
TAL Reference Manual
Abstract

This manual provides syntax descriptions and error messages for TAL (Transaction
Application Language) for system and application programmers.

Product Version

TAL D40

Supported Release Version Updates (RVUs)

This publication supports D40.00 and all subsequent D-series RVUs, and G01.00 and
all subsequent G-series RVUs until otherwise indicated in a new edition.

Part Number Published

526371-001 September 2003

Document History
Part Number Product Version Published

15998 TAL C20 March 1989

065722 TAL D10 January 1993

096255 TAL C30, TAL D10 & TAL D20 September 1993

526371-001 TAL D40 September 2003

TAL Reference Manual
Glossary Index Tables
What’s New in This Manual xxxix
Manual Information xxxix
New and Changed Information xxxix

About This Manual xli
Audience xli
How to Use this Manual Set xli
Manual Organization xlii
System Dependencies xliii
Compiler Dependencies xliv
Additional Information xlv

Notation Conventions xlvii
Railroad Diagrams xlvii
Branching xlvii
Spacing xlviii

Case Conventions xlviii
Example Diagrams xlviii

Hypertext Links xlix
General Syntax Notation xlix
Notation for Messages lii
Notation for Management Programming Interfaces liii

1. Introduction
Applications and Uses 1-1
Major Features 1-1
System Services 1-3
System Procedures 1-3
TAL Run-Time Library 1-3
CRE Services 1-4
 Hewlett-Packard Company—526371-001
i

Contents 2. Language Elements
2. Language Elements
Character Set 2-1
Declarations 2-1
Statements 2-2
Keywords 2-2
Identifiers 2-4
Identifier Classes 2-4
Constants 2-5

Constant Expressions 2-5
Number Bases 2-5

Variables 2-6
Symbols 2-6

Indirection Symbols 2-7
Base Address Symbols 2-7
Delimiters 2-7
Operators 2-9

3. Data Representation
Data Types 3-1

Specifying Data Types 3-3
Data Type Aliases 3-4
Storage Units 3-5
Address Modes 3-5
Operations by Data Type 3-5
Functions by Data Type 3-6
Address Types 3-7

Syntax for Constants 3-7
Character String Constants 3-8

Character String Length 3-8
Example of Character String Constant 3-9

String Numeric Constants 3-9
Example of STRING Numeric Constants 3-9

INT Numeric Constants 3-10
Examples of INT Numeric Constants 3-11
Storage Format 3-11

INT (32) Numeric Constants 3-11
Examples of INT (32) Numeric Constants 3-12

FIXED Numeric Constants 3-13
Examples of FIXED Numeric Constants 3-14
TAL Reference Manual—526371-001
ii

Contents 3. Data Representation (continued)
3. Data Representation (continued)
Storage Format 3-14

REAL and REAL (64) Numeric Constants 3-14
Examples of REAL and REAL (64) Numeric Constants 3-15
Storage Format 3-15
Examples of Storage Formats 3-16

Constant Lists 3-16
Examples of Constant Lists 3-17

4. Expressions
About Expressions 4-1
Data Types of Expressions 4-2
Precedence of Operators 4-3
Arithmetic Expressions 4-5

Examples of Arithmetic Expressions 4-6
Operands in Arithmetic Expressions 4-6
Signed Arithmetic Operators 4-6
Unsigned Arithmetic Operators 4-9
Bitwise Logical Operators 4-11

Conditional Expressions 4-12
Examples of Conditional Expressions 4-13
Conditions 4-13
Boolean Operators 4-14
Relational Operators 4-14

Testing Hardware Indicators 4-16
Condition Code Indicator 4-16
Carry Indicator 4-17
Overflow Indicator 4-17

Special Expressions 4-18
Assignment Expression 4-19
CASE Expression 4-20
IF Expression 4-21
Group Comparison Expression 4-23

Bit Operations 4-27
Bit Extractions 4-28

Usage Considerations 4-28
Examples of Bit Extractions 4-28

Bit Shifts 4-29
Usage Considerations 4-30
TAL Reference Manual—526371-001
iii

Contents 4. Expressions (continued)
4. Expressions (continued)
 Examples of Bit Shifts 4-30

5. LITERALs and DEFINEs
LITERAL Declaration 5-1

Usage Considerations 5-2
Examples of LITERAL Declarations 5-2

DEFINE Declaration 5-3
Usage Considerations 5-4
Examples of DEFINE Declarations 5-5
Invoking DEFINEs 5-6
Compiler Action 5-7
Passing Actual Parameters 5-7
Examples of Passing DEFINE Parameters 5-8

6. Simple Variables
Simple Variable Declaration 6-1

Usage Considerations 6-2
Examples of Simple Variable Declarations 6-2

7. Arrays
Array Declaration 7-1

Usage Considerations 7-3
Examples of Array Declarations 7-3

Read-Only Array Declaration 7-5
Usage Considerations 7-6
Example of Read-Only Array Declaration 7-6

8. Structures
Kinds of Structures 8-1
Structure Layout 8-2
Definition Structure Declaration 8-3

Usage Considerations 8-4
Examples of Definition Structure Declarations 8-4

Template Structure Declaration 8-5
Usage Considerations 8-5
Example of Template Structure Declaration 8-5

Referral Structure Declaration 8-6
Usage Considerations 8-7
Example of Referral Structure Declaration 8-7
TAL Reference Manual—526371-001
iv

Contents 8. Structures (continued)
8. Structures (continued)
Simple Variables Declared in Structures 8-7

Usage Considerations 8-8
Example of Simple Variables in Structures 8-8

Arrays Declared in Structures 8-8
Usage Considerations 8-9
Example of Arrays in Structures 8-9

Substructure Declaration 8-9
Definition Substructure Declaration 8-10

Example of Definition Substructure Declaration 8-11
Referral Substructure Definition 8-11

Example of Referral Substructure Declaration 8-12
Filler Declaration 8-12

Usage Considerations 8-13
Examples of Filler Declarations 8-13

Simple Pointers Declared in Structures 8-13
Usage Considerations 8-14
Example of Simple Pointer Declarations 8-15

Structure Pointers Declared in Structures 8-15
Usage Considerations 8-16
Example of Structure Pointer Declaration 8-17

Redefinition Declaration 8-17
Redefinition Rules 8-17
Redefinitions Outside Structures 8-17

Simple Variable Redefinition 8-18
Usage Considerations 8-18
Example of Simple Variable Redefinition 8-18

Array Redefinition 8-19
Usage Considerations 8-19
Example of Array Redefinition 8-20

Definition Substructure Redefinition 8-20
Usage Considerations 8-21
Examples of Definition Substructure Redefinitions 8-21

Referral Substructure Redefinition 8-22
Usage Considerations 8-22
Example of Referral Substructure Declaration 8-23

Simple Pointer Redefinition 8-23
Example of Simple Pointer Redefinition 8-24

Structure Pointer Redefinition 8-24
TAL Reference Manual—526371-001
v

Contents 8. Structures (continued)
8. Structures (continued)
Usage Considerations 8-25
Example of Structure Pointer Redefinitions 8-25

9. Pointers
Simple Pointer Declaration 9-2

Usage Considerations 9-2
Examples of Simple Pointer Declarations 9-4

Structure Pointer Declaration 9-5
Usage Considerations 9-6
Examples of Structure Pointer Declarations 9-7

10. Equivalenced Variables
Equivalenced Variable Declarations 10-1
Equivalenced Simple Variable 10-2

Usage Consideration 10-2
Examples of Equivalenced Simple Variable Declarations 10-3

Equivalenced Simple Pointer 10-3
Usage Consideration 10-4
Example of Equivalenced Simple Pointer Declaration 10-5

Equivalenced Definition Structure 10-5
Usage Considerations 10-6
Example of Equivalenced Definition Structure Declaration 10-7

Equivalenced Referral Structure 10-7
Usage Considerations 10-8
Example of Equivalenced Referral Structure Declaration 10-9

Equivalenced Structure Pointer 10-9
Usage Considerations 10-10
Example of Equivalenced Structure Pointer Declaration 10-11

Base-Address Equivalenced Variable Declarations 10-11
Base-Address Equivalenced Simple Variable 10-12

Considerations 10-12
Example of Base-Address Equivalenced Simple Variable Declaration 10-13

Base-Address Equivalenced Simple Pointer 10-13
Usage Considerations 10-14

Base-Address Equivalenced Definition Structure 10-14
Usage Considerations 10-15

Base-Address Equivalenced Referral Structure 10-16
Usage Considerations 10-17
TAL Reference Manual—526371-001
vi

Contents 10. Equivalenced Variables (continued)
10. Equivalenced Variables (continued)
Base-Address Equivalenced Structure Pointer 10-17

Usage Considerations 10-18

11. NAMEs and BLOCKs
NAME Declaration 11-1

Usage Considerations 11-2
Example of NAME Declaration 11-2

BLOCK Declaration 11-2
Usage Considerations 11-3
Examples of BLOCK Declarations 11-4

Coding Data Blocks 11-5
Unblocked Declarations 11-5

12. Statements
Using Semicolons 12-1
Compound Statements 12-2

Usage Considerations 12-2
Examples of Compound Statements 12-2

ASSERT Statement 12-3
Usage Considerations 12-3
Example of ASSERT Statement 12-4

Assignment Statement 12-4
Usage Considerations 12-5
Examples of Assignment Statements 12-6

Bit-Deposit Assignment Statement 12-7
Usage Considerations 12-7
Examples of Bit Deposit Assignments 12-8

CALL Statement 12-9
Usage Considerations 12-10
Examples of CALL Statements 12-10

CASE Statement 12-11
Labeled CASE Statement 12-11

Usage Considerations 12-12
Example of Labeled CASE Statement 12-12

Unlabeled CASE Statement 12-13
Usage Considerations 12-13
Examples of Unlabeled CASE Statements 12-14

CODE Statement 12-15
TAL Reference Manual—526371-001
vii

Contents 12. Statements (continued)
12. Statements (continued)
Usage Considerations 12-16
Examples of CODE Statements 12-18

DO Statement 12-19
Usage Considerations 12-19
Examples of DO Statements 12-19

DROP Statement 12-20
Usage Considerations 12-20
Examples of DROP Statements 12-21

FOR Statement 12-22
Usage Considerations 12-23
Examples of FOR Statements 12-24

GOTO Statement 12-25
Usage Considerations 12-25
Examples of GOTO Statements 12-25

IF Statement 12-26
Usage Considerations 12-26
Example of IF Statements 12-27

MOVE Statement 12-27
Usage Considerations 12-29
Examples of MOVE Statements 12-30

RETURN Statement 12-31
Usage Considerations 12-32
Examples of RETURN Statements 12-33

SCAN Statement 12-34
Usage Considerations 12-35
Example of SCAN Statements 12-36

STACK Statement 12-36
Usage Considerations 12-36
Examples of STACK Statements 12-37

STORE Statement 12-37
Usage Considerations 12-37
Examples of STORE Statements 12-38

USE Statement 12-38
Usage Considerations 12-39
Examples of USE Statements 12-39

WHILE Statement 12-40
Usage Considerations 12-40
Examples of WHILE Statements 12-41
TAL Reference Manual—526371-001
viii

Contents 13. Procedures
13. Procedures
Procedure Declaration 13-2

Usage Considerations 13-4
Examples of Procedure Declarations 13-4

Procedure Attributes 13-5
MAIN 13-5
INTERRUPT 13-6
RESIDENT 13-6
CALLABLE 13-6
PRIV 13-6
VARIABLE 13-7
EXTENSIBLE 13-7
LANGUAGE 13-8

Formal Parameter Specifications 13-8
Usage Considerations 13-11
Examples of Formal Parameter Specification 13-13

Procedure Body 13-13
Usage Consideration 13-14
Examples of Procedure Declarations 13-14

Subprocedure Declaration 13-15
Subprocedure Body 13-17

Usage Considerations 13-17
Example of Subprocedure Declaration 13-18

Entry-Point Declaration 13-18
Usage Considerations 13-19
Examples of Entry-Point Declarations 13-20

Label Declaration 13-21
Usage Considerations 13-22
Examples of Label Declarations 13-22

14. Standard Functions
Summary of Standard Functions 14-1
Type-Transfer Functions 14-4

Functions by Data Type 14-4
Rounding by Standard Functions 14-5

Scope of Standard Functions 14-5
Expression Arguments 14-5

Data Types of Expression Arguments 14-6
Signedness of Expression Arguments 14-6
TAL Reference Manual—526371-001
ix

Contents 14. Standard Functions (continued)
14. Standard Functions (continued)
$ABS Function 14-6

Usage Considerations 14-7
Example of $ABS Function 14-7

$ALPHA Function 14-7
Usage Considerations 14-7
Example of $ALPHA Function 14-8

$AXADR Function 14-8
$BITLENGTH Function 14-8

Usage Considerations 14-8
Example of $BITLENGTH Function 14-9

$BITOFFSET Function 14-9
Usage Considerations 14-9
Example of $BITOFFSET Function 14-10

$BOUNDS Function 14-10
$CARRY Function 14-10

Usage Considerations 14-10
Example of $CARRY Function 14-11

$COMP Function 14-11
Example of $COMP Function 14-11

$DBL Function 14-11
Usage Consideration 14-12
Example of $DBL Function 14-12

$DBLL Function 14-12
Usage Consideration 14-12
Examples of $DBLL Function 14-13

$DBLR Function 14-13
Usage Consideration 14-13
Examples of $DBLR Function 14-13

$DFIX Function 14-14
Usage Consideration 14-14
Example of $DFIX Function 14-14

$EFLT Function 14-15
Usage Consideration 14-15
Example of $EFLT Function 14-15

$EFLTR Function 14-15
Usage Considerations 14-15
Example of $EFLTR Function 14-16

$FIX Function 14-16
TAL Reference Manual—526371-001
x

Contents 14. Standard Functions (continued)
14. Standard Functions (continued)
Usage Consideration 14-16
Example of $FIX Function 14-16

$FIXD Function 14-16
Usage Consideration 14-17
Example of $FIXD Function 14-17

$FIXI Function 14-17
Usage Considerations 14-17
Example of $FIXI Function 14-17

$FIXL Function 14-18
Usage Considerations 14-18
Examples of $FIXL Function 14-18

$FIXR Function 14-18
Usage Considerations 14-18
Example of $FIXR Function 14-19

$FLT Function 14-19
Usage Consideration 14-19
Example of $FLT Function 14-19

$FLTR Function 14-20
Usage Consideration 14-20
Example of $FLTR Function 14-20

$HIGH Function 14-20
Example of $HIGH Function 14-20

$IFIX Function 14-21
Usage Consideration 14-21
Example of $IFIX Function 14-21

$INT Function 14-21
Usage Considerations 14-22
Examples of $INT Function 14-22

$INTR Function 14-22
Usage Considerations 14-22
Example of $INTR Function 14-23

$LADR Function 14-23
Usage Considerations 14-23
Example of $LADR Function 14-24

$LEN Function 14-24
Usage Considerations 14-24
Examples of $LEN Function 14-25

$LFIX Function 14-25
TAL Reference Manual—526371-001
xi

Contents 14. Standard Functions (continued)
14. Standard Functions (continued)
Usage Consideration 14-26
Example of $LFIX Function 14-26

$LMAX Function 14-26
Example of $LMAX Function 14-26

$LMIN Function 14-26
Example of $LMIN Function 14-27

$MAX Function 14-27
Example of $MAX Function 14-27

$MIN Function 14-27
Example of $MIN Function 14-28

$NUMERIC Function 14-28
Usage Considerations 14-28
Example of $NUMERIC Function 14-28

$OCCURS Function 14-29
Usage Considerations 14-29
Examples of $OCCURS Function 14-30

$OFFSET Function 14-30
Usage Considerations 14-31
Examples of $OFFSET Function 14-31

$OPTIONAL Function 14-32
Usage Considerations 14-33
Examples of the $OPTIONAL Function 14-33

$OVERFLOW Function 14-35
Usage Considerations 14-35
Example of $OVERFLOW Function 14-36

$PARAM Function 14-36
Usage Considerations 14-36
Example of $PARAM Function 14-37

$POINT Function 14-37
Usage Considerations 14-37
Example of $POINT Function 14-37

$READCLOCK Function 14-38
Usage Considerations 14-38
Example of $READCLOCK Function 14-38

$RP Function 14-38
Usage Consideration 14-38
Example of $RP Function 14-38

$SCALE Function 14-39
TAL Reference Manual—526371-001
xii

Contents 14. Standard Functions (continued)
14. Standard Functions (continued)
Usage Considerations 14-39
Example of $SCALE Function 14-39

$SPECIAL Function 14-40
Usage Considerations 14-40
Example of $SPECIAL Function 14-40

$SWITCHES Function 14-40
$TYPE Function 14-41

Usage Considerations 14-41
Example of $TYPE Function 14-41

$UDBL Function 14-41
Usage Consideration 14-42
Example of $UDBL Function 14-42

$USERCODE Function 14-42
Usage Considerations 14-42
Example of $USERCODE Function 14-43

$XADR Function 14-43
Usage Considerations 14-43
Examples of $XADR Function 14-44

Built-in Functions 14-44

15. Privileged Procedures
Privileged Mode 15-1

CALLABLE Procedures 15-1
PRIV Procedures 15-1
Nonprivileged Procedures 15-2

Privileged Operations 15-2
System Global Pointer Declaration 15-3

Usage Consideration 15-3
Example of System Global Pointer Declaration 15-3

'SG'-Equivalenced Variable Declarations 15-4
'SG'-Equivalenced Simple Variable 15-4

Example of 'SG'-Equivalenced Simple Variable 15-5
'SG'-Equivalenced Definition Structure 15-5

Usage Consideration 15-6
Example of 'SG'-Equivalenced Definition Structure 15-6

'SG'-Equivalenced Referral Structure 15-6
Usage Considerations 15-7
Example of 'SG'-Equivalenced Referral Structure 15-7
TAL Reference Manual—526371-001
xiii

Contents 15. Privileged Procedures (continued)
15. Privileged Procedures (continued)
'SG'-Equivalenced Simple Pointer 15-8

Example of 'SG'-Equivalenced Simple Pointer 15-9
'SG'-Equivalenced Structure Pointer 15-9

Usage Considerations 15-10
Example of 'SG'-Equivalenced Simple Pointer 15-10

Functions for Privileged Operations 15-11
$AXADR Function 15-11

Usage Considerations 15-11
Example of $AXADR Function 15-11

$BOUNDS Function 15-12
Usage Considerations 15-12
Example of $BOUNDS Function 15-12

$SWITCHES Function 15-13
Usage Considerations 15-13
Example of $SWITCHES Function 15-13

TARGET Directive 15-13
Usage Considerations 15-14
Examples of TARGET Directive 15-15

16. Compiler Directives
Specifying Compiler Directives 16-1

Compilation Command 16-1
Directive Line 16-2

Directive Stacks 16-3
Pushing Directive Settings 16-3
Popping Directive Settings 16-3

File Names As Directive Arguments 16-4
Partial File Names 16-4
Logical File Names 16-5

Summary of Compiler Directives 16-5
ABORT Directive 16-12

Usage Considerations 16-12
Example of ABORT Directive 16-13

ABSLIST Directive 16-13
Usage Considerations 16-13
Example of ABSLIST Considerations 16-14

ASSERTION Directive 16-14
Usage Considerations 16-14
TAL Reference Manual—526371-001
xiv

Contents 16. Compiler Directives (continued)
16. Compiler Directives (continued)
Example of ASSERTION Directive 16-15

BEGINCOMPILATION Directive 16-16
Usage Considerations 16-16
Example of BEGINCOMPILATION Directive 16-16

CHECK Directive 16-17
Usage Considerations 16-17
Example of CHECK Directive 16-18

CODE Directive 16-18
Usage Considerations 16-19
Example of CODE Directive 16-19

COLUMNS Directive 16-19
Usage Considerations 16-20
Examples of COLUMNS Directive 16-21

COMPACT Directive 16-21
Usage Considerations 16-21
Example of COMPACT Directive 16-22

CPU Directive 16-22
Usage Considerations 16-22

CROSSREF Directive 16-22
Usage Considerations 16-23
Example of CROSSREF Directive 16-25

DATAPAGES Directive 16-25
Usage Considerations 16-26
Example of DATAPAGES Directive 16-26

DECS Directive 16-26
Usage Considerations 16-27
Example of DECS Directive 16-27

DEFEXPAND Directive 16-27
Usage Considerations 16-28
Example of DEFEXPAND Directive 16-28

DEFINETOG Directive 16-29
Usage Considerations 16-29
Examples of DEFINETOG Directive 16-30

DUMPCONS Directive 16-31
Usage Considerations 16-31
Example of DUMPCONS Directive 16-32

ENDIF Directive 16-32
ENV Directive 16-32
TAL Reference Manual—526371-001
xv

Contents 16. Compiler Directives (continued)
16. Compiler Directives (continued)
Usage Considerations 16-33
Examples of ENV Directive 16-34

ERRORFILE Directive 16-34
Usage Considerations 16-35
Example of ERRORFILE Directive 16-36

ERRORS Directive 16-37
Usage Considerations 16-37
Example of ERRORS Directive 16-37

EXTENDSTACK Directive 16-37
Usage Considerations 16-38
Example of EXTENDSTACK Directive 16-38

EXTENDTALHEAP Directive 16-38
Usage Considerations 16-38
Example of EXTENDTALHEAP Directive 16-39

FIXUP Directive 16-39
Usage Considerations 16-39
Example of FIXUP Directive 16-40

FMAP Directive 16-40
Usage Considerations 16-40
Examples of FMAP Directive 16-41

GMAP Directive 16-41
Usage Considerations 16-41
Examples of GMAP Directive 16-41

HEAP Directive 16-42
Usage Considerations 16-42
Example of HEAP Directive 16-43

HIGHPIN Directive 16-43
Usage Considerations 16-43
Examples of Running Object Files at HIGHPIN 16-44

HIGHREQUESTERS Directive 16-45
Usage Considerations 16-45
Examples of HIGHREQUESTERS Directive 16-45

ICODE Directive 16-46
Usage Considerations 16-46
Example of ICODE Directive 16-47

IF and ENDIF Directives 16-47
Usage Considerations 16-48
Examples of IF and ENDIF Directives 16-49
TAL Reference Manual—526371-001
xvi

Contents 16. Compiler Directives (continued)
16. Compiler Directives (continued)
INHIBITXX Directive 16-50

Usage Considerations 16-50
Example of INHIBITXX Directive 16-51

INNERLIST Directive 16-52
Usage Considerations 16-53
Example of INNERLIST Considerations 16-53

INSPECT Directive 16-54
Usage Considerations 16-54
Example of INSPECT Directive 16-54

INT32INDEX Directive 16-55
Usage Considerations 16-55
Example of INT32INDEX Directive 16-56

LARGESTACK Directive 16-57
Usage Considerations 16-57
Example of LARGESTACK Directives 16-57

LIBRARY Directive 16-58
Usage Considerations 16-58
Example of LIBRARY Directive 16-58
About User Libraries 16-58

LINES Directive 16-59
Usage Considerations 16-59
Examples of LINES Directive 16-59

LIST Directive 16-59
Usage Consideration 16-60
Examples of LIST Directive 16-60

LMAP Directive 16-61
Usage Considerations 16-61
Example of LMAP Directive 16-62

MAP Directive 16-62
Usage Considerations 16-62
Example of MAP Directive 16-63

OLDFLTSTDFUNC Directive 16-63
Usage Considerations 16-63
Example of OLDFLTSTDFUNC Directive 16-63

OPTIMIZE Directive 16-64
Usage Considerations 16-64
Examples of OPTIMIZE Directive 16-64

PAGE Directive 16-65
TAL Reference Manual—526371-001
xvii

Contents 16. Compiler Directives (continued)
16. Compiler Directives (continued)
Usage Considerations 16-65
Example of PAGE Directive 16-65

PEP Directive 16-66
Usage Considerations 16-66
Example of PEP Directive 16-66

PRINTSYM Directive 16-67
Usage Considerations 16-67
Example of PRINTSYM Directive 16-67

RELOCATE Directive 16-67
Usage Considerations 16-68
Example of RELOCATE Directive 16-68

RESETTOG Directive 16-68
Usage Considerations 16-69

Example of RESETTOG Directive 16-70
ROUND Directive 16-70

Usage Considerations 16-70
Example of ROUND Directive 16-71

RP Directive 16-71
Usage Considerations 16-71
Example of RP Directive 16-72

RUNNAMED Directive 16-73
Usage Considerations 16-73
Examples of RUNNAMED Directive 16-73

SAVEABEND Directive 16-73
Usage Considerations 16-74
Example of SAVEABEND Directive 16-74

SAVEGLOBALS Directive 16-75
Usage Considerations 16-75
Examples of SAVEGLOBALS Directive 16-78

SEARCH Directive 16-79
Usage Considerations 16-80
Examples of SEARCH Directive 16-81

SECTION Directive 16-81
Usage Considerations 16-81
Example of SECTION Directive 16-82

SETTOG Directive 16-82
Usage Considerations 16-83
Examples of SETTOG Directive 16-83
TAL Reference Manual—526371-001
xviii

Contents 16. Compiler Directives (continued)
16. Compiler Directives (continued)
SOURCE Directive 16-84

Usage Considerations 16-85
Examples of SOURCE Directive 16-86

SQL Directive 16-86
SQLMEM Directive 16-86
STACK Directive 16-87

Usage Considerations 16-87
Example of STACK Directive 16-87

SUBTYPE Directive 16-87
Usage Considerations 16-88
Example of SUBTYPE Directive 16-88

SUPPRESS Directive 16-88
Usage Considerations 16-89
Example of SUPPRESS Directive 16-89

SYMBOLPAGES Directive 16-89
Usage Considerations 16-90
Example of SYMBOLPAGES Directive 16-90

SYMBOLS Directive 16-90
Usage Considerations 16-90
Examples of SYMBOLS Directive 16-91

SYNTAX Directive 16-92
Usage Considerations 16-92
Examples of SYNTAX Directive 16-92

TARGET Directive 16-93
USEGLOBALS Directive 16-93

Usage Considerations 16-94
Example of USEGLOBALS Directive 16-95

WARN Directive 16-95
Usage Considerations 16-96
Example of WARN Directive 16-96

A. Error Messages
Compiler Initialization Messages A-1
About Error and Warning Messages A-1
Error Messages A-2
Warning Messages A-40
SYMSERV Messages A-57
BINSERV Messages A-57
TAL Reference Manual—526371-001
xix

Contents A. Error Messages (continued)
A. Error Messages (continued)
Common Run-Time Environment Messages A-57

B. TAL Syntax Summary (Railroad Diagrams)
Constants B-1

Character String Constants B-1
STRING Numeric Constants B-2
INT Numeric Constants B-2
INT(32) Numeric Constants B-2
FIXED Numeric Constants B-2
REAL and REAL(64) Numeric Constants B-3

Constant Lists B-3
Expressions B-4

Arithmetic Expressions B-4
Conditional Expressions B-5
Assignment Expressions B-5
CASE Expressions B-5
IF Expressions B-6
Group Comparison Expressions B-6
Bit Extractions B-6
Bit Shifts B-7

Declarations B-7
LITERAL and DEFINE Declarations B-7

LITERALs B-7
DEFINEs B-8
Simple Variable Declarations B-8
Array Declarations B-9
Structure Declarations B-10
Definition Structures B-10
Template Structures B-11
Referral Structures B-11
Simple Variables Declared in Structures B-11
Arrays Declared in Structures B-12
Definition Substructures B-12
Referral Substructures B-12
Fillers in Structures B-13
Simple Pointers Declared in Structures B-13
Structure Pointers Declared in Structures B-13
Simple Variable Redefinitions B-13
TAL Reference Manual—526371-001
xx

Contents B. TAL Syntax Summary (Railroad
Diagrams) (continued)
B. TAL Syntax Summary (Railroad Diagrams) (continued)
Array Redefinitions B-14
Definition Substructure Redefinitions B-14
Referral Substructure Redefinitions B-14
Simple Pointer Redefinitions B-15
Structure Pointer Redefinitions B-15

Pointer Declarations B-15
Simple Pointers B-16
Structure Pointers B-16
Equivalenced Variable Declarations B-16
Equivalenced Simple Variables B-17
Equivalenced Definition Structures B-17
Equivalenced Referral Structures B-18
Equivalenced Simple Pointers B-18
Equivalenced Structure Pointers B-19

Base-Address Equivalenced Variable Declarations B-19
Base-Address Equivalenced Simple Variables B-19
Base-Address Equivalenced Definition Structures B-20
Base-Address Equivalenced Referral Structures B-21
Base-Address Equivalenced Simple Pointers B-21
Base-Address Equivalenced Structure Pointers B-22

NAME and BLOCK Declarations B-22
NAMEs B-22
BLOCKs B-22

Procedure and Subprocedure Declarations B-23
Procedures B-23
Subprocedures B-28
Entry Points B-31
Labels B-31

Statements B-31
Compound Statements B-31
ASSERT Statement B-32
Assignment Statement B-32
Bit Deposit Assignment Statement B-32
CALL Statement B-33
Labeled CASE Statement B-33
Unlabeled CASE Statement B-34
CODE Statement B-34
DO Statement B-35
TAL Reference Manual—526371-001
xxi

Contents B. TAL Syntax Summary (Railroad
Diagrams) (continued)
B. TAL Syntax Summary (Railroad Diagrams) (continued)
DROP Statement B-36
FOR Statement B-36
GOTO Statement B-36
IF Statement B-36
Move Statement B-37
RETURN Statement B-38
Scan Statement B-38
STACK Statement B-38
STORE Statement B-39
USE Statement B-39
WHILE Statement B-39

Standard Functions B-39
$ABS Function B-39
$ALPHA Function B-40
$AXADR Function B-40
$BITLENGTH Function B-40
$BITOFFSET Function B-40
$BOUNDS Function B-40
$CARRY Function B-40
$COMP Function B-41
$DBL Function B-41
$DBLL Function B-41
$DBLR Function B-41
$DFIX Function B-41
$EFLT Function B-42
$EFLTR Function B-42
$FIX Function B-42
$FIXD Function B-42
$FIXI Function B-42
$FIXL Function B-43
$FIXR Function B-43
$FLT Function B-43
$FLTR Function B-43
$HIGH Function B-43
$IFIX Function B-44
$INT Function B-44
$INTR Function B-44
$LADR Function B-44
TAL Reference Manual—526371-001
xxii

Contents B. TAL Syntax Summary (Railroad
Diagrams) (continued)
B. TAL Syntax Summary (Railroad Diagrams) (continued)
$LEN Function B-45
$LFIX Function B-45
$LMAX Function B-45
$LMIN Function B-45
$MAX Function B-45
$MIN Function B-46
$NUMERIC Function B-46
$OCCURS Function B-46
$OFFSET Function B-46
$OPTIONAL Function B-46
$OVERFLOW Function B-47
$PARAM Function B-47
$POINT Function B-47
$READCLOCK Function B-47
$RP Function B-48
$SCALE Function B-48
$SPECIAL Function B-48
$SWITCHES Function B-48
$TYPE Function B-48
$UDBL Function B-49
$USERCODE Function B-49
$XADR Function B-49

Privileged Procedures B-49
System Global Pointers B-49
'SG'-Equivalenced Simple Variables B-50
'SG'-Equivalenced Definition Structures B-50
'SG'-Equivalenced Referral Structures B-51
'SG'-Equivalenced Simple Pointers B-51
'SG'-Equivalenced Structure Pointers B-52
TARGET Directive B-54
Compiler Directives B-54
Directive Lines B-54
ABORT Directive B-54
ABSLIST Directive B-55
ASSERTION Directive B-55
BEGINCOMPILATION Directive B-55
CHECK Directive B-55
CODE Directive B-56
TAL Reference Manual—526371-001
xxiii

Contents B. TAL Syntax Summary (Railroad
Diagrams) (continued)
B. TAL Syntax Summary (Railroad Diagrams) (continued)
COLUMNS Directive B-56
COMPACT Directive B-57
CPU Directive B-57
CROSSREF Directive B-57
DATAPAGES Directive B-57
DECS Directive B-58
DEFEXPAND Directive B-58
DEFINETOG Directive B-58
DUMPCONS Directive B-59
ENDIF Directive B-59
ENV Directive B-59
ERRORFILE Directive B-60
ERRORS Directive B-60
EXTENDSTACK Directive B-60
EXTENDTALHEAP Directive B-61
FIXUP Directive B-61
FMAP Directive B-61
GMAP Directive B-61
HEAP Directive B-62
HIGHPIN Directive B-62
HIGHREQUESTERS Directive B-62
ICODE Directive B-62
IF and ENDIF Directives B-63
INHIBITXX Directive B-63
INNERLIST Directive B-63
INSPECT Directive B-64
INT32INDEX Directive B-64
LARGESTACK Directive B-65
LIBRARY Directive B-65
LINES Directive B-65
LIST Directive B-65
LMAP Directive B-66
MAP Directive B-66
OLDFLTSTDFUNC Directive B-67
OPTIMIZE Directive B-67
PAGE Directive B-67
PEP Directive B-67
PRINTSYM Directive B-68
TAL Reference Manual—526371-001
xxiv

Contents B. TAL Syntax Summary (Railroad
Diagrams) (continued)
B. TAL Syntax Summary (Railroad Diagrams) (continued)
RELOCATE Directive B-68
RESETTOG Directive B-68
ROUND Directive B-69
RP Directive B-69
RUNNAMED Directive B-69
SAVEABEND Directive B-69
SAVEGLOBALS Directive B-70
SEARCH Directive B-70
SECTION Directive B-70
SETTOG Directive B-71
SOURCE Directive B-71
SQL Directive B-71
SQLMEM Directive B-71
STACK Directive B-72
SUBTYPE Directive B-72
SUPPRESS Directive B-72
SYMBOLPAGES Directive B-72
SYMBOLS Directive B-73
SYNTAX Directive B-73
TARGET Directive B-73
USEGLOBALS Directive B-73
WARN Directive B-74

C. TAL Syntax Summary (Bracket-and-Brace Diagrams)
General Syntax Notation C-1

UPPERCASE LETTERS C-1
lowercase italic letters C-1
Brackets [] C-1
Braces { } C-2
Vertical Line | C-2
Ellipsis ... C-2
Punctuation C-2
Item Spacing C-2
Line Spacing C-3

Constants C-3
Character String Constants C-3
STRING Numeric Constants C-3
INT Numeric Constants C-4
TAL Reference Manual—526371-001
xxv

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)
C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

INT(32) Numeric Constants C-4
FIXED Numeric Constants C-4
REAL and REAL(64) Numeric Constants C-4
Constant Lists C-4

Expressions C-5
Arithmetic Expressions C-5
Conditional Expressions C-5
Assignment Expressions C-5
CASE Expressions C-6
IF Expressions C-6
Group Comparison Expressions C-6
Bit Extractions C-6
Bit Shifts C-6

Declarations C-6
LITERAL and DEFINE Declarations C-7

LITERALs C-7
DEFINEs C-7

Simple Variable Declarations C-7
Simple Variables C-7

Array Declarations C-8
Arrays C-8
Read-Only Arrays C-8

Structure Declarations C-9
Definition Structures C-9
Template Structures C-9
Referral Structures C-9
Simple Variables Declared n Structures C-9
Arrays Declared in Structures C-9
Definition Substructures C-10
Referral Substructures C-10
Fillers in Structures C-10
Simple Pointers Declared in Structures C-10
Structure Pointers Declared in Structures C-10
Simple Variable Redefinitions C-11
Array Redefinitions C-11
Definition Substructure Redefinitions C-11
TAL Reference Manual—526371-001
xxvi

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)
C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

Referral Substructure Redefinitions C-11
Simple Pointer Redefinitions C-11
Structure Pointer Redefinitions C-11

Pointer Declarations C-12
Simple Pointers C-12
Structure Pointers C-12

Equivalenced Variable Declarations C-12
Equivalenced Simple Variables C-12
Equivalenced Definition Structures C-13
Equivalenced Referral Structures C-13
Equivalenced Simple Pointers C-13
Equivalenced Structure Pointers C-14

Base-Address Equivalenced Variable Declarations C-14
Base-Address Equivalenced Simple Variables C-14
Base-Address Equivalenced Definition Structures C-14
Base-Address Equivalenced Referral Structures C-15
Base-Address Equivalenced Simple Pointers C-15

Base-Address Equivalenced Structure Pointers C-15
NAME and BLOCK Declarations C-16
NAMEs C-16
BLOCKs C-16

Procedure and Subprocedure Declarations C-16
Procedures C-16
Subprocedures C-18

Statements C-19
Compound Statements C-19
ASSERT Statement C-19
Assignment Statement C-19
Bit-Deposit Assignment Statement C-20
CALL Statement C-20
Labeled CASE Statement C-20
Unlabeled CASE Statement C-20
CODE Statement C-21
DO Statement C-21
DROP Statement C-21
FOR Statement C-21
TAL Reference Manual—526371-001
xxvii

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)
C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

GOTO Statement C-21
IF Statement C-22
Move Statement C-22
RETURN Statement C-22
SCAN Statement C-22
STACK Statement C-23
STORE Statement C-23
USE Statement C-23
WHILE Statement C-23

Standard Functions C-23
$ABS Function C-23
$ALPHA Function C-23
$AXADR Function C-24
$BITLENGTH Function C-24
$BITOFFSET Function C-24
$BOUNDS Function C-24
$CARRY Function C-24
$COMP Function C-24
$DBL Function C-24
$DBLL Function C-24
$DBLR Function C-25
$DFIX Function C-25
$EFLT Function C-25
$EFLTR Function C-25
$FIX Function C-25
$FIXD Function C-25
$FIXI Function C-26
$FIXL Function C-26
$FIXR Function C-26
$FLT Function C-26
$FLTR Function C-26
$HIGH Function C-26
$IFIX Function C-26
$INT Function C-27
$INTR Function C-27
$LADR Function C-27
TAL Reference Manual—526371-001
xxviii

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)
C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

$LEN Function C-27
$LFIX Function C-27
$LMAX Function C-27
$LMIN Function C-28
$MAX Function C-28
$MIN Function C-28
$NUMERIC Function C-28
$OCCURS Function C-28
$OFFSET Function C-28
$OPTIONAL Function C-28
$OVERFLOW Function C-29
$PARAM Function C-29
$POINT Function C-29
$READCLOCK Function C-29
$RP Function C-29
$SCALE Function C-29
$SPECIAL Function C-30
$SWITCHES Function C-30
$TYPE Function C-30
$UDBL Function C-30
$USERCODE Function C-30
$XADR Function C-30

Privileged Procedures C-30
System Global Pointers C-30
'SG'-Equivalenced Simple Variables C-31
'SG'-Equivalenced Definition Structures C-31
'SG'-Equivalenced Referral Structures C-31
'SG'-Equivalenced Simple Pointers C-31
'SG'-Equivalenced Structure Pointers C-32
$AXADR Function C-32
$BOUNDS Function C-32
$SWITCHES Function C-32
TARGET Directive C-33

Compiler Directives C-33
Directive Lines C-33
ABORT Directive C-33
TAL Reference Manual—526371-001
xxix

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)
C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

ABSLIST Directive C-33
ASSERTION Directive C-33
BEGINCOMPILATION Directive C-34
CHECK Directive C-34
CODE Directive C-34
COLUMNS Directive C-34
COMPACT Directive C-34
CPU Directive C-34
CROSSREF Directive C-35
DATAPAGES Directive C-35
DECS Directive C-35
DEFEXPAND Directive C-35
DEFINETOG Directive C-35
DUMPCONS Directive C-36
ENDIF Directive C-36
ENV Directive C-36
ERRORFILE Directive C-36
ERRORS Directive C-36
EXTENDSTACK Directive C-36
EXTENDTALHEAP Directive C-36
FIXUP Directive C-37
FMAP Directive C-37
GMAP Directive C-37
HEAP Directive C-37
HIGHPIN Directive C-37
HIGHREQUESTERS Directive C-37
ICODE Directive C-37
IF and ENDIF Directive C-38
INHIBITXX Directive C-38
INNERLIST Directive C-38
INSPECT Directive C-38
INT32INDEX Directive C-39
LARGESTACK Directive C-39
LIBRARY Directive C-39
LINES Directive C-39
LIST Directive C-39
TAL Reference Manual—526371-001
xxx

Contents C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)
C. TAL Syntax Summary (Bracket-and-Brace
Diagrams) (continued)

LMAP Directive C-39
MAP Directive C-40
OLDFLTSTDFUNC Directive C-40
OPTIMIZE Directive C-40
PAGE Directive C-40
PEP Directive C-40
PRINTSYM Directive C-40
RELOCATE Directive C-41
RESETTOG Directive C-41
RP Directive C-41
RUNNAMED Directive C-41
SAVEABEND Directive C-41
SAVEGLOBALS Directive C-42
SEARCH Directive C-42
SECTION Directive C-42
SETTOG Directive C-42
SOURCE Directive C-42
SQL Directive C-43
SQLMEM Directive C-43
STACK Directive C-43
SUBTYPE Directive C-43
SUPPRESS Directive C-43
SYMBOLPAGES Directive C-43
SYMBOLS Directive C-43
SYNTAX Directive C-43
USEGLOBALS Directive C-44
WARN Directive C-44

Glossary

Index

Tables
Table i. TAL Manual Set xlii
Table ii. NonStop Systems xliv
Table iii. System Manuals xlv
Table iv. Programming Manuals xlvi
TAL Reference Manual—526371-001
xxxi

Contents Tables (continued)
Tables (continued)
Table v. Program Development Manuals xlvi
Table 1-1. Uses of TAL 1-1
Table 2-1. TAL Statements 2-2
Table 2-2. Keywords 2-3
Table 2-3. Nonreserved Keywords 2-3
Table 2-4. Identifier Classes 2-5
Table 2-5. Variables 2-6
Table 2-6. Indirection Symbols 2-7
Table 2-7. Base Address Symbols 2-7
Table 2-8. Delimiters 2-8
Table 2-9. Operators 2-9
Table 3-1. Data Types 3-2
Table 3-2. Storage Units 3-5
Table 3-3. Operations by Data Type 3-5
Table 3-4. Standard Functions by Data Type 3-6
Table 3-5. Address Types 3-7
Table 4-1. Precedence of Operators 4-3
Table 4-2. Operands in Arithmetic Expressions 4-6
Table 4-3. Signed Arithmetic Operators 4-7
Table 4-4. Signed Arithmetic Operand and Result Types 4-7
Table 4-5. Unsigned Arithmetic Operators 4-9
Table 4-6. Unsigned Arithmetic Operand and Result Types 4-10
Table 4-7. Logical Operators and Result Yielded 4-11
Table 4-8. Conditions in Conditional Expressions 4-13
Table 4-9. Boolean Operators and Result Yielded 4-14
Table 4-10. Signed Relational Operators and Result Yielded 4-15
Table 4-11. Unsigned Relational Operators and Result Yielded 4-15
Table 4-12. Special Expressions 4-19
Table 4-13. Bit - Operations 4-27
Table 4-14. Bit-Shift Operators 4-30
Table 8-1. Kinds of Structures 8-1
Table 8-2. Structure Items 8-2
Table 8-3. Data Accessed by Simple Pointers 8-14
Table 8-4. Addresses in Simple Pointers 8-14
Table 8-5. Addresses in Structure Pointers 8-16
Table 9-1. Data Accessed by Simple Pointers 9-3
Table 9-2. Addresses in Simple Pointers 9-3
Table 9-3. Addresses in Structure Pointers 9-7
TAL Reference Manual—526371-001
xxxii

Contents Tables (continued)
Tables (continued)
Table 10-1. Equivalenced Variables 10-1
Table 12-1. Summary of Statements 12-1
Table 13-1. Formal Parameter Specification 13-12
Table 14-1. Summary of Standard Functions 14-2
Table 14-2. Type-Transfer Functions by Data Type 14-4
Table 14-3. Address type-transfer functions 14-45
Table 14-4. pTAL built-ins 14-45
Table 16-1. Summary of Compiler Directives 16-6
TAL Reference Manual—526371-001
xxxiii

Contents
TAL Reference Manual—526371-001
xxxiv

What’s New in This Manual

Manual Information
TAL Reference Manual

Abstract

This manual provides syntax descriptions and error messages for TAL (Transaction
Application Language) for system and application programmers.

Product Version

TAL D40

Supported Release Version Updates (RVUs)

This publication supports D40.00 and all subsequent D-series RVUs, and G01.00 and
all subsequent G-series RVUs until otherwise indicated in a new edition.

Document History

New and Changed Information
• Since product names are changing over time, this publication might contain both

HP and Compaq product names.

• Product names in graphic representations are consistent with the current product
interface.

• There was an error in describing the $OPTIONAL function. Hence, this release
ensures the correct description of the $OPTIONAL function.

• Adding a description as to how to write user library code files was an issue, which
has been solved in this release of the manual. Now, it explains the same by
referring it to the Binder manual.

• Compiler error 88 was very complex. Hence, this release ensures that the
explanation has been simplied for easy understanding.

Part Number Published

526371-001 September 2003

Part Number Product Version Published

15998 TAL C20 March 1989

065722 TAL D10 January 1993

096255 TAL C30, TAL D10 & TAL D20 September 1993

526371-001 TAL D40 September 2003
TAL Reference Manual—526371-001
xxxv

What’s New in This Manual New and Changed Information
• Added Built-in Functions on page 14-44 to document that TAL directly implements
pTAL built-ins
TAL Reference Manual—526371-001
xxxvi

About This Manual
The Transaction Application Language (TAL) is a high-level, block-structured language
used to write system software and transaction-oriented applications.

The TAL compiler compiles TAL source programs into executable object programs.
The TAL compiler and the object programs it generates execute under control of the
HP NonStop™ Kernel operating system.

This manual describes the syntax for using TAL and the TAL compiler. It describes:

• The syntax for declaring variables and procedures

• The syntax for specifying expressions, statements, standard functions, and
compiler directives

• Error and warning messages

Audience
This manual is intended for system programmers and application programmers who
are familiar with NonStop systems and the NonStop Kernel operating system.

How to Use this Manual Set
The TAL Programmer’s Guide is a prerequisite to the TAL Reference Manual:

TAL
Programmer's
Guide

TAL
Reference
Summary

TAL
Reference
Manual

VSTAB01.vsd
TAL Reference Manual—526371-001
xxxvii

About This Manual Manual Organization
For more information about TAL, first read the TAL Programmer’s Guide.

If you are familiar with TAL and the process environment, consult the TAL Reference
Manual for the syntax for declarations, statements, and directives and for information
about error messages.

For more information on writing a program that mixes TAL modules with modules
written in other languages, see Section 17, Mixed-Language Programming, in the TAL
Programmer’s Guide.

Manual Organization
This TAL Reference Manual covers these topics:

Table i. TAL Manual Set

Manual Description

TAL Programmer’s Guide Helps you get started in creating, structuring, compiling,
running and debugging programs. Describes how to
declare and access procedures and variables and how
the TAL compiler allocates storage for variables.

TAL Reference Manual Describes the syntax for declaring variables and
procedures and for specifying expressions, statements,
standard functions, and compiler directives; describes
error and warning messages.

TAL Reference Summary Presents a summary of syntax diagrams.

Section 1,
Introduction

summarizes the features of TAL

Section 2,
Language
Elements

summarizes language elements such as reserved words, identifiers,
constants, number bases, symbols, and operators

Section 3, Data
Representation

describes data types, storage units, character strings, numeric
constants, and constant lists

Section 4,
Expressions

describes the syntax for specifying arithmetic, conditional, and
special expressions

Section 5,
LITERALs and
DEFINEs

describes the syntax for LITERAL and DEFINE declarations

Section 6, Simple
Variables

describes the syntax for declaring simple variables

Section 7, Arrays describes the syntax for declaring arrays and read-only arrays

Section 8,
Structures

describes the syntax for declaring structures and structure items

Section 9, Pointers describes the syntax for declaring simple pointers and structure
pointers
TAL Reference Manual—526371-001
xxxviii

About This Manual System Dependencies
System Dependencies
The features mentioned in this manual are supported on all currently supported
systems except where noted. Table ii on page -xl lists the systems that TAL supports:

Section 10,
Equivalenced
Variables

describes the syntax for declaring equivalenced variables

Section 11,
NAMEs and
BLOCKs

describes the syntax for NAME and BLOCK declarations

Section 12,
Statements

describes the syntax for specifying statements

Section 13,
Procedures

describes the syntax for declaring procedures, subprocedures, entry
points, and labels

Section 14,
Standard
Functions

describes the syntax for using standard functions

Section 15,
Privileged
Procedures

describes the syntax for declaring system global pointers and 'SG'-
equivalenced variables and for using privileged standard functions

Section 16,
Compiler
Directives

describes the syntax for specifying compiler directives

Appendix A, Error
Messages

describes error and warning messages

Appendix B, TAL
Syntax Summary
(Railroad
Diagrams)

presents a syntax summary

Appendix C, TAL
Syntax Summary
(Bracket-and-
Brace Diagrams)

presents the syntax summary in bracket-and-brace format
TAL Reference Manual—526371-001
xxxix

About This Manual Compiler Dependencies
Programs That Run on the TNS System
All programs written for the C-series TNS system can run on a D-series TNS system
without modification. You can modify C-series application programs to take advantage
of S-series features, as described in the Guardian Application Conversion Guide.

Programs That Run on a TNS/R System
Most programs written for TNS systems can run on a TNS/R system without
modification. Low-level programs, however, might need modification as described in
the Guardian Application Conversion Guide.

The Accelerator Manual tells how to accelerate a TNS program to make it run faster on
a TNS/R system. An accelerated object file contains:

• The original TNS object code and related Binder and symbol information

• The accelerated (RISC) object code and related address map tables

Future Software Platforms
The storage allocation conventions described in this manual apply only to current
software platforms. For portability to future software platforms, do not write programs
that rely on the spatial relationships shown for variables and parameters stored in
memory. More specific areas of nonportability are noted in this manual where
applicable.

Compiler Dependencies
The compiler is a disk-resident program on each NonStop system. In general, a
particular version of the compiler runs on the corresponding or later version of the
operating system. For example, the D20 version of the compiler requires at least the
D20 version of the operating system.

Table ii. NonStop Systems

System Name Description Operating System

HP NonStop
Series (TNS
System)

Based on complex instruction set
computing (CISC) technology—a large
instruction set, numerous addressing
modes, multicycle machine instructions,
and special-purpose instructions

G-series

HP NonStop
Series/RISC
(TNS/R) system

Based on reduced instruction set
computing (RISC) technology—a small,
simple instruction set, general-purpose
registers, and high-performance
instruction execution

G-series software on S-
series hardware
TAL Reference Manual—526371-001
xl

About This Manual Additional Information
If you need to develop and maintain C-series TAL applications on a D-series system,
the following files must be restored from the C-series system:

The C-series compiler expects a C-series BINSERV and SYMSERV in the same
subvolume (although you can use the PARAM command to specify a BINSERV and
SYMSERV in a different subvolume). C-series tool files (such as BIND and
CROSSREF) can also be restored.

To compile a C-series compilation unit on a D-series system, you must use the fully
qualified name of the C-series compiler; for example:

$myvol.mysubvol.TAL / IN mysrc / myobj

Additional Information
Table iii describes manuals that provide information about NonStop systems.

C-Series File to
Restore Description

TAL TAL Compiler

TALERROR TAL Error Messages

TALLIB TAL Run-time Library

TALDECS TAL External Declarations

FIXERRS TACL macro for correcting TAL source files

BINSERV Binder server for compilers

SYMSERV Symbol-table server for compilers

Table iii. System Manuals

Manual Description

Introduction to HP
NonStop Systems

Provides an overview of the system hardware and software.

Introduction to D-
Series Systems

Provides an overview of D-series enhancements to the
operating system.

System Description
Manual

Describes the system hardware and the process-oriented
organization of the operating system.

TACL Reference
Manual

Describes the syntax for specifying TACL command
interpreter commands.

D-Series System
Migration Planning
Guide

Gives guidelines for migrating from a C-series system to a D-
series system.
TAL Reference Manual—526371-001
xli

About This Manual Additional Information
Table iv describes manuals about programming in the NonStop environment.

Table v describes manuals about program development tools.

Table iv. Programming Manuals

Manual Description

Guardian Procedure
Calls Reference Manual

Gives the syntax and programming considerations for using
system procedures.

Guardian Programmer’s
Guide

Tells how to use the programmatic interface of the operating
system.

Guardian Procedure
Errors and Messages
Manual

Describes error codes, error lists, system messages, and
trap numbers for system procedures.

Guardian Application
Conversion Guide

Gives guidelines for converting C-series TNS programs to
D-series TNS programs, and for converting TNS programs
to TNS/R programs.

Accelerator Manual Tells how to accelerate TNS object files for a TNS/R system.

Common Run-Time
Environment (CRE)
Programmer’s Guide

Tells how to use the CRE for running mixed-language
programs written for D-series systems.

NonStop SQL
Programming Manual for
TAL

Describes the syntax for embedding SQL statements in TAL
programs.

Table v. Program Development Manuals

Manual Description

PS Text Edit Reference
Manual

Explains how to create and edit a text file using the PS
Text Edit full-screen text editor.

Edit User’s Guide and
Reference Manual

Explains how to create and edit a text file using the Edit
line and virtual-screen text editor.

Binder Manual Explains how to bind compilation units (or modules) using
Binder.

CROSSREF Manual Explains how to collect cross-reference information using
the stand-alone Crossref product.

Inspect Manual Explains how to debug programs using the Inspect source-
level and machine-level interactive debugger.

Debug Manual Explains how to debug programs using the Debug
machine-level interactive debugger.
TAL Reference Manual—526371-001
xlii

About This Manual Notation Conventions
Notation Conventions

Railroad Diagrams
This manual presents syntax in railroad diagrams. To use a railroad diagram, follow the
direction of the arrows and specify syntactic items as indicated by the diagram and the
term definitions that follow the diagram. Here is an example of a railroad diagram:

The parts of the diagram have the following meanings:

Branching
Branching lines indicate a choice, such as:

SOURCE file-name

define-name

assign-name

(section-name

,

)

VSTAB02.vsd

SOURCE Specify the keyword as shown, using uppercase or lowercase

, Specify the symbol or punctuation as shown.

Supply the informatin indicated, using uppercase or lowercasesection-name

Required choice. Specify one of the items.

Optional choice. Specify one or none of the items.

Repeatable choice. Specify one or more of the items.

item1

item2

item1

item2

item1

,

TAL Reference Manual—526371-001
xliii

About This Manual Spacing
Spacing
Where no space is allowed, the notation ns appears in the railroad diagram. Here is an
example of a diagram in which spaces are not allowed:

You can prefix identifiers of standard indirect variables with the standard indirection
symbol (.) with no intervening space.

In all other cases, if no separator—such as a comma, semicolon, or parenthesis—is
shown, separate syntactic items with at least one space.

Case Conventions
Case conventions apply to keywords, variable items (information you supply), and
identifiers. This manual presents these terms in uppercase or lowercase as follows:

Example Diagrams
Some of the examples in this manual include diagrams that illustrate memory
allocation. The diagrams are two bytes wide. Unless otherwise noted, the diagrams
refer to locations in the primary area of the user data segment. The following example
shows allocation of an INT(32) array and its initializing values. In the diagram, solid
lines depict borders of storage units, in this case doublewords. Short lines depict words
within each doubleword:

Term Context Case Example

Keywords In text and in railroad diagrams Uppercase RETURN

Variable Items In railroad diagrams Lowercase file-name

Variable items In text Lowercase italics file-name

Identifiers In examples Lowercase INT total;

Identifiers In text Uppercase TOTAL

VSTAB03.vsd

:=.int-expression < left-bit
ns ns ns

: right-bit
ns ns ns

>

TAL Reference Manual—526371-001
xliv

About This Manual Hypertext Links
Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

INT (32) c[0:4] :=
 ["abcd", 1D, 3D, "XYZ", %20D];

! Declare an array and initialize
! the array elements with values
! specified in a constant list

VSTAB04.vsd

"a" "b"

"c" "d"

1D

%20D

"X" "Y"

"Z" " "

3D

C[0]

C[1]

C[2]

C[3]

C[4]
TAL Reference Manual—526371-001
xlv

About This Manual General Syntax Notation
italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name
TAL Reference Manual—526371-001
xlvi

About This Manual General Syntax Notation
Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i
TAL Reference Manual—526371-001
xlvii

About This Manual Notation for Messages
Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }
TAL Reference Manual—526371-001
xlviii

About This Manual Notation for Management Programming Interfaces
| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The %
notation precedes an octal number. The %B notation precedes a binary number. The
%H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming
Interfaces

This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o
TAL Reference Manual—526371-001
xlix

About This Manual Notation for Management Programming Interfaces
TAL Reference Manual—526371-001
l

1 Introduction
The Transaction Application Language (TAL) is a high-level, block-structured language
that works efficiently with the system hardware to provide optimal object program
performance.

The TAL compiler compiles TAL source programs into executable object programs.The
compiler and the object programs it generates execute under control of the NonStop
Kernel.

Applications and Uses
You use TAL most often for writing systems software or transaction-oriented
applications where optimal performance has high priority. You can, for example, use
TAL to write the kinds of software listed in Table 1-1.

Many NonStop software products are written in TAL.

Major Features
The major features of TAL are:

• Procedures—Each program contains one or more procedures. A procedure is a
discrete sequence of declarations and statements that performs a specific task. A
procedure is callable from anywhere in the program. Each procedure executes in
its own environment and can contain local data that is not affected by the actions of
other procedures. When a procedure calls another procedure, the operating
system saves the caller’s environment and restores the environment when the
called procedure returns control to the caller.

Table 1-1. Uses of TAL

Kind of Software Examples

Systems Software Operating System Components
Compilers and Interpreters
Command Interpreters
Special Subsystems
Special routines that support data communication
activities

Applications Software Server processes used with NonStop data
management software
Conversion routines that allow data transfer between
NonStop software and other applications
Procedures that are callable from programs written in
other languages
Applications that require optimal performance
TAL Reference Manual—526371-001
1-1

Introduction Major Features
• Subprocedures—A procedure can contain subprocedures, callable only from within
the same procedure. When a subprocedure calls another subprocedure, the
caller’s environment remains in place. The operating system saves the location in
the caller to which control is to return when the called subprocedure terminates.

• Private data area—Each activation of a procedure or subprocedure has its own
data area. Upon termination, each activation relinquishes its private data area,
thereby keeping the amount of memory used by a program to a minimum.

• Recursion—Because each activation of a procedure or subprocedure has its own
data area, a procedure or subprocedure can call itself or can call another
procedure that in turn calls the original procedure.

• Parameters—A procedure or subprocedure can have optional or required
parameters. The same procedure or subprocedure can process different sets of
variables sent by different calls to it.

• Data types—You can declare and reference the following types of data:

• Data sets—You can declare and use sets of related variables, such as arrays and
structures (records).

• Pointers—You can declare pointers (variables that can contain byte addresses or
word addresses) and use them to access locations throughout memory. You can
store addresses in pointers when you declare them or later in your program.

• Data operations—You can copy a contiguous group of words or bytes and
compare one group with another. You can scan a series of bytes for the first byte
that matches (or fails to match) a given character.

• Bit operations—You can perform bit deposits, bit extractions, and bit shifts.

• Standard functions—You can use built-in functions, for example, to convert data
types and addresses, test for an ASCII character, or determine the length, offset,
type, or number of occurrences of a variable.

• Compiler directives—You can use directives to control a compilation. You can, for
example, check the syntax in your source code or control the content of compiler
listings.

Data Type Description

String 8-bit integer byte

INT, INT(16) 16-bit integer word

INT(32) 32-bit integer doubleword

FIXED, INT(64) 64-bit fixed-point quadrupleword

REAL, REAL(32) 32-bit floating-point doubleword

REAL(64) 64-bit floating-point quadrupleword

UNSIGNED(n) n-bit field, where 1 <= n <= 31
TAL Reference Manual—526371-001
1-2

Introduction System Services
• Modular programming—You can divide a large program into modules, compile
them separately, and then bind the resulting object files into a new object file.

• Mixed-language programming—You can use NAME and BLOCK declarations,
procedure declaration options—such as public name, language attribute, and
parameter pairs—and compiler directives in support of mixed-language
programming.

• NonStop SQL features—You can use compiler directives to prepare a program in
which you want to embed SQL statements.

System Services
Your program can ignore many things such as the presence of other running programs
and whether your program fits into memory. For example, programs are loaded into
memory for you and absent pages are brought from disk into memory as needed.

System Procedures
The file system treats all devices as files, including disk files, disk packs, terminals,
printers, and programs running on the system. File-system procedures provide a file-
access method that lets you ignore the peculiarities of devices. Your program can refer
to a file by the file’s symbolic name without knowing the physical address or
configuration status of the file.

Your program can call system procedures that activate and terminate programs
running in any processor on the system. Your program can also call system
procedures that monitor the operation of a running program or processor. If the
monitored program stops or a processor fails, your program can determine this fact.

For more information on System procedures, see the Guardian Procedure Calls
Reference Manual and the Guardian Programmer’s Guide for your system.

TAL Run-Time Library
The TAL run-time library provides routines that:

• Initialize the Common Run-Time Environment (CRE) when you use D-series
compilers (as described in the TAL Programmer’s Guide)

• Prepare a program for SQL statements (as described in the NonStop SQL
Programming Manual for TAL)
TAL Reference Manual—526371-001
1-3

Introduction CRE Services
CRE Services
The CRE provides services that support mixed-language programs compiled on D-
series compilers. A mixed-language program can consist of C, COBOL85,FORTRAN,
Pascal, and TAL routines.

A routine is a program unit that is callable from anywhere in your program. The term
routine can represent:

• A C function

• A COBOL85 program

• A FORTRAN program or subprogram

• A Pascal procedure or function

• A TAL procedure or function procedure

When you use the CRE, each routine in your program, regardless of language, can:

• Use the routine’s run-time library without overwriting the data of another run-time
library

• Share data in the CRE user heap

• Share access to the standard files—standard input, standard output, and standard
log

• Call math and string functions provided in the CRELIB file

• Call Saved Messages Utility (SMU) functions provided in the Common Language
Utility Library (CLULIB file)

Without the CRE, only routines written in the language of the MAIN routine can fully
access their run-time library. For example, if the MAIN routine is written in TAL, a
routine written in another language might not be able to use its own run-time library.
For more information on CRE guidelines for TAL programs, see Section 17, “Mixed-
Language Programming”. The CRE Programmer’s Guide describes the services
provided by the CRE, including the math, string, and SMU functions.
TAL Reference Manual—526371-001
1-4

2 Language Elements
This section lists the elements that make up the TAL language. The elements listed
include:

Character Set
TAL supports the complete ASCII character set, which includes:

• Uppercase and lowercase alphabetic characters

• Numeric characters (0 through 9)

• Special characters

For more information on the ASCII character set, see Appendix D of the TAL
Programmer’s Guide.

Declarations
Declarations allocate storage and associate identifiers with variables and other
declarable objects in a program.

Variables include data items such as simple variables, arrays, structures, pointers, and
equivalenced variables.

Other declarable objects include procedures, LITERALs, DEFINEs, labels, and entry
points.

Character Set 2-1

Declarations 2-1

Statements 2-2

Identifiers 2-4

Keywords 2-2

Constants 2-5

Variables 2-6

Indirection symbols 2-7

Address base symbols 2-7

Delimiters 2-8

Operators 2-9
TAL Reference Manual—526371-001
2-1

Language Elements Statements
Statements
Statements specify operations to be performed on declared objects. Statements are
summarized in Table 2-1 and described in Section 12, Statements.

Keywords
Keywords have predefined meanings to the compiler when used as shown in the
syntax diagrams in this manual. lists keywords that are reserved by the compiler. Do
not use reserved keywords for your identifiers.

Table 2-1. TAL Statements

Statement Operation

ASSERT Conditionally calls an error-handling procedure

Assignment Stores a value in a variable

CALL Calls a procedure or a subprocedure

CASE Selects a set of statements based on a selector value

CODE * Specifies machine codes or constants for inclusion in the object
code

DO Executes a posttest loop until a condition is true

DROP Frees an index register or removes a label from the symbol table

FOR Executes a pretest loop n times

GOTO Unconditionally branches to a label within a procedure or
subprocedure

IF Selects the THEN statement for a true state or the ELSE
statement for a false state

Move Copies a contiguous group of items from one location to another

RETURN Returns from a procedure or a subprocedure to the caller; returns
a value from a function, and can also return a condition code
value

RSCAN Scans data, right to left, for a test character

SCAN Scans data, left to right, for a test character

STACK * Loads a value onto the register stack

STORE * Stores a register stack value in a variable

USE Reserves an index register

WHILE Executes a pretest loop while a condition is true

* Not portable to future software platforms
TAL Reference Manual—526371-001
2-2

Language Elements Keywords
Table 2-3 lists nonreserved keywords, which you can use as identifiers anywhere
identifiers are allowed, except as noted in the Restrictions column.

Table 2-2. Keywords

AND DO FORWARD MAIN RETURN TO

ASSERT DOWNTO GOTO NOT RSCAN UNSIGNED

BEGIN DROP IF OF SCAN UNTIL

BY ELSE INT OR STACK USE

CALL END INTERRUPT OTHERWISE STORE VARIABLE

CALLABLE ENTRY LABEL PRIV STRING WHILE

CASE EXTERNAL LAND PROC STRUCT XOR

CODE FIXED LITERAL REAL SUBPROC

DEFINE FOR LOR RESIDENT THEN

Table 2-3. Nonreserved Keywords

Keyword Restrictions

AT

BELOW

BIT_FILLER Do not use as an identifier within a structure.

BLOCK Do not use as an identifier in a source file that contains the
NAME declaration.

BYTES Do not use as an identifier of a LITERAL or DEFINE.

C

COBOL

ELEMENTS Do not use as an identifier of a LITERAL or DEFINE.

EXT

EXTENSIBLE

FILLER Do not use as an identifier within a structure.

FORTRAN

LANGUAGE

NAME

PASCAL

PRIVATE Do not use as an identifier in a source file that contains the
NAME declaration.

UNSPECIFIED

WORDS Do not use as an identifier of a LITERAL or DEFINE.
TAL Reference Manual—526371-001
2-3

Language Elements Identifiers
Identifiers
Identifiers are names you declare for objects such as variables, LITERALs, DEFINEs,
and procedures (including functions). Identifiers must conform to the following rules:

• They can be up to 31 characters long.

• They can begin with an alphabetic character, an underscore (_), or a circumflex (^).

• They can contain alphabetic characters, numeric characters, underscores, or
circumflexes.

• They can contain lowercase and uppercase characters. The compiler treats them
all as uppercase.

• They cannot be reserved keywords, which are listed in on page 2-2.

• They can be nonreserved keywords, except as noted in Table 2-3 on page 2-3.

To separate words in identifiers, use underscores rather than circumflexes.
International character-set standards allow the character printed for the circumflex to
vary with each country.

Do not end identifiers with an underscore. The trailing underscore is reserved for
identifiers supplied by the operating system.

The following identifiers are correct:

a2
TANDEM
_23456789012_00
name_with_exactly_31_characters

The following identifiers are incorrect:

2abc !Begins with number
ab%99 !% symbol not allowed
Variable - !Reserved word
This_name_is_too_long_so_it_is_invalid !Too long

Though allowed as TAL identifiers, avoid identifiers such as:

Name^Using^Circumflexes
Name_Using_Trailing_Underscore_

Identifier Classes
Each identifier is a member of an identifier class such as variable. The compiler
determines the identifier class based on how you declare the identifier. The compiler
stores the identifier information in the symbol table.
TAL Reference Manual—526371-001
2-4

Language Elements Constants
Constants
A constant is a value you can store in a variable, declare as a LITERAL, or use as part
of an expression. Constants can be numbers or character strings. The kind and size of
constants a variable can accommodate depends on the data type of the variable, as
described in Data Representation on page 3-1. The following examples show
constants:

654 - !Numeric constant

"abc" - !Character string constant

Constant Expressions
A constant expression is an arithmetic expression that contains only constants,
LITERALs, and DEFINEs as operands. You can use a constant expression anywhere a
single constant is allowed. The following examples show constant expressions:

255

8 * 5 + 45 / 2

For more information, see LITERALs and DEFINEs on page 5-1.

Number Bases
You can specify numeric constants in binary, octal, decimal, or hexadecimal base
depending on the data type of the item, as described in Data Representation on
page 3-1. The default number base in TAL is decimal. The following examples show
constants in each number base:

Table 2-4. Identifier Classes

Class Meaning

Block Global Data Block

Code Read-only (P-relative) array

Variable Simple variable, array, simple pointer, structure pointer,
structure, or structure data item

DEFINE Named text

Function Procedure or subprocedure that returns a value

Label Statement Label

LITERAL Named constant

PROC Procedure or subprocedure that does not return a value

Register Index register - R5, R6, or R7

Template Template Structure
TAL Reference Manual—526371-001
2-5

Language Elements Variables
Variables
A variable is a symbolic representation of data. It can be a single-element variable or a
multiple-element variable. You use variables to store data that can change during
program execution.

The compiler does not automatically initialize variables. Therefore, before you access
data stored in an a variable, either:

• Initialize the variable with a value when you declare the variable

• Assign a value to the variable after you declare the variable. Table 2-5 summarizes
variables.

Symbols
Symbols indicate indirection, address bases, and delimiters.

Decimal 47

Binary %B101111

Octal %57

Hexadecimal %H2F

Table 2-5. Variables

Variable Description

Simple Variable A variable that contains one element of a specified data type

Array A variable that contains multiple elements of the same data type

Structure A variable that can contain variables of different data types

Substructure A structure nested within a structure or substructure

Structure data item A simple variable, array, simple pointer, substructure, or structure
pointer declared in a structure or substructure; also known as a
structure field

Simple pointer A variable that contains a memory address, usually of a simple
variable or an array element, which you can access with this simple
pointer

Structure pointer A variable that contains the memory address of a structure, which
you can access with this structure pointer
TAL Reference Manual—526371-001
2-6

Language Elements Indirection Symbols
Indirection Symbols
Indirection symbols let you use indirect addressing to save space in limited storage
areas, as described in the TAL Programmer’s Guide. Indirect addressing requires two
memory references, first to a location that contains an address and then to the data
located at the address. Table 2-6 lists indirection symbols.

Base Address Symbols
Base address symbols let you associate variables with locations relative to the base
address of a storage area, such as the global, local, or sublocal areas of the user data
segment. Table 2-7 lists base address symbols.

The TAL Programmer’s Guide describes the storage areas of the user data segment.

Delimiters
Delimiters are symbols that begin, end, or separate fields of information. Delimiters tell
the compiler how to handle the fields of information. Table 2-8 on page 2-8 lists
delimiters.

Table 2-6. Indirection Symbols

Symbol Meaning

. (period) Declares an array or structure as having standard (16-bit) indirect addressing
Declares a standard (16-bit) simple pointer or structure pointer

.EXT Declares an array or structure as having extended (32-bit) indirect addressing
Declares an extended (32-bit) simple pointer or structure pointer

.SG Declares a standard (16-bit) system global pointer

Table 2-7. Base Address Symbols

Symbol Meaning

‘P’ P-register addressing (read-only array declaration)

‘G’ Base-address equivalencing, global user data area

‘L’ Base-address equivalencing, local user data area

‘S’ Base-address equivalencing, sublocal user data area

‘SG’ Base address equivalencing, system global space (privileged
procedures only)
TAL Reference Manual—526371-001
2-7

Language Elements Delimiters
Table 2-8. Delimiters (page 1 of 2)

Symbol
Character
Representation Uses

! Exclamation mark Begins and optionally ends a comment

-- Two hyphens Begins a comment

, Comma Separates fields of information, such as in
declarations, statements, directives, and
constant lists

; Semicolon Terminates data declarations
Separates statements
Separates declaration options

. Period Separates identifier levels in a qualified
structure item identifier

< n:n> Angle brackets Delimit a bit field in a bit deposit or bit
extraction

: Colon Denotes a statement label
Denotes a procedure entry point
Denotes an ASSERT statement assert
level
Denotes a parameter pair

() Parentheses Delimit subexpressions within an
expression
Delimit instructions in a CODE statement
Delimit the parameter list of a DEFINE,
procedure, subprocedure, or CALL
statement
Delimit the referral in a structure pointer
declaration
Delimit the implied decimal point position
in a FIXED variable

[n:n] Square brackets Delimit the bounds specification in the
declaration of an array, structure, or
substructure

-> Hyphen plus right
angle bracket

Begins one or more labels in a labeled
CASE statement
Begins a next-addr clause in a SCAN or
RSCAN statement
Begins a next-addr clause in a move
statement
Begins a next-addr clause in a group
comparison expression

“string” Quotation marks Delimit a character string

““ Contiguous quotation
marks

The first quotation mark indicates that the
second quotation mark is not a delimiter in
a character string
TAL Reference Manual—526371-001
2-8

Language Elements Operators
Operators
Operators specify operations—such as arithmetic or assignments—that you want
performed on items. Table 2-9 describes operators.

= Equal sign Used in LITERAL declarations
Used in equivalenced variable declarations
Used in redefinition declarations

=body# Equal sign and hash
mark

Delimit the DEFINE body in a DEFINE
declaration

‘,’ Single quotation
marks

Delimit a comma that is not a delimiter in a
DEFINE parameter

$ Dollar sign Denotes a standard function, such as
$ABS and $DBL

? Question mark Begins a directive line

Table 2-9. Operators (page 1 of 2)

Context Operator Operation

Assignment := Data declaration initialization;
assignment statement, FOR
statement, and assignment
expression

Move statement ‘:=’
'=:'
&

Left-to-right move
Right-to-left move
Concatenated move

Labeled case
statement

. . (two periods) Inclusive range of case labels

Remove indirection @ Accesses the address contained in a
pointer or the address of a non-pointer
item

Repetition * (asterisk) Repetition factor in a repetition
constant list

Template structure (*) Template structure declaration

FIXED(*) parameter
type

(*) Value parameter to be treated as
FIXED(0)

Dereferencing * . (period) Converts value of INT simple variable
to standard word address of another
data item.

Bit-field acess . (period) Accesses a bit-deposit or bit-
extraction field (< n> or < n:n>)

Table 2-8. Delimiters (page 2 of 2)

Symbol
Character
Representation Uses
TAL Reference Manual—526371-001
2-9

Language Elements Operators
Bit shift <<
>>
‘<<‘
‘>>’

Signed left shift
Signed right shift
Unsigned left shift
Unsigned right shift

Arithmetic
expression

+
-
* (asterisk)
/
‘+’
‘-’
‘*’
‘/’
‘\’
LOR
LAND
XOR

Signed addition
Signed subtraction
Signed multiplication
Signed division
Unsigned addition
Unsigned subtraction
Unsigned multiplication
Unsigned division
Unsigned modulo division
Logical OR bit-wise operation
Logical AND bit-wise operation
Exclusive OR bit-wise operation

Relational
expression

<
=
>
<=
>=
<>
‘<’
‘=’
‘>’
'<='
'>='
'<>'

Signed less than
Signed equal to
Signed greater than
Signed less than or equal to
Signed greater than or equal to
Singed not equal to
Unsigned less than
Unsigned equal to
Unsigned greater than
Unsigned less than or equal to
Unsigned greater than or equal to
Unsigned not equal to

Boolean expression AND
OR
NOT

Logical conjunction
Logical disjunction
Logical negation

* Not supported on future software platforms.

Table 2-9. Operators (page 2 of 2)

Context Operator Operation
TAL Reference Manual—526371-001
2-10

3 Data Representation
Data is the information on which a program operates. Your program data includes
variables and constants.

Variables hold values that can change during program execution. When you declare a
variable, you specify a data type that determines the amount of storage the variable
requires, the kind of values it can represent, and other characteristics.

Constants are values that do not change during program execution. The compiler
determines the data type of constants from their size and format. You can assign
constants to variables. You can declare LITERALs, which associate identifiers with
constants.

This section describes:

• Data types of variables and constants

• Storage units in which you can access variables

• Syntax for character string constants, numeric constants, and constant lists

Data Types
When you declare most kinds of variables, you specify a data type. The data type
determines:

• The kind of values the variable can represent

• The amount of storage the compiler allocates for the variable

• The operations you can perform on the variable

• The byte or word addressing mode of the variable
TAL Reference Manual—526371-001
3-1

Data Representation Data Types
Table 3-1 gives information about each data type.

Table 3-1. Data Types

Data Type Storage Unit
Kind of Values the Data type can
Represent

STRING Byte An ASCII character
An 8-bit integer in the range 0 through
255 unsigned

INT Word One or two ASCII characters
A 16-bit integer in the range 0 through
65,535 (unsigned) or –32,768 through
32,767 (signed)
A standard (16-bit) address (0 through
65,535)

INT (32) Doubleword A 32-bit integer in the range –
2,147,483,648 through +2,147,483,647
An extended (32-bit) address (0
through 127.5K)

UNSIGNED n-bit field* UNSIGNED(1–15) and
UNSIGNED(17–31) can represent a
positive unsigned integer in the range 0
through (2 n –1)
UNSIGNED(16) can represent an
integer in the range 0 through 65,535
unsigned or –32,768 through 32,767
signed; it can also represent a standard
address

FIXED Quadrupleword A 64-bit fixed-point number; For
FIXED(0) and FIXED (*), the range is –
9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807.

REAL Double word A 32-bit floating-point number in the
range ±8.6361685550944446E–78
through ±1.15792089237316189E77
precise to approximately 7 significant
decimal digits

REAL (64) Quadrupleword A 64-bit floating-point number in the
same range as data type REAL but
precise to approximately 17 significant
decimal digits

* For an UNSIGNED simple variable, the bit field can be 1 to 31 bits wide.
* For an UNSIGNED array, the element bit field can be 1, 2, 4, or 8 bits wide.
TAL Reference Manual—526371-001
3-2

Data Representation Specifying Data Types
Specifying Data Types
The format for specifying data types in declarations is:

width

is a constant expression that specifies the width, in bits, of the variable. The
constant expression can include LITERALs and DEFINEs (previously declared
constants and text). The result of the constant expression must be one of the
following values:

fpoint

is the implied fixed-point setting of a FIXED variable. fpoint is an integer in the
range –19 through 19. If you omit fpoint, the default fpoint is 0 (no decimal places).
A positive fpoint specifies the number of decimal places to the right of the decimal
point. A negative fpoint specifies a number of integer places to the left of the
decimal point.

* (asterisk)

is a FIXED data type notation. The asterisk prevents scaling of the initialization
value.

Data Type Prefix width, in bit

INT 16 * , 32, or 64 *

REAL 32 * or 64

UNSIGNED, simple variable, parameter,
or function result

A value in the range 1 through 31

UNSIGNED - array element 1, 2, 4, or 8

* INT(16), INT(64), and REAL(32) are data type aliases, as described in Data Type Aliases on
page 3-4

STRING

INT

REAL

UNSIGNED

FIXED

width

width

fpoint

(

(

(

)

)

)

* VST0301.vsd
TAL Reference Manual—526371-001
3-3

Data Representation Data Type Aliases
Specifying Widths
When you specify the width of the INT, REAL, or UNSIGNED data type, the constant
expression can include LITERALs and DEFINEs. Here is an example that includes a
LITERAL:

LITERAL int_size = (2 * 4) + 8; !INT_SIZE equals 16

INT(int_size) num; !Data type is INT(16)

Section 6, Simple Variables describes LITERALs and DEFINEs on page 5-1.

Specifying fpoints
For the FIXED data type, you can specify an fpoint, an implied fixed-point setting
specified as an integer in the range –19 through 19.

A positive fpoint specifies the number of decimal places to the right of the decimal
point:

FIXED(3) x := 0.642F; !Stored as 642

A negative fpoint specifies a number of integer places to the left of the decimal point.
To store a FIXED value, a negative fpoint truncates the value leftward from the decimal
point by the specified number of digits. When you access the FIXED value, zeros
replace the truncated digits:

FIXED(-3) y := 642945F; !Stored as 642; accessed

 ! as 642000

Data Type Aliases
The compiler accepts the following aliases for the listed data types:

For consistency, the remainder of this manual avoids using data type aliases. For
example, although the following declarations are equivalent, the manual uses
FIXED(0):

FIXED(0) var;

INT(64) var;

Data Type Alias

INT INT (16)

REAL REAL (32)

FIXED INT (64)
TAL Reference Manual—526371-001
3-4

Data Representation Storage Units
Storage Units
Storage units are the containers in which you can access data stored in memory. The
system fetches and stores all data in 16-bit words, but you can access data as any of
the storage units listed in Table 3-2.

Address Modes
The data type of a variable determines byte or word addressing and indexing, as
discussed elsewhere in this manual and in the TAL Programmer’s Guide.

Operations by Data Type
The data type of a variable determines the operations you can perform on the variable.
Table 3-3 lists the operations by data type.

Table 3-2. Storage Units

Storage Unit
Number of
Bits Data Type Description

Byte 8 STRING One of two bytes that make up a
word

Word * 16 INT Two bytes, with byte 0 (most
significant) on the left and byte 1
(least significant) on the right

Doubleword 32 INT (32),
REAL

Two contiguous words

Quadrupleword 64 REAL (64),
FIXED

Four contiguous words

Bit field 1-16 UNSIGNED Contiguous bit fields within a word

Bit field 17-31 UNSIGNED Contiguous bit fields within a
doubleword

* In TAL a word is always 16 bits regardless of the word size used by the system hardware.

Table 3-3. Operations by Data Type (page 1 of 2)

Operation STRING

INT or
Unsigned
(1-16)

INT (32) or
Unsigned
(17-31) FIXED

REAL or
REAL (64)

Unsigned
arithmetic

Yes Yes No No No

Signed
arithmetic

Yes Yes Yes Yes Yes

Logical
operations

Yes Yes No No No
TAL Reference Manual—526371-001
3-5

Data Representation Functions by Data Type
Section 4, Expressions, explains how the data type of an operand affects its behavior
in expressions.

Addresses as Data
You can store standard (16-bit) addresses in INT variables. Use only unsigned
operations for standard addresses.

You can store extended (32-bit) addresses in INT(32) variables.

Functions by Data Type
The data type of a variable determines the standard function you can use with the
variable. Table 3-4 lists the function categories by data type.

For more information on the descriptions of each standard function, see Section 14,
Standard Functions.

Relational
Operations

Yes Yes Yes Yes Yes

Bit shifts Yes Yes Yes No No

Byte scans Yes Yes Yes Yes Yes

Table 3-4. Standard Functions by Data Type

Category STRING

INT or
Unsigned
(1-16)

INT (32) or
Unsigned
(17-31) FIXED

REAL or
REAL (64)

Type
Transfer

Yes Yes Yes Yes Yes

Character
Test

Yes No No No No

Minimum or
Maximum

Yes Yes Yes Yes Yes

Scaling No No No Yes No

Variable Yes Yes Yes Yes Yes

Address
Conversion

Yes Yes Yes Yes Yes

Table 3-3. Operations by Data Type (page 2 of 2)

Operation STRING

INT or
Unsigned
(1-16)

INT (32) or
Unsigned
(17-31) FIXED

REAL or
REAL (64)
TAL Reference Manual—526371-001
3-6

Data Representation Address Types
Address Types
TAL supports the following pTAL address types. For further details, see the pTAL
Reference Manual.

pTAL supports 10 address types that control the addresses you store into pointers.
pTAL uses address types to ensure that your program addresses the same relative
data locations on a RISC processor as it does on a CISC processor. Address types are
like data types except that:

• Address types are used primarily to describe the addresses that you assign to a
pointer, not the data your program is processing.

• pTAL implicitly determines the address type of a pointer based on how you declare
the pointer. You cannot explicitly declare a pointer’s address type.

• Only operations that are meaningful for addresses are valid on address types.

• An address type identifies:

° The location of the data to which the pointer points.

° The addressing mode to use when accessing the data.

Address types are summarized in Table 3-5. This table also identifies the target data
that applies to each address when you run pTAL on a CISC processor.

Syntax for Constants
The remaining pages of this section describe the syntax definitions for specifying
constants in your program. You can specify the following kinds of constants:

• Character string constants (all data types)

• STRING numeric constants

Table 3-5. Address Types

Data Type Type Target Data on a CISC Processor

BADDR Byte 8-bit bytes in the user data segment

WADDR Word 16-bit words in the user data segment

CBADDR Byte 8-bit bytes in the user code segment

CWADDR Word 16-bit words in the user code segment

SGBADDR Byte 8-bit bytes in system globals

SGWADDR Word 16-bit words in system globals

SGXBADDR Byte 8-bit bytes in system globals

SGXWADDR Word 16-bit words in system globals

EXTADDR Byte Data in an extended segment

PROCADDR N.A. Index of a procedure in the PEP table
TAL Reference Manual—526371-001
3-7

Data Representation Character String Constants
• INT numeric constants

• INT(32) numeric constants

• FIXED numeric constants

• REAL and REAL(64) numeric constants

• Constant lists

Character String Constants
A character string constant consists of one or more ASCII characters stored in a
contiguous group of bytes.

string

is a sequence of one or more ASCII characters enclosed in quotation mark
delimiters. If a quotation mark is a character within the sequence of ASCII
characters, use two quotation marks (in addition to the quotation mark delimiters).
The compiler does not upshift lowercase characters.

Character String Length
Each character in a character string requires one byte of contiguous storage. The
maximum length of a character string you can specify differs for initializations and for
assignments.

Initializations
You can initialize simple variables or arrays of any data type with character strings.

When you initialize a simple variable, the character string can have the same number
of bytes as the simple variable or fewer.

When you initialize an array, the character string can have up to 127 characters and
must fit on one line. If a character string is too long for one line, use a constant list,
described later in this section, and break the character string into smaller character
strings.

Assignments
You can assign character strings to STRING, INT, and INT(32) variables, but not to
FIXED, REAL, or REAL(64) variables.

" string "
VST0302.vsd
TAL Reference Manual—526371-001
3-8

Data Representation Example of Character String Constant
In assignment statements, a character string can contain at most four characters,
depending on the data type of the variable.

Example of Character String Constant
This example declares an INT variable and initializes it with a character string:

INT chars := "AB";

String Numeric Constants
Representation: Unsigned 8-bit integer

Range: 0 through 255

base

is %, %B, or %H, which indicates a number base:

integer

is one or more digits. The digits allowed are:

Example of STRING Numeric Constants
Here are examples of STRING numeric constants:

Octal %

Binary %B

Hexadecimal %H

If you omit the base, the default base is decimal

Decimal 0 through 9

Octal 0 through 7

Binary 0 or 1

Hexadecimal 0 through 9, A through F

Decimal 255

Octal %12

Binary %B101

Hexadecimal %h2A

integer

base
VST0303.vsd
TAL Reference Manual—526371-001
3-9

Data Representation INT Numeric Constants
INT Numeric Constants
Representation: Signed or Unsigned 16-bit integer

Range (unsigned): 0 through 65,535

Range (signed): –32,768 through 32,767

base

is %, %B, or %H, which indicates a number base:

The default base is decimal. Unsigned integers greater than 32,767 must be in octal,
binary, or hexadecimal base.

integer

is one or more digits. The digits allowed are:

Octal %

Binary %B

Hexadecimal %H

Decimal 0 through 9

Octal 0 through 7

Binary 0 or 1

Hexadecimal 0 through 9, A through F

integer

+

-

base

VST0304.vsd
TAL Reference Manual—526371-001
3-10

Data Representation Examples of INT Numeric Constants
Examples of INT Numeric Constants
Here are examples of INT numeric constants:

Storage Format
The system stores signed integers in two’s complement notation. It obtains the
negative of a number by inverting each bit position in the number, and then adding 1.

2 is stored as 0000000000000010

-2 is stored as 1111111111111110

INT (32) Numeric Constants
Representation: Signed or unsigned 32-bit integer

Range: –2,147,483,648 through 2,147,483,647

base

is %, %B, or %H, which indicates a number base:

Decimal 3
-32045

Octal %177
-%5

Binary %B01010
%b1001111000010001

Hexadecimal %H1A
%h2f

Octal %

Binary %B

Hexadecimal %H

The default base is decimal

VST0305.vsd

integer

+

-

base

D

%D
TAL Reference Manual—526371-001
3-11

Data Representation Examples of INT (32) Numeric Constants
integer

is one or more digits. The digits allowed are:

D and %D

are suffixes that specify INT(32) constants:

Examples of INT (32) Numeric Constants
Here are examples of INT(32) numeric constants:

For readability, always specify the % in the %D hexadecimal suffix. The following
format, where a space replaces the % in the %D suffix, is allowed but not
recommended:

Storage Format
The system stores signed integers in two’s complement notation.

Decimal 0 through 9

Octal 0 through 7

Binary 0 or 1

Hexadecimal 0 through 9, A through F

Decimal D

Octal D

Binary D

Hexadecimal %D

Decimal 0D

+14769D

-327895066d

Octal %1707254361d

-%24700000221D

Binary %B000100101100010001010001001d

Hexadecimal %h096228d%d

-%H99FF29%D

 -%H99FF29 D !Using space instead of %
! is not recommended
TAL Reference Manual—526371-001
3-12

Data Representation FIXED Numeric Constants
FIXED Numeric Constants
Representation: Signed 64-bit fixed-point number

Range: –9,223,372,036,854,775,808 through

 +9,223,372,036,854,775,807

base

is %, %B, or %H, which indicates a number base:

integer

is one or more digits. The digits allowed are:

fraction

is one or more decimal digits. fraction is legal only for decimal base.

F and %F

are suffixes that specify FIXED constants:

Octal %

Binary %B

Hexadecimal %H

The default base is decimal

Decimal 0 through 9

Octal 0 through 7

Binary 0 or 1

Hexadecimal 0 through 9, A through F

Decimal F

Octal F

Binary F

Hexadecimal %F

VST0306.vsd

+

-

base

F

%F.

integer

fraction
TAL Reference Manual—526371-001
3-13

Data Representation Examples of FIXED Numeric Constants
Examples of FIXED Numeric Constants

Storage Format
The system stores a FIXED number in binary notation. When the system stores a
FIXED number, it scales the constant as dictated by the declaration or expression.
Scaling means the system multiplies or divides the constant by powers of 10 to move
the decimal.

For more information on scaling of FIXED values in expressions, see Section 4,
Expressions.

For more information on scaling of FIXED values in declarations, see Section 6, Simple
Variables.

REAL and REAL (64) Numeric Constants

Decimal 1200.09F

0.1234567F

239840984939873494F

-10.09F

Octal %765235512F

Binary %B1010111010101101010110F

Hexadecimal %H298756%F

Representation Signed 32-bit REAL or 64-bit REAL(64) floating-point number

Range ±8.6361685550944446 * 10 -78 through
±1.15792089237316189 * 10 +77

Precision REAL—to approximately 7 significant digits
REAL(64)—to approximately 17 significant digits

VST0307.vsd

exponent

integer

-

+

. fraction

L

E

-

+

TAL Reference Manual—526371-001
3-14

Data Representation Examples of REAL and REAL (64) Numeric
Constants
integer

is one or more decimal digits that compose the integer part.

fraction

is one or more decimal digits that compose the fractional part.

E and L

are suffixes that specify floating-point constants:

REAL E

REAL(64) L

exponent

is one or two decimal digits that compose the exponential part.

Examples of REAL and REAL (64) Numeric Constants
Here are the examples of REAL and REAL(64) numeric constants. The examples
show the integer part, the fractional part, the E or L suffix, and the exponent part:

Storage Format
The system stores the number in binary scientific notation in the form:

X * 2 Y

X is a value of at least 1 but less than 2. Because the integer part of X is always 1, only
the fractional part of X is stored.

The exponent can be in the range –256 through 255 (%377). The system adds 256
(%400) to the exponent before storing it as Y. Thus, the value stored as Y is in the
range 0 through 511 (%777), and the exponent is Y minus 256.

If the value of the number to be represented is zero, the sign is 0, the fraction is 0, and
the exponent is 0.

Decimal Value REAL REAL (64)

o 0.0E0 0.0L0

2 2.0e0
0.2E1
20.0E-1

2.0L0
0.2L1
20.0L-1

-17.2 -17.2E0
-1720.0E-2

-17.2L0
-1720.0L-2
TAL Reference Manual—526371-001
3-15

Data Representation Examples of Storage Formats
The system stores the parts of a floating-point constant as follows:

Examples of Storage Formats
1. For the following REAL constant, the sign bit is 0, the fraction bits are 0, and the

exponent bits contain %400 + 2, or %402:

4 = 1.0 * 2 2 stored as %000000 %000402

2. For the following REAL constant, the sign bit is 1, the fraction bits contain %.2
(decimal .25 is 2/8), and the exponent bits contain %400 + 3, or %403:

-10 = -(1.25 * 2 3) stored as %120000 %000403

3. For the following REAL(64) constant, the sign bit is 0, the fraction bits contain the
octal representation of .33333..., and the exponent bits contain %400 – 2, or %376:

1/3 = .33333…* 2 –2 stored as %025252 %125252 %125252 %125376

Constant Lists
A constant list is a list of one or more constants. You can use constant lists in:

• Initializations of array declarations that are not contained in structures

• Group comparison expressions

• Move statements but not assignment statements

repetition-constant-list

has the form:

Data Type Sign Bit Fraction Exponent

REAL <0> <1:22> <23:31>

REAL <0> <1:54> <55:63>

VST0308.vsd

repetition-constant-list

constant-list-seq

repetition-constant-list[]
TAL Reference Manual—526371-001
3-16

Data Representation Examples of Constant Lists
repetition-factor

is an INT constant that specifies the number of times constant-list-seq occurs.

constant-list-seq

is a list of one or more constants, each stored on an element boundary.

constant

is a character string, a number, or a LITERAL specified as a single operand.
The range and syntax for specifying constants depends on the data type, as
described for each data type on preceding pages.

Examples of Constant Lists
1. The two examples in each of the following pairs are equivalent:

["A", "BCD" , "...", "Z"]
["ABCD...Z"]
10 * [0];
[0,0,0,0,0,0,0,0,0,0]
[3 * [2 * [1], 2 * [0]]]
[1,1,0,0,1,1,0,0,1,1,0,0]
10 * [" "]
[" "]

2. This example shows how you can break a constant string that is too long to fit on
one line into smaller constant strings specified as a constant list. The system
stores one character to a byte:

STRING a[0:99] := ["These three constant strings will ",
 "appear as if they were one constant ",
 "string continued on multiple lines."];

VST0309.vsd

constant-list-seq[

repetition-factor *

]

VST0310.vsd

constant

repetition-constant-list

,

TAL Reference Manual—526371-001
3-17

Data Representation Examples of Constant Lists
3. This example initializes a STRING array with a repetition constant list:

STRING b[0:79] := 80 * [" "];

4. This example initializes an INT(32) array with a mixed constant list containing
values of the same data type. The diagram shows how the compiler allocates
storage for the variable and the constant list that initializes the variable:

%20DC[4]

VST0311.vsd

"a" "b"

"c"

1D

3D

"Y""X"

" ""Z"

"d"
C[0]

C[1]

C[2]

C[3]

INT(32) c[0:4] :=

["abcd", 1D, 3D, "XYZ", %20D];

!Mixed constant list
TAL Reference Manual—526371-001
3-18

4 Expressions
This section describes the syntax for:

• Arithmetic and conditional expressions

• Special expressions (assignment, CASE, IF, group comparison)

• Bit operations (extraction and shift)

Section 5, “Using Expressions,” in the TAL Programmer’s Guide describes:

• Assigning conditional expressions

• Dereferencing simple variables (formerly called temporary pointers)

About Expressions
An expression is a sequence of operands and operators that, when evaluated,
produces a single value. Operands in an expression include variables, constants, and
function identifiers. Operators in an expression perform arithmetic or conditional
operations on the operands.

Expressions, for example, can appear in:

• LITERAL declarations

• Variable initializations and assignments

• Array and structure bounds

• Indexes to variables

• Conditional program execution

• Parameters to procedures or subprocedures

The compiler at times requires arithmetic or conditional expressions. Where indicated
in this manual, specify one of the following kinds of expressions:
TAL Reference Manual—526371-001
4-1

Expressions Data Types of Expressions
Data Types of Expressions
The result of an expression can be any data type except STRING or UNSIGNED. The
compiler determines the data type of the result from the data type of the operands in
the expression. All operands in an expression must have the same data type, with the
following exceptions:

• An INT expression can include STRING, INT, and UNSIGNED(1–16) operands.
The system treats STRING and UNSIGNED(1–16) operands as if they were 16-bit
values. That is, the system:

° Puts a STRING operand in the right byte of a word and sets the left byte to 0.

