure item located
anywhere in the user data segment

Extended STRING * 32-bit byte address of any structure item located in
any segment, normally the automatic extended
data segment

Extended INT ** 32-bit byte address of any structure item located in
any segment, normally the automatic extended
data segment

* |f the pointer is the source in a move statement or group comparison expression that omits a count-

unit, the count-unit is BYTES.

** |f the pointer is the source in a move statement or group comparison expression that omits a count-
unit, the count-unit is WORDS.

Furthermore, the kind of expression you can specify for the address depends on the
level at which you declare the pointer:

® Atthe global level, use a constant expression. See also Global Standard Pointer
Initializations on page 9-3.

® Atthe local or sublocal level, you can use any arithmetic expression.

If the expression is the address of a structure with an index, the structure pointer points
to a particular occurrence of the structure. If the expression is the address of an array,
with or without an index, you impose the structure on top of the array.

Global structure pointers receive their initial values when you compile the source code.
Local and sublocal structure pointers receive their initial values each time the
procedure or subprocedure is activated.

Examples of Structure Pointer Declarations

1. This example uses the $OFFSET standard function to include the address of a
structure field in the expression of a global initialization:

STRUCT t (*); I Tenpl ate structure
BEG N
I NT k;
END;

TAL Reference Manual—526371-001
9-7

Pointers

Examples of Structure Pointer Declarations

STRUCT . st ; IDefinition structure
BEA N
INT j;
STRUCT ss (t);
END;

INT .ip := @t '+ S$OFFSET (st.j) '>>" 1,
' Si npl e pointer

INT .stp (t) := @t '+ $OFFSET (st.ss) '>>" 1,
'l NT structure pointer

STRING .sstp (t) := @&t '<<' 1 '+ $OFFSET (st.ss);
I STRI NG structure pointer

A standard STRING structure pointer can access the following structure items
only-a substructure, a STRING simple variable, or a STRING array-located in the
lower 32K-word area of the user data segment. The last declaration in the
preceding example shows a STRING structure pointer initialized with the converted
byte address of a substructure. Here is another way to access a STRING item in a
structure. You can convert the word address of the structure to a byte address
when you initialize the STRING structure pointer and then access the STRING
item in a statement:

STRUCT . astruct[O0: 1];
BEG N
STRI NG s1;
STRI NG s2;
STRI NG s3;
END;

STRING . ptr (astruct) := @struct[1] '<< 1;
I'Declare STRING PTR; initialize
it with converted byte
'address of ASTRUCT[1]

ptr.s2 := %, ' Access STRING structure item

This example declares a structure and a structure pointer at the local level. The
structure pointer is initialized to point to the second occurrence of the structure:

PROC ny_proc MAIN,
BEG N
STRUCT ny_struct[O0: 2]; I'Structure
BEG N
I NT array[0:7];
END;

INT .struct_ptr (nmy_struct) := @ry_struct[1];
I'Structure pointer contains
END; I address of MY_STRUCT[1]

TAL Reference Manual—526371-001
9-8

Pointers

Examples of Structure Pointer Declarations

4. This example initializes a local or sublocal STRING structure pointer with the

address of a substructure:

STRUCT nane_def (*);
BEG N
STRING first[O0: 3];
STRING | ast[0: 3];
END;

STRUCT .record,
BEG N
STRUCT nane (nane_def); I Decl are substructure
| NT age;
END;

STRING . ny_name (nane_def) := @ ecord. nane;
I'Structure pointer contains
l'address of substructure

ny_nane ':=" ["Sue Law'];

This example declares an array, a structure, and a structure pointer at the local

level. The structure pointer refers to the structure but is initialized to point to the
array, thus imposing the structure on the array. You can now refer to the array in
two ways:

PROC a_proc MNAIN,

BEG N
I NT array[0:7]; L Array
STRUCT a_struct (*); I'Structure
BEG N
| NT var;

I NT bufferl[O0: 3];
STRI NG buffer2[0: 4];
END;

INT .struct_ptr (a_struct) := @rray,
END; I'Structure pointer contains
l'address of array

TAL Reference Manual—526371-001
9-9

Pointers Examples of Structure Pointer Declarations

TAL Reference Manual—526371-001
9-10

10 Equivalenced Variables

Equivalencing lets you declare more than one identifier and description for a location in
a primary storage area. Equivalenced variables that represent the same location can
have different data types and byte-addressing and word-addressing attributes. You
can, for example, reference an INT(32) variable as two separate words or four
separate bytes.

This section describes the syntax for declaring:
® Equivalenced variables—Variables equivalenced to a previous variable

® Base-address equivalenced variables—Variables equivalenced to a global, local,
or top-of-stack base address

Other equivalencing information appears in the TAL manual set as follows:

Information Manual Section/ Appendix

Accessing TAL Programmer’s Guide 10, “Using Equivalenced

equivalenced Variables”

variables

Equivalencing to TAL Programmer’s Guide 10, “Using Equivalenced

indexed or offset Variables”

variables

Redefinitions TAL Programmer’s Guide 8, “Using Structures”

(equivalencing within - 5| Reference Manual Section 8, Structures (syntax)

structures)

'SG'-equivalencing TAL Reference Manual Section 15, Privileged
Procedures

Equivalenced Variable Declarations

The variables you can equivalence to another variable are listed in Table 10-1. You can
equivalence any variable in the first column to any variable in the second column. (You
cannot equivalence an array to another variable.)

Table 10-1. Equivalenced Variables

Equivalenced (New) Variable Previous Variable

Simple Variable Simple Variable

Simple Pointer Simple Pointer

Structure Structure

Structure Pointer Structure Pointer
Array

Equivalenced Variable

TAL Reference Manual—526371-001
10-1

Equivalenced Variables Equivalenced Simple Variable

Equivalenced Simple Variable

An equivalenced simple variable declaration associates a new simple variable with a
previously declared variable.

type identifier = previous-identifier

(O

[index]

+ offset

) O g
. VST1001.vsd

type
is any data type except UNSIGNED.

identifier

is the identifier of a simple variable to be made equivalent to previous-identifier.

previ ous-identifier
is the identifier of a previously declared simple variable, array, simple pointer,
structure, structure pointer, or equivalenced variable.

i ndex

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable. The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

of f set

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

Usage Consideration

Avoid equivalencing a simple variable to an indirect array or structure. If you do so, the

simple variable is made equivalent to the location of the implicit pointer, not the location
of the data pointed to.

TAL Reference Manual—526371-001
10-2

Equivalenced Variables Examples of Equivalenced Simple Variable
Declarations

For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

Examples of Equivalenced Simple Variable Declarations

1. This example equivalences a STRING variable and an INT(32) variable to an INT

array:
S U T
INT(32) d = b; W] _ B2 | BB |_

VST1002.vsd

2. This example equivalences a simple variable to a simple pointer. The simple
variable is equivalenced to the location occupied by the simple pointer, not to the
location whose address is stored in the simple pointer:

PTR=200 | ADDR

INT .ptr := 200;
INT addr = ptr;

G[200]

VST1003.vsd

Equivalenced Simple Pointer

An equivalenced simple pointer declaration associates a new simple pointer with a
previously declared variable.

type . identifier = previous-identifier

EXT

(O

[index]

+ offset

\ O /
. VST1004.vsd

TAL Reference Manual—526371-001
10-3

Equivalenced Variables Usage Consideration

type

is any data type except UNSIGNED. The data type determines how much data the
simple pointer can access at a time (byte, word, doubleword, or quadrupleword).

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

i dentifier
is the identifier of a simple pointer to be made equivalent to previous-identifier.

previ ous-identifier

is the identifier of a previously declared simple variable, array, simple pointer,
structure, structure pointer, or equivalenced variable.

i ndex

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

of f set

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

Usage Consideration

If the previous variable is a pointer, an indirect array, or an indirect structure, the
previous pointer and the new pointer must both contain either:

® A standard byte address
® A standard word address
® An extended address

Otherwise, the pointers will point to different locations, even if they both contain the
same value. That is, a standard STRING or extended pointer normally points to a byte
address, and a standard pointer of any other data type normally points to a word
address.