° Puts an UNSIGNED(1–16) operand in the right bits of a word and sets the
unused left bits to 0, with no sign extension. For example, for an
UNSIGNED(2) operand, the system fills the 14 leftmost bits of the word with
zeros.

• An INT(32) expression can include INT(32) and UNSIGNED(17–31) operands. The
system treats UNSIGNED(17–31) operands as if they were 32-bit values. The
system places an UNSIGNED(17–31) operand in the right bits of a doubleword
and sets the unused left bits to 0, with no sign extension. For example, for an
UNSIGNED(29) operand, the system fills the three leftmost bits of the doubleword
with zeros.

In all other cases, if the data types do not match, use type transfer functions to make
them match. (For more information on Type transfer functions, see Section 14,
Standard Functions.)

Expression Description Examples

Arithmetic
expression

An expression that computes a
single numeric value and that
consists of operands and arithmetic
operators.

398 + num / 84

10 LOR 12

Constant expression An arithmetic expression that
contains only constants, LITERALs,
and DEFINEs as operands.

398 + 46 / 84

Conditional
expression

An expression that establishes the
relationship between values and
that results in a true or false value. It
consists of relational or Boolean
conditions and conditional
operators.

Relational: a < c

Boolean: a OR b
TAL Reference Manual—526371-001
4-2

Expressions Precedence of Operators
Precedence of Operators
Operators in expressions can be arithmetic (signed, unsigned, or logical) or conditional
(Boolean or relational, signed or unsigned). Within an expression, the compiler
evaluates the operators in the order of precedence. Within each level of precedence,
the compiler evaluates the operators from left to right. Table 4-1 shows the level of
precedence for each operator, from highest (0) to lowest (9).

Table 4-1. Precedence of Operators (page 1 of 2)

Operator Operation Precedence

[n] Indexing 0

. Dereferencing * 0

@ Address of identifier 0

+ Unary plus 0

- Unary minus 0

.<...> Bit extraction 1

<< Signed left bit shift 2

>> Signed right bit shift 2

‘<<‘ Unsigned left bit shift 2

‘>>’ Unsigned right bit shift 2

* Signed multiplication 3

/ Signed division 3

‘*’ Unsigned multiplication 3

‘/’ Unsigned division 3

‘\’ Unsigned modulo division 3

+ Signed addition 4

- Signed subtraction 4

‘+’ Unsigned addition 4

‘-’ Unsigned subtraction 4

LOR Bitwise logical OR 4

LAND Bitwise logical AND 4

XOR Bitwise exclusive OR 4

< Signed less than 5

= Signed equal to 5

> Signed greater than 5

<= Signed less than or equal to 5
TAL Reference Manual—526371-001
4-3

Expressions Precedence of Operators
You can use parentheses to override the precedence of operators. You can nest the
parenthesized operations. The compiler evaluates nested parenthesized operations
outward starting with the innermost level. Here are examples:

>= Signed greater than or equal to 5

<> Signed not equal to 5

‘<‘ Unsigned less than 5

‘=’ Unsigned equal to 5

‘>’ Unsigned greater than 5

‘<=’ Unsigned less than or equal to 5

‘>=’ Unsigned greater than or equal to 5

‘<>’ Unsigned not equal to 5

NOT Boolean negation 6

AND Boolean conjunction 7

OR Boolean disjunction 8

:= Assignment* 9

.<...> := Bit deposit* 9

* Described in Section 12, Statements.

* Described in the TAL Programmer's Guide.

Table 4-1. Precedence of Operators (page 2 of 2)

Operator Operation Precedence

VST0401.vsd

(a b)OR AND c(a b)+c * ((a b)+c * / d)

Result Result
Result
TAL Reference Manual—526371-001
4-4

Expressions Arithmetic Expressions
Arithmetic Expressions
An arithmetic expression is a sequence of operands and arithmetic operators that
computes a single numeric value of a specific data type.

+ and -

are unary plus and minus operators applied to the leftmost operand of the
expression. If you do not use the unary plus or unary minus operator, the default is
unary plus.

operand

is a value in an arithmetic expression. Each operand consists of one or more of the
following syntactic elements. Each syntactic element represents a single value:

Variable

Constant

LITERAL

Function invocation

(expression)

Code space item

arithmetic-operator

is one of the following operators:

Signed arithmetic operator: +, -, *, /

Unsigned arithmetic operator: '+', '-', '*', '/', '\'

Logical operator: LOR, LAND, XOR

VST0402.vsd

operand

arithmetic - operator operand

+

-

TAL Reference Manual—526371-001
4-5

Expressions Examples of Arithmetic Expressions
Examples of Arithmetic Expressions
Following are examples of arithmetic expressions:

var1 !operand

-var1 !- operand

+var1 * 2 !+ operand arithmetic-operator operand

var1 / var2 !operand arithmetic-operator operand

var1 * (–var2) !operand arithmetic-operator operand

2 * 3 + var / 2

2 * var * 4

Operands in Arithmetic Expressions
An operand consists of one or more elements that evaluate to a single value. Table 4-2
describes the operands that can make up an arithmetic expression.

Signed Arithmetic Operators
Signed arithmetic operators and the operand types on which they can operate are
shown in Table 4-3 on page 4-7

Table 4-2. Operands in Arithmetic Expressions

Element Description Example

Variable The identifier of a simple variable, array
element, pointer, structure data item, or
equivalenced variable, with or without @ or
an index

var[10]

Constant A character string or numeric constant 103375

LITERAL The identifier of a named constant file_size

Function
invocation

The invocation of a procedure that returns a
value

$LEN (x)

(expression) Any expression, enclosed in parentheses (x := y)

Code space item The identifier of a procedure, subprocedure,
or label prefixed with @ or a read-only array
optionally prefixed with @, with or without an
index

@label_a
TAL Reference Manual—526371-001
4-6

Expressions Signed Arithmetic Operators
Table 4-4 shows the combinations of operand types you can use with a binary signed
arithmetic operator and the result type yielded by such operators. In each combination,
the order of the data types is interchangeable.

The compiler treats a STRING or UNSIGNED(1–16) operand as an INT operand. If
bit<0> contains a 0, the operand is positive; if bit <0> contains a 1, the operand is
negative.

The compiler treats an UNSIGNED(17–31) operand as a positive INT(32) operand.

Scaling of FIXED Operands
When you declare a FIXED variable, you can specify an implied fixed-point setting
(fpoint)—an integer in the range –19 through 19, enclosed in parentheses following the
keyword FIXED. If you do not specify an fpoint, the default fpoint is 0 (no decimal
places).

Table 4-3. Signed Arithmetic Operators

Operator Operation Operand Type* Example

+ Unary plus Any data type +5

- Unary minus Any data type -5

+ Binary signed addition Any data type alpha+beta

- Binary signed subtraction Any data type alpha-beta

* Binary signed
multiplication

Any data type alpha*beta

/ Binary signed division Any data type alpha/beta

* The data type of the operands must match except as noted in Data Types of Expressions on page 4-2.

Table 4-4. Signed Arithmetic Operand and Result Types

Operand Type Operand Type Result Type Example

STRING STRING INT byte1+byte2

INT INT INT word1-word 2

INT (32) INT (32) INT (32) dbl1 * dbl2

REAL REAL REAL real1 + real2

REAL (64) REAL (64) REAL (64) quad1 + quad2

FIXED FIXED FIXED fixed1 * fixed2

INT STRING INT word1 / byte1

INT Unsigned (1-16) INT word + unsign12

INT (32) Unsigned (17-31) INT (32) double + unsign20

Unsigned (1-16) Unsigned (1-16) INT unsign6 + unsign9

Unsigned (17-31) Unsigned (17-31) INT (32) unsign26 + unsign31
TAL Reference Manual—526371-001
4-7

Expressions Signed Arithmetic Operators
A positive fpoint specifies the number of decimal places to the right of the decimal
point:

FIXED(3) x := 0.642F; !Stored as 642

A negative fpoint specifies a number of integer places to the left of the decimal point.
To store a FIXED value, a negative fpoint truncates the value leftward from the decimal
point by the specified number of digits. When you access the FIXED value, zeros
replace the truncated digits:

FIXED(-3) y := 642945F; !Stored as 642; accessed

 ! as 642000

When FIXED operands in an arithmetic expression have different fpoints, the system
makes adjustments depending on the operator.

• In addition or subtraction, the system adjusts the smaller fpoint to match the larger
fpoint. The result inherits the larger fpoint. For example, the system adjusts the
smaller fpoint in 3.005F + 6.01F to 6.010F, and the result is 9.015F.

• In multiplication, the fpoint of the result is the sum of the fpoints of the two
operands. For example, 3.091F * 2.56F results in the FIXED(5) value 7.91296F.

• In division, the fpoint of the result is the fpoint of the dividend minus the fpoint of
the divisor. (Some precision is lost.) For example, 4.05F / 2.10F results in the
FIXED(0) value 1.

To retain precision when you divide operands that have nonzero fpoints, use the
$SCALE standard function to scale up the fpoint of the dividend by a factor equal to the
fpoint of the divisor; for example:

FIXED(3) result, a, b; ! fpoint of 3

result := $SCALE(a,3) / b; !Scale A to FIXED(6); result

 ! is a FIXED(3) value

The following example shows how the system makes automatic adjustments when
operands in an expression have different fpoints:
TAL Reference Manual—526371-001
4-8

Expressions Unsigned Arithmetic Operators
Effect on Hardware Indicators
Signed arithmetic operators affect the hardware indicators as described in Testing
Hardware Indicators on page 4-16.

Unsigned Arithmetic Operators
Typically, you use binary unsigned arithmetic on operands with values in the range 0
through 65,535. For example, you can use unsigned arithmetic with pointers that
contain standard addresses. Table 4-5 summarizes unsigned arithmetic operators and
the operand types on which they can operate.

Table 4-5. Unsigned Arithmetic Operators (page 1 of 2)

Operator Operation Operand Type Example

‘+’ Unsigned addition STRING, INT, or
UNSIGNED(1–16)

alpha '+' beta

‘-’ Unsigned subtraction STRING, INT, or
UNSIGNED(1–16)

alpha '-' beta

‘*’ Unsigned multiplication STRING, INT, or
UNSIGNED(1–16)

alpha '*' beta

VST0403.vsd

3 2

5

0

up 3

a := 2.015F * (b + C);

FIXED a;
FIXED (2) b;
FIXED (-1) c;

Data declarations

The fpoint of C is increased by 3

The final result is truncated by 5
places to match the fpoint of A
TAL Reference Manual—526371-001
4-9

Expressions Unsigned Arithmetic Operators
Table 4-6 shows the combinations of operand types you can use with binary unsigned
arithmetic operators and the result types yielded by such operators. The order of the
operand types in each combination is interchangeable except in the last case.

‘/’ Unsigned division INT(32) or UNSIGNED
(17–31) dividend and
STRING, INT, or
UNSIGNED(1–16)
divisor

alpha '/' beta

‘\’ Unsigned modulo
division

INT(32) or UNSIGNED
(17–31) dividend and
STRING, INT, or
UNSIGNED(1–16)
divisor

alpha '\' beta

* Unsigned modulo operations return the remainder. If the quotient exceeds 16 bits, an overflow condition
occurs and the results will have unpredictable values. For example, the modulo operation 200000D '\' 2 causes
an overflow because the quotient exceeds 16 bits.

Table 4-6. Unsigned Arithmetic Operand and Result Types

Operator
Operand
Type Operand Type

Result
Type Example

'+'
'-'

STRING STRING INT byte1 '–' byte2

INT INT INT word1 '+' word2

INT STRING INT byte1 '–' word1

INT UNSIGNED (1–16) INT word1 '+' uns8

STRING UNSIGNED (1–16) INT byte1 '–' uns5

UNSIGNED
(1–16)

UNSIGNED(1–16) INT uns1 '+' uns7

'*' STRING STRING INT (32) byte1 '*' byte2

INT INT INT (32) wrd1 '*' wrd2

STRING INT INT (32) byte1 '*' wrd1

INT UNSIGNED (1–16) INT (32) wrd1 '*' uns9

STRING UNSIGNED (1–16) INT (32) uns1 '*' uns7

UNSIGNED
(1–16)

UNSIGNED(1–16) INT (32) uns1 '*' uns7

'/'
'\'

UNSIGNED
(17–31)

STRING, INT, or INT (32) dbwd '\' word1

or INT(32)
dividend

UNSIGNED(1–16)
divisor

INT

Table 4-5. Unsigned Arithmetic Operators (page 2 of 2)

Operator Operation Operand Type Example
TAL Reference Manual—526371-001
4-10

Expressions Bitwise Logical Operators
Effect on Hardware Indicators
Unsigned add and subtract operators affect the carry and condition code indicators as
described in Testing Hardware Indicators on page 4-16.

Bitwise Logical Operators
You use logical operators—LOR, LAND, and XOR—to perform bit-by-bit operations on
STRING, INT, and UNSIGNED(1–16) operands only. Logical operators always return
16-bit results. Table 4-7 gives information about these operators.

The Bit Operations column in the table shows the bit-by-bit operations that occur on
16-bit values. Each 1-bit operand pair results in a 1-bit result. The bit operands are
commutative.

Effect of Hardware Indicators
Logical operators set the condition code indicator as described in Testing Hardware
Indicators on page 4-16. Logical operators are always unsigned, however, so condition
codes are not meaningful.

Table 4-7. Logical Operators and Result Yielded

Operator Operation
Operand
Type Bit Operations Example

LOR Bitwise
Logical
OR

STRING,
INT, or
UNSIGNED
(1–16)

1 LOR 1 = 1
1 LOR 0 = 1
0 LOR 0 = 0

10 LOR 12 = 14
10 1 0 1 0
12 1 1 0 0
14 1 1 1 0

LAND Bitwise
Logical
ADD

STRING,
INT, or
UNSIGNED
(1–16)

1 LAND 1 = 1
1 LAND 0 = 0
0 LAND 0 = 0

10 LAND 12 = 8
10 1 0 1 0
12 1 1 0 0
8 1 0 0 0

XOR Bitwise
Exclusive
OR

STRING,
INT, or
UNSIGNED
(1–16)

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 0 = 0

10 XOR 12 = 6
10 1 0 1 0
12 1 1 0 0
6 0 1 1 0
TAL Reference Manual—526371-001
4-11

Expressions Conditional Expressions
Conditional Expressions
A conditional expression is a sequence of conditions and Boolean or relational
operators that establishes the relationship between values. You can use conditional
expressions to direct program flow.

condition

is an operand in a conditional expression. condition can consist of one or more of
the following syntactic elements:

Relational expression

Group comparison expression

(conditional expression)

Arithmetic expression

Relational operator

AND

is a Boolean operator that produces a true state if both adjacent conditions are
true.

OR

is a Boolean operator that produces a true state if either adjacent condition is true.

NOT

is a Boolean operator that tests the condition for a false state.

VST0404.vsd

condition

NOT

AND

OR NOT

condition
TAL Reference Manual—526371-001
4-12

Expressions Examples of Conditional Expressions
Examples of Conditional Expressions
Following are examples of conditional expressions:

a !condition

NOT a !NOT condition

a OR b !condition OR condition

a AND b !condition AND condition

a AND NOT b OR c !condition AND NOT condition ...

Conditions
A condition is an operand in a conditional expression that represents a true or false
state. A condition can consist of one or more of the elements listed in Table 4-8.

Table 4-8. Conditions in Conditional Expressions

Element Description Example

Relational
expression

Two conditions connected by a relational
operator. The result type is INT; a –1 if true
or a 0 if false. The example is true if A
equals B.

If a = b THEN . . .

Group
comparison
expression

Unsigned comparison of a group of
contiguous elements with another. The result
type is INT; a –1 if true or a 0 if false. The
example compares 20 words of two INT
arrays.

IF a = b FOR 20 WORDS
THEN . . .

(conditional
expression)

A conditional expression enclosed in
parentheses. The result type is INT; a –1 if
true or a 0 if false. The example is true if
both B and C are false. The system
evaluates the parenthesized condition first,
then applies the NOT operator.

IF NOT (b OR c) THEN . . .

Arithmetic
expression

An arithmetic, assignment, CASE, or IF
expression that has an INT result * . The
expression is treated as true if its value is
not 0 and false if its value is 0. The example
is true if the value of X is not 0.

IF x THEN . . .

Relational
Operator

A signed or unsigned relational operator that
tests a condition code. Condition code
settings are CCL (negative), CCE (0), or
CCG (positive). The example is true if the
condition code setting is CCL.

IF < THEN . . .

* If an arithmetic expression has a result other than INT, use a signed relational expression.
TAL Reference Manual—526371-001
4-13

Expressions Boolean Operators
Boolean Operators
You use Boolean operators—NOT, OR, and AND—to set the state of a single value or
the relationship between two values. Table 4-9 describes the Boolean operators, the
operand types you can use with them, and the results that such operators yield.

Evaluations of Boolean Operations
Conditions connected by the OR operator are evaluated from left to right only until a
true condition occurs.

Conditions connected by the AND operator are evaluated from left to right until a false
condition occurs. The next condition is evaluated only if the preceding condition is true.
In the following example, function F will not be called because A <> 0 is false:

a := 0;

IF a <> 0 AND f(x) THEN ... ;

Effect on Hardware Indicators
Boolean operators set the condition code indicator as described in Testing Hardware
Indicators on page 4-16.

Relational Operators
Relational operators are signed or unsigned.

Signed Relational Operators
Signed relational operators perform signed comparison of two operands and return a
true or false state. Table 4-10 describes signed relational operators, operand data
types, and the results yielded by such operators.

Table 4-9. Boolean Operators and Result Yielded

Operator Operation Operand Type Result Example

NOT Boolean negation;
tests condition for
false state

STRING, INT, or
UNSIGNED(1–
16)

True/False NOT a

OR Boolean disjunction;
produces true state if
either adjacent
condition is true

STRING, INT, or
UNSIGNED(1–16)

True/False a OR b

AND Boolean conjunction;
produces true state if
both adjacent
conditions are true

STRING, INT, or
UNSIGNED(1–16)

True/False a AND b
TAL Reference Manual—526371-001
4-14

Expressions Relational Operators
Unsigned Relational Operators
Unsigned relational operators perform unsigned comparison of two operands and
return a true or false state. Table 4-11 describes unsigned relational operators,
operand data types, and the results yielded by such operators.

Effect on Hardware Indicators
Signed and unsigned operators set the condition code indicator as described in Testing
Hardware Indicators.

Table 4-10. Signed Relational Operators and Result Yielded

Operator Meaning Operand Type Result

< Signed less than Any data type True/False

= Signed equal to Any data type True/False

> Signed greater than Any data type True/False

<= Signed less than or equal
to

Any data type True/False

>= Signed greater than or
equal to

Any data type True/False

<> Signed not equal to Any data type True/False

* The data type of the operands must match except as noted in Data Types of Expressions on
page 4-2.

Table 4-11. Unsigned Relational Operators and Result Yielded

Operator Meaning Operand Type Result

‘<‘ Unsigned less than STRING, INT,
UNSIGNED (1–16)

True/False

‘=’ Unsigned equal to STRING, INT,
UNSIGNED (1–16)

True/False

‘>’ Unsigned greater than STRING, INT,
UNSIGNED (1–16)

True/False

‘<=’ Unsigned less than or
equal to

STRING, INT,
UNSIGNED (1–16)

True/False

‘>=’ Unsigned greater than or
equal to

STRING, INT,
UNSIGNED (1–16)

True/False

‘<>’ Unsigned not equal to STRING, INT,
UNSIGNED (1–16)

True/False
TAL Reference Manual—526371-001
4-15

Expressions Testing Hardware Indicators
Testing Hardware Indicators
Hardware indicators include condition code, carry, and overflow settings. Arithmetic
and conditional operations, assignments, and some file-system calls affect the setting
of the hardware indicators. To check the setting of a hardware indicator, use an IF
statement immediately after the operation that affects the hardware indicator.

Condition Code Indicator
The condition code indicator is set by a zero or a negative or positive result:

To check the state of the condition code indicator, use a relational operator (with no
operands) in a conditional expression. Using a relational operator with no operands is
equivalent to using the relational operator in a signed comparison against zero. When
used with no operands, signed and unsigned operators are equivalent. The result
returned by such a relational operator is as follows:

An example is:

IF < THEN ... ;

File-System Errors
File-system procedures signal their success or failure by returning an error number or
a condition code. Your program can preserve the returned condition code for later
operation as follows:

Result State of Condition Code Indicator

Negative CCL

0 CCE

Positive CCG

Relational Operator Result Returned

< or '<' True if CCL

> or '>' True if CCG

= or '=' True if CCE

<> or '<>' True if not CCE

<= or '<=' True if CCL or CCE

>= or '>=' True if CCE or CCG
TAL Reference Manual—526371-001
4-16

Expressions Carry Indicator
CALL WRITE(...);
IF >= THEN
system_message := -1; !True
ELSE
system_message := 0; !False
IF system_message = -1 THEN ... ;

Carry Indicator
The carry indicator is bit 9 in the environment register (ENV.K). The carry indicator is
affected as follows:

To check the state of the carry indicator, use $CARRY in an IF statement immediately
after the operation that affects the carry indicator. If the carry indicator is on, $CARRY
is –1 (true). If the carry indicator is off, $CARRY is 0 (false). The following example
tests the state of the carry indicator after addition:

INT i, j, k; !Declare variable
i := j + k;
IF $CARRY THEN ... ; !Test state of carry bit from +

The following operations are not portable to future software platforms:

• Testing $CARRY after multiplication or division

• Passing the carry bit as an implicit parameter into a procedure or subprocedure

• Returning the carry bit as an implicit result from a procedure or subprocedure

Overflow Indicator
The overflow indicator is bit 8 in the environment register (ENV.V). The overflow
indicator is affected as follows:

Operation Carry Indicator

Integer addition On if carry out of bit <0>

Integer subtraction or negation On if no borrow out from bit <0>

INT(32) multiplication and division Always off

Multiplication and division except INT(32) Preserved

SCAN or RSCAN operation On if scan stops on a 0 (zero) byte

Array indexing and extended structure
addressing

Undefined

Shift operations Preserved

Operation Overflow Indicator

Unsigned INT addition, subtraction, and negation Preserved

Addition, subtraction, and negation except unsigned INT On or off

Division and multiplication On or off
TAL Reference Manual—526371-001
4-17

Expressions Special Expressions
For example, the following operations turn on the overflow indicator (and interrupt the
system overflow trap handler if the overflow trap is armed through ENV.T):

• Division by 0

• Floating-point arithmetic result in which the exponent is too large or too small

• Signed arithmetic result that exceeds the number of bits allowed by the data type
of the expression

For overflowed integer addition, subtraction, or negation, the result is truncated. For
overflowed multiplication, division, or floating-point operation, the result is undefined.

A program can deal with arithmetic overflows in one of four ways:

For more information on turning off overflow trapping and using $OVERFLOW, see the
description of the $OVERFLOW function in Section 14, Standard Functions.

The following operations are not portable to future software platforms:

• Passing the overflow bit as an implicit parameter into a procedure or subprocedure

• Returning the overflow bit as an implicit result from a procedure or subprocedure

Special Expressions
Special expressions allow you to perform specialized arithmetic or conditional
operations. Table 4-12 on page 4-19 summarizes these special expressions.

Type conversions On, off, or preserved

Array indexing and extended structure addressing Undefined

Assignment or shift operation Preserved

Desired Effect Method

Abort on all overflows Use the system’s default trap handler.

Recover globally from overflows Use a user-supplied trap handler.

Recover locally from statement
overflows

Turn off overflow trapping and use $OVERFLOW.

Ignore all overflows Turn off overflow trapping throughout the program.

Operation Overflow Indicator
TAL Reference Manual—526371-001
4-18

Expressions Assignment Expression
Assignment Expression
The assignment expression assigns the value of an expression to a variable.

variable

is the identifier of a variable in which to store the result of expression. (variable can
have an optional bit-deposit field.)

expression

is an expression having the same data type as variable. The result of expression
becomes the result of the assignment expression. Expression is either:

• An arithmetic expression

• A conditional expression (excluding a relational operator with no operands), the
result of which has data type INT

Examples of Assignment Expressions
1. This example decrements A. As long as A– 1 is not 0, the condition is true and the

THEN clause is executed:

IF (a := a - 1) THEN ... ;

2. This example shows the assignment form used as an index. It decrements A and
accesses the next array element:

IF array[a := a - 1] <> 0 THEN ... ;

Table 4-12. Special Expressions

Expression
Form

Kind of
Expression Description Page

Assignment Arithmetic Assigns the value of an expression to a
variable

4-19

CASE Arithmetic Selects one of several expressions 4-20

IF Arithmetic Conditionally selects one of two
expressions

4-21

Group
comparison

Conditional Does unsigned comparison of two sets of
data

4-23

variable := expression

VST0405.vsd
TAL Reference Manual—526371-001
4-19

Expressions CASE Expression
3. This example mixes the assignment form with a relational form. It assigns the
value of B to A, then checks for equality with 0:

IF (a := b) = 0 THEN ... ;

CASE Expression
The CASE expression selects one of several expressions.

selector

is an INT arithmetic expression that selects the expression to evaluate.

expression

is either:

• An INT arithmetic expression

• A conditional expression (excluding a relational operator with no operands), the
result of which has data type INT

OTHERWISE expression

specifies the expression to evaluate if selector does not select an expression in the
BEGIN clause. If you omit the OTHERWISE clause and an out-of-range case
occurs, results are unpredictable.

Usage Considerations
All expressions in the CASE expression must have the same data type.

The compiler numbers each expression in the BEGIN clause consecutively, starting
with 0. If the selector matches the compiler-assigned number of an expression, that
expression is evaluated and becomes the result of the CASE expression. If the
selector does not match a compiler-assigned number, the OTHERWISE expression is
evaluated.

CASE selector OF BEGIN expression ;

END

otherwise expression ;
VST0406.vsd
TAL Reference Manual—526371-001
4-20

Expressions IF Expression
You can nest CASE expressions. CASE expressions resemble unlabeled CASE
statements except that CASE expressions select expressions rather than statements.

Example of CASE Expression
This example selects an expression based on the value of A and assigns it to X:

INT x, a, b, c, d;

!Code to initialize variables

x := CASE a OF

BEGIN

b; !If A is 0, assign value of B to X.

c; !If A is 1, assign value of C to X.

d; !If A is 2, assign value of D to X.

OTHERWISE -1; !If A is any other value,

END; ! assign -1 to X.

IF Expression
The IF expression conditionally selects one of two expressions, usually for assignment
to a variable.

condition

is either:

• A conditional expression

• An INT arithmetic expression. If the result of the arithmetic expression is not 0,
the condition is true. If the result is 0, the condition is false

expression

is either:

• An INT arithmetic expression

• A conditional expression (excluding a relational operator with no operands), the
result of which has data type INT

VST0407.vsd

IF condition THEN expression ELSE expression
TAL Reference Manual—526371-001
4-21

Expressions IF Expression
Usage Considerations
If the condition is true, the result of the THEN expression becomes the result of the
overall IF expression.

If the condition is false, the result of the ELSE expression becomes the result of the
overall IF expression.

You can nest IF expressions within an IF expression or within other expressions. The
IF expression resembles the IF statement except that the IF expression:

• Requires the ELSE clause

• Contains expressions, not statements

Examples of IF Expressions
1. This example assigns an arithmetic expression to VAR based on the condition

LENGTH > 0:

var := IF length > 0 THEN 10 ELSE 20;

2. This example nests an IF expression (in parentheses) within another expression:

var * index +

(IF index > limit THEN var * 2 ELSE var * 3)

3. This example nests an IF expression within another IF expression:

var := IF length < 0 THEN -1
ELSE IF length = 0 THEN 0
ELSE 1;
TAL Reference Manual—526371-001
4-22

Expressions Group Comparison Expression
Group Comparison Expression
The group comparison expression compares a variable with a variable or constant.

var1

is the identifier of a variable, with or without an index, that you want to compare to
var2, constant, or constant-list. var1 can be a simple variable, array, simple pointer,
structure, structure data item, or structure pointer, but not a read-only array.

relational-operator

is one of the following operators:

Signed relational operator: <, =, >, <=, >=, <>

Unsigned relational operator: '<', '=', '>', '<=', '>=', '<>'

All comparisons are unsigned whether you use a signed or unsigned operator.

var2

is the identifier of a variable, with or without an index, to which var1 is compared.
var2 can be a simple variable, array, read-only array, simple pointer, structure,
structure data item, or structure pointer.

VST0408.vsd

relational operatorvar1

var2 FOR count

count-
unit

next-
addr

->

constant list

constant

constant

[]
TAL Reference Manual—526371-001
4-23

Expressions Group Comparison Expression
count

is a positive INT arithmetic expression that defines the number of units in var2 to
compare. When count-unit is not present, the units compared are:

count-unit

is BYTES, WORDS, or ELEMENTS. count-unit changes the meaning of count to the
following:

If count-unit is not BYTES, WORDS, or ELEMENTS, the compiler issues an error. If
you specify BYTES, WORDS, or ELEMENTS, the term cannot also appear as a
DEFINE or LITERAL identifier in the global declarations or in any procedure or
subprocedure in which the group comparison expression appears.

constant

is a number, a character string, or a LITERAL to which var1 is compared.

var2 Data Type Units Compared

Simple variable, array, simple pointer
(including those declared in structures)

STRING
INT
INT(32) or REAL
FIXED or REAL(64)

Bytes
Words
Doublewords
Quadruplewords

Structure Not applicable Words

Substructure Not applicable Bytes

Structure pointer STRING*
INT*

Bytes
Words

BYTES Compares count bytes. If var1 and var2 both have word addresses,
BYTES generates a word comparison for (count + 1) / 2 words

WORDS Compares count words

ELEMENTS Compares count elements. The elements compared depend on the
nature of var2 and its data type as follows:

var2 Data Type Units Compared

Simple variable, array,
simple pointer (including
those declared in
structures)

STRING
INT
INT (32) or REAL
FIXED or REAL (64)

Bytes
Words
Doublewords
Quadruplewords

Structure Not applicable Structure occurrences

Substructure Not applicable Substructure occurrences

Structure pointer STRING*
INT*

Structure occurrences
Structure occurrences

* For structure pointers, STRING and INT have meaning only in group comparison expressions and move
statements.
TAL Reference Manual—526371-001
4-24

Expressions Group Comparison Expression
If you enclose constant in brackets ([]) and if the destination has a byte address or
is a STRING structure pointer, the system compares a single byte regardless of the
size of constant. If you do not enclose constant in brackets or if the destination has
a word address or is an INT structure pointer, the system compares a word,
doubleword, or quadrupleword as appropriate for the size of constant.

constant-list

is a list of one or more constants, which are concatenated and compared to var1.
Specify constant-list in the form shown in Section 3, Data Representation.

next-addr

is a variable to contain the address of the first byte or word in var1 that does not
match the corresponding byte or word in var2. The compiler returns a 16-bit or 32-
bit address as described in Usage Considerations.

Usage Considerations
After a group comparison, you can test the condition code setting by using the
following relational operators (with no operands) in a conditional expression:

The compiler does a standard comparison and returns a 16-bit next-addr if:

• Both var1 and var2 have standard byte addresses

• Both var1 and var2 have standard word addresses

The compiler does an extended comparison (which is slightly less efficient) and returns
a 32-bit next-addr if:

• Either var1 or var2 has a standard byte address and the other has a standard word
address

• Either var1 or var2 has an extended address

< CCL if var1 '<' var2

= CCE if var1 = var2

> CCG if var1 '>' var2
TAL Reference Manual—526371-001
4-25

Expressions Group Comparison Expression
Variables (including structure data items) are byte addressed or word addressed as
follows:

After an element comparison, next-addr might point into the middle of an element,
rather than at the beginning of the element.

Examples of Group Comparison Expressions
1. This example compares two arrays and then tests the condition code setting to see

if the value of the element in D_ARRAY that stopped the comparison is less than
the value of the corresponding element in S_ARRAY:

INT d_array[0:9];

INT s_array[0:9];

!Code to assign values to arrays

IF d_array = s_array FOR 10 ELEMENTS -> @pointer THEN

 BEGIN !They matched

 !Do something

 END

ELSE

 IF < THEN ... ; !POINTER points to element of

 !Do something else ! D_ARRAY that is less than the

 ! corresponding element of

 ! S_ARRAY

2. When you compare array elements (as in the preceding example), the ELEMENTS
keyword is optional but provides clearer source code.

Byte
addressed

STRING simple variables
STRING arrays
Variables to which STRING simple pointers point
Variables to which STRING structure pointers point
Substructures

Word
addressed

INT, INT(32), FIXED, REAL(32), or REAL(64) simple variables
INT, INT(32), FIXED, REAL(32), or REAL(64) arrays
Variables to which INT, INT(32), FIXED, REAL(32), or REAL(64) simple
pointers point
Variables to which INT structure pointers point
Structures
TAL Reference Manual—526371-001
4-26

Expressions Bit Operations
3. To compare structure or substructure occurrences, you must specify the
ELEMENTS keyword in the group comparison expression:

STRUCT struct_one [0:9];

BEGIN

INT a[0:2];

INT b[0:7];

STRING c;

END;

STRUCT struct_two (struct_one) [0:9];

!Code here to assign values to structures

IF struct_one = struct_two FOR 10 ELEMENTS THEN ... ;

4. This example contrasts a comparison to a bracketed (single-byte) constant with a
comparison to an unbracketed (element) constant:

STRING var[0:1];

!Lots of code

IF var = [0] THEN ... ; !Compare VAR[0] to one byte

IF var = 0 THEN ... ; !Compare VAR[0:1] to two bytes

Bit Operations
You can access individual bits or groups of bits in a STRING or INT variable.
Table 4-13 lists bit operations.

Table 4-13. Bit - Operations

Bit Operation Description

Bit extraction Access a bit-extraction field in an INT expression without
altering the expression

Bit shift Shift a bit-shift field in an INT or INT(32) expression to the left
or to the right by a specified number of bits

Bit deposit Assign a bit value to a bit-deposit field in a variable (For more
information, see Section 12, Statements)
TAL Reference Manual—526371-001
4-27

Expressions Bit Extractions
Bit Extractions
A bit extraction lets you access a bit field in an INT expression without altering the
expression.

int-expression

is an INT expression (which can include STRING, INT, or UNSIGNED(1–16)
values).

left-bit

is an INT constant in the range 0 through 15 that specifies the bit number of either:

• The leftmost bit of the bit-extraction field

• The only bit (if right-bit is the same value as left-bit or is omitted)

If int-expression is a STRING value, left-bit must be in the range 8 through 15. (In a
string value, bit <8> is the leftmost bit and bit <15> is the rightmost bit.)

right-bit

is an INT constant that specifies the rightmost bit of the bit field. If int-expression is
a STRING value, right-bit must be in the range 8 through 15. right-bit must be
equal to or greater than left-bit. To access a single bit, omit right-bit or specify the
same value as left-bit.

Usage Considerations
Specify the bit-extraction format with no intervening spaces, as in:

myvar.<0:5>

Examples of Bit Extractions
1. This assignment accesses bits in an array element:

STRING right_byte;

INT array[0:7];

right_byte := array[5].<8:15>;

VST0409.vsd

int-expression left-bit. < >

: right-bit

ns

nsnsns

nsns
TAL Reference Manual—526371-001
4-28

Expressions Bit Shifts
2. This example assigns bits <4:7> of the sum of two numbers to RESULT. The
parentheses cause the numbers to be added before the bits are extracted:

INT result;

INT num1 := 51;

INT num2 := 28;

result := (num1 + num2).<4:7>;

3. This conditional expression checks bit <15> for a nonzero value:

STRING var;

IF var.<15> THEN ... ;

Bit Shifts
A bit shift operation shifts a bit field a specified number of positions to the left or to the
right within a variable without altering the variable.

int-expression

is an INT arithmetic expression. int-expression can contain STRING, INT, or
UNSIGNED(1–16) operands. The bit shift occurs within a word.

dbl-expression

is an INT(32) arithmetic expression. dbl-expression can contain INT(32) or
UNSIGNED(17–31) operands. The bit shift occurs within a doubleword.

shift-operator

is one of the operators ('<<', '>>', <<, >>) described in Table 4-14.

positions

is an INT expression that specifies the number of bit positions to shift the bit field.
A value greater than 31 gives undefined results (different on TNS and TNS/R
systems).

VST0410.vsd

int-expression

dbl-expression

positionsshift-operator
TAL Reference Manual—526371-001
4-29

Expressions Usage Considerations
Usage Considerations
Table 4-14 lists the bit-shift operators you can specify.

For signed left shifts (<<), programs that run on TNS/R systems use unsigned left shifts
('<<').

Bit-shift operations include:

 Examples of Bit Shifts
1. This unsigned left shift shows how zeros fill the vacated bits from the right:

Initial value = 0 010 111 010 101 000

'<<' 2 = 1 011 101 010 100 000

2. This unsigned right shift shows how zeros fill the vacated bits from the left:

Initial value = 1 111 111 010 101 000

'>>' 2 = 0 011 111 110 101 010

Table 4-14. Bit-Shift Operators

Operator Function Result

‘<<‘ Unsigned left shift through
bit <0>

Zeros fill vacated bits from the right

‘>>’ Unsigned right shift Zeros fill vacated bits from the left.

<< Signed left shift through
bit <0> or bit <1>

Zeros fill vacated bits from the right. In
arithmetic overflow cases, the final value of bit
<0> is undefined (different for TNS/R
accelerated mode than for TNS systems).

>> Signed right shift Sign bit (bit <0>) unchanged; sign bit fills
vacated bits from the left

Operation User Action

Multiplication by powers of 2 For each power of 2, shift the field one bit to the left.
(Some data might be lost.)

Division by powers of 2 For each power of 2, shift the field one bit to the right
(Some data might be lost.)

Word-to-byte address conversion Shift the word address one bit to the left, using an
unsigned shift operator.
TAL Reference Manual—526371-001
4-30

Expressions Examples of Bit Shifts
3. This signed left shift shows how zeros fill the vacated bits from the right, while the
sign bit remains the same (TNS systems only):

Initial value = 1 011 101 010 100 000

<< 1 = 1 111 010 101 000 000

4. This signed right shift shows how the sign bit fills the vacated bits from the left:

Initial value = 1 111 010 101 000 000

>> 3 = 1 111 111 010 101 000

5. These examples show multiplication and division by powers of two:

a := b << 1; !Multiply by 2

a := b << 2; !Multiply by 4

a := b >> 3; !Divide by 8

a := b >> 4; !Divide by 16

6. This unsigned bit shift converts the word address of an INT array to a byte
address, which allows byte access to the INT array:

INT a[0:5]; !INT array

STRING .p := @a[0] '<<' 1; !Initialize STRING simple

 ! pointer with byte address

p[3] := 0; !Access fourth byte of A

7. This example shifts the right-byte value into the left byte of the same word and sets
the right byte to a zero:

INT b; !INT variable

b := b '<<' 8; !Shift right-byte value into

 ! left byte
TAL Reference Manual—526371-001
4-31

Expressions Examples of Bit Shifts
TAL Reference Manual—526371-001
4-32

5 LITERALs and DEFINEs
This section describes LITERAL and DEFINE declarations. A LITERAL declaration
associates identifiers with constant values.

A DEFINE declaration associates identifiers (and parameters if any) with text. (DEFINE
declarations differ from TACL DEFINE commands, which are described in Appendix E,
“File Names and TACL Commands,” in the TAL Programmer’s Guide.)

You can declare LITERALs and DEFINEs once in a program, and then refer to them by
identifier many times throughout the program. They allow you to make significant
changes in the source code efficiently. You only need to change the declaration, not
every reference to it in the program.

LITERAL Declaration
A LITERAL declaration specifies one or more identifiers and associates each with a
constant. Each identifier in a LITERAL declaration is known as a LITERAL.

identifier

is the identifier of a LITERAL.

constant

is either:

• An INT, INT(32), FIXED, REAL, or REAL(64) numeric constant expression that
evaluates to any value except the address of a global variable. (All global
variables are relocatable during binding.)

• A character string of one to four characters.

If you omit any constants, the compiler supplies the omitted numeric constants.
The compiler uses unsigned arithmetic to compute the constants it supplies:

• If you omit the first constant in the declaration, the compiler supplies a zero.

• If you omit a constant that follows an INT constant, the compiler supplies an
INT constant that is one greater than the preceding constant. If you omit a
constant that follows a constant of any data type except INT, an error message
results.

;

constant

identifierLITERAL

=

,
VST0501.vsd
TAL Reference Manual—526371-001
5-1

LITERALs and DEFINEs Usage Considerations
Usage Considerations
The compiler allocates no storage for LITERAL constants. It substitutes the constant at
each occurrence of the identifier.

You access a LITERAL constant by using its identifier in declarations and statements.

LITERAL identifiers make the source code more readable. For example, identifiers
such as BUFFER_LENGTH and TABLE_SIZE are more meaningful than their
respective constant values of 80 and 128.

Examples of LITERAL Declarations
1. This example specifies a constant for each identifier:

LITERAL true = -1,

 false = 0,

 buffer_length = 80,

 table_size = 128,

 table_base = %1000,

 entry_size = 4,

 timeout = %100000D,

 CR = %15,

 LF = %12;

2. This example specifies no numeric constants; the compiler supplies all the
constants:

LITERAL a, -- The compiler assigns 0

 b, -- The compiler assigns 1

 c; -- The compiler assigns 2
TAL Reference Manual—526371-001
5-2

LITERALs and DEFINEs DEFINE Declaration
3. This example specifies two of eight numeric constants; the compiler supplies the
remaining constants:

LITERAL d, -- The compiler assigns 0

 e, -- The compiler assigns 1

 f, -- The compiler assigns 2

 g = 0,

 h, -- The compiler assigns 1

 i = 17,

 j, -- The compiler assigns 18

 k; -- The compiler assigns 19

4. This example uses a LITERAL identifier in an array declaration:

LITERAL length = 50; !Length of array

INT buffer[0:length - 1]; !Array declaration

5. This example uses LITERAL identifiers in subsequent LITERAL declarations:

LITERAL number_of_file_extents = 16;

LITERAL file_extent_size_in_pages = 32;

LITERAL file_size_in_bytes = (number_of_file_extents '*'

file_extent_size_in_pages) * 2048D !bytes per page!;

DEFINE Declaration
A DEFINE declaration associates an identifier (and parameters if any) with text.

VST0502.vsd

=

param-
name

identifierDEFINE

(

,

#define-
body

,

)

;

TAL Reference Manual—526371-001
5-3

LITERALs and DEFINEs Usage Considerations
identifier

is the identifier of the DEFINE.

param-name

is the identifier of a formal parameter. You can specify up to 31 formal parameters.
An actual parameter can be up to 500 bytes long.

define-body

is all characters between the = and # delimiters. define-body can span multiple
source lines. Enclose character strings in quotation marks ("). To use # in as part of
the define-body rather than as a delimiter, enclose the # in quotation marks or
embed the # in a character string.

Usage Considerations
DEFINE declarations have the following characteristics:

• If a DEFINE and a formal parameter have the same identifier, the formal parameter
has priority during expansion.

• A DEFINE must not reference itself.

• A DEFINE declaration must not appear within a DEFINE body; that is, do not nest
a DEFINE within a DEFINE.

• A DEFINE cannot replace a keyword with another term; for example, a DEFINE
cannot replace BEGIN with START.

• To ensure proper grouping and evaluation of expressions in the DEFINE body, use
parentheses around each DEFINE parameter used in an expression.

• Within the DEFINE body, place any compound statements within a BEGIN-END
construct.

• Directives appearing within a DEFINE body are evaluated immediately; they are
not part of the DEFINE itself.

• If the CODE (DECS) and CODE (RP) statements are equivalent to the DECS and
RP directives but do not execute until a reference to the DEFINE identifier occurs.
Statements are part of the DEFINE itself.
TAL Reference Manual—526371-001
5-4

LITERALs and DEFINEs Examples of DEFINE Declarations
• If expanded DEFINEs must produce correct TAL constructs. To list the expanded
DEFINEs in the compiler listing, specify the DEFEXPAND directive before the
DEFINE declarations. (For more information, see Compiler Action on page 5-7.)

Examples of DEFINE Declarations
1. This example uses parentheses to direct the DEFINE body evaluation:

DEFINE value = ((45 + 22) * 8 / 2) #;

2. This example provides incrementing and decrementing utilities:

DEFINE increment (x) = x := x + 1 #;
DEFINE decrement (y) = y := y - 1 #;

3. This example loads numbers into particular bit positions. To ensure proper
evaluation, parentheses enclose each parameter used in an expression:

DEFINE word_val (a, b) = ((a) '<<' 12) LOR (b) #;

4. This example shows a CODE (DECS) statement, which is equivalent to the DECS
directive. This example is not portable to future software platforms:

DEFINE call_it (x, y) =
 BEGIN
 STACK x;
 STACK y;
 CODE (PUSH %711);
 CODE (DPCL);
 CODE (DECS 2); !Equivalent to DECS directive
 END #;

call_it (a, b); !Expands to: STACK a;
 ! STACK b;
 ! CODE (PUSH %711);
 ! CODE (DPCL);
 ! ?DECS 2

5. In this example, DEFINE MYNAME accesses the structure item named in the
DEFINE body. However, the compiler issues a warning because 2 is assigned to
MYSTRUCT.YRNAME, not to MYSTRUCT.ITEM2:

Note. if you use a DEFINE to name and access a structure item, the DEFINE identifier must
be unique among the identifiers of all structure items in the compilation unit. Conversely, if you
use the DEFINE identifier to access a structure item and some other structure item has the
name identifier as the DEFINE, you access the other structure item and the compiler issues a
warning. To access structure bit fields smaller than a byte, use UNSIGNED declarations
instead of DEFINEs.
TAL Reference Manual—526371-001
5-5

LITERALs and DEFINEs Invoking DEFINEs
PROC myproc MAIN;
 BEGIN
 DEFINE myname = item1#,
 yrname = item2#;
 STRUCT mystruct;
 BEGIN
 INT item1;
 INT item2;
 INT yrname; !Structure item has same
 END; ! identifier as a DEFINE

 mystruct.myname := 1; !Okay, 1 is assigned to
 ! MYSTRUCT.ITEM1

 mystruct.yrname := 2; !Compiler issues warning;
 !2 is assigned to
 !MYSTRUCT.YRNAME, not to
 !MYSTRUCT.ITEM2
 !More code
 END;

Invoking DEFINEs
You invoke a DEFINE by using its identifier in a statement. The invocation can span
multiple lines.

If you invoke a DEFINE within an expression, make sure the expression evaluates as
you intend. For instance, if you want the DEFINE body to be evaluated before it
becomes part of the expression, enclose the DEFINE body in parentheses.

The following example contrasts expansion of parenthesized and nonparenthesized
DEFINE bodies after the identifiers are used in assignment statements:

DEFINE expr = (5 + 2) #;
j := expr * 4; !Expands to: (5 + 2) * 4;
 ! assigns 28 to J

DEFINE expr = 5 + 2 #;
j := expr * 4; !Expands to: 5 + 2 * 4;
 ! assigns 13 to J

DEFINE identifiers are not invoked when specified:

• Within a comment

• Within a character string constant

• On the left side of a declaration
TAL Reference Manual—526371-001
5-6

LITERALs and DEFINEs Compiler Action
For example, the following declaration can invoke a DEFINE named Y but not a
DEFINE named X:

INT x := y;

Compiler Action
The compiler allocates no storage for DEFINEs. When the compiler encounters a
statement that uses a DEFINE identifier, the compiler expands the DEFINE as follows:

• It replaces the DEFINE identifier with the DEFINE body, replaces formal
parameters with actual parameters, compiles the DEFINE, and emits any machine
instructions needed.

• It expands quoted character strings intact.

• It expands actual parameters after instantiation. Depending on the order of
evaluation, the expansion can change the lexical scope of a DEFINE declaration.

If the DEFEXPAND directive is in effect, the compiler lists each expanded DEFINE in
the compiler listing following the DEFINE identifier. The expanded listing includes:

• The DEFINE body, excluding comments

• The lexical level of the DEFINE, starting at 1

• Parameters to the DEFINE

Parameters are listed as $n (C-series system) or #n (D-series system), where n is the
sequence number of the parameter, starting at 1.

Passing Actual Parameters
If the DEFINE declaration has formal parameters, you supply the actual parameters
when you use the DEFINE identifier in a statement.

The number of actual parameters can be less than the number of formal parameters. If
actual parameters are missing, the corresponding formal parameters expand to empty
strings. For each missing actual parameter, you can use a placeholder comma. For
example:

INT PROC d (a, b, c) EXTENSIBLE; EXTERNAL;
DEFINE something (a, b, c) = d (a, b, c) #;

nothing := something (, , c); !Placeholder commas

If a DEFINE has formal parameters and you pass no actual parameters to the DEFINE,
you must specify an empty actual parameter list. You can include commas between the
list delimiters, but need not. For example:

DEFINE something (a, b, c) = anything and everything #;

nothing := something (); !Empty parameter list
TAL Reference Manual—526371-001
5-7

LITERALs and DEFINEs Examples of Passing DEFINE Parameters
If the number of actual parameters exceeds the number of formal parameters, the
compiler issues an error. For example:

DEFINE something (a, b, c) = anything and everything #;

nothing := something (a, b, c, d); !Too many parameters

You can pass a DEFINE that has no formal parameters as an actual parameter. For
example:

defmacro (DEFINE x = y + y #); !Invocation

If an actual parameter in a DEFINE invocation requires commas, enclose each comma
in apostrophes ('). An example is an actual parameter that is a parameter list:

DEFINE varproc (proc1, param) = CALL proc1 (param) #;

varproc (myproc, i ',' j ',' k); !Expands to:
 ! CALL MYPROC (I, J, K);"

An actual parameter in a DEFINE invocation can include parentheses. For example:

DEFINE varproc (proc1, param) = CALL proc1 (param) #;

varproc (myproc, (i + j) * k); !Expands to:
 ! CALL MYPROC ((I+J)*K);

Examples of Passing DEFINE Parameters
Here are more examples of passing actual parameters.

1. This example shows a DEFINE declaration that has one formal parameter and an
assignment statement that uses the DEFINE identifier, passing a parameter of 3:

DEFINE cube (x) = (x * x * x) #;
INT result;

result := cube (3) '>>' 1;
 !Expands to: (3 * 3 * 3) '>>' 1 = 27 '>>' 1 = 13

2. This example provides incrementing and decrementing utilities and a statement
that uses one of the utilities:

DEFINE increment (x) = x := x + 1 #;
DEFINE decrement (y) = y := y - 1 #;
INT index := 0;

increment(index); !Expands to: INDEX := INDEX + 1;
TAL Reference Manual—526371-001
5-8

LITERALs and DEFINEs Examples of Passing DEFINE Parameters
3. This example fills an array with zeros:

DEFINE zero_array (array, length) =
 BEGIN
 array[0] := 0;
 array[1] ':=' array FOR length - 1;
 END #;

LITERAL len = 50;
INT buffer[0:len - 1];

zero_array (buffer, len); !Fill buffer with zeros

4. This example displays a message, checks the condition code, and assigns an error
if one occurs:

INT error;
INT file;
INT .buffer[0:50];
INT count_written;
INT i;

DEFINE emit (filenum, text, bytes, count, err) =
 BEGIN
 CALL WRITE (filenum, text, bytes, count);
 IF < THEN
 BEGIN
 CALL FILEINFO (filenum, err);
 !Process errors if any
 END;

 END #;

!Lots of code.
IF i = 1 THEN
 emit (file, buffer, 80, count_written, error);
TAL Reference Manual—526371-001
5-9

LITERALs and DEFINEs Examples of Passing DEFINE Parameters
TAL Reference Manual—526371-001
5-10

6 Simple Variables
A simple variable is a single-element data item of a specified data type. After you
declare a simple variable, you can use its identifier in statements to access or change
the data contained in the variable. You must declare variables before you use them to
access data.

This section defines the syntax for declaring simple variables. The declaration
determines:

• The kind of values the simple variable can represent

• The amount of storage the compiler allocates for the variable

• The operations you can perform on the variable

• The byte or word addressing mode of the variable

• The direct or indirect addressing mode of the variable

The TAL Programmer’s Guide describes:

• How the compiler allocates storage for simple variables

• How you access the variables

Simple Variable Declaration
The simple variable declaration associates an identifier with a single-element data item
and optionally initializes it.

type

is any data type described in Section 3, Data Representation.

identifier

is the identifier of the simple variable, specified in the form described in Section 2,
Language Elements.

initialization

is an expression that represents the value to store in identifier. The default number
base is decimal. The kind of expression you can specify depends on the scope of
the simple variable:

,

initialization

;

:=

identifiertype

VST0601.vsd
TAL Reference Manual—526371-001
6-1

Simple Variables Usage Considerations
• For a global simple variable, use a constant expression.

• For a local or sublocal simple variable, use any arithmetic expression including
variables.

You can initialize simple variables of any data type except UNSIGNED.

Usage Considerations
Simple variables are always directly addressed.

Initializing With Numbers
When you initialize with a number, it must match the data type specified for the simple
variable. The data type determines what kind of values the simple variable can store:

• STRING, INT, and INT(32) simple variables can contain integer constants in binary,
decimal, hexadecimal, or octal base.

• REAL and REAL(64) simple variables can contain signed floating-point numbers.

• FIXED simple variables can contain signed 64-bit fixed-point numbers in binary,
decimal, hexadecimal, or octal base. For decimal numbers, you can also specify a
fractional part, preceded by a decimal point. If a FIXED number has a different
decimal setting than the specified fpoint, the system scales the number to match
the fpoint. If the number is scaled down, some precision is lost.

For more information on syntax specifying numeric constants in each number base by
data type, see Section 3, Data Representation.

Initializing With Character Strings
When you initialize a simple variable with a character string, the character string can
contain the same number of bytes as the simple variable or fewer. Each character in a
character string requires one byte of contiguous storage. The values of any
uninitialized bytes are undefined.

Examples of Simple Variable Declarations
1. The following examples declare simple variables of different data types without

initializing them:

STRING b;

INT(32) dblwd1;

REAL(64) long;

UNSIGNED(5) flavor;
TAL Reference Manual—526371-001
6-2

Simple Variables Examples of Simple Variable Declarations
2. The following examples declare and initialize simple variables:

STRING y := "A"; !Character string

STRING z := 255; !Byte value

INT a := "AB"; !Character string

INT b := 5 * 2; !Expression

INT c := %B110; !Word value

INT(32) dblwd2 := %B1011101D; !Doubleword value

INT(32) dblwd3 := $DBL(%177775); !Standard function

REAL flt1 := 365335.6E-3; !Doubleword value

REAL(64) flt2 := 2718.2818284590452L-3; !Quadrupleword value

3. These examples declare FIXED simple variables and show how the fpoint affects
storage (and scaling):

FIXED(-3) f := 642987F; !Stored as 642; accessed
 ! as 642000

FIXED(3) g := 0.642F; !Stored as 642, accessed
 ! as 0.642

FIXED(2) h := 1.234F; !Stored as 123; accessed
 ! as 1.23

4. This example illustrates use of constants (any level) and variables (local or
sublocal only) as initialization values:

INT global := 34; !Only constants allowed
 ! in global initialization

PROC mymain MAIN;
 BEGIN
 INT local := global + 10; !Any expression allowed
 INT local2 := global * local; !in local or sublocal
 FIXED local3 := $FIX(local2); !initialization
 !Lots of code
 END; !End of MYMAIN procedure
TAL Reference Manual—526371-001
6-3

Simple Variables Examples of Simple Variable Declarations
TAL Reference Manual—526371-001
6-4

7 Arrays
In TAL, an array is a one-dimensional set of elements of the same data type. Each
array is stored as a collective group of elements. Once you declare an array, you can
use its identifier to access the array elements individually or as a group.

This section defines the syntax for declaring arrays. The declaration determines:

• The kind of values the array can represent

• The amount of storage the compiler allocates for the array

• The operations you can perform on the array

• The byte or word addressing mode of the array

• The direct or indirect addressing mode of the array

You can declare:

• Arrays—which are stored in the user data segment or in an extended data
segment

• Read-only arrays—which are stored in a user code segment

For more information on syntax for declaring arrays within structures, see Section 8,
Structures. This section also explains how to declare structures that simulate arrays of
arrays or arrays of structures (including multidimensional arrays).

The TAL Programmer’s Guide describes:

• How to make assignments to arrays

• How to copy, scan, or compare data in arrays

• How the compiler allocates storage for arrays

Array Declaration
An array declaration associates an identifier with a set of elements of the same data
type. The array elements are contiguously stored in the user data segment or in an
extended data segment.
TAL Reference Manual—526371-001
7-1

Arrays Array Declaration
type

is any data type described in Section 3, Data Representation.

. (a period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal or UNSIGNED arrays.

.EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal or UNSIGNED arrays.

identifier

is the identifier of the array.

lower-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the first array element you want
allocated.

upper-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the last array element you want
allocated. For arrays declared outside of structures, upper-bound must be equal to
or greater than lower-bound.

initialization

is a constant or a constant list of values to assign to the array elements, beginning
with the lower-bound element. (Constant lists are described in Section 3, Data
Representation.) If you specify fewer initialization values than the number of

type identifier [lower-
bound

: upper-
bound

.

.EXT

] ;

:= initialization

, VST0701.vsd
TAL Reference Manual—526371-001
7-2

Arrays Usage Considerations
elements, the values of uninitialized elements are undefined. You cannot initialize
extended indirect local arrays or UNSIGNED arrays.

Specify initialization values that are appropriate for the data type of the array. For
example, if the decimal setting of an initialization value differs from the fpoint of a
FIXED array, the system scales the initialization value to match the fpoint. If the
initialization value is scaled down, some precision is lost.

Usage Considerations
UNSIGNED arrays and sublocal arrays must be directly addressed. For most other
arrays, you should use indirection because storage areas for direct global and local
data are limited. For very large arrays, use extended indirection. You access indirect
data by identifier as you do direct data.

The data type determines:

• The kind of values that are appropriate for the array

• The storage unit the compiler allocates for each array element as follows:

Examples of Array Declarations
1. These examples declare arrays with various bounds. The arrays are indirectly

addressed except the UNSIGNED array, which must be directly addressed:

FIXED .array_a[0:3]; !Four-element array

INT .array_b[0:49]; !Fifty-element array

UNSIGNED(1) flags[0:15]; !Array of 16 one-bit elements

2. These examples declare arrays and initialize them with constants:

INT a_array[0:3] := -1; !Store -1 in element [0];
 !values in elements [1:3]
 !are undefined

INT b_array[0:1] := "abcd"; !Store one character per byte

Data Type Storage Unit

STRING Byte

INT Word

INT (32) or REAL Doubleword

REAL (64) or FIXED Quadrupleword

UNSIGNED Sequence of 1, 2, 4, or 8 bits
TAL Reference Manual—526371-001
7-3

Arrays Examples of Array Declarations
3. These examples declare and initialize arrays using constant lists:

INT .c_array[0:5] := [1,2,3,4,5,6]; !Constant list

STRING .buffer[0:102] := ["A constant list can consist ",
 "of several character string constants, ",
 "one to a line, separated by commas."];

INT(32) .mixed[0:3] := ["abcd", 1D, %B0101011D, %20D];
 !Mixed constant list

LITERAL len = 80; !Length of array
STRING .buffer[0:len - 1] := len * [" "];
 !Repetition factor

FIXED .f[0:35] := 3*[2*[1F,2F], 4*[3F,4F]];
 !Repetition factors

LITERAL cr = %15,
 lf = %12;
STRING .err_msg[0:9] := [cr, lf, "ERROR", cr, lf, 0];
 !Constant list

4. This example initializes all arrays except the local extended indirect array:

INT(32) .a[0:1] := [5D, 7D]; !Initialize global array
PROC my_procedure;
 BEGIN
 STRING .b[0:1] := ["A","B"]; !Initialize local standard
 ! indirect array
 FIXED .EXT c[0:3]; !Cannot initialize local
 !extended indirect array

SUBPROC my_subproc;
 BEGIN
 INT d[0:2] := ["Hello!"]; !Initialize sublocal array
 !Lots of code
 END;
END;

5. The following examples show how positive and negative fpoints affect storage and
access of FIXED values. A positive fpoint specifies the number of decimal places
to the right of the decimal point for storage and access. The system truncates any
value that does not fit:

FIXED(2) x[0:1] := [0.64F, 2.348F];
 !Stored as 64 and 234; accessed as 0.64 and 2.34

6. A negative fpoint specifies the number of integer places to the left of the decimal
point to truncate when the value is stored. When you access the value, the system
replaces the truncated digits with zeros:

FIXED(-3) y[0:1] := [642913F, 1234F];
 !Stored as 642 and 1; accessed as 642000 and 1000
TAL Reference Manual—526371-001
7-4

Arrays Read-Only Array Declaration
Read-Only Array Declaration
A read-only array declaration allocates storage for a nonmodifiable array in a user
code segment. Read-only arrays are sometimes referred to as P-relative arrays,
because they are addressed using the program counter (the P register).

type

is any data type except UNSIGNED.

identifier

is the identifier of the read-only array.

lower-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the first array element you want
allocated. The default value is 0.

upper-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the last array element you want
allocated. The default value is the number of elements initialized minus one.

'P'

specifies a read-only array. Read-only arrays are addressed using the program
counter (the P register).

initialization

is a constant list to assign to the array elements. You must initialize read-only
arrays when you declare them. (Constant lists are described in Section 3, Data
Representation.)

Specify initialization values that are appropriate for the data type of the array. For
example, if the decimal setting of an initialization value differs from the fpoint of a

type identifier =

[:]

'p' := initialization ;

,

lower-
bound

upper-
bound

VST0702.vsd
TAL Reference Manual—526371-001
7-5

Arrays Usage Considerations
FIXED array, the system scales the initialization value to match the fpoint. If the
initialization value is scaled down, some precision is lost.

Usage Considerations
Because code segments have no primary or secondary areas, read-only arrays must
be direct. If you declare an indirect read-only array, the compiler ignores the indirection
symbol and issues warning 37 (array access changed from indirect to direct).

You must initialize read-only arrays. UNSIGNED read-only arrays are not allowed,
because they cannot be initialized.

If you declare a read-only array in a RESIDENT procedure, the array is also resident in
main memory.

Binder binds each global read-only array into any code segment containing a
procedure that references the array.

The TAL Programmer’s Guide gives information on accessing read-only arrays. In
summary, you can access read-only arrays as you access any other array, except that:

• You cannot modify a read-only array; that is, you cannot specify a read-only array
on the left side of an assignment or move operator.

• You cannot specify a read-only array on the left side of a group comparison
expression.

• In a SCAN or RSCAN statement, you cannot use next-addr to read the last
character of a string. You can use next-addr to compute the length of the string.

Example of Read-Only Array Declaration
This example declares read-only arrays using default lower and upper bounds and
initializes them with constant lists:

STRING prompt = 'P' := ["Enter Character: ", 0];

INT error = 'P' := ["INCORRECT INPUT"];
TAL Reference Manual—526371-001
7-6

8 Structures
A structure is a collectively stored set of data items that you can access individually or
as a group. Structures contain structure items (fields) such as simple variables, arrays,
simple pointers, structure pointers, and nested structures (called substructures). The
structure items can be of different data types.

Structures usually contain related data items such as the fields of a file record. For
example, in an inventory control application, a structure can contain an item number,
the unit price, and the quantity on hand.

This section describes the syntax for declaring:

• Definition structures

• Template structures

• Referral structures

• Structure items—simple variables, arrays, substructures, filler bytes, filler bits,
simple pointers, structure pointers, and redefinitions

Section 8, “Using Structures,” in the TAL Programmer’s Guide describes:

• How the compiler aligns structures and structure items

• How the compiler allocates storage for structures

• How to declare arrays of arrays, arrays of structures, and multidimensional arrays

• How you can access structures and structure items

Kinds of Structures
A structure declaration associates an identifier with any of three kinds of structures, as
listed in Table 8-1.

Table 8-1. Kinds of Structures

Structure Description

Definition Describes a structure layout and allocates storage for it

Template Describes a structure layout but allocates no storage for it

Referral Allocates storage for a structure whose layout is the same as the layout of a
previously declared structure
TAL Reference Manual—526371-001
8-1

Structures Structure Layout
Structure Layout
The structure layout (or body) is a BEGIN-END construct that contains declarations of
structure items. Table 8-2 lists structure items.

You can nest substructures within structures up to 64 levels deep. That is, you can
declare a substructure within a substructure within a substructure, and so on, for up to
64 levels. The structure and each substructure has a BEGIN-END level depending on
the level of nesting.

The limit is 64 for direct substructures such as:

STRUCT A;
 BEGIN
 STRUCT B;
 BEGIN
 ...

 END;
 END;

However, for indirect substructures, this limit is smaller depending on the complexity of
the structure.

The syntax for declaring each structure item is described after the syntax for declaring
structures. The following rules apply to all structure items:

• You can declare the same identifier in different structures and substructures, but
you cannot repeat an identifier at the same BEGIN-END level.

• You cannot initialize a structure item when you declare it. After you have declared
it, however, you can assign a value to it by using an assignment or move
statement.

Table 8-2. Structure Items

Structure Item Description

Simple Variable A single-element variable

Array A variable that contains multiple elements of the same data type

Substructure A structure nested within a structure (to a maximum of 64 levels)

Filler Byte A place-holding byte

Filler Bit A place-holding bit

Simple Pointer A variable that contains a memory address, usually of a simple
variable or array, which you can access with this simple pointer

Structure Pointer A variable that contains the memory address of a structure, which
you can access with this structure pointer

Redefinition A new identifier and sometimes a new description for a substructure,
simple variable, array, or pointer declared in the same structure
TAL Reference Manual—526371-001
8-2

Structures Definition Structure Declaration
Definition Structure Declaration
A definition structure declaration describes a structure layout and allocates storage for
it.

. (a period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal structures.

.EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal structures.

identifier

is the identifier of the definition structure.

lower-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth structure occurrence) of the first structure
occurrence you want allocated. Each occurrence is one copy of the structure. The
default value is 0.

upper-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth structure occurrence) of the last structure
occurrence you want allocated. The default value is 0. For a single-occurrence
structure, omit both bounds or specify the same value for both bounds.

VST0801.vsd

STRUCT identifier

.

.EXT

;; structure-
layout

:[lower
bound]upper

bound
TAL Reference Manual—526371-001
8-3

Structures Usage Considerations
structure-layout

is a BEGIN-END construct that can contain declarations for simple variables,
arrays, substructures, filler bits, filler bytes, redefinitions, simple pointers, and
structure pointers. The size of one occurrence of the structure is the size of the
layout. A single structure occurrence must not exceed 32,767 bytes.

Usage Considerations
Structures declared in subprocedures must be directly addressed. For most other
structures, you should use indirection because storage areas for direct global and local
variables are limited. You access indirect structures by identifier as you do direct
structures.

For very large structures, you should use the .EXT symbol to declare extended indirect
structures. When you declare one or more extended indirect structures (or arrays), the
compiler allocates the automatic extended data segment. If you also must allocate an
extended data segment yourself, follow the instructions given in the TAL Programmer’s
Guide in Appendix B, “Managing Addressing.”

Structures always start on a word boundary.

Examples of Definition Structure Declarations
This example declares indirect definition structures:

STRUCT .inventory1[0:49]; !Standard indirect structure
 BEGIN
 INT item;
 FIXED(2) price;
 INT quantity;
 END;

STRUCT .EXT inventory2[0:9999]; !Extended indirect structure
 BEGIN
 INT item;
 FIXED(2) price;
 INT quantity;
 END;
TAL Reference Manual—526371-001
8-4

Structures Template Structure Declaration
Template Structure Declaration
A template structure declaration describes a structure layout but allocates no space for
it. You use the template layout in subsequent structure, substructure, or structure
pointer declarations.

identifier

is the identifier of the template structure, with no indirection symbol.

(*)

is the symbol for a template structure.

structure-layout

is a BEGIN-END construct that can contain declarations for simple variables,
arrays, substructures, filler bits, filler bytes, redefinitions, simple pointers, and
structure pointers. The size of one structure occurrence is the size of the layout
and must not exceed 32,767 bytes.

Usage Considerations
A template structure has meaning only when you refer to it in the subsequent
declaration of a referral structure, referral substructure, or structure pointer. The
subsequent declaration allocates space for a structure whose layout is the same as the
template layout.

Example of Template Structure Declaration
This declaration associates an identifier with a template structure layout but allocates
no space for it:

STRUCT inventory (*); !Template structure
 BEGIN !Structure layout
 INT item;
 FIXED(2) price;
 INT quantity;
 END;

VST0802.vsd

STRUCT identifier ;;)*(structure-
layout
TAL Reference Manual—526371-001
8-5

Structures Referral Structure Declaration
Referral Structure Declaration
A referral structure declaration allocates storage for a structure whose layout is the
same as the layout of a previously declared structure or structure pointer.

. (a period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal structures.

.EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing. Do
not use an indirection symbol with sublocal structures.

identifier

is the identifier of the new referral structure.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for this structure.

lower-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth structure occurrence) of the first structure
occurrence you want to allocate. Each occurrence is one copy of the structure. The
default value is 0.

upper-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth structure occurrence) of the last structure

)

VST0803.vsd

;

:[lower
bound]upper

bound

STRUCT identifier

.

.EXT

(referral)
TAL Reference Manual—526371-001
8-6

Structures Usage Considerations
occurrence you want to allocate. The default value is 0. For a single-occurrence
structure, omit both bounds or specify the same value for both bounds.

Usage Considerations
The compiler allocates storage for the referral structure based on the following
characteristics:

• The addressing mode and number of occurrences specified in the new declaration

• The layout of the previous declaration

Structures declared in subprocedures must be directly addressed. For most other
structures, you should use indirection because storage areas for direct global and local
variables are limited. You access indirect structures by identifier as you do direct
structures.

For very large structures, you should use the .EXT symbol to declare extended indirect
structures. When you declare one or more extended indirect structures (or arrays), the
compiler allocates the automatic extended data segment. If you also must allocate an
extended data segment yourself, follow the instructions given in the TAL Programmer’s
Guide, in Appendix B, “Managing Addressing.”

Structures always start on a word boundary.

Example of Referral Structure Declaration
This example declares a template structure and a referral structure that references the
template structure. The referral structure imposes its addressing mode and number of
occurrences on the layout of the template structure:

STRUCT record (*); !Declare template structure
 BEGIN
 STRING name[0:19];
 STRING addr[0:29];
 INT acct;
 END;

STRUCT .customer(record)[1:50];!Declare referral structure

Simple Variables Declared in Structures
The simple variable declaration associates a name with a single-element data item.
When you declare a simple variable inside a structure, the form is:

VST0804.vsd

type ;identifier

,

TAL Reference Manual—526371-001
8-7

Structures Usage Considerations
type

is any data type described in Section 3, Data Representation.

identifier

is the identifier of the simple variable.

Usage Considerations
You cannot initialize a simple variable when you declare it inside a structure. You can
subsequently assign a value to the simple variable by using an assignment statement.

Example of Simple Variables in Structures
This example declares simple variables in a structure:

STRUCT .inventory[0:49]; !Declare definition structure
 BEGIN
 INT item; !Declare three simple
 FIXED(2) price; ! variables within the
 INT quantity; ! structure layout
 END;

Arrays Declared in Structures
An array declaration associates an identifier with a collectively stored set of elements
of the same data type. When you declare an array inside a structure, the form is:

type

is any data type described in Section 3, Data Representation.

identifier

is the identifier of the array.

lower-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth array element) of the first array element you want
allocated. Both lower and upper bounds are required.

VST0805.vsd

type ;identifier

,

[:]lower-
bound

upper-
bound
TAL Reference Manual—526371-001
8-8

Structures Usage Considerations
upper-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth array element) of the last array element you want
allocated. Both lower and upper bounds are required.

Usage Considerations
When you declare arrays inside a structure, the following guidelines apply:

• You cannot initialize arrays declared in structures. You can assign values to such
arrays only by using assignment statements.

• You cannot declare indirect arrays or read-only arrays in structures.

• You can specify array bounds of [n : n-1] in structures as described in the TAL
Programmer’s Guide. Such an array is addressable but uses no memory.

Example of Arrays in Structures
This example declares arrays in a structure:

STRUCT record; !Declare definition structure
 BEGIN
 STRING name[0:19]; !Declare arrays within the
 STRING addr[0:29]; ! structure layout
 INT acct;
 END;

Substructure Declaration
A substructure is a structure embedded within another structure or substructure. You
can declare substructures that have the following characteristics:

• Substructures must be directly addressed.

• Substructures have byte addresses, not word addresses.

• Substructures can be nested to a maximum of 64 levels.

• Substructures can have bounds of [n : n-1] as described in the TAL Programmer’s
Guide. Such a substructure is addressable but uses no memory.

You can declare definition substructures or referral substructures, described next.
TAL Reference Manual—526371-001
8-9

Structures Definition Substructure Declaration
Definition Substructure Declaration
A definition substructure describes a layout and allocates storage for it.

identifier

is the identifier of the definition substructure.

lower-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the first substructure
occurrence you want allocated. Each occurrence is one copy of the substructure.
The default value is 0.

upper-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the last substructure
occurrence you want allocated. The default value is 0. For a single-occurrence
substructure, omit both bounds or specify the same value for both bounds.

substructure-layout

is the same BEGIN-END construct as for structures. It can contain declarations for
simple variables, arrays, substructures, filler bits, filler bytes, redefinitions, simple
pointers, and structure pointers. The size of one substructure occurrence is the
size of the layout, either in odd or even bytes. The total layout for one occurrence
of the encompassing structure must not exceed 32,767 bytes.

VST0806.vsd

identifierSTRUCT

[:]lower-
bound

upper-
bound

; ;substructure-
layout
TAL Reference Manual—526371-001
8-10

Structures Example of Definition Substructure Declaration
Example of Definition Substructure Declaration
This example declares two occurrences of a structure, each of which contains 50
occurrences of a definition substructure:

STRUCT .warehouse[0:1]; !Two warehouses
 BEGIN
 STRUCT inventory [0:49]; !Definition substructure
 BEGIN !50 items in each warehouse
 INT item_number;
 FIXED(2) price;
 INT on_hand;
 END;
 END;

Referral Substructure Definition
A referral substructure allocates storage for a substructure whose layout is the same
as the layout of a previously declared structure or structure pointer.

identifier

is the identifier of the referral substructure.

referral

is the identifier of a structure that provides the structure layout. You can specify any
previously declared structure (except the encompassing structure) or structure
pointer. If the previous structure has an odd-byte size, the compiler rounds the size
of the new substructure up so that it has an even-byte size.

lower-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth occurrence) of the first substructure occurrence
you want allocated. Each occurrence is one copy of the substructure. The default
value is 0.

VST0807.vsd

identifierSTRUCT

;

[:]lower-
bound

upper-
bound

()referral
TAL Reference Manual—526371-001
8-11

Structures Example of Referral Substructure Declaration
upper-bound

is an INT constant expression (in the range –32,768 through 32,767) that specifies
the index (relative to the zeroth occurrence) of the last substructure occurrence
you want allocated. The default value is 0. For a single-occurrence substructure,
omit both bounds or specify the same value for both bounds.

Example of Referral Substructure Declaration
This example declares a referral substructure that uses a template structure layout:

STRUCT temp(*); !Declare template structure
 BEGIN
 STRING a[0:2]; !No space allocated for
 INT b; ! this layout
 STRING c;
 END;

STRUCT .ind_struct; !Declare definition structure
 BEGIN
 INT header[0:1]; !Space allocated for this layout
 STRING abyte;
 STRUCT abc (temp) [0:1];!Declare referral substructure
 END; !The size of IND_STRUCT.ABC[0]
 ! is eight bytes

Filler Declaration
A filler declaration allocates a byte or bit place holder in a structure.

FILLER

allocates the specified number of byte place holders.

BIT_FILLER

allocates the specified number of bit place holders.

constant-expression

is a positive integer constant value that specifies a number of filler units in one of
the following ranges:

FILLER 0 through 32,767 bytes
BIT_FILLER 0 through 255 bits

VST0808.vsd

;

BIT_FILTER

FILTER constant-expression
TAL Reference Manual—526371-001
8-12

Structures Usage Considerations
Usage Considerations
You can declare filler bits and filler bytes, but you cannot access such filler locations.

If the structure layout must match a structure layout defined in another program, your
structure declaration need only include data items used by your program and can use
filler bits or bytes for the unused space. You can also use filler bytes to document
compiler-allocated alignment pad bytes (described in the TAL Programmer’s Guide).

Examples of Filler Declarations
1. This example shows filler byte declarations:

LITERAL last = 11; !Last occurrence

STRUCT .x[1:last];
 BEGIN
 STRING byte[0:2];
 FILLER 1; !Document word-alignment pad byte
 INT word1;
 INT word2;
 INT(32) integer32;
 FILLER 30; !Place holder for unused space
 END;

2. This example shows a filler bit declaration:

STRUCT .flags;
 BEGIN
 UNSIGNED(1) flag1;
 UNSIGNED(1) flag2;
 UNSIGNED(2) state; !State = 0, 1, 2, or 3
 BIT_FILLER 12; !Place holder for unused space
 END;

For more information, see the filler byte example in Definition Substructure Redefinition
on page 8-20.

Simple Pointers Declared in Structures
A simple pointer is a variable that contains the memory address of a simple variable or
an array.

VST0809.vsd

type identifier. ;

. EXT

,

TAL Reference Manual—526371-001
8-13

Structures Usage Considerations
type

is any data type except UNSIGNED. The data type determines how much data the
simple pointer can access at a time—a byte, word, doubleword, or quadrupleword.

. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of the simple pointer.

Usage Considerations
The data type determines the size of data a simple pointer can access at a time, as
listed in Table 8-3:

The addressing mode and data type determines the kind of address the simple pointer
can contain, as described in Table 8-4.

Table 8-3. Data Accessed by Simple Pointers

Data Type Accessed Data

STRING Byte

INT Word

INT (32) Doubleword

REAL Doubleword

REAL (64) Quadrupleword

FIXED Quadrupleword

Table 8-4. Addresses in Simple Pointers

Addressing
Mode Data Type Kind of Addresses

Standard STRING 16-bit byte address in the lower 32K-
word area of the user data segment.
TAL Reference Manual—526371-001
8-14

Structures Example of Simple Pointer Declarations
Before you reference a pointer declared in a structure, be sure to assign an address to
it by using an assignment statement, as described in Section 8, “Using Structures,” in
the TAL Programmer’s Guide.

Example of Simple Pointer Declarations
This example shows simple pointer declarations within a structure:

STRUCT my_struct;
 BEGIN
 FIXED .std_pointer; !Standard simple pointer
 STRING .EXT ext_pointer; !Extended simple pointer
 END;

Structure Pointers Declared in Structures
A structure simple pointer is a variable that contains the address of a structure. When
you declare a structure pointer inside a structure, the form is:

STRING

is the STRING attribute.

INT

is the INT attribute

Standard Any except STRING 16-bit word address in the user data
segment.

Extended STRING 32-bit byte address, normally in the
automatic extended data segment.

Extended Any except STRING 32-bit even-byte address, normally in
the automatic extended data segment.
(If you specify an odd-byte address,
results are undefined.)

Table 8-4. Addresses in Simple Pointers

Addressing
Mode Data Type Kind of Addresses

VST0810.vsd

identifier.

. EXT

,

STRING

INT

;)(referral
TAL Reference Manual—526371-001
8-15

Structures Usage Considerations
. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of the structure pointer.

referral

is the identifier of a structure that provides the structure layout. You can specify any
previously declared structure (including the encompassing structure) or structure
pointer.

Usage Considerations
The addressing mode and STRING or INT attribute determine the kind of addresses a
structure pointer can contain, as described in Table 8-5.

Table 8-5. Addresses in Structure Pointers

Addressing Mode
STRING or INT
Attribute Kinds of Address

Standard STRING * 16-bit byte address of a substructure,
STRING simple variable, or STRING
array declared in a structure located
in the lower 32K-word area of the
user data segment

Standard INT ** 16-bit word address of any structure
data item located anywhere in the
user data segment

Extended STRING * 32-bit byte address of any structure
data item located in any segment,
normally the automatic extended
data segment

Extended INT ** 32-bit byte address of any structure
data item located in any segment,
normally the automatic extended
data segment

* If the pointer is the source in a move statement or group comparison expression that omits a count-unit,
the count-unit is BYTES.

** If the pointer is the source in a move statement or group comparison expression that omits a count-
unit, the count-unit is WORDS.
TAL Reference Manual—526371-001
8-16

Structures Example of Structure Pointer Declaration
Before you reference a pointer declared in a structure, be sure to assign an address to
it by using an assignment statement, as described in Section 8, “Using Structures,” in
the TAL Programmer’s Guide.

Example of Structure Pointer Declaration
This example shows a structure pointer declaration within a structure:

STRUCT struct_a; !Declare STRUCT_A
 BEGIN
 INT a;
 INT b;
 END;
STRUCT struct_b; !Declare STRUCT_B
 BEGIN
 INT .EXT struct_pointer (struct_a);
 !Declare STRUCT_POINTER
 STRING a;
 END;

Redefinition Declaration
A redefinition declares a new identifier and sometimes a new description for a previous
item in the same structure. You can declare these kinds of redefinitions:

• Simple variable redefinition

• Array redefinition

• Substructure redefinition

• Simple pointer redefinition

• Structure pointer redefinition

Redefinition Rules
The following rules apply to all redefinitions in structures:

• The new item must be of the same length or shorter than the previous item.

• The new item and the previous item must be at the same BEGIN-END level of a
structure.

Additional rules are given in subsections that describe each kind of redefinition in the
following pages.

Redefinitions Outside Structures
For information on redefinitions outside structures, see Section 10, Equivalenced
Variables.
TAL Reference Manual—526371-001
8-17

Structures Simple Variable Redefinition
Simple Variable Redefinition
A simple variable redefinition associates a new simple variable with a previous item at
the same BEGIN-END level of a structure.

type

is any data type except UNSIGNED.

identifier

is the identifier of the new simple variable.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. You cannot specify an index with this identifier.

Usage Considerations
In a redefinition, the new item and the previous (nonpointer) item both must have a
byte address or both must have a word address. If the previous item is a pointer, the
data it points to must be word addressed or byte addressed to match the new item.

Example of Simple Variable Redefinition
This declaration redefines the left byte of INT_VAR as STRING_VAR:

STRUCT .mystruct;
 BEGIN
 INT int_var;
 STRING string_var = int_var; !Redefinition
 END;

VST0811.vsd

type identifier = ;previous-identifier
TAL Reference Manual—526371-001
8-18

Structures Array Redefinition
Array Redefinition
An array redefinition associates a new array with a previous item at the same BEGIN-
END level of a structure.

type

is any data type except UNSIGNED.

identifier

is the identifier of the new array.

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the first array element you want
allocated. The default value is 0.

upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth element) of the last array element you want
allocated. The default value is 0.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. You cannot specify an index with this identifier.

Usage Considerations
In a redefinition, the new item and the previous (nonpointer) item both must have a
byte address or both must have a word address. If the previous item is a pointer, the
data it points to must be word addressed or byte addressed to match the new item.

VST0812.vsd

identifier

[:]lower-
bound

upper-
bound

= ;previous-
identifier

type
TAL Reference Manual—526371-001
8-19

Structures Example of Array Redefinition
Example of Array Redefinition
This declaration redefines an INT array as an INT(32) array:

STRUCT .s;
 BEGIN
 INT a[0:3];
 INT(32) b[0:1] = a; !Redefinition
 END;

Definition Substructure Redefinition
A definition substructure redefinition associates a new definition substructure with a
previous item at the same BEGIN-END level of a structure.

identifier

is the identifier of the new substructure.

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the first substructure
occurrence you want allocated. Each occurrence is one copy of the substructure.
The default value is 0.

upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the last substructure
occurrence you want allocated. The default value is 0. To declare a single-
occurrence substructure, omit both bounds or specify the same value for both
bounds.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. No index is allowed with this identifier.

VST0813.vsd

identifier

[:]lower-
bound

upper-
bound

= ;previous-
identifier ;substructure-

layout

STRUCT
TAL Reference Manual—526371-001
8-20

Structures Usage Considerations
substructure-layout

is the same BEGIN-END construct as for structures. It can contain declarations for
simple variables, arrays, substructures, filler bits, filler bytes, redefinitions, simple
pointers, and structure pointers. The size of one substructure occurrence is the
size of the layout, either in odd or even bytes. The total layout for one occurrence
of the encompassing structure must not exceed 32,767 bytes.

Usage Considerations
If the previous item is a substructure and you omit the bounds or if either bound is 0,
the new substructure and the previous substructure occupy the same space and have
the same offset from the beginning of the structure.

Examples of Definition Substructure Redefinitions
1. In this example, both substructures (B and C) have odd-byte alignments.

STRUCT a;
 BEGIN
 STRING x;
 STRUCT b; !B starts on odd byte
 BEGIN
 STRING y;
 END;
 STRUCT c = b; !Redefine B as C, also on
 BEGIN ! odd byte
 STRING z;
 END;
 END;

2. In this example, MYSUB2 redefines the left byte of the INT variable in MYSUB1 as
a STRING variable:

STRUCT mystruct;
 BEGIN
 STRUCT mysub1; !Declare MYSUB1
 BEGIN
 INT int_var;
 END;
 STRUCT mysub2 = mysub1; !Redefine MYSUB1 as MYSUB2
 BEGIN
 STRING string_var;
 END;
 END;
TAL Reference Manual—526371-001
8-21

Structures Referral Substructure Redefinition
Referral Substructure Redefinition
A referral substructure redefinition associates a new referral substructure with a
previous item at the same BEGIN-END level of a structure.

identifier

is the identifier of the new substructure.

referral

is the identifier of a structure that provides the structure layout. You can specify any
previously declared structure (except the encompassing structure) or structure
pointer. If the previous structure has an odd-byte size, the compiler rounds the size
of the new substructure up so it has an even-byte size.

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the first substructure
occurrence you want allocated. Each occurrence is one copy of the substructure.
The default value is 0.

upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies
the index (relative to the zeroth substructure occurrence) of the last substructure
occurrence you want allocated. The default value is 0. To declare a single-
occurrence substructure, omit both bounds or specify the same value for both
bounds.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. No index is allowed with this identifier.

Usage Considerations
If the previous item is a substructure and you omit the bounds or if either bound is 0,
the new substructure and the previous substructure occupy the same space and have
the same offset from the beginning of the structure.

VST0814.vsd

identifierSTRUCT

[:]lower-
bound

upper-
bound

()referral

;previous-
identifier

=

TAL Reference Manual—526371-001
8-22

Structures Example of Referral Substructure Declaration
Example of Referral Substructure Declaration
This example declares a referral substructure redefinition that uses a template
structure layout:

STRUCT temp(*); !Declare template structure
 BEGIN
 STRING a[0:2];
 INT b;
 STRING c;
 END;

STRUCT .ind_struct; !Declare definition structure
 BEGIN
 INT header[0:1];
 STRING abyte;
 STRUCT abc (temp) [0:1]; !Declare ABC
 STRUCT xyz (temp) [0:1] = abc;
 !Redefine ABC as XYZ
 END;

Simple Pointer Redefinition
A simple pointer redefinition associates a new simple pointer with a previous item at
the same BEGIN-END level of a structure.

type

is any data type except UNSIGNED. The data type determines how much data the
simple pointer can access at a time—a byte, word, doubleword, or quadrupleword.

. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of the new simple pointer.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. No index is allowed with this identifier.

VST0815.vsd

type identifier. =

. EXT

previous-
identifier ;
TAL Reference Manual—526371-001
8-23

Structures Example of Simple Pointer Redefinition
Example of Simple Pointer Redefinition
This example declares new simple pointer EXT_POINTER to redefine simple variable
VAR:

STRUCT my_struct;
 BEGIN
 STRING var[0:5];
 STRING .EXT ext_pointer = var; !Redefinition
 END;

Structure Pointer Redefinition
A structure pointer redefinition associates a new structure pointer with a previous item
at the same BEGIN-END level of a structure.

STRING

is the STRING attribute.

INT

is the INT attribute.

. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of the new structure pointer.

STRING

INT .EXT

. identifier (referral)

= previous -
identifier

;

VST0816.vsd
TAL Reference Manual—526371-001
8-24

Structures Usage Considerations
referral

is the identifier of a structure that provides the structure layout. You can specify any
previously declared structure (including the encompassing structure) or structure
pointer.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously
declared in the same structure. No index is allowed with this identifier.

Usage Considerations
The addressing mode and STRING or INT attribute determine the kind of addresses a
structure pointer can contain, as described in Table 8-5 on page 8-16.

Example of Structure Pointer Redefinitions
This example declares new standard and extended structure pointers to redefine
simple variables as follows:

STRUCT record;
 BEGIN
 FIXED(0) data;
 INT std_link_addr;
 INT .std_link (record) = std_link_addr; !Redefinition
 INT(32) ext_link_addr;
 INT .EXT ext_link (record) = ext_link_addr; !Redefinition
 END;
TAL Reference Manual—526371-001
8-25

Structures Example of Structure Pointer Redefinitions
TAL Reference Manual—526371-001
8-26

9 Pointers
This section describes the syntax for declaring and initializing pointers you manage
yourself. You can declare the following kinds of pointers:

• Simple pointer—a variable into which you store a memory address, usually of a
simple variable or array, which you can access with this simple pointer.

• Structure pointer—a variable into which you store the memory address of a
structure which you can access with this structure pointer.

Pointers—simple pointers and structure pointers—can be standard or extended:

• Standard (16-bit) pointers can access data only in the user data segment.

• Extended (32-bit) pointers can access data in any segment, normally the automatic
extended data segment.

Other information on pointers appears in the TAL manual set as follows:

Information Manual Section/Appendix

Pointer assignments and
access of data to which the
pointer ‘points

TAL Programmer’s Guide 9, “Using Pointers”

Pointers declared inside
structures

TAL Programmer’s Guide

TAL Reference Manual

8, “Using Structures”

Section 8, Structures

Pointer access to the upper
32K-word area of the user data
segment, to the user code
segment, or to an explicit (user-
allocated) extended data
segment

TAL Programmer’s Guide B, “Managing Addressing”

Implicit pointers (those
generated by the compiler
when you declare indirect
arrays and structures)

TAL Programmer’s Guide 7, “Using Arrays”

8, “Using Structures”

Dereferencing (formerly known
as temporary pointers)

TAL Programmer’s Guide 5, “Using Expressions”
TAL Reference Manual—526371-001
9-1

Pointers Simple Pointer Declaration
Simple Pointer Declaration
A simple pointer declaration associates an identifier with a memory location that
contains the user-initialized address of a simple variable or array.

type

is any data type except UNSIGNED. The data type determines how much data the
simple pointer can access at one time—byte, word, doubleword, or quadrupleword.

. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of the simple pointer.

initialization

is an expression that represents a memory address, as described in Simple
Pointer Initializations on page 9-3.

Usage Considerations
Extended pointer declarations should precede other global or local declarations. The
compiler emits more efficient machine code if it can allocate extended pointers
between G[0] and G[63] or between L[0] and L[63].

The data type determines the size of data a simple pointer can access at a time, as
listed in Table 9-1 on page 9-3.

VST0901.vsd

type .

.EXT

identifier ;

,

:= initialization
TAL Reference Manual—526371-001
9-2

Pointers Usage Considerations
Simple Pointer Initializations
The addressing mode and data type of the simple pointer determines the kind of
address the pointer can contain, as described in Table 9-2.

Furthermore, the kind of expression you can specify for the address depends on the

level at which you declare the pointer:

• At the global level, use a constant expression. See also Global Standard Pointer
Initializations.

• At the local or sublocal level, you can use any arithmetic expression.

Global Standard Pointer Initializations
You can initialize global standard pointers by using constant expressions such as:

Table 9-1. Data Accessed by Simple Pointers

Data Type Accessed Data

STRING Byte

INT Word

INT (32) Doubleword

REAL Doubleword

REAL (64) Quadrupleword

FIXED Quadrupleword

Table 9-2. Addresses in Simple Pointers

Addressing
Mode Data Type Kinds of Addresses

Standard STRING 16-bit byte address in the lower 32K-word area
of the user data segment.

Standard Any except STRING 16-bit word address in the user data segment

Extended STRING 32-bit byte address, normally in the automatic
extended data segment.

Extended Any except STRING 32-bit even-byte address, normally in the
automatic extended data segment. (If you
specify an odd-byte address, results are
undefined.)

Expression Meaning

@identifier Accesses address of variable

@identifier ‘<<’1 Converts word address to byte address
TAL Reference Manual—526371-001
9-3

Pointers Examples of Simple Pointer Declarations
The following table shows the kinds of global variables to which you can apply the @
operator:

When Pointers Receive Initial Values
Global simple pointers receive their initial values when you compile the source code.
Local or sublocal simple pointers receive their initial values at each activation of the
encompassing procedure or subprocedure.

Examples of Simple Pointer Declarations
1. This example declares but does not initialize a simple pointer:

INT(32) .ptr; !Declare simple pointer

2. This example declares a simple pointer and initializes it with the address of the last
element in an indirect array:

STRING .bytes[0:3]; !Declare indirect array

STRING .s_ptr := @bytes[3]; !Declare simple pointer
 !initialized with address
 !of BYTES[3]

@identifier ‘ >>’1 Converts byte address to word address

@identifier[index] Accesses address of variable indicated by index

Standard function Any that return a constant value, such as $OFFSET

Variable @identifier?

Direct array Yes

Standard indirect array Yes

Extended indirect array No

Direct structure Yes

Standard indirect structure Yes

Extended indirect structure No

Simple pointer No

Structure pointer No

Expression Meaning
TAL Reference Manual—526371-001
9-4

Pointers Structure Pointer Declaration
3. This example declares a STRING simple pointer and initializes it with the
converted byte address of an INT array. This allows byte access to the word-
addressed array:

INT .a[0:39]; !Declare INT array

STRING .ptr := @a[0] '<<' 1; !Declare STRING simple
 !pointer initialized with
 !byte address of A[0]

4. This example declares an array and simple pointers at the local or sublocal level
and initializes the pointers with values derived from the array:

INT a[0:1] := [%100000, %110000]; !Declare array

INT .int_ptr1 := a[0]; !Declare simple pointer
 !initialized with %100000

INT .int_ptr2 := a[1]; !Declare simple pointer
 !initialized with %110000

5. This example declares an array and an extended simple pointer at the local or
sublocal level. The pointer is initialized with the byte address of an indexed
element, assuming the object being indexed has a 32-bit address:

INT .EXT x[-100:100]; !Declare array

INT .EXT x_ptr := @x[-5]; !Declare extended simple
 !pointer initialized with
 !32-bit byte address of
 !X[-5]

Structure Pointer Declaration
The structure pointer declaration associates a previously declared structure with the
memory location to which the structure pointer points. You access data in the
associated structure by referencing the qualified structure pointer identifier.

.

initialization

identifier

:=

,

;

EXIT

(referral)STRING

INT

VST0902.vsd
TAL Reference Manual—526371-001
9-5

Pointers Usage Considerations
STRING

is the STRING attribute.

INT

is the INT attribute.

. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of the structure pointer.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for this structure pointer.

initialization

is an expression that represents a memory address, as described in Structure
Pointer Initializations.

Usage Considerations
Extended pointer declarations should precede other global or local declarations. The
compiler emits more efficient machine code if it can store extended pointers between
G[0] and G[63] or between L[0] and L[63].

Structure Pointer Initializations
The addressing mode and STRING or INT attribute determine the kind of addresses a
structure pointer can contain, as described in Table 9-3 on page 9-7.
TAL Reference Manual—526371-001
9-6

Pointers Examples of Structure Pointer Declarations
Furthermore, the kind of expression you can specify for the address depends on the
level at which you declare the pointer:

• At the global level, use a constant expression. See also Global Standard Pointer
Initializations on page 9-3.

• At the local or sublocal level, you can use any arithmetic expression.

If the expression is the address of a structure with an index, the structure pointer points
to a particular occurrence of the structure. If the expression is the address of an array,
with or without an index, you impose the structure on top of the array.

Global structure pointers receive their initial values when you compile the source code.
Local and sublocal structure pointers receive their initial values each time the
procedure or subprocedure is activated.