For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

TAL Reference Manual—526371-001
10-4

Equivalenced Variables Example of Equivalenced Simple Pointer Declaration

Example of Equivalenced Simple Pointer Declaration

This example declares an INT(32) simple pointer equivalent to an INT simple pointer.
Both contain a word address:

= ~ [PTR2=200
INT .ptrl := 200; PTR1 = 200 _ l_

INT(32) .ptr2 = ptrl;

G[200] -

VST1005.vsd

Equivalenced Definition Structure

An equivalenced definition structure declaration associates a new structure with a
previously declared variable.

identifier = previous-identifier

STRUCT

[>®—> structure-layout —»@—»
4

[index]

+ offset

VST1006.vsd

(peri od)
is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.
. EXT
is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.
i dentifier
is the identifier of a definition structure to be made equivalent to previous-identifier.

TAL Reference Manual—526371-001
10-5

Equivalenced Variables Usage Considerations

previ ous-identifier
is the identifier of a previously declared simple variable, array, simple pointer,
structure, structure pointer, or equivalenced variable.

i ndex

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable. The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

of f set

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

structure-| ayout

is a BEGIN-END construct that contains structure item declarations as described in
Section 8, Structures.

Usage Considerations

If the new structure is to occupy the same location as the previous variable, their
addressing modes should match. Thus, you can declare a direct or indirect structure
equivalent to the following previous variables:

New Structure Previous Variable

Direct Structure Simple Variable
Direct Structure
Direct Array

Standard Indirect Structure Standard Indirect Structure
Standard Indirect Array
Standard Structure Pointer

Extended Indirect Extended Indirect Structure
Structure Extended Indirect Array
Extended Structure Pointer

If the previous variable is a structure pointer, the new structure is really a pointer, as
described in the TAL Programmer’s Guide.

For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

TAL Reference Manual—526371-001
10-6

Equivalenced Variables Example of Equivalenced Definition Structure

Declaration
Example of Equivalenced Definition Structure Declaration

The following example declares an extended indirect definition structure equivalent to a
previously declared extended indirect structure:

STRUCT .EXT xstri; Primary area of user data segment
BEGIN -
STRING old_name[0:20]; = ptr to XSTR1 — = ptr to XSTR2 —
STRING old_addr[0:50]; -
END;

XSTR1 XSTR2

STRUCT .EXT xstr2 = xstrl; . | - —
BEGIN . .

STRING new_name[0:30]; —] [
STRING new_addr[0:40];

END; Automatic extended data segment

VST1007.vsd

Equivalenced Referral Structure

An equivalenced referral structure declaration associates a new structure with a
previously declared variable.

STRUCT identifier (

EXT

C}@—» previous-identifier

referral

— O

[index]

+ offset

VST1008.vsd

(peri od)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

. EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

TAL Reference Manual—526371-001
10-7

Equivalenced Variables Usage Considerations

identifier

is the identifier of a referral structure to be made equivalent to previous-identifier.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for identifier.

previ ous-identifier

is the identifier of a previously declared simple variable, array, simple pointer,
structure, structure pointer, or equivalenced variable.

i ndex

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable. The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

of f set

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

Usage Considerations

If the new structure is to occupy the same location as the previous variable, their
addressing modes should match. Thus, you can declare a direct or indirect structure
equivalent to the following previous variables:

New Structure Previous Variable

Direct Structure Simple Variable
Direct Structure
Direct Array

Standard Indirect Structure Standard Indirect Structure
Standard Indirect Array
Standard Structure Pointer

Extended Indirect Structure Extended Indirect Structure
Extended Indirect Array
Extended Structure Pointer

If the previous variable is a structure pointer, the new structure is really a pointer, as
described in the TAL Programmer’s Guide.

For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

TAL Reference Manual—526371-001
10-8

Equivalenced Variables Example of Equivalenced Referral Structure
Declaration

Example of Equivalenced Referral Structure Declaration

The following example declares a referral structure equivalent to a previously declared
definition structure:

STRUCT .d_str; — ptrto D_STR —| — ptrto R_STR —
BEGIN —_
STRING name[0:19]; '

STRING address [0:49];

END; ' -
D_STR R_STR <

STRUCT tmp (*);) _
BEGIN - . | | . —
INT name[0:9];
INT address[0:24];

END; -

STRUCT .r_str (tmp) = d_str; Secondary area

VST1009.vsd

Equivalenced Structure Pointer

An equivalenced structure pointer declaration associates a new structure pointer with a
previously declared variable.

STRING >O identifier (referral)

INT EXT

C»@-» previous-identifier A > @ ’

[index]

+ offset

VST1010.vsd

STRI NG
is the STRING attribute.

| NT
is the INT attribute.

TAL Reference Manual—526371-001
10-9

Equivalenced Variables Usage Considerations

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of a structure pointer to be made equivalent to previous-identifier.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for identifier.

previ ous-identifier

is the identifier of a previously declared simple variable, direct array element,
simple pointer, structure, structure pointer, or equivalenced variable.

i ndex

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable. The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

of f set

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

Usage Considerations

The STRING or INT attribute and the addressing symbol determine the kind of
addresses a structure pointer can contain, as described in Table 9-3 on page 9-7.

You can declare a structure pointer equivalent to the following previous variables.

New Structure Pointer Previous Variable

Standard Structure Pointer Standard Indirect Structure
Standard Indirect Array
Standard Structure Pointer

Extended structure pointer Extended Indirect Structure
Extended Indirect Array
Extended Structure Pointer

Also, the new structure pointer and the previous pointer must both contain byte
addresses or both contain word addresses; otherwise, the pointers point to different
locations.

TAL Reference Manual—526371-001
10-10

Equivalenced Variables Example of Equivalenced Structure Pointer
Declaration

For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

Example of Equivalenced Structure Pointer Declaration

The following example declares structure pointers equivalent to another structure
pointer and to an indirect structure:

Primary area of user data segment
STRUCT temp (*); -

BEGIN -~ ptrto STR — — PTR3 —
STRING S[0:71];

END; L~ PTR1 — — PTR2 —
STRUCT .EXT str; -
BEGIN
STRING name[0:20];) STR -
STRING addr[0:50]; I :]
END; -
INT .EXT ptrl (str) := @str;
INT .EXT ptr2 (temp) = ptrl;
INT .EXT ptr3 (str) = str;

Automatic extended data segment VST1011.vsd

Base-Address Equivalenced Variable
Declarations

Base-address equivalencing lets you declare variables relative to global, local, or top-
of-stack base addresses. You can declare base-address equivalenced simple
variables, simple pointers, structure pointers, and structures.

TAL Reference Manual—526371-001
10-11

Equivalenced Variables Base-Address Equivalenced Simple Variable

Base-Address Equivalenced Simple Variable

A base-address equivalenced simple variable declaration associates a new simple
variable with a global, local, or top-of-stack base address.

type identifier = base-address

C O
+ offset

N O /
! VST1012.vsd

type
is any data type except UNSIGNED.

vari abl e

is the identifier of a simple variable to be made equivalent to base-address.

base- addr ess

is one of the following base address symbols:

'G' Denotes global addressing relative to G[0]
L' Denotes local addressing relative to L[0]
'S’ Denotes top-of-stack addressing relative to S[0]

i ndex and of f set

are equivalent INT values giving a location in the following ranges:

0 through 255 For 'G' addressing
—255 through 127 For 'L' addressing
—31 through 0 For 'S' addressing

Considerations

If you use the Common Run-Time Environment (CRE), locations G[0] and G[1] are not
available for your data (as described in the TAL Programmer’s Guide). References to
'‘G', 'L', or 'S" are not portable to future software platforms.

TAL Reference Manual—526371-001
10-12

Equivalenced Variables Example of Base-Address Equivalenced Simple
Variable Declaration

Example of Base-Address Equivalenced Simple Variable
Declaration

The following example declares an INT simple variable equivalent to an 'L'-relative
base address:

INT varl = '"L'[5];
INT(32) var2 = 'G[10];

Base-Address Equivalenced Simple Pointer

A base-address equivalenced simple pointer declaration associates a new simple
pointer with a global, local, or top-of-stack base address.

type] identifier = base-address

EXT

(O

[index]

+ offset

\ O /
i VST1013.vsd

type
is any data type except UNSIGNED.

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.
identifier

is the identifier of a simple pointer to be made equivalent to base-address.