Examples of Structure Pointer Declarations
1. This example uses the $OFFSET standard function to include the address of a

structure field in the expression of a global initialization:

STRUCT t (*); !Template structure
 BEGIN
 INT k;
 END;

Table 9-3. Addresses in Structure Pointers

Addressing
Mode

STRING or INT
Attribute Kind of Addresses

Standard STRING * 16-bit byte address of a substructure, STRING
simple variable, or STRING array declared in a
structure located in the lower 32K-word area of the
user data segment

Standard INT ** 16-bit word address of any structure item located
anywhere in the user data segment

Extended STRING * 32-bit byte address of any structure item located in
any segment, normally the automatic extended
data segment

Extended INT ** 32-bit byte address of any structure item located in
any segment, normally the automatic extended
data segment

* If the pointer is the source in a move statement or group comparison expression that omits a count-
unit, the count-unit is BYTES.

** If the pointer is the source in a move statement or group comparison expression that omits a count-
unit, the count-unit is WORDS.
TAL Reference Manual—526371-001
9-7

Pointers Examples of Structure Pointer Declarations
STRUCT .st; !Definition structure
 BEGIN
 INT j;
 STRUCT ss (t);
 END;

INT .ip := @st '+' $OFFSET (st.j) '>>' 1;
 !Simple pointer

INT .stp (t) := @st '+' $OFFSET (st.ss) '>>' 1;
 !INT structure pointer

STRING .sstp (t) := @st '<<' 1 '+' $OFFSET (st.ss);
 !STRING structure pointer

2. A standard STRING structure pointer can access the following structure items
only-a substructure, a STRING simple variable, or a STRING array-located in the
lower 32K-word area of the user data segment. The last declaration in the
preceding example shows a STRING structure pointer initialized with the converted
byte address of a substructure. Here is another way to access a STRING item in a
structure. You can convert the word address of the structure to a byte address
when you initialize the STRING structure pointer and then access the STRING
item in a statement:

STRUCT .astruct[0:1];
 BEGIN
 STRING s1;
 STRING s2;
 STRING s3;
 END;

STRING .ptr (astruct) := @astruct[1] '<<' 1;
 !Declare STRING PTR; initialize
 !it with converted byte
 !address of ASTRUCT[1]
ptr.s2 := %4; !Access STRING structure item

3. This example declares a structure and a structure pointer at the local level. The
structure pointer is initialized to point to the second occurrence of the structure:

PROC my_proc MAIN;
 BEGIN
 STRUCT my_struct[0:2]; !Structure
 BEGIN
 INT array[0:7];
 END;

INT .struct_ptr (my_struct) := @my_struct[1];
 !Structure pointer contains
END; ! address of MY_STRUCT[1]
TAL Reference Manual—526371-001
9-8

Pointers Examples of Structure Pointer Declarations
4. This example initializes a local or sublocal STRING structure pointer with the
address of a substructure:

STRUCT name_def(*);
 BEGIN
 STRING first[0:3];
 STRING last[0:3];
 END;

STRUCT .record;
 BEGIN
 STRUCT name (name_def); !Declare substructure
 INT age;
 END;

STRING .my_name (name_def) := @record.name;
 !Structure pointer contains
 !address of substructure
my_name ':=' ["Sue Law"];

5. This example declares an array, a structure, and a structure pointer at the local
level. The structure pointer refers to the structure but is initialized to point to the
array, thus imposing the structure on the array. You can now refer to the array in
two ways:

PROC a_proc MAIN;
 BEGIN
 INT array[0:7]; !Array
 STRUCT a_struct (*); !Structure
 BEGIN
 INT var;
 INT buffer1[0:3];
 STRING buffer2[0:4];
 END;

INT .struct_ptr (a_struct) := @array;
END; !Structure pointer contains
 !address of array
TAL Reference Manual—526371-001
9-9

Pointers Examples of Structure Pointer Declarations
TAL Reference Manual—526371-001
9-10

10 Equivalenced Variables
Equivalencing lets you declare more than one identifier and description for a location in
a primary storage area. Equivalenced variables that represent the same location can
have different data types and byte-addressing and word-addressing attributes. You
can, for example, reference an INT(32) variable as two separate words or four
separate bytes.

This section describes the syntax for declaring:

• Equivalenced variables—Variables equivalenced to a previous variable

• Base-address equivalenced variables—Variables equivalenced to a global, local,
or top-of-stack base address

Other equivalencing information appears in the TAL manual set as follows:

Equivalenced Variable Declarations
The variables you can equivalence to another variable are listed in Table 10-1. You can
equivalence any variable in the first column to any variable in the second column. (You
cannot equivalence an array to another variable.)

Information Manual Section/ Appendix

Accessing
equivalenced
variables

TAL Programmer’s Guide 10, “Using Equivalenced
Variables”

Equivalencing to
indexed or offset
variables

TAL Programmer’s Guide 10, “Using Equivalenced
Variables”

Redefinitions
(equivalencing within
structures)

TAL Programmer’s Guide

TAL Reference Manual

8, “Using Structures”

Section 8, Structures (syntax)

'SG'-equivalencing TAL Reference Manual Section 15, Privileged
Procedures

Table 10-1. Equivalenced Variables

Equivalenced (New) Variable Previous Variable

Simple Variable Simple Variable

Simple Pointer Simple Pointer

Structure Structure

Structure Pointer Structure Pointer
Array
Equivalenced Variable
TAL Reference Manual—526371-001
10-1

Equivalenced Variables Equivalenced Simple Variable
Equivalenced Simple Variable
An equivalenced simple variable declaration associates a new simple variable with a
previously declared variable.

type

is any data type except UNSIGNED.

identifier

is the identifier of a simple variable to be made equivalent to previous-identifier.

previous-identifier

is the identifier of a previously declared simple variable, array, simple pointer,
structure, structure pointer, or equivalenced variable.

index

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable. The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

offset

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

Usage Consideration
Avoid equivalencing a simple variable to an indirect array or structure. If you do so, the
simple variable is made equivalent to the location of the implicit pointer, not the location
of the data pointed to.

VST1001.vsd

=

[index]

+ offset

-

;

,

previous-identifieridentifiertype
TAL Reference Manual—526371-001
10-2

Equivalenced Variables Examples of Equivalenced Simple Variable
Declarations
For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

Examples of Equivalenced Simple Variable Declarations
1. This example equivalences a STRING variable and an INT(32) variable to an INT

array:

2. This example equivalences a simple variable to a simple pointer. The simple
variable is equivalenced to the location occupied by the simple pointer, not to the
location whose address is stored in the simple pointer:

Equivalenced Simple Pointer
An equivalenced simple pointer declaration associates a new simple pointer with a
previously declared variable.

VST1002.vsd

W[0]

W[1]

B[0]

B[2]

B[1]

B[3]
D

INT w[0:1];
STRING b = w[0];
INT(32) d = b;

VST1003.vsd

PTR = 200

G[200]

ADDR

.

.

.

INT .ptr := 200;
INT addr = ptr;

VST1004.vsd

=

[index]

+ offset

-

;

,

previous-identifieridentifiertype .

.EXT
TAL Reference Manual—526371-001
10-3

Equivalenced Variables Usage Consideration
type

is any data type except UNSIGNED. The data type determines how much data the
simple pointer can access at a time (byte, word, doubleword, or quadrupleword).

. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of a simple pointer to be made equivalent to previous-identifier.

previous-identifier

is the identifier of a previously declared simple variable, array, simple pointer,
structure, structure pointer, or equivalenced variable.

index

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

offset

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

Usage Consideration
If the previous variable is a pointer, an indirect array, or an indirect structure, the
previous pointer and the new pointer must both contain either:

• A standard byte address

• A standard word address

• An extended address

Otherwise, the pointers will point to different locations, even if they both contain the
same value. That is, a standard STRING or extended pointer normally points to a byte
address, and a standard pointer of any other data type normally points to a word
address.

For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.
TAL Reference Manual—526371-001
10-4

Equivalenced Variables Example of Equivalenced Simple Pointer Declaration
Example of Equivalenced Simple Pointer Declaration
This example declares an INT(32) simple pointer equivalent to an INT simple pointer.
Both contain a word address:

Equivalenced Definition Structure
An equivalenced definition structure declaration associates a new structure with a
previously declared variable.

. (period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

.EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

identifier

is the identifier of a definition structure to be made equivalent to previous-identifier.

VST1005.vsd

PTR1 = 200

G[200]

.

.

.

PTR2 = 200
INT .ptr1 := 200;
INT(32) .ptr2 = ptr1;

VST1006.vsd

=

[index]

+ offset

-

;

previous-identifieridentifierSTRUCT

.

.EXT

structure-layout ;
TAL Reference Manual—526371-001
10-5

Equivalenced Variables Usage Considerations
previous-identifier

is the identifier of a previously declared simple variable, array, simple pointer,
structure, structure pointer, or equivalenced variable.

index

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable. The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

offset

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

structure-layout

is a BEGIN-END construct that contains structure item declarations as described in
Section 8, Structures.

Usage Considerations
If the new structure is to occupy the same location as the previous variable, their
addressing modes should match. Thus, you can declare a direct or indirect structure
equivalent to the following previous variables:

If the previous variable is a structure pointer, the new structure is really a pointer, as
described in the TAL Programmer’s Guide.

For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

New Structure Previous Variable

Direct Structure Simple Variable
Direct Structure
Direct Array

Standard Indirect Structure Standard Indirect Structure
Standard Indirect Array
Standard Structure Pointer

Extended Indirect
Structure

Extended Indirect Structure
Extended Indirect Array
Extended Structure Pointer
TAL Reference Manual—526371-001
10-6

Equivalenced Variables Example of Equivalenced Definition Structure
Declaration
Example of Equivalenced Definition Structure Declaration
The following example declares an extended indirect definition structure equivalent to a
previously declared extended indirect structure:

Equivalenced Referral Structure
An equivalenced referral structure declaration associates a new structure with a
previously declared variable.

. (period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

.EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

VST1007.vsd

.

.

.

ptr to XSTR1 ptr to XSTR2

 XSTR1

.

.

.

 XSTR2

Primary area of user data segment

Automatic extended data segment

STRUCT .EXT xstr1;
BEGIN
STRING old_name[0:20];

END;
STRING old_addr[0:50];

END;

STRUCT .EXT xstr2 = xstr1;
BEGIN

STRING new_name[0:30];
STRING new_addr[0:40];

VST1008.vsd

(

[index]

+ offset

-

=

referralidentifierSTRUCT

.

.EXT

previous-identifier ;

)

TAL Reference Manual—526371-001
10-7

Equivalenced Variables Usage Considerations
identifier

is the identifier of a referral structure to be made equivalent to previous-identifier.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for identifier.

previous-identifier

is the identifier of a previously declared simple variable, array, simple pointer,
structure, structure pointer, or equivalenced variable.

index

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable. The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

offset

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

Usage Considerations
If the new structure is to occupy the same location as the previous variable, their
addressing modes should match. Thus, you can declare a direct or indirect structure
equivalent to the following previous variables:

If the previous variable is a structure pointer, the new structure is really a pointer, as
described in the TAL Programmer’s Guide.

For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

New Structure Previous Variable

Direct Structure Simple Variable
Direct Structure
Direct Array

Standard Indirect Structure Standard Indirect Structure
Standard Indirect Array
Standard Structure Pointer

Extended Indirect Structure Extended Indirect Structure
Extended Indirect Array
Extended Structure Pointer
TAL Reference Manual—526371-001
10-8

Equivalenced Variables Example of Equivalenced Referral Structure
Declaration
Example of Equivalenced Referral Structure Declaration
The following example declares a referral structure equivalent to a previously declared
definition structure:

Equivalenced Structure Pointer
An equivalenced structure pointer declaration associates a new structure pointer with a
previously declared variable.

STRING

is the STRING attribute.

INT

is the INT attribute.

VST1009.vsd

.

.

.

ptr to D_STR ptr to R_STR

 D_STR

.

.

.

 R_STR

Secondary area

.

.

.

STRUCT .r_str (tmp) = d_str;

STRUCT .d_str;
BEGIN

STRING name[0:19];
STRING address [0:49];
END;

STRUCT tmp (*);

BEGIN
INT name[0:9];

INT address[0:24];
END;

VST1010.vsd

(

[index]

+ offset

-

=

referralidentifierSTRING

previous-identifier ;

)

,

.

.EXTINT
TAL Reference Manual—526371-001
10-9

Equivalenced Variables Usage Considerations
. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of a structure pointer to be made equivalent to previous-identifier.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for identifier.

previous-identifier

is the identifier of a previously declared simple variable, direct array element,
simple pointer, structure, structure pointer, or equivalenced variable.

index

is an INT constant that specifies an element offset from previous-identifier, which
must be a direct variable. The data type of previous-identifier dictates the element
size. The location represented by index must begin on a word boundary.

offset

is an INT constant that specifies a word offset from previous-identifier, which can
be a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

Usage Considerations
The STRING or INT attribute and the addressing symbol determine the kind of
addresses a structure pointer can contain, as described in Table 9-3 on page 9-7.

You can declare a structure pointer equivalent to the following previous variables.

Also, the new structure pointer and the previous pointer must both contain byte
addresses or both contain word addresses; otherwise, the pointers point to different
locations.

New Structure Pointer Previous Variable

Standard Structure Pointer Standard Indirect Structure
Standard Indirect Array
Standard Structure Pointer

Extended structure pointer Extended Indirect Structure
Extended Indirect Array
Extended Structure Pointer
TAL Reference Manual—526371-001
10-10

Equivalenced Variables Example of Equivalenced Structure Pointer
Declaration
For portability to future software platforms, declare equivalenced variables that fit
entirely within the previous variable.

Example of Equivalenced Structure Pointer Declaration
The following example declares structure pointers equivalent to another structure
pointer and to an indirect structure:

Base-Address Equivalenced Variable
Declarations

Base-address equivalencing lets you declare variables relative to global, local, or top-
of-stack base addresses. You can declare base-address equivalenced simple
variables, simple pointers, structure pointers, and structures.

VST1011.vsd

.

.

.

ptr to STR PTR3

STR

Automatic extended data segment

PTR1 PTR2

Primary area of user data segment
STRUCT temp (*);

BEGIN
STRING S[0:71];
END;

STRUCT .EXT str;

BEGIN
STRING name[0:20];

STRING addr[0:50];

END;

INT .EXT ptr1 (str) := @str;

INT .EXT ptr2 (temp) = ptr1;

INT .EXT ptr3 (str) = str;
TAL Reference Manual—526371-001
10-11

Equivalenced Variables Base-Address Equivalenced Simple Variable
Base-Address Equivalenced Simple Variable
A base-address equivalenced simple variable declaration associates a new simple
variable with a global, local, or top-of-stack base address.

type

is any data type except UNSIGNED.

variable

is the identifier of a simple variable to be made equivalent to base-address.

base-address

is one of the following base address symbols:

index and offset

are equivalent INT values giving a location in the following ranges:

Considerations
If you use the Common Run-Time Environment (CRE), locations G[0] and G[1] are not
available for your data (as described in the TAL Programmer’s Guide). References to
'G', 'L', or 'S' are not portable to future software platforms.

'G' Denotes global addressing relative to G[0]

'L' Denotes local addressing relative to L[0]

'S' Denotes top-of-stack addressing relative to S[0]

0 through 255 For 'G' addressing

–255 through 127 For 'L' addressing

–31 through 0 For 'S' addressing

VST1012.vsd

=

[index]

+ offset

-

;

,

base-addressidentifiertype
TAL Reference Manual—526371-001
10-12

Equivalenced Variables Example of Base-Address Equivalenced Simple
Variable Declaration
Example of Base-Address Equivalenced Simple Variable
Declaration

The following example declares an INT simple variable equivalent to an 'L'-relative
base address:

INT var1 = 'L'[5];
INT(32) var2 = 'G'[10];

Base-Address Equivalenced Simple Pointer
A base-address equivalenced simple pointer declaration associates a new simple
pointer with a global, local, or top-of-stack base address.

type

is any data type except UNSIGNED.

. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

identifier

is the identifier of a simple pointer to be made equivalent to base-address.

VST1013.vsd

=

[index]

+ offset

-

;

,

base-addressidentifiertype .

.EXT
TAL Reference Manual—526371-001
10-13

Equivalenced Variables Usage Considerations
base-address

is one of the following base address symbols:

index and offset

are equivalent INT values giving a location in the following ranges:

Usage Considerations
The data type determines how much data the simple pointer can access at a time—
byte, word, doubleword, or quadrupleword.

If you use the CRE, locations G[0] and G[1] are not available for your data.

References to 'G', 'L', or 'S' are not portable to future software platforms.

Base-Address Equivalenced Definition
Structure

A base-address equivalenced definition structure declaration associates a new
structure with a global, local, or top-of-stack base address.

'G' Denotes global addressing relative to G[0]

'L' Denotes local addressing relative to L[0]

'S' Denotes top-of-stack addressing relative to S[0]

0 through 255 For 'G' addressing

–255 through 127 For 'L' addressing

–31 through 0 For 'S' addressing

VST1014.vsd

=

[index]

+ offset

-

;

base-addressidentifierSTRUCT

.

.EXT

structure-layout ;
TAL Reference Manual—526371-001
10-14

Equivalenced Variables Usage Considerations
. (period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

.EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

identifier

is the identifier of a definition structure to be made equivalent to base-address.

base-address

is one of the following base address symbols:

index and offset

are equivalent INT values giving a location in the following ranges:

structure-layout

is a BEGIN-END construct that contains declarations as described in Section 8,
Structures.

Usage Considerations
If you use the CRE, locations G[0] and G[1] are not available for your data. References
to 'G', 'L', or 'S' are not portable to future software platforms.

'G' Denotes global addressing relative to G[0]

'L' Denotes local addressing relative to L[0]

'S' Denotes top-of-stack addressing relative to S[0]

0 through 255 For 'G' addressing

–255 through 127 For 'L' addressing

–31 through 0 For 'S' addressing
TAL Reference Manual—526371-001
10-15

Equivalenced Variables Base-Address Equivalenced Referral Structure
Base-Address Equivalenced Referral Structure
A base-address equivalenced referral structure declaration associates a new structure
with a global, local, or top-of-stack base address.

. (period)

is the standard indirection symbol and denotes 16-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

.EXT

is the extended indirection symbol and denotes 32-bit indirect addressing. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

identifier

is the identifier of a referral structure to be made equivalent to base-address.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for identifier.

base-address

is one of the following base address symbols:

'G' Denotes global addressing relative to G[0]

'L' Denotes local addressing relative to L[0]

'S' Denotes top-of-stack addressing relative to S[0]

VST1015.vsd

(

[index]

+ offset

-

=

referralidentifierSTRUCT

.

.EXT

base-address ;

)

TAL Reference Manual—526371-001
10-16

Equivalenced Variables Usage Considerations
index and offset

are equivalent INT values giving a location in the following ranges:

Usage Considerations
If you use the CRE, locations G[0] and G[1] are not available for your data.

References to 'G', 'L', or 'S' are not portable to future software platforms.

Base-Address Equivalenced Structure Pointer
A base-address equivalenced structure pointer declaration associates a new structure
pointer with a global, local, or top-of-stack base address.

STRING

is the STRING attribute.

INT

is the INT attribute.

. (period)

is the standard indirection symbol and denotes a standard (16-bit) pointer.

.EXT

is the extended indirection symbol and denotes an extended (32-bit) pointer.

0 through 255 For 'G' addressing

–255 through 127 For 'L' addressing

–31 through 0 For 'S' addressing

VST1016.vsd

(

[index]

+ offset

-

=

referralidentifierSTRING

base-address ;

)

,

.

.EXTINT
TAL Reference Manual—526371-001
10-17

Equivalenced Variables Usage Considerations
identifier

is the identifier of a structure pointer to be made equivalent to base-address.

referral

is the identifier of a previously declared structure or structure pointer that provides
the structure layout for identifier.

base-address

is one of the following base address symbols:

index and offset

are equivalent INT values giving a location in the following ranges:

Usage Considerations
The STRING or INT attribute and addressing symbol determine the kind of addresses
a structure pointer can contain, as described in Table 9-3 on page 9-7.

If you use the CRE, locations G[0] and G[1] are not available for your data.

References to 'G', 'L', or 'S' are not portable to future software platforms.

'G' Denotes global addressing relative to G[0]

'L' Denotes local addressing relative to L[0]

'S' Denotes top-of-stack addressing relative to S[0]

0 through 255 For 'G' addressing

–255 through 127 For 'L' addressing

–31 through 0 For 'S' addressing
TAL Reference Manual—526371-001
10-18

11 NAMEs and BLOCKs
Your input to a compilation session is a single source file. The source file contains
declarations, statements, and compiler directives that you can compile into an object
file.

The source file and any other source code that is read in by SOURCE directives
together compose a compilation unit.

The output from a compilation session is an executable or bindable object file that
consists of relocatable code and data blocks. You can compile separate object files
and then use Binder to bind the object files into a new executable or bindable object
file, called the target file.

When you bind object files together, Binder might have to relocate global data. In your
compilation unit, you can use the BLOCK declaration to group global data declarations
into relocatable data blocks. In the BLOCK declaration, you can specify whether the
data block is private to a compilation unit or shareable with other compilation units in a
program.

If you use a BLOCK declaration in a compilation unit, you must also use a NAME
declaration to give the compilation unit an identifier.

This section describes the syntax for:

• The NAME declaration

• The BLOCK declaration

For more information on the related topics, see Section 14, “Compiling Programs,” in
the TAL Programmer’s Guide:

• Compiling with relocatable data blocks

• Allocation of global data blocks by the compiler

• Sharing global data blocks

NAME Declaration
The NAME declaration assigns an identifier to a compilation unit and to its private data
block if it has one.

identifier

is the identifier of the compilation unit.

identifier ;

VST1101.vsd

NAME
TAL Reference Manual—526371-001
11-1

NAMEs and BLOCKs Usage Considerations
Usage Considerations
A compilation unit that contains a NAME declaration as its first declaration is called a
named compilation unit. If the compilation unit contains no BLOCK declarations, the
NAME declaration is optional.

If a compilation unit contains a BLOCK declaration, the NAME declaration must be the
first declaration in the compilation unit. NAME is a reserved keyword only within the
first declaration; you can use the term NAME elsewhere as an identifier.

The identifier declared in a NAME declaration is accessible as follows:

• If the current compilation unit has a private data block, the NAME identifier has
global scope among all compilation units in the target file. No other compilation unit
in the target file can use the same identifier at the global level.

• If the current compilation unit has no private data block, the identifier has global
scope within the current compilation unit only.

Example of NAME Declaration
This example assigns the identifier CALC_MOD to a compilation unit and to its private
data block:

NAME calc_mod;

BLOCK Declaration
The BLOCK declaration lets you group global data declarations into a named or private
relocatable global data block.

identifier

is the identifier of the data block. identifier must be unique among all BLOCK and
NAME declarations in the target file. A named data block is accessible to other
compilation units in the target file.

data
declaration

;

PRIVATE

VST1102.vsd

BELOW (256)

BELOW (64)

AT (0)

END BLOCK ;

;

identifierBLOCK
TAL Reference Manual—526371-001
11-2

NAMEs and BLOCKs Usage Considerations
PRIVATE

specifies a private global data block, which is accessible within the current
compilation unit only.

AT (0)

directs Binder to locate the block at location G[0]. (If you specify this option and run
your program in the CRE, conflicts could arise.)

BELOW (64)

directs Binder to locate the block below location G[64].

BELOW (256)

directs Binder to locate the block below location G[256].

data-declaration

is a global declaration of a LITERAL, DEFINE, simple variable, array, simple
pointer, structure pointer, structure, or equivalenced variable.

Usage Considerations
The BLOCK declaration is optional. A compilation unit can contain any number of
named (nonprivate) data blocks, but can contain only one private data block.

If you use the BLOCK declaration, the compilation unit must be named and the NAME
declaration must be the first declaration in the compilation unit. In a named compilation
unit, BLOCK and PRIVATE are reserved words.

The identifier of the BLOCK can be the same as the identifier of a variable declared
within the same block. This feature allows a TAL module to share global data with a C
module.

The private block, if any, inherits the identifier you specify in the NAME declaration for
this compilation unit.

BLOCK Location Options
You can use the AT and BELOW clauses to control where Binder locates a block. For
example:

• AT (0)—to detect the use of uninitialized pointers

• BELOW (64)—to use XX (extended, indexed) machine instructions

• BELOW (256)—to use directly addressed global data

The following limitations apply to the AT and BELOW clauses:

• Using the AT[0] option might cause conflicts if you:
TAL Reference Manual—526371-001
11-3

NAMEs and BLOCKs Examples of BLOCK Declarations
° Share data with compilation units written in other languages

° Run your program in the CRE

° Use 0D as nil for pointers

• Some of the AT and BELOW clauses are not portable to future software platforms.

Efficient Code
For extended pointers declared within BLOCK declarations that specify AT (0) or
BELOW (64), the compiler generates efficient code using the XX instructions (LWXX,
SWXX, LBXX, and SBXX). The INHIBITXX directive, which suppresses generation of
the XX instructions, has no effect on such BLOCK declarations.

The INT32INDEX directive suppresses the generation of XX instructions regardless of
the BLOCK declaration.

For information on the XX instructions, see the System Description Manual for your
system.

Examples of BLOCK Declarations
1. This example declares a private global data block, which is accessible only to the

current compilation unit. The compiler gives this private block the identifier
specified in the NAME declaration for the current compilation unit:

BLOCK PRIVATE;
 INT term_num;
 LITERAL msg_buf = 79;
END BLOCK;

2. This example declares a named global data block, DEFAULT_VOL, which is
accessible to other compilation units:

BLOCK default_vol;
 INT .vol_array [0:7],
 .out_array [0:34];
END BLOCK;

3. This example declares a named global data block to be located below G[64]:

BLOCK extended_indexed_stuff BELOW (64);
 INT .EXT sym_tab [0:32760],
 .EXT err_tab [0:16380];
END BLOCK;
TAL Reference Manual—526371-001
11-4

NAMEs and BLOCKs Coding Data Blocks
Coding Data Blocks
Here are guidelines for coding global data blocks:

• Place global declarations, if present, in the following order within a compilation unit:

1. NAME declaration

2. Unblocked global data declarations

3. BLOCK declarations (named or private)

4. PROC declarations

• Make sure that the target file contains no more than a total of 256 words of primary
global blocks.

• Place variable declarations and any declarations that refer to those variables in the
same block. For example, place the following declarations in the same block:

• Make sure the length of any shared data block matches in all compilation units.

Unblocked Declarations
Place all unblocked global declarations (those not contained in BLOCK declarations)
before the first BLOCK declaration.

The compiler creates an implicit data block named #GLOBAL and places all unblocked
declarations (except template structures) in #GLOBAL. A compilation unit can have
only one #GLOBAL block.

The compiler creates an implicit data block for each unblocked template structure
declaration and gives the block the name of the template structure prefixed with an
ampersand (&).

You can bind object files compiled with and without template blocks with no loss of
information. You can use Binder commands to replace the #GLOBAL and template
blocks in the target file.

INT var; !Variable declaration

INT .ptr := @var; !Variable reference
TAL Reference Manual—526371-001
11-5

NAMEs and BLOCKs Unblocked Declarations
TAL Reference Manual—526371-001
11-6

12 Statements
Statements—also known as executable statements—perform operations in a program.
They can modify the program’s data or control the program’s flow. Table 12-1
summarizes statements.

Using Semicolons
You use semicolons with statements as follows:

• A semicolon is required between successive statements.

• A semicolon is optional before an END keyword that terminates a compound
statement.

Table 12-1. Summary of Statements

Category Statement Operation

Program Control ASSERT
CALL
CASE

DO
FOR
GOTO

IF
RETURN

WHILE

Conditionally calls an error-handling procedure
Calls a procedure or subprocedure
Selects a set of statements based on a selector
value

Executes a posttest loop until a condition is true
Executes a pretest loop n times
Unconditionally branches to a label within a
procedure or subprocedure

Conditionally selects one of two possible
statements
Returns from a procedure or a subprocedure to
the caller; returns a value from a function, and
can also return a condition code value

Executes a pretest loop while a condition is true

Data Transfer Assignment
MOVE

STACK *
STORE *

Stores a value in a variable
Copies a contiguous group of items from one
location to another

Loads a value onto the register stack
Stores a register stack value in a variable

Data Scan RSCAN
SCAN

Scans data, right to left, for a test character
Scans data, left to right, for a test character

Machine
Instruction

CODE *

DROP
USE

Specifies machine codes or constants for
inclusion in the object code

Frees an index register or removes a label from
the symbol table
Reserves an index register

* Not portable to future software systems.
TAL Reference Manual—526371-001
12-1

Statements Compound Statements
• A semicolon must not immediately precede an ELSE or UNTIL keyword.

• A semicolon alone in place of a statement creates a null statement. The compiler
generates no code for null statements. You can use a null statement wherever you
can use a statement except immediately before an ELSE or UNTIL keyword.

Compound Statements
A compound statement is a BEGIN-END construct that groups statements to form a
single logical statement.

BEGIN

indicates the start of the compound statement.

statement

is a statement described in this section.

; (semicolon)

is a statement separator that is required between successive statements. A
semicolon before an END that terminates a compound statement is optional and
represents a null statement.

END

indicates the end of the compound statement.

Usage Considerations
You can use compound statements anywhere you can use a single statement. You can
nest them to any level in statements such as IF, DO, FOR, WHILE, or CASE.

Examples of Compound Statements
1. This example shows a null compound statement. One use is in a CASE statement

when a case has no action

BEGIN
END;

BEGIN END

statement

;

;

VST1201.vsd
TAL Reference Manual—526371-001
12-2

Statements ASSERT Statement
2. This example shows a compound statement

BEGIN
 a := b + c;
 d := %B101;
 f := d - e;
END;

ASSERT Statement
The ASSERT statement conditionally invokes the procedure specified in an
ASSERTION directive.

assert-level

is an integer in the range 0 through 32,767. If assert-level is equal to or higher than
the assertion-level specified in the current ASSERTION directive and if condition is
true, the procedure specified in the ASSERTION directive executes. If the assert-
level is lower than the assertion-level, the procedure is not activated.

condition

is an expression that tests a program condition and yields a true or false result.

Usage Considerations
The ASSERT statement is a debugging or error-handling tool. You use it with the
ASSERTION directive as follows:

1. Place an ASSERTION directive in the source code where you want to start
debugging. In the directive, specify an assertion-level and an error-handling
procedure such as the D-series PROCESS_DEBUG_ procedure or the C-series
Debug procedure:

?ASSERTION 5, PROCESS_DEBUG_ !Assertion-level is 5

2. Place an ASSERT statement at places where you want to invoke the error-
handling procedure when an error occurs. In the statement, specify an assert-level
that is equal to or higher than the assertion-level and specify an expression that
tests a condition. For example, the standard function $CARRY returns true if the
carry indicator is on and false if it is off:

ASSERT 10 : $CARRY; !Assert-level is 10

ASSERT assert-level : condition
VST1202.vsd
TAL Reference Manual—526371-001
12-3

Statements Example of ASSERT Statement
3. During program execution, if an assert-level is equal to or higher than the current
assertion-level and the associated condition is true, the compiler invokes the error-
handling procedure.

4. After you debug the program, you can nullify all or some of the ASSERT
statements by specifying an ASSERTION directive with an assertion-level that is
higher than the highest assert-level you want to nullify:

?ASSERTION 11, PROCESS_DEBUG_
 !Assertion-level nullifies assert-level 10 and below

For more information, see ASSERTION Directive on page 16-14.

Example of ASSERT Statement
This example invokes PROCESS_DEBUG_ whenever an out-of-range condition
occurs:

?SOURCE $SYSTEM.SYSTEM.EXTDECS (PROCESS_DEBUG_)
?ASSERTION 5, PROCESS_DEBUG_
 !Assertion-level 5 activates all ASSERT conditions
SCAN array WHILE " " -> @pointer;
ASSERT 10 : $CARRY;
!Lots of code
ASSERT 10 : $CARRY;
!More code
ASSERT 20 : $OVERFLOW;
 !$OVERFLOW function tests for arithmetic overflow

If you change the assertion-level in the ASSERTION directive to 15, you nullify the two
ASSERT statements that specify assert-level 10 and the $CARRY condition.

If you change the assertion-level to 30, you nullify all the ASSERT statements. If
ASSERT statements that cover a particular condition all have the same assert-level, it
is easier to nullify specific levels of ASSERT statements.

Assignment Statement
The assignment statement assigns a value to a previously declared variable.

A bit-deposit assignment statement is a special form of the assignment statement; its
description follows the assignment statement description.

:= expressionvariable

VST1203.vsd
TAL Reference Manual—526371-001
12-4

Statements Usage Considerations
variable

is the identifier of a simple variable, array element, simple pointer, structure pointer,
or structure data item, with or without a bit deposit field and/or index. To update a
pointer’s content, prefix the pointer identifier with @.

expression

is either

• An arithmetic expression of the same data type as variable

• A conditional expression, which always has an INT result

expression can be a bit extraction value or an identifier prefixed with @ (the
address of a variable). expression cannot be a constant list.

Usage Considerations
In general, the data types of variable and expression must match. To convert the data
type of expression to match the data type of variable, use a type-transfer function,
described in Section 14, Standard Functions.

Assigning Numbers to FIXED Variables
When you assign a number to a FIXED variable, the system scales the value up or
down to match the fpoint value. If the system scales the value down, you lose some
precision depending on the amount of scaling; for example:

FIXED(2) a;

a := 2.348F; !System scales value to 2.34F

If the ROUND directive is in effect, the system scales the value as needed, then
rounds the value away from zero as follows:

(IF value < 0 THEN value - 5 ELSE value + 5) / 10

For example, if you assign 2.348F to a FIXED(2) variable, the ROUND directive scales
the value by one digit and then rounds it to 2.35F.

Assigning Character Strings
You can assign a character string to STRING, INT, or INT(32) variables.

If you assign a one-character string such as "A" to an INT simple variable, the system
places the value in the right byte of a word and 0 in the left byte. (To store a character
in the left byte, assign the character and a space, as in "A ").

If you assign a character string to a FIXED, REAL, or REAL(64) variable, the compiler
issues error 32 (type incompatibility).
TAL Reference Manual—526371-001
12-5

Statements Examples of Assignment Statements
Examples of Assignment Statements
1. This example shows various assignment statements:

INT array[0:2]; !Declare an array
INT .ptr; !Declare a simple pointer
REAL real_var; !Declare a REAL variable
FIXED fixed_var; !Declare a FIXED variable
array[2] := 255; !Assign a value to ARRAY[2]
@ptr := @array[1]; !Assign address of ARRAY[1]
 !to PTR
ptr := array[2]; !Assign value of ARRAY[2]
 !to ARRAY[1], to which PTR
 !points
real_var := 36.6E-3; !Assign a REAL value to a
 !REAL variable
fixed_var := $FIX (real_var); !Convert a REAL value to
 !FIXED and assign it to a
 !FIXED variable

2. Assignment statements can assign character strings but not constant lists, so in
this example the three assignment statements together store the same value as
the one constant list in the declaration:

INT .b[0:2] := ["ABCDEF"]; !Declare and initialize
 !with constant list
b[0] := "AB"; !Assignment statements
b[1] := "CD"; !cannot use constant lists
b[2] := "EF";

3. In this example, the first assignment statement (which contains assignment
expressions) is equivalent to the three separate assignments that follow it:

INT int1;
INT int2;
INT int3;
INT var := 16; !Declarations
int1 := int2 := int3 := var; !Assignment that contains
 !assignment expressions
int1 := var; !Separate assignments
int2 := var;
int3 := var;
TAL Reference Manual—526371-001
12-6

Statements Bit-Deposit Assignment Statement
Bit-Deposit Assignment Statement
The bit deposit form of the assignment statement lets you assign a value to an
individual bit or to a group of sequential bits.

variable

is the identifier of a STRING or INT variable, but not an UNSIGNED(1–16)
variable. variable can be the identifier of a simple variable, array element, or simple
pointer (inside or outside a structure).

left-bit

is an INT constant that specifies the leftmost bit of the bit deposit field.

For STRING variables, specify a bit number in the range 8 through 15. Bit 8 is the
leftmost bit in a STRING variable; bit 15 is the rightmost bit.

right-bit

is an INT constant specifying the rightmost bit of the bit deposit field. right-bit must
be equal to or greater than left-bit.

For STRING variables, specify a bit number in the range 8 through 15. Bit 8 is the
leftmost bit in a STRING variable; bit 15 is the rightmost bit.

expression

is an INT arithmetic or conditional expression, with or without a bit field
specification.

Usage Considerations
The bit deposit field is on the left side of the assignment operator (:=). The bit deposit
assignment changes only the bit deposit field. If the value on the right side has more
bits than the bit deposit field, the system ignores the excess high-order bits when
making the assignment.

:=.variable < left-bit
ns ns ns

: right-bit
ns ns ns

>

:= expression
VST1204.vsd
TAL Reference Manual—526371-001
12-7

Statements Examples of Bit Deposit Assignments
Specify the variable/bit-field construct with no intervening spaces. For example:

myvar.<0:5>

Do not use bit deposit fields to pack data. Instead, declare an UNSIGNED variable and
specify the appropriate number of bits in the bit field.

Bit deposits are not portable to future software platforms. Where possible, isolate bit
deposits in a routine that can be modified in the future.

Examples of Bit Deposit Assignments
1. In this example, the bit deposit assignment sets bits 3 through 7 of the word

designated by X:

INT x;
x.<3:7> := %B11111;

2. This example replaces bits <10> and <11> with zeros:

INT old := -1; !OLD = %b1111111111111111
old.<10:11> := 0; !OLD = %b1111111111001111

3. This example sets bit <8>, the leftmost bit of STRNG, to 0:

STRING strng := -1; !STRNG = %b11111111
strng.<8> := 0; !STRNG = %b01111111

4. In this example, the value %577 is too large to fit in bits <7:12> of VAR. The
system truncates %577 to %77 before performing the bit deposit:

INT var := %125252; !VAR = %b1010101010101010
var.<7:12> := %577; !%77 = %b0000000101111111
 !VAR = %b1010101111111010

5. This example replaces bits <7:8> of NEW with bits <8:9> of OLD:

INT new := -1; !NEW = %b1111111111111111
INT old := 0; !OLD = %b0000000000000000
new.<7:8> := old.<8:9>; !NEW = %b1111111001111111
TAL Reference Manual—526371-001
12-8

Statements CALL Statement
CALL Statement
The CALL statement invokes a procedure, subprocedure, or entry-point identifier, and
optionally passes parameters to it.

identifier

is the identifier of a previously declared procedure, subprocedure, or entry-point
identifier.

param

is a variable identifier or an expression that defines an actual parameter to pass to
a formal parameter declared in identifier.

param-pair

is an actual parameter pair to pass to a formal parameter pair declared in identifier.

string

is the identifier of a STRING array or simple pointer declared inside or outside
a structure.

length

is an INT expression that specifies the length, in bytes, of string.

CALL

identifier

()

param

param-pair

,
VST1205.vsd

:string length
VST1206.vsd
TAL Reference Manual—526371-001
12-9

Statements Usage Considerations
Usage Considerations
To invoke procedures and subprocedures (but usually not functions), use the CALL
statement.

To invoke functions, you usually use their identifiers in expressions. If you invoke a
function by using a CALL statement, the caller ignores the returned value of the
function.

Actual parameters are value or reference parameters and are optional or required
depending on the formal parameter specification in the called procedure or
subprocedure declaration (described in Section 13, Procedures). A value parameter
passes the content of a location; a reference parameter passes the address of a
location.

The CALL keyword in CALL statements is optional. In a CALL statement to a
VARIABLE procedure or subprocedure or to an EXTENSIBLE procedure, you can omit
optional parameters in two ways:

• You can omit parameters or parameter pairs unconditionally. Use an empty comma
for each omitted parameter or parameter pair up to the last specified parameter or
parameter pair. If you omit all parameters, you can specify an empty parameter list
(parentheses with no commas) or you can omit the parameter list altogether.

• You can omit parameters or parameter pairs conditionally. Use the $OPTIONAL
standard function as described in Section 14, Standard Functions.

After the called procedure or subprocedure completes execution, control returns to the
statement following the CALL statement that invoked the procedure or subprocedure.

For more information on parameters and parameter pairs, see the TAL Programmer’s
Guide.

Examples of CALL Statements
1. This example invokes procedure ERROR_HANDLER, which has no formal

parameters:

CALL error_handler;

2. This example omits the CALL keyword from the CALL statement:

error_handler;

3. This example includes all parameters:

CALL compute_tax (item, rate, result);
TAL Reference Manual—526371-001
12-10

Statements CASE Statement
4. This example omits all parameters:

CALL extensible_proc ();

5. These examples omit some optional parameters:

CALL variable_proc(, , , , , x);
CALL variable_proc (n, , char, , , eof);
CALL variable_proc (n, !name!, char, !type!, !size!, eof);

CASE Statement
The CASE statement executes a choice of statements based on a selector value.
Normally, you use labeled CASE statements. Labeled CASE statements are described
first, followed by unlabeled CASE statements.

Labeled CASE Statement
The labeled CASE statement executes a choice of statements when the value of the
selector matches a case label associated with those statements.

selector

is an INT arithmetic expression that uniquely selects the case-alternative for the
program to execute.

case-alternative

associates one or more case-labels or one or more ranges of case-labels with one
or more statements. The statements of a case-alternative are executed if selector
equals an associated case-label.

;CASE selector OF BEGIN case-alternative

END

OTHERWISE -> ;

statement
VST1207.vsd
TAL Reference Manual—526371-001
12-11

Statements Usage Considerations
case-label

is a signed INT constant or LITERAL. Each case-label must be unique in the
CASE statement.

lower-case-label

is the smallest value in an inclusive range of signed INT constants or
LITERALs.

upper-case-label

is the largest value in an inclusive range of signed INT constants or LITERALs.

statement

is any statement described in this section.

OTHERWISE

specifies an optional sequence of statements to execute if selector does not select
any case-alternative. If no OTHERWISE clause is present and selector does not
match a case-alternative, a run-time error occurs. Always include an OTHERWISE
clause, even if it contains no statements.

Usage Considerations
The TAL Programmer’s Guide describes efficiency guidelines and execution of the
labeled CASE statement.

Example of Labeled CASE Statement
This labeled CASE statement has four case alternatives and the OTHERWISE case:

INT location;
LITERAL bay_area, los_angeles, hawaii, elsewhere;

PROC area_proc (area_code); !Declare procedure
 INT area_code; !Declare selector as
 BEGIN ! formal parameter
 CASE area_code OF !Selector is AREA_CODE
 BEGIN
 408, 415 ->
 location := bay_area;

case-label -> statement

lower-case-
label

. . upper-
case-label

,

;

VST1208.vsd
TAL Reference Manual—526371-001
12-12

Statements Unlabeled CASE Statement
 213, 818 ->
 location := los_angeles;
 808 ->
 location := hawaii;
 OTHERWISE ->
 location := elsewhere;
 END; !End CASE statement
 END; !End AREA_PROC

Unlabeled CASE Statement
The unlabeled CASE statement executes a choice of statements, based on an
inclusive range of implicit selector values, from 0 through n, with one statement for
each value.

selector

is an INT arithmetic expression that selects the statement to execute.

statement

is any statement described in this section. Include a statement for each value in the
implicit selector range, from 0 through n. If a selector has no action, specify a null
statement (semicolon with no statement). If you include more than one statement
for a value, you must use a compound statement.

OTHERWISE

indicates the statement to execute for any case outside the range of selector
values. If the OTHERWISE clause consists of a null statement, control passes to
the statement following the unlabeled CASE statement. See Omitted Otherwise
Clause.

Usage Considerations
The compiler numbers each statement in the BEGIN clause consecutively, starting with
0. If the selector matches the compiler-assigned number of a statement, that statement
is executed. For example, if the selector is 0, the first statement executes; if the

;CASE selector OF BEGIN

END

OTHERWISE ;

statement

statement

VST1209.vsd
TAL Reference Manual—526371-001
12-13

Statements Examples of Unlabeled CASE Statements
selector is 4, the fifth statement executes. Conversely, if the selector does not match a
compiler-assigned number, the OTHERWISE statement, if any, executes.

For unlabeled CASE statements, the compiler always generates the branch table form
(described in “Labeled CASE Statement” in the TAL Programmer’s Guide).

Omitted Otherwise Clause
If you omit the OTHERWISE clause and selector is out of range (negative or greater
than n), the compiler behaves as follows:

• If the CHECK directive is in effect and your program enables arithmetic traps, a
divide-by-zero instruction trap occurs.

• If NOCHECK is in effect or if your program disables arithmetic traps, control
passes to the statement following the unlabeled CASE statement and program
results are unpredictable.

Examples of Unlabeled CASE Statements
1. If SELECTOR in the following CASE statement is 0, the first statement executes; if

SELECTOR is 1, the second statement executes. For any other SELECTOR value,
the third statement executes:

INT selector;
INT var0;
INT var1;

CASE selector OF
 BEGIN
 var0 := 0; !First statement
 var1 := 1; !Second statement
OTHERWISE
 CALL error_handler; !Third statement
END;

2. This example selectively moves one of several messages into an array:

PROC msg_handler (selector);
 INT selector;
 BEGIN
 LITERAL len = 80; !Length of array
 STRING .a_array[0:len - 1]; !Destination array
TAL Reference Manual—526371-001
12-14

Statements CODE Statement
CASE selector OF
 BEGIN !Move statements
 !0! a_array ':=' "Training Program";
 !1! a_array ':=' "End of Program";
 !2! a_array ':=' "Input Error";
 !3! a_array ':=' "Home Terminal Now Open";
 OTHERWISE
 a_array ':=' "Bad Message Number";
 END; !End of CASE statement
END; !End of procedure

CODE Statement
The CODE statement enables you to specify machine-level instructions and
pseudocodes to compile into the object code.

instruction

is a machine instruction in one of the six forms:

(CODE instruction

;

)

VST1210.vsd

2

.

@

mnemonic identifier

3 mnemonic constant

5

.

@

,

mnemonic identifier

register

4 registermnemonic

6

,

mnemonic constant

register

1 mnemonic

No. Instruction Form

VST1211.vsd
TAL Reference Manual—526371-001
12-15

Statements Usage Considerations
mnemonic

is either an instruction code or a pseudocode.

. (period)

is the dereferencing operator, which converts the value of identifier into the
standard word address of another data item.

@

removes indirection. If identifier is a pointer, @ accesses the address contained in
the pointer. Otherwise, @ accesses the address of identifier.

identifier

is the identifier of a procedure or label:

• For a PCAL or XCAL instruction, it is a procedure. The procedure identifier
must be resolvable by the time the executable object file is created.

• For a branch instruction, it is a label.

An indirect identifier specified without @ generates instructions for an indirect
reference through identifier.

constant

is an INT constant of the same size as the instruction field.

register

is either:

• An INT constant that specifies a register number in the range 0 through 7

• An identifier associated with an index register by a USE statement

If you omit register, no indexing occurs.

Usage Considerations
Because CODE statements are not portable to future software platforms, modularize
their use as much as possible to simplify future modification of your program.

Instruction Codes
You can use instruction codes and pseudocodes as CODE statement mnemonics. The
six instruction forms shown in the syntax diagram correlate to instruction codes
described in the System Description Manual for your system. You must include all
required operands for each instruction. The compiler inserts indirect branches around
data or instructions emitted in a CODE statement, if needed. Normally, the compiler
emits these values after the first unconditional branch instruction occurs.
TAL Reference Manual—526371-001
12-16

Statements Usage Considerations
Pseudocodes
You can use pseudocodes and instruction codes as CODE statement mnemonics. The
form numbers in the following descriptions correlate to form numbers shown in the
CODE statement instruction form diagrams:

DUMPCONS Directive and CODE Statements
When you use CODE statements to create a block of code, the compiler might insert
constants or branch labels into the object file in the middle of your block of code. If you
need to keep the block of code intact, put a DUMPCONS directive immediately before
the CODE statements. The compiler then inserts all pending constants and branch
labels into the object code before it compiles the CODE statements.

ACON A form 3 mnemonic that emits the value specified in constant. constant is
the absolute run-time code address associated with the label in the next
instruction location. An absolute code address is relative to the beginning of
the code space in which the encompassing procedure resides.

CON A form 3 mnemonic that emits the value specified in constant. constant is
an offset of a location from the program counter or a character string
constant.

The following indirect CODE branch is no longer allowed:

CODE (BANZ .test_x);
!Lots of code
test_x: CODE (CON @test_z);
!Error 11 results

DECS A form 3 mnemonic that decrements the compiler’s internal S-register
counter by the amount specified in constant. constant is a signed integer to
subtract from the compiler’s internal S-register counter. This mnemonic
emits no code. The CODE (DECS) statement and the DECS directive
behave the same except when you include them in a DEFINE declaration.
That is, the CODE(DECS) statement is part of the DEFINE, but the DECS
directive executes immediately and is not part of the DEFINE.

FULL A form 1 mnemonic that signals the compiler that the register stack is full
and sets the compiler’s internal RP counter to 7. This instruction emits no
code. RP is the register stack pointer, which points to the top of the register
stack.

RP A form 3 mnemonic that sets the compiler’s internal RP counter to the value
specified in constant. constant is a value in the range 0 through 7, where 7
signals the compiler that the register stack is empty. This mnemonic emits
no code. The CODE (RP) statement and the RP directive behave the same
except when you include them in a DEFINE declaration. That is, the
CODE(RP) statement is part of the DEFINE, but the RP directive executes
immediately and is not part of the DEFINE.
TAL Reference Manual—526371-001
12-17

Statements Examples of CODE Statements
FOR Statements and CODE Statements
If you use a CODE statement to make a conditional jump from an optimized FOR loop,
the compiler emits warning 78 (TAL cannot set the RP value for the forward branch).
To set the RP value for the jump condition, use a CODE (STRP ...) statement or an RP
directive. The compiler can generate correct code only for the nonjump condition.

Examples of CODE Statements
1. This example shows instruction codes that turn off traps:

CODE (RDE; ANRI %577; SETE);

2. These examples show the six instruction forms:

CODE (ZERD; IADD); !Form 1
CODE (LADR a; STOR .b); !Form 2
CODE (LDI 21; ADDI -4); !Form 3
CODE (STAR 7; STRP 2); !Form 4
CODE (LDX a, 7; LDB stg, x); !Form 5
CODE (LDXI -15 ,5); !Form 6

3. This example scans from a code-relative address to the test character (which is a
0), and then saves the next address:

STRING .ptr;
!Some code here
STACK @ptr, 0;
CODE (SBU %040);
STORE @ptr;

4. This example decrements the compiler’s internal S-register counter by 2:

CODE (DECS 2);

5. This example decrements the run-time S-register by 2:

CODE (ADDS -2);

6. Each of these CON pseudocodes emits data in the next instruction location:

CODE (CON %125); !Emit %125
CODE (CON "the con pseudo operator code");
 !Emit 14 words of constants
CODE (CON @labelid); !Emit a one-word algebraic signed
 ! difference between the address
 !of LABELID and the current content
 !of the program counter;
 !that is, of @LABELID - @P.
TAL Reference Manual—526371-001
12-18

Statements DO Statement
DO Statement
The DO statement is a posttest loop that repeatedly executes a statement until a
specified condition becomes true.

statement

is any statement described in this section.

condition

is either:

• A conditional expression

• An INT arithmetic expression. If the result of the arithmetic expression is not 0,
condition is true. If the result is 0, condition is false.

If condition is false, the DO loop continues to execute. If condition is true, the
statement following this DO statement executes.

Usage Considerations
If the condition is always false, the loop repeats until a statement in the DO loop
causes an exit.

A DO statement always executes at least once because the compiler tests condition at
the end of the loop. Unless you have a special reason to use a DO statement, it is
safer to use the WHILE statement.

DO statement execution is shown in the TAL Programmer’s Guide.

Examples of DO Statements
1. This DO statement loops through ARRAY_A, testing each the content of each

element until an alphabetic character occurs:

index := -1;

DO index := index + 1 UNTIL $ALPHA (array_a[index]);

DO UNTIL condition

statement VST1212.vsd
TAL Reference Manual—526371-001
12-19

Statements DROP Statement
2. This DO statement loops through ARRAY_A, assigning a 0 to each element until all
the elements contain a 0:

LITERAL limit = 9;
INT index := 0;
STRING .array_a[0:limit]; !Declare array

DO !DO statement
 BEGIN
 array_a[index] := 0; !Compound statement to
 index := index + 1; ! execute in DO loop
 END
UNTIL index > limit; !Condition for ending loop

DROP Statement
The DROP statement disassociates an identifier from either:

• A label

• An index register that you reserved in a previous USE statement

identifier

is the identifier of either:

• A label

• An index register that you reserved in a previous USE statement

Usage Considerations
Following are guidelines for dropping labels and registers.

Dropping Labels
You can drop a label only if you have declared the label or used it to label a statement.
Before you drop a label, be sure there are no further references to the label. If a GOTO
statement refers to a dropped label, a run-time error occurs. After you drop a label, you
can, however, use the identifier to label a statement preceding the GOTO statement
that refers to the label.

DROP identifier

,
VST1213.vsd
TAL Reference Manual—526371-001
12-20

Statements Examples of DROP Statements
Dropping Registers
You reserve index registers by issuing USE statements. When you no longer need a
reserved index register, drop (RVU) it by issuing a DROP statement. After you drop an
index register, do not use its identifier without issuing a new USE statement and
assigning a value to it.

If you do not drop all reserved index registers, the compiler automatically drops them
when the procedure or subprocedure completes execution.

If you reserve an index register for a FOR loop, do not drop the register within the
scope of the loop.

Examples of DROP Statements
1. This example uses and drops a label within a DEFINE declaration:

DEFINE loop =
 BEGIN
 lab: !Uses label identifier
 IF a = b
 THEN
 GOTO lab; !Branches to label
 DROP lab; !Frees label identifier for reuse
 END #;

2. This example reserves, uses, and drops an index register:

LITERAL len = 100;
INT array[0:len-1]; !Declarations

USE x; !Reserves index register named X
FOR x := 0 TO len - 1 DO
 array[x] := 0; !Uses register X to clear array
DROP x; !Drops register X
TAL Reference Manual—526371-001
12-21

Statements FOR Statement
FOR Statement
The FOR statement is a pretest loop that repeatedly executes a statement while
incrementing or decrementing an index automatically. The loop terminates when the
index reaches a set value.

index

is a value that increments or decrements automatically until it reaches limit and
terminates the loop.

• In a standard FOR loop, index is the identifier of an INT simple variable, array
element, simple pointer, or structure data item.

• In an optimized FOR loop, index is the identifier of an index register you have
reserved by using the USE statement.

initial-value

is an INT arithmetic expression (such as 0) that initializes index.

TO

increments index each time the loop executes until index exceeds limit.

DOWNTO

decrements index each time the loop executes until index is less than limit.

limit

is an INT arithmetic expression that terminates the FOR looping.

step

is an INT arithmetic expression by which to increment or decrement index each
time the loop executes. The default value is 1.

statement

is any statement described in this section.

FOR index := initial-value TO limit

DOWNTO

DO

BY step statement
VST1214.vsd
TAL Reference Manual—526371-001
12-22

Statements Usage Considerations
Usage Considerations
The FOR statement tests index at the beginning of each iteration of the loop. If index
passes limit on the first test, the loop never executes.

You can nest FOR loops to any level.

FOR statement execution is shown in the TAL Programmer’s Guide.

Standard FOR Loops
For index, standard FOR loops specify an INT variable. Standard FOR loops execute
as follows:

• When the looping terminates, index is greater than limit if:

° The step value is 1.

° You use the TO keyword (not DOWNTO).

° The limit value (not a GOTO statement) terminates the looping.

• limit and step are recomputed at the start of each iteration of the loop.

Optimized FOR Loops
For index, optimized FOR loops specify a register reserved by a USE statement.
Optimized FOR loops execute faster than standard FOR loops; they execute as
follows:

• When the looping terminates, index is equal to limit.

• limit is calculated only once, at the start of the first iteration of the loop.

You optimize a FOR loop as follows:

1. Before the FOR statement, specify a USE statement to reserve an index register.

2. In the FOR statement:

• For index, use the identifier of the index register.

• Omit the step value (thereby using the default value of 1).

• For limit, use the TO keyword.

3. If you modify the register stack, save and restore it before the end of the loop.
(Modifying the register stack, however, is not an operation portable to future
software platforms.)

4. After the FOR statement, specify a DROP statement to release the index register.
Do not drop the index register during the looping.
TAL Reference Manual—526371-001
12-23

Statements Examples of FOR Statements
Inclusion of procedure calls in the FOR loop slows down the loop because the compiler
must emit code to save and restore registers before and after each CALL statement.

The following operations are not portable to future software platforms:

• Using a CODE statement to conditionally jump out of an optimized FOR loop. The
compiler generates correct code only for the nonjump condition.

• Jumping into an optimized FOR loop.

Examples of FOR Statements
1. This standard FOR loop uses the DOWNTO clause to reverse a string from "BAT"

to "TAB":

LITERAL len = 3;
LITERAL limit = len - 1;
STRING .normal_str[0:limit] := "BAT";
STRING .reversed_str[0:limit];
INT index;

FOR index := limit DOWNTO 0 DO
 reversed_str[limit - index] := normal_str[index];

2. This nested FOR loop treats MULTIPLES as a two-dimensional array. It fills the
first row with multiples of 1, the next row with multiples of 2, and so on:

INT .multiples[0:10*10-1];
INT row;
INT column;

 FOR row := 0 TO 9 DO
 FOR column := 0 TO 9 DO
 multiples [row * 10 + column] := column * (row + 1);

3. This example compares a standard FOR loop to its optimized equivalent. Both
FOR loops clear the array by assigning a space to each element in the array:

LITERAL len = 100;
LITERAL limit = len - 1; !Declare ARRAY to use
STRING .array[0:limit]; ! in both FOR loops
INT index; !Declare INDEX

FOR index := 0 TO limit DO !Standard FOR loop;
 array[index] := " ";

USE x; !Reserve index register
FOR x := 0 TO limit DO !Optimized FOR loop
 array[x] := " ";
DROP x; !Release index register
TAL Reference Manual—526371-001
12-24

Statements GOTO Statement
GOTO Statement
The GOTO statement unconditionally transfers program control to a statement that is
preceded by a label.

label-name

is the identifier of a label that is associated with a statement. It cannot be an entry-
point identifier.

Usage Considerations
A local GOTO statement can refer only to a local label in the same procedure. A local
GOTO statement cannot refer to a label in a subprocedure or in any other procedure.

A sublocal GOTO statement can refer to a label in the same subprocedure or in the
encompassing procedure. A sublocal GOTO statement cannot refer to a label in
another subprocedure.

Examples of GOTO Statements
1. In this example, a local GOTO statement branches to a local label:

PROC p
 BEGIN
 LABEL calc_a; !Declare local label
 INT a;
 INT b := 5;

calc_a : !Place label at local statement
 a := b * 2;
 !Lots of code
 GOTO calc_a; !Local branch to local label
 END;

2. In this example, a sublocal GOTO statement branches to a local label:

PROC p;
 BEGIN
 LABEL a; !Declare local label
 INT i;

SUBPROC s;
 BEGIN
 !Lots of code

GOTO label-name

VST1215.vsd
TAL Reference Manual—526371-001
12-25

Statements IF Statement
 GOTO a; !Sublocal branch to local label
 END;

 a : !Place label at local statement
 i := 0;
 !More code
 END;

IF Statement
The IF statement conditionally selects one of two statements.

condition

is either:

• A conditional expression

• An INT arithmetic expression. If the result of the arithmetic expression is not 0,
condition is true. If the result is 0, condition is false.

THEN statement

specifies the statement to execute if condition is true. statement can be any
statement described in this section. If you omit statement, no action occurs for the
THEN clause.

ELSE statement

specifies the statement to execute if condition is false. statement can be any
statement described in this section.

Usage Considerations
If the condition is true, the THEN statement executes. If the condition is false, the
ELSE statement executes. If no ELSE clause is present, the statement following the IF
statement executes.

You can nest IF statements to any level.

IF condition THEN

statement

ELSE

statement
VST1216.vsd
TAL Reference Manual—526371-001
12-26

Statements Example of IF Statements
For more information on the IF statement execution and IF-ELSE pairing, see Section
12, “Controlling Program Flow,” in the TAL Programmer’s Guide.

Example of IF Statements
This example compares two arrays:

INT .new_array[0:9];
INT .old_array[0:9];
INT item_ok;

IF new_array = old_array FOR 10 WORDS THEN
 item_ok := 1
ELSE
 item_ok := 0;

MOVE Statement
The move statement copies contiguous bytes, words, or elements to a new location.

destination

is the identifier, with or without an index, of the variable to which the copy operation
begins. It can be a simple variable, array, simple pointer, structure, structure data
item, or structure pointer, but not a read-only array.

':='

specifies a left-to-right sequential move. It starts copying data from the leftmost
item in source.

'=:'

specifies a right-to-left sequential move. It starts copying data from the rightmost
item in source.

source

destination ':='

':='

FOR count

count
-unit

constant

[constant]

constant-list

&

-> next-
addr

VST1217.vsd
TAL Reference Manual—526371-001
12-27

Statements MOVE Statement
source

is the identifier, with or without an index, of the variable from which the copy
operation begins. It can be a simple variable, array, read-only array, simple pointer,
structure, structure data item, or structure pointer.

count

is an unsigned INT arithmetic expression that defines the number of units in source
to copy. If you omit count-unit, the units copied (depending on the nature of the
source variable) are:

count-unit

is the value BYTES, WORDS, or ELEMENTS. count-unit changes the meaning of
count from that described above to the following:

Source Variable Data Type Units Copied

Simple variable, array,
simple pointer (including
structure item)

STRING
INT
INT (32) or REAL
FIXED or REAL (64)

Bytes
Words
Doublewords
Quadruplewords

Structure Not applicable Words

Substructure Not applicable Bytes

Structure Pointer STRING*
INT*

Bytes
Words

BYTES Copies count bytes. If both source and destination have
word addresses, BYTES generates a word move for (count
+ 1) / 2 words.

WORDS Copies count words

ELEMENTS Copies count elements as follows (depending on the nature
of the source variable):

Source Variable Data Type Units Copied

Simple variable,
array, simple
pointer (including
structure item)

STRING
INT
INT (32) or REAL
FIXED or REAL (64)

Bytes
Words
Doublewords
Quadruplewords

Structure Not applicable Structure occurrences

Substructure Not applicable Substructure occurrences

Structure Pointer STRING *
INT *

Structure occurrences
Structure occurrences

* For structure pointers, STRING and INT have meaning only in group comparison
expressions and move statements.
TAL Reference Manual—526371-001
12-28

Statements Usage Considerations
If count-unit is not BYTES, WORDS, or ELEMENTS, the compiler issues an error. If
you specify BYTES, WORDS, or ELEMENTS for count-unit, that term cannot also
appear as a DEFINE or LITERAL identifier in the global declarations or in any
procedure or subprocedure in which the move statement appears.

constant

is a numeric constant, a character string constant, or a LITERAL to copy.

If you enclose constant in brackets ([]) and if destination has a byte address or is a
STRING structure pointer, the system copies constant as a single byte regardless
of the size of constant. If you do not enclose constant in brackets or if destination
has a word address or is an INT structure pointer, the system copies a word,
doubleword, or quadrupleword as appropriate for the size of constant.

constant-list

is a list of constants to copy. Specify constant-list in the form shown in Section 3,
Data Representation.

next-addr

is a variable to contain the location in destination that follows the last item copied.
The compiler returns a 16-bit or 32-bit address as described in Usage
Considerations.

&

is the concatenation operator. It lets you move more than one source or constant-
list, each separated by the concatenation operator.

Usage Considerations
The compiler does a standard or extended move (which is slightly less efficient)
depending on the addressing modes of the data involved in the move operation.

The compiler does a standard move and returns a 16-bit next-addr if:

• Both source and destination have standard byte addresses

• Both source and destination have standard word addresses

The compiler does an extended move and returns a 32-bit next-addr if:

• Either source or destination has a standard byte address and the other has a
standard word address

• Either source or destination has an extended address
TAL Reference Manual—526371-001
12-29

Statements Examples of MOVE Statements
Variables (including structure data items) are byte addressed or word addressed as
follows:

If the move contains more than one source and one of the sources causes an
extended move sequence, the compiler emits an extended move sequence for all the
sources. The compiler generates the extended address of each variable, generates a
byte count corresponding to count, and emits a MVBX instruction for the move
statement.

After an element move, next-addr might point into the middle of an element, rather than
at the beginning of the element. If destination is word addressed and source is byte
addressed and you copy an odd number of bytes, next-addr will not point to an
element boundary.

Examples of MOVE Statements
1. This example copies spaces into the first five elements of an array, and then uses

next-addr as destination to copy dashes into the next five elements:

LITERAL len = 10; !Length of array
LITERAL num = 5; !Number of elements
STRING .array[0:len - 1]; !Destination array
STRING .next_addr; !Next address simple pointer

array[0] ':=' num * [" "] -> @next_addr;
 !Do first copy and capture next-addr
next_addr ':=' num * ["-"];
 !Use next-addr as start of second copy

2. This example contrasts copying a bracketed constant versus copying an
unbracketed constant. A bracketed constant copies a single byte regardless of the
size of the constant. An unbracketed constant copies words, doublewords, or
quadruplewords depending on the size of the constant:

STRING x[0:8]; !Declare STRING array X

x[0] ':=' [0]; !Copy one byte
x[0] ':=' 0; !Copy two bytes

Byte addressed STRING simple variables
STRING arrays
Variables to which STRING simple pointers point
Variables to which STRING structure pointers point
Substructures

Word addressed INT, INT(32), FIXED, REAL(32), or REAL(64) simple variables
INT, INT(32), FIXED, REAL(32), or REAL(64) arrays
Variables to which INT, INT(32), FIXED, REAL(32), or

REAL(64) simple
pointers point

Variables to which INT structure pointers point
Structures
TAL Reference Manual—526371-001
12-30

Statements RETURN Statement
3. This example copies three occurrences of one structure to another:

LITERAL copies = 3; !Number of occurrences

STRUCT .s[0:copies - 1]; !Source structure
 BEGIN
 INT a, b, c;
 END;

STRUCT .d (s) [0:copies - 1]; !Destination structure

PROC p;
 BEGIN
 d ':=' s FOR copies ELEMENTS;!Word move of three
END; ! structure occurrences

4. This example copies three occurrences of a substructure:

LITERAL copies = 3; !Number of occurrences

STRUCT .s;
 BEGIN
 STRUCT s_sub[0:copies - 1]; !Source substructure
 BEGIN
 INT a, b;
 END;
 END;

STRUCT .d (s); !Destination substructure
 ! is within structure D

PROC p;
 BEGIN
 d.s_sub ':=' s.s_sub FOR copies ELEMENTS;
 END; !Byte move of three
 ! substructure occurrences

For more examples, see sections 7 and 8 in the TAL Programmer’s Guide.

RETURN Statement
The RETURN statement returns control to the caller. If the called procedure or
subprocedure is a function, RETURN must return a result expression.

The RETURN statement can also return a program-specified condition code value.

RETURN

RETURN

, cc-expression

result-expression
, cc-expression

VST1218.vsd
TAL Reference Manual—526371-001
12-31

Statements Usage Considerations
cc-expression

is an INT expression whose numeric value specifies the condition code value to
return to the caller. If cc-expression is:

result-expression

is an arithmetic or conditional expression that a function must return to the caller.
result-expression must be of the same return type as the data type specified in the
function header. The data type of a conditional expression is always INT. Specify
result-expression only when returning from a function.

Usage Considerations
In general, a procedure or subprocedure returns control to the caller when:

• A RETURN statement is executed.

• The called procedure or subprocedure reaches the end of its code.

Returning From Functions
A function is a typed procedure or subprocedure. If a function lacks a RETURN
statement, the compiler issues a warning, but the compilation can complete and the
resulting object file can be run. After the function executes, it returns a zero.

If result-expression is any type except FIXED or REAL(64), a function can return both
result-expression and cc-expression.

A function can also return the condition code value by specifying a value in a CODE or
STACK statement; however, CODE and STACK statements are not portable to future
software platforms. Furthermore, if the compiler’s RP counter setting is not correct, the
compiler emits a warning.

Returning From Nonfunction Procedures and
Subprocedures
In procedures and subprocedures that are not functions, a RETURN statement is
optional. A nonfunction procedure or subprocedure that returns a condition code value,
however, must return to the caller by executing a RETURN statement that includes cc-
expression.

In a procedure designated MAIN, a RETURN statement stops execution of the
procedure and passes control to the operating system.

Less than 0 Set the condition code to less than (<)

Equal to 0 Set the condition code to equal (=)

Greater than 0 Set the condition code to greater than (>)
TAL Reference Manual—526371-001
12-32

Statements Examples of RETURN Statements
Examples of RETURN Statements
1. This function contains two RETURN statements nested in an IF statement:

INT PROC other (nuff, more); !Declare function with
 ! return type INT

 INT nuff;
 INT more;
 BEGIN
 IF nuff < more THEN !IF statement
 RETURN nuff * more !Return a value
 ELSE
 RETURN 0; !Return a different value
 END;

2. This procedure returns control to the caller when A is less than B:

PROC something;
 BEGIN
 INT a,
 b;
 !Manipulate A and B
 IF a < b THEN
 RETURN; !Return to caller
 !Lots more code
 END;

3. This function returns a value and a condition code to inform its caller that the
returned value is less than, equal to, or greater than some maximum value:

INT PROC p (i);
 INT i;
 BEGIN
 RETURN i, i - max_val; !Return a value and a
 END; ! condition code

4. This procedure returns a condition code that indicates whether an add operation
overflows:

PROC p (s, x, y);
 INT .s, x, y;
 BEGIN
 INT cc_result;
 INT i;
 i := x + y;
IF $OVERFLOW THEN cc_result := 1
 ELSE cc_result := 0;
 s := i;
 RETURN , cc_result; !If overflow, condition code
 END; ! is >; otherwise, it is =
TAL Reference Manual—526371-001
12-33

Statements SCAN Statement
5. If you call a function, rather than invoking it in an expression, you can test the
returned condition code:

INT PROC p1 (i);
 INT i;
 BEGIN
 RETURN i;
 END;

INT PROC p2 (i);
 INT i;
 BEGIN
 INT j := i + 1;
 RETURN i, j;
 END;

CALL p1 (i);
IF < THEN ... ; !Test the condition code
CALL p2 (i);
IF < THEN ... ; !Test the condition code

SCAN Statement
The SCAN or RSCAN statement searches a scan area for a test character from left to
right or from right to left, respectively.

SCAN

indicates a left-to-right search.

RSCAN

indicates a right-to-left search.

variable

is the identifier, with or without an index, of a variable at which to start the scan.
The following restrictions apply:

SCAN WHILEvariable

RSCAN UNTIL

test-char

-> next-addr
VST1219.vsd
TAL Reference Manual—526371-001
12-34

Statements Usage Considerations
• The variable can be a simple variable, array, read-only array, simple pointer,
structure pointer, structure, or structure data item.

• The variable can be of any data type but UNSIGNED.

• The variable must be located either:

° In the lower 32K-word area of the user data segment.

° In the same 32K-word area of the current code segment as the procedure
that accesses the variable.

• The variable cannot have extended indirection.

WHILE

specifies that the scan continues until a character other than test-char occurs or
until a 0 occurs. A scan stopped by a character other than test-char resets the
hardware carry bit. A scan stopped by a 0 sets the hardware carry bit.

UNTIL

specifies that the scan continues either until test-char occurs or until a 0 occurs. A
scan stopped by test-char resets the hardware carry bit. A scan stopped by a 0
sets the hardware carry bit.

test-char

is an INT arithmetic expression that evaluates to a maximum of eight significant
bits (one byte). A larger value might cause execution errors.

next-addr

is a 16-bit variable to contain the 16-bit byte address of the character that stopped
the scan, regardless of the data type of identifier.

Usage Considerations
You should delimit the scan area with zeros. Otherwise, a scan operation might
continue to the 32K-word boundary if either:

• A SCAN UNTIL operation does not find a zero or the test character

• A SCAN WHILE operation does not find a zero or a character other than the test
character

To delimit the scan area, you can specify zeros as follows:

INT .buffer[-1:10] := [0," John James Jones ",0];

To determine what stopped the scan, test $CARRY in an IF statement immediately
after the SCAN or RSCAN statement. If $CARRY is true after a SCAN UNTIL, the test
TAL Reference Manual—526371-001
12-35

Statements Example of SCAN Statements
character did not occur. If $CARRY is true after SCAN WHILE, a character other than
the test character did not occur. Here are examples for using $CARRY:

IF $CARRY THEN ... ; !If test character not found
IF NOT $CARRY THEN ... ; !If test character found

To determine the number of multibyte elements processed, divide (next-addr '–' byte
address of identifier) by the number of bytes per element, using unsigned arithmetic.

Example of SCAN Statements
The following example converts the word address of an INT array to a byte address.
The assignment statement stores the resulting byte address in a STRING pointer. The
SCAN statement then scans the bytes in the array until it finds a comma:

INT .words[-1:3] := [0,"Doe, J",0];
 !Declare INT array WORDS

STRING .byte_ptr := @words[0] '<<' 1;
 !Declare BYTE_PTR; initialize
 ! with byte address of WORDS[0]

SCAN byte_ptr[0] UNTIL ","; !Scan bytes in WORDS

For more examples, see Section 7, Using Arrays, in the TAL Programmer’s Guide.

STACK Statement
The STACK statement loads values onto the register stack.

expression

is a value to load onto the register stack. If you list multiple values, the compiler
loads them starting with the leftmost value.

Usage Considerations
You can use the register stack for temporary storage and for optimizing critical code.

The compiler loads values on the register stack starting at the current setting of RP + 1
and increments RP by the number of words needed by each value. For example, an
INT(32) value needs two words; a FIXED value needs four words.

The number of registers needed by a value depends on its data type. If enough
registers are not free, the compiler transfers the content of registers R[0] through RP to
the data stack and then loads STACK values starting at RP[0]. The compiler keeps

expressionSTACK

,
VST1220.vsd
TAL Reference Manual—526371-001
12-36

Statements Examples of STACK Statements
track of the size and data type of stacked values. It loads byte values in bits <8:15>
and a 0 in bits <0:7>.

Modularize any use of STACK statements as much as possible; they are not portable
to future software platforms.

Examples of STACK Statements
This example loads values of various data types onto the register stack:

For more information on examples of STACK Statements, see the STORE Statement.

STORE Statement
The STORE statement removes values from the register stack and stores them into
variables.

variable

is the identifier of a variable—a simple variable, array element, simple pointer, or
structure data item—with or without a bit deposit field and/or index. To update the
content of a simple pointer, prefix the pointer identifier with @. If you list multiple
identifiers, storage begins with the leftmost identifier.

Usage Considerations
The data type of each variable specified dictates the number of registers to unload,
starting at the current setting of the RP. If the RP setting is too small to satisfy the
variable data type, the compiler removes the required number of items from the data
stack, places them on the register stack, and stores them in the variable.

 9

0 3

 300

0

R[0]

R[1]

R[2]

R[3]

R[4] RP
VST1224.vsd

STACK b[2], wrd, 300, dwrd;

STRING .b[0:2] := [1,2,3];
INT wrd := 9;
INT(32) dwrd := 0D;

,

variableSTORE

VST1221.vsd
TAL Reference Manual—526371-001
12-37

Statements Examples of STORE Statements
Modularize any use of STORE statements as much as possible; they are not portable
to future software platforms.

Examples of STORE Statements
1. This example stores the content of the register stack starting at the current setting

of the RP into variables of various data types:

LITERAL len = 100;
STRING .byte[0:len - 1];
INT word;
INT(32) twowords;

STORE twowords, word, byte[3];

2. This example loads the values from two variables onto the register stack, and then
stores them back into the same variables:

STACK x, y;
!Some code here
STORE y, x;

3. This example shows two versions of a swap operation:

INT temp;
INT x;
INT y;

temp := x;
x := y; !Version 1 needs five memory references
y := temp; ! if you use OPTIMIZE 2

STACK x,y; !Version 2 needs four memory references,
STORE x,y; !uses the register stack, and is faster
 ! on TNS systems

USE Statement
The USE statement optimizes repetitive references to localized expressions or iteration
variables. It associates an identifier with an index register and reserves the register for
your use.

identifier

is an identifier to associate with an index register.

identifierUSE

,
VST1222.vsd
TAL Reference Manual—526371-001
12-38

Statements Usage Considerations
Usage Considerations
The compiler associates each identifier specified in a USE statement with an index
register starting with R[7] down to R[5]. Thus, you can use at most three reserved
registers at a time.

Statements that appear between a USE statement and a corresponding DROP
statement or the end of the procedure or subprocedure can access the reserved index
register. If a global or local item with the same identifier as a USE identifier already
exists, the compiler issues an error message.

You can, for example, use a reserved index register to optimize a FOR statement as
described in the description of the FOR statement. Before referring to the identifier of a
reserved index register, be sure to assign a value to it.

You can also assign a value to a reserved index register and then pass the index
register content as an implicit parameter to a procedure or subprocedure. This
practice, however, is not portable to future software platforms. For more information,
see the TAL Programmer’s Guide.

If evaluation of an expression overwrites the value in a reserved register, the compiler
issues a diagnostic message. For example, multiplication of two FIXED values will
overwrite the reserved register.

To determine whether using the index register is beneficial, you can use the
INNERLIST directive and then review the code generated by statements in the range
of a USE statement.

If the compiler needs an index register and none is available, the compiler emits a
diagnostic message.

When you are finished using a reserved index register, release (or drop) it by issuing a
DROP statement, as described in DROP Statement on page 12-20.

Examples of USE Statements
1. This example reserves two index registers. The compiler associates each identifier

with an index register, starting with R[7]:

USE a_index; !Reserve R[7]
USE b_index; !Reserve R[6]

a_index := 0;
b_index := -1;

2. This example contrasts a standard FOR loop with an optimized FOR loop (if no
procedure or function calls occur within the loop):
TAL Reference Manual—526371-001
12-39

Statements WHILE Statement
LITERAL len = 100;
INT .array [0:len - 1];
INT i;

FOR i := 0 TO len - 1 DO
 array[i] := array[i] + 5; !Standard FOR loop

USE x; !Optimized FOR loop uses
FOR x := 0 to len - 1 DO ! an index register
 array[x] := array[x] + 5;

DROP x; !Release the register

WHILE Statement
The WHILE statement is a pretest loop that repeatedly executes a statement while a
specified condition is true.

condition

is either:

• A conditional expression

• An INT arithmetic expression. If the result of the arithmetic expression is not 0,
condition is true. If the result is 0, condition is false.

statement

is any TAL statement.

Usage Considerations
The WHILE statement tests the condition before each iteration of the loop. If the
condition is false before the first iteration, the loop never executes. If the condition is
always true, the loop executes indefinitely unless a statement in the loop causes an
exit.

WHILE statement execution is shown in the TAL Programmer’s Guide.

conditionWHILE DO

statement
VST1223.vsd
TAL Reference Manual—526371-001
12-40

Statements Examples of WHILE Statements
Examples of WHILE Statements
1. This WHILE loop continues while ITEM is less than LEN:

LITERAL len = 100;
INT .array[0:len - 1];
INT item := 0;
WHILE item < len DO !WHILE statement
 BEGIN
 array[item] := 0;
 item := item + 1;
 END;
 !ITEM equals LEN at this point

2. This WHILE loop increments INDEX until a nonalphabetic character occurs:

LITERAL len = 255;
STRING .array[0:len - 1];
INT index := -1;

WHILE (index < len - 1) AND
 ($ALPHA(array[index := index + 1]))
DO . . . ;
TAL Reference Manual—526371-001
12-41

Statements Examples of WHILE Statements
TAL Reference Manual—526371-001
12-42

13 Procedures
Procedures are program units that contain the executable portions of a TAL program
and that are callable from anywhere in the program. Procedures allow you to segment
a program into discrete parts that each perform a particular task such as I/O or error
handling.

An executable program contains at least one procedure. One procedure in the program
has the attribute MAIN, which identifies it as the first procedure to execute when you
run the program.

A procedure can contain subprocedures, which are callable from various points within
the same procedure.

A function is a procedure or subprocedure that returns a value. A function is also
known as a typed procedure or typed subprocedure.

This section describes the syntax for:

• Procedure declarations

• Subprocedure declarations

• Entry-point declarations

• Label declarations

Section 11, “Using Procedures,” in the TAL Programmer’s Guide describes:

• How the compiler allocates storage for procedures and subprocedures

• How you call procedures and subprocedures

• How you pass parameters

• What parameter masks look like
TAL Reference Manual—526371-001
13-1

Procedures Procedure Declaration
Procedure Declaration
A procedure is a program unit that is callable from anywhere in the program. You
declare a procedure as follows:

type

specifies that the procedure is a function that returns a result and indicates the
data type of the returned result. type can be any data type described in Section 3,
Data Representation.

identifier

is the procedure identifier to use in the compilation unit.

public-name-spec

has the form:

public-name

is the procedure name to use in Binder, not in the compilation unit. Use this option
only in a D-series EXTERNAL procedure declaration. If you omit this option,
identifier is the default public-name. public-name must conform to the identifier
rules of the language in which the external procedure is written. For all languages
except C, the compiler upshifts public-name automatically.

VST1301.vsd

identifierPROC

type public-name-spec

;

parameter-list proc-attribute

,

param-spec ;

proc-body

EXTERNAL

FORWARD

;

VST1302.vsd

public-name= ""
TAL Reference Manual—526371-001
13-2

Procedures Procedure Declaration
parameter-list

has the form:

param-name

is the identifier of a formal parameter. A procedure can have up to 32 formal
parameters, with no limit on the number of words of parameters.

param-pair

is a pair of formal parameter identifiers that comprises of a language-
independent string descriptor in the form:

string

is the identifier of a standard or extended STRING simple pointer. The actual
parameter is the identifier of a STRING array or simple pointer declared inside
or outside a structure.

length

is the identifier of a directly addressed INT simple variable. The actual
parameter is an INT expression that specifies the length of string, in bytes.

proc-attribute

is a procedure attribute, as described in Procedure Attributes on page 13-5. The
TAL compiler ignores extra commas between attributes and before and after the
list of attributes.

param-spec

specifies the parameter type of a formal parameter and whether it is a value or
reference parameter, as described in Formal Parameter Specifications on
page 13-8.

VST1303.vsd,

param-name)(

param-pair

VST1304.vsd

string : length
TAL Reference Manual—526371-001
13-3

Procedures Usage Considerations
proc-body

is a BEGIN-END construct that contains local declarations and statements, as
described in Procedure Body on page 13-13.

FORWARD

specifies that the procedure body is declared later in the source file.

EXTERNAL

specifies that the procedure body is declared in another compilation unit.

Usage Considerations
The maximum size of a single procedure is 32K words minus either the Procedure
Entry Point (PEP) table in the lower 32K-word area of the user code segment or the
External Entry Point (XEP) table in the upper 32K-word area. The PEP and XEP tables
are system tables in which the operating system records entry points of procedures.
The PEP table contains the entry points for procedures located in the current code
segment. The XEP table contains the entry points of procedures located in other code
segments.

For more information on public names and parameter pairs, see Section 17, “Mixed-
Language Programming,” in the TAL Programmer’s Guide.

Examples of Procedure Declarations
1. This example declares a function that has two formal parameters:

INT PROC mult (var1, var2);
 INT var1, var2;
 BEGIN
 RETURN var1 * var2;
 END;

2. This example shows a FORWARD declaration:

PROC to_come (param1);
 INT param1;
 FORWARD;

3. This example shows EXTERNAL declarations:

PROC proc_a; EXTERNAL;
PROC proc_b; EXTERNAL;
TAL Reference Manual—526371-001
13-4

Procedures Procedure Attributes
Procedure Attributes
 Procedures can have the following attributes:

MAIN
The MAIN attribute causes the procedure to execute first when you run the program.
When the MAIN procedure completes execution, it passes control to the
PROCESS_STOP_ system procedure, rather than executing an EXIT instruction.

If more than one procedure in a compilation has the MAIN attribute, the compiler emits
a warning and uses the first MAIN procedure it sees as the main procedure. For
example, in the following source code, procedures X and Y have the MAIN attribute,
but in the object file only X has the MAIN attribute:

PROC main_proc1 MAIN; !This procedure is MAIN in
 BEGIN ! the object file
 CALL this_proc;
 CALL that_proc;
 END;

PROC main_proc2 MAIN; !This MAIN procedure is not
 BEGIN ! MAIN in the object file
 CALL some_proc;
 END;

VST1305.vsd

INTERRUPT

MAIN

PRIV

CALLABLE

RESIDENT

EXTENSIBLE

VARIABLE

LANGUAGE

count)(

C

COBOL

PASCAL

UNSPECIFIED

FORTRAN
TAL Reference Manual—526371-001
13-5

Procedures INTERRUPT
INTERRUPT
The INTERRUPT attribute causes the compiler to generate an IXIT (interrupt exit)
instruction instead of an EXIT instruction at the end of execution. Only operating
system interrupt handlers use the INTERRUPT attribute. An example is:

PROC int_handler INTERRUPT;
 BEGIN
 !Do some work
 END;

RESIDENT
The RESIDENT attribute causes procedure code to remain in main memory for the
duration of program execution. The operating system does not swap pages of this
code. Binder allocates storage for resident procedures as the first procedures in the
code space. An example is:

PROC res_proc RESIDENT;
 BEGIN
 !Do some work
 END;

CALLABLE
The CALLABLE attribute authorizes a procedure to call a PRIV procedure (described
next). Nonprivileged procedures can call CALLABLE procedures, which can call PRIV
procedures. Thus, nonprivileged procedures can only access PRIV procedures
indirectly by first calling CALLABLE procedures. Normally, only operating system
procedures have the CALLABLE attribute. In the following example, a CALLABLE
procedure calls the PRIV procedure declared next:

PROC callable_proc CALLABLE;
 BEGIN
 CALL priv_proc;
 END;

PRIV
The PRIV attribute means the procedure can execute privileged instructions. Only
PRIV or CALLABLE procedures can call a PRIV procedure. Normally, only operating
system procedures have the PRIV attribute. PRIV protects the operating system from
unauthorized (nonprivileged) calls to its internal procedures. For more information on
privileged mode, see Section 15, Privileged Procedures. The following PRIV procedure
is called by the preceding CALLABLE procedure:

PROC priv_proc PRIV;
 BEGIN
 !Privileged instructions
 END;
TAL Reference Manual—526371-001
13-6

Procedures VARIABLE
VARIABLE
The VARIABLE attribute means the compiler treats all parameters of the procedure (or
subprocedure) as if they are optional, even if some are required by your code. If you
add parameters to the VARIABLE procedure (or subprocedure) declaration, all
procedures that call it must be recompiled. The following example declares a
VARIABLE procedure:

PROC v (a, b) VARIABLE;
 INT a, b;
 BEGIN
 !Lots of code
 END;

When you call a VARIABLE procedure (or subprocedure), the compiler allocates space
in the parameter area for all the parameters. The compiler also generates a parameter
mask, which indicates which parameters are actually passed. The TAL Programmer’s
Guide describes parameter allocation, parameter masks, and testing for the presence
of actual parameters.

EXTENSIBLE
The EXTENSIBLE attribute lets you add new parameters to the procedure declaration
without recompiling its callers. The compiler treats all parameters of the procedure as if
they are optional, even if some are required by your code. The following example
declares an EXTENSIBLE procedure:

PROC x (a, b) EXTENSIBLE;
 INT a, b;
 BEGIN
 !Do some work
 END;

When you call an EXTENSIBLE procedure, the compiler allocates space in the
parameter area for all the parameters. The compiler also generates a parameter mask,
which indicates which parameters are actually passed. The TAL Programmer’s Guide
describes parameter allocation, parameter masks, and testing for presence of actual
parameters.

Count Option
You use the count option following the EXTENSIBLE attribute only when you convert a
VARIABLE procedure to an EXTENSIBLE procedure. The count value is the number of
formal parameters in the VARIABLE procedure that you are converting to
EXTENSIBLE. For the count value, specify an INT value in the range 1 through 15. For
more information on VARIABLE-to-EXTENSIBLE conversions, see Section 11, Using
Procedures, in the TAL Programmer’s Guide.
TAL Reference Manual—526371-001
13-7

Procedures LANGUAGE
LANGUAGE
In a D-series EXTERNAL procedure declaration, you can use the LANGUAGE attribute
to specify that the external routine is a C, COBOL, FORTRAN, or Pascal routine. If you
do not know if the external routine is a C, COBOL, FORTRAN, or Pascal routine, you
can use the LANGUAGE UNSPECIFIED option. The following example shows the
LANGUAGE COBOL option and a public name "A-PROC" (in COBOL identifier
format):

PROC a_proc = "a-proc" (a, b, c) !EXTERNAL declaration
 LANGUAGE COBOL; ! for a COBOL procedure
 STRING .a, .b, .c;
 EXTERNAL;

Here are rules for using the LANGUAGE attribute:

• Use the LANGUAGE attribute only in a D-series EXTERNAL declaration.

• Specify no more than one LANGUAGE attribute in a declaration.

• For external TAL routines, omit the LANGUAGE attribute.

Formal Parameter Specifications
A formal parameter specification defines the parameter type of a formal parameter and
whether the parameter is a value or a reference parameter.

VST1306.vsd

;

(referral

param-name

.

.EXT

)

param-type

,

TAL Reference Manual—526371-001
13-8

Procedures Formal Parameter Specifications
param-type

is the parameter type of the formal parameter. Table 13-1 on page 13-12 lists the
parameter types you can specify depending on the kind of actual parameter
expected for this formal parameter. param-type can be one of:

width

is a constant expression that specifies the number of bits in the variable. The
constant expression can include previously declared LITERALs and DEFINEs.
The result of the constant expression must be one of the following values:

fpoint

is an integer in the range –19 through 19 that specifies the implied decimal
point position. The default is 0 (no decimal places). A positive fpoint specifies
the number of decimal places to the right of the decimal point. A negative fpoint
specifies a number of integer places to the left of the decimal point.

* (asterisk)

prevents scaling of the fpoint of a FIXED actual parameter to match the fpoint
in the parameter specification. Such scaling might cause loss of precision. The
called procedure treats the actual parameter as having an fpoint of 0.

Data Type width

INT 16, 32, 0r 64

REAL 32 or 64

UNSIGNED A value in the range 1 through 31

UNSIGNED parameters must be passed by value; you cannot use
an indirection symbol (. or .EXT) with UNSIGNED parameters.

VST1307.vsd

INT

STRING

FIXED

UNSIGNED

REAL

STRUCT

fpoint)(

PROC (32)

width)(

width)(

*

PROC

type
TAL Reference Manual—526371-001
13-9

Procedures Formal Parameter Specifications
type

specifies that the pa]rameter is a function procedure, the return value of which
is one of the following data types:

STRUCT

means the parameter is one of:

• A standard indirect or extended indirect definition structure (not supported in
future software platforms)

• A standard indirect or extended indirect referral structure

PROC

means the parameter is a 16-bit address that refers to one of:

• A C small-memory-model routine

• A FORTRAN routine compiled with the NOEXTENDED directive

• A TAL procedure or subprocedure

PROC(32)

means the parameter is a 32-bit address that refers to one of:

• A C large-memory-model routine

• A FORTRAN routine compiled with the EXTENDED directive

• A Pascal routine

Specify PROC(32) only in a D-series compilation unit.

. (period)

is the standard indirection symbol. Its presence denotes a reference parameter that
has a 16-bit address. Specify reference parameters for actual parameters that will
be:

VST1308.vsd

INT

STRING

FIXED

UNSIGNED

REAL

fpoint)(

width)(

width)(

*

TAL Reference Manual—526371-001
13-10

Procedures Usage Considerations
• Arrays

• Structures

• Simple variables (when you want to update the original value in the caller’s
scope)

An absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

.EXT

is the extended indirection symbol. Its presence denotes a reference parameter
that has a 32-bit address. Specify reference parameters for actual parameters that
are arrays or structures or for actual parameters that you want to update. An
absence of any indirection symbol (. or .EXT) denotes 16-bit direct addressing.

param-name

is the identifier of a formal parameter. The identifier has local scope if declared in a
procedure body or sublocal scope if declared in a subprocedure body.

referral

is the identifier of a previously declared structure or structure pointer. Table 13-1 on
page 13-12 lists the kind of actual parameter for which the formal parameter
requires a referral.

Usage Considerations
Table 13-1 on page 13-12 lists the characteristics that you can declare in a formal
parameter specification depending on the kind of actual parameter the procedure or
subprocedure expects.
TAL Reference Manual—526371-001
13-11

Procedures Usage Considerations
For more information on declaring, passing, and allocating parameters, see Section 11,
Using Procedures, in the TAL Programmer’s Guide.

Table 13-1. Formal Parameter Specification

Formal Parameter Characteristics

Expected Actual
Parameter

Declare Formal
Parameter As:

Parameter
Type

Indirection
Symbol Referral

Simple variable A value or
reference
parameter

STRING *
INT
INT (32)
REAL
REAL (64)
FIXED (n)
FIXED (*)

Value, no;
reference, yes

No

Simple Variable A value
parameter

UNSIGNED No No

Array or simple
pointer

A reference
parameter

STRING
INT
INT (32)
REAL
REAL (64)
FIXED (n)

Yes No

Definition
structure. referral
structure, or
structure pointer

A reference
parameter

INT or STRING Yes Yes

Definition
structure, *
referral structure,
or structure
pointer

A reference
parameter

STRUCT Yes Yes

Constant
expression **
(including
@identifier)

A value
parameter

STRING
INT
INT (32)
UNSIGNED
REAL
REAL (64)
FIXED (n)

No No

Procedure A value
parameter

PROC
PROC (32) ***

No No

* These features are not supported in future software platforms.

** The data type of the expression and of the formal parameter must match, except that you can mix the
STRING, INT, and UNSIGNED (1–16) data types, and you can mix the =INT(32) and UNSIGNED(17–31)
data types.

*** PROC(32) is a D-series feature.
TAL Reference Manual—526371-001
13-12

Procedures Examples of Formal Parameter Specification
For information on using the PROC(32) parameter type, see Section 17, Mixed-
Language Programs, in the TAL Programmer’s Guide.

Examples of Formal Parameter Specification
1. This example shows a function that has two formal parameters, of which one is a

value parameter and the other is a reference parameter. The compiler treats VAR1
as if it were a simple variable and treats VAR 2 as if it were a simple pointer:

INT PROC mult (var1, var2);
 INT var1, !Declare value parameter
 .var2; !Declare reference parameter
 BEGIN
 var2 := var2 + var1; !Manipulate parameters
 END;

2. This example shows a procedure that declares a reference structure as a formal
reference parameter:

STRUCT template (*); !Template structure
 BEGIN
 INT a;
 INT b;
 END;

PROC p (ref_struct);
 STRUCT ref_struct (template);
 BEGIN
 !Lots of code
 END;

Procedure Body
A procedure body can contain local declarations, subprocedure declarations, and
statements.

BEGIN

;

local-decl ; subproc-decl ;

END

statement

;
VST1309.vsd
TAL Reference Manual—526371-001
13-13

Procedures Usage Consideration
local-decl

is a declaration for one of:

Simple variable
Array (direct, indirect, or read-only)
Structure (direct or indirect)
Simple pointer
Structure pointer
Equivalenced variable
LITERAL
DEFINE
Label
Entry point
FORWARD subprocedure

subproc-decl

is a subprocedure declaration, as described in Subprocedure Declaration on
page 13-15.

statement

is any statement described in Section 12, Statements.

Usage Consideration
Section 11, “Using Procedures,” in the TAL Programmer’s Guide describes:

• How the compiler allocates storage for procedures and their parameters

• How you call procedures

Examples of Procedure Declarations
1. This example shows two procedures, the second of which calls the first:

INT c; !Global declaration

PROC first;
 BEGIN !Procedure body
 INT a, !Local declarations
 b;
 !Lots of code
 END;

PROC second;
 BEGIN !Procedure body
 !Lots of code
 CALL first; !Call first procedure
 !More code
 END;
TAL Reference Manual—526371-001
13-14

Procedures Subprocedure Declaration
2. This example shows a FORWARD declaration for PROCB, a procedure that calls
PROCB before its body is declared, and a declaration for the body of PROCB:

INT g2;

PROC procb (param1); !FORWARD declaration
 INT param1; ! for PROCB
 FORWARD;

PROC proca;
 BEGIN
 INT i1 := 2;
 CALL procb (i1); !Call PROCB
 END;

PROC procb (param1); !Body for PROCB
 INT param1;
 BEGIN
 g2 := g2 + param1;
 END;

Subprocedure Declaration
You can declare subprocedures within procedures, but not within subprocedures.

type

specifies that the subprocedure is a function that returns a result and indicates the
data type of the returned result. type can be any data type described in Section 3,
Data Representation.

identifier

is the identifier of the subprocedure.

VST1310.vsd

identifierSUBPROC

type

;

parameter-list VARIABLE

param-spec ;

subproc-body

FORWARD

;

TAL Reference Manual—526371-001
13-15

Procedures Subprocedure Declaration
parameter-list

has the form:

param-name

is the identifier of a formal parameter. The number of formal parameters a
subprocedure can have is limited by space available in the parameter area of
the subprocedure.

param-pair

is a pair of formal parameter identifiers that comprises of a language-
independent string descriptor in the form:

string

is the identifier of a standard or extended STRING simple pointer. The
actual parameter is the identifier of a STRING array or simple pointer
declare inside or outside a structure.

length

is the identifier of a directly addressed INT simple variable. The actual
parameter is an expression that specifies the length of string, in bytes.

VARIABLE

specifies that the compiler treats all parameters as optional, even if some are
required by your code. The compiler ignores extra commas before or after the
VARIABLE keyword.

param-spec

specifies the parameter type of a formal parameter and whether it is a value or
reference parameter, as described in Formal Parameter Specifications on
page 13-8.

VST1311.vsd

param-name()

param-pair

,

VST1312.vsd

length:string
TAL Reference Manual—526371-001
13-16

Procedures Subprocedure Body
subproc-body

is a BEGIN-END construct that contains sublocal declarations and statements, as
described in Subprocedure Body on page 13-17.

FORWARD

means the subprocedure body is declared later in this procedure.

Subprocedure Body
A subprocedure body can contain sublocal declarations and statements.

sublocal-decl

is a declaration for one of:

Simple variable
Array (direct or read-only)
Structure (direct only)
Simple pointer
Structure pointer
Equivalenced variable
LITERAL
DEFINE
Label
Entry point

statement

is any statement described in Section 12, Statements.

Usage Considerations
Section 11, “Using Procedures,” in the TAL Programmer’s Guide describes:

• How the compiler allocates storage for subprocedures and their parameters

• How you call subprocedures

VST1313.vsd

BEGIN ;

sublocal-decl ; statement

END

;

TAL Reference Manual—526371-001
13-17

Procedures Example of Subprocedure Declaration
Sublocal Variables
In subprocedures, declare pointers and directly addressed variables only. Here are
examples:

If you use an indirection symbol (. or .EXT) with sublocal arrays and structures, the
compiler allocates them as direct arrays and structures and issues a warning.

Because each subprocedure has only a 32-word area for variables, declare large
arrays or structures at the global or local level and make them indirect.

Example of Subprocedure Declaration
This example declares a function subprocedure:

PROC myproc;
 BEGIN
 INT result;

 INT SUBPROC mult (var1, var2); !Declare function
 INT var1, var2; ! subprocedure
 BEGIN
 RETURN var1 * var2;
 END; !End subprocedure

 result := mult(2, 3);
 END;

Entry-Point Declaration
The entry-point declaration associates an identifier with a secondary location in a
procedure or subprocedure where execution can start.

Sublocal Variable Example

Simple variable (which are always
direct)

INT var;

Direct array INT array[0:5];

Read-only array INT ro_array = 'P' :=
[0,1,2,3,4,5];

Direct structure STRUCT struct_a;
 BEGIN
 INT a, b, c;
 END;

Simple pointer INT .simple_ptr;

Structure pointer STRING .struct_ptr (struct_a);
TAL Reference Manual—526371-001
13-18

Procedures Usage Considerations
identifier

is an entry-point identifier to be placed in the procedure or subprocedure body. It is
an alternate or secondary point in the procedure or subprocedure at which to start
executing.

Usage Considerations
An entry point of a procedure or subprocedure is a location at which execution can
start. The primary entry point is the procedure or subprocedure identifier. Secondary
entry points are entry-point identifiers you declare and place within the procedure or
subprocedure. Following are procedure entry-point guidelines, followed by
subprocedure entry-point guidelines.

Procedure Entry-Point Identifiers
Here are guidelines for using procedure entry-point identifiers:

• Declare all entry-point identifiers for a procedure within the procedure.

• Place each entry-point identifier and a colon (:) at a point in the procedure at which
execution is to start.

• You can invoke a procedure entry-point identifier from anywhere in the program.

• (For functions, use the entry-point identifier in an expression; for other procedures,
use a CALL statement.)

• Pass actual parameters as if you were calling the procedure identifier.

• You cannot use a GOTO statement to branch to a procedure entry-point identifier.

• To obtain the address of a procedure entry-point identifier, preface the identifier
with @.

• You can specify FORWARD or EXTERNAL procedure entry-point declarations,
which look like FORWARD or EXTERNAL procedure declarations, as shown in
Example 2.

VST1314.vsd

;identifier

,

ENTRY
TAL Reference Manual—526371-001
13-19

Procedures Examples of Entry-Point Declarations
Subprocedure Entry-Point Identifiers
Here are guidelines for using subprocedure entry-point identifiers:

• Declare all entry-point identifiers for a subprocedure within the subprocedure.

• Place each entry-point identifier and a colon (:) at a point in the subprocedure at
which execution is to start.

• You invoke a subprocedure entry-point identifier from anywhere in the
encompassing procedure, including from within the same subprocedure. (For
functions, use the entry-point identifier in an expression; for other subprocedures,
use a CALL statement.)

• Pass actual parameters as if you were calling the subprocedure identifier.

• You cannot use a GOTO statement to branch to a subprocedure entry-point
identifier.

• To obtain the code address of a subprocedure entry-point identifier, preface the
identifier with @.

• You can specify FORWARD subprocedure entry-point declarations, which look like
FORWARD subprocedure declarations.

Examples of Entry-Point Declarations
1. This example illustrates use of procedure entry-point identifiers:

INT to_this := 314; !Declare global data

PROC add_3 (g2);
 INT .g2;
 BEGIN
 ENTRY add_2; !Declare entry-point
 ENTRY add_1; ! identifiers
 INT m2 := 1;
 g2 := g2 + m2;
add_2: !Location of entry-point
 g2 := g2 + m2; ! identifier ADD_2
add_1: !Location of entry-point
 g2 := g2 + m2; ! identifier ADD_1
 END;

PROC mymain MAIN; !Main procedure
 BEGIN
 CALL add_1 (to_this); !Call entry point ADD_1
 END;
TAL Reference Manual—526371-001
13-20

Procedures Label Declaration
2. This example shows FORWARD declarations for entry points:

INT to_this := 314;

PROC add_1 (g2); !FORWARD entry-point
 INT .g2; ! identifier declaration
 FORWARD;

PROC add_2 (g2); !FORWARD entry-point
 INT .g2; ! identifier declaration
 FORWARD;

PROC add_3 (g2); !FORWARD procedure
 INT .g2; ! declaration
 FORWARD;

PROC mymain MAIN; !Main procedure declaration
 BEGIN
 CALL add_1 (to_this); !Call entry-point identifier
 END;

PROC add_3 (g2); !Body for FORWARD procedure
 INT .g2;
 BEGIN
 ENTRY add_2; !Declare entry-point
 ENTRY add_1; ! identifiers
 INT m2 := 1;
 g2 := g2 + m2;
add_2: !Location of entry-point
 g2 := g2 + m2; ! identifier ADD_2
add_1: !Location of entry-point
 g2 := g2 + m2; ! identifier ADD_1
END;

Label Declaration
The LABEL declaration reserves an identifier for later use as a label within the
encompassing procedure or subprocedure.

identifier

is the identifier of the label. It cannot be a global declaration.

VST1315.vsd

;identifier

,

LABEL
TAL Reference Manual—526371-001
13-21

Procedures Usage Considerations
Usage Considerations
Labels are the only declarable objects that you need not declare before using them.
For best program management, however, declare all labels. For example, declaring a
label helps ensure that you access the label, not a variable that has the same identifier.

Local Labels
You can use a local label as follows:

1. Declare the label inside a procedure at the local level.

2. Place the label identifier and a colon (:) preceding a local statement in the same
procedure.

3. Branch to the label by using local or sublocal GOTO statements in the same
procedure.

Future software platforms require that you declare local labels that are referenced by
sublocal GOTO statements.

Sublocal Labels
You can use a sublocal label as follows:

1. Declare the label inside a subprocedure.

2. Place the label identifier and a colon (:) preceding a sublocal statement in the
same subprocedure.

3. Branch to the label by using sublocal GOTO statements in the same subprocedure.

Examples of Label Declarations
1. In this example, a local GOTO statement branches to a local label named ADDR:

PROC p;
 BEGIN
 LABEL addr; !Declare label
 INT result;
 INT op1 := 5;
 INT op2 := 28;
addr:
 result := op1 + op2; !Labeled statement
 op1 := op2 * 299;
 IF result < 100 THEN
 GOTO addr; !Branch to label
 !Some code
 END;
TAL Reference Manual—526371-001
13-22

Procedures Examples of Label Declarations
2. In this example, sublocal GOTO statements branch to local labels A and B. The
branch to declared label A is portable to future software platforms; the branch to
undeclared label B is not portable:

PROC p;
 BEGIN
 LABEL a; !Declare label A
 INT i;

 SUBPROC s;
 BEGIN
 !Lots of code
 GOTO a; !Branch is portable; label A is declared
 GOTO b; !Branch is not portable; label B is not
 END; ! declared

 !Lots of code
a :
 i := 0;
 !More code
b :
 i := 1;
 !Still more code
 END;
TAL Reference Manual—526371-001
13-23

Procedures Examples of Label Declarations
TAL Reference Manual—526371-001
13-24

14 Standard Functions
TAL provides a variety of standard functions that perform frequently used operations.
This section describes the syntax for calling each standard function.

For information on privileged standard functions—$AXADR, $BOUNDS, and
$SWITCHES—see Section 15, Privileged Procedures.

Summary of Standard Functions
Standard functions—also known as built-in functions—perform a variety of operations.
The following table describes the operations by category:

Identifiers of standard functions begin with a dollar sign ($).

Table 14-1 on page 14-2 lists the standard functions by category and summarizes what
they do. Table 14-2 on page 14-4 cross-references the type-transfer functions by data
type.

In both tables, INT and INT(32) expressions can also include operands of the following
data types:

• INT expressions can include operands of data types STRING, INT, and
UNSIGNED(1–16).

• INT(32) expressions can include operands of data types INT(32) and
UNSIGNED(17–31).

For more information, see Expression Arguments on page 14-5.

Category Operation

Type transfer Converts an expression from one data type to another

Address conversion Converts standard addresses to extended addresses or
extended addresses to standard addresses

Character test Tests for an alphabetic, numeric, or special ASCII character;
returns a true value if the character passes the test or a false
value if the character fails the test

Minimum-maximum Returns the minimum or maximum of two expressions

Carry and overflow Tests the state of the carry or overflow indicator in the
environment register; returns a true value if the indicator is on
or a false value if it is off

FIXED expression Returns the fixed-point setting, or moves the position of the
implied decimal point, of a FIXED expression

Variable Returns the unit length, offset, data type, or number of
occurrences of a variable

Miscellaneous Tests for receipt of actual parameter; returns the absolute
value or one’s complement from expressions; returns the
setting of the system clock or internal register pointer
TAL Reference Manual—526371-001
14-1

Standard Functions Summary of Standard Functions
Table 14-1. Summary of Standard Functions (page 1 of 3)

Functional
Group

Function
Name Description

Type transfer $DBL Converts an INT, FIXED(0), REAL, or REAL(64)
expression to an INT(32) expression

$DBLL Converts two INT expressions to an INT(32)
expression

$DBLR Converts an INT, FIXED(0), REAL, or REAL(64)
expression to a rounded INT(32) expression

$DFIX Converts an INT(32) expression to a FIXED(fpoint)
expression

$EFLT Converts an INT, INT(32), FIXED(fpoint), or REAL
expression to a REAL(64) expression

$EFLTR Converts an INT, INT(32), FIXED(fpoint), or REAL
expression to a rounded REAL(64) expression

$FIX Converts an INT, INT(32), REAL, or REAL(64)
expression to a FIXED(0) expression

$FIXD Converts a FIXED(0) expression to an INT(32)
expression

$FIXI Converts a FIXED(0) expression to a signed INT
expression

$FIXL Converts a FIXED(0) expression to an unsigned INT
expression

$FIXR Converts an INT, INT(32), REAL, or REAL(64)
expression to a rounded FIXED(0) expression

$FLT Converts an INT, INT(32), FIXED(fpoint), or REAL(64)
expression to a REAL expression

$FLTR Converts an INT, INT(32), FIXED(fpoint), or REAL(64)
expression to a rounded REAL expression

$HIGH Converts the high-order 16 bits of an INT(32)
expression to an INT expression

$IFIX Converts a signed INT expression to a FIXED(fpoint)
expression

$INT Converts the low-order 16 bits of an INT(32) or
FIXED(0) expression to an INT expression; fully
converts a REAL or REAL(64) expression to an INT
expression

$INTR Converts the low-order 16 bits of an INT(32) or
FIXED(0) expression to an INT expression; fully
converts a REAL or REAL(64) expression to a rounded
INT expression
TAL Reference Manual—526371-001
14-2

Standard Functions Summary of Standard Functions
$LFIX Converts an unsigned INT expression to a
FIXED(fpoint) expression

$UDBL Converts an unsigned INT expression to an INT(32)
expression

Address
conversion

$LADR Converts an extended address to a standard address

$XADR Converts a standard address to an extended address

Character test $ALPHA Tests an expression for an alphabetic character

$NUMERIC Tests an expression for a numeric character

$SPECIAL Tests an expression for a special character

Minimum-
maximum

$LMAX Returns the maximum of two unsigned INT expressions

$LMIN Returns the minimum of two unsigned INT expressions

$MAX Returns the maximum of two signed INT, INT(32),
FIXED(fpoint), REAL, or REAL(64) expressions

$MIN Returns the minimum of two signed INT, INT(32),
FIXED(fpoint), REAL, or REAL(64) expressions

Carry and
overflow

$CARRY Tests the state of the carry indicator of the environment
register

$OVERFLOW Tests the state of the overflow indicator of the
environment register

FIXED
expression

$POINT Returns an INT value that is the fixed-point setting of
an expression

$SCALE Moves the position of the implied decimal point in a
stored FIXED(fpoint) value

Variable $BITLENGTH Returns an INT value that is the length, in bits, of a
variable

$BITOFFSET Returns an INT value that is the 0-relative bit offset of a
structure item from the address of the zeroth structure
occurrence

$LEN Returns an INT value that is the unit length, in bytes, of
a variable

$OCCURS Returns an INT value that is the number of occurrences
of a variable

$OFFSET Returns an INT value that is the offset, in bytes, of a
structure item from the address of the zeroth structure
occurrence

$TYPE Returns an INT value that indicates the data type of a
variable

Table 14-1. Summary of Standard Functions (page 2 of 3)

Functional
Group

Function
Name Description
TAL Reference Manual—526371-001
14-3

Standard Functions Type-Transfer Functions
Type-Transfer Functions
The type-transfer functions convert a variable of one data type into a variable of
another data type.

Functions that convert an expression from a smaller data type to a larger data type
perform a sign extension of the expression to the high bits. For example, $DFIX returns
a FIXED(0) expression from an INT(32) expression.

Functions by Data Type
Table 14-2 cross-references type-transfer functions by data type.

Miscellaneous $ABS Returns the absolute value of an expression

$COMP Returns the one’s complement of an INT expression

$OPTIONAL Controls passing of a parameter to VARIABLE or
EXTENSIBLE procedure in a D20 or later object file

$PARAM Tests for the receipt of an actual parameter

$READCLO-
CK

Returns a FIXED value from an RCLK instruction

$RP Returns an INT value that is the current setting of the
compiler's internal register pointer

$USERCODE Returns the content of a word in the current user code
space

Table 14-2. Type-Transfer Functions by Data Type (page 1 of 2)

Result

Expression INT INT (32) FIXED REAL REAL (64)

INT - $DBL
$DBLR
$UDBL

$FIX
$FIXR
$IFIX
$LFIX

$FLT
$FLTR

$EFLT
$EFLTR

INT (32) $INT
$INTR
$HIGH

- $DFIX
$FIX
$FIXR

$FLT
$FLTR

$EFLT
$EFLTR

Table 14-1. Summary of Standard Functions (page 3 of 3)

Functional
Group

Function
Name Description
TAL Reference Manual—526371-001
14-4

Standard Functions Rounding by Standard Functions
Rounding by Standard Functions
Type-transfer functions that have names ending in R, such as $DBLR, round the result.
All other type-transfer functions truncate the result.

The functions round values as follows:

(IF value < 0 THEN value - 5 ELSE value + 5) / 10

That is, if the result is negative, 5 is subtracted; if positive, 5 is added. Then, an integer
division by 10 truncates the result. Therefore, if the absolute value of the least
significant digit of the result after initial truncation is 5 or more, a one is added to the
absolute value of the final least significant digit.

Rounding has no effect on INT, INT(32), or FIXED(0) expressions.

Scope of Standard Functions
You can use the following standard functions at the global level because they return
constant values:

$BITLENGTH
$BITOFFSET
$LEN
$OCCURS
$OFFSET
$TYPE

You can use all other standard functions only at the local or sublocal levels.

Expression Arguments
Many standard functions accept expressions as arguments. The following guidelines
regarding the data type and signedness of expressions apply to all standard functions
that accept expressions as arguments.

FIXED $FIXI
$FIXL
$INT
$INTR

$DBL
$DBLR
$FIXD

$FIX
$FIXR

$FLT
$FLTR

$EFLT
$EFLTR

REAL $INT
$INTR

$DBL
$DBLR

$FIX
$FIXR

- $EFLT
$EFLTR

REAL (64) $INT
$INTR

$DBL
$DBLR

$FIX
$FIXR

$FLT
$FLTR

-

Table 14-2. Type-Transfer Functions by Data Type (page 2 of 2)

Result

Expression INT INT (32) FIXED REAL REAL (64)
TAL Reference Manual—526371-001
14-5

Standard Functions Data Types of Expression Arguments
Data Types of Expression Arguments
Expressions can be any data type except STRING and UNSIGNED. INT and INT(32)
expressions, however, can include such operands as follows. In any other expressions,
all operands must be of the same data type.

INT Expressions
An INT expression can include STRING, INT, and UNSIGNED(1–16) operands. The
system treats STRING and UNSIGNED(1–16) operands as if they were 16-bit values.
That is, the system:

• Places a STRING operand in the right byte of a word and sets the left byte to 0.

• Places an UNSIGNED(1–16) operand in the right bits of a word and sets the
unused left bits to 0.

INT(32) Expressions
An INT(32) expression can include INT(32) and UNSIGNED(17–31) operands. The
system treats UNSIGNED(17–31) operands as if they were 32-bit values. Before
evaluating the expression, the system places an UNSIGNED(17–31) operand in the
right bits of a doubleword and sets the unused left bits to 0.

Signedness of Expression Arguments
The standard function, not the expression or its data type, dictates the signedness or
unsignedness of its argument.

For instance, standard functions that expect signed arguments treat unsigned
expressions as if they were signed. Conversely, standard functions that expect
unsigned arguments treat signed expressions as if they were unsigned.

$ABS Function
The $ABS function returns the absolute value of an expression. The returned value
has the same data type as the expression.

expression

is any expression.

$ABS (expression)
VST1401.vsd
TAL Reference Manual—526371-001
14-6

Standard Functions Usage Considerations
Usage Considerations
If the absolute value of a negative INT, INT(32), or FIXED expression cannot be
represented in two’s complement form, $ABS sets the overflow indicator. For example,
if X has the INT value –32,768, $ABS(X) causes an arithmetic overflow.

Example of $ABS Function
In this example, $ABS returns an absolute value from an INT expression:

INT int_val := -5; !Declare variables
INT abs_val;

abs_val := $ABS(int_val); !Return 5, the absolute value
 ! of -5

$ALPHA Function
The $ALPHA function tests the right byte of an INT value for the presence of an
alphabetic character.

int-expression

is an INT expression.

Usage Considerations
$ALPHA inspects bits <8:15> of int-expression and ignores bits <0:7>. It tests for an
alphabetic character according to the following criteria:

int-expression >= "A" AND int-expression <= "Z" OR

int-expression >= "a" AND int-expression <= "z"

If an alphabetic character occurs, $ALPHA sets the condition code indicator to CCE
(condition code equal to). If you plan to check the condition code, do so before an
arithmetic operation or assignment occurs.

If the character passes the test, $ALPHA returns a –1 (true); otherwise, it returns a 0
(false).

int-expression can include STRING and UNSIGNED(1–16) operands, as described in
Expression Arguments on page 14-5.

$ALPHA (int-expression)
VST1402.vsd
TAL Reference Manual—526371-001
14-7

Standard Functions Example of $ALPHA Function
Example of $ALPHA Function
In this example, $ALPHA tests for an alphabetic character in a STRING argument:

STRING some_char; !Declare variable

IF $ALPHA (some_char) THEN ... ; !Test for alphabetic
 ! character

$AXADR Function
The $AXADR function is described in Section 15, Privileged Procedures.

$BITLENGTH Function
The $BITLENGTH function returns the length, in bits, of a variable.

variable

is the identifier of a simple variable, array element, pointer, structure, or structure
data item.

Usage Considerations
$BITLENGTH returns the length, in bits, of a single occurrence of a simple variable,
array element, structure, structure data item, or item to which a pointer points.

The length of a structure or substructure occurrence is the sum of the lengths of all
items contained in the structure or substructure. Complete the structure before you use
$BITLENGTH to obtain the length of any of the items in the structure.

To compute the total number of bits in an entire array or substructure, multiply the
value returned by $BITLENGTH by the value returned by $OCCURS. To compute the
total number of bits in a structure, first round up the value returned by $BITLENGTH to
the word boundary and then multiply the rounded value by the value returned by
$OCCURS.

You can use $BITLENGTH in LITERAL expressions and global initializations, because
it always returns a constant value.

$BITLENGTH (variable)
VST1403.vsd
TAL Reference Manual—526371-001
14-8

Standard Functions Example of $BITLENGTH Function
Example of $BITLENGTH Function
In this example, $BITLENGTH returns the length, in bits, of one occurrence of structure
S:

INT s_len; !Declare variable

STRUCT .s[0:3]; !Declare four occurrences of a
 BEGIN ! structure
 UNSIGNED(1) flags[0:15];
 UNSIGNED(2) status;
 BIT_FILLER 14;
 END;

s_len := $BITLENGTH (s); !Return 32, the number of bits
 ! in one structure occurrence

$BITOFFSET Function
The $BITOFFSET function returns the number of bits from the address of the zeroth
structure occurrence to a structure data item.

variable

is the fully qualified identifier of a structure data item.

Usage Considerations
The zeroth structure occurrence has an offset of 0. For items other than substructure,
simple variable, array, or pointer declared within a structure, $BITOFFSET returns a 0.

When you qualify the identifier of variable, you can use constant indexes but not
variable indexes; for example:

$BITOFFSET (struct1.subst[1].item) !1 is a constant index

To find the offset of an item in a structure, complete the structure before you use
$BITOFFSET.

You can use $BITOFFSET in LITERAL expressions and global initializations, because
it always returns a constant value.

$BITOFFSET (variable)
VST1404.vsd
TAL Reference Manual—526371-001
14-9

Standard Functions Example of $BITOFFSET Function
Example of $BITOFFSET Function
In this example, $BITOFFSET returns the offset (in bits) of the third occurrence of
substructure AB:

STRUCT a; !Declare structure
 BEGIN
 INT array[0:40];
 STRUCT ab[0:9]; !Declare substructure AB
 BEGIN ! with ten occurrences
 UNSIGNED(1) flag;
 UNSIGNED(15) offset;
 END;
 END;

INT c;

c := $BITOFFSET (a.ab[2]); !Return offset of third
 ! occurrence of AB

$BOUNDS Function
The $BOUNDS function is described in Section 15, Privileged Procedures.

$CARRY Function
The $CARRY function checks the state of the carry bit in the environment register and
indicates whether a carry out of the high-order bit position occurred.

Usage Considerations
The carry indicator is bit 9 in the environment register (ENV.K). The carry indicator is
affected as follows:

Operation Carry Indicator

Integer addition On if carry out of bit <0>

Integer subtraction or negation On if no borrow out from bit <0>

INT(32) multiplication and division Always off

Multiplication and division except INT(32) Preserved

SCAN or RSCAN operation On if scan stops on a 0 byte

Array indexing and extended structure
addressing

Undefined

Shift operations Preserved

$CARRY
VST1405.vsd
TAL Reference Manual—526371-001
14-10

Standard Functions Example of $CARRY Function
To check the state of the carry indicator, use $CARRY in an IF statement immediately
following the operation that affects the carry indicator. If the carry indicator is on,
$CARRY is –1 (true). If the carry indicator is off, $CARRY is 0 (false).

The following operations are not portable to future software platforms:

• Testing $CARRY after multiplication or division

• Passing the carry bit as an implicit parameter into a procedure or subprocedure

• Returning the carry bit as an implicit result from a procedure or subprocedure

Example of $CARRY Function
In this example, $CARRY tests the state of the carry bit after addition:

INT i, j, k; !Declare variable

i := j + k;

IF $CARRY THEN ... ; !Test state of carry bit

$COMP Function
The $COMP function obtains the one’s complement of an INT expression.

int-expression

is an INT expression.

Example of $COMP Function
In this example, $COMP returns a value equal to the one’s complement of 10:

INT some_int; !Declare variable

some_int := $COMP (10); !Return -11

$DBL Function
The $DBL function returns an INT(32) value from an INT, FIXED(0), REAL, or
REAL(64) expression.

$COMP (int-expression)
VST1406.vsd
TAL Reference Manual—526371-001
14-11

Standard Functions Usage Consideration
expression

is an INT, FIXED(0), REAL, or REAL(64) expression.

Usage Consideration
If expression is too large in magnitude to be represented by a 32-bit two’s complement
integer, $DBL sets the overflow indicator.

Example of $DBL Function
In this example, $DBL returns an INT(32) value from an INT expression:

INT i2 := %177775; !Declare variables

INT(32) b32;

b32 := $DBL (i2); !Return -3D

$DBLL Function
The $DBLL function returns an INT(32) value from two INT values.

int-expression

is an INT expression.

Usage Consideration
To form the INT(32) value, $DBLL places the first int-expression in the high-order 16
bits and the second int-expression in the low-order 16 bits.

$DBL (expression)
VST1407.vsd

$DBLL (int-expression)int-expression ,

VST1408.vsd
TAL Reference Manual—526371-001
14-12

Standard Functions Examples of $DBLL Function
Examples of $DBLL Function
1. In this example, $DBLL returns an INT(32) value formed from two INT variables,

FIRST_INT and SECOND_INT:

INT first_int, second_int; !Declare variables
INT(32) some_double;

some_double := $DBLL (first_int, second_int);
 !Return INT(32) value

2. In this example, $DBLL returns an extended (32-bit) address from two INT
constants that represent a standard (16-bit) address in the current user code
segment:

INT .EXT p; !Declare 32-bit simple
 ! pointer

@p := ($DBLL (2, 7)) '<<' 1; !Return 32-bit address in
 ! user code segment

$DBLR Function
The $DBLR function returns an INT(32) value from an INT, FIXED(0), REAL, or
REAL(64) expression and applies rounding to the result.

expression

is an INT, FIXED(0), REAL, or REAL(64) expression.

Usage Consideration
If expression is too large in magnitude to be represented by a 32-bit two’s complement
integer, $DBLR sets the overflow indicator.

Examples of $DBLR Function
1. In this example, $DBLR returns a rounded INT(32) value from a REAL expression:

REAL r2 := 1.5e0; !Declare variables
INT(32) b32;

b32 := $DBLR (r2); !Return 2D

$DBLR (expression)

VST1409.vsd
TAL Reference Manual—526371-001
14-13

Standard Functions $DFIX Function
2. Here is another example:

REAL realnum := 123.456E0; !Declare variables
INT(32) dblnum;

dblnum := $DBLR (realnum); !Return 123D

$DFIX Function
The $DFIX function returns a FIXED(fpoint) expression from an INT(32) expression.

dbl-expression

is an INT(32) arithmetic expression.

fpoint

is a value in the range –19 through +19 that specifies the position of the implied
decimal point in the result. A positive fpoint specifies the number of decimal places
to the right of the decimal. A negative fpoint specifies the number of integer places
to the left of the decimal point.

Usage Consideration
$DFIX converts an INT(32) expression to a FIXED(fpoint) expression by performing the
equivalent of a signed right shift of 32 positions from the left 32 bits into the right 32 bits
of a quadrupleword unit.

Example of $DFIX Function
In this example, $DFIX returns a FIXED(2) value from an INT(32) expression and an
fpoint of 2:

FIXED(2) fixnum; !Declare variables
INT(32) dblnum := -125D;

fixnum := $DFIX (dblnum, 2); !Return -1.25

$DFIX (dbl-expression), fpoint
VST1410.vsd
TAL Reference Manual—526371-001
14-14

Standard Functions $EFLT Function
$EFLT Function
The $EFLT function returns a REAL(64) value from an INT, INT(32), FIXED(fpoint), or
REAL expression.

expression

is an INT, INT(32), FIXED(fpoint), or REAL expression.

Usage Consideration
If a FIXED expression has a nonzero fpoint, the compiler multiplies or divides the result
by the appropriate power of ten.

Example of $EFLT Function
In this example, $EFLT returns a REAL(64) value from a FIXED(3) expression:

REAL(64) dbrlnum; !Declare variables
FIXED(3) fixnum := 12345.678F;

dbrlnum := $EFLT (fixnum); !Return 12345678L-3

$EFLTR Function
The $EFLTR function returns a REAL(64) value from an INT, INT(32), FIXED(fpoint), or
REAL expression and applies rounding to the result.

expression

is an INT, INT(32), FIXED(fpoint), or REAL expression.

Usage Considerations
If a FIXED expression has a nonzero fpoint, the compiler multiplies or divides the result
by the appropriate power of ten.

$EFLT (expression)

VST1411.vsd

$EFLTR (expression)

VST1412.vsd
TAL Reference Manual—526371-001
14-15

Standard Functions Example of $EFLTR Function
Example of $EFLTR Function
In this example, $EFLTR returns a rounded REAL(64) value from a FIXED(3)
expression:

REAL(64) rndnum; !Declare variables
FIXED(3) fixnum := 12345.678F;

rndnum := $EFLTR (fixnum); !Return rounded REAL(64)
 ! value

$FIX Function
The $FIX function returns a FIXED(0) value from an INT, INT(32), REAL, or REAL(64)
expression.

expression

is an INT, INT(32), FIXED, REAL, or REAL(64) expression.

Usage Consideration
If expression is too large in magnitude to be represented by a 64-bit two’s complement
integer, $FIX sets the overflow indicator.

Example of $FIX Function
In this example, $FIX returns a FIXED(0) value from an INT expression:

FIXED fixnum; !Declare variables
INT intnum := 5;

fixnum := $FIX (intnum); !Return 5F

$FIXD Function
The $FIXD function returns an INT(32) value from a FIXED(0) expression.

$FIX (expression)
VST1413.vsd

$FIXD (fixed-expression)

VST1414.vsd
TAL Reference Manual—526371-001
14-16

Standard Functions Usage Consideration
fixed-expression

is a FIXED expression, which $FIXD treats as a FIXED(0) expression, ignoring any
implied decimal point.

Usage Consideration
If the result cannot be represented in a signed doubleword, $FIXD sets the overflow
indicator.

Example of $FIXD Function
In this example, $FIXD returns an INT(32) value from a FIXED(0) expression:

INT(32) dblnum; !Declare variables
FIXED fixnum := 1234F;

dblnum := $FIXD (fixnum); !Return 1234D

$FIXI Function
The $FIXI function returns the signed INT equivalent of a FIXED(0) expression.

fixed-expression

is a FIXED expression, which $FIXI treats as a FIXED(0) expression, ignoring any
implied decimal point.

Usage Considerations
If the result cannot be represented in a signed 16-bit integer, $FIXI sets the overflow
indicator.

Example of $FIXI Function
In this example, $FIXI returns a signed INT equivalent value from a FIXED(0)
expression:

INT intnum; !Declare variables
FIXED fixnum := %177777F;

intnum := $FIXI (fixnum); !Return -1

$FIXI (fixed-expression)
VST1415.vsd
TAL Reference Manual—526371-001
14-17

Standard Functions $FIXL Function
$FIXL Function
The $FIXL function returns the unsigned INT equivalent of a FIXED(0) expression.

fixed-expression

is a FIXED expression, which $FIXL treats as a FIXED(0) expression, ignoring any
implied decimal point.

Usage Considerations
If the result cannot be represented in an unsigned 16-bit integer, $FIXL sets the
overflow indicator.

Examples of $FIXL Function
In this example, $FIXL returns an unsigned INT equivalent value from a FIXED(0)
expression:

INT intnum; !Declare variables
FIXED fixnum := 32767F;

intnum := $FIXL (fixnum); !Return 32,767

$FIXR Function
The $FIXR function returns a FIXED(0) value from an INT, INT(32), FIXED, REAL, or
REAL(64) expression and applies rounding to the result.

expression

is an INT, INT(32), FIXED, REAL, or REAL(64) expression.

Usage Considerations
If expression is too large in magnitude to be represented by a 64-bit two’s complement
integer, $FIXR sets the overflow indicator.

$FIXL (fixed-expression)
VST1416.vsd

$FIXR (expression)
VST1417.vsd
TAL Reference Manual—526371-001
14-18

Standard Functions Example of $FIXR Function
Example of $FIXR Function
1. In this example, $FIXR returns a rounded FIXED(0) value from a REAL(64)

expression:

FIXED rfixnum; !Declare variables
REAL(64) bigrealnum := -1.5L0;

rfixnum := $FIXR (bigrealnum); !Return -1F

2. In this example, $FIXR returns a rounded FIXED(0) value from a REAL
expression:

FIXED rndfnum;
REAL realnum := 123.456E0; !Declare variables

rndfnum := $FIXR (realnum); !Return 123F

$FLT Function
The $FLT function returns a REAL value from an INT, INT(32), FIXED(fpoint), or
REAL(64) expression.

expression

is an INT, INT(32), FIXED(fpoint), or REAL(64) expression.

Usage Consideration
If a FIXED expression has a nonzero fpoint, the compiler multiplies or divides the result
by the appropriate power of ten.

Example of $FLT Function
In this example, $FLT returns a REAL value from an INT(32) expression:

REAL realnum; !Declare variables
INT(32) dblnum := 147D;

realnum := $FLT (dblnum); !Return 147E0

$FLT (expression)
VST1418.vsd
TAL Reference Manual—526371-001
14-19

Standard Functions $FLTR Function
$FLTR Function
The $FLTR function returns a REAL value from an INT, INT(32), FIXED(fpoint), or
REAL(64) expression and applies rounding to the result.

expression

is an INT, INT(32), FIXED(fpoint), REAL, or REAL(64) expression.

Usage Consideration
If a FIXED expression has a nonzero fpoint, the compiler multiplies or divides the result
by the appropriate power of ten.

Example of $FLTR Function
In this example, $FLTR returns a rounded REAL value from an INT(32) expression:

REAL rrlnum; !Declare variables
INT(32) dblnum := 147D;

rrlnum := $FLTR (dblnum); !Return rounded REAL value

$HIGH Function
The $HIGH function returns an INT value that is the high-order 16 bits of an INT(32)
expression.

dbl-expression

is an INT(32) expression.

Example of $HIGH Function
In this example, $HIGH returns the high-order word of an INT(32) expression:

INT intnum; !Declare variables
INT(32) dblnum := 65538D;

intnum := $HIGH (dblnum); !Return 1

$FLTR (expression)
VST1419.vsd

$HIGH (dbl-expression)
VST1420.vsd
TAL Reference Manual—526371-001
14-20

Standard Functions $IFIX Function
$IFIX Function
The $IFIX function returns a FIXED(fpoint) value from a signed INT expression.

int-expression

is a signed INT expression.

fpoint

is a value in the range –19 through +19 that specifies the position of the implied
decimal point in the result. A positive fpoint specifies the number of decimal places
to the right of the decimal. A negative fpoint specifies the number of integer places
to the left of the decimal point.

Usage Consideration
When $IFIX converts the signed INT expression to a FIXED value, it performs the
equivalent of a signed right shift of 48 positions in a quadrupleword unit.

Example of $IFIX Function
In this example, $IFIX returns a FIXED(2) value from a signed INT expression and an
fpoint of 2:

FIXED(2) fixnum; !Declare variables
INT intnum := 12345;

fixnum := $IFIX (intnum, 2); !Return 123.45

$INT Function
The $INT function returns an INT value from the low-order 16 bits of an INT(32 or
FIXED(0) expression. $INT returns a fully converted INT expression from a REAL or
REAL(64) expression.

expression

is an INT, INT(32), FIXED(0), REAL, or REAL(64) expression.

$IFIX (fpoint)int-expression ,
VST1421.vsd

$INT (expression)
VST1422.vsd
TAL Reference Manual—526371-001
14-21

Standard Functions Usage Considerations
Usage Considerations
If expression is INT, INT(32), or FIXED(0), $INT returns the low-order (least significant)
16 bits and does not explicitly maintain the sign. No overflow occurs.

If expression is REAL or REAL(64), $INT returns a fully converted INT value, not a
truncation. If the converted value of expression is too large to be represented by a 16-
bit two’s complement integer, an overflow trap occurs.

Examples of $INT Function
1. In this example, $INT returns the low-order word of an INT(32) expression:

INT a16; !Declare variables
INT(32) a32 := 65538D;

a16 := $INT (a32); !Return 2, the low-order word
 ! of an INT(32) expression

2. In this example, $INT returns a fully converted INT value from a REAL expression:

INT intnum; !Declare variables
REAL realnum := 20.0E-1;

intnum := $INT (realnum); !Return 2, the fully converted
 ! INT value from a REAL
 ! expression

$INTR Function
The $INTR function returns an INT value from the low-order 16 bits of an INT(32) or
FIXED(0) expression. $INTR returns a fully converted and rounded INT expression
from a REAL or REAL(64) expression.

expression

is an INT, INT(32), FIXED(0), REAL, or REAL(64) expression.

Usage Considerations
If expression is type INT, INT(32) or FIXED(0), $INTR returns the low-order (least
significant) 16 bits and does not explicitly maintain the sign. No overflow occurs.

$INTR (expression)
VST1423.vsd
TAL Reference Manual—526371-001
14-22

Standard Functions Example of $INTR Function
If expression is type REAL or REAL(64), $INTR returns a fully converted and rounded
INT value, not a truncation. If the converted value of expression is too large to be
represented by a 16-bit two’s complement integer, an overflow trap occurs.

Example of $INTR Function
In this example, $INTR returns a fully converted and rounded INT value from a REAL
expression:

INT rndnum; !Declare variables
REAL realnum := 12345E-2;

rndnum := $INTR (realnum); !Return 123

$LADR Function
The $LADR function returns the standard (16-bit) address of a variable that is
accessed through an extended (32-bit) pointer.

variable

is the identifier of a variable accessed through an extended pointer.

Usage Considerations
If variable is a STRING variable or a substructure, $LADR returns a standard byte
address. Otherwise, $LADR returns a standard word address.

When $LADR converts the extended address to a standard address, it loses the
segment number in the extended address:

• If the extended address is in the user data segment, the converted address is
correct.

• If the extended address is in an extended data segment, the converted address is
incorrect.

(For a description of the extended address format, see Appendix B in the TAL
Programmer’s Guide.)

$LADR is not portable to future software platforms.

$LADR (variable)
VST1424.vsd
TAL Reference Manual—526371-001
14-23

Standard Functions Example of $LADR Function
Example of $LADR Function
In this example, $LADR returns a standard (16-bit) address from an extended (32-bit)
address:

STRING .ptr; !Declare variables
STRING .EXT array[0:99];
STRING .EXT xptr := @array[0];

@ptr := $LADR (xptr); !Return 16-bit address
 ! from 32-bit address

$LEN Function
The $LEN function returns the length, in bytes, of one occurrence of a variable.

variable

is the identifier of a simple variable, array element, pointer, structure, or structure
data item.

Usage Considerations
$LEN returns the number of bytes contained in a single occurrence of a simple
variable, array element, structure, structure data item, or item pointed to by a pointer.

To compute the total number of bytes in an entire array or substructure, multiply the
value returned by $LEN by the value returned by $OCCURS. To compute the total
number of bytes in an entire structure, first round up the value returned by $LEN to a
word boundary and then multiply the rounded value by the value returned by
$OCCURS.

If you apply $LEN to an unfinished structure or to a substructure in an unfinished
structure, the compiler emits warning 76 (cannot use $OFFSET or $LEN until base
structure is complete).

You can use $LEN in LITERAL expressions and global initializations, because it
always returns a constant value.

$LEN (variable)
VST1425.vsd
TAL Reference Manual—526371-001
14-24

Standard Functions Examples of $LEN Function
Examples of $LEN Function
1. In this example, $LEN returns the number of bytes in an array element:

INT b; !Declare variables
INT a [0:11];

b := $LEN (a); !Return 2

2. In this example, $LEN returns the number of bytes in one occurrence of a
structure:

INT s_len;

STRUCT .s[0:99]; !Declare 100 occurrences of
 BEGIN ! a structure
 INT(32) array[0:2];
 END;

s_len := $LEN (s); !Return 12

3. In this example, $OCCURS returns the number of elements in an array, and $LEN
returns the number of bytes in each element. This example multiplies 3 times 4
(the values returned by $OCCURS and $LEN) and yields the number of bytes in
the entire array:

INT array_length; !Declare variables
INT(32) array[0:2];

array_length := $LEN (array) * $OCCURS (array);
 !Return 12, the length of the
 ! entire array in bytes

$LFIX Function
The $LFIX function returns a FIXED(fpoint) expression from an unsigned INT
expression.

int-expression

is an unsigned INT expression.

fpoint

is a value in the range –19 through +19 that specifies the position of the implied
decimal point in the result. A positive fpoint specifies the number of decimal places

$LFIX (fpoint)int-expression ,

VST1426.vsd
TAL Reference Manual—526371-001
14-25

Standard Functions Usage Consideration
to the right of the decimal. A negative fpoint specifies the number of integer places
to the left of the decimal point.

Usage Consideration
$LFIX places the INT value in the low-order (least significant) word of the
quadrupleword and sets the three high-order (most significant) words to 0.

Example of $LFIX Function
In this example, $LFIX returns a FIXED(2) value from an unsigned INT expression and
an fpoint of 2:

FIXED(2) fixnum; !Declare variables
INT intnum := 125;

fixnum := $LFIX (intnum, 2); !Return 1.25

$LMAX Function
The $LMAX function returns the maximum of two unsigned INT expressions.

int-expression

is an unsigned INT arithmetic expression.

Example of $LMAX Function
In this example, $LMAX compares an unsigned INT expression and a constant and
returns the maximum value:

INT intval := 3;
max := $LMAX (intval, 5); !Return 5

$LMIN Function
The $LMIN function returns the minimum of two unsigned INT expressions.

LMAX (int-expression)int-expression ,

VST1427.vsd

$LMIN (int-expression)int-expression ,

VST1428.vsd
TAL Reference Manual—526371-001
14-26

Standard Functions Example of $LMIN Function
int-expression

is an unsigned INT arithmetic expression.

Example of $LMIN Function
In this example, $LMIN returns the minimum of an unsigned INT expression and a
constant:

INT intval := 3;
min := $LMIN (intval, 5); !Return 3

$MAX Function
The $MAX function returns the maximum of two signed INT, INT(32), FIXED(fpoint),
REAL, or REAL(64) expressions.

expression

is a signed INT, INT(32), FIXED(fpoint), REAL, or REAL(64) expression. Both
expressions must be of the same data type.

Example of $MAX Function
In this example, $MAX returns the maximum of a signed REAL expression and a
constant:

REAL realval := -3E0;
max := $MAX (realval, 5E0); !Return 5E0

$MIN Function
The $MIN function returns the minimum of two INT, INT(32), FIXED(fpoint), REAL, or
REAL(64) expressions.

expression

is an INT, INT(32), FIXED(fpoint), REAL, or REAL(64) expression. Both
expressions must be of the same data type.

$MAX (expression)expression ,

VST1429.vsd

$MIN (expression)expression ,

VST1430.vsd
TAL Reference Manual—526371-001
14-27

Standard Functions Example of $MIN Function
Example of $MIN Function
In this example, $MIN returns the minimum of a FIXED expression and a constant:

FIXED fixval := -3F;
min := $MIN (fixval, 5F); !Return -3F

$NUMERIC Function
The $NUMERIC function tests the right half of an INT value for the presence of an
ASCII numeric character.

int-expression

is an INT expression.

Usage Considerations
$NUMERIC inspects bits <8:15> of int-expression and ignores bits <0:7>. It tests for a
numeric character according to the criterion:

int-expression >= "0" AND int-expression <= "9"

If a numeric character occurs, $NUMERIC sets the condition code to CCL (condition
code less than). If you plan to test the condition code, do so before an arithmetic
operation or assignment occurs.

If the character passes the test, $NUMERIC returns a –1 (true); otherwise, it returns a
0 (false).

int-expression can include STRING and UNSIGNED(1–16) operands, as described in
Expression Arguments on page 14-5.

Example of $NUMERIC Function
In this example, $NUMERIC tests for a numeric character in a STRING argument,
which the system places in the right byte of a word and treats as an INT value:

STRING char; !Declare variable

IF $NUMERIC (char) THEN ... ; !Test for numeric character

$NUMERIC (int-expression)
VST1431.vsd
TAL Reference Manual—526371-001
14-28

Standard Functions $OCCURS Function
$OCCURS Function
The $OCCURS function returns the number of occurrences of a variable.

variable

is the identifier of:

• An array, structure, or substructure (but not a template structure)

• An array declared in a structure

Usage Considerations
$OCCURS returns the number of:

• Elements in an array

• Occurrences of a structure or substructure

For example, if the argument is declared with the bounds [0:3], $OCCURS returns the
value 4.

You can use $OCCURS to find the total length of an entire array or substructure:

• To find the length in bytes, multiply the values returned by $LEN and $OCCURS.

• To find the length in bits, multiply the values returned by $BITLENGTH and
$OCCURS.

You can find the length of a structure in the same way, except that you must first round
up the length value to the word boundary before multiplying the rounded value with the
$OCCURS value.

If variable is a template structure, the compiler returns error 69 (invalid template
access).

If variable is a simple variable, pointer, or procedure parameter, the compiler returns
warning 43 (a default $OCCURS count of 1 is returned).

You can use $OCCURS in LITERAL expressions and global initializations, because it
always returns a constant value.

$OCCURS (variable)
VST1432.vsd
TAL Reference Manual—526371-001
14-29

Standard Functions Examples of $OCCURS Function
Examples of $OCCURS Function
1. In this example, $OCCURS returns the number of occurrences of a structure,

which is 6:

INT index;

STRUCT .job_data[0:5]; !Declare structure
 BEGIN
 INT i1;
 STRING s1;
 END;

FOR index := 0 TO $OCCURS (job_data) - 1 DO ... ;
 !Return 6, the number of
 ! structure occurrences

2. In this example, $OCCURS returns the number of elements in an array, and $LEN
returns the number of bytes in each element. This example multiplies 3 times 4
(the values returned by $OCCURS and $LEN) and yields the number of bytes in
the entire array:

INT array_length; !Declare variables
INT(32) array[0:2];

array_length := $LEN (array) * $OCCURS (array);
 !Return 12, the length of the entire
 ! array in bytes

$OFFSET Function
The $OFFSET function returns the number of bytes from the address of the zeroth
structure occurrence to a structure data item.

variable

is the fully qualified identifier of a structure data item—a substructure, simple
variable, array, simple pointer, or structure pointer declared within a structure

$OFFSET (variable)
VST1433.vsd
TAL Reference Manual—526371-001
14-30

Standard Functions Usage Considerations
Usage Considerations
The zeroth structure occurrence has an offset of 0. For items other than a structure
data item, $OFFSET returns a 0.

When you qualify the identifier of variable, you can use constant indexes but not
variable indexes; for example:

$OFFSET (struct1.subst[1].item) !1 is a constant index

For a structure pointer declared inside a structure, $OFFSET computes the byte offset
of the structure occurrence to which the pointer points, not the byte offset of the
structure pointer itself. When you specify such a pointer as an argument to $OFFSET,
you must qualify its identifier with the identifier of the structure data item (see Example
2).

For UNSIGNED structure items, $OFFSET returns the byte offset of the nearest word
boundary, not the nearest byte boundary.

You can use $OFFSET in LITERAL expressions and global initializations, because it
always returns a constant value.

If you apply $OFFSET to an unfinished structure or to a substructure in an unfinished
structure, the compiler emits warning 76 (cannot use $OFFSET or $LEN until base
structure is complete).

Examples of $OFFSET Function
1. In this example, $OFFSET returns the byte offset of the third occurrence of a

substructure from the address of the zeroth structure occurrence:

STRUCT a; !Declare structure
 BEGIN
 INT array[0:40];
 STRUCT ab[0:9]; !Declare substructure AB
 BEGIN ! with ten occurrences
 !Lots of declarations
 END;
 END;

INT c;
!Some code
c := $OFFSET (a.ab[2]); !Return offset of third
 ! occurrence of substructure

2. In this example, $OFFSET returns the byte offset of the structure occurrence to
which a structure pointer points:

STRUCT .tt; !Declare structure TT
 BEGIN
 INT i;
 INT(32) d;
TAL Reference Manual—526371-001
14-31

Standard Functions $OPTIONAL Function
 STRING s;
 END;

STRUCT .st; !Declare structure ST
 BEGIN
 INT i;
 INT j;
 INT .st_ptr(tt !Declare structure pointer
 END; ! that points to structure TT

INT x;

x := $OFFSET (st.j); !X gets 2
x := $OFFSET (tt.s); !X gets 6
x := $OFFSET (st.st_ptr.s); !X gets 6

3. This example applies $OFFSET to an indexed template structure:

INT x;

STRUCT st[-1:1];
 BEGIN
 INT item;
 FIXED(2) price;
 END;

x := $OFFSET (st[-1].item); !X gets -10

$OPTIONAL Function
The $OPTIONAL function controls whether a given parameter or parameter pair is
passed to a VARIABLE or EXTENSIBLE procedure in a D20 or later object file.

cond-expression

is a conditional expression. If cond-expression is true, param or param-pair is
passed. If cond-expression is false, param (or param-pair) is not passed.

param

is a variable identifier or an expression that defines an actual parameter to pass to
a formal parameter declared in the called procedure if cond-expression is true.

param-pair

is an actual parameter pair to pass to a formal parameter pair declared in the
called procedure if cond-expression is true. param-pair has the form:

(cond-expression ,$OPTIONAL param)

param-pair
VST1434.vsd
TAL Reference Manual—526371-001
14-32

Standard Functions Usage Considerations
string

is the identifier of a STRING array or simple pointer declared inside or outside
a structure.

length

is an INT expression that specifies the length, in bytes, of string.

Usage Considerations
A call to a VARIABLE or EXTENSIBLE procedure can omit some or all parameters.
$OPTIONAL lets your program pass a parameter (or parameter-pair) based on a
condition at execution time. $OPTIONAL is evaluated as follows each time the
encompassing CALL statement is executed:

• If cond-expression is true, the parameter is passed; $PARAM, if present, is set to
true for the corresponding formal parameter.

• If cond-expression is false, the parameter is not passed; $PARAM, if present, is set
to false for the corresponding formal parameter.

A called procedure cannot distinguish between a parameter that is passed
conditionally and one that is passed unconditionally. Passing parameters conditionally,
however, is slower than passing them unconditionally. In the first case, the
EXTENSIBLE mask is computed at execution time; in the second case, the mask is
computed at compilation time.

Examples of the $OPTIONAL Function
1. This example shows that a called procedure cannot distinguish between a

parameter that is passed conditionally and one that is passed unconditionally:

PROC p1 (i) EXTENSIBLE;
 INT i;
 BEGIN
 !Lots of code
 END;

PROC p2;
 BEGIN
 INT n := 1;
 CALL p1 ($OPTIONAL (n > 0, n)); !These two calls are
 CALL p1 (n); ! indistinguishable.
 END;

:string length
VST1435.vsd
TAL Reference Manual—526371-001
14-33

Standard Functions Examples of the $OPTIONAL Function
2. This example shows that a called procedure cannot distinguish between a
parameter that is omitted conditionally and one that is omitted unconditionally:

PROC p1 (i) EXTENSIBLE;
 INT i;
 BEGIN
 !Lots of code
 END;

PROC p2;
 BEGIN
 INT n := 1;
 CALL p1 ($OPTIONAL (n < 0, n)); !These two calls are
 CALL p1 (); ! indistinguishable.
 END;

3. This example shows how you can conditionally pass or not pass a parameter and a
parameter pair. When P2 calls P1, S:I is passed because I equals 1, which is less
than 9. J is not passed because J equals 1, which is not greater than 2.

PROC p1 (str:len, b) EXTENSIBLE;
 STRING .str;
 INT len;
 INT b;
 BEGIN
 !Lots of code
 END;

PROC p2;
 BEGIN
 STRING .s[0:79];
 INT i:= 1;
 INT j:= 1;
 CALL p1 ($OPTIONAL (i < 9, s:i),!Pass S:I if I < 9.
 $OPTIONAL (j > 2, j));!Pass J if J > 2.
 END;

4. You can use $OPTIONAL when one procedure provides a front-end interface for
another procedure that does the actual work:

PROC p1 (i, j) EXTENSIBLE;
 INT .i;
 INT .j;
 BEGIN
 !Lots of code
 END;
TAL Reference Manual—526371-001
14-34

Standard Functions $OVERFLOW Function
PROC p2 (p, q) EXTENSIBLE;
 INT .p;
 INT .q;
 BEGIN
 !Lots of code
 CALL p1 ($OPTIONAL ($PARAM (p), p),
 $OPTIONAL ($PARAM (q), q));
 !Lots of code
 END;

$OVERFLOW Function
The $OVERFLOW function checks the state of the overflow indicator and indicates
whether an overflow occurred.

Usage Considerations
The overflow indicator is bit 8 in the environment register (ENV.V). The overflow
indicator is affected as follows:

For example, the following operations turn on the overflow indicator (and interrupt the
system overflow trap handler if the overflow trap is armed through ENV.T):

• Division by 0

• Floating-point arithmetic result in which the exponent is too large or too small

• Signed arithmetic result that exceeds the number of bits allowed by the data type
of the expression

To recover locally from a statement’s overflow, turn off the overflow trap bit and use
$OVERFLOW in an IF statement immediately following the operation that affects the
overflow indicator. If the overflow indicator is on, $OVERFLOW is –1 (true). If the
overflow indicator is off, $OVERFLOW is 0 (false).

Operation Overflow Indicator

Unsigned INT addition, subtraction, and negation Preserved

Addition, subtraction, and negation except
unsigned INT

On or Off

Division and multiplication On or Off

Type conversions On, off, or preserved

Array indexing and extended structure
addressing

Undefined

Assignment or shift operation Preserved

$OVERFLOW
VST1436.vsd
TAL Reference Manual—526371-001
14-35

Standard Functions Example of $OVERFLOW Function
Example of $OVERFLOW Function
This example turns overflow trapping off, tests the overflow indicator, and turns
overflow trapping back on. CODE statements, however, are not portable to future
software platforms; modularize their use where possible:

INT i, j, k;

CODE (RDE;
 ANRI $COMP (%200); !Turn off overflow trap bit
 SETE);
 i := j + k;
IF $OVERFLOW THEN i := 0; !Test overflow indicator
CODE (RDE;
 ANRI $COMP (%040); !Turn on overflow trap bit
 ORRI %200; !Disable pending overflow
 SETE);

$PARAM Function
The $PARAM function checks for the presence or absence of an actual parameter in
the call that invoked the current procedure or subprocedure.

formal-param

is the identifier of a formal parameter as specified in the procedure or subprocedure
declaration.

Usage Considerations
If the actual parameter corresponding to formal-param is present in the CALL
statement, $PARAM returns 1. If the actual parameter is absent from the CALL
statement, $PARAM returns 0.

Only a VARIABLE procedure or subprocedure or an EXTENSIBLE procedure can use
$PARAM. If such a procedure or subprocedure has required parameters, it must check
for the presence or absence of each required parameter in CALL statements. The
procedure or subprocedure can also use $PARAM to check for optional parameters.

$PARAM (formal-param)
VST1437.vsd
TAL Reference Manual—526371-001
14-36

Standard Functions Example of $PARAM Function
Example of $PARAM Function
In this example, $PARAM checks for the absence of each required parameter and for
the presence of the optional parameter:

PROC var_proc (buffer,length,key) VARIABLE;
 INT .buffer, length, !Required parameters
 key; !Optional parameter
 BEGIN
 !Some code here
 IF NOT $PARAM (buffer) OR NOT $PARAM (length) THEN RETURN;
 !Return 1 or 0 for each
 ! required parameter
 IF $PARAM (key) THEN ... ; !Return 1 if optional
 END; ! parameter is present

$POINT Function
The $POINT function returns the fpoint value, in integer form, associated with a FIXED
expression.

fixed-expression

is a FIXED expression.

Usage Considerations
The compiler emits no instructions when evaluating fixed-expression. Therefore, fixed-
expression cannot invoke a function and cannot be an assignment expression.

Example of $POINT Function
This example retains precision automatically when performing fixed-point division.
$POINT returns the fpoint value of B to $SCALE, which then scales A by that factor:

FIXED(3) result; !Declare variables
FIXED(3) a;
FIXED(3) b;

result := $SCALE (a, $POINT (b)) / b;
 !Return fpoint of FIXED expression
 ! and scale value by that factor

$POINT (fixed-expression)
VST1438.vsd
TAL Reference Manual—526371-001
14-37

Standard Functions $READCLOCK Function
$READCLOCK Function
The $READCLOCK function returns the current setting of the system clock.

Usage Considerations
$READCLOCK returns the current setting of the system clock as a FIXED(0) value.

$READCLOCK invokes the RCLK instruction, described in the System Description
Manual for your system.

Example of $READCLOCK Function
In this example, $READCLOCK returns the current setting of the system clock:

FIXED the_time; !Declare data

the_time := $READCLOCK; !Return current clock time

$RP Function
The $RP function returns the current setting of the compiler’s internal RP counter. (RP
is the register stack pointer.)

Usage Consideration
$RP returns the compile-time setting of RP. This setting is not guaranteed to be the
run-time setting.

$RP is not portable to future software platforms.

Example of $RP Function
In this example, $RP returns the compiler’s current RP value:

IF $RP <> 7 THEN ... ; Something is on the stack

$READCLOCK
VST1439.vsd

$RP
VST1440.vsd
TAL Reference Manual—526371-001
14-38

Standard Functions $SCALE Function
$SCALE Function
The $SCALE function moves the position of the implied decimal point by adjusting the
internal representation of a FIXED(fpoint) expression.

fixed-expression

is a FIXED expression.

scale

is an INT constant in the range –19 to +19 that defines the number of positions to
move the implied decimal point to the left (scale > 0) or to the right (scale < 0) of
the least significant digit.

Usage Considerations
If the result of the scale operation exceeds the range of a FIXED(0) expression,
$SCALE sets the overflow indicator.

$SCALE adjusts the implied decimal point of the stored value by multiplying or dividing
by 10 to the scale power. Some precision might be lost with negative $SCALE values.

Example of $SCALE Function
1. In this example, $SCALE returns a FIXED(7) expression from a FIXED(3)

expression:

FIXED(3) a := 9.123F;
FIXED(7) result; !Declare variables

result := $SCALE (a, 4); !Return FIXED(7) value from
 ! FIXED(3) value

2. To retain precision when you divide operands that have nonzero fpoint settings,
use the $SCALE standard function to scale up the fpoint of the dividend by a factor
equal to the fpoint of the divisor; for example:

FIXED(3) num, a, b; ! fpoint of 3

num := $SCALE (a,3) / b; !Scale A to FIXED(6); result
 ! is a FIXED(3) value

$SCALE (scale)fixed-expression ,
VST1441.vsd
TAL Reference Manual—526371-001
14-39

Standard Functions $SPECIAL Function
$SPECIAL Function
The $SPECIAL function tests the right half of an INT value for the presence of an
ASCII special (non-alphanumeric) character.

int-expression

is an INT expression.

Usage Considerations
$SPECIAL inspects bits <8:15> of the int-expression and ignores bits <0:7>. It tests for
a special character according to the following criterion:

int-expression.<8:15> <> alphabetic AND int-expression.<8:15> <> numeric

If $SPECIAL finds a special character, it sets the condition code to CCG (condition
code greater than). If you plan to check the condition code, do so before an arithmetic
operation or a variable assignment occurs.

If the character passes the test, $SPECIAL returns a –1 (true); otherwise, $SPECIAL
returns a 0 (false).

int-expression can include STRING and UNSIGNED(1–16) operands, as described in
Expression Arguments on page 14-5.

Example of $SPECIAL Function
In this example, $SPECIAL tests for the presence of a special character in a STRING
argument, which the system places in the right byte of a word and treats as an INT
value:

STRING char; !Declare variable

IF $SPECIAL (char) THEN ... ; !Test for special character

$SWITCHES Function
The $SWITCHES function is described in Section 15, Privileged Procedures.

$SPECIAL ()int-expression
VST1442.vsd
TAL Reference Manual—526371-001
14-40

Standard Functions $TYPE Function
$TYPE Function
The $TYPE function returns a value that indicates the data type of a variable.

variable

is the identifier of a simple variable, array, simple pointer, structure, structure data
item, or structure pointer.

Usage Considerations
$TYPE returns an INT value that has a meaning as follows:

For a structure pointer, $TYPE returns the value 8, regardless of whether the structure
pointer points to a structure or to a substructure.

You can use $TYPE in LITERAL expressions and global initializations, because
$TYPE always returns a constant value.

Example of $TYPE Function
In this example, $TYPE returns the data type of a REAL(64) variable:

REAL(64) var1; !Declare variables
INT type1;

type1 := $TYPE (var1); !Return 6 for REAL(64)

$UDBL Function
The $UDBL function returns an INT(32) value from an unsigned INT expression.

Value Meaning Value Meaning

0 Undefined 5 REAL

1 STRING 6 REAL (64)

2 INT 7 Substructure

3 INT (32) 8 Structure

4 FIXED 9 UNSIGNED

$TYPE (variable)
VST1443.vsd

$UDBL ()int-expression
VST1444.vsd
TAL Reference Manual—526371-001
14-41

Standard Functions Usage Consideration
int-expression

is an unsigned INT expression.

Usage Consideration
$UDBL places the INT value in the low-order 16 bits of an INT(32) variable and sets
the high-order 16 bits to 0.

Example of $UDBL Function
In this example, $UDBL returns an INT(32) value from an unsigned INT expression:

INT a16 := -1; !Declare variables
INT(32) a32;

a32 := $UDBL (a16); !Return 65535D

$USERCODE Function
The $USERCODE function returns the content of the word at the specified location in
the current user code segment.

expression

is an INT expression that specifies a word address in the current user code
segment.

Usage Considerations
$USERCODE enables a program that is executing in system code space to obtain the
content of a word location in the current user code segment.

$USERCODE invokes the LWUC instruction, described in the System Description
Manual for your system.

$USERCODE is not portable to future software platforms.

$USERCODE ()expression
VST1445.vsd
TAL Reference Manual—526371-001
14-42

Standard Functions Example of $USERCODE Function
Example of $USERCODE Function
In this example, $USERCODE returns the content of a word located at a label in the
current user code segment:

PROC p; !Declare procedure
 BEGIN
 INT a, b, c; !Declare variables
 !Some code here
u_code_location: !Label a location
 a := a + b;
 !More code here
 c := $USERCODE (@u_code_location); !Get content of word
 END; ! located at label

$XADR Function
The $XADR function converts a standard address to an extended address.

variable

is the identifier of a simple variable, pointer, array element, structure, or structure
data item. For any other variable, the compiler issues a warning.

Usage Considerations
$XADR returns an extended address from the standard address of variable. (If variable
is a pointer, $XADR returns the extended address of the data to which the pointer
points, not the address of the pointer itself.) If variable already has an extended
address, $XADR returns the extended address; in this case, $XADR behaves like the
@ operator.

If a structure spans the 32K-word boundary of the user data segment, $XADR cannot
return an extended address from the standard address of a byte-addressed structure
item.

You cannot use $XADR at the global level because $XADR uses compiler-generated
code to compute the extended address.

$XADR ()variable
VST1446.vsd
TAL Reference Manual—526371-001
14-43

Standard Functions Examples of $XADR Function
Examples of $XADR Function
1. This example initializes an extended pointer with the extended (32-bit) address that

$XADR returns from a standard (16-bit) address:

INT .array[0:49]; !ARRAY has 16-bit address
STRING .EXT xptr := $XADR (array);
 !Initialize XPTR with 32-bit
 ! address returned by $XADR

2. In this example, $XADR returns an extended address for an INT variable to which
a standard simple pointer points, and then assigns the extended address to an
extended simple pointer:

INT .std_ptr := %1000; !Declare 16-bit simple pointer
INT .EXT ext_ptr; !Declare 32-bit simple pointer

@ext_ptr := $XADR (std_ptr);
 !Assign 32-bit address

3. In this example, $XADR returns the extended address of an extended indirect
array:

INT .EXT ext_ptr;
INT .EXT xarray[0:9]; !XARRAY has 32-bit address
ext_ptr := $XADR (ext_array[5]);
 !Assign 32-bit address

Built-in Functions
TAL supports many pTAL built-in functions. pTAL built-in functions provide the
functions of required CISC instructions that standard pTAL features and millicode
routines do not provide.

pTAL does not define built-ins for instructions whose functions are:

• Available through standard pTAL constructs

• Available via calls to RISC millicode routines

• Not needed to run programs on RISC processors

In a few cases, pTAL defines a built-in because the equivalent millicode routine cannot
be called from pTAL. pTAL supports each built-in by a combination of RISC instructions
and calls to system routines.

Many built-ins can be executed only by processes running in privileged mode. Most
built-ins are executable statements rather than functions that return values, such as:

$ATOMIC_ADD(a, b);
TAL Reference Manual—526371-001
14-44

Standard Functions Built-in Functions
Some built-ins are functions that return values, as in the following:

a := $ATOMIC_GET(b);

t := $READTIME;

TAL directly implements pTAL built-ins. However, the only parameter data type to some
pTAL built-ins that must be correct is the parameter size. For example, the parameter
for type-transfer functions is checked for size, but not for type. TAL is used only to
generate TNS code on behalf of the pTAL compiler. The TAL compiler does not check
the syntax of pTAL address types and type-transfer functions to the extent that the
pTAL compiler does.

Table 14-3 on page 14-45 describes the eight address type-transfer functions that TAL
implements.

TAL does not ensure that the data type of the type-transfer function parameter is the
data type specified in the type-transfer function name. TAL ensures only that the
lengths of all parameters are one word (16 bits) and that the number of words in the
result is the same as the number of words in the item into which the result is stored.

For more information, refer to the pTAL Conversion Guide or pTAL Reference Manual.

Table 14-4 describes the list of pTAL built-ins that TAL supports.

Table 14-3. Address type-transfer functions

Function Description

$WADDR_TO_BADDR Converts a WADDR address to a BADDR address

$BADDR_TO_WADDR Converts a BADDR address to a WADDR address

$SGWADDR_TO_SGBADDR Converts a SGWADDR address to a SGBADDR
address

$SGBADDR_TO_SGWADDR Converts a SGBADDR address to a SGWADDR
address

$BADDR_TO_EXTADDR Converts a BADDR address to an EXTADDR address

$WADDR_TO_EXTADDR Converts a WADDR address to an EXTADDR address

$SGBADDR_TO_EXTADDR Converts a SGBADDR address to a EXTADDR
address

$SGWADDR_TO_EXTADDR Converts a SGWADDR address to a EXTADDR
address

Table 14-4. pTAL built-ins (page 1 of 3)

Built - in Description

$EXTADDR_TO_WADDR Converts an EXTADDR address to a WADDR address

$EXTADDR_TO_BADDR Converts an EXTADDR address to a BADDR address

$WADDR_TO_BADDR Converts a WADDR address to a BADDR address

$BADDR_TO_WADDR Converts a BADDR address to an WADDR address
TAL Reference Manual—526371-001
14-45

Standard Functions Built-in Functions
$SGWADDR_TO_SGBADDR Converts an SGWADDR address to an SGBADDR
address

$SGBADDR_TO_SGWADDR Converts an SGBADDR address to an SGWADDR
address

$BADDR_TO_EXTADDR Converts a BADDR address to an EXTADDR address

$WADDR_TO_EXTADDR Converts a WADDR address to an EXTADDR address

$SGBADDR_TO_EXTADDR Converts an SGBADDR address to an EXTADDR
address

$SGWADDR_TO_EXTADDR Converts an SGWADDR address to an EXTADDR
address

$UDIVREM16 Divides an INT(32) dividend by an INT divisor to
produce an INT quotient and INT remainder

$UDIVREM32 Divides an INT(32) dividend by an INT divisor to
produce an INT(32) quotient and INT remainder

$STACK_ALLOCATE Allocates space beyond the stack area of the current
procedure

$IS_CALLER_PRIV Returns true if its callers caller is priviliged else false
i.e. if A calls B and B calls IS_CALLER_PRIV the
function returns true if A is priviliged

$FILL8 Fills an array or structure with repetitions of an 8-bit
value

$FILL16 Fills an array or structure with repetitions of an 16-bit
value

$FILL32 Fills an array or structure with repetitions of an 32-bit
value

$ATOMIC_ADD Increments a variable by a specified value

$ATOMIC_AND Performs a logical “and” operation (bitwise “and”—
LAND) on a variable and a mask and stores the result
back into the variable

$ATOMIC_OR Performs a logical “or” operation (bitwise “or”—LOR)
on a variable and a mask and stores the result back
into the variable

$ATOMIC_DEP Performs an atomic bit deposit into an INT variable

$ATOMIC_GET Fetches atomically the value of a 1-, 2-, or 4-byte
variable

$ATOMIC_PUT Stores atomically a 1-, 2-, or 4-byte value into a
variable

$ASCIITOFIXED Converts ASCII digits to a binary quadrupleword
integer

Table 14-4. pTAL built-ins (page 2 of 3)

Built - in Description
TAL Reference Manual—526371-001
14-46

Standard Functions Built-in Functions
$COUNTDUPS Returns the number of duplicate words at the
beginning of an extended memory buffer

$EXCHANGE Exchanges the contents of two variables

$FIXEDTOASCII Converts a 64-bit integer to ASCII digits

$FIXEDTOASCIIRESIDUE Converts a 64-bit integer to ASCII digits and stores the
residue

$MOVEANDCXSUMBYTES Moves and accumulates an eight-bit checksum on
bytes in extended memory

$MOVENONDUP Moves extended memory words until it encounters two
adjacent identical words

$CHECKSUM Computes the checksum of data in extended memory

$EXTADDR Converts its argument to an EXTADDR address

$PROCADDR Converts an INT(32) expression to a PROCADDR
address

Table 14-4. pTAL built-ins (page 3 of 3)

Built - in Description
TAL Reference Manual—526371-001
14-47

Standard Functions Built-in Functions
TAL Reference Manual—526371-001
14-48

15 Privileged Procedures
This section gives information on privileged mode and operations and accessing the
global data area of the system data segment. Primarily, this section describes the
syntax for:

• System global pointer declarations

• 'SG'-equivalenced simple variable declarations

• 'SG'-equivalenced structure declarations

• 'SG'-equivalenced simple pointer declarations

• 'SG'-equivalenced structure pointer declarations

• Privileged standard functions—$AXADR, $BOUNDS, $SWITCH

• Privileged directive—TARGET

Privileged Mode
The following kinds of procedures execute in privileged mode:

• A CALLABLE or PRIV procedure

• A nonprivileged procedure that is called by a CALLABLE or PRIV procedure

 Normally, only the operating system executes in privileged mode. The operating
system performs privileged operations on behalf of applications programs.

CALLABLE Procedures
A CALLABLE procedure is one that you declare with the CALLABLE attribute.
Nonprivileged procedures can call CALLABLE procedures, but only CALLABLE
procedures can call PRIV procedures.

In the following example, a CALLABLE procedure calls the PRIV procedure declared in
the next example:

PROC callable_proc CALLABLE;
 BEGIN
 !Lots of code
 CALL priv_proc;
 END;

PRIV Procedures
A PRIV procedure is one that you declare with the PRIV attribute. A PRIV procedure
can execute privileged instructions. Only PRIV or CALLABLE procedures can call a
PRIV procedure. PRIV protects the operating system from unauthorized
(nonprivileged) calls to its internal procedures.
TAL Reference Manual—526371-001
15-1

Privileged Procedures Nonprivileged Procedures
The following PRIV procedure is called by the preceding CALLABLE procedure:

PROC priv_proc PRIV;
 BEGIN
 !Privileged instructions
 END;

Nonprivileged Procedures
A nonprivileged procedure that is called by a CALLABLE or PRIV procedure executes
in privileged mode and can call PRIV procedures.

Privileged Operations
Only procedures that operate in privileged mode can access system global data. Such
procedures can access system data space, call other privileged procedures, and
execute certain privileged instructions. Privileged procedures must be specially
licensed to operate, because they might (if improperly written) adversely affect the
status of the processor in which they are running.

A procedure that operates in privileged mode can use system global pointers and 'SG'
equivalencing:

• To access system tables and the system data area

• To initiate certain input-output transfers

• To move and compare data between the user data area and the system data area

• To scan data in the system data area

A procedure operating in privileged mode can also:

• Perform privileged operations through calls to system procedures

• Execute privileged instructions that can affect other programs or the operating
system

For more information on an extended pointer pointing to a system data, see Appendix
B of the TAL Programmer’s Guide.

System tables are described in the System Description Manual for your system.
TAL Reference Manual—526371-001
15-2

Privileged Procedures System Global Pointer Declaration
System Global Pointer Declaration
The system global pointer declaration associates an identifier with a memory location
at which you store the address of a variable located in the system global data area.

type

is any data type except UNSIGNED and specifies the data type of the value to
which the pointer points.

.SG

is the system global indirection symbol and denotes 16-bit addressing in the
system global data area.

identifier

is the identifier of the pointer.

preset-address

is the address of a variable in the system global data area. The address is
determined by you or the system during system generation.

Usage Consideration
The compiler allocates one word of primary storage for the pointer in the current user
data segment. The primary storage can be global, local, or sublocal, depending on the
level at which you declare the pointer.

Example of System Global Pointer Declaration
The following example declares an INT system global pointer named NEWNAME:

INT .SG newname;

VST1501.vsd

:=

.SGtype identifier

preset-
address

;

,

TAL Reference Manual—526371-001
15-3

Privileged Procedures 'SG'-Equivalenced Variable Declarations
'SG'-Equivalenced Variable Declarations
'SG' equivalencing associates a global, local, or sublocal identifier with a location that
is relative to the base address of the system global area. You can declare the following
kinds of 'SG'-equivalenced variables:

• 'SG'-equivalenced simple variable

• 'SG'-equivalenced structure

• 'SG'-equivalenced simple pointer

• 'SG'-equivalenced structure pointer

'SG'-Equivalenced Simple Variable
The 'SG'-equivalenced simple variable declaration associates a simple variable with a
location that is relative to the base address of the system global data area.

type

is any data type except UNSIGNED and specifies the data type of identifier.

identifier

is the identifier of a simple variable to be made equivalent to 'SG'.

 'SG’

is the symbol that denotes the base address of the system global data area;
identifier is addressed relative to SG[0].

index and offset

are equivalent INT values in the range 0 through 63.

VST1502.vsd

'SG'type identifier ;

,

[index]

+ offset

-

=

TAL Reference Manual—526371-001
15-4

Privileged Procedures Example of 'SG'-Equivalenced Simple Variable
Example of 'SG'-Equivalenced Simple Variable
This example declares a simple variable equivalent to location SG + 15 in the system
global data area:

INT item = 'SG' + 15;

'SG'-Equivalenced Definition Structure
The 'SG'-equivalenced definition structure declaration associates a definition structure
with a location relative to the base address of the system global data area.

. (period)

is the standard indirection symbol and denotes 16-bit addressing, in this case in
the system global data area.

.SG

is the system global indirection symbol and denotes 16-bit addressing in the
system global data area.

.EXT

is the extended indirection symbol and denotes 32-bit addressing.

identifier

is the identifier of a definition structure to be made equivalent to 'SG'.

'SG'

is the symbol that denotes the base address of the system global data area;
identifier is addressed relative to SG[0].

VST1503.vsd

=

[index]

+ offset

-

;

identifierSTRUCT

.

.SG

structure-layout ;

.EXT

.SG
TAL Reference Manual—526371-001
15-5

Privileged Procedures Usage Consideration
index and offset

are equivalent INT values in the range 0 through 63.

structure-layout

is a BEGIN-END construct that contains declarations for structure items.

Usage Consideration
If you specify an indirection symbol (., .SG, or .EXT), the structure behaves like a
structure pointer. If you do not specify an indirection symbol, the structure has direct
addressing mode.

Example of 'SG'-Equivalenced Definition Structure
The following example declares a definition structure equivalent to location SG[10] in
the system global data area:

STRUCT def_struct = 'SG'[10];
 BEGIN
 STRING out;
 FIXED up;
 REAL in;
 END;

'SG'-Equivalenced Referral Structure
The 'SG'-equivalenced referral structure declaration associates a referral structure with
a location relative to the base address of the system global data area.

VST1504.vsd

(

[index]

+ offset

-

=referralidentifierSTRUCT

.

.SG

;

)

.EXT

'SG'
TAL Reference Manual—526371-001
15-6

Privileged Procedures Usage Considerations
. (period)

is the standard indirection symbol and denotes 16-bit addressing, in this case in
the system global data area.

.SG

is the system global indirection symbol and denotes 16-bit addressing in the
system global data area.

.EXT

is the extended indirection symbol and denotes 32-bit addressing.

identifier

is the identifier of a referral structure to be made equivalent to 'SG'.

referral

is the identifier of a previously declared structure or structure pointer that is to
provide the layout for this structure.

'SG'

is the symbol that denotes the base address of the system global data area;
identifier is addressed relative to SG[0].

index and offset

are equivalent INT values in the range 0 through 63.

Usage Considerations
If you specify an indirection symbol (., .SG, or .EXT), the structure behaves like a
structure pointer. If you do not specify an indirection symbol, the structure has direct
addressing mode.

Example of 'SG'-Equivalenced Referral Structure
This example declares a referral structure equivalent to location SG[30] in the system
global data area:

STRUCT def_struct;
 BEGIN
 STRING a[0:99];
 REAL b[0:9];
 END;

STRUCT ref_struct (def_struct) = 'SG'[30];
TAL Reference Manual—526371-001
15-7

Privileged Procedures 'SG'-Equivalenced Simple Pointer
'SG'-Equivalenced Simple Pointer
The 'SG'-equivalenced simple pointer declaration associates a simple pointer with a
location relative to the base address of the system global data area.

type

is any data type except UNSIGNED and specifies the data type of the value to
which the pointer points.

. (period)

is the standard indirection symbol and denotes 16-bit addressing, in this case in
the system global data area.

.SG

is the system global indirection symbol and denotes 16-bit addressing in the
system global data area.

.EXT

is the extended indirection symbol and denotes 32-bit addressing.

identifier

is the identifier of a simple pointer to be made equivalent to 'SG'.

'SG'

is the symbol that denotes the base address of the system global data area;
identifier is addressed relative to SG[0].

VST1505.vsd

[index]

+ offset

-

=identifier.

.SG

;

.EXT

'SG'type

,

TAL Reference Manual—526371-001
15-8

Privileged Procedures Example of 'SG'-Equivalenced Simple Pointer
index and offset

are equivalent INT values in the range 0 through 63.

Example of 'SG'-Equivalenced Simple Pointer
This example declares a simple pointer equivalent to location SG + 2 in the system
global data area:

INT .ptr = 'SG' + 2;

'SG'-Equivalenced Structure Pointer
The 'SG'-equivalenced structure pointer declaration associates a structure pointer with
a location relative to the base address of the system global data area.

STRING

denotes the STRING attribute.

INT

denotes the INT attribute.

. (period)

is the standard indirection symbol and denotes 16-bit addressing, in this case in
the system global data area.

.SG

is the system global indirection symbol and denotes 16-bit addressing in the
system global data area.

VST1506.vsd

(

[index]

+ offset

-

=

referralidentifierSTRING

;

).

.SGINT

'SG'

.EXT

,

TAL Reference Manual—526371-001
15-9

Privileged Procedures Usage Considerations
.EXT

is the extended indirection symbol and denotes 32-bit addressing.

identifier

is the identifier of a structure pointer to be made equivalent to 'SG'.

referral

is the identifier of a previously declared structure or structure pointer that is to
provide the layout for identifier.

'SG'

is the symbol that denotes the base address of the system global data area;
identifier is addressed relative to SG[0].

index and offset

are equivalent INT values in the range 0 through 63.

Usage Considerations
Table 9-3 on page 9-7 describes the kind of addresses a structure pointer can contain
depending on the STRING or INT attribute and addressing symbol.

Example of 'SG'-Equivalenced Simple Pointer
This example declares a structure that provides the structure layout for a structure
pointer and declares the structure pointer equivalent to location SG[30] in the system
global data area:

STRUCT .some_struct; !Declare structure
 BEGIN
 INT a;
 INT b[0:5];
 END;

INT .struct_ptr (some_struct) = 'SG' + 30;
TAL Reference Manual—526371-001
15-10

Privileged Procedures Functions for Privileged Operations
Functions for Privileged Operations
The following privileged functions perform operations that are restricted to procedures
running in privileged mode:

The following pages describe each privileged standard function in alphabetic order.

$AXADR Function
The $AXADR function returns an absolute extended address.

variable

is the identifier of a simple variable, pointer, array element, structure, or structure
data item.

Usage Considerations
$AXADR converts a standard or relative extended address to an absolute extended
address. If variable is a pointer, $AXADR returns the absolute extended address of the
item to which the pointer points, not the address of the pointer itself.

Example of $AXADR Function
This example converts the standard address of INTR to an absolute extended address:

PROC myproc PRIV;
 BEGIN
 STRING .EXT str;
 INT intr;
 !Lots of code
 @str := $AXADR (intr);
 !More code
 END;

Standard Function Operation

$AXADR Converts a standard address or a relative extended
address to an absolute extended address

$BOUNDS Checks the locations of parameters passed to system
procedures

$SWITCHES Returns the current setting of the switch register

VST1507.vsd

)variable$AXADR (
TAL Reference Manual—526371-001
15-11

Privileged Procedures $BOUNDS Function
$BOUNDS Function
The $BOUNDS function checks the location of a parameter passed to a system
procedure to prevent a pointer that contains an incorrect address from overlaying the
stack (S) register with data.

param

is the identifier of an INT reference parameter of the procedure from which the
$BOUNDS function is called. param must be declared at the global level. If you
specify a value parameter or a subprocedure parameter, an error results.

count

is an INT value that represents the word count.

Usage Considerations
$BOUNDS checks to see whether the stack space—represented by a starting address
and word count—causes the S register to overflow.

$BOUNDS returns an INT result. If no bounds error occurs, $BOUNDS returns a 0
(false). If a bounds error occurs, $BOUNDS returns a –1 (true).

$BOUNDS is not portable to future software platforms; it is described here only to
support existing programs. Instead, use the XBNDSTEST or XSTACKTEST system
procedure as described in the Guardian Procedure Calls Reference Manual.

Example of $BOUNDS Function
This example checks the location of the parameter BUF. Before writing three words of
information to the location pointed to by BUF, the example calls $BOUNDS to make
sure that the new information does not accidentally overwrite existing information in the
system data segment:

PROC example (buf) PRIV;
 INT .SG buf;
 BEGIN
 !Lots of code
 IF $BOUNDS (buf, 3) THEN
 CALL error
 ELSE buf ':=' [1, 2, 3];
 !More code
 END;

VST1508.vsd

,param$BOUNDS ()count
TAL Reference Manual—526371-001
15-12

Privileged Procedures $SWITCHES Function
$SWITCHES Function
The $SWITCHES function returns the current content of the switch register.

Usage Considerations
For NonStop and TXP processors, the switch register stores the current setting of the
physical switches on the processor.

$SWITCHES is not portable to future software platforms.

Example of $SWITCHES Function
The following example stores the current content of the switch register into N:

INT n;

n := $SWITCHES;

TARGET Directive
The TARGET directive lets you specify the target system for conditional code. TARGET
works in conjunction with the IF and ENDIF directives. TARGET is a D20 or later
feature.

target-system

is the system for which conditional code is written. target-system can be one of:

ANY This value causes IF ANY conditional code to be compiled.
ANY specifies that the conditional code as written is not
system-dependent.

TNS_ARCH This value causes IF TNS_ARCH conditional code to be
compiled.

TNS_R_ARCH This value causes IF TNS_R_ARCH conditional code to be
compiled.

VST1509.vsd

$SWITCHES

VST1510.vsd

target-systemTARGET
TAL Reference Manual—526371-001
15-13

Privileged Procedures Usage Considerations
Usage Considerations
You can specify TARGET in the compilation command or anywhere in the source code
any number of times. Do not, however, specify both TARGET TNS_ARCH and
TARGET TNS_R_ARCH in the same compilation unit.

You can use TARGET to source in system-specific blocks of declarations from library
files, such as operating system declaration files.

TARGET ANY Directive
A TARGET ANY can follow (and inherit the attributes of) a TARGET TNS_ARCH or
TARGET TNS_R_ARCH. If either IF TNS_ARCH or IF TNS_R_ARCH follows a
TARGET ANY, however, the compiler issues a warning and does not compile the
corresponding system-specific conditional code.

If TARGET ANY is in effect, the compiler:

• Compiles the code between IF ANY and ENDIF ANY

• Skips the code between IFNOT ANY and ENDIF ANY

If TARGET ANY is not in effect, the compiler:

• Compiles the code between IFNOT ANY and ENDIF ANY

• Skips the code between IF ANY and ENDIF ANY

TARGET TNS_ARCH Directive
If TARGET TNS_ARCH is in effect, the compiler:

• Compiles the code between IF TNS_ARCH and ENDIF TNS_ARCH

• Skips the code between IFNOT TNS_ARCH and ENDIF TNS_ARCH

If TARGET TNS_ARCH is not in effect, the compiler:

• Compiles the code between IFNOT TNS_ARCH and ENDIF TNS_ARCH

• Skips the code between IF TNS_ARCH and ENDIF TNS_ARCH

TARGET TNS_R_ARCH Directive
If TARGET TNS_R_ARCH is in effect, the compiler:

• Compiles the code between IF TNS_R_ARCH and ENDIF TNS_R_ARCH

• Skips the code between IFNOT TNS_R_ARCH and ENDIF TNS_R_ARCH

If TARGET TNS_R_ARCH is not in effect, the compiler:

• Compiles the code between IFNOT TNS_R_ARCH and ENDIF TNS_R_ARCH

• Skips the code between IF TNS_R_ARCH and ENDIF TNS_R_ARCH
TAL Reference Manual—526371-001
15-14

Privileged Procedures Examples of TARGET Directive
Any TARGET Directive
If any TARGET directive is in effect, the compiler:

• Compiles code between IF TARGETSPECIFIED and ENDIF TARGETSPECIFIED

• Skips code between IFNOT TARGETSPECIFIED and ENDIF TARGETSPECIFIED

If no TARGET directive is in effect, the compiler:

• Compiles code between IFNOT TARGETSPECIFIED and ENDIF
TARGETSPECIFIED

• Skips code between IF TARGETSPECIFIED and ENDIF TARGETSPECIFIED

Examples of TARGET Directive
1. Use TARGET to source in system-specific declarations from a library file. The

following fragment from a library file applies to Examples 2, 3, and 4:

?SECTION part1
?IF TNS_ARCH
 LITERAL pagesize = 2048;
 LITERAL pages_in_seg = 64;
?ENDIF TNS_ARCH
?IF TNS_R_ARCH
 LITERAL pagesize = 4069;
 LITERAL pages_in_seg = 32;
?ENDIF TNS_R_ARCH

 LITERAL bytes_in_seg = pages_in_seg * pagesize;
 !System-specific

 LITERAL max_file_size = 12; !Not system-specific

?SECTION part2
 LITERAL max_buffer_size = 1024; !Not system-specific

2. If your program uses MAX_BUFFER_SIZE, source in section PART2. Do not
specify a TARGET directive when you compile your program.

3. If your program uses BYTES_IN_SEG, produce two object files by compiling once
with TARGET TNS_ARCH and then again with TARGET TNS_R_ARCH. Specify
each TARGET directive in a compilation command or at the beginning of the
source file. For example, you can specify TARGET in compilation commands as
follows:

TAL /IN mysource /objtns; TARGET TNS_ARCH

TAL /IN mysource /objtnsr; TARGET TNS_R_ARCH
TAL Reference Manual—526371-001
15-15

Privileged Procedures Examples of TARGET Directive
4. If your program uses MAX_FILE_SIZE, you must specify either TARGET option to
avoid compilation errors on the BYTES_IN_SEG declaration. The object file does
not rely on system-specific declarations, so you can run the object file on both
systems by using the stand-alone Binder command SET TARGET ANY.
TAL Reference Manual—526371-001
15-16

16 Compiler Directives
This section describes compiler directives provided by the TAL compiler. Compiler
directives let you:

• Specify input source code

• Select options that control listings, generate object code, and build the object file

• Perform conditional compilation

• Allocate and delete the compiler’s internal data structures

Specifying Compiler Directives
You can specify compiler directives either in a compilation command or in a directive
line, unless otherwise noted in this section. The compiler interprets and processes
each directive at the point of occurrence.

Compilation Command
When you issue the compilation command at the TACL prompt, you can specify
compiler directives following the semicolon. In the following example, NOMAP
suppresses the symbol map and CROSSREF produces a cross-reference listing:

TAL /IN mysrc, OUT $s.#lists/ myobj; NOMAP, CROSSREF

You can specify any directive in the compilation command except the following, which
can appear only in the source file:

ASSERTION
BEGINCOMPILATION
DECS
DEFINETOG
DUMPCONS
ENDIF
IF
IFNOT
PAGE
RP
SECTION
SOURCE

The following directives can appear only in the compilation command:

EXTENDTALHEAP
SQL with the PAGES option
SYMBOLPAGES

For information on compilation command options, see Section 14, Compiling
Programs, in the TAL Programmer’s Guide.
TAL Reference Manual—526371-001
16-1

Compiler Directives Directive Line
Directive Line
A directive line in your source code can contain one or more compiler directives unless
otherwise noted in the directive descriptions.

?

indicates a directive line. ? can appear only in column 1.

directive

is the name of a compiler directive described in this section.

Usage Considerations

• Begin each directive line and each continuation directive line by specifying ? in
column 1. (? is not part of the directive name.)

• Place the name of a directive and its arguments on the same line unless the
directive description says you can use continuation lines. For example, SEARCH
and SOURCE can continue on subsequent lines.

• When you use continuation lines, place the leading parenthesis of the argument list
on the same line as the directive name. Otherwise, the compiler issues a warning
and ignores the argument list.

• Do not put stray characters such as semicolons at the end of a directive line. If you
do, the compiler issues a warning.

• You can use an equal sign (=) as a separator in directives that accept numeric
values, but no other NonStop compiler allows an equal sign in directives.

Examples of Directive Lines
1. This directive line uses a continuation line for multiple directives:

?NOLIST, NOCODE, INSPECT, SYMBOLS, NOMAP, NOLMAP, GMAP

?CROSSREF, INNERLIST

?

VST1601.vsd

directive

,

TAL Reference Manual—526371-001
16-2

Compiler Directives Directive Stacks
2. This directive line shows proper placement of the leading parenthesis of the
argument list:

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (

? PROCESS_GETINFO_,

? PROCESS_STOP_)

Directive Stacks
Several directives have a compile-time directive stack on which you can push and pop
directive settings. Directives that have directive stacks are:

CHECK

CODE

DEFEXPAND

ICODE

INNERLIST

INT32INDEX

LIST

MAP

Each directive stack is 32 levels deep. The compiler initially sets all levels of each
directive stack to the off state.

Pushing Directive Settings
When you push the current directive setting onto a directive stack, the current directive
setting of the source file remains unchanged until you specify a new directive setting.

To push a directive setting onto a directive stack, specify the directive name prefixed by
PUSH. For example, to push the current setting of the LIST directive onto the LIST
directive stack, specify PUSHLIST. The other values in the directive stack move down
one level. If a value is pushed off the bottom of the directive stack, that value is lost.

Popping Directive Settings
To restore the top value from a directive stack as the current setting of the source file,
specify the directive name prefixed by POP. For example, to restore the top value off
the LIST directive stack, specify POPLIST. The remaining values in the directive stack
move up one level, and the vacated level at the bottom of the stack is set to the off
state.
TAL Reference Manual—526371-001
16-3

Compiler Directives File Names As Directive Arguments
Directive Stack Example
In the following example:

1. LIST is the default setting for the source file.

2. PUSHLIST pushes the LIST directive setting onto the LIST directive stack.

3. NOLIST suppresses listing of sourced-in procedures.

4. POPLIST pops the top value off the LIST directive stack and restores LIST as the
current setting for the remainder of the source file:

!LIST is the default setting for the source file

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (

? PROCESS_GETINFO_, FILE_OPEN_, WRITEREADX, READX)

?POPLIST

File Names As Directive Arguments
The following directives accept names of disk files as arguments:

ERRORFILE
LIBRARY
SAVEGLOBALS
SEARCH
SOURCE
USEGLOBALS

A disk file name consists of four parts, with each part separated by periods:

• A node name or a C-series system name

• A volume name

• A subvolume name

• A file ID

Here is an example of a file name:

\mynode.$myvol.mysubvol.myfileid

Partial File Names
You can specify partial file names as described in Appendix E in the TAL Programmer’s
Guide. If you specify a partial file name, the compiler uses default values as described
in Appendix E.

For the SEARCH, SOURCE, and USEGLOBALS directives, the compiler can use the
node (system), volume, and subvolume specified in TACL ASSIGN SSV (Search
SubVolume) commands.
TAL Reference Manual—526371-001
16-4

Compiler Directives Logical File Names
Logical File Names
A logical file name is a TACL DEFINE name or a TACL ASSIGN name. The following
directives accept a logical file name in place of a file name:

ERRORFILE
SAVEGLOBALS
SEARCH
SOURCE
USEGLOBALS

Appendix E in the TAL Programmer’s Guide gives more information on disk file names
and TACL DEFINE and ASSIGN commands.

Summary of Compiler Directives
Table 16-1 on page 16-6 summarizes directives grouped in the following categories. In
the table, boldface type indicates a default directive.