TAL Reference Manual—526371-001
10-13

Equivalenced Variables Usage Considerations

base- addr ess

is one of the following base address symbols:

'G' Denotes global addressing relative to G[0]
L' Denotes local addressing relative to L[0]
'S’ Denotes top-of-stack addressing relative to S[0]

i ndex and of f set

are equivalent INT values giving a location in the following ranges:

0 through 255 For 'G' addressing
—255 through 127 For 'L' addressing
—31 through 0 For 'S' addressing

Usage Considerations

The data type determines how much data the simple pointer can access at a time—
byte, word, doubleword, or quadrupleword.

If you use the CRE, locations G[0] and G[1] are not available for your data.

References to 'G', 'L', or 'S' are not portable to future software platforms.

Base-Address Equivalenced Definition
Structure

A base-address equivalenced definition structure declaration associates a new
structure with a global, local, or top-of-stack base address.

STRUCT

identifier = base-address

7 >®—> structure-layout —>®—>

[index]

+ offset

VST1014.vsd

TAL Reference Manual—526371-001
10-14

Equivalenced Variables Usage Considerations

(peri od)

is the standard indirection symbol and denotes 16-bit indirect addressing. An

absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.
. EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An

absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.
i dentifier

is the identifier of a definition structure to be made equivalent to base-address.

base- addr ess
is one of the following base address symbols:

'G' Denotes global addressing relative to G[0]
L' Denotes local addressing relative to L[0]
'S’ Denotes top-of-stack addressing relative to S[0]

i ndex and of f set
are equivalent INT values giving a location in the following ranges:

0 through 255 For 'G' addressing
—255 through 127 For 'L' addressing
—31 through 0 For 'S' addressing

structure-| ayout

is a BEGIN-END construct that contains declarations as described in Section 8,
Structures.

Usage Considerations

If you use the CRE, locations G[0] and G[1] are not available for your data. References
to 'G', 'L', or 'S' are not portable to future software platforms.

TAL Reference Manual—526371-001
10-15

Equivalenced Variables Base-Address Equivalenced Referral Structure

Base-Address Equivalenced Referral Structure

A base-address equivalenced referral structure declaration associates a new structure
with a global, local, or top-of-stack base address.

STRUCT identifier (referral

EXT

C}@—» base-address / >®—>

[index]

+ offset

- VST1015.vsd

(peri od)

is the standard indirection symbol and denotes 16-bit indirect addressing. An

absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.
. EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An

absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.
identifier

is the identifier of a referral structure to be made equivalent to base-address.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for identifier.

base- addr ess
is one of the following base address symbols:

'G' Denotes global addressing relative to G[0]
L' Denotes local addressing relative to L[0]
'S’ Denotes top-of-stack addressing relative to S[0]

TAL Reference Manual—526371-001
10-16

Equivalenced Variables Usage Considerations

i ndex and of f set
are equivalent INT values giving a location in the following ranges:

0 through 255 For 'G' addressing
—255 through 127 For 'L' addressing
—31 through 0 For 'S' addressing

Usage Considerations
If you use the CRE, locations G[0] and G[1] are not available for your data.

References to 'G', 'L', or 'S' are not portable to future software platforms.

Base-Address Equivalenced Structure Pointer

A base-address equivalenced structure pointer declaration associates a new structure
pointer with a global, local, or top-of-stack base address.

STRING PO identifier (referral)
J
-

= base-address n >®—>

[index]

+ offset

\ Od / VST1016.vsd

STRI NG
is the STRING attribute.

| NT
is the INT attribute.

(peri od)
is the standard indirection symbol and denotes a standard (16-bit) pointer.

. EXT
is the extended indirection symbol and denotes an extended (32-bit) pointer.

TAL Reference Manual—526371-001
10-17

Equivalenced Variables Usage Considerations

i dentifier
is the identifier of a structure pointer to be made equivalent to base-address.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for identifier.

base- addr ess
is one of the following base address symbols:

'G' Denotes global addressing relative to G[0]
L' Denotes local addressing relative to L[0]
'S’ Denotes top-of-stack addressing relative to S[0]

i ndex and of f set

are equivalent INT values giving a location in the following ranges:

0 through 255 For 'G' addressing
—255 through 127 For 'L' addressing
—31 through 0 For 'S' addressing

Usage Considerations

The STRING or INT attribute and addressing symbol determine t