• Compiler input

• Compiler listing

• Diagnostic output

• Object-file content

• Conditional compilation

• Compiler’s internal data structures

• Object-file run-time environment
TAL Reference Manual—526371-001
16-5

Compiler Directives Summary of Compiler Directives
Table 16-1. Summary of Compiler Directives (page 1 of 6)

Category Directive Alternate Operation

Compiler Input ABORT

BEGINCOMPILATION

COLUMNS

NOABORT Terminates the
compilation if the
compiler cannot open a
source file

Starts compiling source
code

Treats as comments any
text that appears beyond
the specified column

SAVEGLOBALS

SECTION

SOURCE

USEGLOBALS

Saves global data
declarations in a file

Names a section of the
source file

Sources in code from
another input file

Retrieves saved global
data declarations
TAL Reference Manual—526371-001
16-6

Compiler Directives Summary of Compiler Directives
Compiler Listing ABSLIST

CODE

NOABSLIST

NOCODE
POPCODE
PUSHCODE

Lists addresses relative
to the code area base
Lists instruction codes in
octal format after each
procedure

CROSSREF

DEFEXPAND

FMAP

GMAP

NONCROSSREF

NODEFEXPAND
PUSHDEFEXPAND
POPDEFEXPAND

NOFMAP

NOGMAP

Cross-references source
identifier classes

Lists the text of invoked
DEFINE macros

Lists the file map of
source files used

Lists the global map

ICODE

INNERLIST

NOICODE
POPICODE
PUSHICODE

NOINNERLIST
PUSHINNERLIST
POPINNERLIST

Lists mnemonics after
each procedure

Lists mnemonics after
each source statement

LINES Skips to the top of form
after a specified number
of lines if the list file is a
line printer or a process

LIST

LMAP
MAP

NOLIST
PUSHLIST
POPLIST

NOLMAP
NOMAP
PUSHMAP
POPMAP

Lists the source code

Lists the load maps
Lists the identifier map

PAGE

PRINTSYM

SUPPRESS

NOPRINTSYM
NOSUPPRESS

Ejects the page if the list
file is a line printer or a
process

Selectively lists symbols
Suppresses all listings
but the header,
diagnostics, and trailer

Table 16-1. Summary of Compiler Directives (page 2 of 6)

Category Directive Alternate Operation
TAL Reference Manual—526371-001
16-7

Compiler Directives Summary of Compiler Directives
Diagnostics ERRORFILE

ERRORS

RELOCATE

WARN NOWARN

Logs error and warning
messages to an error file

Terminates compilation if
the specified number of
error messages occur

Issues warnings for
nonrelocatable global
variables

Selectively suppresses
warnings

Object-File
Content

ASSERTION

CHECK

COMPACT

NOCHECK
PUSHCHECK
POPCHECK

NOCOMPACT

Conditionally invokes a
procedure for debugging
purposes

Generates range-
checking code

Fills gaps in the lower
code area

CPU

DUMPCONS
FIXUP NOFIXUP

Generates a TNS object
file; this directive is now
superfluous

Emits constants and
labels to the object code
Performs fixup steps

Table 16-1. Summary of Compiler Directives (page 3 of 6)

Category Directive Alternate Operation
TAL Reference Manual—526371-001
16-8

Compiler Directives Summary of Compiler Directives
Object-File
Content

INHIBITXX

INT32INDEX

OLDFLTSTDFUNC

NOINHIBITXX

NOINT32INDEX

Suppresses extended
indexed (XX) instructions

Generates correct
extended addresses for
structure items accessed
by INT indexes in D-
series programs

Treats $FLT, $FLTR,
$EFLT, and $EFLTR
arguments as FIXED(0)
values

OPTIMIZE

PEP

ROUND NOROUND

Optimizes the object
code at the specified
level

Sets the size of the
procedure entry point
(PEP) table

Performs scalar rounding

SEARCH

SQL

SQLMEM

SYNTAX

Resolves external
references using the
specified object files
Prepares for processing
of NonStop SQL
statements
Controls SQL parameter
placement in run-time
memory
Checks the syntax;
suppresses the object
code

Table 16-1. Summary of Compiler Directives (page 4 of 6)

Category Directive Alternate Operation
TAL Reference Manual—526371-001
16-9

Compiler Directives Summary of Compiler Directives
Conditional
Compilation

DEFINETOG

ENDIF

IF

RESETTOG

SETTOG

TARGET

IFNOT

Specifies toggles without
changing their settings
(D20 RVU or later)

Stops conditional
compilation
Begins conditional
compilation

Turns toggles (that were
turned on by SETTOG)
off

Specifies toggles and
turns them on

Specifies target system
for D20 or later
conditional code

Compiler Data
Structures

DECS

EXTENDTALHEAP

RP

SYMBOLPAGES

Decrements the
compiler’s internal S-
register value

Increases the size of the
compiler’s extended
heap (D-series system)

Sets the compiler’s
internal register pointer
(RP) counter

Increases the size of the
compiler’s internal
symbol table

Table 16-1. Summary of Compiler Directives (page 5 of 6)

Category Directive Alternate Operation
TAL Reference Manual—526371-001
16-10

Compiler Directives Summary of Compiler Directives
Run-time
Environment

DATAPAGES

ENV

EXTENDSTACK

HEAP

HIGHPIN

HIGHREQUESTERS

Sets the size of the data
area in the user data
segment

Specifies a run-time
environment such as the
CRE for a D-series
object file

Increases the size of the
data stack

Sets the size of the CRE
user heap for a D-series
object file

Sets the HIGHPIN
attribute in a D-series
object file

HIGHREQUESTERS
attribute in a D-series
object file

Run-time
Environment

INSPECT

LARGESTACK

LIBRARY

NOINSPECT Sets the Inspect product
as the default debugger

Sets the size of the
extended stack

Uses the specified user
library file for resolving
external references

RUNNAMED

SAVEABEND NOSAVEABEND

Causes a D-series object
file to run as a named
process

Creates a process-state
save file if the program
ends abnormally

STACK

SUBTYPE

SYMBOLS NOSYMBOLS

Sets the size of the data
stack

Saves the specified
process subtype in the
object file header
Generates the symbol
table for the Inspect
product

Table 16-1. Summary of Compiler Directives (page 6 of 6)

Category Directive Alternate Operation
TAL Reference Manual—526371-001
16-11

Compiler Directives ABORT Directive
ABORT Directive
With ABORT, the compiler terminates compilation if it cannot open a file specified in a
SOURCE directive.

The default is ABORT.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

ABORT
If ABORT is in effect and the compiler cannot open a file listed in a SOURCE directive,
the compilation session terminates. ABORT issues an error message to the output file,
stating the name of the file that cannot be opened.

NOABORT
If NOABORT is in effect and the compiler cannot open a file listed in a SOURCE
directive, the compiler prompts the home terminal for the name of a file. You can then
take any of the following actions:

• Retry the unopened file after moving it to the required location.

• Skip the unopened file and continue compilation.

• Substitute the name of another file.

• Abort the compilation.

If you choose to either skip the unopened file or abort the compilation, the compiler
issues an error message.

If SUPPRESS is also in effect, the compiler prints the SOURCE directive before the
error message.

VST1602.vsd

ABORT

NOABORT
TAL Reference Manual—526371-001
16-12

Compiler Directives Example of ABORT Directive
Example of ABORT Directive
In this example, NOABORT prompts you for a file name when the compiler cannot
open a file listed in a SOURCE directive:

!This is MYSOURCE file

!Global declarations

?NOABORT

?SOURCE somefile (proc1, proc2, proc3)

?SOURCE anyfile

!Procedure declarations

ABSLIST Directive
ABSLIST lists code addresses relative to the code area base.

The default is NOABSLIST.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

ABSLIST lists the code address for each source line relative to location C[0], the base
of the code area. The code address for each line applies to the first instruction
generated from the source statement on that line. ABSLIST has no effect if NOLIST or
SUPPRESS is in effect.

If you use ABSLIST, you must also use a PEP directive to specify the size of the PEP
table. Place the PEP directive before the first procedure declaration that is not a
FORWARD or EXTERNAL procedure declaration.

NOABSLIST lists code addresses relative to the base of the procedure.

Limitations
General use of ABSLIST is not recommended because some addresses listed by
ABSLIST are incorrect, for example, if the file:

• Has more than 32K words of code

• Has RESIDENT procedures following non-RESIDENT procedures

VST1603.vsd

ABSLIST

NOABSLIST
TAL Reference Manual—526371-001
16-13

Compiler Directives Example of ABSLIST Considerations
• Does not supply enough PEP table space in the PEP directive

• Does not declare all procedures FORWARD

Also, if the file reaches the 64K-word limit, the compiler disables ABSLIST, starts
printing offsets from the procedure base, and emits a warning.

Example of ABSLIST Considerations
This example shows placement of the ABSLIST and PEP directives before the first
procedure declaration:

 !Global declarations

 ?ABSLIST; PEP 60

 PROC a;

 BEGIN

 !Lots of code

 END;

ASSERTION Directive
ASSERTION invokes a procedure when a condition defined in an ASSERT statement
is true.

assertion-level

is an unsigned decimal constant in the range 0 through 32,767 that defines a
numeric relationship to an ASSERT statement assert-level.

procedure-name

is the name of the procedure to invoke if the condition defined in an ASSERT
statement is true and the ASSERTION directive assertion-level is less than the
ASSERT statement assert-level. The named procedure must not have parameters.

Usage Considerations
ASSERTION can appear anywhere in the source code but not in the compilation
command. If other directives appear on the same directive line, ASSERTION must be
last on that line.

You use the ASSERTION directive with the ASSERT statement as follows:

,

VST1604.vsd

assertion-
levelASSERTION

=

procedure-
name
TAL Reference Manual—526371-001
16-14

Compiler Directives Example of ASSERTION Directive
1. Place an ASSERTION directive in the source code where you want to start
debugging. In the directive, specify an assertion-level and an error-handling
procedure such as the D-series PROCESS_DEBUG_ or the C-series DEBUG
procedure:

?ASSERTION 5, PROCESS_DEBUG_ !Assertion-level is 5

2. Place an ASSERT statement at the point where you want to invoke the error-
handling procedure when some condition occurs. In the ASSERT statement,
specify an assert-level that is equal to or higher than the assertion-level and
specify an expression that tests a condition. For example, the standard function
$CARRY returns true if the carry indicator is on and false if it is off:

ASSERT 10 : $CARRY; !Assert-level is 10

3. During program execution, if an ASSERT statement assert-level is equal to or
higher than the current ASSERTION directive assertion-level and the associated
condition is true, the compiler invokes the error-handling procedure.

4. After you debug the program, you can nullify all or some of the ASSERT
statements by specifying an ASSERTION directive with an assertion-level that is
higher than the highest ASSERT statement assert-level you want to nullify:

?ASSERTION 11, PROCESS_DEBUG_ !Assertion-level nullifies

 ! assert-level 10 and below

Example of ASSERTION Directive
This example invokes PROCESS_DEBUG_ whenever a carry or overflow condition
occurs:

?SOURCE $SYSTEM.SYSTEM.EXTDECS (PROCESS_DEBUG_)

?ASSERTION 5, PROCESS_DEBUG_

 !Assertion-level 5 activates all ASSERT conditions

SCAN array WHILE " " -> @pointer;

ASSERT 10 : $CARRY;

!Lots of code

ASSERT 10 : $CARRY;

!More code

ASSERT 20 : $OVERFLOW;

 !$OVERFLOW function tests for arithmetic overflow

If you change the assertion-level in the ASSERTION directive to 15, you nullify the two
ASSERT statements that specify assert-level 10 and the $CARRY condition.
TAL Reference Manual—526371-001
16-15

Compiler Directives BEGINCOMPILATION Directive
If you change the assertion-level to 30, you nullify all the ASSERT statements. Thus, if
ASSERT statements that cover a particular condition all have the same assert-level, it
is easier to nullify specific levels of ASSERT statements.

BEGINCOMPILATION Directive
BEGINCOMPILATION marks the point in the source file where compilation is to begin
if the USEGLOBALS directive is in effect.

Usage Considerations
If you have saved global data declarations in a previous compilation (by specifying
SAVEGLOBALS), you can use the saved declarations in subsequent compilations (by
specifying USEGLOBALS, BEGINCOMPILATION, and SEARCH).

• USEGLOBALS suppresses compilation of text lines and SOURCE directives but
not other directives.

• SEARCH specifies the object file that provides global initializations and template
structure declarations for the USEGLOBALS compilation.

• BEGINCOMPILATION begins compilation of text lines and SOURCE directives.

BEGINCOMPILATION, if present, must appear in the source code between the last
global data declaration or SEARCH directive and the first procedure declaration,
including any EXTERNAL and FORWARD declarations. BEGINCOMPILATION takes
effect only if USEGLOBALS is in effect.

To use BEGINCOMPILATION, you must not have changed the global data declarations
after you compiled with SAVEGLOBALS to produce the object file containing the
initializations.

For more information, see SAVEGLOBALS Directive on page 16-75 and
USEGLOBALS Directive on page 16-93.

Example of BEGINCOMPILATION Directive
For an example of how SAVEGLOBALS, USEGLOBALS, BEGINCOMPILATION, and
SOURCE interact, see SAVEGLOBALS in this section.

VST1605.vsd

BEGINCOMPILATION
TAL Reference Manual—526371-001
16-16

Compiler Directives CHECK Directive
CHECK Directive
CHECK generates range-checking code for certain features.

The default is NOCHECK.

Usage Considerations
You can specify the CHECK directive in the compilation command or anywhere in the
source text.

CHECK turns the checking setting on for subsequent code.

NOCHECK turns the checking setting off for subsequent code.

PUSHCHECK pushes the current checking setting onto the directive stack without
changing the current setting.

POPCHECK removes the top value from the directive stack and sets the current
checking setting to that value.

Extended Stack
If the source code includes extended local arrays or structures, the compiler allocates
an extended stack in the automatic extended data segment. The compiler also
allocates two pointers (#SX and #MX) to the extended stack. #SX points to the first
free location in the current stack frame, and #MX contains the maximum allowable
value for #SX, less eight bytes.

If the value of #SX is greater than or equal to that of #MX, the extended stack
overflows. If CHECK is in effect, the compiler sets the S-register to %177777, causing
a stack overflow trap.

Unlabeled CASE Statement
If you omit the OTHERWISE clause of an unlabeled CASE statement and the selector
value is out of range (negative or greater than n), the compiler behaves as follows:

• If the CHECK directive is in effect and if your program has enabled arithmetic
traps, a divide-by-zero instruction trap occurs.

VST1606.vsd

POPCHECK

PUSHCHECK

NOCHECK

CHECK
TAL Reference Manual—526371-001
16-17

Compiler Directives Example of CHECK Directive
• If NOCHECK is in effect or if your program has disabled arithmetic traps, control
passes to the statement following the unlabeled CASE statement and program
results are unpredictable.

Labeled CASE Statement
CHECK and NOCHECK do not affect the labeled CASE statement. If you omit the
OTHERWISE clause in a labeled CASE statement and the selector value does not
select an alternative, a run-time error occurs.

Example of CHECK Directive
This example uses CHECK to provide a stack overflow trap if the extended stack
overflows:

!This is MYSOURCE file

?CHECK

PROC a;

 BEGIN

 !Lots of extended local data declarations

 !Lots of code

 CALL a;

 !More code

 END;

CODE Directive
CODE lists instruction codes and constants in octal format after each procedure.

The default is CODE.

VST1607.vsd

POPCODE

PUSHCODE

NOCODE

CODE
TAL Reference Manual—526371-001
16-18

Compiler Directives Usage Considerations
Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

CODE turns the code-listing setting on for subsequent code. CODE has no effect if
NOLIST or SUPPRESS is in effect.

NOCODE turns the code-listing setting off for subsequent code.

PUSHCODE pushes the current code-listing setting onto the directive stack without
changing the current setting.

POPCODE removes the top value from the directive stack and sets the current code-
listing setting to that value.

CODE Listing
The code listing for each procedure follows the local map, if any, for the procedure.
Each line lists an octal address (the offset from the procedure base), followed by eight
words of instructions in octal.

For global variables declared within a named data block, the G+ addresses shown are
relative to the start of the data block and are not the final addresses. At the end of
compilation, BINSERV determines the final G+ addresses for such global variables
and the code locations for items such as PCAL instructions and global read-only
arrays.

After compilation, you can display the final addresses by using Binder and Inspect
commands.

Example of CODE Directive
This compilation command specifies NOCODE to suppress the code listing:

TAL /IN mysrc, OUT $s.#lists/ myobj; NOCODE

COLUMNS Directive
COLUMNS directs the compiler to treat any text beyond the specified column as
comments.

columns-value

is the column beyond which the compiler is to treat text as comments. Specify an
unsigned decimal constant in the range 12 through 132. The default value is 132. If

columns-value

VST1608.vsd

COLUMNS
TAL Reference Manual—526371-001
16-19

Compiler Directives Usage Considerations
you specify a value smaller than 12, the compiler issues a warning and uses 12. If
you specify a value larger than 132, the compiler issues a warning and uses 132.

Usage Considerations
COLUMNS can appear in the compilation command or anywhere in the source code.

In the source code, COLUMNS if present must be the first or only directive in the
directive line. If it is not the first or only directive in the directive line, the compiler
issues a diagnostic message and ignores COLUMNS and any remaining directives on
that line. This ordering is not enforced if COLUMNS appears in the compilation
command.

Recommended Uses
Normally, you specify COLUMNS at the beginning of the source code preceding any
SECTION directive. You can set the columns-value as follows:

• If a source file has no unprefixed comments at the ends of lines, specify a
columns-value of 132 to prevent lines from being truncated in the event this file is
sourced in by a file that has a smaller columns-value. Unprefixed comments begin
without the dash (--) or exclamation point (!) prefix.

• If a source file has unprefixed comments at the ends of lines, specify a columns-
value that allows the compiler to ignore the comments.

Although a source file can include any number of COLUMNS directives, varying the
columns-value throughout the file is not recommended.

Context of the Columns Value
The columns-value in effect at any given time depends on the context, as follows:

• The main input file initially assumes the columns-value set by the last COLUMNS
directive in the compilation command. If no COLUMNS directive appears, the main
input file initially assumes a columns-value of 132.

• At each SOURCE directive, each sourced-in file initially assumes the columns-
value in effect when the SOURCE directive appeared.

• At each SECTION directive, the columns-value is set by the last COLUMNS
directive before the first SECTION directive in the sourced-in file. If no such
COLUMNS directive appears, each SECTION initially assumes the columns-value
in effect at the beginning of the sourced-in file.

• Within a section, a COLUMNS directive sets the columns-value only until the next
COLUMNS or SECTION directive or the end of the file.

• After a SOURCE directive completes execution (that is, after all sections listed in
the SOURCE directive are read or the end of the file is reached), the compiler
restores the columns-value to what it was when the SOURCE directive appeared.
TAL Reference Manual—526371-001
16-20

Compiler Directives Examples of COLUMNS Directive
• In all other cases, the columns-value is set by the most recently processed
COLUMNS directive.

If a SOURCE directive lists sections, the compiler processes no source code outside
the listed sections except any COLUMNS directives that appear before the first
SECTION directive in the sourced-in file. For more information on sourcing in files or
sections, see the SOURCE and SECTION directives.

Examples of COLUMNS Directive
1. This directive appears at the beginning of a source file that has no unprefixed

comments at the ends of lines. It prevents truncation of lines in the event this file is
sourced in by a file that has narrow lines specified.

?COLUMNS 132

2. This directive appears at the beginning of a source file that starts unprefixed
comments in column 81 of each line. It constrains the source file to 80 columns:

?COLUMNS 80

COMPACT Directive
COMPACT moves procedures into gaps below the 32K-word boundary of the code
area if they fit.

The default is COMPACT.

Usage Considerations
This directive can appear in the compilation command or anywhere in the compilation
unit. The last COMPACT or NOCOMPACT directive sets the option for the compilation
unit.

By default, COMPACT is in effect. BINSERV moves procedures into any gap (if they fit)
in the lower 32K-word area of the code segment.

If NOCOMPACT is in effect, BINSERV does not fill the gaps in the lower 32K-word
area of the code segment.

VST1609.vsd
NOCOMPACT

COMPACT
TAL Reference Manual—526371-001
16-21

Compiler Directives Example of COMPACT Directive
Example of COMPACT Directive
This example specifies the COMPACT directive at the end of the source file in case
sourced-in files specify NOCOMPACT. This is to ensure that BINSERV fills in gaps in
the lower 32K-word area of the code segment:

!This is MYSOURCE file

!Lots of code

!Last procedure

?COMPACT

!End of source file

CPU Directive
CPU specifies that the object file runs on a TNS system. (The need for this directive no
longer exists. This directive has no effect on the object file and is retained only for
compatibility with programs that still specify it.)

cpu-type

indicates the object file is to run on a TNS system—that is, a NonStop, NonStop
TXP, NonStop VLX, NonStop CLX, or NonStop Cyclone system. cpu-type can be
one of these equivalent keywords:

TNS/II

NONSTOP

Usage Considerations
This directive can appear in the compilation command or in the source code before the
first declaration.

CROSSREF Directive
CROSSREF collects source-level declarations and cross-reference information or
specifies CROSSREF classes.

The default is NOCROSSREF.

cpu-type

VST1610.vsd

CPU
TAL Reference Manual—526371-001
16-22

Compiler Directives Usage Considerations
class

is an identifier class. The default list of classes includes all classes except UNREF.
You can specify any of the following classes:

The CONSTANTS class is available in the stand-alone Crossref product, but not in the
CROSSREF directive.

Usage Considerations
CROSSREF and NOCROSSREF can appear on the compilation command or any
number of times anywhere in the source code. To list the cross-references, LIST and
NOSUPPRESS must be in effect at the end of the source file. The cross-reference
information appears between the global maps and the load maps.

Class Meaning

BLOCKS Named and private data blocks

DEFINES Named text

LABELS Statement labels

LITERALS Named constants

PROCEDURES Procedures

PROCPARAMS Procedures that are formal parameters

SUBPROCS Subprocedures

TEMPLATES Template structures

UNREF Unreferenced identifiers

VARIABLES Simple variables, arrays, definition structures, referral
structures, pointers, and equivalenced variables

Note. If you use USEGLOBALS, do not use CROSSREF. If you do, the compiler will not
pass Inspect and cross-reference information to SYMSERV.

NOCROSSREF

VST1611.vsd

(

CROSSREF

class)

,

class
TAL Reference Manual—526371-001
16-23

Compiler Directives Usage Considerations
Selecting Classes
You can make changes to the current class list at any point in the compilation unit. The
compiler collects cross-references for the class list in effect at the end of the
compilation:

• To add classes, specify CROSSREF and list the classes you want to add.

• To delete classes, specify NOCROSSREF and list the classes you want to delete.

With parameters, CROSSREF and NOCROSSREF affect the class list, but do not start
and stop the collection of cross-references.

Collecting Cross-References
For each identifier class in the list, the compiler collects the following cross-reference
information:

• Identifier qualifiers—structure, subprocedure, and procedure identifiers

• Compiler attributes—class and type modifiers

• Host source file name

• Type of reference—definition, read, write, invocation, parameter, or other

You can collect cross-references for individual procedures or data blocks:

• To start collection of cross-references, specify CROSSREF without parameters.

• To stop collection of cross-references, specify NOCROSSREF with no parameters.

Without parameters, CROSSREF and NOCROSSREF start and stop the collection of
cross-references, but do not affect the class list.

CROSSREF without parameters takes effect at the beginning of the next procedure or
data block and remains in effect for the entire program or until a NOCROSSREF
appears.

NOCROSSREF without parameters takes effect at the beginning of the next procedure
or data block and remains in effect for the entire program or until a CROSSREF
appears.

For other cross-reference options, use the stand-alone Crossref product described in
the CROSSREF Manual. For example, the Crossref product can collect cross-
references from source files written in one or more languages.
TAL Reference Manual—526371-001
16-24

Compiler Directives Example of CROSSREF Directive
Example of CROSSREF Directive
This example makes changes to the current class list and turns the collection and
listing of cross-references on and off:

!Default LIST and NOSUPPRESS are in effect;
! list cross-references.

?CROSSREF, CROSSREF UNREF, NOCROSSREF VARIABLES
 !Collect cross-references

NAME test;
 INT i;

?NOCROSSREF !Do not collect cross-
BLOCK PRIVATE; ! references
 INT j;
END BLOCK;

?CROSSREF, CROSSREF VARIABLES !Collect cross-references
PROC p MAIN;
 BEGIN
 !Lots of code
 END;

?SUPPRESS !Do not list cross-
PROC q; ! references
 BEGIN
 !More code
 END;
?NOSUPPRESS !List cross-references

DATAPAGES Directive
DATAPAGES sets the size of the data area in the user data segment.

num-pages

is the number of 2048-byte memory pages to allocate for the object file’s data area
in the user data segment. Specify an unsigned decimal constant in the range 0
through 64.

If you specify an out-of-range value, BINSERV sets num-pages to 64.

If you specify an insufficient amount or omit DATAPAGES, BINSERV allocates enough
memory pages for global data and two times the data stack space needed for local
data.

VST1612.vsd

num-pagesDATAPAGES

=

TAL Reference Manual—526371-001
16-25

Compiler Directives Usage Considerations
Usage Considerations
Before compilation, you can specify the number of data area memory pages as follows:

• You can specify the DATAPAGES directive in the compilation command or
anywhere in the source code. If you specify a num-pages value greater than 32,
DATAPAGES overrides the STACK and EXTENDSTACK directives. In a
compilation unit that contains a MAIN procedure, the ENV COMMON directive
overrides DATAPAGES

• You can specify the memory pages parameter of the C-series NEWPROCESS
procedure or the D-series PROCESS_CREATE_ procedure in your compilation
unit

After compilation, you can set the number of data area memory pages as follows:

• In Binder, you can use the DATA, STACK, and EXTENDSTACK options of the SET
command

• At the TACL prompt, you can use the MEM option of the TACL RUN command

Programs using SQL instructions require extra data area memory pages.

Example of DATAPAGES Directive
This compilation command starts the compiler and sets the data area size to 64
memory pages:

TAL / IN mysrc, OUT $s.#lists / myobj; DATAPAGES 64

DECS Directive
DECS decrements the compiler’s internal S-register counter.

sdec-value

is the amount by which to decrement the compiler’s S-register counter. Specify a
signed decimal constant in the range –32,768 through 32,767.

VST1613.vsd

sdec-valueDECS

=

TAL Reference Manual—526371-001
16-26

Compiler Directives Usage Considerations
Usage Considerations
DECS can appear anywhere in the source code outside the global declarations. It
cannot appear in the compilation command.

If you manipulate data stack contents without the compiler’s knowledge (with CODE
statements, for example), you should use DECS to calibrate the compiler’s internal S-
register counter.

If the compiler decrements (or increments) the S register below (or above) its initial
value in a procedure or subprocedure, the compiler issues a warning of S-register
underflow (or overflow). If the source program is correct, use DECS to calibrate the
compiler’s S-register counter, particularly in subprocedures because sublocal variables
have S-relative addresses.

Modularize any use of the DECS directive and CODE statement as much as possible;
they are not portable to future software platforms.

Example of DECS Directive
The following example shows the following actions:

1. A CODE (PUSH ...) statement (not a CALL statement) places the parameters for
PROC_NAME onto the data stack.

2. A CODE (PCAL ...) statement calls PROC_NAME.

3. PROC_NAME decrements the data stack by three words without the compiler’s
knowledge.

A DECS directive calibrates the compiler’s internal S-register setting; DECS
decrements the register setting by three words.

SUBPROC sp;
 BEGIN
 !Lots of code
 STACK param1, param2, param3; !Load parameters onto
 ! register stack
 CODE (PUSH %722); !Push parameters onto
 ! data stack
 CODE (PCAL proc_name); !Call the procedure
?DECS 3 !Decrement compiler’s
 !More code ! S-register counter by
 END; ! three words

DEFEXPAND Directive
DEFEXPAND lists expanded DEFINEs and SQL-TAL code in the compiler listing.

The default is NODEFEXPAND.
TAL Reference Manual—526371-001
16-27

Compiler Directives Usage Considerations
Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

DEFEXPAND turns the define-listing setting on for subsequent code. DEFEXPAND
has no effect if NOLIST or SUPPRESS is in effect.

NODEFEXPAND turns the define-listing setting off for subsequent code.

PUSHDEFEXPAND pushes the current define-listing setting onto the directive stack
without changing the current setting.

POPDEFEXPAND removes the top value from the directive stack and sets the current
define-listing setting to that value.

DEFEXPAND Listing
In the DEFEXPAND listing, the DEFINE body appears on lines following the DEFINE
identifier. In the listing:

• Lowercase letters appear in uppercase.

• No comments, line boundaries, or extra blanks appear.

• The lexical level of the DEFINE appears in the left margin, starting at 1.

• Parameters to the DEFINE appear as $n (C-series system) or #n (D-series
system), where n is the sequence number of the parameter, starting at 1.

A single SQL statement might generate code that contains many TAL declarations or
statements. DEFEXPAND includes such code in the listing.

Example of DEFEXPAND Directive
This example requests that the compiler list the expanded DEFINE:

?DEFEXPAND !List expanded DEFINEs

DEFINE increment (x) = x := x + 1#; !Expanded DEFINE

DEFINE decrement (y) = y := y - 1#; !Expanded DEFINE

 !Other global data declarations

VST1614.vsd

POPDEFEXPAND

PUSHDEFEXPAND

NODEFEXPAND

DEFEXPAND
TAL Reference Manual—526371-001
16-28

Compiler Directives DEFINETOG Directive
DEFINETOG Directive
DEFINETOG specifies named or numeric toggles, without changing any prior settings,
for use in conditional compilation. DEFINETOG is a D20 or later feature.

toggle-name

is a user-defined name that conforms to the TAL identifier format.

toggle-number

is an unsigned decimal constant in the range 1 through 15. Leading zeros are
ignored.

Usage Considerations
DEFINETOG can appear anywhere in the source code but not in the compilation
command. DEFINETOG without a parenthesized list must be the last directive on the
line. When DEFINETOG has a parenthesized list, other directives can follow on the
same line, with a comma separating the closing parenthesis from the next directive.

DEFINETOG interacts with the IF, IFNOT, and ENDIF directives. IF and IFNOT test the
setting of toggles and mark the beginning of conditional compilation. ENDIF marks the
end of conditional compilation.

Named Toggles
Before you use a named toggle in an IF or IFNOT directive, you must specify that
name in a DEFINETOG, SETTOG, or RESETTOG directive. Which of these directives

VST1615.vsd

,

DEFINELOG toggle-name

toggle-number

,

toggle-name

toggle-number

()
TAL Reference Manual—526371-001
16-29

Compiler Directives Examples of DEFINETOG Directive
you use depends on whether you want settings of named toggles unchanged or turned
on or off:

You can use DEFINETOG if you are not sure the toggles were created earlier in the
compilation, possibly in a file that you sourced in. If you specify toggles that already
exist, DEFINETOG does not change their settings (as SETTOG and RESETTOG do).

Numeric Toggles
You can use a numeric toggle in an IF or IFNOT directive even if that number has not
been specified in a DEFINETOG, SETTOG, or RESETTOG directive.

By default, all numeric toggles not turned on by SETTOG are turned off. To turn off
numeric toggles turned on by SETTOG, use RESETTOG.

Examples of DEFINETOG Directive
1. This example specifies named and numeric toggles:

?DEFINETOG (debug_version, new_version, 4, 7, 11)

2. In this example, IF finds the toggle SCANNER is off and causes the compiler to
skip over the source text between IF SCANNER and ENDIF SCANNER:

?DEFINETOG scanner !Specify toggle SCANNER
!Some code here

?IF scanner !Test toggle for on state
PROC skipped; !Find it off; skip procedure
 BEGIN
 !More code here
 END;
?ENDIF scanner !End of skipped part

3. In this example, IFNOT finds toggle EMITTER is off and causes the source text
between IFNOT EMITTER and ENDIF EMITTER to be compiled:

Directive
Setting of New
Toggle Setting of Specified Existing Toggle

DEFINETOG Off Unchanged

SETTOG On On

RESETTOG Off Off
TAL Reference Manual—526371-001
16-30

Compiler Directives DUMPCONS Directive
?DEFINETOG emitter !Specify toggle EMITTER
!Some code here

?IFNOT emitter !Test toggle for off state
PROC kept; !Find it off; compile procedure
 BEGIN
 !More code here
 END;
?ENDIF emitter !End of compiled part

4. In this example, SETTOG turns on toggle ON_TOG. DEFINETOG then specifies
ON_TOG but does not change its setting. IF finds the toggle is on and causes the
source text between IF ON_TOG and ENDIF ON_TOG to be compiled:

?SETTOG on_tog !Turn on toggle ON_TOG
!Lots of code here
?DEFINETOG on_tog !Specify toggle ON_TOG without
 ! changing its setting

!Some code here

?IF on_tog !Test toggle for on state
PROC kept; !Find it on; compile procedure
 BEGIN
 !More code here
 END;
?ENDIF on_tog !End of compiled part

DUMPCONS Directive
DUMPCONS inserts the contents of the compiler’s constant table into the object code.

Usage Considerations
DUMPCONS can appear any number of times anywhere in the source code. It cannot
appear in the compilation command.

Each time DUMPCONS appears, the compiler immediately inserts the content of the
compiler’s constant table into the object code. (The constant table contains constants
and labels.)

If DUMPCONS does not appear, the compiler normally inserts the content of the
compiler’s constant table into the object code at the end of a procedure. If an
instruction can only reach constants located within 256 words forward or backward,
however, the compiler inserts the constants accordingly.

VST1616.vsd

DUMPCONS
TAL Reference Manual—526371-001
16-31

Compiler Directives Example of DUMPCONS Directive
The compiler generates an unconditional branch around each insertion of constants
and labels into the object code.

Use With CODE Statements
If you use CODE statements to create a block of data in your code, the compiler might
insert constants or branch labels in the middle of your block of data. If you need to
keep the data generated by your CODE statements in one contiguous sequence, put a
DUMPCONS directive immediately before the CODE statements. The compiler then
inserts all pending constants and branch labels into the object code before it compiles
the CODE statements.

Example of DUMPCONS Directive
This example emits collected constants and labels into the object code before building
a doubleword, to ensure that the two single words are adjacent:

PROC m;
 BEGIN
 !Lots of code
?DUMPCONS
 CODE (CON, 0); !Build a doubleword value of 1
 CODE (CON, 1); ! in the user code segment with
 END; ! no intervening constants

ENDIF Directive
ENDIF is described under the IF directive in this section.

ENV Directive
ENV specifies the intended run-time environment of a D-series object file.

The default is ENV NEUTRAL.

VST1617.vsd

NEUTRAL

OLD

COMMONENV
TAL Reference Manual—526371-001
16-32

Compiler Directives Usage Considerations
The meaning of the ENV attributes are:

Usage Considerations
ENV can appear only once in a compilation unit, either in the compilation command or
in the source code before any declarations. Use ENV only with a D-series compilation
unit.

ENV lets you specify the intended run-time environment of a D-series object file. To
execute successfully, however, the object file must meet the requirements of the run-
time environment.

If ENV is not in effect, all procedures in the compilation unit have the ENV NEUTRAL
attribute.

ENV COMMON Directive
An object file can run in the CRE if the MAIN routine has the ENV COMMON attribute
and if all routines meet CRE requirements.

When ENV COMMON is in effect, all procedures in the compilation unit (except
procedures in object files listed in SEARCH directives) have the ENV COMMON
attribute. SEARCH directives can list object files compiled with any ENV attribute
except OLD. Each procedure in a SEARCH file retains its original ENV attribute.

Using Binder, you can bind an object file compiled with ENV COMMON to any object
file except those compiled with ENV OLD. Each procedure in the new object file retains
its original ENV attribute.

When a compilation unit contains a MAIN procedure and ENV COMMON is in effect,
the compiler allocates and initializes special data blocks as required by the CRE. For
information on these data blocks and on the requirements of the CRE, see Section 17,
Mixed-Language Programming, in the TAL Programmer’s Guide.

ENV OLD Directive
An object file compiled ENV OLD can run in a COBOL85 or FORTRAN run-time
environment outside the CRE (if the object file meets the requirements of the run-time
environment).

When ENV OLD is in effect, all procedures in the compilation unit (except procedures
in object files listed in SEARCH directives) have the ENV OLD attribute. SEARCH
directives can list object files compiled with any ENV attribute except COMMON. Each
procedure in a SEARCH file retains its original ENV attribute.

ENV Attribute Intended Run-Time Environment

COMMON The CRE

OLD A COBOL or FORTRAN run-time environment outside the
CRE

NEUTRAL None; the program relies primarily on system procedures
TAL Reference Manual—526371-001
16-33

Compiler Directives Examples of ENV Directive
Using Binder, you can bind an object file compiled with ENV OLD to any object file
except those compiled with ENV COMMON. Each procedure in the new object file
retains its original ENV attribute.

A D-series TAL program compiled with ENV OLD can run on a C-series system. To
debug the program with the Inspect product, however, your system must be a release
level C30.06 or later.

ENV NEUTRAL Directive
An object file compiled with ENV NEUTRAL should not rely on any external services
except system procedures.

When ENV NEUTRAL is in effect, all procedures in the compilation unit (except
procedures in object files listed in SEARCH directives) have the ENV NEUTRAL
attribute. SEARCH directives can list object files compiled with ENV NEUTRAL or with
no ENV directive. All procedures in the new object file have the ENV NEUTRAL
attribute.

Using Binder, you can bind an object file compiled with ENV NEUTRAL to any object
file. Each procedure in the new object file retains its original ENV attribute.

ENV Directive Not Specified
An object file compiled without the ENV directive probably does not rely on any
external services except system procedures.

When no ENV directive is in effect, all procedures in the compilation unit (except
procedures in object files listed in SEARCH directives) have the ENV NEUTRAL
attribute. SEARCH directives can list object files compiled with any ENV attribute. Each
procedure in a SEARCH file retains its original ENV attribute.

Using Binder, you can bind an object file compiled without the ENV directive to any
object file. Each procedure in the new object file retains its original ENV attribute.

Examples of ENV Directive
This example specifies the COMMON option of the ENV directive:

?ENV COMMON

ERRORFILE Directive
ERRORFILE logs compilation errors and warnings to an error file so you can use the
TACL FIXERRS macro to view the diagnostic messages in one PS Text Edit window
and correct the source file in another window.
TAL Reference Manual—526371-001
16-34

Compiler Directives Usage Considerations
file-name

is the name of either:

• An existing error file created by ERRORFILE. Such a file has file code 106 (an
entry-sequenced disk file used only with the TACL FIXERRS macro). The
compiler purges any data in it before logging errors and warnings.

• A new error file to be created by ERRORFILE if errors occur.

If a file with the same name exists but the file code is not 106, the compiler terminates
compilation to prevent overwriting the file.

You can specify partial file names as described in Appendix E in the TAL Programmer’s
Guide. The compiler uses the current default volume and subvolume names as
needed. For this directive, the compiler does not use TACL ASSIGN SSV information
to complete the file name.

define-name

is the name of a TACL MAP DEFINE that refers to an error file.

assign-name

is a logical file name you have equated with an error file by issuing a TACL
ASSIGN command.

Usage Considerations
ERRORFILE can appear in the compilation command or in the source code before any
declarations.

The compiler writes a header record to the error file and then writes a record for each
error or warning. Each record contains information such as:

• The location of the error or warning—source file name, edit line number, and
column number

• The message text of the error or warning

At the end of the compilation, the compiler prints the complete name of the error file

in the trailer message of the compilation listing.

VST1618.vsd

ERRORFILE

assign-name

define-name

file-name
TAL Reference Manual—526371-001
16-35

Compiler Directives Example of ERRORFILE Directive
FIXERRS Macro
After the compiler logs messages to the error file, you can invoke the TACL FIXERRS
macro and correct the source file. FIXERRS uses the PS Text Edit ANYHOW option to
open the source file in a two-window session. One window displays a diagnostic
message. The other window displays the source code to which the message applies. If
you have write access to the file, you can correct the source code. If you have only
read access, you can view the source code, but you cannot correct it.

Initially, the edit cursor is located in the source code at the first diagnostic. To move the
cursor to the next or previous diagnostic, use the PS Text Edit NEXTERR or
PREVERR command.

The TACL command for invoking FIXERRS is:

error-file

is the name of the error file specified in the ERRORFILE directive.

tedit-cmds

are any PS Text Edit commands that are allowed on the PS Text Edit run line.

The following example issues a TACL DEFINE command that invokes FIXERRS and
defines PS Text Edit function keys for NEXTERR and PREVERR:

[#DEF MYFIXERRS MACRO |BODY|

FIXERRS %1%; SET <F9>, NEXTERR; SET <SF9>, PREVERR]]

Example of ERRORFILE Directive
This example specifies MYERRORS as the file to which the compiler is to report
compilation errors or warnings:

!This is MYSOURCE file

?ERRORFILE myerrors

!Global declarations

VST1619.vsd

;

FIXERRS error-file

tedit-cmds
TAL Reference Manual—526371-001
16-36

Compiler Directives ERRORS Directive
ERRORS Directive
ERRORS sets the maximum number of error messages to allow before the compiler
terminates the compilation.

num-messages

is the maximum number of error messages to allow before the compilation
terminates. Specify an unsigned decimal constant in the range 0 through 32,767.

Usage Considerations
ERRORS can appear in the compilation command or anywhere in the source code. A
single error can cause many error messages. The compiler counts each error message
separately. If the compiler’s count exceeds the maximum you specify, the compiler
terminates the compilation. (Warning messages do not affect the count.)

If you do not specify ERRORS, the compiler does not terminate the compilation
because of the number of errors.

Example of ERRORS Directive
This example specifies that the compiler terminate the compilation when 10 error
messages are emitted:

!This is MYSOURCE file

?ERRORS 10

!Global declarations

EXTENDSTACK Directive
EXTENDSTACK increases the size of the data stack in the user data segment.

VST1620.vsd

=

ERRORS num-messages

VST1621.vsd

=

EXTENDSTACK num-pages
TAL Reference Manual—526371-001
16-37

Compiler Directives Usage Considerations
num-pages

is the number of 2048-byte memory pages to add to Binder’s estimate of the data
stack size. Specify an unsigned decimal constant in the range 0 through 32.

Usage Considerations
EXTENDSTACK can appear in the compilation command or anywhere in the source
code. If you omit this directive, the default is the data stack size estimated by Binder.

The following directives override the EXTENDSTACK directive:

• A DATAPAGES directive that specifies a num-pages value greater than 32.

• An ENV COMMON directive in a compilation unit that contains a MAIN procedure.
The compiler allocates 64K words for the user data segment.

Example of EXTENDSTACK Directive
This example adds 20 memory pages to Binder’s estimate of the data stack in the user
data segment:

?EXTENDSTACK 20

EXTENDTALHEAP Directive
EXTENDTALHEAP increases the size of the compiler’s internal heap for a D-series
compilation unit.

num-pages

is the number of 2048-byte memory pages to add to the compiler’s internal heap.
Specify an unsigned decimal constant in the range 0 through 32,767. The default
value is 0.

Usage Considerations
EXTENDTALHEAP can appear only in the compilation command and should appear
before any directives except SQL or SYMBOLPAGES. It can appear only once in a
compilation unit. Use EXTENDTALHEAP only with D-series compilation units.

If your program requires a larger compiler heap than is currently available, the compiler
issues error 169 (increase the size of the internal heap of the compiler by recompiling
with the EXTENDTALHEAP directive).

VST1622.vsd

=

EXTENDTALHEAP num-pages
TAL Reference Manual—526371-001
16-38

Compiler Directives Example of EXTENDTALHEAP Directive
If a heap overflow terminates your compilation, you must specify the
EXTENDTALHEAP directive in all subsequent compilations.

Example of EXTENDTALHEAP Directive
This compilation command starts the compiler and adds 120 memory pages to the
compiler’s internal heap:

TAL /in mysrc/ myobj; EXTENDTALHEAP 120

FIXUP Directive
FIXUP directs BINSERV to perform its fixup step.

The default is FIXUP.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.
The last instance of this directive determines whether BINSERV does fixups.

If FIXUP is in effect, BINSERV:

• Assigns values for primary global pointers that point to secondary global variables
or extended global variables

• Fixes code references to data space (for example, LOAD G+...)

• Fixes code references to code space (for example, PCAL instructions or
references to global read-only arrays)

NOFIXUP suppresses the fixup step. Use NOFIXUP if you are creating a file for later
binding or for use as a code resource in a later compilation. If the resulting object file is
not executed, BINSERV need not do fixups.

VST1623.vsd

NOFIXUP

FIXUP
TAL Reference Manual—526371-001
16-39

Compiler Directives Example of FIXUP Directive
Example of FIXUP Directive
This example requests that BINSERV not perform its fixup step because the file is
created for later binding:

PROC last_proc;

 BEGIN

 !Lots of code

 END;

 ?NOFIXUP

FMAP Directive
FMAP lists the file map.

The default is NOFMAP.

Usage Considerations
FMAP and NOFMAP can appear in the compilation command or anywhere in the
source code. The last FMAP or NOFMAP encountered in the compilation unit
determines whether the compiler lists the file map or not.

FMAP has no effect if either NOLIST or SUPPRESS is in effect.

NOFMAP suppresses the file map.

File Map Listing
The file map starts with the first file the compiler encounters and includes each file
introduced by SOURCE directives and TACL ASSIGN and DEFINE commands.

The file map shows the complete name of each file and the date and time when the file
was last modified.

In the compilation listing, the file map appears after the map of global identifiers.

VST1624.vsd

NOFMAP

FMAP
TAL Reference Manual—526371-001
16-40

Compiler Directives Examples of FMAP Directive
Examples of FMAP Directive
1. This example enables printing of the file map, which shows the fully qualified name

of each file from which the compilation read source text:

?FMAP

2. This example disables printing of the file map:

?NOFMAP

GMAP Directive
GMAP lists the global map.

The default is GMAP.

Usage Considerations
You can specify GMAP or NOGMAP in the compilation command or anywhere in the
source code. The last GMAP or NOGMAP encountered in the compilation unit
determines whether the compiler lists the global map or not.

GMAP has no effect if NOLIST, NOMAP, or SUPPRESS is in effect.

NOGMAP suppresses the global map even if MAP is in effect.

Global Map Listing
The global map lists all identifiers in the compilation unit and tells what kind of object
they are, including identifier class and type.

The global map appears at the end of the compilation listing.

Examples of GMAP Directive
1. This example enables printing of the global map, which lists all identifiers and gives

their class and type:

?GMAP

VST1625.vsd

NOGMAP

GMAP
TAL Reference Manual—526371-001
16-41

Compiler Directives HEAP Directive
2. This example disables printing of the global map:

?NOGMAP

HEAP Directive
HEAP sets the size of the CRE user heap for a D-series compilation unit if the ENV
COMMON directive is in effect.

num-pages

is the number of 2048-byte memory pages to allocate for the CRE user heap
(named #HEAP). Specify an unsigned decimal constant in either of the following
ranges:

• 0 through 31—if your program contains C or Pascal small-memory-model
routines

• 0 through 32,767—if your program either:

° Contains C or Pascal large-memory-model routines

° Contains no C or Pascal routines

Usage Considerations
HEAP can appear in the compilation command or anywhere in the source code. You
can specify HEAP any number of times. The compiler uses the size specified in the
last HEAP directive encountered in the compilation unit. Use HEAP only with D-series
compilation units that include the ENV COMMON directive. If your program invokes a
routine that needs the user run-time heap, you must use HEAP.

For the small-memory model, Binder allocates the CRE user heap as the last global
data block (just below the data stack) in the user data segment. Your use of the lower
32K-word area of the user data segment determines what heap size you can specify.

For the large-memory model, Binder allocates the CRE user heap as the last data
block in the automatic extended data segment. If you must also allocate an extended
data segment yourself, follow the directions in Appendix B, “Managing Addressing,” in
the TAL Programmer’s Guide.

For information on using the CRE user heap, see Section 17, Mixed-Language
Programming, in the TAL Programmer’s Guide.

VST1626.vsd

=

HEAP num-pages
TAL Reference Manual—526371-001
16-42

Compiler Directives Example of HEAP Directive
Example of HEAP Directive
This example sets the size of the user run-time heap for the large memory model:

?HEAP 200

HIGHPIN Directive
HIGHPIN sets the HIGHPIN attribute in a D-series object file.

Usage Considerations
HIGHPIN can appear in the compilation command or anywhere in the source code.
HIGHPIN can appear any number of times in a compilation. It need not appear in each
source file, just once in the compilation unit.

When the operating system creates a process, it assigns a process identification
number (PIN) to the process. D-series systems support the following ranges of PINs:

To run an object file at high PIN from the TACL prompt, the following conditions must
be met:

• Your processor is configured for more than 256 process control blocks (PCBs).

• High pins are available in your processor.

• Your object file and user library, if any, have the HIGHPIN attribute set.

• The TACL HIGHPIN built-in variable or the HIGHPIN run-time parameter is set.

If the HIGHPIN attribute of the object file is set, the operating system assigns a high
PIN, if available. If no high PINs are available, the operating system assigns a low PIN.

Each object file in the target file must have the HIGHPIN attribute set. You can set the
HIGHPIN attribute of an object file either:

• During compilation by using the HIGHPIN directive

• After compilation by using a Binder command

If the preceding conditions are met, your object file can create another process to run
at high PIN by specifying the PROCESS_CREATE_ system procedure with create-
options bit 15 set to 0 and bit 10 set to 1.

Low-PIN range 0 through 254

High-PIN range 256 through the maximum number supported for the
processor in which the process runs

VST1627.vsd

HIGHPIN
TAL Reference Manual—526371-001
16-43

Compiler Directives Examples of Running Object Files at HIGHPIN
The following sequence of examples show how to run an object file at high PIN from
the TACL prompt. The examples show how to check your processor configuration and
high-PIN availability, set the HIGHPIN attribute, and override the TACL HIGHPIN
setting if it is off.

Examples of Running Object Files at HIGHPIN
1. To check the number of PCBs configured in your processor and to see if high PINs

are available, run the Peek product. For example, suppose you want to run your
object file on processor 1:

PEEK / CPU 1 /

The following display excerpt shows example values for the information you need
to check:

 ... CURRENT USAGE # CONFIGURED ...

PCB 127: 48 255: 244

The processor is configured for high PINS if the sum of the two values displayed
for PCBs under # CONFIGURED is 256 or greater.

The processor has high PINs available if the right-hand value under CURRENT
USAGE is less than the right-hand value under # CONFIGURED.

2. You can set the HIGHPIN attribute of an object file during compilation by including
the HIGHPIN directive in the compilation command:

TAL /IN talsrc, OUT $S.#tallst, NOWAIT/ talobj; HIGHPIN

3. Alternatively, you can set the HIGHPIN attribute of an object file after compilation
by typing the following Binder command:

BIND CHANGE HIGHPIN ON IN talobj

4. Before you run the object file, you can check the current setting of the TACL
HIGHPIN built-in variable by typing:

#HIGHPIN

5. If #HIGHPIN returns a NO value, you can set the HIGHPIN run-time parameter
(and run your object file at high PIN):

RUN talobj / HIGHPIN ON /

6. If #HIGHPIN returns a YES value, you can simply run your object file at high PIN:

RUN talobj
TAL Reference Manual—526371-001
16-44

Compiler Directives HIGHREQUESTERS Directive
HIGHREQUESTERS Directive
HIGHREQUESTERS sets the HIGHREQUESTERS attribute in a D-series object file.

Usage Considerations
HIGHREQUESTERS can appear in the compilation command or anywhere in the
source code. HIGHREQUESTERS can appear any number of times in a compilation. It
need not appear in each source file, just once in the compilation unit.

HIGHREQUESTERS sets the HIGHREQUESTERS attribute in the object file, which
means the object file supports HIGHPIN requesters. If you do not specify
HIGHREQUESTERS, the object file cannot support HIGHPIN requesters (the default).

An object file can be called by D-series HIGHPIN requesters if the object file:

• Is compiled with HIGHREQUESTERS in effect

• Contains a MAIN procedure

• Fulfills other requirements described in the Guardian Application Conversion Guide

As an alternative, you can set the HIGHREQUESTERS attribute after compilation by
using Binder commands.

Examples of HIGHREQUESTERS Directive
1. This example specifies the HIGHREQUESTERS directive in a directive line in a D-

series source file:

?HIGHREQUESTERS

2. This example specifies the HIGHREQUESTERS directive in a compilation
command to compile a D-series source file:

TAL /IN tsrc, OUT $S.#lst, NOWAIT/ tobj; HIGHREQUESTERS

VST1628.vsd

HIGHREQUESTERS
TAL Reference Manual—526371-001
16-45

Compiler Directives ICODE Directive
ICODE Directive
ICODE lists the instruction-code (icode) mnemonics for subsequent procedures.

The default is NOICODE.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.
ICODE lists mnemonics for entire procedures and cannot be turned on and off within a
procedure. (By contrast, INNERLIST lists mnemonics for statements and can be turned
on and off within procedures.)

ICODE turns the icode-listing setting on for subsequent procedures. ICODE has no
effect if NOLIST or SUPPRESS is in effect.

NOICODE turns the icode-listing setting off for subsequent procedures.

PUSHICODE pushes the current icode-listing setting onto the directive stack without
changing the current setting.

POPICODE removes the top value from the directive stack and sets the current icode-
listing setting to that value.

ICODE Listing
For each procedure for which ICODE is in effect, the icode listing follows the code
listing if any.

For global variables declared within a named data block, the G+ addresses shown are
relative to the start of the data block and are not the final addresses. At the end of
compilation, BINSERV determines the final G+ addresses of such global variables and
the code locations of items such as PCAL instructions and global read-only arrays.

After compilation, you can display the final addresses by using Binder and Inspect
commands.

VST1629.vsd

POPICODE

PUSHICODE

NOICODE

ICODE
TAL Reference Manual—526371-001
16-46

Compiler Directives Example of ICODE Directive
Example of ICODE Directive
This compilation command lists the icode mnemonics starting with the first procedure
to be compiled:

TAL /IN mysrc, OUT $s.#lists/ myobj; ICODE

IF and ENDIF Directives
IF and IFNOT control conditional compilation based on a condition.

The ENDIF directive terminates the range of the matching IF or IFNOT directive.

The D20 or later release supports named toggles and target-system toggles in addition
to numeric toggles.

toggle-number

is an integer value from 1 through 15 specified in a previous DEFINETOG,
SETTOG, or RESETTOG directive. Leading zeros are ignored.

toggle-name

is a toggle name specified in a previous DEFINETOG, SETTOG, or RESETTOG
directive.

target-system

is one of:

ANY ANY is specified in a TARGET directive in this compilation.

TARGETSPECIFIED A TARGET directive appears in this compilation.

TNS_ARCH TNS_ARCH is specified in a TARGET directive in this
compilation.

TNS_R_ARCH TNS_R_ARCH is specified in a TARGET directive in this
compilation.

VST1630.vsd

IF toggle-number

IFNOT

target-system

toggle-name

ENDIF toggle-number

target-system

toggle-name
TAL Reference Manual—526371-001
16-47

Compiler Directives Usage Considerations
Usage Considerations
IF, IFNOT, and ENDIF can appear in a directive line anywhere in the source code but
not in the compilation command. IF and IFNOT must appear last in any directive line.
ENDIF must be the only directive on the directive line.

For ENDIF, always specify a toggle that matches a previous IF or IFNOT toggle.
ENDIF terminates the compilation begun by the IF or IFNOT that specifies the
matching toggle.

Named or Numeric Toggles
For named or numeric toggles, IF causes compilation of subsequent text only if you
turn the same toggle on with SETTOG.

IFNOT causes compilation of subsequent text only if the same toggle is turned off. A
toggle is turned off if you create it with DEFINETOG or RESETTOG, or if you create it
with SETTOG and then turn it off with RESETTOG.

For both IF and IFNOT, the skipping of text, once begun, continues until the matching
ENDIF directive appears. In the following fragment, the compiler skips both parts if the
toggle is off, because no ENDIF appears for IF. Avoid this error:

? RESETTOG flag !Create FLAG in off state

?IF flag

 !Statements for true condition

 ! (skipped because FLAG is off)

?IFNOT flag

 !Statements for false condition

 ! (also skipped because no ENDIF appears for IF FLAG)

?ENDIF flag

If you insert an ENDIF for IF in the preceding fragment, the compiler skips only the first
part:

? RESETTOG flag !Create FLAG in off state

?IF flag

 !Statements for true condition

 ! (skipped because FLAG is off)

?ENDIF flag !ENDIF stops the skipping of statements

?IFNOT flag

 !Statements for false condition

 ! (compiled because ENDIF appears for IF FLAG)

?ENDIF flag
TAL Reference Manual—526371-001
16-48

Compiler Directives Examples of IF and ENDIF Directives
Target-System Toggle
For target-system toggles, IF causes compilation of subsequent text only if you turned
the same toggle on with TARGET.

You can specify target-system, for example, when the code deals with the processor
state or memory management tables or other processor-specific areas.

For information on how IF, IFNOT, and ENDIF work with the TARGET directive, see the
TARGET directive, described in Section 15, Privileged Procedures.

Compiler Listing
An asterisk (*) appears in column 10 of the listing for any statements not compiled
because of the IF or IFNOT directive.

Examples of IF and ENDIF Directives
1. In this example, DEFINETOG creates toggle OMIT and leaves it turned off. IF tests

the toggle for the on state, finds it is off, and causes the compiler to skip the source
text between IF OMIT and ENDIF OMIT:

?DEFINETOG omit !Create toggle OMIT in off state
!Some code here

?IF omit !Test toggle for on state
PROC lost; !Find it off; skip procedure
 BEGIN
 !More code here
 END;
?ENDIF omit !End of skipped portion

2. In this example, SETTOG creates toggle KEEP and turns it on. IF tests the toggle
for the on state, finds it is on, and causes the compiler to compile the source text
between IF KEEP and ENDIF KEEP:

?SETTOG keep !Create toggle KEEP; turn it on
!Some code here

?IF keep !Test toggle for on state
PROC kept; !Find it on; compile procedure
 BEGIN
 !More code here
 END;
?ENDIF keep !End of compiled portion
TAL Reference Manual—526371-001
16-49

Compiler Directives INHIBITXX Directive
3. In this example, SETTOG creates toggle DONE and turns it on. IFNOT tests the
toggle for the off state, finds it is on, and causes the compiler to skip the source
text between IF DONE and ENDIF DONE:

?SETTOG done !Create toggle DONE; turn it on
!Some code here

?IFNOT done !Test toggle for off state
PROC skipped; !Find it on; skip procedure
 BEGIN
 !Lots of code
 END;
?ENDIF done !End of skipped portion

4. In this example, SETTOG turns on toggle 1. IF tests the toggle, finds it is on, and
causes the compiler to compile the source text between IF 1 and ENDIF 1:

?SETTOG 1 !Turn toggle 1 on
!Some code here

?IF 1 !Test toggle for on state;
PROC kept; !Find it on; compile procedure
 BEGIN
 !More code
 END;
?ENDIF 1 !End of compiled portion

INHIBITXX Directive
INHIBITXX generates inefficient but correct code for extended global declarations in
relocatable blocks that Binder might locate after the first 64 words of the primary global
area of the user data segment.

The default is NOINHIBITXX.

Usage Considerations
INHIBITXX or NOINHIBITXX can appear in the compilation command or any number
of times in the compilation unit before the first procedure declaration.

INHIBITXX turns the INHIBITXX setting on for subsequent declarations.

VST1631.vsd

NOINHIBITXX

INHIBITXX
TAL Reference Manual—526371-001
16-50

Compiler Directives Example of INHIBITXX Directive
NOINHIBITXX turns the INHIBITXX setting off for subsequent declarations. Such
declarations retain the INHIBITXX or NOINHIBITXX attribute throughout the
compilation.

NOINHIBITXX enables compiler use of XX instructions (LWXX, SWXX, LBXX, and
SBXX), which generate efficient indexing for extended declarations located between
G[0] and G[63]. Binder, however, might relocate such extended declarations beyond
G[63] when you bind separately compiled modules or bind TAL code with code written
in other languages. The indexing code then becomes incorrect and Binder issues error
20 (data reference failed due to relocation).

INHIBITXX suppresses compiler use of XX instructions and generates inefficient but
correct indexing for extended declarations located between G[0] and G[63] even if
Binder relocates such declarations after G[63]. INHIBITXX does not generate correct
indexing if the offset of a structure data item from the zeroth occurrence is out of the
INT range (–32,768 through 32,767). For more information, see the INT32INDEX
directive in this section.

If you specify INHIBITXX before one or more data declarations, the INHIBITXX
attribute applies to those particular data items throughout the compilation.

INHIBITXX and NOINHIBITXX have no effect on:

• Extended declarations above G[63] of the user data segment. The compiler never
uses XX instructions for such declarations.

• Extended declarations within BLOCK declarations with the AT (0) or BELOW (64)
option. The compiler automatically generates efficient code for such declarations.
Binder does not relocate such declarations after G[63].

The INT32INDEX directive overrides INHIBITXX or NOINHIBITXX, whichever is in
effect.

For information on the XX instructions, see the System Description Manual for your
system.

Example of INHIBITXX Directive
This example shows use of NOINHIBITXX, which generates efficient addressing, and
INHIBITXX, which suppresses efficient addressing:
TAL Reference Manual—526371-001
16-51

Compiler Directives INNERLIST Directive
 !Default NOINHIBITXX in effect

STRUCT .EXT xstruct[0:9];!XSTRUCT has NOINHIBITXX attribute
 BEGIN
 STRING array[0:9];
 END;

INT index;
STRING var;
?INHIBITXX !Set INHIBITXX attribute for}
 ! for next declaration

STRING .EXT xstruct2 (xstruct);
 !XSTRUCT2 has INHIBITXX attribute

PROC my_proc MAIN;
 BEGIN
 @xstruct2 := @xstruct;
 var := xstruct[index].array[0];
 !Generate efficient addressing
 ! because XSTRUCT has NOINHIBITXX
 ! attribute, but if Binder
 ! relocates this declaration
 ! beyond G[63], the addressing
 ! code is incorrect

var := xstruct2[index].array[0];
 !Generate inefficient addressing
 ! because XSTRUCT2 has INHIBITXX
END; ! attribute; the addressing is
 ! correct even when the
 ! declaration is relocated beyond
 ! G[63]

INNERLIST Directive
INNERLIST lists the instruction code mnemonics (and the compiler’s RP setting) for
each statement.

The default is NOINNERLIST.

VST1632.vsd

POPINNERLIST

PUSHINNERLIST

NOINNERLIST

INNERLIST
TAL Reference Manual—526371-001
16-52

Compiler Directives Usage Considerations
Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

INNERLIST turns the innerlisting setting on and lists mnemonics for subsequent
statements and can be turned on and off within procedures. (By contrast, ICODE lists
mnemonics for entire procedures and cannot be turned on and off within procedures.)
It has no effect if NOLIST or SUPPRESS is in effect.

NOINNERLIST turns the innerlisting setting off for subsequent statements.

PUSHINNERLIST pushes the current innerlisting setting onto the directive stack
without changing the current setting.

POPINNERLIST removes the top value from the directive stack and sets the current
innerlisting setting to that value.

INNERLIST Listing
INNERLIST lists mnemonics after each statement for which INNERLIST is in effect,
rather than at the end of the procedure.

For global variables declared within a named data block, the G+ addresses shown are
relative to the start of the data block and are not the final addresses. At the end of
compilation, BINSERV determines the final G+ addresses of such global variables and
the code locations of items such as PCAL instructions and global read-only arrays.

The INNERLIST listing is less complete than the ICODE listing. Because the compiler
is a one-pass compiler, many instructions appear with skeleton or space-holder images
that the compiler or BINSERV modifies later.

If OPTIMIZE and INNERLIST are in effect, the compiler first lists the original code, then
reports “Optimizer replacing the last n instructions,” and lists the optimized code. If
INNERLIST is switched off too soon, only the original code might show.

Example of INNERLIST Considerations
This example lists instruction code mnemonics after certain statements:

PROC any;
 BEGIN
 INT x, y, z; !No innerlisting here
 !Statements that initialize variables
?INNERLIST !Start innerlisting here
 !Statements that manipulate variables
?NOINNERLIST !Stop innerlisting here
 END;
TAL Reference Manual—526371-001
16-53

Compiler Directives INSPECT Directive
INSPECT Directive
INSPECT sets the Inspect product as the default debugger for the object file.

The default is NOINSPECT.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.
The last INSPECT or NOINSPECT directive in a source file takes effect for the object
file.

If you omit the INSPECT directive, Debug is the default debugger for the object file.

After compilation, you can select the Inspect product as the default debugger when you
use Binder or run the object code. If you set the Inspect product in the object file, you
cannot override it at run time.

Effect of Other Directives
If SAVEABEND is in effect, BINSERV and Binder automatically turn the INSPECT
setting on. If NOINSPECT is in effect, BINSERV and Binder turn SAVEABEND off.

If you want to reference variables symbolically in an Inspect session, you must include
one or more SYMBOLS directives in your source code. SYMBOLS generates the
symbol table in the object file. You can generate symbols for the entire source file or for
individual procedures or data blocks. (If you do not specify SYMBOLS, the Inspect
product only recognizes procedure names and code locations.)

Example of INSPECT Directive
This example requests the Inspect product and saves symbols for the object file for
use with the Inspect product:

?INSPECT, SYMBOLS

PROC a;

 BEGIN

 !Lots of code

 END;

VST1633.vsd

NOINSPECT

INSPECT
TAL Reference Manual—526371-001
16-54

Compiler Directives INT32INDEX Directive
INT32INDEX Directive
INT32INDEX generates INT(32) indexes from INT indexes for accessing items in an
extended indirect structure in a D-series program.

The default is NOINT32INDEX.

Usage Considerations
This directive can appear in the compilation command or any number of times in a D-
series compilation unit.

INT32INDEX turns the INT32INDEX setting on for subsequent declarations.
NOINT32INDEX turns the INT32INDEX setting off for subsequent declarations. Such
declarations retain their INT32INDEX or NOINT32INDEX attribute throughout the
compilation.

PUSHINT32INDEX pushes the current INT32INDEX setting onto the directive stack
without changing the current setting.

POPINT32INDEX removes the top value from the directive stack and sets the current
INT32INDEX setting to that value.

INT32INDEX
INT32INDEX generates an INT(32) index from an INT index for a structure item in an
extended indirect structure. INT32INDEX thus produces a correct extended offset even
when the word offset of the structure field (from the zeroth structure occurrence) is
greater than the signed INT range (–32,768 through 32,767). (For a STRING item or a
substructure, the byte offset must be in this range.)

INT32INDEX overrides the INHIBITXX or NOINHIBITXX directive.

NOINT32INDEX
NOINT32INDEX produces code that is faster than that produced by INT32INDEX, but
it produces an incorrect extended offset when the offset of the structure field is outside
the signed INT range. In such cases, you must use INT(32) indexing as discussed in
Section 8, “Using Structures,” in the TAL Programmer’s Guide.

VST1634.vsd

POPINT32INDEX

PUSHINT32INDEX

NOINT32INDEX

INT32INDEX
TAL Reference Manual—526371-001
16-55

Compiler Directives Example of INT32INDEX Directive
NOINT32INDEX does not override INHIBITXX or NOINHIBITXX.

Example of INT32INDEX Directive
The following example shows the use of INT32INDEX, which always generates correct
offsets, and NOINT32INDEX, which generates incorrect offsets in certain cases:

?INT32INDEX !Set INT32INDEX attribute
 ! for next declaration

STRUCT .EXT xstruct[0:9999];!XSTRUCT has INT32INDEX
 BEGIN ! attribute
 STRING array[0:9];
 END;

INT index;

PROC my_proc MAIN;
 BEGIN
?NOINT32INDEX !Set NOINT32INDEX
 ! attribute for next
 ! declaration

 INT .EXT xstruct2 (xstruct) := @xstruct[0];
 !XSTRUCT2 has NOINT32INDEX
 ! attribute

 xstruct[index].array[0]:= 1;!Generate correct offset even
 ! when offset is > 32,767,
 ! because XSTRUCT has
 ! INT32INDEX attribute

xstruct2[index].array[0] := 1;
 !Generate incorrect offset
 ! if offset is > 32,767,
 ! because XSTRUCT2 has
END; ! NOINT32INDEX attribute
TAL Reference Manual—526371-001
16-56

Compiler Directives LARGESTACK Directive
LARGESTACK Directive
LARGESTACK sets the size of the extended stack in the automatic extended data
segment.

num-pages

is the number of 2048-byte memory pages to allocate for the extended stack.
Specify an unsigned decimal constant in the range 0 through 32,767. The default is
the maximum extended stack space required by any single procedure or 64K
bytes, whichever is greater.

Usage Considerations
LARGESTACK can appear in the compilation command or anywhere in the source
code. The last instance of LARGESTACK sets the extended stack size.

If you compile several files separately and then bind them to produce a new object file,
Binder chooses the extended stack size as follows:

• On a D-series system, Binder chooses the extended stack size provided by the
object file that contains the MAIN procedure.

• On a C-series system, Binder chooses the largest extended stack size provided
among the object files.

After compilation, you can set the extended stack size by using the SET
LARGESTACK command of Binder. The block name of the extended stack is
$EXTENDED#STACK.

Example of LARGESTACK Directives
This example sets the size of the extended stack to 128 memory pages:

PROC last_proc;

 BEGIN

 !Lots of code

 END;

?LARGESTACK 128

VST1635.vsd

num-pagesLARGESTACK

=

TAL Reference Manual—526371-001
16-57

Compiler Directives LIBRARY Directive
LIBRARY Directive
LIBRARY specifies the name of the TNS software user run-time library to be
associated with the object file at run time.

file-name

specifies a user run-time library to search before searching the system library to
satisfy external references. file-name must be the name of a disk file. It cannot be
the name of a TACL DEFINE or a TACL ASSIGN logical file.

You can specify partial file names as described in Appendix E in the TAL Programmer’s
Guide. The compiler uses the current default volume and subvolume names as
needed. For this directive, the compiler does not use TACL ASSIGN SSV information
to complete the file name.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

After compilation, you can change the library name by using Binder commands or by
using the LIB option of the TACL RUN command.

Example of LIBRARY Directive
This example specifies that a user library named MYLIB be associated with the object
file at run time:

!Lots of code

?LIBRARY mylib

!More code

About User Libraries
A user library is a set of procedures that the operating system can link to a program file
at run time. User libraries are available in TAL and FORTRAN and COBOL85
programs, but not in Pascal.

User libraries provide many benefits to programs. You can place commonly used
procedures in a user library:

• To reduce the storage required for object code on disk and in main memory

• To share a set of common procedures among applications

VST1636.vsd

LIBRARY file-name
TAL Reference Manual—526371-001
16-58

Compiler Directives LINES Directive
• To extend a single application’s code space

To build user libraries, there are certain restrictions that user library files need to follow.
For more information on user library restrictions, refer to the Binder Manual.

LINES Directive
LINES sets the maximum number of output lines per page.

num-lines

is the maximum number of lines per page. Specify an unsigned decimal constant in
the range 10 through 32,767. The default is 60 lines per page.

Usage Considerations
LINES can appear in the compilation command or anywhere in the source code.

If the list file is a terminal, the compiler ignores the LINES directive. If the list file is a
line printer or a process, the compiler skips to the top of form.

Examples of LINES Directive
This example sets the maximum number of lines per page in the output listing to 66
lines per page:

?LINES 66

LIST Directive
LIST lists the source text for subsequent source code if NOSUPPRESS is in effect.

The default is LIST.

VST1637.vsd
=

LINES num-lines

VST1638.vsd

POPLIST

PUSHLIST

NOLIST

LIST
TAL Reference Manual—526371-001
16-59

Compiler Directives Usage Consideration
Usage Consideration
This directive can appear in the compilation command or anywhere in the source code.

LIST turns the listing setting on for subsequent code. LIST has no effect if SUPPRESS
is in effect. LIST is required by the ABSLIST, CODE, CROSSREF, DEFEXPAND,
FMAP, GMAP, ICODE, INNERLIST, MAP, PAGE, and PRINTSYM directives. To list
cross-references, LIST and NOSUPPRESS must be in effect at the end of the source
file.

NOLIST turns the listing setting off for subsequent code (the LMAP maps, compiler
leader text, error messages, and trailer text still get listed).

PUSHLIST pushes the current listing setting onto the directive stack without changing
the current setting.

POPLIST removes the top value from the directive stack and sets the current listing
setting to that value.

Source Listing
Each line in the source listing consists of:

• An edit file number

• A 6-digit octal code address—an instruction offset or a secondary global count

• One of the following lexical-level values:

• Nesting level of BEGIN-END items such as structures, substructures, IF
statements, and CASE statements

Examples of LIST Directive
1. This example shows how to suppress listings of system declarations, but not your

own source code, by using NOLIST and LIST:

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
? PROCESS_GETINFO_, PROCESS_STOP_)

?LIST

Lexical Level Meaning

0 Global Level

1 Procedure Level

2 Subprocedure Level
TAL Reference Manual—526371-001
16-60

Compiler Directives LMAP Directive
2. In this example, PUSHLIST pushes the current listing setting (LIST) onto the
directive stack, NOLIST suppresses listing of system declarations, and POPLIST
resumes the listing:

!Default listing setting is LIST

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
? PROCESS_GETINFO_, FILE_OPEN_, WRITEREADX, READX)

?POPLIST

LMAP Directive
LMAP lists load-map and cross-reference information.

The default is LMAP ALPHA.

lmap-option

specifies the type of load map to list; it is one of:

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

If you specify LMAP with no options, LMAP ALPHA is the default; it lists load maps of
procedures and data blocks sorted by name.

If you specify LMAP with the LOC and XREF options, these options are added to the
ALPHA default.

ALPHA List load maps of procedures and data blocks sorted by name

LOC List load maps of procedures and data blocks sorted by starting
address, in addition to the ALPHA listing

XREF List entry-point and common data-block cross-references for the
object file (not the source-level cross-references produced by
CROSSREF), in addition to the ALPHA listing

* (asterisk) specifies ALPHA, LOC, and XREF maps

NOLMAP

VST1639.vsd

(

LMAP

Imap-option)

,

Imap-option

*

TAL Reference Manual—526371-001
16-61

Compiler Directives Example of LMAP Directive
If LMAP is in effect, NOLMAP with options suppresses the specified load maps.

NOLMAP without options suppresses all load maps.

LMAP has no effect if SUPPRESS is in effect.

Example of LMAP Directive
This example illustrates the LMAP directive:

?LMAP (LOC, XREF) !Adds LOC and XREF to ALPHA default

!Some code here

?NOLMAP (XREF) !Deletes only XREF from the listing

MAP Directive
MAP lists the identifier maps.

The default is MAP.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

MAP turns the map-listing setting on for subsequent code. MAP has no effect if
NOLIST or SUPPRESS is in effect. MAP is required by GMAP.

NOMAP turns the map-listing setting off for subsequent code.

PUSHMAP pushes the current map-listing setting onto the directive stack without
changing the current setting.

POPMAP removes the top value from the directive stack and sets the current map-
listing setting to that value.

VST1640.vsd

POPMAP

PUSHMAP

NOMAP

MAP
TAL Reference Manual—526371-001
16-62

Compiler Directives Example of MAP Directive
Map Listing
MAP lists sublocal identifiers after each subprocedure, local identifiers after each
procedure, and global identifiers after the last procedure in the source program.

The map listing consists of information including:

• Identifier class—VAR, SUBPROC, ENTRY, LABEL, DEFINE, LITERAL

• Type—data type, structure, substructure, or structure pointer

• Addressing mode—direct or indirect

• Subprocedure, entry, or label offset

• Text of LITERALs and DEFINEs

Example of MAP Directive
This compilation command starts the compiler and suppresses the identifier maps:

TAL /IN mysrc, OUT $s.#lists/ myobj; NOMAP

OLDFLTSTDFUNC Directive
OLDFLTSTDFUNC treats arguments to the $FLT, $FLTR, $EFLT, and $EFLTR
standard functions as if they were FIXED(0) values.

Usage Considerations
OLDFLTSTDFUNC can appear in the compilation command or anywhere in the source
code.

OLDFLTSTDFUNC prevents the scaling of the FIXED(n) argument of the $FLT, $FLTR,
$EFLT, and $EFLTR standard functions, where n is the fixed-point position.

For instance, if OLDFLTSTDFUNC is in effect, $FLT(1f), $FLTR(0.1f), and
$EFLT(0.00001f) all yield the same floating-point value.

Example of OLDFLTSTDFUNC Directive
This compilation command starts the compiler and invokes the OLDFLTSTDFUNC
directive:

TAL /IN mysrc, OUT $s.#lists/ myobj; OLDFLTSTDFUNC

VST1641.vsd

OLDFLTSTDFUNC
TAL Reference Manual—526371-001
16-63

Compiler Directives OPTIMIZE Directive
OPTIMIZE Directive
OPTIMIZE specifies the level at which the compiler optimizes the object code.

level

is the level of optimization, specified as 0, 1, or 2. The default level is 1.

Usage Considerations
OPTIMIZE can appear in a compilation command or anywhere in the source code.

If OPTIMIZE is in effect, the compiler replaces short instruction sequences with
equivalent but more efficient instruction sequences. The compiler does not perform
global code optimizations such as removing invariant expressions from loops.

Specifying higher optimization levels does not appreciably increase compilation time
nor affect compiler use of resources such as memory and disk space. Usually,
optimization slightly decreases the object code size and increases the execution speed
by some small amount.

The listing generated by the INNERLIST directive reports the optimizations, showing
first the original instructions and then the revised ones.

Examples of OPTIMIZE Directive
1. Level 1 transforms the code for loading an index register with a constant value

from two instructions into one:

LDI 1 !Transform to LDXI 1,7

STAR 7

Level Optimization When to use:

0 None When an internal compiler error is exposed by
another optimization level

1 Within a statement When you are developing and testing a
program

2 Within and across
statement
boundaries

When you want to produce the most efficient
code

VST1642.vsd

=

OPTIMIZE level
TAL Reference Manual—526371-001
16-64

Compiler Directives PAGE Directive
2. When a statement references a variable that was assigned a value by the previous
statement, level 2 transforms a store and a load into a nondestructive store:

STOR L+1 !Transform to NSTO L+1

LOAD L+1

PAGE Directive
PAGE optionally prints a heading and causes a page eject.

heading-string

is a character string of up to 82 characters, specified on a single line and enclosed
in quotation marks. The quotation marks are required delimiters and are not
printed. If the string is longer than 82 characters, the compiler truncates the extra
characters.

Usage Considerations
PAGE can appear anywhere in the source code but not in the compilation command.

PAGE has no effect if NOLIST or SUPPRESS is in effect.

The first PAGE prints the heading, skips a line, and then continues printing but does
not cause a page eject.

A subsequent heading-string replaces the previous header.

If the list file is a terminal, the compiler ignores the PAGE directive. If the list file is a
line printer or a process, the compiler skips to the top of form.

Example of PAGE Directive
This example prints headings at the top of pages in the compiler listings:

!This is MYSOURCE file

?PAGE "Here are global declarations for MYSOURCE"

!Global declarations

?PAGE "Here are procedure declarations for MYSOURCE "

!Procedure declarations

VST1643.vsd

"

PAGE

heading-string "
TAL Reference Manual—526371-001
16-65

Compiler Directives PEP Directive
PEP Directive
PEP specifies the size of the procedure entry-point (PEP) table.

pep-table-size

is the number of words to allocate for the PEP table. Specify an unsigned decimal
constant in the range 3 through 512.

Usage Considerations
The PEP directive can appear in the compilation command or anywhere in the source
code.

If you use ABSLIST, which lists code-relative addresses for instruction locations, you
must define the size of the PEP table before the first procedure declaration appears.

Specify PEP before the first procedure declaration or declare all procedures that
precede PEP as FORWARD or EXTERNAL.

PEP Table
The PEP table must be at least large enough to contain one word per nonexternal
entry point.

You can respecify PEP at any time without causing a warning from the compiler. If you
respecify the PEP table size or if the size is insufficient for the program, the ABSLIST
addresses are invalid.

Example of PEP Directive
The following example sets the size of the PEP table at 60 words before the first
procedure declaration so that ABSLIST has effect:

!This is MYSOURCE file.

!Global declarations

?ABSLIST, PEP 60

PROC mymain MAIN;

 BEGIN

 !Lots of code

 END;

VST1644.vsd
=

PEP pep-table-size
TAL Reference Manual—526371-001
16-66

Compiler Directives PRINTSYM Directive
PRINTSYM Directive
PRINTSYM lists symbols.

The default is PRINTSYM.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

You can use PRINTSYM and NOPRINTSYM to list individual symbols or groups of
symbols, such as global, local, or sublocal declarations.

PRINTSYM turns the symbol-listing setting on for subsequent declarations.
PRINTSYM has no effect if NOLIST or SUPPRESS is in effect.

NOPRINTSYM turns the symbol-listing setting off for subsequent declarations.

Example of PRINTSYM Directive
This example suppresses printing in the global map of variables I and J, which are
declared between the NOPRINTSYM directive and the PRINTSYM directive:

?NOPRINTSYM

INT i;

INT j;

?PRINTSYM

INT k;

RELOCATE Directive
RELOCATE lists BINSERV warnings for declarations that depend on absolute
addresses in the primary global data area of the user data segment.

VST1645.vsd

NOPRINTSYM

PRINTSYM

VST1646.vsd

RELOCATE
TAL Reference Manual—526371-001
16-67

Compiler Directives Usage Considerations
Usage Considerations
RELOCATE can appear in the compilation command or in the source code.

RELOCATE affects only the source code that follows it, however, so it is safest to
specify it at the beginning of the compilation.

The compiler checks for nonrelocatable data only if RELOCATE appears.

Use RELOCATE when the primary global data area (the area below word address
G[256]) is relocatable. If you are compiling the modules of a program separately or
binding TAL code with code written in other languages, the primary global data must be
relocatable.

When you build the target file, Binder issues warnings for references to nonrelocatable
data.

Example of RELOCATE Directive
In this example, because RELOCATE is in effect, any reference to I (a nonrelocatable
global declaration) produces a warning:

?RELOCATE

!Lots of code

INT i = 'G' + 22; !Nonrelocatable global declaration I

!Lots more code

i := 25; !Reference to I

RESETTOG Directive
RESETTOG creates new toggles in the off state and turns off toggles created by
SETTOG. The RESETTOG directive supports named toggles in addition to numeric
toggles.

VST1647.vsd

,

toggle-name

toggle-number

,

toggle-name

toggle-number

()

RESETTOG
TAL Reference Manual—526371-001
16-68

Compiler Directives Usage Considerations
toggle-name

is a named toggle to turn off. You must specify each named toggle you want to turn
off.

toggle-number

is a numeric toggle to turn off. Specify an unsigned decimal constant in the range 1
through 15. Leading zeros are ignored. RESETTOG with no arguments turns off all
numeric toggles but does not affect named toggles.

Usage Considerations
RESETTOG can appear anywhere in the source code and in the compilation
command.

RESETTOG without a parenthesized list must be the last directive on the line. When
RESETTOG has a parenthesized list, other directives can follow on the same line, with
a comma separating the closing parenthesis from the next directive.

RESETTOG interacts with the IF, IFNOT, and ENDIF directives. IF and IFNOT test the
setting of toggles and mark the beginning of conditional compilation. ENDIF marks the
end of conditional compilation.

Named Toggles
Before you use a named toggle in an IF or IFNOT directive, you must specify that
name in a DEFINETOG, SETTOG, or RESETTOG directive. Which of these directives
you use depends on whether you want settings of named toggles unchanged or turned
on or off:

Numeric Toggles
You can use a numeric toggle in an IF or IFNOT directive, even if that number has not
been specified in a RESETTOG, SETTOG, or DEFINETOG directive.

By default, all numeric toggles not turned on by SETTOG are turned off. To turn off
numeric toggles turned on by SETTOG, use RESETTOG.

Directive
Setting of New
Toggle Setting of Specified Existing Toggle

DEFINETOG Off Unchanged

SETTOG On On

RESETTOG Off Off
TAL Reference Manual—526371-001
16-69

Compiler Directives Example of RESETTOG Directive
Example of RESETTOG Directive
In this example, RESETTOG turns off two of six toggles that were turned on by
SETTOG. IF tests a toggle, finds it is off, and causes the compiler to skip over the
source text between IF VERSN2 and ENDIF VERSN2 :

?SETTOG (versn1, versn2, 7, 4, 11) !Turn on toggles

?SETTOG versn3 !Turn on toggle

?RESETTOG (versn2, 7) !Turn off toggles

!Lots of code

?IF versn2 !Test toggle for on state

PROC version_2; !Find it off; skip

BEGIN ! procedure

!More code

END;

?ENDIF versn2 !End of skipped portion

ROUND Directive
ROUND rounds FIXED values assigned to FIXED variables that have smaller fpoint
values than the values you are assigning.

The default is NOROUND.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

ROUND turns the rounding setting on. If the fpoint of the assignment value is greater
than that of the variable, ROUND first truncates the assignment value so that its fpoint
is one greater than that of the destination variable. The truncated assignment value is
then rounded away from zero as follows:

value = (IF value < 0 THEN value - 5 ELSE value + 5) / 10

In other words, if the truncated assignment value is negative, 5 is subtracted; if
positive, 5 is added. Then, an integer division by 10 and truncates it again, this time by
a factor of 10. Thus, if the absolute value of the least significant digit of the initially

VST1648.vsd

NOROUND

ROUND
TAL Reference Manual—526371-001
16-70

Compiler Directives Example of ROUND Directive
truncated assignment value is 5 or more, a one is added to the absolute value of the
final least significant digit.

NOROUND turns the rounding setting off. That is, rounding does not occur when a
FIXED value is assigned to a FIXED variable that has a smaller fpoint. If the fpoint of
the assignment value is greater than that of the variable, the assignment value is
truncated and some precision is lost.

Example of ROUND Directive
This example rounds all FIXED values:

?ROUND !Request rounding

!Global declarations

PROC a;

 BEGIN

 FIXED(2) f1;

 FIXED(3) f2;

 f1 := f2;

 END;

RP Directive
RP sets the compiler’s internal register pointer (RP) count. RP tells the compiler how
many registers are currently in use on the register stack.

register-number

is the value to which the compiler is to set its internal RP count. Specify an
unsigned decimal constant in the range 0 through 7. If you specify 7, the compiler
considers the register stack to be empty.

Usage Considerations
The RP directive can appear only within a procedure.

The register pointer (RP) is a field in the environment register (ENV) that points to the
top of the register stack.

VST1649.vsd
=

RP register-number
TAL Reference Manual—526371-001
16-71

Compiler Directives Example of RP Directive
If you manipulate data stack contents without the compiler’s knowledge (with CODE
statements, for example), you should use the RP directive to calibrate the compiler’s
internal RP count.

If the compiler decrements (or increments) the RP register below (or above) its initial
value in a procedure or subprocedure, the compiler issues a warning of RP register
underflow (or overflow). If the source program is correct, use the RP directive to
calibrate the compiler’s internal RP count.

After each high-level statement (not CODE, STACK, or STORE), the compiler’s
internal RP setting is always 7 (empty).

Modularize use of the RP directive and CODE, STACK, and STORE statements where
possible; they are not portable to future software platforms.

Example of RP Directive
This example sets the compiler’s internal RP count:

INT c;

INT PROC a;
 BEGIN
 !Lots of code
 RETURN 1;
 END;

PROC b (g);
 INT g;
 BEGIN
 INT i;
 IF g THEN
 STACK 0
 ELSE
 BEGIN
 STACK c;
 CODE (DPCL); !Called routine returns a 16-bit
 ! integer by way of the register stack
 ! without knowledge of the compiler

? RP 0 !Set compiler’s internal RP count to 0
 END;
STORE i;
!More code
END;

PROC m MAIN;
 BEGIN
 c := @a;
 CALL b (0);
 END;
TAL Reference Manual—526371-001
16-72

Compiler Directives RUNNAMED Directive
RUNNAMED Directive
RUNNAMED causes a D-series object file to run on a D-series system as a named
process even if you do not provide a name for it.

Usage Considerations
The RUNNAMED directive can appear in the compilation command or anywhere in the
source code. It can appear any number of times in a compilation unit, but need appear
just once in the compilation unit. Use RUNNAMED only with D-series compilation units.

If RUNNAMED and HIGHPIN are in effect, a process can run at high PIN on a D-series
system and be opened by a C-series process using the OPEN procedure.

RUNNAMED sets the RUNNAMED attribute in the object file. If the RUNNAMED
attribute is set for any object file in a target file, the RUNNAMED attribute is set for all
the object files in the target file

If you do not specify RUNNAMED in the compilation unit and you want the process to
run as a named process, you can use the CHANGE command of Binder or the NAME
option of the TACL RUN command. To avoid possible complications resulting from any
unnamed processes running at a high PIN on a D-series system, however, specify
RUNNAMED in all D-series compilation units.

Examples of RUNNAMED Directive
1. This example shows the RUNNAMED directive in a directive line in the source

code:

?HIGHPIN, RUNNAMED

2. This example shows the RUNNAMED directive in a compilation command:

TAL /IN mysrc, OUT $S.#mylst/ myobj; HIGHPIN, RUNNAMED

SAVEABEND Directive
SAVEABEND directs the Inspect product to generate a save file if your process
terminates abnormally during execution.

The default is NOSAVEABEND.

VST1650.vsd

RUNNAMED
TAL Reference Manual—526371-001
16-73

Compiler Directives Usage Considerations
Usage Considerations
SAVEABEND and NOSAVEABEND can appear in the compilation command or
anywhere in the source program. The compiler uses the last specification when it
builds the object file.

SAVEABEND requests a save file and sets the INSPECT directive on; at run time the
Inspect product must be available on the system that runs the process.

NOSAVEABEND suppresses the save file but does not affect the INSPECT directive
setting.

After compilation, you can specify the SAVEABEND option by using Binder or TACL
RUN options.

Save File
The save file contains data-area and file-status information at the time of process
failure. You can examine the save file by using Inspect commands. The Inspect
product assigns the save file a name of the form ZZSAnnnn, where nnnn is an integer.
The defaults for volume and subvolume are the object file’s volume and subvolume.
(You can specify a name for the save file by using the Inspect product.) For more
information, see the Inspect Manual.

Example of SAVEABEND Directive
This example generates a save file for the object file if execution terminates abnormally
in procedure A:

?SAVEABEND !Set Inspect product; generate save file
PROC a;
 BEGIN
 !Lots of code
 END;

?NOSAVEABEND !Suppress save file
PROC b;
 BEGIN
 !Lots of code
 END; !INSPECT and NOSAVEABEND still in effect

VST1651.vsd

NOSAVEABEND

SAVEABEND
TAL Reference Manual—526371-001
16-74

Compiler Directives SAVEGLOBALS Directive
SAVEGLOBALS Directive
SAVEGLOBALS saves all global data declarations in a file for use in subsequent
compilations that specify the USEGLOBALS directive.

file-name

is the name of a disk file to which the compiler is to write the global data
declarations.

If file-name already exists, the compiler purges the existing file and creates an
unstructured global declarations file that has a file code of 105.

If the existing file is secured so that the compiler cannot purge it, the compilation
terminates.

You can specify partial file names as described in Appendix E in the TAL Programmer’s
Guide. The compiler uses the current default volume and subvolume names as needed
and lists the complete file name in the trailer message at the end of compilation. For
this directive, the compiler does not use TACL ASSIGN SSV information to complete
the file name.

define-name

is the name of a TACL MAP DEFINE that refers to the disk file to which you want
the compiler to write the global data declarations.

assign-name

is a logical file name you have equated to the actual disk file (to which you want
the compiler to write the global data declarations) by issuing a TACL ASSIGN
command.

Usage Considerations
SAVEGLOBALS can appear in the compilation command or in the source code before
any global data declarations. If it appears anywhere else, the compiler issues a
warning message and ignores the directive.

VST1652.vsd

SAVEGLOBALS

assign-name

define-name

file-name
TAL Reference Manual—526371-001
16-75

Compiler Directives Usage Considerations
Saving Global Data Declarations
When you compile with SAVEGLOBALS, the compiler saves the global data
declarations in a file. If you make no changes in the global data declarations, you can
use the saved declarations in subsequent compilations and reduce the compilation
time.

Other guidelines for saving global data declarations include the following:

• If the global data declarations contain any syntax errors, correct the errors and
recreate the global declarations file by using SAVEGLOBALS.

• SAVEGLOBALS does not save EXTERNAL or FORWARD procedure declarations.

• You must recompile these declarations in the USEGLOBALS compilation.

• If SAVEGLOBALS and USEGLOBALS appear in the same compilation unit, the
compiler issues an error message and complies with only the first of the two
directives.

• If SAVEGLOBALS appears in a compilation unit you submit to the stand-alone
Crossref product, the compiler ignores the SAVEGLOBALS directive.

• Whenever you switch to a different version of the compiler, you must create a new
global declarations file by using SAVEGLOBALS. Otherwise, an error message
occurs in the USEGLOBALS compilation. C20, D10, and D20, for example, are
different versions of the compiler.

If SAVEGLOBALS is in effect, the compiler takes the following actions when it
encounters the first procedure declaration:

• The compiler stores the global data declarations in the specified file. Global data
declarations include all global data identifiers and their attributes (such as data
type and kind of variable) but not their initializations.

• The compiler stores the initialization values in the object code. Initialization values
include addresses and constant lists.
TAL Reference Manual—526371-001
16-76

Compiler Directives Usage Considerations
Retrieving Global Data Declarations
After a SAVEGLOBALS compilation completes successfully, you can specify the
following directives in a USEGLOBALS compilation to retrieve the global data
declarations and initializations:

Specify BEGINCOMPILATION after the last global declaration or SEARCH directive
and before the first procedure declaration.

Effect of Other Directives
When you use the following directives in the SAVEGLOBALS compilation, they affect
subsequent USEGLOBALS compilations as follows:

Directive in
USEGLOBALS
Compilation Effect in Same USEGLOBALS Compilation

USEGLOBALS Retrieves global data declarations; suppresses
compilation of text lines and SOURCE directives (but not
other directives) until BEGINCOMPILATION appears

SEARCH Retrieves global initializations and template structure
declarations

BEGINCOMPILATION Begins compilation of text lines and SOURCE directives

Directive in
USEGLOBALS
Compilation Effect in Subsequent USEGLOBALS Compilations

SYNTAX Negates the need for using SEARCH in the
USEGLOBALS compilation because no object file was
produced by the SAVEGLOBALS compilation

INHIBITXX Continues to inhibit generation of extended indexed
instructions for extended pointers located in the first 64
words of primary global area

INT32INDEX Continues to generate INT(32) indexes from INT indexes
(D-series system only)

PRINTSYM Continues to print symbols in the listing

SYMBOLS Continues to make symbols available for all data blocks
that had symbols during the SAVEGLOBALS compilation
TAL Reference Manual—526371-001
16-77

Compiler Directives Examples of SAVEGLOBALS Directive
Examples of SAVEGLOBALS Directive
1. The following source file (MYPROG) is compiled in examples 2 through 5, which

show how the SAVEGLOBALS, USEGLOBALS, BEGINCOMPILATION, SEARCH,
and SYNTAX directives interact:

!Source file MYPROG

!Unless USEGLOBALS (examples 3 and 5) is in effect,
! compile the entire source file.

?SOURCE glbfile1 (section1, section2)
?SOURCE moreglbs
 INT ignore_me1;
 INT ignore_me2;

?BEGINCOMPILATION !When USEGLOBALS is in effect,
 ! compile code that follows.

?PUSHLIST, NOLIST, SOURCE $system.system.extdecs
?POPLIST

PROC my_first_proc;
 BEGIN
 !Lots of code
 END;

PROC my_last_proc;
 BEGIN
 !More code
 END;

2. A SAVEGLOBALS compilation compiles MYPROG and saves global data
declarations in file TALSYM and global initializations in object file MYOBJ:

TAL /IN myprog/ myobj; SAVEGLOBALS talsym

3. A USEGLOBALS compilation then produces object file NEWOBJ and retrieves
global data declarations from TALSYM and global initializations from MYOBJ.
When USEGLOBALS is in effect, the compiler ignores text lines and SOURCE
directives until BEGINCOMPILATION appears in the source file:

TAL /IN myprog/ newobj; USEGLOBALS talsym, SEARCH myobj

4. Alternatively, you can place the preceding SEARCH directive in the source file
anywhere before the BEGINCOMPILATION directive. You can check the syntax of
global data declarations before saving them:

TAL /IN myprog/; SAVEGLOBALS talsym, SYNTAX
TAL Reference Manual—526371-001
16-78

Compiler Directives SEARCH Directive
5. After you correct any errors, you can recompile MYPROG as follows, assuming
there are no global initializations:

TAL /IN myprog/; USEGLOBALS talsym

SEARCH Directive
SEARCH specifies object files from which BINSERV can resolve unsatisfied external
references and validate parameter lists at the end of compilation.

By default, BINSERV does not attempt to resolve unsatisfied external references.

file-name

is the name of a disk object file from which BINSERV can resolve unsatisfied
external references. Specify the file names in the order in which you want the
search to take place.

You can specify partial file names as described in Appendix E in the TAL Programmer’s
Guide. The compiler uses the current default volume and subvolume names as needed
to complete file names. The compiler can also use TACL ASSIGN SSV information for
file names.

define-name

is the name of a TACL MAP DEFINE that refers to a disk object file from which the
compiler is to resolve unsatisfied external references.

assign-name

is a logical file name you have equated to a disk object file (from which the
compiler is to resolve unsatisfied external references) by issuing a TACL ASSIGN
command.

VST1653.vsd

file-name

define-name

,

()

SEARCH

assign-name

file-name

define-name

assign-name
TAL Reference Manual—526371-001
16-79

Compiler Directives Usage Considerations
Usage Considerations
SEARCH can appear in the compilation command or anywhere in the source code. A
SEARCH directive can extend to continuation lines, each line beginning with ? in
column 1.

Search List
The compiler sends the list of object files from each SEARCH directive to BINSERV.
BINSERV appends the file names in the order specified to the master search list for
the current source file.

You can clear the search list at any point in the source file by specifying SEARCH with
no file names.

At the end of compilation, BINSERV uses the files that remain on the search list to
resolve external references. BINSERV searches the files in the order in which they
appear in the search list. If a procedure or entry-point name that resolves an external
reference appears in more than one file, BINSERV binds only the first occurrence, so
the order in which you specify the files is important.

After a successful compilation, BINSERV binds the new object file. During binding,
BINSERV uses procedures from object files in the master search list to resolve any
unsatisfied external references in your program. If the external procedures also contain
references to other external procedures or to data blocks, BINSERV resolves them
from object files in the master search list.

Retrieving Global Initializations and Template Structures
You also use SEARCH to retrieve previously saved global initializations and template
structure declarations. For example, in the following compilation command,
USEGLOBALS retrieves global data declarations saved in file TALSYM by
SAVEGLOBALS in a previous compilation, and SEARCH retrieves the initialization
values from object file MYOBJ, which was also created in the SAVEGLOBALS
compilation:

TAL /IN myprog/ newobj; USEGLOBALS talsym, SEARCH myobj

As an alternative, you can place the SEARCH directive in the source code anywhere
before the BEGINCOMPILATION directive.

For more information on saving global data declarations, see the SAVEGLOBALS
Directive on page 16-75.
TAL Reference Manual—526371-001
16-80

Compiler Directives Examples of SEARCH Directive
Examples of SEARCH Directive
1. This example shows SEARCH directives for a search in the order FILE1, FILE2,

FILE3, and FILE4:

?SEARCH (file1, file2)
?SEARCH (file3, file4)

2. This example shows SEARCH directives for external procedures:

?SEARCH partx !Object file containing PROC_X
PROC proc_x;
 EXTERNAL;

?SEARCH party !Object file containing PROC_Y
PROC proc_y;
 EXTERNAL;

PROC proc_z;
 BEGIN
 CALL proc_x;
 CALL proc_y;
 END;

SECTION Directive
SECTION gives a name to a section of a source file for use in a SOURCE directive.

section-name

is an identifier to associate with all source text that follows the SECTION directive
until another SECTION directive or the end of the source file occurs.

Usage Considerations
SECTION can appear anywhere in the source code but not in the compilation
command. SECTION must be the only directive on the directive line.

VST1654.vsd

SECTION section-name
TAL Reference Manual—526371-001
16-81

Compiler Directives Example of SECTION Directive
Example of SECTION Directive
1. This example gives a different section name, such as SORT_PROC and

NEXT_PROC, to each procedure in a source library:

!File ID APPLLIB
?SECTION sort_proc
PROC sort_on_key(key1, key2, key3, length);
 INT .key1, .key2, .key3, length;
 BEGIN
 !Lots of code
 END;
?SECTION next_proc

2. Another source file includes the previous file name and a section name in a
SOURCE directive:

?SOURCE appllib (sort_proc)

SETTOG Directive
SETTOG turns the specified toggles on for use in conditional compilations. The
SETTOG directive supports named toggles in addition to numeric toggles.

toggle-name

is a user-defined name that conforms to the TAL identifier format. You must specify
each toggle name you want turned on.

toggle-number

is an unsigned decimal constant in the range 1 through 15. Leading zeros are
ignored. SETTOG with no arguments turns on all numeric toggles but does not
affect named toggles.

VST1655.vsd

,

toggle-name

toggle-number

,

toggle-name

toggle-number

()

SETTOG
TAL Reference Manual—526371-001
16-82

Compiler Directives Usage Considerations
Usage Considerations
SETTOG can appear anywhere in the source code and in the compilation command.
SETTOG without a parenthesized list must be the last directive on the line. When
SETTOG has a parenthesized list, other directives can follow on the same line, with a
comma separating the closing parenthesis from the next directive.

SETTOG interacts with the IF, IFNOT, and ENDIF directives. IF and IFNOT test the
setting of toggles and mark the beginning of conditional compilation. ENDIF marks the
end of conditional compilation.

Named Toggles
Before you use a named toggle in an IF or IFNOT directive, you must specify that
name in a DEFINETOG, SETTOG, or RESETTOG directive. Which of these directives
you use depends on whether you want settings of named toggles unchanged or turned
on or off:

Numeric Toggles
You can use a numeric toggle in an IF or IFNOT directive, even if that number has not
been specified in a SETTOG, RESETTOG, or DEFINETOG directive.

By default, all numeric toggles not turned on by SETTOG are turned off. To turn off
numeric toggles turned on by SETTOG, use RESETTOG.

Examples of SETTOG Directive
1. In this example, SETTOG turns on six toggles and RESETTOG turns off two of

them. IF tests a toggle, finds it is turned on, and causes the compiler to compile the
source text between IF VERSN2 and ENDIF VERSN2 :

?SETTOG (versn1, versn2, 7, 4, 11)
?SETTOG versn3 !Turn on toggles
?RESETTOG (versn1, 7) !Turn off toggles
!Lots of code

?IF versn2 !Test toggle for on state
PROC version_2; !Find it on; compile procedure
 BEGIN
 !More code
 END;
?ENDIF versn2 !End of compiled portion

Directive
Setting of
New Toggle Setting of Specified Existing Toggle

DEFINETOG Off Unchanged

SETTOG On On

RESETTOG Off Off
TAL Reference Manual—526371-001
16-83

Compiler Directives SOURCE Directive
2. In this example, IFNOT tests a toggle for the off state, finds it is turned on, and
causes the compiler to skip the source text between IFNOT SCANNER and ENDIF
SCANNER:

?SETTOG scanner !Turn toggle SCANNER on
!Some code here

?IFNOT scanner !Test toggle for off state
PROC skipped; !Find it on; skip procedure
 BEGIN
 !More code here
 END;
?ENDIF scanner !End of skipped procedure

3. In this example, SETTOG turns on toggle 1. IF tests the toggle, finds it is turned
on, and causes the compiler to compile the source text between IF 1 and ENDIF
1:

?SETTOG 1 !Turn toggle 1 on
!Some code here

?IF 1 !Test the toggle for on state
PROC some_proc; !Find it on; compile procedure
 BEGIN
 !More code here
 END;
?ENDIF 1 !End of compiled portion

SOURCE Directive
SOURCE specifies source code to include from another source file.

file-name

specifies the name of a disk file from which the compiler is to read source code.
You can specify partial file names as described in Appendix E in the TAL
Programmer’s Guide. The compiler uses TACL ASSIGN SSV information, if
specified, to complete the file name. Otherwise, the compiler uses the current
default volume and subvolume names as needed.

,

section-name()

VST1656.vsd

SOURCE

assign-name

define-name

file-name
TAL Reference Manual—526371-001
16-84

Compiler Directives Usage Considerations
define-name

is the name of a TACL MAP DEFINE that refers to a disk file from which the
compiler is to read source code.

assign-name

is a logical file name you have equated to a disk file (from which the compiler is to
read source code) by issuing a TACL ASSIGN command.

section-name

is an identifier specified in a SECTION directive within the sourced-in file. If the
compiler does not find section-name in the specified file, it issues a warning.

Usage Considerations
SOURCE can appear anywhere in the source code but not in the compilation
command.

If other directives appear on the same line, SOURCE must be last in the line. The list
of section names can extend to continuation lines, each line beginning with ? in column
1. The leading parenthesis, if present, must appear on the same line as SOURCE.

Section Names
If you specify SOURCE with no section names, the compiler processes the specified
source file until an end of file occurs. The compiler treats any SECTION directives in
the source file as comments.

If you specify SOURCE with section names, the compiler processes the source file
until it reads all the specified sections. A section begins with a SECTION directive and
ends with another SECTION directive or the end of the file, whichever comes first.

The compiler reads the sections in order of appearance in the source file, not in the
order specified in the SOURCE directive. If you want the compiler to read sections in a
particular order, use a separate SOURCE directive for each section and place the
SOURCE directives in the desired order.

Nesting Levels
You can nest SOURCE directives to a maximum of seven levels, not counting the
original outermost source file. For example, the deepest nesting allowed is as follows:

1. The MAIN file F sources in file F1.
2. File F1 sources in file F2.
3. File F2 sources in file F3.
4. File F3 sources in file F4.
5. File F4 sources in file F5.
6. File F5 sources in file F6.
7. File F6 sources in file F7.
TAL Reference Manual—526371-001
16-85

Compiler Directives Examples of SOURCE Directive
Effect of Other Directives
If LIST and NOSUPPRESS are in effect after a SOURCE directive completes
execution, the compiler prints a line identifying the source file to which it reverts and
begins reading at the line following the SOURCE directive.

If USEGLOBALS is in effect, the compiler ignores all SOURCE directives until it
encounters BEGINCOMPILATION. For more information on how these directives
interact, see the SAVEGLOBALS Directive on page 16-75.

Examples of SOURCE Directive
1. This SOURCE directive instructs the compiler to process the file until an end of file

occurs:

?SOURCE $src.current.routines

(Any SECTION directives in the file ROUTINES are treated as comments.)

2. This SOURCE directive reads three sections from the source file. It reads the files
in the order in which they appear in the source file, not in the order specified in the
SOURCE directive.

?SOURCE $src.current.routines (sec1, sec2, sec3)

(The specified files appear in the source file in the order SEC3, SEC2, and SEC1,
so they are read in that order.)

3. This example shows how you can specify the order in which the compiler is to read
the sections, regardless of their order in the source file:

?SOURCE $src.current.routines (sec1)
?SOURCE $src.current.routines (sec2)
?SOURCE $src.current.routines (sec3)

SQL Directive
SQL instructs the compiler to make preparations for the processing of SQL commands.

The syntax for this directive is described in the NonStop SQL Programming Manual for
TAL.

SQLMEM Directive
SQLMEM specifies where in memory the compiler is to place internal SQL data
structures that describe SQL statements and host variables.

The syntax for SQLMEM is described in the NonStop SQL Programming Manual for
TAL.
TAL Reference Manual—526371-001
16-86

Compiler Directives STACK Directive
STACK Directive
STACK sets the size of the data stack in the user data segment.

num-pages

is the number of 2048-byte memory pages to allocate for the data stack (storage
area for local and sublocal data). Specify an unsigned decimal constant in the
range 0 through 32.

Usage Considerations
STACK can appear in the compilation command or anywhere in the source code. If you
omit this directive, the default is the space estimated by BINSERV for local storage.

The combined number of memory pages allocated for the data area is equal to num-
pages plus the space required for global data blocks. That combined area can be at
most 32,768 words (65,536 bytes).

The following directives override the STACK directive:

• A DATAPAGES directive that specifies more than 32 memory pages

• An ENV COMMON directive in a compilation unit that contains a MAIN procedure

Example of STACK Directive
This example sets the size of the data stack in the user data segment to 20 memory
pages:

?STACK 20

SUBTYPE Directive
SUBTYPE specifies that the object file is to execute as a process of a specified
subtype.

VST1657.vsd

=

STACK num-pages

VST1658.vsd

=

SUBTYPE subtype-number
TAL Reference Manual—526371-001
16-87

Compiler Directives Usage Considerations
subtype-number

specifies the process subtype number by which the object file is to identify itself to
other processes. Specify an unsigned decimal constant in the range 0 through 63.
The default process subtype is 0.

Usage Considerations
SUBTYPE can appear in the compilation command or anywhere in the source code. If
SUBTYPE appears more than once in a compilation, the compiler uses the subtype
number specified in the last SUBTYPE directive it encounters.

The compiler stores the specified process subtype in the object file header. At run time,
the system creates a process from the object file and assigns the saved process
subtype to the process.

NonStop defines the meaning and behavior of subtypes 1 through 47. Nonprivileged
subtypes you can use from this group are:

To allow a terminal simulation process to specify its own device type, you must specify
subtype 30 for the process. You can either specify SUBTYPE 30 at the beginning of
your program or use a Binder command after compilation.

You can define the meaning and behavior of subtypes 48 through 63 and then specify
them in SUBTYPE directives.

For more information on subtypes, see the Guardian Programmer’s Guide.

Example of SUBTYPE Directive
This example shows a SUBTYPE 30 directive at the beginning of a terminal simulation
program:

!This is MYSOURCE file.
?SUBTYPE 30
!Global data declarations

SUPPRESS Directive
SUPPRESS overrides all the listing directives.

The default is NOSUPPRESS.

30 A device-simulating process

31 A spooler collector process
TAL Reference Manual—526371-001
16-88

Compiler Directives Usage Considerations
Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.
Both SUPPRESS and NOSUPPRESS can appear in the source code.

SUPPRESS suppresses all compilation listings except the compiler leader text,
diagnostic messages, and the trailer text. That is, the compiler and BINSERV produce
diagnostic and trailer text, but BINSERV does not produce the load maps.

SUPPRESS overrides all the listing directives—ABSLIST, CODE, CROSSREF,
DEFEXPAND, FMAP, GMAP, ICODE, INNERLIST, LIST, LMAP, MAP, PAGE, and
PRINTSYM.

SUPPRESS does not alter the source code.

NOSUPPRESS lets the listing directives take effect.

Example of SUPPRESS Directive
This compilation command starts the compilation and suppresses all source code
listings and maps from printing in the compiler output:

TAL /IN mysrc, OUT $s.#lists/ myobj; SUPPRESS

SYMBOLPAGES Directive
SYMBOLPAGES sets the size of the internal symbol table the compiler uses as a
temporary storage area for processing variables and SQL statements.

num-pages

specifies the number of 2048-byte memory pages to allocate for the symbol table.
Specify an unsigned decimal constant in the range 512 through 32,767. The
default is 512 pages (1 megabyte).

VST1659.vsd

NOSUPPRESS

SUPPRESS

VST1660.vsd

=

SYMBOLPAGES num-pages
TAL Reference Manual—526371-001
16-89

Compiler Directives Usage Considerations
Usage Considerations
SYMBOLPAGES can appear only in the compilation command, not in the source code.

SYMBOLPAGES sets the size of the compiler’s internal symbol table, which resides in
the automatic extended data segment. The compiler uses the symbol table as a
temporary storage area, for example, when processing variables and SQL statements.

For more information on SQL, see the NonStop SQL Programming Manual for TAL.

If the symbol table overflows, the compiler issues error 57 (symbol table overflow). Use
SYMBOLPAGES to specify a larger table size.

Example of SYMBOLPAGES Directive
This compilation command starts the compiler and sets the size of the compiler’s
internal symbol table at 4096 memory pages:

TAL /IN mysrc, OUT $s.#lists/ myobj; SYMBOLPAGES 4096

SYMBOLS Directive
SYMBOLS saves symbols in a symbol table (for Inspect symbolic debugging) in the
object file.

The default is NOSYMBOLS.

Usage Considerations
This directive can appear in the compilation command or anywhere in the source code.

SYMBOLS turns the symbol-saving attribute on for subsequent code.

NOSYMBOLS turns the symbol-saving attribute off for subsequent code.

Saving Symbols
Normally you save symbols for the entire compilation by specifying SYMBOLS once at
the beginning of the compilation unit. The symbol table then contains all the symbols
generated by the source code.

Alternatively, you can save symbols for specific procedures and global data blocks,
although this is not the common practice. If you save symbols for a specific procedure
or data block and a referral structure in that procedure or data block references a

VST1661.vsd

NOSYMBOLS

SYMBOLS
TAL Reference Manual—526371-001
16-90

Compiler Directives Examples of SYMBOLS Directive
structure definition that was not saved, the compilation terminates with an error
message from SYMSERV.

Deleting Symbols
After debugging the program, you can use Binder to:

• Create a new object file without symbols. The old object file remains intact, but you
drastically reduce what you can do with the Inspect product.

ADD * FROM oldobj
SET SYMBOLS OFF
BUILD newobj

• Delete both symbol and Binder tables from the old object file and omit them from
the new object file. Before you do so, make sure you no longer need to examine or
modify the file. Once you strip these tables, you can no longer use the Inspect
product nor bind in new procedures into the object code.

STRIP oldobj

Examples of SYMBOLS Directive
1. This example requests the Inspect product and saves symbols for the entire

compilation unit:

!This is MYSOURCE file
?INSPECT, SYMBOLS

!Declare global data here
!Declare procedures and so forth

2. This example requests the Inspect product and saves symbols for a procedure and
a global data block. This use is not the common practice; usually you specify
SYMBOLS once at the beginning of the program:

!This is OURSOURCE file
?INSPECT
?SYMBOLS !Save symbols for implicit block
 INT a;
 STRING b;
?NOSYMBOLS !Stop saving symbols

BLOCK global_data;
 FIXED c;
 STRING d;
 END BLOCK;

?SYMBOLS !Save symbols for procedure
PROC uxb;
BEGIN
!Lots of code
TAL Reference Manual—526371-001
16-91

Compiler Directives SYNTAX Directive
END;
?NOSYMBOLS !Stop saving symbols

SYNTAX Directive
SYNTAX checks the syntax of the source text without producing an object file.

Usage Considerations
SYNTAX can appear in the compilation command or anywhere in the source code.

You can use the compiler to detect syntax errors before you code large portions of the
source code. If SYNTAX is in effect, the compiler checks the syntax of the source text
without producing an object file.

BINSERV is not needed if no object file is produced.

• SYNTAX in the compilation command prevents BINSERV from starting.

• SYNTAX early in the source text stops BINSERV after it starts.

SYNTAX does not affect the CROSSREF directive. The compiler can generate a
cross-reference listing even if it produces no object file.

Checking Saved Global Data Declarations
To check the syntax of saved global data declarations, you can use the SYNTAX,
SAVEGLOBALS, and USEGLOBALS directives. If the syntax check finds errors in the
global data declarations, you can correct them and recompile the source file using
SAVEGLOBALS. For more information on how these directives interact, see the
SAVEGLOBALS Directive on page 16-75.

Examples of SYNTAX Directive
1. This compilation command checks the syntax of global data declarations in source

file MYPROG and saves the declarations in file TALSYM for use in subsequent
compilations:

TAL /IN myprog/; SAVEGLOBALS talsym, SYNTAX

2. This compilation command checks for the syntax of the code or data in source file
MYPROG. In this compilation, USEGLOBALS retrieves global data declarations
saved in the compilation shown in Example 1. (Because the previous compilation

VST1662.vsd

SYNTAX
TAL Reference Manual—526371-001
16-92

Compiler Directives TARGET Directive
produced no object file, you need not use SEARCH to retrieve global initializations
as you normally would when you use USEGLOBALS.)

TAL /IN myprog/; USEGLOBALS talsym, SYNTAX

TARGET Directive
TARGET lets you specify the target system for which conditional code is written.

For more information on the syntax for TARGET, see Section 15, Privileged
Procedures.

USEGLOBALS Directive
USEGLOBALS retrieves the global data declarations saved in a file by
SAVEGLOBALS during a previous compilation.

file-name

is the name of the global declarations disk file created by SAVEGLOBALS in a
previous compilation.

You can specify partial file names as described in Appendix E in the TAL
Programmer’s Guide. The compiler uses TACL ASSIGN SSV information, if
specified, to complete the file name. Otherwise, the compiler uses the current
default volume and subvolume names as needed.

define-name

is the name of a TACL MAP DEFINE that refers to the global declarations file.

assign-name

is a logical file name you have equated to a disk file (that refers to the global
declarations file) by issuing a TACL ASSIGN command.

VST1663.vsd

USEGLOBALS

assign-name

define-name

file-name
TAL Reference Manual—526371-001
16-93

Compiler Directives Usage Considerations
Usage Considerations
USEGLOBALS can appear either in the compilation command or in the source code
before any global data declarations. If USEGLOBALS appears anywhere else, the
compiler issues a warning and ignores the directive.

Do not use USEGLOBALS and CROSSREF in the same compilation unit. If you do,
the compiler does not pass Inspect and cross-reference information to SYMSERV.

Saving Global Data Declarations
When you compile with SAVEGLOBALS, the compiler saves global data declarations
as follows:

• It stores the identifiers and data characteristics (data type and kind of variable) in a
global declarations file.

• It stores the initialization values (addresses and constant lists) in the object file.

Retrieving Saved Global Data Declarations
After the SAVEGLOBALS compilation completes, you can subsequently compile the
source file and retrieve the saved global data declarations and initializations by using
the following directives:

• USEGLOBALS retrieves the saved global data declarations and suppresses
compilation of text lines and SOURCE directives until a BEGINCOMPILATION
appears.

• BEGINCOMPILATION marks the point at which compilation is to begin.
BEGINCOMPILATION, if present, must appear after the last global data
declaration or SEARCH directive and before the first procedure declaration,
including EXTERNAL and FORWARD declarations.

• SEARCH retrieves global initializations and template structure declarations (unless
you used SYNTAX in the SAVEGLOBALS compilation).

Make sure the global data declarations in both the SAVEGLOBALS and
USEGLOBALS compilations are identical. If you include new or changed data
declarations anywhere in the USEGLOBALS source file, results are unpredictable.

The USEGLOBALS compilation terminates if the global declarations file:

• Cannot be found or opened by the compiler

• Is not file code 105

• Was created using a different version of the compiler

Note. Do not use USEGLOBALS and SAVEGLOBALS in the same compilation unit. If you do,
the compiler issues an error message and uses only the first of the two directives.
TAL Reference Manual—526371-001
16-94

Compiler Directives Example of USEGLOBALS Directive
Whenever you switch to a new version of the compiler, you must recompile the source
code using SAVEGLOBALS to create a new global declarations file.

Effect of Other Directives
When you use the following directives in the SAVEGLOBALS compilation, they affect
the USEGLOBALS compilation as follows:

Example of USEGLOBALS Directive
For an example and information on how the SAVEGLOBALS, USEGLOBALS,
BEGINCOMPILATION, SEARCH, and SYNTAX directives interact, see the
SAVEGLOBALS Directive on page 16-75.

WARN Directive
For an example and information on how the SAVEGLOBALS, USEGLOBALS,
BEGINCOMPILATION, =, and SYNTAX directives interact, see the SAVEGLOBALS
Directive on page 16-75.

warning-number

is the number of a warning message. If specified with WARN, the message is
printed. If specified with NOWARN, the message is suppressed.

Directive Used in
SAVEGLOBALS
Compilation Effect in Subsequent USEGLOBALS Compilations

SYNTAX Negates need for using SEARCH in the USEGLOBALS
compilation because no object file was produced by the
SAVEGLOBALS compilation. You must use SYNTAX in the
USEGLOBALS compilation, however.

INHIBITXX Continues to generate inefficient but correct indexing for
global extended declarations located in the first 64 words of
primary global area.

PRINTSYM Continues to print symbols in listings.

SYMBOLS Continues making symbols available for all data blocks.

INT32INDEX Continues to produce INT(32) indexes from INT indexes.

warning-number

=NOWARN

VST1664.vsd

WARN
TAL Reference Manual—526371-001
16-95

Compiler Directives Usage Considerations
Usage Considerations
WARN or NOWARN can appear in the compilation command or anywhere in the
source code.

To print selected warnings, you must specify WARN before any NOWARN directives. If
you specify NOWARN first, any subsequent WARN warning-number directives have no
effect.

You can use NOWARN when a compilation produces a warning and you have
determined that no real problem exists. Before the source line that produces the
warning, specify NOWARN and the number of the warning you want suppressed.
Following that source line, specify a WARN directive.

NOWARN Statistics
If NOWARN is in effect, the compiler records the number of suppressed and
unsuppressed warnings. The compilation statistics at the end of the compiler listing
include the following counts:

Number of unsuppressed compiler warnings = count

Number of warnings suppressed by NOWARN = count

Unsuppressed compiler warnings are compiler warnings that are not suppressed by
NOWARN directives. The summary does not report the location of the last compiler
warning.

If no compiler errors and no unsuppressed compiler warnings occur, the completion
code is zero.

Example of WARN Directive
This example specifies that the compiler does not print warning message 12:

?NOWARN 12
TAL Reference Manual—526371-001
16-96

A Error Messages
This appendix describes compiler messages:

• Compiler initialization messages

• Error messages

• Warning messages

Compiler Initialization Messages
Initialization messages are unnumbered diagnostic messages that can appear during
compiler initialization. If the OUT file is available, the compiler sends the messages
there; otherwise, it sends them to the home terminal.

An initialization error terminates the compilation with a completion code of 3; that is,
the compiler could not access a file. No object file is created.

Initialization messages are:

CREATION OF TEMPORARY FILE FAILED

ILLEGAL INPUT DEVICE

LIST DEVICE NOT AVAILABLE

LIST FILE CANNOT BE AN EDIT FILE

OPEN OF INITIAL SOURCE FILE FAILED

OPEN OF TEMPORARY FILE FAILED

REWIND OF SOURCE FILE FAILED

Any of these self-explanatory messages can be followed by a line of the format:

FILE MANAGEMENT ERROR # error-number ON FILE : file-name

About Error and Warning Messages
The compiler scans each line of the source code and notifies you of an error or
potential error by displaying one of two types of messages:

Message Meaning User Action

Error Indicates a source error that
prevents compilation of the source
file into an object file.

Correct the error and recompile the
source code.

Warning Indicates a potential error
condition that might affect
program compilation or execution.

Check the source code carefully. If
your program is adversely affected,
make corrections and recompile the
source code.
Appendix A—526371.001
A-1

Error Messages Error Messages
To indicate the location of the error or potential error, the compiler prints a circumflex
symbol (^) in the source listing. The circumflex usually appears under the first
character position following the detection of the error. (However, if the error involves
the relationship of the current source line with a previous line, the circumflex does not
always point to the actual error.)

On the next line, the compiler displays a message describing the nature of the error.
The forms of error and warning messages are:

**** ERROR **** message-number -- message-text

**** WARNING **** message-number -- message-text

Occasionally, the compiler adds a third line for supplemental information. For example,
the following message refers you to an earlier procedure that contains an error:

IN PROC proc-name

As another example, the following line refers you to a previous page that contains an
error:

PREVIOUS ON PAGE #page-num

Error messages are described on the following pages in ascending numeric order,
followed by warning messages. Although the compiler prints each message on a single
line, some messages here are continued on additional lines because of line limitations.

Messages no longer in use are not shown in the list. Thus, a few numbers are omitted
from the numeric sequence.

Error Messages
Error diagnostic messages identify source errors that prevent correct compilation. No
object file is produced for the compilation.

0

This error means that the compiler’s data is no longer correct.

If the IN and OUT file numbers are incorrect when the compiler tries to send error 0 to
the OUT file, the following file error appears at the home terminal. This error means the
file has not been opened.

??: 016

Error 0 can occur after syntax errors or after a logic error. Error 0 is sometimes
preceded by other error messages.

• Syntax error. Correct all syntax errors and recompile. If error 0 persists, contact
your service provider. The following syntax errors, for example, cause error 0:

Compiler Error
Appendix A—526371.001
A-2

Error Messages 1
° A substructure that has an odd length, starts with an INT item, and has the
same nonzero upper and lower bounds. The compiler does not pad this
substructure properly.

° Syntax errors within a structure declaration.

° Nesting of procedure declarations or the appearance of such nesting, such as
a formal parameter declared as a procedure but not included in the formal
parameter list.

° Parameter identifiers not separated by commas in the formal parameter list of
a procedure declaration.

° A formal parameter identifier that is a reserved keyword.

° A BLOCK or NAME identifier that appears outside its declaration.

° Too many actual parameters in a dynamic procedure call.

° DEFINE text that begins with, but does not close with, a single quotation mark.

° An invalid conditional expression in an IF statement or IF expression.

° An invalid @ on the left side of an assignment.

° Use of FILLER or BIT_FILLER as variable identifiers within a structure.

• Logic error in compiler operation. A number follows the message for the use of
NonStop development personnel. Report this occurrence to HP and include a copy
of the complete compilation listing (and source, if possible).

1

A parameter mismatch, such as the following, has occurred:

• The parameter type of an actual parameter is not the parameter type expected by
that procedure. Pass an actual parameter that has the expected parameter type.

• The addressing mode (standard versus extended) of a parameter declaration does
not match the addressing mode of its FORWARD or EXTERNAL declaration.
Correct the addressing mode in the parameter declaration to match its FORWARD
or EXTERNAL declaration.

Parameter Mismatch
Appendix A—526371.001
A-3

Error Messages 2
2

Duplicate identifiers are declared within this scope. Replace one of the identifiers with
an identifier that is unique within this scope. For example, identifier RESULT is
declared twice within a procedure:

PROC p;

 BEGIN

 LABEL result;

 INT result;
!Duplicate identifier

 END;

3

A reference to a DEFINE declaration that is recursive appears in your source code.
The message appears when the compiler expands the DEFINE. In the following
example, the compiler expands A, which expands B, which expands A, and so on:

DEFINE a = b#, b = a#;

Rewrite the DEFINE so that it does not call itself.

4

An incorrect move statement or group comparison expression appears, for which the
compiler cannot generate code. Correct the statement or expression.

5

The space required for your global variables exceeds the 256-word global primary
area. The compiler allocates the following kinds of global variables in this area:

• Directly addressed simple variables, arrays, and structures

• 16-bit or 32-bit pointers you declare and initialize yourself

• 16-bit or 32-bit implicit pointers for indirect arrays and indirect structures

• Two 32-bit extended-stack pointers if you declared extended local variables

Identifier declared more than once

Recursive DEFINE invocation

Illegal MOVE statement or group comparison

Global primary area exceeds 256 words
Appendix A—526371.001
A-4

Error Messages 6
Declare most global arrays and structures by using indirection. Declare very large
global arrays and structures by using extended indirection.

6

A numeric constant contains a digit that is incorrect in the stated base of the constant.
For example, an octal constant contains the digit 9. Correct the constant in accordance
with Section 3, Data Representation.

7

A character string appears that:

• Contains more than 128 characters. Reduce the length of the character string.

• Does not terminate in the line in which it begins. Specify a constant list of smaller
character strings; for example:

 STRING a[0:99] := ["These two constant strings will "

 "appear as if they were one character string."]

8

An arithmetic operation occurs that is not permissible for operands of the listed data
types. Correct the expression in accordance with Section 4, Expressions.

9

A structure declaration incorrectly includes .SG (the system global indirection symbol).
To access the system global area, you can:

• Equivalence a structure to a location relative to the base address of the system
global area. (See Section 15, Privileged Procedures)

• Declare a system global pointer (using the .SG symbol) and assign a structure
address to it.

Otherwise, declare a global or local structure using the standard or extended
indirection symbol (. or .EXT) and declare a sublocal structure without using any
indirection symbol.

Illegal digit

String overflow

Not defined for INT(32), FIXED, or REAL

Compiler does not allocate space for .SG STRUCT
Appendix A—526371.001
A-5

Error Messages 10
10

This message indicates one of the following conditions:

• A declaration specifies addresses beyond the allowable range; for example:

INT i = 'G' + 300;

Declare at most 256 words of directly addressable data relative to 'G', 127 words
relative to 'L', and 31 words relative to 'S'.

• A subprocedure parameter or a sublocal variable cannot be accessed because
other items have been pushed onto the data stack. Reorder the parameters or
sublocal data. For more information on “Sublocal Storage Limitations” and
“Sublocal Parameter Storage Limitations”, see the TAL Programmer’s Guide, which
describes the limitations of sublocal storage.

• The total of primary and secondary global variables exceeds 32K words. Reduce
the number or size of your global variables or move some of them to extended
memory.

• The zeroth element of a global direct array is outside G-plus addressing. Declare
the array so that its zeroth element falls within G-plus addressing. If the array is
located at G[0], its lower bound must be a zero or negative value.

• The upper bound of the last sublocal array is less than zero. Specify an upper
bound that is equal to or larger than zero.

• The size of an indirect array (of structures) exceeds 32K words. Reduce the size of
the array.

• The size of a local variable exceeds 128K bytes. Reduce the size of the local
variable.

• A procedure that you compile with the SQL directive has more than 122 words of
primary local variables. Declare the excess words as indirect variables.

11

Conditions that cause this error include:

• A variable appears where a constant is expected, or a constant appears where a
variable is expected. Replace variable-name with a constant or variable as
required.

Address range violation

Illegal reference [variable-name]
 [parameter-number]
Appendix A—526371.001
A-6

Error Messages 12
• A CALL statement passes a value parameter to a procedure that expects a
reference parameter. Replace the parameter indicated by parameter-number with
a reference parameter.

• A CODE statement includes indirect branches such as the following. Remove any
indirect branches from the CODE statement.

CODE (BANZ .test1);

!Some code here

test1: CODE (CON @test2);

12

The following conditions can cause this error:

• One or more procedure declarations appear within another procedure declaration.
Either replace the nested procedures with subprocedures or move the nested
procedures outside the encompassing procedure.

• The identifier of a procedure declared as a parameter does not appear in the
parameter list. Add the procedure identifier to the parameter list. For example:

PROC myproc (a); !Q is missing from parameter list

 INT a;

 PROC q; !Q is declared as parameter

 BEGIN

 !Lots of code

 END;

13

• A value of a data type other than INT appears where only INT values are
permitted. Specify INT values in this context.

• An index of a data type other than INT appears for an equivalenced address.
Specify an INT index for the equivalenced address.

Nested routine declaration(s)

Only 16-bit INT value(s) allowed
Appendix A—526371.001
A-7

Error Messages 14
14

A global initialization expression includes variables. Initialize global data only with
constant expressions, which can include @identifier when used with standard functions
that return a constant value. @ accesses the address of identifier, which must be a
nonpointer variable with a 16-bit address. For example:

STRUCT .st[0:1];

BEGIN

 INT a;

 INT b;

 INT c;

END;

INT .p1 := @st.b; -- error 14

INT .p2 := @st '+' $OFFSET (st.b) / 2; -- works fine

INT .q1 := @st[1].c; -- error 14

INT .q2 := @st '+' $LEN (st) / 2

'+' $OFFSET (st.c) / 2; -- works fine

15

An equivalenced variable declaration tries to initialize the previously declared variable.
Initialize the previous variable before referring to it in the equivalenced variable
declaration. For example:

INT b;

INT .a = b := 5; !Cannot initialize B here; error 15

INT b := 5; !Can initialize B here

INT .a = b; !No error

16

The swap volume cannot accommodate your program. For example, either of the
following values are too large for the memory available on the swap volume:

Only initialization with constant value(s) is allowed

Initialization is illegal with reference specification

Insufficient disk space on swap volume
Appendix A—526371.001
A-8

Error Messages 17
• The SQL PAGES value

• The combined SQL PAGES and SYMBOLPAGES values

Reduce the value that is too large, or specify another swap volume.

17

A declaration for a formal parameter is missing in the procedure or subprocedure
header. Declare the missing formal parameter or remove its identifier from the formal
parameter list.

18

Incorrect bounds appear in an array declaration. To correct this error:

• Specify bounds that are constant expressions.

• Specify a lower bound that is smaller than the upper bound. (This is not a
requirement when the array is declared within a structure.)

• Specify no bounds when you declare an equivalenced variable:

INT a[0:5] = b; !Cause error 18

19

A subprocedure declaration appears either outside a procedure or within another
subprocedure. Declare all subprocedures within a procedure but not within a
subprocedure.

20

A bit field construct is incorrect. Correct the construct so that both bit numbers are INT
constants and the left bit number is less than or equal to the right bit number; for
example:

<0:5>

Formal parameter type specification is missing

Illegal array bounds specification

Global or nested SUBPROC declaration

Illegal bit field designation
Appendix A—526371.001
A-9

Error Messages 21
21

The same identifier appears more than once as a statement label in the same scope.
Specify label identifiers that are unique within a scope. For example, MYLABEL
appears twice as statement labels within a procedure :

PROC q;
 BEGIN
 mylabel:
 !Some statements here
 mylabel: !Duplicate statement label
 !More statements here
END;

22

The extended (32-bit) indirection symbol (.EXT) appears where the compiler expects
standard indirection. Use the standard (16-bit) indirection symbol (.) in this context.

23

The size field of a data type is incorrect. For example, INT(12) is incorrect. Specify a
correct data type, such as INT or INT(32).

24

A global data declaration follows a procedure declaration. Declare all global data
before the first procedure declaration.

25

The argument to the standard function $LADR does not have an extended address.
When you use $LADR, specify an argument that has an extended address.

Label declared more than once

Only standard indirect variables are allowed

Variable size error

Data declaration(s) must precede PROC declaration(s)

Item does not have an extended address
Appendix A—526371.001
A-10

Error Messages 26
26

More than one FORWARD declaration for the given procedure or subprocedure is
present. Declare a procedure or subprocedure FORWARD only once. Delete all
duplicate FORWARD declarations.

27

A statement or the line preceding it contains one or more syntax errors. For example,
the following conditions can cause error 27, followed by error 0, which terminates
compilation:

• A misplaced or missing semicolon; for example:

PROC myproc !Place semicolon here
 BEGIN; !Remove this semicolon
 INT num; sum; !Replace first semicolon with comma
 num := 2 !Place semicolon here
 sum := 5;
 END;

• A reserved word appears as an identifier in the formal parameter list of a
procedure declaration. Replace the identifier with a nonreserved identifier.

• An incorrect conditional expression appears in an IF statement or IF expression.
Correct the expression.

28

A read-only array appears in an incorrect context, such as:

• On the left side of an assignment operator (:=)

• On the left side of a move operator (':=' or '=:')

• On the left side of a group comparison expression

You can use a normal array instead. For the syntax of arrays, see Section 7, Arrays.

Routine declared forward more than once

Illegal syntax

Illegal use of code relative variable
Appendix A—526371.001
A-11

Error Messages 29
29

An identifier appears in the formal parameter specification of a procedure or
subprocedure declaration but not in the formal parameter list. Either include the
identifier in the formal parameter list or remove the identifier from the formal parameter
specification.

30

A DROP statement specifies an incorrect identifier. In the DROP statement, specify the
identifier of a label or a USE statement variable.

31

A CALL statement specifies an incorrect identifier. In the CALL statement, specify the
identifier of a procedure, subprocedure, or entry point.

32

This message indicates one of the following conditions:

• An expression contains operands of different data types. To make the types match,
use type-transfer standard functions or specify constants correctly. For example,
for an INT(32) constant, use the D suffix.

• A procedure without a return type occurs on the right side of an assignment
statement. Specify only a function in this context.

• Either a procedure is declared INT and its FORWARD declaration is declared
INT(32), or a procedure is declared INT(32) and its FORWARD declaration is
declared INT. Make the data type in both declarations match.

• A RETURN statement has no return value and the correct number of words for a
return value is not in the register stack. In an INT procedure, for example, specify
an INT value in the RETURN statement.

• A RETURN statement specifies a return value of the wrong data type. Specify the
correct data type.

Illegal use of identifier name

Only label or USE variable allowed

Only PROC or SUBPROC identifier allowed

Type incompatibility
Appendix A—526371.001
A-12

Error Messages 33
• An undeclared variable prefixed by @ is passed as an actual parameter. The
compiler treats the undeclared variable as a label, so if the allocated size of the
formal parameter does not match that of the label address, the compiler issues the
error. Declare the variable before passing it as a parameter.

• A character string is assigned to a FIXED or REAL(64) variable. Change the value
from a character string, or change the data type.

33

A declaration occurs for an item (such as a label) that cannot be a global item. At the
global level, you can declare LITERALs, DEFINEs, simple variables, arrays, structures,
simple pointers, structure pointers, and equivalenced variables.

34

A required variable is missing from the current statement. Specify all variables shown
as required in the syntax diagrams in this manual.

35

A subprocedure is declared as a formal parameter or is passed as an actual
parameter. You can declare and pass procedures (but not subprocedures) as
parameters.

36

A specified value exceeds the allowable range for a given operation. Correct the value.

37

A required identifier is missing from the current statement. Provide the missing
identifier.

Illegal global declaration(s)

Missing Variable

Subprocedures cannot be parameters

Illegal Range

Missing Identifier
Appendix A—526371.001
A-13

Error Messages 38
38

You tried to reserve more than three registers for use as index registers. Use a DROP
statement to reduce the number of reserved registers.

39

The compiler could not open the file you specified in a SOURCE directive. If
NOABORT is in effect, the compiler prompts you for the name of a source file. You can
take any of the following alternative actions:

• Retry the same source file name.

• Ignore that source file and continue compilation.

• Substitute another source file name.

• Terminate the compilation.

If you choose to ignore the source file or to terminate the compilation, error 39
appears. If SUPPRESS is in effect, the compiler prints the SOURCE directive before
the error message.

40

• A bit-deposit construct is applied to a variable other than STRING or INT:

INT i;

UNSIGNED(5) uns5;

i := uns5.<13:14>; !Error 40 appears

• To correct the preceding error, change the variable to STRING or INT:

INT i, var;

i := var.<13:14>;

• An operation or construct that is valid only when used with a variable appears in
some other context, such as appending a bit-deposit field to an expression:

INT a, b;

(a+b).<2:5> := 0; !Error 40 appears

Illegal index register specification

Open failed on file file-name

Only allowed with a variable
Appendix A—526371.001
A-14

Error Messages 41
• To correct the preceding error, assign the expression to a STRING or INT variable
and then append the bit-deposit field to the variable:

INT a, b, var;

!Code to store values in A and B

var := a + b;

var.<2:5> := 0;

41

An ASSERT statement invokes an undeclared procedure specified in an ASSERTION
directive. Either declare the procedure or specify an existing procedure in the
ASSERTION directive.

42

Your source program fills one of the fixed-size tables of the compiler. No recovery from
this condition is possible. Correct the source program as indicated in the following table
(number identifies the affected table):

43

The current source line contains an invalid character or a character that is invalid in the
current context. Specify the correct character.

Undefined ASSERTION procedure: proc-name

Table overflow number

Number Table Name Condition/Action

0 Constant Place a DUMPCONS directive before the point of
overflow to force the constant table to be dumped.
Termination does not occur if a block move of a large
constant list caused the overflow.

1 Tree Simplify the expression.

2 Pseudo-Label You might have too many nested IF statements.
Simplify the IF statements.

3 Parametric
DEFINE

The DEFINE macro being expanded has parameters
that are too long. Shorten the parameters.

4 Section SOURCE directives access too many sections at one
time. Break the sections into two or more groups.

Illegal Symbol
Appendix A—526371.001
A-15

Error Messages 44
44

The specified mnemonic does not match those for the NonStop system. As of release
C00, the compiler does not generate code for the NonStop 1+ system. Replace the
instruction with one described in the System Description Manual for your system.

45

A value of the wrong data type appears. In this context, specify an INT(32) value.

46

The period symbol (.) is used on a variable that is already indirect. Specify only one
level of indirection by removing the period symbol from the current context.

47

An INT value appears where the compiler expected an INT(32) value. For the unsigned
divide ('/') and unsigned modulo divide ('\') operations, specify an INT(32) dividend and
an INT divisor.

48

The source code is missing item-specification. Supply the missing item.

49

• A reference to an undeclared data item appears in the source file. Declare the item
or change the reference.

• The string parameter of a parameter pair (string:length) is misspelled. Correct the
spelling.

Illegal Instruction

Only INT(32) value(s) allowed

Illegal indirection specification

Illegal for 16-bit INT

Missing item-specification

Undeclared identifier
Appendix A—526371.001
A-16

Error Messages 50
50

A DROP statement refers to an undeclared or unused label. Drop a label only after you
declare it and after the compiler reads all references to it. Dropping a label saves
symbol table space and allows its reuse (as in a DEFINE macro).

51

The compiler is unable to allocate an index register. You might have indexed multiple
arrays in a single statement and reserved the limit of index registers using USE
statements. Modify your program so that it requires no more than three index registers
at a time.

52

Initialization is missing from a read-only array declaration. When you declare a read-
only array, make sure you initialize the array with values (not including " ").

53

The compiler detects an unrecoverable error in the source file. In the message, n is a
negative number that identifies one of the following conditions:

54

A structure appears as a formal value parameter. Declare all structure formal
parameters as reference parameters.

Cannot drop this Label

50 Cannot drop this Label

Index register allocation failed

Missing initialization for code relative array

Edit file has invalid format or sequence n

Number Condition/ Action

-3 Text-file format error. Correct the format.‘

-4 Sequence error—the line number of the current source line is
less than that of the preceding line. Correct the sequence of
source lines.

Illegal reference parameter
Appendix A—526371.001
A-17

Error Messages 55
55

A subprocedure declaration includes an incorrect subprocedure attribute such as
EXTERNAL or EXTENSIBLE. Remove the incorrect attribute from the subprocedure
declaration. Subprocedures can only have the VARIABLE attribute.

56

A USE variable is used incorrectly. Correct the usage in accordance with the
descriptions of the USE statement or the optimized FOR statement.

57

The compiler has not allocated sufficient space for the symbols in your program. You
can either:

• Use the SYMBOLPAGES directive to increase the allocation

• Break the program into smaller modules

58

Your program branches into a FOR statement that uses a USE register as its counter.
Branch to the beginning of the FOR statement, not within it.

59

The compiler detects an attempt to divide by 0. Correct the expression to avoid division
by 0.

60

An index is appended to an invalid identifier such as the identifier of a label or an entry
point. Append an index only to the identifier of a variable.

Illegal SUBPROC attribute

Illegal use of USE variable

Symbol table overflow

Illegal branch

Division by zero

Only a data variable may be indexed
Appendix A—526371.001
A-18

Error Messages 61
61

A call to a procedure or subprocedure supplies more (or fewer) parameters than you
defined in the procedure or subprocedure declaration. Supply all required parameters,
and supply at least commas for all optional parameters.

62

The number of parameters specified in a FORWARD or EXTERNAL declaration differs
from that specified in the procedure body declaration. Specify the same number of
parameters in the procedure body declaration as there are in the FORWARD or
EXTERNAL declaration.

63

Within a FOR loop, a DROP statement attempts to drop a USE register that is the
index of the FOR loop. The FOR loop can function correctly only if the register remains
reserved. Remove the DROP statement from within the FOR loop.

64

The current source line contains a scale point that is not a constant. Specify the fpoint
in a FIXED variable declaration and the scale argument to the $SCALE function as INT
constants in the range -19 through +19.

65

The formal-param supplied to the $PARAM function is not in the formal parameter list
for the procedure, or the $PARAM function appears in a procedure that is not
VARIABLE or EXTENSIBLE. Use the $PARAM function only in VARIABLE procedures
and subprocedures and in EXTENSIBLE procedures.

Actual/formal parameter count mismatch

Forward/external parameter count mismatch

Illegal drop of USE variable in context of FOR loop

Scale point must be a constant

Illegal parameter or routine not variable
Appendix A—526371.001
A-19

Error Messages 66
66

This message is usually the result of a poorly structured program, when numerous
errors are compounded and concatenated to the point where the compiler is unable to
proceed with the analysis of the remaining source lines. Review the code to determine
how to correct the errors.

67

The compilation unit nests SOURCE directives to more than seven levels, not counting
the original outermost source file. That is, a SOURCE directive reads in source code
that contains a SOURCE directive that reads in source code that contains a SOURCE
directive that reads in source code, and so on, until the seven-level limit is exceeded.
Reduce the number of nested levels.

68

A directly addressable variable was indexed and used in a memory-referencing
instruction in a CODE statement. Modify the code to avoid this usage.

69

A template structure is referenced as an allocated data item, such as in the $OCCURS
function. Refer to a template structure only in the declaration of a referral structure or a
structure pointer.

70

A qualified reference appears for a nonstructure item. Use the qualified identifier form
of structure-name.substructure-name.item-name only for data items within a structure.

Unable to process remaining text

Source commands nested too deeply

This identifier cannot be indexed

Invalid template access

Only items subordinate to a structure may be qualified
Appendix A—526371.001
A-20

Error Messages 71
71

A structure pointer of an incorrect data type (attribute) occurs. Specify only the INT or
STRING attribute when you declare structure pointers.

72

An indirection symbol is missing from a pointer declaration. When you declare a
pointer, specify an indirection symbol preceding the pointer identifier.

73

An incorrect referral occurs in a declaration. For the referral, specify the identifier of a
previously declared structure or structure pointer.

74

A STRING structure pointer attempts to access word-addressed items. To access
word-addressed structure items, use an INT structure pointer, either a standard (16-bit)
pointer or an extended (32-bit) pointer.

75

An indirect UNSIGNED variable declaration occurs. Declare an UNSIGNED variable as
directly addressed, regardless of its scope (global, local, or sublocal).

76

An incorrect structure or substructure reference occurs. Refer to a structure or
substructure only:

• In a move statement

Only INT or STRING STRUCT pointers are allowed

Indirection must be supplied

Only a structure identifier may be used as a referral

Word addressable items may not be accessed through a STRING
structure pointer

Illegal UNSIGNED variable declaration

Illegal STRUCT or SUBSTRUCT reference
Appendix A—526371.001
A-21

Error Messages 77
• In a group comparison expression

• In a SCAN or RSCAN statement

• As an actual reference parameter

• As @identifier in an expression

77

An indexed (subscripted) reference to an UNSIGNED simple variable occurs. Remove
the index from the identifier of the UNSIGNED simple variable.

78

A floating-point constant appears in an incorrect form. Use one of the forms described
in “REAL and REAL(64) Numeric Constant” in Examples of REAL and REAL (64)
Numeric Constants on page 3-15

79

Underflow or overflow occurred during input conversion of a REAL or REAL(64)
number. Specify floating-point numbers in the following approximate range:

±8.6361685550944446E–78 through ±1.15792089237316189E77

80

The compiler has run out of registers in OPTIMIZE 2 mode. The compiler emits error
80 and continues the compilation.

81

An EXTERNAL procedure declaration occurs for a procedure that was previously
called as if it were a FORWARD procedure. Correct either the EXTERNAL declaration
or the call to the FORWARD procedure.

Unsigned variables may not be subscripted

Invalid number form

REAL underflow or overflow

OPTIMIZE 2 register allocation conflict

Invoked forward PROC converted to external
Appendix A—526371.001
A-22

Error Messages 82
82

The USEGLOBALS directive appears in a source file submitted to the stand-alone
Crossref product. The compiler issues error 82 and stops the Crossref product. Before
resubmitting the source file to the Crossref product, remove the USEGLOBALS
directive from the source file.

83

A CPU directive appears in the wrong place. Specify this directive preceding any data
or procedure declarations.

84

An extended indirect array is the object of a SCAN or RSCAN statement. The
hardware does not support scans in extended memory. Move the array temporarily into
a location in the user data segment and perform the scan operations there.

85

A system global or extended pointer declaration includes bound specifications.
Remove the bounds from such declarations.

86

A variable appears where the compiler expects a constant. Replace the variable with a
constant.

87

A constant appears in an incorrect form. Specify constants in the forms described in
Section 3, Data Representation.

CROSSREF does not work with USEGLOBALS

CPU type must be set initially

There is no SCAN instruction for extended memory

Bounds illegal on .SG or .EXT items

Constant expected and not found

Illegal constant format
Appendix A—526371.001
A-23

Error Messages 88
88

The current expression is too complex. The compiler’s stack overflowed and the
compilation terminated. Simplify the expression.

89

A structure declaration contains = 'P', which is restricted to read-only array
declarations. Either remove = 'P' from the structure declaration, or replace the
structure declaration with a read-only array declaration.

90

The object file name is incorrect. Specify the name of a disk file.

91

The default volume or subvolume in the startup message is incorrect. Correct the
volume or subvolume name.

92

An entry point is the target of a GOTO statement. Following the entry point, add a label
identifier and then specify the label identifier in the GOTO statement.

93

A BLOCK or PROC declaration appears before the end of the previous BLOCK
declaration. End each BLOCK declaration with the END BLOCK keywords before
starting a new BLOCK declaration or the first PROC declaration. This message occurs
only if the compilation begins with a NAME declaration.

Expression too complex. Please simplify

Only arrays of simple data types can be declared read-only

Invalid object file name - file-name

Invalid default volume or subvolume

Branch to entry point not allowed

Previous data block not ended
Appendix A—526371.001
A-24

Error Messages 94
94

An unblocked global data declaration appears after a BLOCK declaration. Either place
all unblocked global declarations inside BLOCK declarations or place them before the
first BLOCK declaration or SOURCE directive that includes a BLOCK. This message
occurs only if the compilation begins with a NAME declaration.

95

A security violation occurs in a SAVEGLOBALS compilation and the compiler cannot
purge the existing global data declarations file. Correct the security violation and then
recompile.

96

A variable declared in one global data block is initialized with the address of a variable
declared in another global data block. Because global data blocks are relocatable,
such an initialization is invalid. Include both declarations in the same global data block
(or BLOCK declaration). This message occurs only if the compilation begins with a
NAME declaration.

97

An equivalenced declaration in a global data block refers to a variable declared in
another global data block. Place both declarations in the same global data block (or
BLOCK declaration). This message occurs only if the compilation unit begins with the
NAME declaration.

98

A declaration for an extended indirect array appears in a subprocedure. Remove the
extended indirection symbol (.EXT) from the array declaration. Sublocal variables must
be directly addressed.

Declaration must be in a data block

Cannot purge file file-name

Address references between global data blocks not allowed

Equivalences between global data blocks not allowed

Extended arrays are not allowed in subprocedures
Appendix A—526371.001
A-25

Error Messages 99
99

A constant list contains values that exceed the space allocated by the data declaration.
List smaller values in the constant list or declare larger variables.

100

Nesting of DEFINE declarations occurs. Remove the DEFINE declaration that is
nested within another DEFINE declaration.

101

An attempt to convert an ineligible procedure to EXTENSIBLE occurs. Convert only a
VARIABLE procedure that has at least one parameter, at most 16 words of
parameters, and all one-word parameters except the last, which can be a word or
longer. Also specify the number of parameters the procedure had when it was
VARIABLE.

102

A CODE statement contains an incorrect constant for the ACON option. Specify a
constant that represents the absolute run-time code address associated with the label
in the next instruction location. An absolute code address is relative to the beginning of
the code space in which the encompassing procedure resides.

103

A read-only array declaration includes an indirection symbol. Remove the indirection
symbol from the declaration.

Initialization list exceeds space allocated

Nested parametric-DEFINE definition encountered during
expansion

Illegal conversion to EXTENSIBLE

Illegal operand for ACON

Indirection mode specified not allowed for P-relative
variable
Appendix A—526371.001
A-26

Error Messages 104
104

The procedure refers to either:

• A label identifier that is missing from the procedure

• An undeclared variable prefaced with @ in an actual parameter list

Either use label-name in the procedure or declare the variable.

105

The entry point is not present in the procedure. Declare an entry-point identifier and
use it in the procedure.

106

The procedure contains a FORWARD subprocedure declaration and a call to that
subprocedure but the subprocedure body is missing. Declare the subprocedure body.

108

An incorrect case label appears in a labeled CASE statement. Specify a signed INT
constant or a LITERAL for the case label.

109

A case alternative in a labeled CASE statement has no values associated with it.
Specify at least one value for each case alternative.

This procedure has missing label - label-name

A secondary entry point is missing - entry-point-name

A referenced subprocedure declared FORWARD is missing -
subproc-name

Case label must be signed, 16-bit integer

Case label range must be non-empty - range
Appendix A—526371.001
A-27

Error Messages 110
110

The value n appears as a case label more than once in a labeled CASE statement.
Specify unique case labels within a CASE statement.

111

Too many case labels appear in a labeled CASE statement. Specify no more than 63
case labels.

112

The USEGLOBALS directive cannot use the global declarations file named in the
message. If the global declarations file does not have file code 105, recompile the
source code by using the SAVEGLOBALS directive. Use the same version of the
compiler for both the SAVEGLOBALS and USEGLOBALS compilations.

113

A file error occurred when the compiler tried to process a file named in a directive such
as ERRORFILE or SAVEGLOBALS. The message includes the name of the file and
the number of the file error. Provide the correct file name.

114

A variable in a SCAN or move statement, or in a group comparison expression, is
prefixed with @, which returns the address of the variable. Remove the @ operator.

This case label (or range) overlaps a previously used case
label - n

The number of sparse case labels is limited to 63

USEGLOBALS file was created with an old version of TAL or
file code is not 105, file-name

File error number, file-name

@ prefix is not allowed on SCAN, MOVE or GROUP COMPARISON
variable
Appendix A—526371.001
A-28

Error Messages 115
115

The FOR count clause is missing from a move statement. Include the FOR count
clause in the move statement.

116

An incorrect use of the period (.) prefix occurs. Use this prefix only as follows:

• As an indirection symbol in declarations

• As a separator in qualified identifiers of structure items, as in
MYSTRUCT.SUBSTRUCT.ITEMX

• As a dereferencing symbol with INT and STRING identifiers to add a level of
indirection

117

A structure pointer declaration includes bounds. Remove the bounds from the
declaration.

118

An incorrect width value appears in an UNSIGNED array declaration. For the width of
UNSIGNED array elements, specify 1, 2, 4, or 8 only.

119

In an assignment statement, an indexed pointer identifier appears. If the pointer is
declared within a structure or substructure, append the index to the structure or
substructure identifier, not to the pointer identifier. Otherwise, remove the index from
the assignment statement.

Missing FOR part

Illegal use of period prefix

Bounds are illegal on struct pointers

Width of UNSIGNED array elements must be 1, 2, 4, or 8 bits

Illegal use of @ prefix together with index expression
Appendix A—526371.001
A-29

Error Messages 120
120

An index expression of the wrong data type appears. Specify an INT or INT(32) index
expression.

121

An incorrect argument to the $BITOFFSET function appears. Specify only a structure
item as the $BITOFFSET argument.

122

The next-address (next-addr) variable in a move statement or a group comparison
expression is the wrong data type. Specify an INT(32) next-addr variable because the
compiler emits an extended move sequence when:

• The destination variable or the source variable has extended addressing.

• The destination variable or the source variable has byte addressing and the other
has word addressing.

123

An incorrect reference to an UNSIGNED variable appears. Correct the reference so
that the UNSIGNED identifier:

• Has no @ or period (.) prefix

• Is not sent as an actual parameter to a reference formal parameter

• Is not the source or destination of a move statement, a SCAN or RSCAN
statement, or a group comparison expression

124

The file specified in an ERRORFILE declarative has the wrong file code. The compiler
does not purge the file. Specify a file that has file code 106.

Only type INT and INT(32) index expressions are allowed

Only STRUCT items are allowed here

Extended MOVE or GROUP COMPARISON needs a 32-bit NEXT ADDRESS
variable

Not allowed with UNSIGNED variables

ERRORFILE exists and its file code is not 106, will not purge
Appendix A—526371.001
A-30

Error Messages 125
125

An incorrect count-unit appears in a move statement or in a group comparison
expression. Specify the count-unit as BYTES, WORDS, or ELEMENTS only.

126

An initial value appears in a local extended array declaration. Remove the initialization
from the declaration and use an assignment statement instead.

127

An incorrect relocation clause appears in a BLOCK declaration. Specify only the AT or
BELOW clause to relocate the block.

128

An incorrect relocation position appears in a BLOCK declaration. Specify AT (0),
BELOW (64), or BELOW (256) only.

129

A reference to an UNSIGNED array appears without an index (subscript). When you
refer to an UNSIGNED array, always append an index to the array identifier.

130

The new variable in an equivalenced variable declaration is type UNSIGNED. Declare
the new variable as any type except UNSIGNED.

MOVE or GROUP COMPARISON count-unit must be BYTES, WORDS, or
ELEMENTS

Initialization of local extended arrays is not allowed

Illegal block relocation specifier, expecting either AT or
BELOW

Illegal block relocation position

This variable must be subscripted

This variable may not be the target of an equivalence
Appendix A—526371.001
A-31

Error Messages 131
131

A single procedure is larger than 32K words long. Reduce the size of the procedure.

132

The code generator detected an internal logic error. Report this occurrence to HP and
include a copy of the complete compilation listing (and source, if possible).

133

The code generator detected a label table overflow. Report this occurrence to HP and
include a copy of the complete compilation listing (and source, if possible).

134

An assignment to a USE register appears in an actual parameter list. After a procedure
call, the compiler restores the USE register to its original value and the changed value
is lost. Before issuing the CALL statement, use an assignment statement to change the
value in the USE register.

135

UNSIGNED(17–31) operands appear incorrectly in a conditional expression. To correct
the expression, either change the data type or change the operator. With Boolean
operators and unsigned relational operators, use only STRING, INT, or UNSIGNED(1–
16) operands. With signed relational operators, use operands of any data type,
including UNSIGNED(17–31) operands.

Procedure code space exceeds 32K words

Compiler internal logic error detected in code generator

Compiler label table overflow

Value assigned to USE variable within argument list may be
lost

Use relational expression
Appendix A—526371.001
A-32

Error Messages 136
136

The compiler’s relative reference table overflowed. Report this occurrence to HP and
include a copy of the complete compilation listing (and source, if possible).

137

The compiler encountered a file error when it tried to purge an error file whose name
was specified in an ERRORFILE directive. The message includes the name of the file
and the number of the file system error. Supply the correct file name.

138

A data item appears where an SQL host variable is expected. Declare the data item in
an EXEC SQL DECLARE block, as described in the NonStop SQL Programming
Manual for TAL.

139

An incorrect length parameter appears in a parameter pair specification. Declare this
parameter as an INT simple variable that specifies the length of the string parameter in
the parameter pair.

140

Too many formal parameters appear in a procedure or subprocedure declaration. For a
procedure, include no more than 32 formal parameters. For a subprocedure, include
no more than allowed by the space available in the parameter area.

Compiler relative reference table overflow

Cannot purge error file file-name - File system error number

Not a host variable

Invalid declaration for length component of string parameter

Too many parameters
Appendix A—526371.001
A-33

Error Messages 141
141

An incorrect string parameter appears in a parameter pair specification of the form
string:length. Declare the string parameter as a standard indirect or extended indirect
STRING array.

142

A CALL statement passes an actual parameter to a procedure that expects a
parameter pair. In the actual parameter list, replace the incorrect parameter with a
parameter pair in the form: string: length

143

A CALL statement passes a parameter pair to a procedure that does not expect it. In
the actual parameter list, replace the parameter pair with a single parameter.

144

A colon appears incorrectly in an actual parameter list. If the colon represents an
omitted actual parameter pair, replace the colon with a comma. Use a colon only
between the string and length parameters of a parameter pair.

145

An index expression of the wrong data type appears. Change the index expression to
an INT expression.

146

An incorrect MAPPED length value appears in the SQLMEM directive. Specify the
length value as an INT LITERAL or constant. The LITERAL identifier is interpreted
when an EXEC SQL statement occurs, not when the directive occurs.

Invalid declaration for string component of string parameter

String parameter pair expected

String parameter pair not expected

Colon not allowed in the actual parameter list

Only 16-bit integer index expression allowed

Identifier for SQLMEM length must be an INT literal
Appendix A—526371.001
A-34

Error Messages 147
147

An incorrect MAPPED address value appears in the SQLMEM directive. Specify the
address value as a constant or an extended indirect identifier of type STRING. The
LITERAL identifier is interpreted when an EXEC SQL statement occurs, not when the
directive occurs.

148

SQL data structures need more space than is allocated. Specify a larger MAPPED
length value in the SQLMEM directive.

149

The specified value is outside the permissible range of values. For example, the value
256 is outside the range for a BIT_FILLER field, which has a range of 0 through 255.
Specify a value that falls within the range.

150

Within a subprocedure, the SQLMEM STACK directive is in effect when an SQL
statement occurs. Because of addressability limits in subprocedures, parameters or
data might not be accessible if you push data onto the stack. Remove the SQLMEM
STACK directive from within the subprocedure.

151

SQL attributes are applied to arrays that are not STRING arrays. Apply SQL attributes
only to STRING arrays.

Identifier for SQLMEM address must be an extended string
pointer.

Exceeded allocated space for SQLMEM MAPPED

Value out of range

SQLMEM STACK cannot be used in a SUBPROC

Only STRING arrays may have SQL attributes
Appendix A—526371.001
A-35

Error Messages 152
152

An incorrect SQL data type attribute occurs for a TAL variable. Specify an SQL data
type attribute that matches the TAL data type of the variable.

153

The length of the data provided in the SQL attribute does not match the length of the
data for the variable. Specify data having a length that conforms to the data type of the
variable.

154

The compiler has exhausted its internal memory resources. Change the swap volume
(by using the PARAM SAMECPU command described in Appendix E in the TAL
Programmer’s Guide). If an excessive value appears in the EXTENDTALHEAP,
SYMBOLPAGES, or SQL PAGES directive, specify a smaller value.

155

The directive is not appropriate in its current location.

• If the directive belongs elsewhere, such as in the compiler run command or on the
first line of the source file, relocate the directive.

• If the directive should not appear because of a previous occurrence of this or
another directive, remove the incorrect directive.

156

A VARIABLE or EXTENSIBLE procedure is specified in an ASSERTION directive.
Specify a procedure that has no parameters.

Type mismatch for SQL attribute

Length mismatch for SQL attribute

Exceeded available memory limits

This directive not allowed in this part of program

ASSERTION procedure cannot be VARIABLE or EXTENSIBLE
Appendix A—526371.001
A-36

Error Messages 160
160

More than one language attribute appears in a procedure declaration. Specify only one
of the following language attributes following the LANGUAGE keyword (and only in a
D-series EXTERNAL procedure declaration):

C

COBOL

FORTRAN

PASCAL

UNSPECIFIED

161

A language attribute appears in a procedure declaration that is not specified as being
EXTERNAL. Specify LANGUAGE followed by C, COBOL, FORTRAN, PASCAL, or
UNSPECIFIED only in D-series EXTERNAL procedure declarations.

162

An incorrect parameter declaration appears. Specify the correct parameter type.

163

A public name appears in a procedure declaration that is not specified as being
EXTERNAL. Specify a public name only in D-series EXTERNAL procedure
declarations.

164

Multiple EXTERNAL declarations have the same procedure identifier but have different
language attributes. Delete the incorrect EXTERNAL declaration.

Only one language attribute is allowed

Language attribute only allowed for external procedures

Illegal size given in procedure parameter declaration

Public name only allowed for external procedures

Procedure was previously declared in another language
Appendix A—526371.001
A-37

Error Messages 165
165

The previous EXTERNAL procedure declaration includes a public name, and the
current procedure declaration is a secondary entry point. Remove the public name
from the EXTERNAL procedure heading.

166

An incorrect public name appears. Specify a public name only in a D-series
EXTERNAL procedure declaration, using the identifier format of the language in which
the external routine is written (C, COBOL85, FORTRAN, Pascal, or TAL).

168

Constants included in the code make it impossible to specify an atomic operation here.
Use the DUMPCONS directive to move the constants out of the way.

169

The internal heap of the compiler is too small. Specify the EXTENDTALHEAP directive
in the compilation command in all subsequent compilations. An example is:

TAL /in mysrc, OUT mylst/ myobj; EXTENDTALHEAP 120

175

PROC p1 (str:len, b) EXTENSIBLE;
 STRING .str;
 INT len;
 INT b;
 BEGIN
 !Lots of code
 END;

PROC p2;
 BEGIN

Procedure was previously declared with a public name

Illegal public name encountered

Use a DUMPCONS directive before the atomic operation

Increase the size of the internal heap of the compiler by
recompiling with the EXTENDTALHEAP directive

$OPTIONAL is only allowed as an actual parameter or parameter
pair
Appendix A—526371.001
A-38

Error Messages 176
 STRING .s[0:79];
 INT i:= 1;
 INT j:= 1;
 CALL p1 ($OPTIONAL (i < 9, s:i), !Parameter pair
 $OPTIONAL (j > 2, j)); !Parameter
 END;

176

The called procedure declares a parameter pair, but the caller does not specify a
parameter pair as the second argument to $OPTIONAL. Replace the incorrect
argument with a parameter pair to match the specification in the called procedure. See
the example shown for Error 175.

177

A conditional expression that does not evaluate to an INT expression appears as the
first argument to $OPTIONAL. Correct the conditional expression so that it evaluates to
an INT expression. See the example shown for Error 175.

178

.i.$OPTIONAL not allowed (error178)

$OPTIONAL appears in a call to a procedure that is not VARIABLE or EXTENSIBLE.
Remove $OPTIONAL from the CALL statement or declare the called procedure as
VARIABLE or EXTENSIBLE. See the example shown for Error 175.

179

toggle-name is used before it is created. Create the named toggle in a DEFINETOG,
RESETTOG, or SETTOG directive before using the toggle in an IF, IFNOT, or ENDIF
directive.

The second argument of $OPTIONAL must be a string parameter
pair

The first argument of $OPTIONAL must be a 16-bit integer
expression

$OPTIONAL allowed only in calls to VARIABLE or EXTENSIBLE
procedures

Undefined toggle: toggle-name
Appendix A—526371.001
A-39

Error Messages Warning Messages
Warning Messages
The following messages indicate conditions that might affect program compilation or
execution. If you get any warning messages, check your code carefully to determine
whether you need to make corrections.

0

Three index registers are already reserved by USE statements. Three is the maximum
number of index registers that you can reserve. The compiler assigned the last
identifier to an already allocated index register.

1

An identifier in the current source line is longer than 31 characters, the maximum
allowed for an identifier. The compiler ignores all excess characters. Make sure the
shortened identifier is still unique within its scope.

2

An incorrect compiler directive option appears. The compiler ignores the option. If
omitting the option adversely affects the program, specify the correct option.

3

An initialization list contains more values or characters than can be contained by the
variable being initialized. The compiler ignores the excess items. If omitting the excess
values adversely affects the program, declare a variable large enough to hold the
values.

4

A procedure call passed the address of a read-only array to a procedure. Make sure
the procedure takes explicit action to use the address properly.

All index registers are reserved

Identifier exceeds 31 characters in length

Illegal option syntax

Initialization list exceeds space allocated

P-relative array passed as reference parameter
Appendix A—526371.001
A-40

Error Messages 5
5

Your PEP estimate (in the PEP directive) is not large enough to contain all the entries
required. BINSERV has allocated appropriate additional space.

6

When the file reaches the 64K-word limit, the compiler disables ABSLIST, starts
printing offsets relative to the procedure base instead of to the code area base, and
emits this warning. Also, because the compiler is a one-pass compiler, some
addresses are incorrect when:

• The file contains more than 32K words of code

• RESIDENT procedures follow nonresident procedures

• The PEP directive does not supply enough PEP table space

• All procedures are not FORWARD (and no PEP directive appears)

If the file has more than 32K words of code space or if you use the stand-alone Binder,
do not use ABSLIST.

7

The same section name appears more than once in the same SOURCE directive. The
compiler ignores all occurrences but the first. If omitting the code denoted by duplicate
section names adversely affects the program, replace the duplicate section names with
unique section names.

8

A section name listed on a SOURCE directive is not in the specified file. If omitting
such code adversely affects the program, specify the correct file name.

PEP size estimate was too small

Invalid ABSLIST addresses may have been generated

Multiple defined SECTION name

SECTION name not found
Appendix A—526371.001
A-41

Error Messages 9
9

An operation contains conflicting instructions for the RP (register pointer) or the S
register that the compiler cannot resolve. An example of RP conflict is:

IF alpha THEN STACK 1 ELSE STACK 1D;

An example of S conflict is the following statement. The setting of the S register
depends on the value of ALPHA, which the compiler cannot determine at compile time.

IF alpha THEN CODE (ADDS 1) ELSE CODE (ADDS 2);

The compiler might detect an RP or S conflict in source code that compiled without
problem in releases before C00. If the object code does not execute as intended,
recode the source code to eliminate the warning. You might only need to insert an RP
or DECS directive.

10

A calculation produced an index register number that is greater than 7 or less than 0. If
this overflow or underflow adversely affects your program, correct the calculation.

11

.i.Parameter type conflict (warning 11)

An actual parameter does not have the parameter type specified by the formal
parameter declaration. For example, a procedure passed the address of a byte-aligned
(STRING) extended item as an actual parameter to a procedure that expects the
address of a word-aligned item. If the address is not on a word boundary, the system
ignores the odd-byte number and accesses the entire word. Make sure the size and
alignment of the actual parameter matches the requirements of the called procedure.

12

Conditions that cause this warning include:

• An incorrect option in a directive

• Stray characters (such as semicolons) at the end of a directive line

RP or S register mismatch

RP register overflow or underflow

Parameter type conflict possible

Undefined option
Appendix A—526371.001
A-42

Error Messages 13
In either case, the compiler ignores the directive. Enter the correct option or remove
the stray characters.

13

A value exceeds the permissible range for its context (for example, a shift count is
greater than the number of existing bits). If the value is important to your program, use
a value that falls within the permissible range.

14

This warning appears, for example, when you:

• Equivalence a STRING or INT item to an indexed odd-byte address

• Equivalence a direct variable equivalent to an indexed indirect variable

The compiler truncates the index; for example:

STRING .s[0:4]; INT s1 = s[1]; !Result is INT s1 = s[0]

15

A procedure or subprocedure call passed a byte address as a parameter to a
procedure that expects a word address. The compiler converts the byte address to a
word address by right-shifting the address. If the STRING item begins on an odd-byte
boundary, the word-aligned item also includes the even-byte part of the word. If this is
a problem, pass only a word address.

16

A parameter is passed by value to a procedure or subprocedure that expects a
reference parameter. If this is your intent, and if the value can be interpreted as a 16-
bit address, no error is involved.

Value out of range

Index was truncated

Right shift emitted

Value passed as reference parameter
Appendix A—526371.001
A-43

Error Messages 17
17

An initialization expression is too complicated to evaluate in the current context. If your
program is adversely affected, simplify the expression.

19

A PEP directive or a FORWARD declaration is missing. When you use the ABSLIST
directive, the compiler must know the size of the PEP table before the procedure
occurs in the source program. Enter either a PEP directive at the beginning of the
program or a FORWARD declaration for the procedure. The compiler also emits
warning 6 at the end of the compilation.

20

A source line extends beyond 132 characters. The compiler ignores the excess
characters. If your program is adversely affected, break the source line into lines of
less than 132 characters.

21

The attributes in a FORWARD declaration do not match those in the procedure body
declaration. If your program is adversely affected, correct the set of attributes.

22

The format of options in a directive is incorrect. The compiler ignores the directive. If
your program is adversely affected, correct the format of the compiler options.

23

A FOR count clause and a constant list both appear in a group comparison expression,
which are mutually exclusive. The compiler obtains the count of items from the length

Initialization value too complex

PROC not declared FORWARD with ABSLIST option on

Source line truncated

Attribute mismatch

Illegal command list format

The list length has been used for the compare count
Appendix A—526371.001
A-44

Error Messages 24
of the constant list. If your program is adversely affected, correct the group comparison
expression as described in Section 4, Expressions.

24

The evaluation of an expression caused the value in a USE register to be overwritten.
Multiplication of two FIXED values, for example, can cause this to occur. If this affects
your program adversely, use a local variable in place of the USE register.

25

The fpoint of an actual FIXED reference parameter does not match that of the formal
parameter. The system applies the fpoint of the formal parameter to the actual
parameter.

26

A numeric constant represents a value that is too large for its data type, or an overflow
occurs while the compiler scales a quadrupleword constant up or down.

27

The fpoint in a FIXED declaration or the scale parameter of the $SCALE function is
less than –19 or greater than 19. The compiler sets the fpoint to the maximum limit,
either –19 or 19.

28

Although the source code can contain more than one MAIN procedure, in the object
code only the first MAIN procedure the compiler sees retains the MAIN attribute.

If the program contains any COBOL or COBOL85 program units, the MAIN procedure
must be written in COBOL or COBOL85, respectively. For more information, see the
COBOL85 Reference Manual.

A USE register has been overwritten

FIXED point scaling mismatch

Arithmetic overflow

ABS (FPOINT) > (19)

More than one MAIN specified. MAIN is still name
Appendix A—526371.001
A-45

Error Messages 29
29

Incorrect attributes appear in a subprocedure declaration, which can have only the
VARIABLE attribute. The compiler ignores all attributes but VARIABLE.

32

A RETURN statement is missing from a function or the RP counter of the compiler is 7
(empty register stack). To return a value from the function, include at least one
RETURN statement with an expression; this action automatically places the value on
the register stack. You can alternatively use a CODE or STACK statement to place the
value on the register stack; however, this practice might be compatible only with TNS
systems.

33

In a structure declaration, a variable redefinition appears in which the new item is
larger than the previously declared item. If your program is adversely affected, correct
the variable redefinition so that the new item is the same size or shorter than the
previous item.

34

In a structure declaration, a variable redefinition appears in which the new item
requires word alignment, while the previously declared item has an odd-byte
alignment. If your program is adversely affected, correct the variable redefinition so
that the new item and the previous item are both word aligned or both byte aligned.

35

If you pass an extended indirect actual parameter to a procedure that expects a
standard address, the compiler converts the address and the segment number is lost.
The resulting address is correct only within the user data segment. Pass an
appropriate address.

One or more illegal attributes

RETURN not encountered in typed PROC or SUBPROC

Redefinition size conflict

Redefinition offset conflict

Segment number information lost
Appendix A—526371.001
A-46

Error Messages 36
36

A calling sequence passes a parameter in the form @identifier to a procedure or
subprocedure that expects an extended pointer as a parameter. If the intent is to pass
the address of the pointer rather than the address stored in the pointer, no error is
involved.

37

An indirect array is declared inside a subprocedure or is declared as a read-only array.
The compiler changes the indirect array to a direct array because:

• The sublocal area has no secondary storage for indirect data.

• Code-relative addresses are always direct.

38

The compiler attempted to generate code that decrements the S register below its
initial value in a procedure or subprocedure. If you decide that your source program is
correct, you must insert a DECS directive at that point to recalibrate the compiler’s
internal S register. This is essential in subprocedures, because sublocal variables have
S-relative addresses.

39

A PUSH or POP prefix appears on a directive that has no directive stack. Specify the
directive identifier without the prefix.

40

A FORWARD declaration occurs, but the procedure body declaration is missing. The
compiler converts all references to this procedure into EXTERNAL references to the
same identifier. If this is not your intent, declare the procedure body.

Expression passed as reference parameter

Array access changed from indirect to direct

S register underflow

This directive cannot be pushed or popped

A procedure declared FORWARD is missing - proc-name
Appendix A—526371.001
A-47

Error Messages 41
41

A TACL DEFINE name appears in place of a file name, but the system is not
configured to use TACL DEFINEs. Error 39 (Open failed on file-name) follows warning
41. Issue the TACL commands that enable the TACL DEFINE.

42

An incorrect bit specification occurs. To access or deposit bits in a STRING item,
specify bit numbers 8 through 15 only. Specifying bit numbers 0 through 7 of a
STRING item has no effect, because the system stores STRING items in the right byte
of a word and places a zero in the left byte.

43

$OCCURS appears with an argument that is a simple variable, pointer, or procedure
parameter, so OCCURS returns a 1. Use $OCCURS only with an array (declared in or
out of a structure), a structure, or a substructure (but not a template structure or a
template substructure).

44

The named subprocedure is declared FORWARD but is not referenced, and its body is
not declared. If the absence the body of subproc-name adversely affects your program,
declare the subprocedure body.

45

The VARIABLE attribute appears for a procedure or subprocedure that has no
parameters. The compiler ignores the VARIABLE attribute.

File system DEFINEs are not enabled

Specified bit extract/deposit may be invalid for strings

A default OCCURS count of 1 is returned

A subprocedure declared FORWARD is missing - subproc-name

Variable attribute ignored - no parameters
Appendix A—526371.001
A-48

Error Messages 46
46

A declaration that refers to a G-relative location appears when the RELOCATE
directive is in effect and all primary global data is relocatable. This reference might be
incorrect if BINSERV relocates the data blocks when it builds the object file. Either
change the declaration of the identifier or, if NAME (and BLOCK) statements do not
appear, delete the RELOCATE directive.

47

An incorrect file or subvolume appears in a directive. Correct the directive.

48

A directive occurs in an inappropriate place. The compiler ignores the directive. If this
adversely affects your program, move the directive to an appropriate location, usually
to the first line of the program or to the compilation command.

49

The value of the construct @entry-point-name for a subprocedure is the address of the
first word of code executed after a call to the entry point. If code written for releases
before compiler version E01 contains the expression @ep-1 to calculate the entry-point
location, change it to @ep for correct execution.

50

An incorrect global initialization occurs, in which a LITERAL represents the address of
a global variable. Because global data is now relocatable, avoid initializing them with
addresses. If your program is adversely affected, initialize the global variable properly.

Non-relocatable global reference

Invalid file or subvolume specification

This directive not allowed in this part of program

Address of entry point used in an expression

Literal initialized with address reference
Appendix A—526371.001
A-49

Error Messages 52
52

As of release C00, the compiler no longer generates code for the NonStop 1+ system.
Instructions that apply only to NonStop 1+ systems are CBDA, CBDB, CBUA, CBUB,
DS, RMD, SCAL, SLRU, LWBG, MAPP, MNGS, MNSG, MNSS, UMPP, XINC, XSMS,
ZZZZ. A CODE statement that specifies such an instruction causes error 44 (Illegal
instruction).

53

A directive that must be first on a directive line is not first, or a directive that must be
last on a directive line is not last. Place the following directives as indicated below.

If the COLUMNS directive appears in the compilation command, the compiler does not
enforce the above ordering.

54

A DEFINE declaration renames a structure item, but the qualified identifier of the
DEFINE is the same as that of another structure item. A reference to the DEFINE
identifier accesses the other structure item. To ensure proper references, use unique
identifiers for all declarations.

55

A structure occurrence exceeds 32,767 bytes in length. The message identifies the
item that caused the structure to exceed the legal length; the next item is the one the
compiler cannot access. Reduce the length of the structure.

The compiler no longer generates code for NonStop 1+ systems

Illegal order of directives on directive line

Directive Place in Directive Line Directive Place in Directive Line

ASSERTION Last IF Last

COLUMNS First SECTION Alone

ENDIF Alone SOURCE Last

The structure item rather than the define will be referenced

The length of this structure exceeds 32767 bytes at item **
item-name
Appendix A—526371.001
A-50

Error Messages 57
57

Two mutually exclusive directives appear in the same compilation unit. To save global
declarations in a file for use by a later compilation, retain SAVEGLOBALS and delete
USEGLOBALS. To make use of the saved global declarations, retain USEGLOBALS
and delete SAVEGLOBALS.

58

TAL compiler versions B00 and later support up to 16 * 64K words of source code.
When the code exceeds 64K words, the compiler disables ABSLIST for the remainder
of the listing.

59

The program attempts to define a global data block beyond the compiler’s storage limit
of 100 such blocks. Reduce the number of global data blocks.

60

Errors detected and reported before the ERRORFILE directive occurs are not reported
to the file specified in the directive.

61

The directive cited in the warning message is not the first of its kind in the compilation.
Remove all duplicate occurrences of this directive.

SAVEGLOBALS and USEGLOBALS cannot appear in the same
compilation

Code space exceeds 64k, ABSLIST has been disabled

Number of global data blocks exceeds maximum, SAVEGLOBALS
disabled

Previous errors and warnings will not be included in
ERRORFILE

This directive can appear only once in a compilation
Appendix A—526371.001
A-51

Error Messages 62
62

The STRING read-only array is declared in a procedure or subprocedure, and the
compiler may generate an incorrect address when converting the address of a global
STRING read-only array to an extended address for use in a move statement, a group
comparison, or a procedure call.

63

A TACL ASSIGN name or a TACL DEFINE name appears in a LIBRARY directive.
Specify a disk file name, fully or partially qualified, in the LIBRARY directive.

64

A TACL DEFINE name (such as =ABLE) occurs, but no such TACL DEFINE has been
added in the operating system environment.

65

SQL directives specifying both the RELEASE1 and RELEASE2 options appear in the
source code. The compiler applies the most recently specified option. If this is not your
intent, specify only one of the two options.

66

SQL directives specifying the WHENEVERLIST and NOWHENEVERLIST options
appear in the source code. The compiler applies the most recently specified option. If
this is not your intent, specify only one of the two options.

Extended address of STRING p-rel. array is incorrect if
reference is more than 32K words from array

A file system DEFINE name is not permitted in a LIBRARY
directive.

No file system DEFINE exists for this logical file name

RELEASE1 and RELEASE2 options are mutually exclusive. The
most recently specified option is in effect.

WHENEVERLIST and NOWHENEVERLIST options are mutually
exclusive. The most recently specified option is in effect.
Appendix A—526371.001
A-52

Error Messages 67
67

SQL directives specifying the SQLMAP and NOSQLMAP options appear in the source
code. The compiler applies the most recently specified option. If this is not your intent,
specify only one of the two options.

68

An incorrect ASSIGN SSV (Search Subvolume) number occurs. Specify the correct
SSV number.

69

A label declaration appears outside of a procedure or subprocedure. Move the label
declaration into the appropriate procedure or subprocedure.

70

A TARGET directive conflicts with a previous TARGET directive. The compiler accepts
only the first TARGET directive that it encounters.

73

A TACL ASSIGN command specifies an SSV value larger than 49. Use SSV values in
the range 0 through 49; for example:

ASSIGN SSV48, \node1.$vol2.subvol3

74

An EXTERNAL procedure declaration specifies language attributes that do not match
those in the declaration that describes the procedure body.

SQLMAP and NOSQLMAP options are mutually exclusive. The most
recently specified option is in effect

Cannot access SSV

Label declaration belongs inside a procedure or subprocedure

Conflicting TARGET directive ignored

An ASSIGN SSV number is too large

The language attribute for this procedure conflicts with a
prior declaration
Appendix A—526371.001
A-53

Error Messages 75
75

More than 75 ASSIGN commands appear in the compilation. Reduce the number of
ASSIGN commands to 75 or fewer.

76

$LEN or $OFFSET is applied to an unfinished structure or to a substructure that is
declared in an unfinished structure. The compiler does not calculate these values until
the encompassing structure is complete. Complete the encompassing structure.

77

The compiler has passed inconsistent symbol information to the Crossref process. Use
the SYMBOLS directive for all your source code.

78

A CODE statement causes a conditional jump out of an optimized FOR loop. The
compiler can generate correct code for the nonjump condition of the CODE statement,
but not for the jump condition. To set the RP value for the forward branch, use a CODE
(STRP ...) statement or an RP directive.

79

An incorrect option appears in a directive. The compiler ignores the remainder of the
directive line. Replace the incorrect option with a correct option.

80

A reference to a reserved toggle name appears in the source code. Choose a different
toggle name for your code.

There are too many ASSIGN commands

Cannot use $OFFSET or $LEN until base structure is complete

SYMSERV died while processing the cross-reference listing

TAL cannot set RP value for forward branch

Invalid directive option. Remainder of line skipped.

This is a reserved toggle name
Appendix A—526371.001
A-54

Error Messages 81
81

An SQL directive specifying the PAGES option appears in a directive line. The
compiler ignores this directive. Specify this directive only in the compilation command.

83

You have exceeded the maximum number of named toggles. Use fewer named
toggles.

84

An incorrect parameter list appears in a procedure or subprocedure declaration. If your
program is adversely affected, correct the parameter list.

86

A procedure returns a condition code that does not evaluate to an INT expression.
Correct the condition code so that it evaluates to an INT expression.

87

The register stack should be empty after each statement (except CODE, STACK, and
STORE). If you have not left items on the register stack deliberately, change your code.

88

This warning appears, for example, when:

• You pass the content of a standard (16-bit) pointer by reference to a procedure that
expects the content of an extended (32-bit) pointer.

The PAGES option of the SQL directive must be on the command
line

Too many user-defined named toggles

Invalid parameter list

Return condition code must be 16-bit integer expression

The register stack should be empty, but is not

Address size mismatch
Appendix A—526371.001
A-55

Error Messages 89
• You pass the content of an extended (32-bit) pointer by reference to a procedure
that expects the content of a standard (16-bit) pointer.

89

The CROSSREF and USEGLOBALS directives both appear in a compilation unit. The
compiler issues warning 89 and turns off the CROSSREF directive. If you need to
collect cross-reference information, remove the USEGLOBALS directive from the
compilation unit.

90

An array of type UNSIGNED is initialized. Remove the initialization from the declaration
of the UNSIGNED array.

91

A RETURN value appears in a RETURN statement in the MAIN procedure. When the
MAIN procedure terminates, it calls a system procedure, so the return value is
meaningless.

93

An EXEC SQL statement appears in the text of a DEFINE that has parameters. The
compiler evaluates the parameters and the SQL statement in the same buffer space.

94

The address of a template structure is specified. Specify only the address of a
definition structure of a referral structure.

CROSSREF does not work with USEGLOBALS

Initialization of UNSIGNED arrays is not supported

MAIN procedure cannot return a value

Do not use an SQL statement in a parametized DEFINE

A template structure is not addressable
Appendix A—526371.001
A-56

Error Messages SYMSERV Messages
SYMSERV Messages
The following message might appear during compilation:

This error appears only when the compiler detects a logic error within its operation. If
you are using versions of the TAL compiler and SYMSERV from the same release, and
if no other error message appears that would explain this behavior, please report this
occurrence to HP. Include a copy of the complete compilation listing and the source, if
possible.

BINSERV Messages
For BINSERV diagnostic messages, see the Binder Manual.

Common Run-Time Environment Messages
For Common Run-Time Environment (CRE) diagnostic messages, see the CRE
Programmer's Guide.

SYMSERV FATAL ERROR
Appendix A—526371.001
A-57

Error Messages Common Run-Time Environment Messages
Appendix A—526371.001
A-58

B
TAL Syntax Summary (Railroad
Diagrams)

This appendix provides a syntax summary of railroad diagrams for specifying:

• Constants

• Expressions

• Declarations

• Statements

• Standard Functions

• Compiler Directives

Constants
The following syntax diagrams describe:

• Character string constants (all data types)

• STRING numeric constants

• INT numeric constants

• INT(32) numeric constants

• FIXED numeric constants

• REAL and REAL(64) numeric constants

• Constant lists

Character String Constants
A character string constant consists of one or more ASCII characters stored in a
contiguous group of bytes.

VSTB01.vsd

string" "
Appendix B—526371.001
B-1

TAL Syntax Summary (Railroad Diagrams) STRING Numeric Constants
STRING Numeric Constants
A STRING numeric constant consists of an unsigned 8-bit integer.

INT Numeric Constants
An INT numeric constant is a signed or unsigned 16-bit integer.

INT(32) Numeric Constants
An INT(32) numeric constant is a signed or unsigned 32-bit integer.

FIXED Numeric Constants
A FIXED numeric constant is a signed 64-bit fixed-point integer.

integer

base VSTB02.vsd

- VSTB03.vsd

integer

+ base

VSTB04.vsd

integer D

D%

+

-

base

VSTB05.vsd

integer

+

-

base

F

F%
. fraction
Appendix B—526371.001
B-2

TAL Syntax Summary (Railroad Diagrams) REAL and REAL(64) Numeric Constants
REAL and REAL(64) Numeric Constants
A REAL numeric constant is a signed 32-bit floating-point number that is precise to
approximately 7 significant digits.

A REAL(64) numeric constant is a signed 64-bit floating-point number that is precise to
approximately 17 significant digits.

Constant Lists
A constant list is a list of one or more constants.

repetition-constant-list

integer

D

D%

+

-

. offset

exponent

+

-
VSTB06.vsd

[

repetition-constant-list

repetition-constant-list

constant-list-seq

]

VSTB07.vsd

[constant-list-seq]

repetition-factor *
VSTB08.vsd
Appendix B—526371.001
B-3

TAL Syntax Summary (Railroad Diagrams) Expressions
constant-list-seq

Expressions
The following syntax diagrams describe:

• Arithmetic expressions

• Conditional expressions

• Assignment expressions

• CASE expressions

• IF expressions

• Group comparison expressions

• Bit extractions

• Bit shifts

Arithmetic Expressions
An arithmetic expression is a sequence of operands and arithmetic operators that
computes a single numeric value of a specific data type.

,

constant

repetition-constant-list

VSTB09.vsd

VSTB010.vsd

operand

arithmetic -
operator

operand+

-

Appendix B—526371.001
B-4

TAL Syntax Summary (Railroad Diagrams) Conditional Expressions
Conditional Expressions
A conditional expression is a sequence of conditions and Boolean or relational
operators that establishes the relationship between values.

Assignment Expressions
The assignment expression assigns the value of an expression to a variable.

CASE Expressions
The CASE expression selects one of several expressions.

VSTB011.vsd

condition

NOT

AND

OR NOT

condition

variable := expression

VSTB012.vsd

CASE selector OF BEGIN expression ;

END

OTHERWISE expression ;
VSTB013.vsd
Appendix B—526371.001
B-5

TAL Syntax Summary (Railroad Diagrams) IF Expressions
IF Expressions
The IF expression conditionally selects one of two expressions, usually for assignment
to a variable.

Group Comparison Expressions
The group comparison expression compares a variable with a variable or a constant.

Bit Extractions
A bit extraction accesses a bit field in an INT expression without altering the
expression.

IF condition THEN expression ELSE expression

VSTB014.vsd

VSTB015.vsd

var1 relational-operator

var2 countFOR

count
- unit

-> next -
addr

constant

[constant]

constant - list

int - expression left-bit

right-bit
VSTB016.vsd

. < >

:

ns ns ns

ns ns ns
Appendix B—526371.001
B-6

TAL Syntax Summary (Railroad Diagrams) Bit Shifts
Bit Shifts
A bit shift operation shifts a bit field a specified number of positions to the left or to the
right within a variable without altering the variable.

Declarations
Declaration syntax diagrams describe:

• LITERALs and DEFINEs

• Simple variables

• Arrays and read-only arrays

• Structures—definition structures, template structures, referral structures

• Structure items—simple variables, arrays, substructures, filler bytes, filler bits,

• simple pointers, structure pointers, and redefinitions

• Simple pointers and structure pointers

• Equivalenced variables

• NAMEs and BLOCKs

• Procedures and subprocedures

LITERAL and DEFINE Declarations
The following syntax diagrams describe LITERAL and DEFINE declarations.

LITERALs
A LITERAL associates an identifier with a constant.

int-expression

dbl-expression

shift-operator positions

VSTB017.vsd
Appendix B—526371.001
B-7

TAL Syntax Summary (Railroad Diagrams) DEFINEs
DEFINEs
A DEFINE associates an identifier (and parameters if any) with text.

Simple Variable Declarations
The following syntax diagram describes simple variable declarations:

Simple Variables
A simple variable associates an identifier with a single-element data item of a specified
data type.

LITERAL identifier

constant

;

=

,
VSTB018.vsd

#DEFINE identifier
define -

body
= ;

(param -
name

)

,

,
VSTB019.vsd

type identifier

initialization

;

:=

,
VSTB020.vsd
Appendix B—526371.001
B-8

TAL Syntax Summary (Railroad Diagrams) Array Declarations
type

Array Declarations
The following syntax diagrams describe array and read-only array declarations:

Arrays
An array associates an identifier with a one-dimensional set of elements of the same
data type.

STRING

INT

REAL

UNSIGNED

FIXED

width

width

fpoint

(

(

(

)

)

)

*
VSTB021.vsd

[type identifier

initialization

.EXT

:

;]

:=

,

lower -
bound

upper -
bound

.

VSTB022.vsd
Appendix B—526371.001
B-9

TAL Syntax Summary (Railroad Diagrams) Structure Declarations
Read-Only Arrays
A read-only array associates an identifier with a one-dimensional and nonmodifiable
set of elements of the same data type. A read-only array is located in a user code
segment.

Structure Declarations
The following syntax diagrams describe:

• Structures—definition structures, template structures, referral structures

• Structure items—simple variables, arrays, substructures, filler bytes, filler bits,
simple pointers, structure pointers, and redefinitions

Definition Structures
A definition structure associates an identifier with a structure layout and allocates
storage for it.

type identifier

lower -
bound

upper -
bound

initialization'p' :=

,

;

:][

=

VSTB023.vsd

STRUCT identifier

.EXT

.

lower -
bound

upper -
bound

structure
- layout

[:]

; ;

VSTB024.vsd
Appendix B—526371.001
B-10

TAL Syntax Summary (Railroad Diagrams) Template Structures
Template Structures
A template structure associates an identifier with a structure layout but allocates no
storage for it.

Referral Structures
A referral structure associates an identifier with a structure whose layout is the same
as a previously declared structure and allocates storage for it.

Simple Variables Declared in Structures
A simple variable can be declared inside a structure.

STRUCT identifier
structure
- layout

(*) ; ;

VSTB025.vsd

STRUCT identifier referral

lower -
bound

]

.EXT

upper -
bound

.

(

:[

;

)

VSTB026.vsd

type identifier ;

;
VSTB027.vsd
Appendix B—526371.001
B-11

TAL Syntax Summary (Railroad Diagrams) Arrays Declared in Structures
Arrays Declared in Structures
An array can be declared inside a structure.

Definition Substructures
A definition substructure can be declared inside a structure.

Referral Substructures
A referral substructure can be declared inside a structure.

type identifier
lower -
bound

[upper -
bound

:] ;

,
VSTB028.vsd

STRUCT

substructure -
layout

lower -
bound

upper -
bound

[:]

; ;

identifier

VSTB029.vsd

VSTB030.vsd

STRUCT

lower -
bound

upper -
bound

[:]

identifier referral()

;

Appendix B—526371.001
B-12

TAL Syntax Summary (Railroad Diagrams) Fillers in Structures
Fillers in Structures
A filler is a byte or bit place holder in a structure.

Simple Pointers Declared in Structures
A simple pointer can be declared inside a structure.

Structure Pointers Declared in Structures
A structure pointer can be declared inside a structure.

Simple Variable Redefinitions
A simple variable redefinition associates a new simple variable with a previous item at
the same BEGIN-END level of a structure.

FILLER

BIT_FILLER

constant - expression ;

VSTB031.vsd

type identifier

.EXT

.

,

;

VSTB032.vsd

STRING

INT

identifier

VSTB033.vsd

.EXT

.

(referral) ;

,

type identifier previous - identifier= ;

VSTB034.vsd
Appendix B—526371.001
B-13

TAL Syntax Summary (Railroad Diagrams) Array Redefinitions
Array Redefinitions
An array redefinition associates a new array with a previous item at the same BEGIN-
END level of a structure.

Definition Substructure Redefinitions
A definition substructure redefinition associates a definition substructure with a
previous item at the same BEGIN-END level of a structure.

Referral Substructure Redefinitions
A referral substructure redefinition associates a referral substructure with a previous
item at the same BEGIN-END level of a structure.

type identifier

previous -
identifier

lower -
bound

upper -
bound

[:]

= ;
VSTB035.vsd

STRUCT identifier

lower -
bound

upper -
bound

[:]

= ; ;previous -
identifier

substructure
- layout

VSTB036.vsd
Appendix B—526371.001
B-14

TAL Syntax Summary (Railroad Diagrams) Simple Pointer Redefinitions
Simple Pointer Redefinitions
A simple pointer redefinition associates a new simple pointer with a previous item at
the same BEGIN-END level of a structure.

Structure Pointer Redefinitions
A structure pointer redefinition associates a structure pointer with a previous item at
the same BEGIN-END level of a structure.

Pointer Declarations
The following syntax diagrams describe simple pointer and structure pointer
declarations.

STRUCT identifier

lower -
bound

upper -
bound

()

=

[:]

previous -
identifier

VSTB037.vsd

referral

;

type identifier
previous -
identifier

.EXT

. = ;

VSTB038.vsd

.STRING

INT .EXT

identifier referral()

= previous -
identifier

=

VSTB039.vsd
Appendix B—526371.001
B-15

TAL Syntax Summary (Railroad Diagrams) Simple Pointers
Simple Pointers
A simple pointer is a variable you load with a memory address, usually of a simple
variable or array, which you access with this simple pointer.

Structure Pointers
A structure pointer is a variable you load with a memory address of a structure, which
you access with this structure pointer.

Equivalenced Variable Declarations
The following syntax diagrams describe equivalenced variable declarations for simple
variables, simple pointers, structures, and structure pointers.

type identifier

initializatio
n

.

,

:=

;

.EXT

VSTB040.vsd

STRING

INT

.

.EXT

identifier referral()

,

initialization:=

;

VSTB041.vsd
Appendix B—526371.001
B-16

TAL Syntax Summary (Railroad Diagrams) Equivalenced Simple Variables
Equivalenced Simple Variables
An equivalenced simple variable associates a new simple variable with a previously
declared variable.

Equivalenced Definition Structures
An equivalenced definition structure associates a new definition structure with a
previously declared variable.

type identifier
previous -
identifier

index

offset

[

+

-

]

;

=

,
VSTB042.vsd

STRUCT identifier
previous -
identifier

structure - layout

index

offset

[

+

-

]

; ;

=

.

.EXT

VSTB043.vsd
Appendix B—526371.001
B-17

TAL Syntax Summary (Railroad Diagrams) Equivalenced Referral Structures
Equivalenced Referral Structures
An equivalenced referral structure associates a new referral structure with a previously
declared variable.

Equivalenced Simple Pointers
An equivalenced simple pointer associates a new simple pointer with a previously
declared variable.

STRUCT

ENT

.

identifier referral

previous -
identifier

index

offset

[

+

-

=

]

()

;

VSTB044.vsd

identifier previous - identifier

index

offset

[

+

-

]

(

;

,

.

.EXT

type

VSTB045.vsd
Appendix B—526371.001
B-18

TAL Syntax Summary (Railroad Diagrams) Equivalenced Structure Pointers
Equivalenced Structure Pointers
An equivalenced structure pointer associates a new structure pointer with a previously
declared variable.

Base-Address Equivalenced Variable
Declarations

The following syntax diagrams describe base-addressed equivalenced variable
declarations for simple variables, simple pointers, structures, and structure pointers.

Base-Address Equivalenced Simple Variables
A base-addressed equivalenced simple variable associates a simple variable with a
global, local, or top-of-stack base address.

STRING

INT

.

.EXT

identifier (referral)

= previous - identifier

index

offset

[

]

-

;

=

=

VSTB046.vsd
Appendix B—526371.001
B-19

TAL Syntax Summary (Railroad Diagrams) Base-Address Equivalenced Definition Structures
Base-Address Equivalenced Definition Structures
A base-addressed equivalenced definition structure associates a definition structure
with a global, local, or top-of-stack base address.

type identifier base - address

[

+

-

]

;

index

offset

=

, VSTB047.vsd

STRUCT identifier base - address

structure - layout

index

offset

[

+

-

]

.

=

; ;

.EXT

VSTB048.vsd
Appendix B—526371.001
B-20

TAL Syntax Summary (Railroad Diagrams) Base-Address Equivalenced Referral Structures
Base-Address Equivalenced Referral Structures
A base-addressed equivalenced referral structure associates a referral structure with a
global, local, or top-of-stack base address.

Base-Address Equivalenced Simple Pointers
A base-addressed equivalenced simple pointer associates a simple pointer with a
global, local, or top-of-stack base address.

STRUCT

.EXT

.

identifier (referral)

= base - address

index

offset

[

+

-

]

;

VSTB049.vsd

VSTB050.vsd

type identifier base - address

.EXT

. =

,

[

+

-

index

offset

]

Appendix B—526371.001
B-21

TAL Syntax Summary (Railroad Diagrams) Base-Address Equivalenced Structure Pointers
Base-Address Equivalenced Structure Pointers
A base-addressed equivalenced structure pointer associates a structure pointer with a
global, local, or top-of-stack base address.

NAME and BLOCK Declarations
The following syntax diagrams describe NAME and BLOCK declarations.

NAMEs
The NAME declaration assigns an identifier to a compilation unit and to its private
global data block if it has one.

BLOCKs
The BLOCK declaration groups global data declarations into a named or private
relocatable global data block.

STRING

INT .EXT

. identifier referral()

= ;

[

+

-

]

,

base - address

index

offset

VSTB051.vsd

NAME identifier ;

VSTB052.vsd
Appendix B—526371.001
B-22

TAL Syntax Summary (Railroad Diagrams) Procedure and Subprocedure Declarations
Procedure and Subprocedure Declarations
The following syntax diagrams describe procedure, subprocedure, entry-point, and
label declarations.

Procedures
A procedure is a program unit that is callable from anywhere in the program.

BLOCK

PRIVATE

identifier

AT (0)

BELOW (64)

BELOW (256)

END BLOCK

data -
declaration

;

;

;

VSTB053.vsd
Appendix B—526371.001
B-23

TAL Syntax Summary (Railroad Diagrams) Procedures
type

type

identifier

public-name-spec

PROC

parameter - list proc - attribute

,

; proc - body ;

param - spec ; EXTERNAL

FORWARD
VSTB054.vsd

STRING

INT

REAL

UNSIGNED

FIXED

width

width

fpoint

(

(

(

)

)

)

*
VSTB055.vsd
Appendix B—526371.001
B-24

TAL Syntax Summary (Railroad Diagrams) Procedures
public-name-spec

parameter-list

param-pair

= " "public - name
VSTB056.vsd

(param - name

param - pair

,

)

VSTB057.vsd

string length:

VSTB058.vsd
Appendix B—526371.001
B-25

TAL Syntax Summary (Railroad Diagrams) Procedures
proc-attribute

MAIN

INTERRUP
T

RESIDENT

CALLABLE

PRIV

VARIABLE

EXTENSIBLE

LANGUAGE C

COBOL

FORTRAN

PASCAL

UNSPECIFIED

(count)

VSTB187.vsd
Appendix B—526371.001
B-26

TAL Syntax Summary (Railroad Diagrams) Procedures
param - spec

param - type

param - type param -name

referral

.EXT

.

()

,

;

VSTB060.vsd

STRING

INT

REAL

UNSIGNED

FIXED

STRUCT

width

width

fpoint

()

()

()

*

PROC

PROC (32)type
VSTB061.vsd
Appendix B—526371.001
B-27

TAL Syntax Summary (Railroad Diagrams) Subprocedures
proc - body

Subprocedures
A subprocedure is a program unit that is callable from anywhere in the procedure.

;

;

BEGIN

END

local-decl subproc-decl

statement

;

VSTB062.vsd

;

SUBPROC Identifier

type

parameter -
list

VARIABLE

; subproc-body ;

param -spec ; FORWARD

VSTB063.vsd
Appendix B—526371.001
B-28

TAL Syntax Summary (Railroad Diagrams) Subprocedures
type

parameter - list

param - pair

STRING

INT

REAL

UNSIGNED

FIXED

width

width

fpoint

(

(

(

)

)

)

*
VSTB064.vsd

(param - name

param - pair

,

)

VSTB065.vsd

string length:

VSTB066.vsd
Appendix B—526371.001
B-29

TAL Syntax Summary (Railroad Diagrams) Subprocedures
param - spec

param - type

param - type param -name

referral

.EXT

.

()

,

;

VSTB067.vsd

STRING

INT

REAL

UNSIGNED

FIXED

STRUCT

width

width

fpoint

()

()

()

*

PROC

PROC (32)type
VSTB068.vsd
Appendix B—526371.001
B-30

TAL Syntax Summary (Railroad Diagrams) Entry Points
subproc - body

Entry Points
The entry-point declaration associates an identifier with a secondary location from
which execution can start in a procedure or subprocedure.

Labels
The LABEL declaration reserves an identifier for later use as a label within the
encompassing procedure or subprocedure.

Statements
The following syntax diagrams describe statements in alphabetic order.

Compound Statements
A compound statement is a BEGIN-END construct that groups statements to form a
single logical statement.

VSTB069.vsd

BEGIN END ;

sublocal - decl statement;

;

ENTRY identifier ;

,
VSTB070.vsd

LABEL identifier ;

,
VSTB071.vsd
Appendix B—526371.001
B-31

TAL Syntax Summary (Railroad Diagrams) ASSERT Statement
ASSERT Statement
The ASSERT statement conditionally invokes the procedure specified in an
ASSERTION directive.

Assignment Statement
The assignment statement assigns a value to a previously declared variable.

Bit Deposit Assignment Statement
The bit-deposit assignment statement assigns a value to a bit field in a variable.

BEGIN END

statement

;

;

VSTB072.vsd

ASSERT assert - level : condition
VSTB073.vsd

variable expression:=

VSTB074.vsd

variable . < left - bit >

: right - bit

:= expression

ns ns ns

ns ns ns

VSTB075.vsd
Appendix B—526371.001
B-32

TAL Syntax Summary (Railroad Diagrams) CALL Statement
CALL Statement
The CALL statement invokes a procedure, subprocedure, or entry point, and optionally
passes parameters to it.

param - pair

Labeled CASE Statement
The labeled CASE statement executes a choice of statements the selector value
matches a case label associated with those statements.

CALL

identifier

()

param

param - pair

,
VSTB076.vsd

string length:

VSTB077.vsd

CASE selector OF BEGIN
case -

alternative
;

END

OTHERWISE

statement

-> ;

VSTB078.vsd
Appendix B—526371.001
B-33

TAL Syntax Summary (Railroad Diagrams) Unlabeled CASE Statement
case - alternative

Unlabeled CASE Statement
The unlabeled CASE statement executes a choice of statements based on an inclusive
range of implicit selector values, from 0 through n, with one statement for each value.

CODE Statement
The CODE statement specifies machine-level instructions and pseudocodes to compile
into the object file.

case -
label

lower -
case - label

upper -
case - label

. .

statement

;

,

->

VSTB079.vsd

selectorCASE OF BEGIN ;

statement

END

OTHERWISE ;

statement
VSTB080.vsd

CODE (instruction)

;
VSTB081.vsd
Appendix B—526371.001
B-34

TAL Syntax Summary (Railroad Diagrams) DO Statement
instruction

DO Statement
The DO statement is a posttest loop that repeatedly executes a statement until a
specified condition becomes true.

1 mnemonic

2 mnemonic identifier

.

@

3 mnemonic constant

4 mnemonic register

5 mnemonic identifier

.

@

, register

6 mnemonic constant

, register VSTB082.vsd

No. Instruction Form

DO UNTIL condition

statement
VSTB083.vsd
Appendix B—526371.001
B-35

TAL Syntax Summary (Railroad Diagrams) DROP Statement
DROP Statement
The DROP statement disassociates an identifier from an index register reserved by a
USE statement or from a label.

FOR Statement
The FOR statement is a pretest loop that repeatedly executes a statement while
incrementing or decrementing an index.

GOTO Statement
The GOTO statement unconditionally transfers program control to a labeled statement.

IF Statement
The IF statement conditionally selects one of two statements.

DROP identifier

,
VSTB084.vsd

FOR index := TO

DOWNTO

limit

BY step

DO

statement
VSTB085.vsd

GOTO label - name

VSTB086.vsd
Appendix B—526371.001
B-36

TAL Syntax Summary (Railroad Diagrams) Move Statement
Move Statement
The move statement copies contiguous bytes, words, or elements to a new location.

IF condition THEN

statement

ELSE

statement VSTB087.vsd

destination ':='

'=:'

source FOR count

count -
unit -> next -

addr
constant

constant

constant - list

&

[]

VSTB088.vsd
Appendix B—526371.001
B-37

TAL Syntax Summary (Railroad Diagrams) RETURN Statement
RETURN Statement
The RETURN statement returns control to the caller. For a function, RETURN must
return a result expression. The RETURN directive can also return a condition-code
value.

Scan Statement
The SCAN or RSCAN statement scans sequential bytes for a test character from left to
right or from right to left, respectively.

STACK Statement
The STACK statement loads values onto the register stack.

RETURN

RETURN

, cc - expression

result - expression

, cc - expression
VSTB089.vsd

SCAN

RSCAN

variable WHILE

UNTIL

test - char

next - addr->
VSTB090.vsd

STACK expression

,
VSTB091.vsd
Appendix B—526371.001
B-38

TAL Syntax Summary (Railroad Diagrams) STORE Statement
STORE Statement
The STORE statement removes values from the register stack and stores them into
variables.

USE Statement
The USE statement reserves an index register for your use.

WHILE Statement
The WHILE statement is a pretest loop that repeatedly executes a statement while a
condition is true.

Standard Functions
The following syntax diagrams describe standard functions in alphabetic order.

$ABS Function
The $ABS function returns the absolute value of an expression. The returned value
has the same data type as the expression.

STORE variable

,
VSTB092.vsd

USE identifier

,
VSTB093.vsd

WHILE condition DO

statement
VSTB094.vsd

$ABS (expression)
VSTB095.vsd
Appendix B—526371.001
B-39

TAL Syntax Summary (Railroad Diagrams) $ALPHA Function
$ALPHA Function
The $ALPHA function tests the right byte of an INT value for the presence of an
alphabetic character.

$AXADR Function
See Section 15, Privileged Procedures

$BITLENGTH Function
The $BITLENGTH function returns the length, in bits, of a variable.

$BITOFFSET Function
The $BITOFFSET function returns the number of bits from the address of the zeroth
structure occurrence to a structure data item.

$BOUNDS Function
See Section 15, Privileged Procedures

$CARRY Function
The $CARRY function checks the state of the carry bit in the environment register and
indicates whether a carry out of the high-order bit position occurred.

$ALPHA (int - expression)
VSTB096.vsd

$BITLENGTH (variable)
VSTB097.vsd

$BITOFFSET (variable)
VSTB098.vsd

$CARRY
VSTB099.vsd
Appendix B—526371.001
B-40

TAL Syntax Summary (Railroad Diagrams) $COMP Function
$COMP Function
The $COMP function obtains the one’s complement of an INT expression.

$DBL Function
The $DBL function returns an INT(32) value from an INT, FIXED(0), REAL, or
REAL(64) expression.

$DBLL Function
The $DBLL function returns an INT(32) value from two INT values.

$DBLR Function
The $DBLR function returns an INT(32) value from an INT, FIXED(0), REAL, or
REAL(64) expression and applies rounding to the result.

$DFIX Function
The $DFIX function returns a FIXED (fpoint) expression from an INT(32) expression.

$COMP (int - expression)
VSTB100.vsd

$DBL (expression)
VSTB101.vsd

$DBLL (int - expression , int - expression)
VSTB102.vsd

$DBLR (expression)
VSTB103.vsd

$DFIX (dbl - expression , fpoint)
VSTB104.vsd
Appendix B—526371.001
B-41

TAL Syntax Summary (Railroad Diagrams) $EFLT Function
$EFLT Function
The $EFLT function returns a REAL(64) value from an INT, INT(32), FIXED (fpoint), or
REAL expression.

$EFLTR Function
The $EFLTR function returns a REAL(64) value from an INT, INT(32), FIXED (fpoint),
or REAL expression and applies rounding to the result.

$FIX Function
The $FIX function returns a FIXED(0) value from an INT, INT(32), REAL, or REAL(64)
expression.

$FIXD Function
The $FIXD function returns an INT(32) value from a FIXED(0) expression.

$FIXI Function
The $FIXI function returns the signed INT equivalent of a FIXED(0) expression.

$EFLT (expression)
VSTB105.vsd

$EFLTR (expression)
VSTB106.vsd

$FIX (expression)
VSTB107.vsd

$FIXD (fixed - expression)
VSTB108.vsd

$FIXI (fixed - expression)
VSTB109.vsd
Appendix B—526371.001
B-42

TAL Syntax Summary (Railroad Diagrams) $FIXL Function
$FIXL Function
The $FIXL function returns the unsigned INT equivalent of a FIXED(0) expression.

$FIXR Function
The $FIXR function returns a FIXED(0) value from an INT, INT(32), FIXED, REAL, or
REAL(64) expression and applies rounding to the result.

$FLT Function
The $FLT function returns a REAL value from an INT, INT(32), FIXED (fpoint), or
REAL(64) expression.

$FLTR Function
The $FLTR function returns a REAL value from an INT, INT(32), FIXED (fpoint), or
REAL(64) expression and applies rounding to the result.

$HIGH Function
The $HIGH function returns an INT value that is the high-order 16 bits of an INT(32)
expression.

$FIXL (fixed - expression)
VSTB110.vsd

$FIXR (expression)
VSTB111.vsd

$FLT (expression)
VSTB112.vsd

$FLTR (expression)
VSTB113.vsd

$HIGH (dbl - expression)
VSTB114.vsd
Appendix B—526371.001
B-43

TAL Syntax Summary (Railroad Diagrams) $IFIX Function
$IFIX Function
The $IFIX function returns a FIXED (fpoint) value from a signed INT expression.

$INT Function
The $INT function returns an INT value from the low-order 16 bits of an INT(32 or
FIXED(0) expression. $INT returns a fully converted INT expression from a REAL or
REAL(64) expression.

$INTR Function
The $INTR function returns an INT value from the low-order 16 bits of an INT(32) or
FIXED(0) expression. $INTR returns a fully converted and rounded INT expression
from a REAL or REAL(64) expression.

$LADR Function
The $LADR function returns the standard (16-bit) address of a variable that is
accessed through an extended (32-bit) pointer.

$IFIX (int - expression ,
VSTB115.vsd

fpoint)

$INT (expression)

VSTB116.vsd

$INTR (expression)

VSTB117.vsd

$LADR (variable)

VSTB118.vsd
Appendix B—526371.001
B-44

TAL Syntax Summary (Railroad Diagrams) $LEN Function
$LEN Function
The $LEN function returns the length, in bytes, of one occurrence of a variable.

$LFIX Function
The $LFIX function returns a FIXED (fpoint) expression from an unsigned INT
expression.

$LMAX Function
The $LMAX function returns the maximum of two unsigned INT expressions.

$LMIN Function
The $LMIN function returns the minimum of two unsigned INT expressions.

$MAX Function
The $MAX function returns the maximum of two signed INT, INT(32), FIXED (fpoint),
REAL, or REAL(64) expressions.

$LEN (variable)

VSTB119.vsd

VSTB120.vsd

$LFIX (int - expression , fpoint)

VSTB121.vsd

$LMAX (int - expression , int - expression)

VSTB122.vsd

$LMIN (int - expression , int - expression)

VSTB123.vsd

$MAX (expression , expression)
Appendix B—526371.001
B-45

TAL Syntax Summary (Railroad Diagrams) $MIN Function
$MIN Function
The $MIN function returns the minimum of two INT, INT(32), FIXED (fpoint), REAL, or
REAL(64) expressions.

$NUMERIC Function
The $NUMERIC function tests the right half of an INT value for the presence of an
ASCII numeric character.

$OCCURS Function
The $OCCURS function returns the number of occurrences of a variable.

$OFFSET Function
The $OFFSET function returns the number of bytes from the address of the zeroth
structure occurrence to a structure data item.

$OPTIONAL Function
The $OPTIONAL function controls whether a given parameter or parameter pair is
passed to a VARIABLE or EXTENSIBLE procedure. OPTIONAL is a D20 or later
feature.

VSTB124.vsd

$MIN (expression , expression)

VSTB125.vsd

$NUMERIC (int - expression)

VSTB126.vsd

$OCCURS (variable)

VSTB127.vsd

$OFFSET (variable)
Appendix B—526371.001
B-46

TAL Syntax Summary (Railroad Diagrams) $OVERFLOW Function
$OVERFLOW Function
The $OVERFLOW function checks the state of the overflow indicator and indicates
whether an overflow occurred during an arithmetic operation.

$PARAM Function
The $PARAM function checks for the presence or absence of an actual parameter in
the call that invoked the current procedure or subprocedure.

$POINT Function
The $POINT function returns the fpoint value, in integer form, associated with a FIXED
expression.

$READCLOCK Function
The $READCLOCK function returns the current setting of the system clock.

VSTB128.vsd

$OPTIONAL (cond - expression , param)

param - pair

VSTB129.vsd

$OVERFLOW

$PARAM (formal - param)
VSTB130.vsd

$POINT (fixed - expression)
VSTB131.vsd

$READCLOCK

VSTB132.vsd
Appendix B—526371.001
B-47

TAL Syntax Summary (Railroad Diagrams) $RP Function
$RP Function
The $RP function returns the current setting of the compiler’s internal RP counter. (RP
is the register stack pointer.)

$SCALE Function
The $SCALE function moves the position of the implied decimal point by adjusting the
internal representation of a FIXED (fpoint) expression.

$SPECIAL Function
The $SPECIAL function tests the right half of an INT value for the presence of an
ASCII special (non-alphanumeric) character.

$SWITCHES Function
See Section 15, Privileged Procedures

$TYPE Function
The $TYPE function returns a value that indicates the data type of a variable.

$RP
VSTB133.vsd

$SCALE (fixed - expression , scale)

VSTB134.vsd

$SPECIAL (int - expresion)
VSTB135.vsd

$TYPE (variable)
VSTB136.vsd
Appendix B—526371.001
B-48

TAL Syntax Summary (Railroad Diagrams) $UDBL Function
$UDBL Function
The $UDBL function returns an INT(32) value from an unsigned INT expression.

$USERCODE Function
The $USERCODE function returns the content of the word at the specified location in
the current user code segment.

$XADR Function
The $XADR function converts a standard address to an extended address.

Privileged Procedures
The following syntax diagrams describe declarations for privileged procedures.

System Global Pointers
The system global pointer declaration associates an identifier with a memory location
that you load with the address of a variable located in the system global data area.

$UDBL (int - expression)
VSTB137.vsd

$USERCODE (expression)
VSTB138.vsd

$XADR (variable)
VSTB139.vsd

type .SG identifier ;

:= preset-address

,
VSTB140.vsd
Appendix B—526371.001
B-49

TAL Syntax Summary (Railroad Diagrams) 'SG'-Equivalenced Simple Variables
'SG'-Equivalenced Simple Variables
The 'SG'-equivalenced simple variable declaration associates a simple variable with a
location that is relative to the base address of the system global data area.

'SG'-Equivalenced Definition Structures
The 'SG'-equivalenced definition structure declaration associates a definition structure
with a location relative to the base address of the system global data area.

type identifier = 'SG' ;

[

-

+

index

offset

]

,
VSTB141.vsd

STRUCT identifier = 'SG'

=

'SG'

.EXT

; structure - layout ;

[

-

+

index

offset

]

VSTB142.vsd
Appendix B—526371.001
B-50

TAL Syntax Summary (Railroad Diagrams) 'SG'-Equivalenced Referral Structures
'SG'-Equivalenced Referral Structures
The 'SG'-equivalenced referral structure declaration associates a referral structure with
a location relative to the base address of the system global data area.

'SG'-Equivalenced Simple Pointers
The 'SG'-equivalenced simple pointer declaration associates a simple pointer with a
location relative to the base address of the system global data area.

STRUCT identifier (referral)

.

.EXT

=

.SG

'SG' ;

[]

-

+

index

offset

VSTB143.vsd
Appendix B—526371.001
B-51

TAL Syntax Summary (Railroad Diagrams) 'SG'-Equivalenced Structure Pointers
'SG'-Equivalenced Structure Pointers
The 'SG'-equivalenced structure pointer declaration associates a structure pointer with
a location relative to the base address of the system global data area.

type . identifier = 'SG'

.SG

.EXT

;

[

+

-

index

offset

]

,
VSTB144.vsd
Appendix B—526371.001
B-52

TAL Syntax Summary (Railroad Diagrams) 'SG'-Equivalenced Structure Pointers
$AXADR Function
The $AXADR function returns an absolute extended address.

$BOUNDS Function
The $BOUNDS function checks the location of a parameter passed to a system
procedure to prevent a pointer that contains an incorrect address from overlaying the
stack (S) register with data.

STRING

INT

.

.SG

.EXT

identifier (referral)

= 'SG'

[

+

-

index

offset

]

,

;

VSTB145.vsd

$AXADR (variable)
VSTB146.vsd

$BOUNDS (param , count)
VSTB147.vsd
Appendix B—526371.001
B-53

TAL Syntax Summary (Railroad Diagrams) TARGET Directive
$SWITCHES Function
The $SWITCHES function returns the current content of the switch register.

TARGET Directive
The TARGET directive specifies the target system for which you have written
conditional code. TARGET works in conjunction with the IF and ENDIF directives in
D20 or later object files.

Compiler Directives
The following syntax diagrams describe directive lines, followed by compiler directives
in alphabetic order.

Directive Lines
A directive line in your source code contains one or more compiler directives.

ABORT Directive
The ABORT directive terminates compilation if the compiler cannot open a file
specified in a SOURCE directive. The default is ABORT.

$SWITCHES
VSTB148.vsd

TARGET target - system
VSTB149.vsd

? directive

,
VSTB150.vsd

ABORT

NOABORT
VSTB151.vsd
Appendix B—526371.001
B-54

TAL Syntax Summary (Railroad Diagrams) ABSLIST Directive
ABSLIST Directive
ABSLIST lists code addresses relative to the code area base. The default is
NOABSLIST.

ASSERTION Directive
ASSERTION invokes a procedure when a condition defined in an ASSERT statement
is true.

BEGINCOMPILATION Directive
BEGINCOMPILATION marks the point in the source file where compilation is to begin
if the USEGLOBALS directive is in effect.

CHECK Directive
CHECK generates range-checking code for certain features. The default is NOCHECK.

ABSLIST

NOABSLIST
VSTB152.vsd

ASSERTION
assertion -

level
, procedure -

name

=
VSTB153.vsd

BEGINCOMPILATION
VSTB154.vsd
Appendix B—526371.001
B-55

TAL Syntax Summary (Railroad Diagrams) CODE Directive
CODE Directive
CODE lists instruction codes and constants in octal format after each procedure. The
default is CODE.

COLUMNS Directive
COLUMNS directs the compiler to treat any text beyond the specified column as
comments.

CHECK

NOCHECK

PUSHCHECK

POPCHECK VSTB155.vsd

CODE

NOCODE

PUSHCODE

POPCODE VSTB156.vsd

COLUMNS columns - value
VSTB157.vsd
Appendix B—526371.001
B-56

TAL Syntax Summary (Railroad Diagrams) COMPACT Directive
COMPACT Directive
COMPACT moves procedures into gaps below the 32K-word boundary of the code
area if they fit. The default is COMPACT.

CPU Directive
CPU specifies that the object file runs on a TNS system. (The need for this directive no
longer exists. This directive has no effect on the object file and is retained only for
compatibility with programs that still specify it.)

CROSSREF Directive
CROSSREF collects source-level declarations and cross-reference information or
specifies CROSSREF classes. The default is NOCROSSREF.

DATAPAGES Directive
DATAPAGES sets the size of the data area in the user data segment.

COMPACT

NOCOMPACT VSTB158.vsd

CPU cpu - type
VSTB159.vsd

CROSSREF

NOCROSSREF class

class)(

,
VSTB160.vsd

DATAPAGES num - pages

= VSTB161.vsd
Appendix B—526371.001
B-57

TAL Syntax Summary (Railroad Diagrams) DECS Directive
DECS Directive
DECS decrements the compiler’s internal S-register counter.

DEFEXPAND Directive
Directive DEFEXPAND lists expanded DEFINEs and SQL-TAL code in the compiler
listing. The default is NODEFEXPAND.

DEFINETOG Directive
DEFINETOG specifies named or numeric toggles, without changing any prior settings,
for use in conditional compilation. DEFINETOG is a D20 or later feature.

DECS sdec - value

= VSTB162.vsd

VSTB163.vsd

DEFEXPAND

NODEFEXPAND

PUSHDEFEXPAND

POPDEFEXPAND
Appendix B—526371.001
B-58

TAL Syntax Summary (Railroad Diagrams) DUMPCONS Directive
DUMPCONS Directive
DUMPCONS inserts the contents of the compiler’s constant table into the object code.

ENDIF Directive
See IF and ENDIF Directives on page 16-47.

ENV Directive
ENV specifies the intended run-time environment of a D-series object file. The default
is ENV NEUTRAL.

DEFINETOG toggle - name

toggle - number

,

toggle - name

toggle - number

,

()

VSTB164.vsd

DUMPCONS
VSTB165.vsd

ENV COMMON

OLD

NEUTRAL
VSTB166.vsd
Appendix B—526371.001
B-59

TAL Syntax Summary (Railroad Diagrams) ERRORFILE Directive
ERRORFILE Directive
ERRORFILE logs compilation errors and warnings to an error file so you can use the
TACL FIXERRS macro to view the diagnostic messages in one PS Text Edit window
and correct the source file in another window.

ERRORS Directive
ERRORS sets the maximum number of error messages to allow before the compiler
terminates the compilation.

EXTENDSTACK Directive
EXTENDSTACK increases the size of the data stack in the user data segment.

ERRORFILE file - name

define - name

assign - name
VSTB167.vsd

ERRORS num - messages

=
VSTB168.vsd

EXTENDSTACK num - pages

=
VSTB169.vsd
Appendix B—526371.001
B-60

TAL Syntax Summary (Railroad Diagrams) EXTENDTALHEAP Directive
EXTENDTALHEAP Directive
EXTENDTALHEAP increases the size of the compiler’s internal heap for a D-series
compilation unit.

FIXUP Directive
FIXUP directs BINSERV to perform its fixup step. The default is FIXUP.

FMAP Directive
FMAP lists the file map. The default is NOFMAP.

GMAP Directive
GMAP lists the global map. The default is GMAP.

EXTENDTALHEAP num - pages

=
VSTB170.vsd

FIXUP

NOFIXUP VSTB171.vsd

FMAP

NOFMAP VSTB172.vsd

GMAP

NOGMAP VSTB173.vsd
Appendix B—526371.001
B-61

TAL Syntax Summary (Railroad Diagrams) HEAP Directive
HEAP Directive
HEAP sets the size of the CRE user heap for a D-series compilation unit if the ENV
COMMON directive is in effect.

HIGHPIN Directive
HIGHPIN sets the HIGHPIN attribute in a D-series object file.

HIGHREQUESTERS Directive
HIGHREQUESTERS sets the HIGHREQUESTERS attribute in a D-series object file.

ICODE Directive
ICODE lists the instruction-code (icode) mnemonics for subsequent procedures. The
default is NOICODE.

HEAP num - pages

=
VSTB174.vsd

HIGHPIN
VSTB175.vsd

HIGHREQUESTERS
VSTB176.vsd

VSTB177.vsd

ICODE

NOICODE

PUSHICODE

POPICODE
Appendix B—526371.001
B-62

TAL Syntax Summary (Railroad Diagrams) IF and ENDIF Directives
IF and ENDIF Directives
IF and IFNOT control conditional compilation based on a condition. The ENDIF
directive terminates the range of the matching IF or IFNOT directive. The D20 or later
RVU supports named toggles and target-system toggles as well as numeric toggles.

INHIBITXX Directive
INHIBITXX generates inefficient but correct code for extended global declarations in
relocatable blocks that Binder might locate after the first 64 words of the primary global
area of the user data segment. The default is NOINHIBITXX.

INNERLIST Directive
INNERLIST lists the instruction code mnemonics (and the compiler’s RP setting) for
each statement. The default is NOINNERLIST.

IF

IFNOT

toggle - number

toggle - name

toggle - system

ENDIF toggle - number

toggle - name

toggle - system
VSTB178.vsd

INHIBITXX

NOINHIBITXX
VSTB179.vsd
Appendix B—526371.001
B-63

TAL Syntax Summary (Railroad Diagrams) INSPECT Directive
INSPECT Directive
INSPECT sets the Inspect product as the default debugger for the object file. The
default is NOINSPECT.

INT32INDEX Directive
INT32INDEX generates INT(32) indexes from INT indexes for accessing items in an
extended indirect structure in a D-series program. The default is NOINT32INDEX.

INNERLIST

NOINNERLIST

PUSHINNERLIST

POPINNERLIST
VSTB180.vsd

INSPECT

NOINSPECT
VSTB181.vsd

IN32INDEX

NOIN32INDEX

PUSHIN32INDEX

POPIN32INDEX
VSTB182.vsd
Appendix B—526371.001
B-64

TAL Syntax Summary (Railroad Diagrams) LARGESTACK Directive
LARGESTACK Directive
LARGESTACK sets the size of the extended stack in the automatic extended data
segment.

LIBRARY Directive
LIBRARY specifies the name of the TNS software user run-time library to be
associated with the object file at run time.

LINES Directive
LINES sets the maximum number of output lines per page.

LIST Directive
LIST lists the source text for subsequent source code if NOSUPPRESS is in effect.
The default is LIST.

LARGESTACK num - pages

= VSTB183.vsd

LIBRARY file - name

VSTB184.vsd

LINES num - lines

= VSTB185.vsd
Appendix B—526371.001
B-65

TAL Syntax Summary (Railroad Diagrams) LMAP Directive
LMAP Directive
LMAP lists load-map and cross-reference information. The default is LMAP ALPHA.

MAP Directive
MAP lists the identifier maps. The default is MAP.

VSTB186.vsd

LIST

NOLIST

PUSHLIST

POPLIST

VSTB187.vsd

LMAP

NOLMAP lmap - option

lmap - option)(

,

*

MAP

NOMAP

PUSHMAP

POPMAP VSTB188.vsd
Appendix B—526371.001
B-66

TAL Syntax Summary (Railroad Diagrams) OLDFLTSTDFUNC Directive
OLDFLTSTDFUNC Directive
OLDFLTSTDFUNC treats arguments to the $FLT, $FLTR, $EFLT, and $EFLTR
standard functions as if they were FIXED(0) values.

OPTIMIZE Directive
OPTIMIZE specifies the level at which the compiler optimizes the object code.

PAGE Directive
PAGE optionally prints a heading and causes a page eject.

PEP Directive
PEP specifies the size of the procedure entry-point (PEP) table.

OLDFLTSTDFUNC
VSTB189.vsd

OPTIMIZE level

= VSTB190.vsd

PAGE

" heading - string "
VSTB191.vsd

PEP pep - table - size

= VSTB192.vsd
Appendix B—526371.001
B-67

TAL Syntax Summary (Railroad Diagrams) PRINTSYM Directive
PRINTSYM Directive
PRINTSYM lists symbols. The default is PRINTSYM.

RELOCATE Directive
RELOCATE lists BINSERV warnings for declarations that depend on absolute
addresses in the primary global data area of the user data segment.

RESETTOG Directive
RESETTOG creates new toggles in the off state and turns off toggles created by
SETTOG. The RESETTOG directive supports named toggles as well as numeric
toggles.

PRINTSYM

NOPRINTSYM
VSTB193.vsd

RELOCATE
VSTB194.vsd

RESETTOG

toggle - name

toggle - number

,

()toggle - name

,

toggle - number

VSTB195.vsd
Appendix B—526371.001
B-68

TAL Syntax Summary (Railroad Diagrams) ROUND Directive
ROUND Directive
ROUND rounds FIXED values assigned to FIXED variables that have smaller fpoint
values than the values you are assigning. The default is NOROUND.

RP Directive
RP sets the compiler’s internal register pointer (RP) count. RP tells the compiler how
many registers are currently in use on the register stack.

RUNNAMED Directive
RUNNAMED causes a D-series object file to run on a D-series system as a named
process even if you do not provide a name for it.

SAVEABEND Directive
SAVEABEND directs the Inspect product to generate a save file if your process
terminates abnormally during execution. The default is NOSAVEABEND.

ROUND

NOROUND
VSTB196.vsd

RP

= VSTB197.vsd

register - number

RUNNAMED
VSTB198.vsd

SAVEABEND

NOSAVEABEND
VSTB199.vsd
Appendix B—526371.001
B-69

TAL Syntax Summary (Railroad Diagrams) SAVEGLOBALS Directive
SAVEGLOBALS Directive
SAVEGLOBALS saves all global data declarations in a file for use in subsequent
compilations that specify the USEGLOBALS directive.

SEARCH Directive
SEARCH specifies object files from which BINSERV can resolve unsatisfied external
references and validate parameter lists at the end of compilation. By default, BINSERV
does not attempt to resolve unsatisfied external references.

SECTION Directive
SECTION gives a name to a section of a source file for use in a SOURCE directive.

SAVEGLOBALS file - name

define - name

assign - name
VSTB200.vsd

SEARCH

file - name

define - name

assign - name

file - name

define - name

assign - name

,

()

VSTB201.vsd

SECTION section - name
VSTB202.vsd
Appendix B—526371.001
B-70

TAL Syntax Summary (Railroad Diagrams) SETTOG Directive
SETTOG Directive
SETTOG turns the specified toggles on for use in conditional compilations. The
SETTOG directive supports named toggles as well as numeric toggles.

SOURCE Directive
SOURCE specifies source code to include from another source file.

SQL Directive
See the NonStop SQL Programming Manual for TAL.

SQLMEM Directive
See the NonStop SQL Programming Manual for TAL.

SETTOG

toggle - name

toggle - number

toggle - name

toggle - number

,

()

,
VSTB203.vsd

SOURCE file - name

define - name

assign - name

(section - name)

,
VSTB204.vsd
Appendix B—526371.001
B-71

TAL Syntax Summary (Railroad Diagrams) STACK Directive
STACK Directive
STACK sets the size of the data stack in the user data segment.

SUBTYPE Directive
SUBTYPE specifies that the object file is to execute as a process of a specified
subtype.

SUPPRESS Directive
SUPPRESS overrides all the listing directives. The default is NOSUPPRESS.

SYMBOLPAGES Directive
SYMBOLPAGES sets the size of the internal symbol table the compiler uses as a
temporary storage area for processing variables and SQL statements.

STACK num - pages

= VSTB205.vsd

SUBTYPE subtype - number

= VSTB206.vsd

SUPPRESS

NOSUPPRESS
VSTB207.vsd

SYMBOLPAGES num - pages

= VSTB208.vsd
Appendix B—526371.001
B-72

TAL Syntax Summary (Railroad Diagrams) SYMBOLS Directive
SYMBOLS Directive
SYMBOLS saves symbols in a symbol table (for Inspect symbolic debugging) in the
object file. The default is NOSYMBOLS.

SYNTAX Directive
SYNTAX checks the syntax of the source text without producing an object file.

TARGET Directive
See Section 15, Privileged Procedures.

USEGLOBALS Directive
Directive USEGLOBALS retrieves the global data declarations saved in a file by
SAVEGLOBALS during a previous compilation.

SYMBOLS

NOSYMBOLS
VSTB209.vsd

SYNTAX
VSTB210.vsd

USEGLOBALS file - name

define - name

assign - name
VSTB211.vsd
Appendix B—526371.001
B-73

TAL Syntax Summary (Railroad Diagrams) WARN Directive
WARN Directive
WARN instructs the compiler to print a selected warning or all warnings. The default is
WARN.

WARN

NOWARN warning - number

= VSTB212.vsd
Appendix B—526371.001
B-74

C
TAL Syntax Summary (Bracket-and-
Brace Diagrams)

This appendix provides a syntax summary of bracket-and-brace diagrams for
specifying:

• Constants

• Expressions

• Declarations

• Statements

• Standard Functions

• Compiler Directives

General Syntax Notation
In this appendix, the following syntax notation conventions are used in the format of
bracket-and-brace diagrams.

UPPERCASE LETTERS
Uppercase letters indicate keywords and reserved words; enter these items exactly as
shown. Items not enclosed in brackets are required. For example:

SOURCE

lowercase italic letters
Lowercase italic letters indicate variable items that you supply. Items not enclosed in
brackets are required. For example:

file-name

Brackets []
Brackets enclose optional syntax items. For example:

[base] integer

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:
Appendix C—526371.001
C-1

TAL Syntax Summary (Bracket-and-Brace Diagrams) Braces { }
[+] operand

[-]

[+ | -] operand

Braces { }
A group of items enclosed in braces is a list from which you are required to choose one
item. The items in the list may be arranged either vertically, with aligned braces on
each side of the list, or horizontally, enclosed in a pair of braces and separated by
vertical lines. For example:

{ E } exponent

{ L }

{ E | L } exponent

Vertical Line |
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or
braces. For example:

[+ | -] operand

Ellipsis ...
An ellipsis immediately following a pair of brackets or braces indicates that you can
repeat the enclosed sequence of syntax items any number of times. For example:

[{ AND } [NOT] condition] ...]

{ OR }

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must
be entered as shown. For example:

STRUCT identifier (*) ;

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation
symbol such as a parenthesis, comma, or semicolon. For example:

STRUCT identifier (*) ;
Appendix C—526371.001
C-2

TAL Syntax Summary (Bracket-and-Brace Diagrams) Line Spacing
If there is no space between two items, spaces are not permitted. In the following
examples, there are no spaces permitted between the items:

[NO]SUPPRESS

int-expression.< left-bit[: right-bit]>

Line Spacing
Continuation lines are indented and separated from the preceding line by a blank line.
This spacing distinguishes items in a continuation line from items in a vertical list of
selections. For example:

STRUCT [.] identifier (referral)

 [.EXT]

 ["[" lower-bound : upper-bound "]"] ;

Constants
The following syntax diagrams describe:

• Character string constants (all data types)

• STRING numeric constants

• INT numeric constants

• INT(32) numeric constants

• FIXED numeric constants

• REAL and REAL(64) numeric constants

• Constant lists

Character String Constants
A character string constant consists of one or more ASCII characters stored in a
contiguous group of bytes.

STRING Numeric Constants
A STRING numeric constant is an unsigned 8-bit integer.

“string”

[base] integer
Appendix C—526371.001
C-3

TAL Syntax Summary (Bracket-and-Brace Diagrams) INT Numeric Constants
INT Numeric Constants
An INT numeric constant is a signed or unsigned 16-bit integer.

INT(32) Numeric Constants
An INT(32) numeric constant is a signed or unsigned 32-bit integer.

FIXED Numeric Constants
A FIXED numeric constant is a signed 64-bit fixed-point integer.

REAL and REAL(64) Numeric Constants
A REAL numeric constant is a signed 32-bit floating-point number that is precise to
approximately 7 significant digits.

A REAL(64) numeric constant is a signed 64-bit floating-point number that is precise to
approximately 17 significant digits.

Constant Lists
A constant list is a list of one or more constants.

repetition-constant-list has the form:

[repetition-factor *] "[" constant-list-seq "]"

[+] [base] integer

[-]

[+] [base] integer { D }
[-] { %D }

[+] [base] integer [. fraction] { F }
[-] { %F }

[+] integer. fraction { E } [+] exponent
[-] { L } [-]

{ repetition-constant-list }
{ "[" repetition-constant-list "]" }
{ "[" constant-list-seq "]" }
Appendix C—526371.001
C-4

TAL Syntax Summary (Bracket-and-Brace Diagrams) Expressions
constant-list-seq has the form:

{ constant }
{ repetition-constant-list }

 [, { constant }] ...
 { repetition-constant-list }

Expressions
The following syntax diagrams describe:

• Arithmetic expressions

• Conditional expressions

• Assignment expressions

• CASE expressions

• IF expressions

• Group comparison expressions

• Bit extractions

• Bit shifts

Arithmetic Expressions
An arithmetic expression is a sequence of operands and arithmetic operators that
computes a single numeric value of a specific data type.

Conditional Expressions
A conditional expression is a sequence of conditions and Boolean or relational
operators that establishes the relationship between values.

Assignment Expressions
The assignment expression assigns the value of an expression to a variable.

[+] operand [[arithmetic-operator operand] ...]
[-]

[NOT] condition [[{ AND } [NOT] condition] ...]
 { OR }

variable := [variable :=] ... expression
Appendix C—526371.001
C-5

TAL Syntax Summary (Bracket-and-Brace Diagrams) CASE Expressions
CASE Expressions
The CASE expression selects one of several expressions.

IF Expressions
The IF expression conditionally selects one of two expressions, usually for assignment
to a variable.

Group Comparison Expressions
The group comparison expression compares a variable with a variable or a constant.

Bit Extractions
A bit extraction accesses a bit field in an INT expression without altering the
expression.

Bit Shifts
A bit shift operation shifts a bit field a specified number of positions to the left or to the
right within a variable without altering the variable.

Declarations
Declaration syntax diagrams describe:

• LITERALs and DEFINEs

CASE selector OF BEGIN expression ; [expression ;] ...

 [OTHERWISE expression ;] END

IF condition THEN expression ELSE expression

var1 relational-operator

 { var2 FOR count [count-unit] } [-> next-addr]

 { constant }

 { "[" constant "]" }

 { constant-list }

int-expression < left-bit [: right-bit]>

{ int-expression } shift-operator positions
{ dbl-expression }
Appendix C—526371.001
C-6

TAL Syntax Summary (Bracket-and-Brace Diagrams) LITERAL and DEFINE Declarations
• Simple variables

• Arrays and read-only arrays

• Structures—definition structures, template structures, referral structures

• Structure items—simple variables, arrays, substructures, filler bytes, filler bits,

• simple pointers, structure pointers, and redefinitions

• Simple pointers and structure pointers

• Equivalenced variables

• NAMEs and BLOCKs

• Procedures and subprocedures

LITERAL and DEFINE Declarations
The following syntax diagrams describe LITERAL and DEFINE declarations.

LITERALs
A LITERAL associates an identifier with a constant.

DEFINEs
A DEFINE associates an identifier (and parameters if any) with text.

Simple Variable Declarations
The following syntax diagram describes simple variable declarations:

Simple Variables
A simple variable associates an identifier with a single-element data item of a specified
data type.

LITERAL identifier [= constant]

 [, identifier [= constant]] . . . ;

DEFINE identifier [(param-name [, param-name] ...)]

 = define-body #

[, identifier [(param-name [, param-name] ...)]

 = define-body #] ... ;
Appendix C—526371.001
C-7

TAL Syntax Summary (Bracket-and-Brace Diagrams) Array Declarations
type is one of:

{ STRING }
{ { INT | REAL } [(width)] }
{ UNSIGNED (width) }
{ FIXED [(fpoint | *)] }

Array Declarations
The following syntax diagrams describe array and read-only array declarations:

Arrays
An array associates an identifier with a one-dimensional set of elements of the same
data type.

Read-Only Arrays
A read-only array associates an identifier with a one-dimensional and nonmodifiable
set of elements of the same data type. A read-only array is located in a user code
segment.

type is one of:

{ STRING }
{ { INT | REAL } [(width)] }
{ UNSIGNED (width) }
{ FIXED [(fpoint | *)] }

type identifier [:= initialization]

 [, identifier [:= initialization]] . . . ;

type [.] identifier " [" lower-bound : upper-bound "] "
 [.EXT]

 [:= initialization]

[, [.] identifier " [" lower-bound : upper-bound "] "
 [.EXT]

 [:= initialization]] . . . ;

type identifier ["[" lower-bound : upper-bound "]"]

 = 'P' := initialization

[, identifier ["[" lower-bound : upper-bound "]"]

 = 'P' := initialization] ... ;
Appendix C—526371.001
C-8

TAL Syntax Summary (Bracket-and-Brace Diagrams) Structure Declarations
Structure Declarations
The following syntax diagrams describe:

• Structures—definition structures, template structures, referral structures

• Structure items—simple variables, arrays, substructures, filler bytes, filler bits,
simple pointers, structure pointers, and redefinitions

Definition Structures
A definition structure associates an identifier with a structure layout and allocates
storage for it.

Template Structures
A template structure associates an identifier with a structure layout but allocates no
storage for it.

Referral Structures
A referral structure associates an identifier with a structure whose layout is the same
as a previously declared structure and allocates storage for it.

Simple Variables Declared n Structures
A simple variable can be declared inside a structure.

Arrays Declared in Structures
An array can be declared inside a structure.

STRUCT [.] identifier
 [.EXT]

 ["[" lower-bound : upper-bound "]"] ;

 structure-layout ;

STRUCT identifier (*) ;

 structure-layout ;

STRUCT [.] identifier (referral)
 [. EXT]

 ["[" lower-bound : upper-bound "]"] ;

type identifier [, identifier] ... ;
Appendix C—526371.001
C-9

TAL Syntax Summary (Bracket-and-Brace Diagrams) Definition Substructures
Definition Substructures
A definition substructure can be declared inside a structure.

Referral Substructures
A referral substructure can be declared inside a structure.

Fillers in Structures
A filler is a byte or bit place holder in a structure.

Simple Pointers Declared in Structures
A simple pointer can be declared inside a structure.

Structure Pointers Declared in Structures
A structure pointer can be declared inside a structure.

type identifier " [" lower-bound : upper-bound "] "

 [., identifier " [" lower-bound : upper-bound "] " . . . ;

STRUCT identifier

[" [" lower-bound : upper-bound "] "] ; substructure-layout ;

STRUCT identifier (referral)

 [" [" lower-bound : upper-bound "] "] ;

{ FILLER } constant-expression ;
{ BIT_FILLER }

type { . } identifier
 { .EXT }

 [, { . } identifier] . . . ;
 { .EXT }

{ STRING } { . } identifier (referral)
{ INT } { .EXT }

 [, { . } identifier (referral)] . . . ;
 { .EXT }
Appendix C—526371.001
C-10

TAL Syntax Summary (Bracket-and-Brace Diagrams) Simple Variable Redefinitions
Simple Variable Redefinitions
A simple variable redefinition associates a new simple variable with a previous item at
the same BEGIN-END level of a structure.

Array Redefinitions
An array redefinition associates a new array with a previous item at the same BEGIN-
END level of a structure.

Definition Substructure Redefinitions
A definition substructure redefinition associates a new definition substructure with a
previous item at the same BEGIN-END level of a structure.

Referral Substructure Redefinitions
A referral substructure redefinition associates a new referral substructure with a
previous item at the same BEGIN-END level of a structure.

Simple Pointer Redefinitions
A simple pointer redefinition associates a new simple pointer with a previous item at
the same BEGIN-END level of a structure.

Structure Pointer Redefinitions
A structure pointer redefinition associates a new structure pointer with a previous item
at the same BEGIN-END level of a structure.

type identifier = previous-identifier ;

type identifier [" [" lower-bound : upper-bound "] "]

 = previous-identifier ;

STRUCT identifier [" [" lower-bound : upper-bound "] "]

 = previous-identifier ; substructure-layout ;

STRUCT identifier (referral)

 [" [" lower-bound : upper-bound "] "] = previous-identifier ;

type { . } identifier = previous-identifier ;
 { .EXT }
Appendix C—526371.001
C-11

TAL Syntax Summary (Bracket-and-Brace Diagrams) Pointer Declarations
Pointer Declarations
The following syntax diagrams describe simple pointer and structure pointer
declarations.

Simple Pointers
A simple pointer is a variable you load with a memory address, usually of a simple
variable or array, which you access with this simple pointer.

Structure Pointers
A structure pointer is a variable you load with a memory address of a structure, which
you access with this structure pointer.

Equivalenced Variable Declarations
The following syntax diagrams describe equivalenced variable declarations for simple
variables, simple pointers, structures, and structure pointers.

Equivalenced Simple Variables
An equivalenced simple variable associates a new simple variable with a previously
declared variable.

{ STRING } { . } identifier (referral)
{ INT } { .EXT}

 = previous-identifier ;

type { . } identifier [:= initialization]
 { .EXT }

 [, { . } identifier [:= initialization]] ... ;
 { .EXT }

{ STRING } { . } identifier (referral)
{ INT } { .EXT }

 [:= initialization]

 [, { . } identifier (referral)
 { .EXT }

 [:= initialization]] . . . ;
Appendix C—526371.001
C-12

TAL Syntax Summary (Bracket-and-Brace Diagrams) Equivalenced Definition Structures
Equivalenced Definition Structures
An equivalenced definition structure associates a new definition structure with a
previously declared variable.

Equivalenced Referral Structures
An equivalenced referral structure associates a new referral structure with a previously
declared variable.

Equivalenced Simple Pointers
An equivalenced simple pointer associates a new simple pointer with a previously
declared variable.

type identifier = previous-identifier [" [" index "] "]
 [{ + } offset]
 { - }

[, identifier = previous-identifier ["[" index "] "]] ... ;
 [{ + } offset]
 { - }

STRUCT [.] identifier = previous-identifier
 [.EXT]

 [" [" index "] "] ; structure-layout ;
 [{ + } offset]
 { - }

STRUCT [.] identifier (referral) = previous-identifier
 [.EXT]

 [" [" index "] "] ;
 [{ + } offset]
 { - }

type { . } identifier = previous-identifier
 { .EXT }

 [" [" index "] "]
 [{ + } offset]
 { - }

[, { . } identifier = previous-identifier
 { .EXT }

 [" [" index "] "]] ... ;
 [{ + } offset]
 { - }
Appendix C—526371.001
C-13

TAL Syntax Summary (Bracket-and-Brace Diagrams) Equivalenced Structure Pointers
Equivalenced Structure Pointers
An equivalenced structure pointer associates a new structure pointer with a previously
declared variable.

Base-Address Equivalenced Variable
Declarations

The following syntax diagrams describe base-addressed equivalenced variable
declarations for simple variables, simple pointers, structures, and structure pointers.

Base-Address Equivalenced Simple Variables
A base-addressed equivalenced simple variable associates a simple variable with a
global, local, or top-of-stack base address.

Base-Address Equivalenced Definition Structures
A base-addressed equivalenced definition structure associates a definition structure
with a global, local, or top-of-stack base address.

{ STRING } { . } identifier (referral)
{ INT } { .EXT }

 = previous-identifier [" [" index "] "]
 [{ + } offset]
 { - }

[, { . } identifier (referral)
 { .EXT }

 = previous-identifier [" [" index "] "]] ... ;
 [{ + } offset]
 { - }

type identifier = base-address [" [" index "] "]
 [{ + } offset]
 { - }

[, identifier = base-address [" [" index "] "]] ... ;
 [{ + } offset]
 { - }

STRUCT [.] identifier = base-address
 [.EXT]

 [" [" index "] "] ; structure-layout ;
 [{ + } offset]
 { - }
Appendix C—526371.001
C-14

TAL Syntax Summary (Bracket-and-Brace Diagrams) Base-Address Equivalenced Referral Structures
Base-Address Equivalenced Referral Structures
A base-addressed equivalenced referral structure associates a referral structure with a
global, local, or top-of-stack base address.

Base-Address Equivalenced Simple Pointers
A base-addressed equivalenced simple pointer associates a simple pointer with a
global, local, or top-of-stack base address.

Base-Address Equivalenced Structure
Pointers

A base-addressed equivalenced structure pointer associates a structure pointer with a
global, local, or top-of-stack base address.

STRUCT [.] identifier (referral) = base-address
 [.EXT]

 [" [" index "] "] ;
 [{ + } offset]
 { - }

type { . } identifier = base-address [" [" index "] "]
 { .EXT } [{ + } offset]
 { - }

[, { . } identifier = base-address
 { .EXT }

 [" [" index "] "]] . . . ;
 [{ + } offset]
 { - }

{ STRING } { . } identifier (referral)
{ INT } { .EXT }

 = base-address [" [" index "] "]
 [{ + } offset]
 { - }

[, { . } identifier (referral)
 { .EXT }

 = base-address [" [" index "] "]] ... ;
 [{ + } offset]
 { - }
Appendix C—526371.001
C-15

TAL Syntax Summary (Bracket-and-Brace Diagrams) NAME and BLOCK Declarations
NAME and BLOCK Declarations
The following syntax diagrams describe NAME and BLOCK declarations.

NAMEs
The NAME declaration assigns an identifier to a compilation unit and to its private
global data block if it has one.

BLOCKs
The BLOCK declaration groups global data declarations into a named or private
relocatable global data block.

Procedure and Subprocedure Declarations
The following syntax diagrams describe procedure, subprocedure, entry-point, and
label declarations.

Procedures
A procedure is a program unit that is callable from anywhere in the program.

type is one of:

{ STRING }
{ { INT | REAL } [(width)] }
{ UNSIGNED (width) }
{ FIXED [(fpoint | *)] }

NAME identifier ;

BLOCK { identifier } [AT (0)];
 { PRIVATE } [BELOW (64)]
 [BELOW (256)]

 [data-declaration ;] ...

END BLOCK ;

[type] PROC identifier [public-name-spec]

 [parameter-list]

 [proc-attribute [, proc-attribute] ...] ;

 [param-spec ;] . . .

 { proc-body } ;
 { EXTERNAL }
 { FORWARD }
Appendix C—526371.001
C-16

TAL Syntax Summary (Bracket-and-Brace Diagrams) Procedures
public-name-spec has the form:

= " public-name "

parameter-list has the form:

({ param-name } [, { param-name }] ...)
 { param-pair } { param-pair }

param-pair has the form:

string : length

proc-attrib is one of:

{ MAIN | INTERRUPT }
{ RESIDENT }
{ CALLABLE | PRIV }
{ VARIABLE | EXTENSIBLE [(count)] }
{ LANGUAGE { C } }
 { COBOL }
 { FORTRAN }
 { PASCAL }
 { UNSPECIFIED }

param-spec has the form:

param-type [.] param-name [(referral)]
 [.EXT]

 [, [.] param-name [(referral)]] ... ;
 [.EXT]

param-type is one of:

{ STRING }
{ { INT | REAL } [(width)] }
{ UNSIGNED (width) }
{ FIXED [(fpoint | *)] }
{ STRUCT }
{ [type] { PROC | PROC(32) } }

proc-body has the form:

 BEGIN [local-decl ;] ...

 [subproc-decl ;] ...

 [statement [; statement] ...]

 END ;
Appendix C—526371.001
C-17

TAL Syntax Summary (Bracket-and-Brace Diagrams) Subprocedures
Subprocedures
A subprocedure is a program unit that is callable from anywhere in the procedure.

type is one of:

{ STRING }
{ { INT | REAL } [(width)] }
{ UNSIGNED (width) }
{ FIXED [(fpoint | *)] }

parameter-list has the form:

({ param-name } [, { param-name }] . . .)
 { param-pair } { param-pair }

param-pair has the form:

string : length

param-spec has the form:

param-type [.] param-name [(referral)]
 [.EXT]

 [, [.] param-name [(referral)]] . . . ;
 [.EXT]

param-type is one of:

{ STRING }
{ { INT | REAL } [(width)] }
{ UNSIGNED (width) }
{ FIXED [(fpoint | *)] }
{ STRUCT }
{ [type] { PROC | PROC(32) } }

subproc-body has the form:

BEGIN [sublocal-decl ;] . . .

 [statement [; statement] . . .]

END ;

[type] SUBPROC identifier [parameter-list] [VARIABLE] ;

 [param-spec ;] ...

 { subproc-body } ;
 { FORWARD }
Appendix C—526371.001
C-18

TAL Syntax Summary (Bracket-and-Brace Diagrams) Statements
Entry Points
An entry-point declaration associates an identifier with a secondary location from which
execution can start in a procedure or subprocedure.

Labels

The LABEL declaration reserves an identifier for later use as a label within the
encompassing procedure or subprocedure.

Statements
The following syntax diagrams describe statements in alphabetic order.

Compound Statements
A compound statement is a BEGIN-END construct that groups statements to form a
single logical statement.

ASSERT Statement
The ASSERT statement conditionally invokes the procedure specified in an
ASSERTION directive.

Assignment Statement
The assignment statement assigns a value to a previously declared variable.

ENTRY identifier [, identifier] ... ;

LABEL identifier [, identifier] ... ;

BEGIN

 [statement] [; statement] . . . [;]

END

ASSERT assert-level : condition

variable := [variable :=] ... expression
Appendix C—526371.001
C-19

TAL Syntax Summary (Bracket-and-Brace Diagrams) Bit-Deposit Assignment Statement
Bit-Deposit Assignment Statement
The bit-deposit assignment statement assigns a value to a bit field in a variable.

CALL Statement
The CALL statement invokes a procedure, subprocedure, or entry point, and optionally
passes parameters to it.

Labeled CASE Statement
The labeled CASE statement executes a choice of statements the selector value
matches a case label associated with those statements.

case-alternative has the form:

{ case-label }
{ lower-case-label .. upper-case-label }

 [, { case-label }] . . .
 { lower-case-label .. upper-case-label }

 -> statement [; statement] . . .

Unlabeled CASE Statement
The unlabeled CASE statement executes a choice of statements based on an inclusive
range of implicit selector values, from 0 through n, with one statement for each value.

variable.< left-bit [: right-bit] > := expression

[CALL] identifier

 [([param] [, [param]] ...)]
 [param-pair] [param-pair]

CASE selector OF

 BEGIN

 case-alternative ; [case-alternative ;] . . .

 [OTHERWISE -> [statement [; statement] . . .] ;]

END

CASE selector OF

 BEGIN [statement [; statement] ...] ;

 [OTHERWISE [statement] ;]

END
Appendix C—526371.001
C-20

TAL Syntax Summary (Bracket-and-Brace Diagrams) CODE Statement
CODE Statement
The CODE statement specifies machine-level instructions and pseudocodes to compile
into the object file.

instruction has one of the following forms:

DO Statement
The DO statement is a posttest loop that repeatedly executes a statement until a
specified condition becomes true.

DROP Statement
The DROP statement disassociates an identifier from an index register reserved by a
USE statement or from a label.

FOR Statement
The FOR statement is a pretest loop that repeatedly executes a statement while
incrementing or decrementing an index.

GOTO Statement
The GOTO statement unconditionally transfers program control to a labeled statement.

CODE (instruction [; instruction] ...)

No. Instruction Form

1. { mnemonic }
2. { mnemonic [. | @] identifier }
3. { mnemonic constant }
4. { mnemonic register }
5. { mnemonic [. | @] identifier [, register] }
6. { mnemonic constant [, register] }

DO [statement] UNTIL condition

DROP identifier [, identifier] ...

FOR index := initial-value { TO } limit [BY step]
 { DOWNTO }

 DO [statement]
Appendix C—526371.001
C-21

TAL Syntax Summary (Bracket-and-Brace Diagrams) IF Statement
IF Statement
The IF statement conditionally selects one of two statements.

Move Statement
The move statement copies contiguous bytes, words, or elements to a new location.

RETURN Statement
The RETURN statement returns control to the caller. For a function, RETURN must
return a result expression. The RETURN statement can also return a condition-code
value.

SCAN Statement
The SCAN or RSCAN statement scans sequential bytes for a test character from left to
right or from right to left, respectively.

GOTO label-name

IF condition THEN [statement] [ELSE [statement]]

destination { ':=' }
 { '=:' }

 { source FOR count [count-unit] }
 { constant }
 { " [" constant "] " }
 { constant-list }

[& { source FOR count [count-unit] }] ...
 { constant }
 { " [" constant "] " }
 { constant-list }

[-> next-addr]

{ RETURN [, cc-expression] }
{ RETURN result-expression [, cc-expression] }

{ SCAN } variable { WHILE } test-char [-> next-addr]
{ RSCAN } { UNTIL }
Appendix C—526371.001
C-22

TAL Syntax Summary (Bracket-and-Brace Diagrams) STACK Statement
STACK Statement
The STACK statement loads values onto the register stack.

STORE Statement
The STORE statement removes values from the register stack and stores them into
variables.

USE Statement
The USE statement reserves an index register for your use.

WHILE Statement
The WHILE statement is a pretest loop that repeatedly executes a statement while a
condition is true.

Standard Functions
The following syntax diagrams describe standard functions in alphabetic order.

$ABS Function
The $ABS function returns the absolute value of an expression. The returned value
has the same data type as the expression.

$ALPHA Function
The $ALPHA function tests the right byte of an INT value for the presence of an
alphabetic character.

STACK expression [, expression] ...

STORE variable [, variable] ...

USE identifier [, identifier] ...

WHILE condition DO [statement]

$ABS (expression)

$ALPHA (int-expression)
Appendix C—526371.001
C-23

TAL Syntax Summary (Bracket-and-Brace Diagrams) $AXADR Function
$AXADR Function
See Section 15, Privileged Procedures

$BITLENGTH Function
The $BITLENGTH function returns the length, in bits, of a variable.

$BITOFFSET Function
The $BITOFFSET function returns the number of bits from the address of the zeroth
structure occurrence to a structure data item.

$BOUNDS Function
See Section 15, Privileged Procedures

$CARRY Function
The $CARRY function checks the state of the carry bit in the environment register and
indicates whether a carry out of the high-order bit position occurred.

$COMP Function
The $COMP function obtains the one’s complement of an INT expression.

$DBL Function
The $DBL function returns an INT(32) value from an INT, FIXED(0), REAL, or
REAL(64) expression.

$DBLL Function
The $DBLL function returns an INT(32) value from two INT values.

$BITLENGTH (variable)

$BITOFFSET (variable)

$CARRY

$COMP (int-expression)

$DBL (expression)
Appendix C—526371.001
C-24

TAL Syntax Summary (Bracket-and-Brace Diagrams) $DBLR Function
$DBLR Function
The $DBLR function returns an INT(32) value from an INT, FIXED(0), REAL, or
REAL(64) expression and applies rounding to the result.

$DFIX Function
The $DFIX function returns a FIXED (fpoint) expression from an INT(32) expression.

$EFLT Function
The $EFLT function returns a REAL(64) value from an INT, INT(32), FIXED (fpoint), or
REAL expression.

$EFLTR Function
The $EFLTR function returns a REAL(64) value from an INT, INT(32), FIXED (fpoint),
or REAL expression and applies rounding to the result.

$FIX Function
The $FIX function returns a FIXED(0) value from an INT, INT(32), REAL, or REAL(64)
expression.

$FIXD Function
The $FIXD function returns an INT(32) value from a FIXED(0) expression.

$DBLL (int-expression , int-expression)

$DBLR (expression)

$DFIX (dbl-expression , fpoint)

$EFLT (expression)

$EFLTR (expression)

$FIX (expression)

$FIXD (fixed-expression)
Appendix C—526371.001
C-25

TAL Syntax Summary (Bracket-and-Brace Diagrams) $FIXI Function
$FIXI Function
The $FIXI function returns the signed INT equivalent of a FIXED(0) expression.

$FIXL Function
The $FIXL function returns the unsigned INT equivalent of a FIXED(0) expression.

$FIXR Function
The $FIXR function returns a FIXED(0) value from an INT, INT(32), FIXED, REAL, or
REAL(64) expression and applies rounding to the result.

$FLT Function
The $FLT function returns a REAL value from an INT, INT(32), FIXED (fpoint), or
REAL(64) expression.

$FLTR Function
The $FLTR function returns a REAL value from an INT, INT(32), FIXED (fpoint), or
REAL(64) expression and applies rounding to the result.

$HIGH Function
The $HIGH function returns an INT value that is the high-order 16 bits of an INT(32)
expression.

$IFIX Function
The $IFIX function returns a FIXED (fpoint) value from a signed INT expression.

$FIXI (fixed-expression)

$FIXL (fixed-expression)

$FIXR (expression)

$FLT (expression)

$FLTR (expression)

$HIGH (dbl-expression)
Appendix C—526371.001
C-26

TAL Syntax Summary (Bracket-and-Brace Diagrams) $INT Function
$INT Function
The $INT function returns an INT value from the low-order 16 bits of an INT(32 or
FIXED(0) expression. $INT returns a fully converted INT expression from a REAL or
REAL(64) expression.

$INTR Function
The $INTR function returns an INT value from the low-order 16 bits of an INT(32) or
FIXED(0) expression. $INTR returns a fully converted and rounded INT expression
from a REAL or REAL(64) expression.

$LADR Function
The $LADR function returns the standard (16-bit) address of a variable that is
accessed through an extended (32-bit) pointer.

$LEN Function
The $LEN function returns the length, in bytes, of one occurrence of a variable.

$LFIX Function
The $LFIX function returns a FIXED (fpoint) expression from an unsigned INT
expression.

$LMAX Function
The $LMAX function returns the maximum of two unsigned INT expressions.

$IFIX (int-expression , fpoint)

$INT (expression)

$INTR (expression)

$LADR (variable)

$LEN (variable)

$LFIX (int-expression , fpoint)

$LMAX (int-expression , int-expression)
Appendix C—526371.001
C-27

TAL Syntax Summary (Bracket-and-Brace Diagrams) $LMIN Function
$LMIN Function
The $LMIN function returns the minimum of two unsigned INT expressions.

$MAX Function
The $MAX function returns the maximum of two signed INT, INT(32), FIXED (fpoint),
REAL, or REAL(64) expressions.

$MIN Function
The $MIN function returns the minimum of two INT, INT(32), FIXED (fpoint), REAL, or
REAL(64) expressions.

$NUMERIC Function
The $NUMERIC function tests the right half of an INT value for the presence of an
ASCII numeric character.

$OCCURS Function
The $OCCURS function returns the number of occurrences of a variable.

$OFFSET Function
The $OFFSET function returns the number of bytes from the address of the zeroth
structure occurrence to a structure data item.

$OPTIONAL Function
The $OPTIONAL function controls whether a given parameter or parameter pair is
passed to a VARIABLE or EXTENSIBLE procedure. $OPTIONAL is a D20 or later
feature.

$LMIN (int-expression , int-expression)

$MAX (expression , expression)

$MIN (expression , expression)

$NUMERIC (int-expression)

$OCCURS (variable)

$OFFSET (variable)
Appendix C—526371.001
C-28

TAL Syntax Summary (Bracket-and-Brace Diagrams) $OVERFLOW Function
$OVERFLOW Function
The $OVERFLOW function checks the state of the overflow indicator and indicates
whether an overflow occurred during an arithmetic operation.

$PARAM Function
The $PARAM function checks for the presence or absence of an actual parameter in
the call that invoked the current procedure or subprocedure.

$POINT Function
The $POINT function returns the fpoint value, in integer form, associated with a FIXED
expression.

$READCLOCK Function
The $READCLOCK function returns the current setting of the system clock.

$RP Function
The $RP function returns the current setting of the compiler’s internal RP counter. (RP
is the register stack pointer.)

$SCALE Function
The $SCALE function moves the position of the implied decimal point by adjusting the
internal representation of a FIXED (fpoint) expression.

$OPTIONAL (cond-expression , { param })

 { param-pair }

$OVERFLOW

$PARAM (formal-param)

$POINT (fixed-expression)

$READCLOCK

$RP

$SCALE (fixed-expression , scale)
Appendix C—526371.001
C-29

TAL Syntax Summary (Bracket-and-Brace Diagrams) $SPECIAL Function
$SPECIAL Function
The $SPECIAL function tests the right half of an INT value for the presence of an
ASCII special (non-alphanumeric) character.

$SWITCHES Function
See Section 15, Privileged Procedures

$TYPE Function
The $TYPE function returns a value that indicates the data type of a variable.

$UDBL Function
The $UDBL function returns an INT(32) value from an unsigned INT expression.

$USERCODE Function
The $USERCODE function returns the content of the word at the specified location in
the current user code segment.

$XADR Function
The $XADR function converts a standard address to an extended address.

Privileged Procedures
The following syntax diagrams describe declarations for privileged procedures.

System Global Pointers
The system global pointer declaration associates an identifier with a memory location
that you load with the address of a variable located in the system global data area.

$SPECIAL (int- expression)

$TYPE (variable)

$UDBL (int-expression)

$USERCODE (expression)

$XADR (variable)
Appendix C—526371.001
C-30

TAL Syntax Summary (Bracket-and-Brace Diagrams) 'SG'-Equivalenced Simple Variables
'SG'-Equivalenced Simple Variables
The 'SG'-equivalenced simple variable declaration associates a simple variable with a
location that is relative to the base address of the system global data area.

'SG'-Equivalenced Definition Structures
The 'SG'-equivalenced definition structure declaration associates a definition structure
with a location relative to the base address of the system global data area.

'SG'-Equivalenced Referral Structures
The 'SG'-equivalenced referral structure declaration associates a referral structure with
a location relative to the base address of the system global data area.

'SG'-Equivalenced Simple Pointers
The 'SG'-equivalenced simple pointer declaration associates a simple pointer with a
location relative to the base address of the system global data area.

type .SG identifier [:= preset-address]

 [, .SG identifier [:= preset-address]] ... ;

type identifier = 'SG' [" [" index "] "]
 [{ + } offset]
 { - }

[, identifier = 'SG' [" [" index "]"]] . . . ;
 [{ + } offset]
 { - }

STRUCT [.] identifier = 'SG'
 [.SG]
 [.EXT]

 [" [" index "] "] ; structure-layout ;
 [{ + } offset]
 { - }

STRUCT [.] identifier (referral) = 'SG'
 [.SG]
 [.EXT]

 [" [" index "]"] ;
 [{ + } offset]
 { - }
Appendix C—526371.001
C-31

TAL Syntax Summary (Bracket-and-Brace Diagrams) 'SG'-Equivalenced Structure Pointers
'SG'-Equivalenced Structure Pointers
The 'SG'-equivalenced structure pointer declaration associates a structure pointer with
a location relative to the base address of the system global data area.

$AXADR Function
The $AXADR function returns an absolute extended address.

$BOUNDS Function
The $BOUNDS function checks the location of a parameter passed to a system
procedure to prevent a pointer that contains an incorrect address from overlaying the
stack (S) register with data.

$SWITCHES Function
The $SWITCHES function returns the current content of the switch register.

type { . } identifier = 'SG' [" [" index "] "]
 { .SG } [{ + } offset]
 { .EXT} { - }

[, { . } identifier = 'SG'
 { .SG }
 { .EXT}

 [" [" index "] "]] ... ;
 [{ + } offset]
 { - }

{ STRING } { . } identifier (referral)
{ INT } { .SG }
 { .EXT }

 = 'SG' [" [" index "] "]
 [{ + } offset]
 { - }

[, { . } identifier (referral)
 { .SG }
 { .EXT}

 = 'SG' [" [" index "] "]] ... ;
 [{ + } offset]
 { - }

$AXADR (variable)

$BOUNDS (param , count)
Appendix C—526371.001
C-32

TAL Syntax Summary (Bracket-and-Brace Diagrams) TARGET Directive
TARGET Directive
The TARGET directive specifies the target system for conditional code. TARGET
works in conjunction with the IF and ENDIF directives. TARGET is a D20 or later
feature.

Compiler Directives
The following syntax diagrams describe directive lines, followed by compiler directives
in alphabetic order.

Directive Lines
A directive line in your source code contains one or more compiler directives.

ABORT Directive
The ABORT directive terminates compilation if the compiler cannot open a file
specified in a SOURCE directive. The default is ABORT.

ABSLIST Directive
ABSLIST lists code addresses relative to the code area base. The default is
NOABSLIST.

ASSERTION Directive
ASSERTION invokes a procedure when a condition defined in an ASSERT statement
is true.

$SWITCHES

TARGET target-system

? directive [, directive] ...

[NO] ABORT

[NO] ABSLIST

ASSERTION [=] assertion-level , procedure-name
Appendix C—526371.001
C-33

TAL Syntax Summary (Bracket-and-Brace Diagrams) BEGINCOMPILATION Directive
BEGINCOMPILATION Directive
BEGINCOMPILATION marks the point in the source file where compilation is to begin
if the USEGLOBALS directive is in effect.

CHECK Directive
CHECK generates range-checking code for certain features. The default is NOCHECK.

CODE Directive
CODE lists instruction codes and constants in octal format after each procedure. The
default is CODE.

COLUMNS Directive
COLUMNS directs the compiler to treat any text beyond the specified column as
comments.

COMPACT Directive
COMPACT moves procedures into gaps below the 32K-word boundary of the code
area if they fit. The default is COMPACT.

CPU Directive
CPU specifies that the object file runs on a TNS system. (The need for this directive no
longer exists. This directive has no effect on the object file and is retained only for
compatibility with programs that still specify it.)

BEGINCOMPILATION

[NO]

[PUSH] CHECK

[POP]

[NO]

[PUSH] CODE

[POP]

COLUMNS columns-value

[NO] COMPACT
Appendix C—526371.001
C-34

TAL Syntax Summary (Bracket-and-Brace Diagrams) CROSSREF Directive
CROSSREF Directive
CROSSREF collects source-level declarations and cross-reference information or
specifies CROSSREF classes. The default is NOCROSSREF.

DATAPAGES Directive
DATAPAGES sets the size of the data area in the user data segment.

DECS Directive
DECS decrements the compiler’s internal S-register counter.

DEFEXPAND Directive
DEFEXPAND lists expanded DEFINEs and SQL-TAL code in the compiler listing. The
default is NODEFEXPAND.

DEFINETOG Directive
DEFINETOG specifies named or numeric toggles, without changing any prior settings,
for use in conditional compilation. DEFINETOG is a D20 or later feature.

CPU cpu-type

[NO] CROSSREF [class]

 [(class [, class] ...)]

DATAPAGES [=] num-pages

DECS [=] sdec-value

[NO]

[PUSH] DEFEXPAND

[POP]

DEFINETOG { toggle-name }
 { toggle-number [, toggle-number] . . . }
 { ({ toggle-name } [, { toggle-name }] . . .) }
 { toggle-number } { toggle-number}
Appendix C—526371.001
C-35

TAL Syntax Summary (Bracket-and-Brace Diagrams) DUMPCONS Directive
DUMPCONS Directive
DUMPCONS inserts the contents of the compiler’s constant table into the object code.

ENDIF Directive
See IF and ENDIF Directives on page 16-47.

ENV Directive
ENV specifies the intended run-time environment of a D-series object file. The default
is ENV NEUTRAL.

ERRORFILE Directive
ERRORFILE logs compilation errors and warnings to an error file so you can use the
TACL FIXERRS macro to view the diagnostic messages in one PS Text Edit window
and correct the source file in another window.

ERRORS Directive
ERRORS sets the maximum number of error messages to allow before the compiler
terminates the compilation.

EXTENDSTACK Directive
EXTENDSTACK increases the size of the data stack in the user data segment.

EXTENDTALHEAP Directive
EXTENDTALHEAP increases the size of the compiler’s internal heap for a D-series
compilation unit.

DUMPCONS

ENV { COMMON }
 { OLD }
 { NEUTRAL }

ERRORFILE { file-name }
 { define-name }
 { assign-name }

ERRORS [=] num-messages

EXTENDSTACK [=] num-pages
Appendix C—526371.001
C-36

TAL Syntax Summary (Bracket-and-Brace Diagrams) FIXUP Directive
FIXUP Directive
FIXUP directs BINSERV to perform its fixup step. The default is FIXUP.

FMAP Directive
FMAP lists the file map. The default is NOFMAP.

GMAP Directive
GMAP lists the global map. The default is GMAP.

HEAP Directive
HEAP sets the size of the CRE user heap for a D-series compilation unit if the ENV
COMMON directive is in effect.

HIGHPIN Directive
HIGHPIN sets the HIGHPIN attribute in a D-series object file.

HIGHREQUESTERS Directive
HIGHREQUESTERS sets the HIGHREQUESTERS attribute in a D-series object file.

ICODE Directive
ICODE lists the instruction-code (icode) mnemonics for subsequent procedures. The
default is NOICODE.

EXTENDTALHEAP [=] num-pages

[NO] FIXUP

[NO] FMAP

[NO] GMAP

HEAP [=] num-pages

HIGHPIN

HIGHREQUESTERS
Appendix C—526371.001
C-37

TAL Syntax Summary (Bracket-and-Brace Diagrams) IF and ENDIF Directive
IF and ENDIF Directive
IF and IFNOT control conditional compilation based on a condition. The ENDIF
directive terminates the range of the matching IF or IFNOT directive. The D20 or later
RVU supports named toggles and target-system toggles as well as numeric toggles.

INHIBITXX Directive
INHIBITXX generates inefficient but correct code for extended global declarations in
relocatable blocks that Binder might locate after the first 64 words of the primary global
area of the user data segment. The default is NOINHIBITXX.

INNERLIST Directive
INNERLIST lists the instruction code mnemonics (and the compiler’s RP setting) for
each statement. The default is NOINNERLIST.

INSPECT Directive
INSPECT sets the Inspect product as the default debugger for the object file. The
default is NOINSPECT.

[NO]

[PUSH] ICODE

[POP]

IF[NOT] { toggle-name }
 { toggle-number }
 { target-system }

ENDIF { toggle-name }
 { toggle-number }
 { target-system }

[NO] INHIBITXX

[NO]

[PUSH] INNERLIST

[POP]

[NO] INSPECT
Appendix C—526371.001
C-38

TAL Syntax Summary (Bracket-and-Brace Diagrams) INT32INDEX Directive
INT32INDEX Directive
INT32INDEX generates INT(32) indexes from INT indexes for accessing items in an
extended indirect structure in a D-series program. The default is NOINT32INDEX.

LARGESTACK Directive
LARGESTACK sets the size of the extended stack in the automatic extended data
segment.

LIBRARY Directive
LIBRARY specifies the name of the TNS software user run-time library to be
associated with the object file at run time.

LINES Directive
LINES sets the maximum number of output lines per page.

LIST Directive
LIST lists the source text for subsequent source code if NOSUPPRESS is in effect.
The default is LIST.

LMAP Directive
LMAP lists load-map and cross-reference information. The default is LMAP ALPHA.

[NO]

[PUSH] INT32INDEX

[POP]

LARGESTACK [=] num-pages

LIBRARY file-name

LINES [=] num-lines

[NO]

[PUSH] LIST

[POP]
Appendix C—526371.001
C-39

TAL Syntax Summary (Bracket-and-Brace Diagrams) MAP Directive
MAP Directive
MAP lists the identifier maps. The default is MAP.

OLDFLTSTDFUNC Directive
OLDFLTSTDFUNC treats arguments to the $FLT, $FLTR, $EFLT, and $EFLTR
standard functions as if they were FIXED(0) values.

OPTIMIZE Directive
OPTIMIZE specifies the level at which the compiler optimizes the object code.

PAGE Directive
PAGE optionally prints a heading and causes a page eject.

PEP Directive
PEP specifies the size of the procedure entry-point (PEP) table.

PRINTSYM Directive
PRINTSYM lists symbols. The default is PRINTSYM.

[NO] LMAP [lmap-option]

 [(lmap-option [, lmap-option] ...)]

 [*]

[NO]

[PUSH] MAP

[POP]

OLDFLTSTDFUNC

OPTIMIZE [=] level

PAGE [" heading-string "]

PEP [=] pep-table-size

[NO]PRINTSYM
Appendix C—526371.001
C-40

TAL Syntax Summary (Bracket-and-Brace Diagrams) RELOCATE Directive
RELOCATE Directive
RELOCATE lists BINSERV warnings for declarations that depend on absolute
addresses in the primary global data area of the user data segment.

RESETTOG Directive
RESETTOG creates new toggles in the off state and turns off toggles created by
SETTOG. The RESETTOG directive supports named toggles as well as numeric
toggles.

ROUND Directive

ROUND rounds FIXED values assigned to FIXED variables that have smaller fpoint
values than the values you are assigning. The default is NOROUND.

RP Directive
RP sets the compiler’s internal register pointer (RP) count. RP tells the compiler how
many registers are currently in use on the register stack.

RUNNAMED Directive
RUNNAMED causes a D-series object file to run on a D-series system as a named
process even if you do not provide a name for it.

SAVEABEND Directive
SAVEABEND directs the Inspect product to generate a save file if your process
terminates abnormally during execution. The default is NOSAVEABEND.

RELOCATE

RESETTOG [toggle-name]
 [toggle-number [, toggle-number] ...]
 [({ toggle-name } [, { toggle-name }])]
 { toggle-number } { toggle-number }

[NO] ROUND

RP [=] register-number

RUNNAMED

[NO] SAVEABEND
Appendix C—526371.001
C-41

TAL Syntax Summary (Bracket-and-Brace Diagrams) SAVEGLOBALS Directive
SAVEGLOBALS Directive
SAVEGLOBALS saves all global data declarations in a file for use in subsequent
compilations that specify the USEGLOBALS directive.

SEARCH Directive
SEARCH specifies object files from which BINSERV can resolve unsatisfied external
references and validate parameter lists at the end of compilation. By default, BINSERV
does not attempt to resolve unsatisfied external references.

SECTION Directive
SECTION gives a name to a section of a source file for use in a SOURCE directive.

SETTOG Directive
SETTOG turns the specified toggles on for use in conditional compilations. The
SETTOG directive supports named toggles as well as numeric toggles.

SOURCE Directive
SOURCE specifies source code to include from another source file.

SAVEGLOBALS { file-name }
 { define-name }
 { assign-name }

SEARCH [file-name]
 [define-name]
 [assign-name]
 [({ file-name } [, { file-name } ...])]
 { define-name } { define-name }
 { assign-name } { assign-name }

SECTION [section-name]

SETTOG [toggle-name]
 [toggle-number [, toggle-number] ...]
 [({ toggle-name } [, { toggle-name }])]
 { toggle-number } { toggle-number }

SOURCE { file-name }
 { define-name }
 { assign-name }

 [(section-name [, section-name] ...)]
Appendix C—526371.001
C-42

TAL Syntax Summary (Bracket-and-Brace Diagrams) SQL Directive
SQL Directive
For more information, see the NonStop SQL Programming Manual for TAL.

SQLMEM Directive
For more information, see the NonStop SQL Programming Manual for TAL.

STACK Directive
STACK sets the size of the data stack in the user data segment.

SUBTYPE Directive
SUBTYPE specifies that the object file is to execute as a process of a specified
subtype.

SUPPRESS Directive
SUPPRESS overrides all the listing directives. The default is NOSUPPRESS.

SYMBOLPAGES Directive
SYMBOLPAGES sets the size of the internal symbol table the compiler uses as a
temporary storage area for processing variables and SQL statements.

SYMBOLS Directive
SYMBOLS saves symbols in a symbol table (for Inspect symbolic debugging) in the
object file. The default is NOSYMBOLS.

SYNTAX Directive
SYNTAX checks the syntax of the source text without producing an object file.

STACK [=] num-pages

SUBTYPE [=] subtype-number

[NO] SUPPRESS

SYMBOLPAGES [=] num-pages

[NO] SYMBOLS
Appendix C—526371.001
C-43

TAL Syntax Summary (Bracket-and-Brace Diagrams) USEGLOBALS Directive
USEGLOBALS Directive
USEGLOBALS retrieves the global data declarations saved in a file by
SAVEGLOBALS during a previous compilation.

WARN Directive
WARN instructs the compiler to print a selected warning or all warnings. The default is
WARN.

SYNTAX

USEGLOBALS { file-name }
 { define-name }
 { assign-name }

WARN [[=] warning-number]
Appendix C—526371.001
C-44

Glossary
actual parameter. An argument that a calling procedure or subprocedure passes to a called

procedure or subprocedure.

addressing mode. The mode in which a variable is to be accessed—direct addressing,
standard indirect addressing, or extended indirect addressing—as specified in the data
declaration.

AND. A Boolean operator that produces a true state if both adjacent conditions are true.

arithmetic expression. An expression that computes a single numeric value.

array. A variable that represents a collectively stored set of elements of the same data type.

ASSERT statement. A statement that conditionally calls an error-handling procedure.

assignment expression. An expression that stores a value in a variable.

assignment statement. A statement that stores a value in a variable.

ASSIGN Command. A TACL command that lets you associate a logical file name with an
HP file name. The HP file name is a fully qualified file ID. See file name and file ID

ASSIGN SSV Command. A TACL command that lets you specify the D-series node (or C-
series system), volume, and subvolume from which the compiler is to resolve
incomplete file names specified in SEARCH, SOURCE, and USEGLOBALS directives.

automatic extended data segment. A segment that is automatically allocated by the
compiler when you declare extended indirect arrays or extended indirect structures.

Binder. A stand-alone binder you can use to bind separately compiled object files (or
modules) into a new object file.

BINSERV. A binder that is integrated with the TAL compiler.

bit deposit. The assignment of a value to a bit field in a previously allocated STRING or
INT variable, but not in an UNSIGNED(1–16) variable. A bit-deposit field has the form
<n> or <n:n>.

bit extraction. The access of a bit field in an INT expression (which can include STRING,
INT, or UNSIGNED(1–16) variables). A bit-extraction field has the form <n> or <n:n>.

bit field. One of the following units:

• An n-bit storage unit that is allocated for a variable of the UNSIGNED data type.
For an UNSIGNED simple variable, the bit field can be 1 to 31 bits wide. For an
UNSIGNED array element, the bit field can be 1, 2, 4, or 8 bits wide.

• A bit field in the form <n> or <n:n>, used in bit-deposit or bit-extraction operations.
Glossary—526371.001
Glossary-1

Glossary bit shift.
bit shift. The shifting of bits within an INT or INT(32) expression a specified number of
positions to the left or right. An INT expression can consist of STRING, INT, or
UNSIGNED(1–16) values. An INT(32) expression can consist of INT(32) or
UNSIGNED(17–31) values.

bit-shift operators. Unsigned ('<<', '>>') or signed (<<, >>) operators that left shift or right
shift a bit field within an INT or INT(32) expression.

bitwise logical operator. The LOR, LAND, or XOR operator, which performs a bit-by-bit
operation on INT expressions.

blocked global data. Data you declare within BLOCK declarations. See BLOCK
declaration

BLOCK declaration. A means by which you can group global data declarations into a
relocatable data block that is either shareable with all compilation units in a
program or private to the current compilation unit.

Boolean operator. The NOT, OR, or AND operator, which sets the state of a single value
or the relationship between two values.

breakpoint. A location in a program at which execution is suspended so that you can
examine and modify the program state. Breakpoints are set by Inspect or Debug
commands.

built-in function. See standard function

byte. An 8-bit storage unit; the smallest addressable unit of memory.

CALL statement. A statement that invokes a procedure or a subprocedure.

CALLABLE procedure. A procedure you declare using the CALLABLE keyword; a
procedure that can call a PRIV procedure. (A PRIV procedure can execute privileged
instructions.)

CASE expression. An expression that selects an expression based on a selector value.

CASE statement. A statement that selects a statement based on a selector value.

central processing unit. See CPU

character string constant. A string of one or more ASCII characters that you enclose
within quotation mark delimiters. Also referred to as a character string.

CISC. Complex instruction set computing. A processor architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle
machine instructions, and many special-purpose instructions. Contrast with
RISC
Glossary—526371.001
Glossary-2

Glossary CLUDECS.
CLUDECS. A file, provided by the CRE, that contains external declarations for CLULIB
functions. See also CLULIB

CLULIB. A library file, provided by the CRE, that contains Saved Messages Utility (SMU)
functions for manipulating saved startup, ASSIGN, and PARAM messages.

code segment. A segment that contains program instructions to be executed, plus related
information. Applications can read code segments but cannot write to them.

code space. A part of virtual memory that is reserved for user code, user library code,
system code, and system library code. The current code space of your process
consists of an optional library code space and a user code space.

CODE statement. A statement that specifies machine codes or constants for inclusion in
the object code.

comment. A note that you insert into the source code to describe a construct or operation
in your source code. The compiler ignores comments during compilation. A comment
must either:

• Begin with two hyphens (--) and terminate with the end of the line

• Begin with an exclamation point (!) and terminate with either another exclamation
point or the end of the line

Common Run-Time Environment. See CRE

compilation unit. A source file plus source code that is read in from other source files by
SOURCE directives, which together compose a single input to the compiler.

compiler directive. A compiler option that lets you control compilation, compiler listings,
and object code generation. For example, compiler directives let you compile parts of
the source file conditionally or suppress parts of a compiler listing.

compiler listing. The listing produced by the compiler after successful compilation. A
compiler listing can include a header, banner, warning and error messages,
source listing, maps, cross-references, and compilation statistics.

completion code. A value used to return information about a process to its caller when the
process completes execution. For example, the compiler returns to the TACL product a
completion code indicating the status of the compilation.

complex instruction set computing. See CISC

condition. An operand that represents a true or false state.

condition code. A status returned by expressions and by some file system procedure calls
as follows:
Glossary—526371.001
Glossary-3

Glossary conditional expression.
conditional expression. An expression that establishes the relationship between values
and results in a true or false value; an expression that consists of relational or Boolean
conditions and conditional operators.

constant. A number or a character string.

constant expression. An arithmetic expression that contains only constants, LITERALs,
and DEFINEs as operands.

CPU. Central processing unit. Historically, the main data processing unit of a computer. A
NonStop system has multiple cooperating processors rather than a single CPU;
processors are sometimes called CPUs.

CRE. Common Run-Time Environment. Services that facilitate D-series mixed-language
programs.

CREDECS. A file, provided by the CRE, that contains external declarations for CRELIB
functions whose names begin with CRE_. See also CRELIB

CRELIB. A library file, provided by the CRE, that contains functions for sharing files,
manipulating $RECEIVE, terminating the CRE, and performing standard math
functions and other tasks.

Crossref. A stand-alone product that collects cross-reference information for your program.

CROSSREF. A compiler directive that collects cross-reference information for your
program.

cross-references. Source-level cross-reference information produced for your program by
the CROSSREF compiler directive or the Crossref stand-alone product.

C-series system. A system that is running a C-series RVU version of the Guardian 90
operating system.

data declaration. A means by which to allocate storage for a variable and to associate an
identifier with a variable, a DEFINE, or a LITERAL.

data segment. A segment that contains information to be processed by the instructions in
the related code segment. Applications can read and write to data segments. Data
segments contain no executable instructions.

Condition
Code Meaning

Expression
Status Procedure Call Status

CCG Condition-code-greater-than Positive Warning

CCL Condition-code-less-than 0 Error

CCE Condition-code-equal-to Negative Successful execution
Glossary—526371.001
Glossary-4

Glossary data space.
data space. The area of virtual memory that is reserved for user data and system data. The
current data space of your process consists of a user data segment, an automatic
extended data segment if needed, and any user-defined extended data segments.

data stack. The local and sublocal storage areas of the user data segment.

data type. A part of a variable declaration that determines the kind of values the variable
can represent, the operations you can perform on the variable, and the amount of
storage to allocate. TAL data types are STRING, INT, INT(32), UNSIGNED, FIXED,
REAL, and REAL(64).

data type alias. An alternate way to specify INT, REAL, and FIXED(0) data types. The
respective aliases are INT(16), REAL(32), and INT(64).

Debug. A machine-level interactive debugger.

DEFINE command. A TACL command that lets you specify a named set of attributes and
values to pass to a process.

DEFINE. A TAL declaration that associates an identifier with text such as a sequence of
statements.

definition structure. A declaration that describes a structure layout and allocates storage
for the structure layout. Contrast with referral structure and template structure

dereferencing operator. A period (.) prefixed to an INT simple variable, which causes the
content of the variable to become the standard word address of another data item.

direct addressing. Data access that requires only one memory reference and that is
relative to the base of the global, local, or sublocal area of the user data segment.

directive. See compiler directive

DO statement. A statement that executes a posttest loop until a true condition occurs.

doubleword. A 32-bit storage unit for the INT(32) or REAL data type.

DROP statement. A statement that frees a reserved index register or removes a label from
the symbol table.

D-series system. A system that is running a D-series RVU version of the operating
system.

entry point. An identifier by which a procedure can be invoked. The primary entry point is
the procedure identifier specified in the procedure declaration. Secondary entry points
are identifiers specified in entry-point declarations.

entry-point declaration. A declaration within a procedure that provides a secondary entry
point by which that procedure can be invoked. The primary entry point is the procedure
identifier specified in the procedure declaration.
Glossary—526371.001
Glossary-5

Glossary environment register.
environment register. A facility that contains information about the current process, such
as the current RP value and whether traps are enabled.

equivalenced variable. A declaration that associates an alternate identifier and description
with a location in a primary storage area.

expression. A sequence of operands and operators that, when evaluated, produces a
single value.

EXTDECS. A file, provided by the operating system, that contains external declarations for
system procedures. System procedures, for example, manage files, activate and
terminate programs, and monitor the operations of processes.

extended data segment. A segment that provides up to 127.5 megabytes of indirect data
storage. A process can have more than one extended data segment:

• The compiler allocates an extended data segment when you declare extended
indirect arrays or indirect structures.

• Your process can also allocate explicit extended data segments.

extended indirect addressing. Data access through an extended (32-bit) pointer.

extended pointer. A 32-bit simple pointer or structure pointer. An extended pointer can
contain a 32-bit byte address of any location in virtual memory.

extended stack. A data block named $EXTENDED#STACK that is created in the
automatic extended data segment by the compiler when you declare extended indirect
arrays and structures.

EXTENSIBLE procedure. A procedure that you declare using the EXTENSIBLE keyword; a
procedure to which you can add formal parameters without recompiling its callers; a
procedure for which the compiler considers all parameters to be optional, even if some
are required by your program. Contrast with VARIABLE procedure

external declarations file. A file that contains declarations for procedures declared in
other source files.

EXTERNAL procedure declaration. A procedure declaration that includes the EXTERNAL
keyword and no procedure body; a declaration that enables you to call a procedure
that is declared in another source file.

file ID. The last of the four parts of a file name.

file name. A fully qualified file ID. A file name contains four parts separated by periods:

• Node name (system name)

• Volume name

• Subvolume name
Glossary—526371.001
Glossary-6

Glossary file system.
• File ID

file system. A set of operating system procedures and data structures that allows
communication between a process and a file, which can be a disk file, a device, or a
process.

filler bit. A declaration that allocates a bit place holder for data or unused space in a
structure.

filler byte. A declaration that allocates a byte place holder for data or unused space in a
structure.

FIXED. A data type that requires a quadrupleword of storage and that can represent a 64-
bit fixed-point number.

FOR statement. A statement that executes a pretest loop n times.

formal parameter. A specification, within a procedure or subprocedure, of an argument
that is provided by the calling procedure or subprocedure.

FORWARD procedure declaration. A procedure declaration that includes the FORWARD
keyword but no procedure body; a declaration that allows you to call a procedure
before you declare the procedure body.

fpoint. An integer in the range –19 through 19 that specifies the implied decimal point
position in a FIXED value. A positive fpoint denotes the number of decimal places to
the right of the decimal point. A negative fpoint denotes the number of integer places to
the left of the decimal point; that is, the number of integer digits to replace with zeros
leftward from the decimal point.

function. A procedure or subprocedure that returns a value to the calling procedure or
subprocedure.

global data. Data declarations that appear before the first procedure declaration; identifiers
that are accessible to all compilation units in a program, unless the data declarations
appear in a BLOCK declaration that includes the PRIVATE keyword.

GOTO statement. A statement that unconditionally branches to a label within a procedure
or subprocedure.

group comparison expression. An expression that compares a variable with another
variable or with a constant.

high PIN. A process identification number (PIN) that is greater than 255. Contrast with low
PIN

home terminal. Usually the terminal from which a process was started.

HP NonStop Series system. See TNS
Glossary—526371.001
Glossary-7

Glossary HP NonStop Series/RISC system
HP NonStop Series/RISC system . See TNS/R

Identifier. A name you declare for an object such as a variable, LITERAL, or procedure.

IF expression. An expression that selects the THEN expression for a true state or the
ELSE expression for a false state.

IF statement. A statement that selects the THEN statement for a true state or the ELSE
statement for a false state.

implicit pointer. A pointer the compiler provides when you declare an indirect array or
indirect structure. See also pointer

index register. Register R5, R6, or R7 of the register stack.

index. An element (byte, word, doubleword, or quadrupleword) offset or an occurrence
offset as follows:

• Array index—an element offset from the zeroth element

• Simple pointer index —an element offset from the address stored in the pointer

• Structure or substructure index—an occurrence offset from the zeroth occurrence
indexing. Data access through an index appended to a variable name.

Inspect product. A source-level and machine-level interactive debugger.

INITIALIZER. A system procedure that reads and processes messages during process
startup.

instruction register. A facility that contains the instruction currently executing the current
code segment.

INT. A data type that requires a word of storage and that can represent one or two ASCII
characters or a 16-bit integer.

INT(16). An alias for INT.

INT(32). A data type that requires a doubleword of storage and that can represent a 32-bit
integer.

INT(64). An alias for FIXED(0).

INTERRUPT attribute. A procedure attribute (used only for operating system procedures)
that causes the compiler to generate an IXIT (interrupt exit) instruction instead of an
EXIT instruction at the end of execution.

keyword. A term that has a predefined meaning to the compiler.

label. An identifier you place before a statement for access by other statements within the
encompassing procedure, usually a GOTO statement.
Glossary—526371.001
Glossary-8

Glossary labeled tape.
labeled tape. A magnetic tape file described by standard ANSI or IBM file labels.

LAND. A bitwise logical operator that performs a bitwise logical AND operation.

LANGUAGE attribute. A procedure attribute that lets you specify in which language (C,
COBOL, FORTRAN, or Pascal) a D-series EXTERNAL procedure is written.

large-memory-model program. A C or Pascal program that uses 32-bit addressing and
stores data in an extended data segment.

LITERAL. A declaration that associates an identifier with a constant.

local data. Data that you declare within a procedure; identifiers that are accessible only
from within that procedure.

local register. A facility that contains the address of the beginning of the local data area for
the most recently called procedure.

logical operator. See bitwise logical operator

LOR. A bitwise logical operator that performs a bitwise logical OR operation.

low PIN. A process identification number (PIN) in the range 0 through 254. Contrast with
high PIN

lower 32K-word area. The lower half of the user data segment. The global, local, and
sublocal storage areas.

MAIN procedure. A procedure that you declare using the MAIN keyword; the procedure
that executes first when you run the program regardless of where the MAIN procedure
appears in the source code.

memory page. A unit of virtual storage. TAL supports the 1048-byte memory page
regardless of the memory-page size supported by the system hardware.

mixed-language program. A program that contains source files written in different HP
programming languages.

modular program. A program that is divided into smaller, more manageable compilation
units that you can compile separately and then bind together.

move statement. A statement that copies a group of elements from one location to
another.

multidimensional array. A structure that contains nested substructures.

NAME declaration. A declaration that associates an identifier with a compilation unit (and
with its private global data block if any).
Glossary—526371.001
Glossary-9

Glossary named data block
named data block. A BLOCK declaration that specifies a data-block identifier. The global
data declared within the BLOCK declaration is accessible to all compilation units in the
program. Contrast with private data block

network. Two or more nodes linked together for intersystem communication.

node. A computer system connected to one or more computer systems in a network.

NonStop SQL. A relational database management system that provides efficient online
access to large distributed databases.

NOT. A Boolean operator that tests a condition for the false state and that performs
Boolean negation.

object file. A file, generated by a compiler or binder, that contains machine instructions and
other information needed to construct the executable code spaces and initial data for a
process. The file can be a complete program ready for execution, or it can be
incomplete and require binding with other object files before execution.

offset. Represents, when used in place of an index, the distance in bytes of an item from
either the location of a direct variable or the location of the pointer of an indirect
variable, not from the location of the data to which the pointer points. Contrast with
index

operand. A value that appears in an expression. An operand can be a constant, a variable
identifier, a LITERAL identifier, or a function invocation.

operator. A symbol—such as an arithmetic or conditional operator—that performs a
specific operation on operands.

OR. A Boolean operator that produces a true state if either adjacent condition is true.

output listing. See compiler listing

page. See memory page

PARAM command. A TACL command that lets you associate an ASCII value with a
parameter name.

parameter. An argument that can be passed between procedures or subprocedures.

parameter mask. A means by which the compiler keeps track of which actual parameters
are passed by a procedure to an EXTENSIBLE or VARIABLE procedure.

parameter pair. Two parameters connected by a colon that together describe a single data
type to some languages.

PIN. A process identification number; an unsigned integer that identifies a process in a
processor module.
Glossary—526371.001
Glossary-10

Glossary pointer
pointer. A variable that contains the address of another variable. Pointers include:

• Simple pointers and structure pointers that you declare and manage

• Implicit pointers (pointers the compiler provides and manages when you declare
indirect arrays and indirect structures)

See also extended pointer and standard pointer

precedence of operators. The order in which the compiler evaluates operators in
expressions.

primary storage area. The area of the user data segment that can store pointers and
directly addressed variables. Contrast with secondary storage area

PRIV procedure. A procedure you declare using the PRIV keyword; a procedure that can
execute privileged instructions. Normally only operating system procedures are PRIV
procedures.

private data area. The part of the data space that is reserved for the sole use of a
procedure or subprocedure while it is executing.

private data block. A BLOCK declaration that specifies the PRIVATE keyword. Global data
declared within such a BLOCK declaration is accessible only to procedures within the
current compilation unit. Contrast with named data block

procedure. A program unit that can contain the executable parts of a program and that is
callable from anywhere in a program; a named sequence of machine instructions.

procedure declaration. Declaration of a program unit that can contain the executable parts
of a program and that is callable from anywhere in a program. Consists of a procedure
heading and either a procedure body or the keyword FORWARD or EXTERNAL.

process. An instance of execution of a program.

process environment. The software environment that exists when the processor module
is executing instructions that are part of a user process or a system process.

process identification number. See PIN

program. A set of instructions that a computer is capable of executing.

program register. A facility that contains the address of the next instruction to be executed
in the current code segment.

program structure. The order and level at which major components such as data
declarations and statements appear in a source file.

public name. A specification within a procedure declaration of a procedure name to use in
Binder, not within the compiler. Only a D-series EXTERNAL procedure declaration can
Glossary—526371.001
Glossary-11

Glossary quadrupleword.
include a public name. If you do not specify a public name, the procedure identifier
becomes the public name.

quadrupleword. A 64-bit storage unit for the REAL(64) or FIXED data type.

read-only array. An array that you can read but cannot modify; an array that is located in
the user code segment.

REAL. A data type that requires a doubleword of storage and that can represent a 32-bit
floating-point number.

REAL(32). An alias for REAL.

REAL(64). A data type that requires a quadrupleword of storage and that can represent a
64-bit floating-point number.

recursion. The ability of a procedure or subprocedure to call itself.

redefinition. A declaration, within a structure, that associates a new identifier and
sometimes a new description with a previously declared item in the same structure.

reduced instruction set computing. See RISC

reference parameter. An argument for which a calling procedure (or subprocedure) passes
an address to a called procedure (or subprocedure). The called procedure or
subprocedure can modify the original argument in the caller’s scope. Contrast with
value parameter

referral structure. A declaration that allocates storage for a structure whose layout is the
same as the layout of a specified structure or structure pointer. Contrast with definition
structure and template structure

register. A facility that stores information about a running process. Registers include the
program register, the instruction register, the local register, the stack register, the
register stack, and the environment register.

register stack. A facility that contains the registers R0 through R7 for arithmetic
operations, of which R5, R6, and R7 also serve as index registers.

register pointer (RP). An indicator that points to the top of the register stack.

relational operator. A signed (<, =, >, <=, >= <>) or unsigned ('<', '=', '>', '<=', '>=', '<>')
operator that performs signed or unsigned comparison, respectively, of two operands
and then returns a true or false state.

relocatable data. A global data block that Binder can relocate during the binding session.

RESIDENT procedure. A procedure you declare using the RESIDENT keyword; a
procedure that remains in main memory for the duration of program execution. The
operating system does not swap pages of RESIDENT code.
Glossary—526371.001
Glossary-12

Glossary RETURN statement.
RETURN statement. A statement that returns control from a procedure or a subprocedure
to the caller. From functions, the RETURN statement can return a value. The RETURN
statement can also return a condition-code value.

RISC. Reduced instruction set computing. A processor architecture based on a relatively
small and simple instruction set, a large number of general-purpose registers, and an
optimized instruction pipeline that supports high-performance instruction execution.
Contrast with CISC

RP. Register pointer. An indicator that points to the top of the register stack.

RSCAN statement. A statement that scans sequential bytes, right to left, for a test
character.

RTLDECS. A file, provided by the CRE, that contains external declarations for CRELIB
functions whose names begin with RTL_. See also CRELIB

Saved Messages Utility. See SMU functions

SCAN statement. A statement that scans sequential bytes, left to right, for a test character.

scope. The set of levels—global, local, or sublocal—at which you can access each
identifier.

secondary storage area. The part of the user data segment that stores the data of indirect
arrays and structures. For standard indirection, the secondary storage area is in the
user data segment. For extended indirection, the secondary storage area is in the
automatic extended data segment. Contrast with primary storage area

segment ID. A number that identifies an extended data segment and that specifies the kind
of extended data segment to allocate.

signed arithmetic operators. The following operators: + (unary plus), – (unary minus), +
(binary signed addition), – (binary signed subtraction), * (binary signed multiplication),
and / (binary signed division).

simple pointer. A variable that contains the address of a memory location, usually of a
simple variable or an array element, that you can access with this simple pointer.

simple variable. A variable that contains one item of a specified data type.

small-memory-model program. A C or Pascal program that uses 16-bit addressing,
contains up to 64K bytes of data, and has a limited number of named static variables.

SMU functions. Saved Messages Utility (SMU) functions, provided by the CLULIB library,
for manipulating saved startup, ASSIGN, and PARAM messages.

source file. A file that contains source text such as data declarations, statements, compiler
directives, and comments. The source file, together with any source code read in from
Glossary—526371.001
Glossary-13

Glossary stack register.
other source files by SOURCE directives, compose a compilation unit that you can
compile into an object file.

stack register. A register that contains the address of the last allocated word in the data
stack.

STACK statement. A statement that loads a value onto the register stack.

standard function. A built-in function that you can use for an operation such as type
transfer or address conversion.

standard indirect addressing. Data access through a standard (16-bit) pointer.

standard pointer. A 16-bit simple pointer or structure pointer. A standard pointer can
contain a 16-bit address in the user data segment.

statement. An executable sequence of keywords, operators, and values. A statement
performs a specific action such as assigning a value to a variable or calling a
procedure.

STORE statement. A statement that stores a value from a register stack element into a
variable.

STRING. A data type that requires a byte or word of storage and that can represent an
ASCII character or an 8-bit integer.

structure. A variable that can contain different kinds of variables of different data types. A
definition structure, a template structure, or a referral structure.

structure data item. An accessible structure field declared within a structure, including a
simple variable, array, substructure, simple pointer, structure pointer, or redefinition.
Contrast with structure item

structure item. Any structure field, including a structure data item, a bit filler, or a byte filler.
Also see structure data item

structure pointer. A variable that contains the address of a structure that you can access
with this structure pointer.

sublocal data. Data that you declare within a subprocedure; identifiers that are accessible
only from within that subprocedure.

subprocedure. A named sequence of machine instructions that is nested (declared) within
a procedure and that is callable only from within that procedure.

substructure. A structure that is nested (declared) within a structure or substructure.

SYMSERV. A process, integrated with the TAL compiler, that on request provides symbol-
table information to the object file for use by the Inspect and Crossref products.
Glossary—526371.001
Glossary-14

Glossary system.
system. The processors, memory, controllers, peripheral devices, and related components
that are directly connected together by buses and interfaces to form an entity that is
operated as one computer.

system procedure. A procedure provided by the operating system for your use. System
procedures, for example, manage files, activate and terminate programs, and monitor
the operations of processes.

TAL. Transaction Application Language. A high-level, block-structured language that works
efficiently with the system hardware to provide optimal object program performance.

TALDECS. A file, provided by the TAL compiler, that contains external declarations for
TALLIB functions. See also TALLIB

TALLIB. A library file, provided by the TAL compiler, that contains procedures for initializing
the CRE and for preparing a program for SQL statements.

template structure. A declaration that describes a structure layout but allocates no storage
for the structure. Contrast with definition structure and referral structure

TNS. HP computers that support the NonStop Kernel operating system and that are based
on complex instruction-set computing (CISC) technology. TNS processors implement
the TNS instruction set. Contrast with TNS/R

TNS/R. HP computers that support the NonStop Kernel operating system and that are
based on reduced instruction-set computing (RISC) technology. TNS/R
processors implement the RISC instruction set and are upwardly compatible
with the TNS system-level architecture. Systems with these processors include
most of the NonStop servers. Contrast with TNS

Transaction Application Language. See TAL

type transfer. The conversion of a variable from one data type to another data type.

unblocked global data. Global data you declare before any BLOCK declarations.
Identifiers of such data are accessible to all compilation units in a program.

UNSIGNED. A data type that allocates storage for:

• Simple variable bit fields that are 1 to 31 bits wide

• Array element bit fields that are 1, 2, 4, or 8 bits wide

unsigned arithmetic operators. The following operators—'+' (unsigned addition) '-',
(unsigned subtraction) '*' (unsigned multiplication), '/' (unsigned division), and '\'
(unsigned modulo division).

upper 32K-word area. The upper half of the user data segment. You can use pointers to
allocate this area for your data; however, if you use the CRE, the upper 32K-word area
is not available for your data.
Glossary—526371.001
Glossary-15

Glossary USE statement.
USE statement. A statement that reserves an index register for your use.

user data segment. An automatically allocated segment that provides modifiable, private
storage for the variables of your process.

value parameter. An argument for which a procedure (or subprocedure) passes a value,
rather than the address of the argument, to a called procedure (or
subprocedure). The called procedure or subprocedure can modify the passed
value but not the original argument in the caller’s scope. Contrast with reference
parameter

variable. A symbolic representation of an item or a group of items or elements. A simple
variable, array, structure, simple pointer, structure pointer, or equivalenced variable. A
variable can store data that can change during program execution.

VARIABLE procedure. A procedure that you declare using the VARIABLE keyword; a
procedure to which you can add formal parameters but then you must recompile
all its callers; a procedure for which the compiler considers all parameters to be
optional, even if some are required by your code. Contrast with EXTENSIBLE
procedure

virtual memory. A range of addresses that processes use to reference physical memory
and disk storage.

volume. A disk drive; a pair of disk drives that forms a mirrored disk.

WHILE statement. A statement that executes a pretest loop during a true condition. word.
A 16-bit storage unit for the INT data type. TAL uses a 16-bit word regardless of the
word size used by the system hardware.

XOR. A bitwise logical operator that performs a bitwise exclusive OR operation.
Glossary—526371.001
Glossary-16

Index

Numbers
16-bit (standard) pointers 9-1
32-bit (extended) pointers 9-1

A
ABORT Directive 16-12
ABS fpoint > 19 (warning 27) A-45
ABSLIST Directive

description 16-13
ABSLIST directive

with PEP directive 16-13
Absolute value, obtaining with $ABS 14-6
ACON pseudocode, CODE
statement 12-17
Actual/formal parameter count (error
61) A-19
Addition operator

signed 4-5, 4-6
unsigned 4-5, 4-9

Address base symbol 2-1
Address conversions

bit-shift operations 4-30
simple pointers

standard-to-extended 9-1
$AXADR (relative-to-absolute) 15-11
$LADR (extended-to-standard) 14-23
$XADR (standard-to-extended) 14-43

Address of entry point used (warning
49) A-49
Address range violation A-6
Address references between blocks
(error96) A-25
Address size mismatch A-55
Addresses

in simple pointers 9-3
in simple pointers in structures 8-14
in structure pointers 9-7
in structure pointers in structures 8-16

Addresses (continued)
nonrelocatable, warnings of 16-68

Addressing
arrays 7-3
definition structures 8-4
read-only arrays 7-1, 7-5
referral structures 8-1

Aliases, data types 3-3, 3-4
All index registers are reserved (warning
0) A-40
ALPHA option, LMAP directive 16-61
AND operator 4-14
ANY

TARGET directive option 15-13
Arithmetic expressions

description 4-5
in conditional expressions 4-12

Arithmetic operators
signed 4-6
unsigned 4-9

Arithmetic overflow (warning 26) A-45
Arithmetic overflow, testing with
$OVERFLOW 14-35
Array access changed (warning 37) A-47
Arrays

as structure items 8-1, 8-2
declaring 7-1
length, obtaining

in bits 14-29
in bytes 14-29

multidimensional 8-1
of arrays 8-1
of structures 8-1
read-only (P-relative) arrays 7-5
redefinitions 8-17
syntax summary

bracket-and-brace diagrams C-1
railroad diagrams B-1
TAL Reference Manual—526371-001
Index-1

Index B
ASCII character set 2-1
ASCII character, finding

$ALPHA 14-7
$NUMERIC 14-28
$SPECIAL 14-40

ASSERT statement
description 12-3
with ASSERTION directive 16-14

ASSERTION directive
description 16-14
with ASSERT statement 12-3

ASSERTION procedure cannot
(error156) A-36
ASSIGN SSV commands 16-4
ASSIGN SSV too large (warning 75) A-53
Assignment expression 4-19
Assignment statement 12-4
AT keyword, BLOCK declaration 11-3
Attribute mismatch (warning 21) A-44

B
Base address symbol 2-7
Base-address equivalenced variables

definition structures 10-14
description 10-11
referral structures 10-16
simple pointers 10-13
simple variables 10-12
syntax summary

bracket-and-brace diagrams C-1
railroad diagrams B-1

BEGIN keyword
compound statement 12-2

BEGINCOMPILATION directive
description 16-16
with SAVEGLOBALS directive 16-16
with SOURCE directive 16-77
with USEGLOBALS directive 16-94

BELOW keyword, BLOCK declaration 11-3
Bit extractions 4-28

Bit fields
deposit assignments 12-7
UNSIGNED data type 3-5

Bit operations
extractions 4-28
shifts 4-29

Bit shifts 4-29
Bitwise logical operators 4-11
Bit-deposit assignment statement 12-7
BIT_FILLER declaration 8-12
BLOCKs

declaring 11-2
syntax summary

bracket-and-brace diagrams C-16
railroad diagrams B-22

Boolean operators 4-12
Bounds illegal (error 117) A-23
Bounds illegal (error 85) A-29
Bounds, lower-bound

arrays 7-2
Bounds, upper and lower

definition structures 8-1
read-only arrays 7-5

Bounds, upper-bound
arrays 7-2

Branch to entry point (error 92) A-24
Built-in functions 14-1
Byte 3-5
BYTES keyword

group comparison expression 4-24
move statement 12-28

C
CALL statement 12-9
CALLABLE attribute of procedures 13-6
Cannot access SSV (warning 68) A-53
Cannot drop label (error 50) A-17
Cannot purge error file (error137) A-33
Cannot purge file (error 95) A-25
TAL Reference Manual—526371-001
Index-2

Index C
Cannot use $OFFSET or $LEN (warning
76) A-54
Carry and overflow functions

summary of 14-3
$CARRY 14-10
$OVERFLOW 14-35

Carry indicator, testing 4-17, 14-11
CASE expression 4-20
Case label must be signed (error 108) A-27
Case label or range overlaps (error
110) A-28
Case label range is empty (error 109) A-27
CASE statement

labeled 12-11
unlabeled 12-13
with CHECK directive 16-17

CCE (condition code equal to) 4-13
CCG (condition code greater than) 4-13
CCL (condition code less than) 4-13
Character set 2-1
Character strings 3-7
Character-test functions

summary of 14-1
$ALPHA 14-3
$NUMERIC 14-3, 14-28
$SPECIAL 14-3, 14-40

CHECK directive
description 16-17
with unlabeled CASE statement 16-18

COBOL
run-time environment, specifying with
ENV directive 16-33
TAL procedure language attribute 13-8

Code addresses, listing with ABSLIST
directive 16-13
CODE directive 16-18
Code space exceeds 64K (warning
58) A-51
Code space items, in arithmetic
expressions 4-6
CODE statement

description 12-15

CODE statement (continued)
in DEFINEs 5-4
with DECS directive 16-27
with DUMPCONS directive 16-32
with FOR statement 12-24
with RP directive 16-72

Colon not allowed (error 144) A-34
COLUMNS directive 16-19
Comments and COLUMNS directive 16-19
COMMON attribute, ENV directive 16-33
COMPACT directive 16-21
Compilation command 16-1
Compilation units 11-1

BLOCK declarations 11-1, 11-3
global data blocks 11-1
naming 11-1

Compiler data structure directives
DECS 16-26
EXTENDTALHEAP 16-38
RP 16-71
summary of 16-10
SYMBOLPAGES 16-89

Compiler error (error 0) A-2
Compiler heap, increasing with
EXTENDTALHEAP directive 16-38
Compiler input directives

ABORT 16-12
BEGINCOMPILATION 16-16
COLUMNS 16-19
SAVEGLOBALS 16-75
SECTION 16-81
SOURCE 16-84
summary of 16-6
USEGLOBALS 16-93

Compiler internal error (error 132) A-32
Compiler label overflow (error 133) A-32
Compiler listing directives

ABSLIST 16-13
CODE 16-19
CROSSREF 16-22
TAL Reference Manual—526371-001
Index-3

Index D
Compiler listing directives (continued)
DEFEXPAND 16-27
FMAP 16-40
GMAP 16-41
ICODE 16-46
INNERLIST 16-52
LINES 16-59
LIST 16-59
LMAP 16-61
MAP 16-62
PAGE 16-65
PRINTSYM 16-67
SUPPRESS 16-88

Compiler messages A-1
Compiler no longer generates (warning
52) A-50
Compiler relative reference (error
136) A-33
Compound statements 12-2
CON pseudocode, CODE statement 12-17
Condition code indicator, testing 4-16
Conditional compilation directives

DEFINETOG 16-29
ENDIF 16-32
IF 16-47
IFNOT 16-47
RESETTOG 16-68
SETTOG 16-82
summary 16-10

Conditional expressions 4-2, 4-12
Conflicting TARGET directive (warning
70) A-53
Constant

group comparison expression 4-24
Constant expected (error 86) A-23
Constant expressions

as parameters 13-12
description 4-2

Constant lists
format 3-16
group comparison expression 4-25

Constant lists (continued)
MOVE statement 12-27

Constants
character strings 3-8
emitting with DUMPCONS
directive 16-31
LITERALs 5-2
numeric

FIXED format 3-13
INT format 3-10
INT (32) format 3-11
REAL format 3-14
REAL (64) format 3-14
String format 3-9

syntax summary
bracket-and-brace diagrams C-3
railroad diagrams B-1

Continuation directive lines 16-2
Copy operation (move statement) 12-27
CPU directive 16-22
CPU type must be set (error 83) A-23
CRE, directives for

ENV 16-33
HEAP 16-42

CROSSREF directive
description 16-22
with USEGLOBALS directive 16-23

CROSSREFT directive
with SYNTAX directive 16-92

Cross-references
collecting with CROSSREF
directive 16-22
listing with LMAP directive 16-61

D
D

(suffix for INT(32) nonhexadecimal
numbers) 3-12

Data blocks, relocatable 11-1
TAL Reference Manual—526371-001
Index-4

Index D
Data declarations must precede (error
24) A-10
Data operations

scan statements 12-34
Data Representation 3-1
Data sets

as a TAL feature 1-2
Data stack

increasing with EXTENDSTACK
directive 16-37
setting size with STACK directive 16-87

Data transfer
assignment statement 12-4
bit-deposit assignments 12-4
move statement 12-27
STACK statement 12-36
STORE statement 12-37

Data types
descriptions 3-1
obtaining with $TYPE 14-41
of expressions 4-2

arithmetic, Boolean 4-12
arithmetic, logical 4-3
arithmetic, signed 4-3
arithmetic, unsigned 4-3
relational, signed 4-14
relational, unsigned 4-15

of standard function arguments 14-5
operations for 3-6
standard functions for 3-6
storage units 3-5

DATAPAGES directive
description 16-25
with EXTENDSTACK directive 16-38
with STACK directive 16-87

Debugger, selecting with INSPECT
directive 16-54
Declaration must be in block (error
94) A-25

base-address equivalenced
variables 10-1

Declaration must be in block (error
94) (continued)

BLOCKs 11-1
compilation-unit names 11-1
DEFINEs 5-4
entry points 13-19
equivalenced variables 10-1
global data blocks 11-5
labels 13-22
LITERALs 5-1
NAME 11-1
procedures 13-2
read-only arrays 7-5
simple variables 6-1
structure pointers 9-7
subprocedures 13-15
syntax summary

bracket-and-brace diagrams C-1
railroad diagrams B-1

system global pointers 15-3
’SG’-equivalenced variables 15-4

Declarations
structures 8-1

Declarations arrays 7-1
DECS directive

description 16-27
in DEFINEs 5-4

DECS pseudocode, CODE
statement 12-17
Default OCCURS count (warning 43) A-48
DEFEXPAND directive

DEFINE expansion 5-3, 5-5
description 16-27

DEFINE commands, TACL 16-36
DEFINEs

allocation 5-7
as parameters 5-7
declaring 5-7
expansion of 5-6
invoking 5-6
TAL Reference Manual—526371-001
Index-5

Index E
DEFINEs (continued)
passing parameters 5-7
specifying parameters 5-3
syntax summary

bracket-and-brace diagrams C-1
railroad diagrams B-1

DEFINETOG directive
description 16-29
with IF directive 16-29

Definition structures
base-address equivalenced 10-14
declaring 8-3

Definition substructures 8-10
declaring 8-10
redefinitions 8-20

Delimiters 2-7
Dereferencing operator

description 2-9
Diagnostic directives

ERRORFILE 16-34
ERRORS 16-37
RELOCATE 16-67
summary of 16-8
WARN 16-95

Diagnostic messages A-1
CROSSREF A-56
Directive can appear once (warning
61) A-51
Directive cannot be pushed (warning
39) A-47
Directive not allowed (error 155) A-36,
A-49
Directive stacks 16-3
Directives

in DEFINEs 5-4
syntax summary

bracket-and-brace diagrams C-1
railroad diagrams B-1

Disk file names 16-4
Division by powers of 2 4-30
Division by zero (error 59) A-18

Division operator
unsigned 4-10
unsigned modulo 4-10

DO keyword
DO statement 12-19
FOR statement 12-22
WHILE statement 12-40

Do not use SQL statement (warning
93) A-56
DO statement 12-19
does not work (error 82) A-23
does not work (warning 89) A-56
Doubleword 3-5
DOWNTO keyword, FOR statement 12-22
DROP statement

description 12-20
with FOR statement 12-23
with USE statement 12-39

DUMPCONS directive
description 16-31
with CODE statement 16-32

E
E (suffix for REAL numbers) 3-15
Edit file invalid format (error 53) A-17
ELEMENTS keyword

group comparison expression 4-24
move statement 12-28

ELSE keyword
IF expression 4-22
IF statement 12-26

END keyword
compound statement 12-1

ENDIF
description 16-32

ENDIF directive
with RESETTOG directive 16-69
with SETTOG directive 16-83

Entry-point declarations 13-18
TAL Reference Manual—526371-001
Index-6

Index F
ENV directive
description 16-32
with EXTENDSTACK directive 16-38
with STACK directive 16-87

Equivalenced variables 10-1
definition structures 10-5
referral structures 10-8
simple pointers 10-4
simple variables 10-3
structure pointers 10-11
syntax summary

bracket-and-brace diagrams C-1
railroad diagrams B-1

Equivalences between blocks (error
97) A-25
Error file exists and (error 124) A-30
Error handling, file-system errors 4-16
Error Messages

descriptions A-2
Error messages

maximum allowed, specifying 16-37
ERRORFILE directive 16-34
ERRORS directive 16-37
Exceeded allocated space SQLMEM (error
148) A-35
Exceeded available memory (error
154) A-36
Exponents, REAL or REAL (64)
format 3-15
Expression passed by reference (warning
36) A-47
Expression too complex (error 88) A-24
Expressions

arithmetic 4-5
assignment 4-19
CASE 4-19
conditional 4-12
constant 4-2
data types of 4-2
description of 4-1
effect on hardware indicators 4-9

Expressions (continued)
fixed-point, scaling of 4-7
group comparison 4-23
IF 4-21
logical operations 4-11
precedence of operators 4-3
relational operations 4-13
syntax summary

bracket-and-brace diagrams C-1
railroad diagrams B-1

Extended address of STRING P-rel,
(warning 62) A-52
Extended arrays in subprocedures (error
98) A-25
Extended move or group comparison (error
122) A-30
Extended stack

setting size with LARGESTACK
directive 16-57
stack overflow trap with CHECK
directive 16-17

Extended (32-bit) pointers 9-1, 9-6
EXTENDSTACK directive

description 16-37
with DATAPAGES directive 16-26

EXTENDTALHEAP directive 16-38
EXTENSIBLE attribute of procedures 13-7
External Entry Point table 13-4
EXTERNAL keyword

procedure declaration 13-8
procedure entry-point
declaration 13-19

External references, resolving with
SEARCH directive 16-79

F
F (suffix for FIXED nonhexadecimal
numbers) 3-13
File error (error 113) A-28
File map, listing with FMAP directive 16-40
File names 16-4
TAL Reference Manual—526371-001
Index-7

Index F
File records (structures) 8-1
File system DEFINE name not permitted
(warning 63) A-52
File system DEFINEs not enabled (warning
41) A-48
File-system errors, testing for 4-16
Filler declaration 8-12
First argument of $OPTIONAL (error
177) A-39
FIXED data type

description 3-3
in assignment statements 12-6
numeric format 3-14
obtaining

$DFIX 14-14
$FIX 14-16
$FIXD 14-16
$FIXR 14-18
$IFIX 14-21
$LFIX 14-25

rounding with ROUND directive 16-70
FIXED parameter type 13-12
Fixed point

functions
summary of 14-37
$POINT 14-37
$SCALE 14-39

numbers
ranges by data type 3-2

FIXED point scaling mismatch (warning
25) A-45
FIXED (*)

data type 3-2
parameter type 13-12

Fixed-point
arithmetic 4-7
implied setting 3-3

FIXERRS TACL macro, ERRORFILE
directive 16-34
FIXUP directive 16-39

Floating-point numbers
ranges by data type 3-2
REAL format 3-14
REAL (64) format 3-14

FMAP directive 16-40
FOR

group comparison expression 4-13
FOR keyword

FOR statements 12-18
FOR statement

description 12-22
optimized 12-22, 12-23
standard 12-22, 12-23

For statement
with USE statement 12-23

Formal parameter type missing (error
17) A-9
FORTRAN

run-time environment, specifying with
ENV directive 16-33
TAL procedure language
attribute 16-58

FORWARD keyword
procedure declaration 13-4
procedure entry-point
declaration 13-19
subprocedure declaration 13-17
subprocedure entry-point 13-20

Forward/external parameter count (error
62) A-19
fpoint

changing with $SCALE 14-39
obtaining with $POINT 14-37
positive or negative 3-3
rounding with ROUND directive 16-70
specifying with $LFIX 14-25

Fractions
FIXED format 3-13
REAL format 3-15
REAL (64) format 3-15

FULL pseudocode, CODE statement 12-17
TAL Reference Manual—526371-001
Index-8

Index G
Functions
declaring 13-2
description 13-1
procedures 13-2
subprocedures 13-1
with RETURN statement 12-32

G
Global data declarations

in BLOCK declaration 11-1
relocatable 11-1
retrieving with USEGLOBALS
directive 16-77
saving with SAVEGLOBALS
directive 16-75
unblocked 11-5

Global map, listing with GMAP
directive 16-41
Global or nested subprocedure (error
19) A-9
Global primary exceeds 256 words (error
5) A-4
GMAP directive 16-41
GOTO statement

description 12-25
labels 13-22

Group comparison expressions
description 4-13
in conditional expressions 4-13

H
Hardware indicators, testing 4-16
HEAP directive 16-42
Heap, compiler, increasing with
EXTENDTALHEAP directive 16-38
Heap, user, setting with HEAP
directive 16-43
HIGHPIN directive 16-43

description 16-43
with RUNNAMED directive 16-73

HIGHREQUESTERS directive 16-45

I
ICODE directive 16-46
Identifier cannot be indexed (error 68) A-20
Identifier declared more than once (error
2) A-4
Identifier exceeds (warning 1) A-40
Identifier for SQLMEM address (error
147) A-35
Identifier for SQLMEM length (error
146) A-34
Identifier maps, listing with MAP
directive 16-62
Identifiers

classes 2-4
format 2-4
listing with GMAP directive 16-41

IF directive
description 16-47
with DEFINETOG directive 16-69
with RESETTOG directive 16-69
with SETTOG directive 16-48
with TARGET directive 16-49

IF expression 4-21
IF statement 12-26
IFNOT directive

description 16-47
with DEFINETOG directive 16-48
with RESETTOG directive 16-48
with SETTOG directive 16-48
with TARGET directive 16-49

Illegal array bounds (error 18) A-9
Illegal bit field (error 20) A-9
Illegal block relocation position (error
128) A-31
Illegal block relocation specifier (error
127) A-31
Illegal branch (error 58) A-18
Illegal command list (warning 22) A-44
Illegal constant format (error 87) A-23
Illegal conversion to EXTENSIBLE (error
101) A-26
TAL Reference Manual—526371-001
Index-9

Index I
Illegal digit (error 6) A-5
Illegal drop of USE variable (error 63) A-19
Illegal for INT (error 47) A-16
Illegal global declarations (error 33) A-13
Illegal index register (error 38) A-14
Illegal indirection specification (error
46) A-16
Illegal instruction (error 44) A-16
Illegal move or group comparison (error
4) A-4
Illegal operand for ACON (error 102) A-26
Illegal option (warning 2) A-40
Illegal order of directives (warning 53) A-50
Illegal parameter or (error 65) A-19
Illegal public name (error 166) A-38
Illegal range (error 36) A-13
Illegal reference parameter (error 54) A-17
Illegal reference (error 11) A-6
Illegal size given (error 162) A-37
Illegal STRUCT or SUBSTRUCT reference
(error 76) A-21
Illegal SUBPROC attribute (error 55) A-18
Illegal symbol (error 43) A-15
Illegal syntax (error 27) A-11
Illegal UNSIGNED variable (error 75) A-21
Illegal use of code relative (error 28) A-11
Illegal use of identifier (error 29) A-12
Illegal use of period (error 116) A-29
Illegal use of @ (error 119) A-29
Illegal USE variable (error 56) A-18
Increase size internal heap (error
169) A-38
Index

base-address equivalenced
variables 10-12
extended, generating

INHIBITXX directive 16-50
INT32INDEX directive 16-55

Index register
reserving with USE statement 12-20

Index register allocation (error 51) A-17

Index registers
dropping with DROP statement 12-39

Index truncated (warning 14) A-43
Indirection mode specified (error 103) A-26
Indirection must be supplied (error
72) A-21
Indirection symbols 2-7
INHIBITXX directive

description 16-50
with USEGLOBALS directive 16-77

Initialization
arrays 7-2
read-only arrays 7-5
simple pointers 9-2
simple variables 6-1
structure pointers 9-6

Initialization exceeds space (error 99) A-26
Initialization illegal with reference (error
15) A-8
Initialization list exceeds (warning 3) A-40
Initialization of local (error 126) A-31
Initialization of UNSIGNED arrays (warning
90) A-56
Initialization value too complex (warning
17) A-44
INNERLIST directive

description 16-52
with OPTIMIZE directive 16-53
with USE directive 12-39

Inspect debugger, selecting
with INSPECT directive 16-54
with SAVEABEND directive 16-54

INSPECT directive 16-54
Instruction codes

listing
in octal with CODE directive 16-18
procedure mnemonics with ICODE
directive 16-46
statement mnemonics with
INNERLIST directive 16-52

specifying with CODE statement 12-16
TAL Reference Manual—526371-001
Index-10

Index L
Instruction trap and CHECK directive 16-17
Insufficient disk space on swap volume
(error 16) A-8
INT attribute 9-6
INT data type

description 3-2
numeric format 3-10
obtaining

high-order word with $HIGH 14-20
low-order word with $INT 14-21
rounded low-order word with
$INTR 14-22
signed value with $FIXI 14-17
unsigned value with $FIXL 14-18

INT parameter type 13-12
INT (16), alias of INT 3-4
INT (32) data type

description 3-2
numeric format 3-11

INT (64), alias of FIXED (0) 3-4
INT32INDEX directive

description 16-55
with INHIBITXX directive 16-51

Integers
FIXED format 3-13
INT format 3-10
INT (32) format 3-12
REAL format 3-15
REAL (64) format 3-15
STRING format 3-9

INTERRUPT attribute of procedures 13-6
INT(16), alias of INT 3-3
INT(32) data type

obtaining
$DBL 14-11
$DBLL 14-12
$DBLR 14-13
$UDBL 14-41

INT(32) parameter type 13-12

Invalid ABSLIST addresses (warning
6) A-41
Invalid declaration for length (error
139) A-33
Invalid declaration for string (error
141) A-34
Invalid default volume (error 91) A-24
Invalid directive option (warning 79) A-54
Invalid file or subvolume (warning 47) A-49
Invalid number form (error 78) A-22
Invalid object file (error 90) A-24
Invalid parameter list (warning 84) A-55
Invalid template access (error 69) A-20
Invoked forward PROC (error 81) A-22
Item does not have extended (error
25) A-10, A-53

L
L (suffix for REAL(64) numbers) 3-15
LABEL

declaring 13-21
Label

dropping with DROP statement 12-20
Label declared more than once (error
21) A-10
Labeled CASE statement 12-11
Labels

emitting with DUMPCONS
directive 16-32

LAND operator 4-11
Language attribute conflict (warning
74) A-53
LANGUAGE attribute of procedures 13-8
Language attribute only (error 161) A-37
LARGESTACK directive 16-57
Layout

definition structures 8-10
structures 8-2
substructures 8-10
template structures 8-5

Left shifts, bit 4-30
Length mismatch SQL (error 153) A-36
TAL Reference Manual—526371-001
Index-11

Index M
Length of structure (warning 55) A-50
Length parameters

CALL statement 12-9
passing conditionally with
$OPTIONAL 14-33

LIBRARY directive 16-58
LINES directive 16-59
LIST directive

description 16-59
with SOURCE directive 16-86

List length used for compare (warning
23) A-44
Literal initialized with address (warning
50) A-49
LITERALs

declaring 5-1
in arithmetic expressions 4-2
syntax summary

bracket-and-brace diagrams C-7
railroad diagrams B-7

LMAP directive 16-61
Load map, listing with LMAP
directive 16-61
Local declarations 13-13
Logical file names 16-5
Logical operators 4-11
LOR operator 4-11

M
Machine instruction statements

CODE statement 12-15
DROP statement 12-1
USE statement 12-1

MAIN attribute of procedures 13-5
MAIN cannot return value (warning
91) A-56
MAP directive 16-62
Memory pages, setting with DATAPAGES
directive 16-87
Messages

compiler A-1

Messages (continued)
error A-1
SYMSERV A-57
warning

general description A-1
specific descriptions A-40

Minimum-maximum functions
summary of 14-1
$LMAX 14-26
$LMIN 14-26
$MAX 14-27
$MIN 14-27

Minus operator
unary 4-5

Missing FOR part (error 115) A-29
Missing identifier (error 37) A-13
Missing initialization code relative (error
52) A-17
Missing item (error 48) A-16
Missing variable (error 34) A-13
Modulo division operator 4-10
Move or group comparison (error
125) A-31
MOVE statement 12-27
Multiple defined SECTION (warning
7) A-41
Multiplication by powers of two 4-30
Multiplication operator

signed 4-3
unsigned 4-3

N
Named toggles

specifying with DEFINETOG 16-29
turning off with RESETTOG 16-68
turning on with SETTOG 16-82
using with IF or IFNOT directive 16-29

NAMEs
syntax summary

bracket-and-brace diagrams C-16
TAL Reference Manual—526371-001
Index-12

Index O
NAMEs (continued)
railroad diagrams B-22

Nested routine declarations (error 12) A-7
Nesting parametric-DEFINE (error
100) A-26
NEUTRAL attribute, ENV directive 16-32
Next address

group comparison expression 4-25,
4-26
move statement 12-29
RSCAN statement 12-35
SCAN statement 12-35

No file system DEFINE (warning 64) A-52
No SCAN for extended (error 84) A-23
NOABORT directive 16-12
NOABSLIST directive 16-7
NOCHECK directive 16-17
NOCODE directive 16-19
NOCOMPACT directive 16-21
NOCROSSREF directive 16-23
NODEFEXPAND directive 16-28
NOFIXUP directive 16-39
NOFMAP directive 16-40
NOGMAP directive 16-41
NOICODE directive 16-46
NOINHIBITXX directive 16-50
NOINNERLIST directive 16-53
NOINSPECT directive 16-54
NOINT32INDEX directive 16-55
NOLIST directive 16-60
NOMAP directive 16-62
Nonrelocatable global reference (warning
46) A-49
NOPRINTSYM directive 16-67
NOROUND directive 16-71
NOSAVEABEND directive 16-74
NOSUPPRESS directive 16-89
NOSYMBOLS directive 16-90
Not allowed with UNSIGNED (error
123) A-30
Not defined for INT(32), FIXED, or REAL
(error 8) A-5

Not host variable (error 138) A-33
NOT operator 4-12
NOWARN directive 16-96
Null statement 12-2
Number bases

FIXED format 3-13
INT format 3-10
INT (32) format 3-11
STRING format 3-9

Number of global data blocks (warning
59) A-51
Number of sparse (error 111) A-28
Numbers

FIXED format 3-13
INT format 3-10
INT (32) format 3-11
REAL format 3-15
REAL (64) format 3-15
STRING format 3-9

Numeric toggles
specifying with DEFINETOG 16-29
turning of RESETTOG 16-68
turning on with SETTOG 16-82
using with IF or IFNOT directive 16-47

O
Object files 11-1
Object-file content directives

ASSERTION 16-8
CHECK 16-8
COMPACT 16-8
CPU 16-8
DUMPCONS 16-8
FIXUP 16-8
INHIBITXX 16-9
INT32INDEX 16-9
OLDFLTSTDFUNC 16-9
OPTIMIZE 16-9
PEP 16-9
ROUND 16-9
TAL Reference Manual—526371-001
Index-13

Index P
Object-file content directives (continued)
SEARCH 16-9
SQL 16-9
SQLMEM 16-9
summary of 16-8
SYNTAX 16-92

Octal code, listing with CODE
directive 16-18
Odd-byte references, extended (32-bit)
pointers 9-3
Of keyword

CASE expression 4-20
OLD attribute, ENV directive 16-33
OLDFLTSTDFUNC directive 16-63
One or more illegal attributes (warning
29) A-46
One’s complement, obtaining with
$COMP 14-4
Only allowed with variable (error 40) A-14
Only arrays of simple (error 89) A-24
Only data may be indexed (error 60) A-18
Only initialization with constants (error
14) A-8
Only INT index (error 145) A-34
Only INT or STRING STRUCT pointers
(error 71) A-21
Only INT values allowed (error 13) A-7
Only INT(32) values (error 45) A-16
Only items subordinate to structure (error
70) A-20
Only label or USE (error 30) A-12
Only one language attribute (error
160) A-37
Only PROC or SUBPROC (error 31) A-12
Only standard indirection allowed (error
22) A-10
Only STRING arrays SQL (error 151) A-35
Only STRUCT items allowed(error
121) A-30
Only structure identifier (error 75) A-21
Only type INT and INT(32) index (error
120) A-30
Open failed (error 39) A-14

Operands in arithmetic expressions 4-1
Operating system services 1-2
Operators

arithmetic
signed 4-5
unsigned 4-5

bit-shift 4-27
Boolean 4-12
logical 4-5
precedence of 4-3
relational 4-13
summary of 2-9

Optimization level, selecting 16-64
OPTIMIZE 2 register allocation (error
80) A-22
OPTIMIZE directive

description 16-64
with INNERLIST directive 16-53

OR operator 4-14
OTHERWISE keyword

CASE expression 4-20
CASE statement, labeled 12-12
CASE statement, unlabeled 12-13

Overflow
causes 4-17
dealing with 4-18
testing with $OVERFLOW 14-35

Overflow, causes of 14-35

P
PAGE directive 16-65
Page heading, printing with PAGE
directive 16-65
PAGES option SQL (warning 81) A-55
Parameter list

CALL statement 12-10
Parameter mismatch (error 1) A-3
Parameter pairs

passing
TAL Reference Manual—526371-001
Index-14

Index P
Parameter pairs (continued)
conditionally with
$OPTIONAL 14-32

Parameter types 13-9
Parameters

actual, CALL statement 12-9
checking with $PARAM 14-36
formal specification 13-8
location, obtaining with
$BOUNDS 15-12
passing

conditionally with $OPTIONAL 14-4
in expressions 4-17

PASCAL (TAL procedure language
attribute) 13-10
PEP directive

description 16-66
with ABSLIST directive 16-13

PEP size estimate (warning 5) A-41
PEP table

description 13-4
setting size with PEP directive 16-66

PIN and HIGHPIN directive 16-43
Plus operator

binary signed 4-7
binary unsigned 4-9
unary 4-3

Pointers
description 9-1
extended (32-bit) 9-1
simple pointers 9-2
standard (16-bit) 9-1
syntax summary

bracket-and-brace diagrams C-12
railroad diagrams B-15

system global pointers 15-3
’SG’-equivalenced

simple pointers 15-8
structure pointers 15-9

POP prefix, directives 16-3

POPCHECK directive 16-17
POPCODE directive 16-19
POPDEFEXPAND directive 16-28
POPICODE directive 16-46
POPINNERLIST directive 16-53
POPINT32INDEX directive 16-55
POPLIST directive 16-60
POPMAP directive 16-62
Precedence of operators 4-3
Previous data block not ended (error
93) A-24
Previous errors and warnings (warning
60) A-51
PRINTSYM directive

description 16-67
PRIV attribute of procedures 13-6
Private data area, as a TAL feature 1-2
Private global data blocks 11-3
PRIVATE keyword, BLOCK
declaration 11-3
Privileged functions

$AXADR 15-11
$BOUNDS 15-11
$SWITCHES 15-11

Privileged mode 15-1
Privileged operations 15-2
Privileged procedures

description 15-1
syntax summary

bracket-and-brace diagrams C-30
railroad diagrams B-49

PROC keyword, procedure
declaration 13-10
PROC not FORWARD (warning 19) A-44
Procedure calls (CALL statement) 12-10
Procedure code space (error 131) A-32
Procedure declared FORWARD (warning
40) A-47
Procedure Entry Point table 13-4
Procedure missing label (error 104) A-27
Procedure was previously, language (error
164) A-37
TAL Reference Manual—526371-001
Index-15

Index Q
Procedure was previously, public name
(error 165) A-38
Procedures 13-1

attributes 13-5
CALLABLE attribute 13-6
description 13-1
EXTENSIBLE attribute 13-7
formal parameter specification 13-8
FORWARD declaration 13-15
INTERRUPT attribute 13-6
LANGUAGE attribute 13-8
MAIN attribute 13-5
nonprivileged 15-2
PRIV attribute 13-6
privileged 15-1
RESIDENT attribute 13-6
standard 14-1
syntax summary

bracket-and-brace diagrams C-16
railroad diagrams B-23

typed 13-1
VARIABLE attribute 13-7
with RETURN statement 12-31

Process identification number (PIN),
HIGHPIN directive 16-43
PROC(32) parameter type 13-10
CROSSREF A-23
Program control

ASSERT statement 12-1
CALL statement 12-1
CASE statement, unlabeled 12-13
conditional expressions 4-12
DO statement 12-19
FOR statement 12-22
GOTO statement 12-25
IF statement 12-26
RETURN statement 12-31
statements 12-1
WHILE statement 12-40

Pseudocodes, CODE statement 12-17

Public name only (error 163) A-37
PUSH prefix, directives 16-3
PUSHCHECK directive 16-17
PUSHCODE directive 16-19
PUSHDEFEXPAND directive 16-28
PUSHICODE directive 16-46
PUSHINNERLIST directive 16-53
PUSHINT32INDEX directive 16-55
PUSHLIST directive 16-60
PUSHMAP directive 16-62
P-relative array passed (warning 4) A-40

Q
Quadrupleword 3-5

R
Railroad syntax summary B-1
Read-only arrays 7-5
REAL data type

description 3-2
numeric format 3-14
obtaining

$FLT 14-19
$FLTR 14-20

REAL parameter type 13-9
REAL underflow or overflow (error 79) A-22
REAL (32), alias of REAL 3-4
REAL (64) data type

description 3-2
numeric format 3-14

REAL(64) data type
obtaining

$EFLT 14-15
$EFLTR 14-15

Records (structures) 8-1
Recursion, as a TAL feature 1-2
Recursive DEFINE invocation (error 3) A-4
Redefinition offset (warning 34) A-46
Redefinition size (warning 33) A-46
TAL Reference Manual—526371-001
Index-16

Index R
Redefinitions
arrays 8-19
referral substructures 8-11
rules for 8-17
simple pointers 8-23
structure pointers 8-24

Referenced subprocedure FORWARD
(error 106) A-27
Referral structures

declaring 8-6
Referral substructures

redefinitions 8-22
Register stack

loading values with STACK
statement 12-36
removing values with STORE
statement 12-37

Register stack not empty (warning 87) A-55
Relational expressions 4-13
Relational operators

condition code indicator, testing 4-13
conditional expressions 4-13
group comparison expression 4-19
signed 4-23
unsigned 4-23

RELEASE1 and RELEASE2 (warning
65) A-52
Relocatable global data block 11-2
RELOCATE directive 16-67
Repetition constant lists 3-16
Reserved toggle name (warning 80) A-54
RESETTOG directive

description 16-68
RESIDENT attribute of procedures 13-6
RETURN not encountered (warning
32) A-46
RETURN statement 12-31
Right shift emitted (warning 15) A-43
Right shifts, bit 4-30
ROUND directive

description 16-70

ROUND directive (continued)
with assignment statement 12-5

Rounding
ROUND directive 16-70
type-transfer functions 14-5

Routine declared forward (error 26) A-11
Routines 1-3
RP directive

description 16-71
in DEFINEs 5-4

RP internal count
obtaining with $RP 14-38

RP or S register (warning 9) A-42
RP register overflow (warning 10) A-42
RP value

with FOR statement 12-18
with STACK statement 12-36
with STORE statement 12-37

RSCAN statement 12-34
RUNNAMED directive 16-73
Run-time environment directives

DATAPAGES 16-25
ENV 16-32
EXTENDSTACK 16-37
HEAP 16-42
HIGHPIN 16-43
HIGHREQUESTERS 16-45
INSPECT 16-54
LARGESTACK 16-57
LIBRARY 16-58
RUNNAMED 16-73
SAVEABEND 16-73
STACK 16-87
SUBTYPE 16-87
summary of 16-11
SYMBOLS 16-90
TAL Reference Manual—526371-001
Index-17

Index S
S
S register

checking for overflow 15-12
S register underflow (warning 38) A-47
Save file, generating with SAVEABEND
directive 16-73
SAVEABEND directive

description 16-73
with INSPECT directive 16-74
with Inspect directive 16-73

SAVEGLOBALS and USEGLOBALS
(warning 57) A-51
SAVEGLOBALS directive

description 16-75
with BEGINCOMPILATION
directive 16-16

Scale point must be constant (error
64) A-19
Scaling, FIXED values

changing fpoint with $SCALE 14-39
in expressions 4-7

SCAN statements 12-34
Scientific notation, binary 3-15
SEARCH directive

description 16-79
Second argument $OPTIONAL (error
176) A-39
Secondary entry point missing (error
105) A-27
SECTION directive

description 16-81
SECTION name not found (warning
8) A-41
Section name, specifying with SECTION
directive 16-81
Segment number lost (warning 35) A-46
Selector

CASE expression 4-20
CASE statement, labeled 12-11
CASE statement, unlabeled 12-13

SETTOG directive
description 16-82

Shifts, bit 4-29
Signed arithmetic operators 4-6
Signed left-shift operator 4-30
Simple pointers

addresses 9-2
as structure items 8-2
base-address equivalenced 10-13
declaring 9-2
redefinitions 8-23
@ operator 9-4

Simple variables
as structure items 8-1
base-address equivalenced 10-11
declaring 6-1
equivalenced 10-1
redefinitions 8-2
syntax summary

bracket-and-brace diagrams C-7
railroad diagrams B-8

’SG’-equivalenced 15-4
Size

combined primary global blocks 11-5
identifiers 2-4
storage units 3-5
structures 8-4

Source code, listing with LIST
directive 16-59
Source commands nested (error 67) A-20
SOURCE directive

description 16-84
with ABORT directive 16-12
with COLUMNS directive 16-20
with FMAP directive 16-40

Source files
checking syntax with SYNTAX
directive 16-92
correcting with ERRORFILE
directive 16-34
TAL Reference Manual—526371-001
Index-18

Index S
Source files (continued)
description 11-1

Source line truncated (warning 20) A-44
Special expressions

assignment 4-19
CASE 4-19
group comparison 4-19
IF 4-19

Specified bit extract/deposit (warning
42) A-48
SQL directive 16-86
SQLMAP and NOSQLMAP (warning
67) A-53
SQLMEM directive 16-86
SQLMEM STACK cannot (error 150) A-35
SQL-TAL code, listing with DEFEXPAND
directive 16-27
SSV, TACL ASSIGN commands 16-58
STACK directive

description 16-87
with DATAPAGES directive 16-26

Stack overflow trap with CHECK
directive 16-17
STACK statement

description 12-36
Standard functions

categories 14-1
data types of arguments 14-5
scope of 14-5
See also individual functions

by variable data type 3-6
syntax summary

bracket-and-brace diagrams C-23
railroad diagrams B-39

Standard (16-bit) pointers 9-1
Statements

categories 12-1
compound 12-2
syntax summary

bracket-and-brace diagrams C-19
railroad diagrams B-31

Storage format
FIXED numbers 3-14

Storage units, by data type 3-5
STORE statement

description 12-37
with RP directive 16-72

STRING attribute 9-6
STRING data type

description 3-2
numeric format 3-9

String overflow (error 7) A-5
String parameter pair expected (error
142) A-34
String parameter pair not expected (error
143) A-34
String parameters

CALL statement 12-9
passing conditionally with
$OPTIONAL 14-33

Strings, character 3-8
STRUCT parameter type 13-10
Structure item rather than (warning
54) A-50
Structure items 8-2

filler bits or bytes 8-10
referral substructures 8-11
simple pointers 8-13
simple variables 8-7
structure pointers 8-15

Structure pointers
addresses in 9-7
declaring 9-6

Structures
arrays of arrays 8-1
as arrays of structures 8-1
as multidimensional arrays 8-1
maximum nesting levels 8-9
template structures 8-1

Sublocal declarations 13-17
Subprocedure declared FORWARD
(warning 44) A-48
TAL Reference Manual—526371-001
Index-19

Index T
Subprocedures
body of 13-17
declaring 13-17
functions 13-1
VARIABLE attribute 13-7

Subprocedures cannot be parameters (error
35) A-13
Substructures

declaring 8-9
definition substructures 8-10
number of occurrence, obtaining 14-29
referral substructures 8-11

Subtraction operator
signed 4-3
unsigned 4-3

SUBTYPE directive 16-87
SUPPRESS directive

description 16-88
with ABORT directive 16-12

Switch register content, obtaining with
$SWITCHES 15-13
Symbol table overflow (error 57) A-18
Symbol table, setting size with
SYMBOLPAGES directive 16-90
SYMBOLPAGES directive 16-89
Symbols

delimiters 2-7
indirection 2-6
See also Identifiers

base-address 2-7
SYMBOLS directive

description 16-90
with INSPECT directive 16-54

SYMSERV died (warning 77) A-54
SYMSERV fatal error A-57
SYNTAX directive

description 16-92
Syntax summary

bracket-and-brace diagrams C-1
railroad diagrams B-1

System clock setting, obtaining with
$READCLOCK 14-38
System global data, accessing 15-2
System global pointers 15-2
System services 1-3
S-register

decrementing with DECS
directive 16-26

T
Table overflow (error 42) A-15
TACL ASSIGN SSV commands 16-4
TACL DEFINE commands 16-5
TAL

applications and uses of 1-1
features of 1-1

TAL cannot set RP (warning 78) A-54
TAL run-time library 1-3
TARGET directive

description 16-93
Target file 11-1
TARGETSPECIFIED, IF directive
option 16-47
Template structure not addressable
(warning 94) A-56
Template structures 8-1, 8-5
Terminating compilation, ABORT
directive 16-12
THEN keyword

IF expression 4-22
IF statement 12-26

TNS_ARCH
IF directive option 16-47
TARGET directive option 15-13

TNS_R_ARCH
IF directive option 16-47
TARGET directive option 15-13

TO keyword
FOR statement 12-22
TAL Reference Manual—526371-001
Index-20

Index U
Toggles
specifying with DEFINETOG 16-29
turning off with RESETTOG 16-68
turning on with SETTOG 16-82
using with IF or IFNOT directive 16-47

Too many ASSIGN commands (warning
75) A-54
Too many named toggles (warning
83) A-55
Too many parameters (error 140) A-33
Type incompatibility (error 32) A-12
Type mismatch SQL (error 152) A-36
Type-transfer functions

rounding by 14-5
summary of 14-5
$DBL 14-5
$DBLR 14-5
$DFIX 14-4
$EFLT 14-4
$EFLTR 14-4
$FIX 14-5
$FIXD 14-5
$FIXI 14-5
$FIXL 14-5
$FIXR 14-5
$FLT 14-5
$FLTR 14-5
$HIGH 14-4
$IFIX 14-4
$INT 14-4
$INTR 14-4
$LFIX 14-4
$UDBL 14-4

U
Unable to process text (error 66) A-20
Undeclared identifier (error 49) A-16
Undefined ASSERTION procedure (error
41) A-15
Undefined option (warning 12) A-42

Undefined toggle (error 179) A-39
Unlabeled CASE statement 12-13
Unsigned arithmetic operators 4-9
UNSIGNED data type 3-2
Unsigned less than 4-4
Unsigned less than or equal to 4-4
UNSIGNED parameter type 13-12
UNSPECIFIED (TAL procedure language
attribute) 13-8
UNTIL

SCAN statement 12-35
Use a DUMPCONS directive (error
168) A-38
USE register overwritten (warning 24) A-45
Use relational expression (error 135) A-32
USE statement

description 12-38
USEGLOBALS directive

description 16-93
USEGLOBALS file created (error 112) A-28
User code segment

word content, $USERCODE 14-42
User data area size, setting with
DATAPAGES directive 16-25
User data stack

increasing with EXTENDSTACK
directive 16-37
setting size with STACK directive 16-87

User heap, setting with HEAP
directive 16-42

V
Value assigned to USE (error 134) A-32
Value out of range (error 149) A-35
Value out of range (warning 13) A-43
Value passed by reference (warning
16) A-43
VARIABLE attribute 13-7
Variable attribute ignored (warning
45) A-48
Variable may not be target (error 130) A-31
Variable needs subscript (error 129) A-31
TAL Reference Manual—526371-001
Index-21

Index W
Variable size error (error 23) A-10
Variables

kinds of 2-6
VARIABLE-to-EXTENSIBLE procedure
conversions 13-7

W
WARN directive 16-95
Warning Messages

general description A-1
Warning messages

printing with WARN directive 16-95
specific descriptions A-40

WHENEVERLIST and NOWHENEVERLIST
(warning 66) A-52
WHILE statement 12-40
Width

variables 3-4
Width of UNSIGNED array (error 118) A-29
Word 3-5
Word addressable items (error 74) A-21
WORDS keyword

group comparison expression 4-24

X
XBNDSTEST procedure 15-12
XEP table 13-4
XOR operator 4-3, 4-11
XREF option, LMAP directive 16-61
XSTACKTEST procedure 15-12
XX instructions

with INHIBITXX directive 16-51
with NOINHIBITXX directive 16-51

Z
ZZSAnnn save file, SAVEABEND
directive 16-74

Special Characters
" (character string delimiter) 3-9
(DEFINE delimiter) 5-4
#GLOBAL (implicit global data block) 11-5
$ABS Function 14-6
$ALPHA function 14-7
$AXADR function 15-11
$BITLENGTH function 14-8
$BITOFFSET function 14-9
$BOUNDS function 15-12
$CARRY function

carry indicator, testing 4-17, 14-10
description 14-10

$COMP function 14-11
$DBL function 14-11
$DBLL function 14-12
$DBLR function 14-13
$DFIX function 14-14
$EFLT function

description 14-15
preventing scaling of FIXED(n)
arguments 16-63

$EFLTR function
description 14-15
preventing scaling of FIXED(n)
arguments 16-63

$FIX function 14-16
$FIXD function 14-16
$FIXI function 14-17
$FIXL function 14-18
$FIXR function 14-18
$FLT function

function 14-19
preventing scaling of FIXED(n)
arguments 16-63

$FLTR
preventing scaling of FIXED(n)
arguments 16-63

$FLTR function
description 14-20

$HIGH function 14-20
TAL Reference Manual—526371-001
Index-22

Index Special Characters
$IFIX function 14-21
$INT function 14-21
$INTR function 14-22
$LADR function 14-23
$LEN function 14-24
$LFIX function 14-25
$LMAX function 14-26
$LMIN function 14-26
$MAX function 14-27
$MIN function 14-27
$NUMERIC function 14-28
$OCCURS function 14-29
$OFFSET function

and structure pointers 9-7
description 14-30

$OPTIONAL function 14-32
$OPTIONAL only allowed (error 175) A-38
$OVERFLOW function 14-35
$PARAM function 14-36
$POINT function 14-37
$READCLOCK function 14-38
$RP function 14-38
$SCALE function 14-39
$SPECIAL function 14-40
$SWITCHES function 15-13
$TYPE function 14-41
$UDBL function 14-41
$USERCODE function 14-42
$XADR function 14-43
% (prefix for octal constants) 3-9
%B (prefix for binary constants) 3-9, 3-11
%D

(suffix for INT(32) hexadecimal
constants) 3-12
(suffix for INT(32) nonhexadecimal
constants) 3-12

%F
(suffix for FIXED hexadecimal
constants) 3-13

%F (suffix for FIXED nonhexadecimal
constants) 3-13

%H
(prefix for hexadecimal constants) 3-9

%H (prefix for hexadecimal constants) 3-9
()

invoking DEFINEs 5-7
* (asterisk)

constant-list repetition factor 3-16
* (asterisk) multiplication, binary signed 4-7
+

binary signed addition 4-7
unary plus 4-5

-
binary signed subtraction 4-7
unary minus 4-5

. (dereferencing operator)
operation 2-9

. (period)
bit extractions 4-27

.EXT (extended indirection symbol)
arrays 7-2
formal parameters 13-11
simple pointers 9-2
structure pointers 9-6

.SG structure not allocated (error 9) A-5

.SG (system global pointers) 15-3

.(standard indirection symbol)
arrays 7-2
simple pointers 9-2
structure pointers 9-6

/signed division 4-3
:(colon), bit extractions 4-27
:= (left-to-right move) 12-7
:=(assignment operator), assignment
expression 4-19
<, signed less than 4-3
<=signed less than or equal to 4-3
<>, signed not equal to 4-4
=

(right-to-left move) 12-27
=signed equal to 4-15
>signed greater than 4-15
TAL Reference Manual—526371-001
Index-23

Index Special Characters
>=signed greater than or equal to 4-15
>>(signed right-shift operator) 4-30
@ operator

pointers 9-4
@ prefix not allowed (error 114) A-28
^ (circumflex)

in identifiers 2-4
^(circumflex)

location of the error in source file A-2
_ (underscore), in identifiers 2-4
‘*’ (unsigned multiplication) 4-3
‘+’ (unsigned addition) 4-3
‘-’ (unsigned subtraction) 4-3
‘/’ (unsigned division) 4-3
‘=’ (unsigned equal to) 4-4
‘>=’ (unsigned greater than or equal to) 4-4
‘>’ (unsigned greater than) 4-4
‘’ (unsigned modulo division) 4-3
‘’ (unsigned not equal to) 4-4
’ 4-29

=’(left-to-right move) 12-27
’G’ (global addressing symbol), base-
address equivalenced

variables 10-12
’G’ (global addressing symbol), base-
address equivalenced variables 10-12
’L’ (local addressing symbol), base-address
equivalenced

variables 10-12
’P’ (read-only array symbol) 7-5
’SG’ (system global base-address
symbol) 15-4
’SG’-equivalenced variables

definition structures 15-5
description 15-5
referral structures 15-6
simple pointers 15-8
simple variables 15-4
structure pointers 15-9

’S’ (sublocal addressing symbol), base-
address equivalenced variables 10-12
’>>’ (unsigned right-shift operator) 4-29
TAL Reference Manual—526371-001
Index-24

	What’s New in This Manual
	About This Manual
	1 Introduction
	Applications and Uses
	Major Features
	System Services
	System Procedures
	TAL Run-Time Library
	CRE Services

	2 Language Elements
	Character Set
	Declarations
	Statements
	Keywords
	Identifiers
	Identifier Classes
	Constants
	Constant Expressions
	Number Bases

	Variables
	Symbols
	Indirection Symbols
	Base Address Symbols
	Delimiters
	Operators

	3 Data Representation
	Data Types
	Specifying Data Types
	Data Type Aliases
	Storage Units
	Address Modes
	Operations by Data Type
	Functions by Data Type
	Address Types

	Syntax for Constants
	Character String Constants
	Character String Length
	Example of Character String Constant

	String Numeric Constants
	Example of STRING Numeric Constants

	INT Numeric Constants
	Examples of INT Numeric Constants
	Storage Format

	INT (32) Numeric Constants
	Examples of INT (32) Numeric Constants

	FIXED Numeric Constants
	Examples of FIXED Numeric Constants
	Storage Format

	REAL and REAL (64) Numeric Constants
	Examples of REAL and REAL (64) Numeric Constants
	Storage Format
	Examples of Storage Formats

	Constant Lists
	Examples of Constant Lists

	4 Expressions
	About Expressions
	Data Types of Expressions
	Precedence of Operators
	Arithmetic Expressions
	Examples of Arithmetic Expressions
	Operands in Arithmetic Expressions
	Signed Arithmetic Operators
	Unsigned Arithmetic Operators
	Bitwise Logical Operators

	Conditional Expressions
	Examples of Conditional Expressions
	Conditions
	Boolean Operators
	Relational Operators

	Testing Hardware Indicators
	Condition Code Indicator
	Carry Indicator
	Overflow Indicator

	Special Expressions
	Assignment Expression
	CASE Expression
	IF Expression
	Group Comparison Expression

	Bit Operations
	Bit Extractions
	Usage Considerations
	Examples of Bit Extractions

	Bit Shifts
	Usage Considerations
	Examples of Bit Shifts

	5 LITERALs and DEFINEs
	LITERAL Declaration
	Usage Considerations
	Examples of LITERAL Declarations

	DEFINE Declaration
	Usage Considerations
	Examples of DEFINE Declarations
	Invoking DEFINEs
	Compiler Action
	Passing Actual Parameters
	Examples of Passing DEFINE Parameters

	6 Simple Variables
	Simple Variable Declaration
	Usage Considerations
	Examples of Simple Variable Declarations

	7 Arrays
	Array Declaration
	Usage Considerations
	Examples of Array Declarations

	Read-Only Array Declaration
	Usage Considerations
	Example of Read-Only Array Declaration

	8 Structures
	Kinds of Structures
	Structure Layout
	Definition Structure Declaration
	Usage Considerations
	Examples of Definition Structure Declarations

	Template Structure Declaration
	Usage Considerations
	Example of Template Structure Declaration

	Referral Structure Declaration
	Usage Considerations
	Example of Referral Structure Declaration

	Simple Variables Declared in Structures
	Usage Considerations
	Example of Simple Variables in Structures

	Arrays Declared in Structures
	Usage Considerations
	Example of Arrays in Structures

	Substructure Declaration
	Definition Substructure Declaration
	Example of Definition Substructure Declaration

	Referral Substructure Definition
	Example of Referral Substructure Declaration

	Filler Declaration
	Usage Considerations
	Examples of Filler Declarations

	Simple Pointers Declared in Structures
	Usage Considerations
	Example of Simple Pointer Declarations

	Structure Pointers Declared in Structures
	Usage Considerations
	Example of Structure Pointer Declaration

	Redefinition Declaration
	Redefinition Rules
	Redefinitions Outside Structures

	Simple Variable Redefinition
	Usage Considerations
	Example of Simple Variable Redefinition

	Array Redefinition
	Usage Considerations
	Example of Array Redefinition

	Definition Substructure Redefinition
	Usage Considerations
	Examples of Definition Substructure Redefinitions

	Referral Substructure Redefinition
	Usage Considerations
	Example of Referral Substructure Declaration

	Simple Pointer Redefinition
	Example of Simple Pointer Redefinition

	Structure Pointer Redefinition
	Usage Considerations
	Example of Structure Pointer Redefinitions

	9 Pointers
	Simple Pointer Declaration
	Usage Considerations
	Examples of Simple Pointer Declarations

	Structure Pointer Declaration
	Usage Considerations
	Examples of Structure Pointer Declarations

	10 Equivalenced Variables
	Equivalenced Variable Declarations
	Equivalenced Simple Variable
	Usage Consideration
	Examples of Equivalenced Simple Variable Declarations

	Equivalenced Simple Pointer
	Usage Consideration
	Example of Equivalenced Simple Pointer Declaration

	Equivalenced Definition Structure
	Usage Considerations
	Example of Equivalenced Definition Structure Declaration

	Equivalenced Referral Structure
	Usage Considerations
	Example of Equivalenced Referral Structure Declaration

	Equivalenced Structure Pointer
	Usage Considerations
	Example of Equivalenced Structure Pointer Declaration

	Base-Address Equivalenced Variable Declarations
	Base-Address Equivalenced Simple Variable
	Considerations
	Example of Base-Address Equivalenced Simple Variable Declaration

	Base-Address Equivalenced Simple Pointer
	Usage Considerations

	Base-Address Equivalenced Definition Structure
	Usage Considerations

	Base-Address Equivalenced Referral Structure
	Usage Considerations

	Base-Address Equivalenced Structure Pointer
	Usage Considerations

	11 NAMEs and BLOCKs
	NAME Declaration
	Usage Considerations
	Example of NAME Declaration

	BLOCK Declaration
	Usage Considerations
	Examples of BLOCK Declarations

	Coding Data Blocks
	Unblocked Declarations

	12 Statements
	Using Semicolons
	Compound Statements
	Usage Considerations
	Examples of Compound Statements

	ASSERT Statement
	Usage Considerations
	Example of ASSERT Statement

	Assignment Statement
	Usage Considerations
	Examples of Assignment Statements

	Bit-Deposit Assignment Statement
	Usage Considerations
	Examples of Bit Deposit Assignments

	CALL Statement
	Usage Considerations
	Examples of CALL Statements

	CASE Statement
	Labeled CASE Statement
	Usage Considerations
	Example of Labeled CASE Statement

	Unlabeled CASE Statement
	Usage Considerations
	Examples of Unlabeled CASE Statements

	CODE Statement
	Usage Considerations
	Examples of CODE Statements

	DO Statement
	Usage Considerations
	Examples of DO Statements

	DROP Statement
	Usage Considerations
	Examples of DROP Statements

	FOR Statement
	Usage Considerations
	Examples of FOR Statements

	GOTO Statement
	Usage Considerations
	Examples of GOTO Statements

	IF Statement
	Usage Considerations
	Example of IF Statements

	MOVE Statement
	Usage Considerations
	Examples of MOVE Statements

	RETURN Statement
	Usage Considerations
	Examples of RETURN Statements

	SCAN Statement
	Usage Considerations
	Example of SCAN Statements

	STACK Statement
	Usage Considerations
	Examples of STACK Statements

	STORE Statement
	Usage Considerations
	Examples of STORE Statements

	USE Statement
	Usage Considerations
	Examples of USE Statements

	WHILE Statement
	Usage Considerations
	Examples of WHILE Statements

	13 Procedures
	Procedure Declaration
	Usage Considerations
	Examples of Procedure Declarations

	Procedure Attributes
	MAIN
	INTERRUPT
	RESIDENT
	CALLABLE
	PRIV
	VARIABLE
	EXTENSIBLE
	LANGUAGE

	Formal Parameter Specifications
	Usage Considerations
	Examples of Formal Parameter Specification

	Procedure Body
	Usage Consideration
	Examples of Procedure Declarations

	Subprocedure Declaration
	Subprocedure Body
	Usage Considerations
	Example of Subprocedure Declaration

	Entry-Point Declaration
	Usage Considerations
	Examples of Entry-Point Declarations

	Label Declaration
	Usage Considerations
	Examples of Label Declarations

	14 Standard Functions
	Summary of Standard Functions
	Type-Transfer Functions
	Functions by Data Type
	Rounding by Standard Functions

	Scope of Standard Functions
	Expression Arguments
	Data Types of Expression Arguments
	Signedness of Expression Arguments

	$ABS Function
	Usage Considerations
	Example of $ABS Function

	$ALPHA Function
	Usage Considerations
	Example of $ALPHA Function

	$AXADR Function
	$BITLENGTH Function
	Usage Considerations
	Example of $BITLENGTH Function

	$BITOFFSET Function
	Usage Considerations
	Example of $BITOFFSET Function

	$BOUNDS Function
	$CARRY Function
	Usage Considerations
	Example of $CARRY Function

	$COMP Function
	Example of $COMP Function

	$DBL Function
	Usage Consideration
	Example of $DBL Function

	$DBLL Function
	Usage Consideration
	Examples of $DBLL Function

	$DBLR Function
	Usage Consideration
	Examples of $DBLR Function

	$DFIX Function
	Usage Consideration
	Example of $DFIX Function

	$EFLT Function
	Usage Consideration
	Example of $EFLT Function

	$EFLTR Function
	Usage Considerations
	Example of $EFLTR Function

	$FIX Function
	Usage Consideration
	Example of $FIX Function

	$FIXD Function
	Usage Consideration
	Example of $FIXD Function

	$FIXI Function
	Usage Considerations
	Example of $FIXI Function

	$FIXL Function
	Usage Considerations
	Examples of $FIXL Function

	$FIXR Function
	Usage Considerations
	Example of $FIXR Function

	$FLT Function
	Usage Consideration
	Example of $FLT Function

	$FLTR Function
	Usage Consideration
	Example of $FLTR Function

	$HIGH Function
	Example of $HIGH Function

	$IFIX Function
	Usage Consideration
	Example of $IFIX Function

	$INT Function
	Usage Considerations
	Examples of $INT Function

	$INTR Function
	Usage Considerations
	Example of $INTR Function

	$LADR Function
	Usage Considerations
	Example of $LADR Function

	$LEN Function
	Usage Considerations
	Examples of $LEN Function

	$LFIX Function
	Usage Consideration
	Example of $LFIX Function

	$LMAX Function
	Example of $LMAX Function

	$LMIN Function
	Example of $LMIN Function

	$MAX Function
	Example of $MAX Function

	$MIN Function
	Example of $MIN Function

	$NUMERIC Function
	Usage Considerations
	Example of $NUMERIC Function

	$OCCURS Function
	Usage Considerations
	Examples of $OCCURS Function

	$OFFSET Function
	Usage Considerations
	Examples of $OFFSET Function

	$OPTIONAL Function
	Usage Considerations
	Examples of the $OPTIONAL Function

	$OVERFLOW Function
	Usage Considerations
	Example of $OVERFLOW Function

	$PARAM Function
	Usage Considerations
	Example of $PARAM Function

	$POINT Function
	Usage Considerations
	Example of $POINT Function

	$READCLOCK Function
	Usage Considerations
	Example of $READCLOCK Function

	$RP Function
	Usage Consideration
	Example of $RP Function

	$SCALE Function
	Usage Considerations
	Example of $SCALE Function

	$SPECIAL Function
	Usage Considerations
	Example of $SPECIAL Function

	$SWITCHES Function
	$TYPE Function
	Usage Considerations
	Example of $TYPE Function

	$UDBL Function
	Usage Consideration
	Example of $UDBL Function

	$USERCODE Function
	Usage Considerations
	Example of $USERCODE Function

	$XADR Function
	Usage Considerations
	Examples of $XADR Function

	Built-in Functions

	15 Privileged Procedures
	Privileged Mode
	CALLABLE Procedures
	PRIV Procedures
	Nonprivileged Procedures

	Privileged Operations
	System Global Pointer Declaration
	Usage Consideration
	Example of System Global Pointer Declaration

	'SG'-Equivalenced Variable Declarations
	'SG'-Equivalenced Simple Variable
	Example of 'SG'-Equivalenced Simple Variable

	'SG'-Equivalenced Definition Structure
	Usage Consideration
	Example of 'SG'-Equivalenced Definition Structure

	'SG'-Equivalenced Referral Structure
	Usage Considerations
	Example of 'SG'-Equivalenced Referral Structure

	'SG'-Equivalenced Simple Pointer
	Example of 'SG'-Equivalenced Simple Pointer

	'SG'-Equivalenced Structure Pointer
	Usage Considerations
	Example of 'SG'-Equivalenced Simple Pointer

	Functions for Privileged Operations
	$AXADR Function
	Usage Considerations
	Example of $AXADR Function

	$BOUNDS Function
	Usage Considerations
	Example of $BOUNDS Function

	$SWITCHES Function
	Usage Considerations
	Example of $SWITCHES Function

	TARGET Directive
	Usage Considerations
	Examples of TARGET Directive

	16 Compiler Directives
	Specifying Compiler Directives
	Compilation Command
	Directive Line

	Directive Stacks
	Pushing Directive Settings
	Popping Directive Settings

	File Names As Directive Arguments
	Partial File Names
	Logical File Names

	Summary of Compiler Directives
	ABORT Directive
	Usage Considerations
	Example of ABORT Directive

	ABSLIST Directive
	Usage Considerations
	Example of ABSLIST Considerations

	ASSERTION Directive
	Usage Considerations
	Example of ASSERTION Directive

	BEGINCOMPILATION Directive
	Usage Considerations
	Example of BEGINCOMPILATION Directive

	CHECK Directive
	Usage Considerations
	Example of CHECK Directive

	CODE Directive
	Usage Considerations
	Example of CODE Directive

	COLUMNS Directive
	Usage Considerations
	Examples of COLUMNS Directive

	COMPACT Directive
	Usage Considerations
	Example of COMPACT Directive

	CPU Directive
	Usage Considerations

	CROSSREF Directive
	Usage Considerations
	Example of CROSSREF Directive

	DATAPAGES Directive
	Usage Considerations
	Example of DATAPAGES Directive

	DECS Directive
	Usage Considerations
	Example of DECS Directive

	DEFEXPAND Directive
	Usage Considerations
	Example of DEFEXPAND Directive

	DEFINETOG Directive
	Usage Considerations
	Examples of DEFINETOG Directive

	DUMPCONS Directive
	Usage Considerations
	Example of DUMPCONS Directive

	ENDIF Directive
	ENV Directive
	Usage Considerations
	Examples of ENV Directive

	ERRORFILE Directive
	Usage Considerations
	Example of ERRORFILE Directive

	ERRORS Directive
	Usage Considerations
	Example of ERRORS Directive

	EXTENDSTACK Directive
	Usage Considerations
	Example of EXTENDSTACK Directive

	EXTENDTALHEAP Directive
	Usage Considerations
	Example of EXTENDTALHEAP Directive

	FIXUP Directive
	Usage Considerations
	Example of FIXUP Directive

	FMAP Directive
	Usage Considerations
	Examples of FMAP Directive

	GMAP Directive
	Usage Considerations
	Examples of GMAP Directive

	HEAP Directive
	Usage Considerations
	Example of HEAP Directive

	HIGHPIN Directive
	Usage Considerations
	Examples of Running Object Files at HIGHPIN

	HIGHREQUESTERS Directive
	Usage Considerations
	Examples of HIGHREQUESTERS Directive

	ICODE Directive
	Usage Considerations
	Example of ICODE Directive

	IF and ENDIF Directives
	Usage Considerations
	Examples of IF and ENDIF Directives

	INHIBITXX Directive
	Usage Considerations
	Example of INHIBITXX Directive

	INNERLIST Directive
	Usage Considerations
	Example of INNERLIST Considerations

	INSPECT Directive
	Usage Considerations
	Example of INSPECT Directive

	INT32INDEX Directive
	Usage Considerations
	Example of INT32INDEX Directive

	LARGESTACK Directive
	Usage Considerations
	Example of LARGESTACK Directives

	LIBRARY Directive
	Usage Considerations
	Example of LIBRARY Directive
	About User Libraries

	LINES Directive
	Usage Considerations
	Examples of LINES Directive

	LIST Directive
	Usage Consideration
	Examples of LIST Directive

	LMAP Directive
	Usage Considerations
	Example of LMAP Directive

	MAP Directive
	Usage Considerations
	Example of MAP Directive

	OLDFLTSTDFUNC Directive
	Usage Considerations
	Example of OLDFLTSTDFUNC Directive

	OPTIMIZE Directive
	Usage Considerations
	Examples of OPTIMIZE Directive

	PAGE Directive
	Usage Considerations
	Example of PAGE Directive

	PEP Directive
	Usage Considerations
	Example of PEP Directive

	PRINTSYM Directive
	Usage Considerations
	Example of PRINTSYM Directive

	RELOCATE Directive
	Usage Considerations
	Example of RELOCATE Directive

	RESETTOG Directive
	Usage Considerations

	Example of RESETTOG Directive
	ROUND Directive
	Usage Considerations
	Example of ROUND Directive

	RP Directive
	Usage Considerations
	Example of RP Directive

	RUNNAMED Directive
	Usage Considerations
	Examples of RUNNAMED Directive

	SAVEABEND Directive
	Usage Considerations
	Example of SAVEABEND Directive

	SAVEGLOBALS Directive
	Usage Considerations
	Examples of SAVEGLOBALS Directive

	SEARCH Directive
	Usage Considerations
	Examples of SEARCH Directive

	SECTION Directive
	Usage Considerations
	Example of SECTION Directive

	SETTOG Directive
	Usage Considerations
	Examples of SETTOG Directive

	SOURCE Directive
	Usage Considerations
	Examples of SOURCE Directive

	SQL Directive
	SQLMEM Directive
	STACK Directive
	Usage Considerations
	Example of STACK Directive

	SUBTYPE Directive
	Usage Considerations
	Example of SUBTYPE Directive

	SUPPRESS Directive
	Usage Considerations
	Example of SUPPRESS Directive

	SYMBOLPAGES Directive
	Usage Considerations
	Example of SYMBOLPAGES Directive

	SYMBOLS Directive
	Usage Considerations
	Examples of SYMBOLS Directive

	SYNTAX Directive
	Usage Considerations
	Examples of SYNTAX Directive

	TARGET Directive
	USEGLOBALS Directive
	Usage Considerations
	Example of USEGLOBALS Directive

	WARN Directive
	Usage Considerations
	Example of WARN Directive

	A Error Messages
	Compiler Initialization Messages
	About Error and Warning Messages
	Error Messages
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	160
	161
	162
	163
	164
	165
	166
	168
	169
	175
	176
	177
	178
	179

	Warning Messages
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	52
	53
	54
	55
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	73
	74
	75
	76
	77
	78
	79
	80
	81
	83
	84
	86
	87
	88
	89
	90
	91
	93
	94

	SYMSERV Messages
	BINSERV Messages
	Common Run-Time Environment Messages

	B TAL Syntax Summary (Railroad Diagrams)
	Constants
	Character String Constants
	STRING Numeric Constants
	INT Numeric Constants
	INT(32) Numeric Constants
	FIXED Numeric Constants
	REAL and REAL(64) Numeric Constants

	Constant Lists
	Expressions
	Arithmetic Expressions
	Conditional Expressions
	Assignment Expressions
	CASE Expressions
	IF Expressions
	Group Comparison Expressions
	Bit Extractions
	Bit Shifts

	Declarations
	LITERAL and DEFINE Declarations
	LITERALs
	DEFINEs
	Simple Variable Declarations
	Array Declarations
	Structure Declarations
	Definition Structures
	Template Structures
	Referral Structures
	Simple Variables Declared in Structures
	Arrays Declared in Structures
	Definition Substructures
	Referral Substructures
	Fillers in Structures
	Simple Pointers Declared in Structures
	Structure Pointers Declared in Structures
	Simple Variable Redefinitions
	Array Redefinitions
	Definition Substructure Redefinitions
	Referral Substructure Redefinitions
	Simple Pointer Redefinitions
	Structure Pointer Redefinitions

	Pointer Declarations
	Simple Pointers
	Structure Pointers
	Equivalenced Variable Declarations
	Equivalenced Simple Variables
	Equivalenced Definition Structures
	Equivalenced Referral Structures
	Equivalenced Simple Pointers
	Equivalenced Structure Pointers

	Base-Address Equivalenced Variable Declarations
	Base-Address Equivalenced Simple Variables
	Base-Address Equivalenced Definition Structures
	Base-Address Equivalenced Referral Structures
	Base-Address Equivalenced Simple Pointers
	Base-Address Equivalenced Structure Pointers

	NAME and BLOCK Declarations
	NAMEs
	BLOCKs

	Procedure and Subprocedure Declarations
	Procedures
	Subprocedures
	Entry Points
	Labels

	Statements
	Compound Statements
	ASSERT Statement
	Assignment Statement
	Bit Deposit Assignment Statement
	CALL Statement
	Labeled CASE Statement
	Unlabeled CASE Statement
	CODE Statement
	DO Statement
	DROP Statement
	FOR Statement
	GOTO Statement
	IF Statement
	Move Statement
	RETURN Statement
	Scan Statement
	STACK Statement
	STORE Statement
	USE Statement
	WHILE Statement

	Standard Functions
	$ABS Function
	$ALPHA Function
	$AXADR Function
	$BITLENGTH Function
	$BITOFFSET Function
	$BOUNDS Function
	$CARRY Function
	$COMP Function
	$DBL Function
	$DBLL Function
	$DBLR Function
	$DFIX Function
	$EFLT Function
	$EFLTR Function
	$FIX Function
	$FIXD Function
	$FIXI Function
	$FIXL Function
	$FIXR Function
	$FLT Function
	$FLTR Function
	$HIGH Function
	$IFIX Function
	$INT Function
	$INTR Function
	$LADR Function
	$LEN Function
	$LFIX Function
	$LMAX Function
	$LMIN Function
	$MAX Function
	$MIN Function
	$NUMERIC Function
	$OCCURS Function
	$OFFSET Function
	$OPTIONAL Function
	$OVERFLOW Function
	$PARAM Function
	$POINT Function
	$READCLOCK Function
	$RP Function
	$SCALE Function
	$SPECIAL Function
	$SWITCHES Function
	$TYPE Function
	$UDBL Function
	$USERCODE Function
	$XADR Function

	Privileged Procedures
	System Global Pointers
	'SG'-Equivalenced Simple Variables
	'SG'-Equivalenced Definition Structures
	'SG'-Equivalenced Referral Structures
	'SG'-Equivalenced Simple Pointers
	'SG'-Equivalenced Structure Pointers
	TARGET Directive
	Compiler Directives
	Directive Lines
	ABORT Directive
	ABSLIST Directive
	ASSERTION Directive
	BEGINCOMPILATION Directive
	CHECK Directive
	CODE Directive
	COLUMNS Directive
	COMPACT Directive
	CPU Directive
	CROSSREF Directive
	DATAPAGES Directive
	DECS Directive
	DEFEXPAND Directive
	DEFINETOG Directive
	DUMPCONS Directive
	ENDIF Directive
	ENV Directive
	ERRORFILE Directive
	ERRORS Directive
	EXTENDSTACK Directive
	EXTENDTALHEAP Directive
	FIXUP Directive
	FMAP Directive
	GMAP Directive
	HEAP Directive
	HIGHPIN Directive
	HIGHREQUESTERS Directive
	ICODE Directive
	IF and ENDIF Directives
	INHIBITXX Directive
	INNERLIST Directive
	INSPECT Directive
	INT32INDEX Directive
	LARGESTACK Directive
	LIBRARY Directive
	LINES Directive
	LIST Directive
	LMAP Directive
	MAP Directive
	OLDFLTSTDFUNC Directive
	OPTIMIZE Directive
	PAGE Directive
	PEP Directive
	PRINTSYM Directive
	RELOCATE Directive
	RESETTOG Directive
	ROUND Directive
	RP Directive
	RUNNAMED Directive
	SAVEABEND Directive
	SAVEGLOBALS Directive
	SEARCH Directive
	SECTION Directive
	SETTOG Directive
	SOURCE Directive
	SQL Directive
	SQLMEM Directive
	STACK Directive
	SUBTYPE Directive
	SUPPRESS Directive
	SYMBOLPAGES Directive
	SYMBOLS Directive
	SYNTAX Directive
	TARGET Directive
	USEGLOBALS Directive
	WARN Directive

	C TAL Syntax Summary (Bracket-and- Brace Diagrams)
	General Syntax Notation
	UPPERCASE LETTERS
	lowercase italic letters
	Brackets []
	Braces { }
	Vertical Line |
	Ellipsis ...
	Punctuation
	Item Spacing
	Line Spacing

	Constants
	Character String Constants
	STRING Numeric Constants
	INT Numeric Constants
	INT(32) Numeric Constants
	FIXED Numeric Constants
	REAL and REAL(64) Numeric Constants
	Constant Lists

	Expressions
	Arithmetic Expressions
	Conditional Expressions
	Assignment Expressions
	CASE Expressions
	IF Expressions
	Group Comparison Expressions
	Bit Extractions
	Bit Shifts

	Declarations
	LITERAL and DEFINE Declarations
	LITERALs
	DEFINEs

	Simple Variable Declarations
	Simple Variables

	Array Declarations
	Arrays
	Read-Only Arrays

	Structure Declarations
	Definition Structures
	Template Structures
	Referral Structures
	Simple Variables Declared n Structures
	Arrays Declared in Structures
	Definition Substructures
	Referral Substructures
	Fillers in Structures
	Simple Pointers Declared in Structures
	Structure Pointers Declared in Structures
	Simple Variable Redefinitions
	Array Redefinitions
	Definition Substructure Redefinitions
	Referral Substructure Redefinitions
	Simple Pointer Redefinitions
	Structure Pointer Redefinitions

	Pointer Declarations
	Simple Pointers
	Structure Pointers

	Equivalenced Variable Declarations
	Equivalenced Simple Variables
	Equivalenced Definition Structures
	Equivalenced Referral Structures
	Equivalenced Simple Pointers
	Equivalenced Structure Pointers

	Base-Address Equivalenced Variable Declarations
	Base-Address Equivalenced Simple Variables
	Base-Address Equivalenced Definition Structures
	Base-Address Equivalenced Referral Structures
	Base-Address Equivalenced Simple Pointers

	Base-Address Equivalenced Structure Pointers
	NAME and BLOCK Declarations
	NAMEs
	BLOCKs

	Procedure and Subprocedure Declarations
	Procedures
	Subprocedures

	Statements
	Compound Statements
	ASSERT Statement
	Assignment Statement
	Bit-Deposit Assignment Statement
	CALL Statement
	Labeled CASE Statement
	Unlabeled CASE Statement
	CODE Statement
	DO Statement
	DROP Statement
	FOR Statement
	GOTO Statement
	IF Statement
	Move Statement
	RETURN Statement
	SCAN Statement
	STACK Statement
	STORE Statement
	USE Statement
	WHILE Statement

	Standard Functions
	$ABS Function
	$ALPHA Function
	$AXADR Function
	$BITLENGTH Function
	$BITOFFSET Function
	$BOUNDS Function
	$CARRY Function
	$COMP Function
	$DBL Function
	$DBLL Function
	$DBLR Function
	$DFIX Function
	$EFLT Function
	$EFLTR Function
	$FIX Function
	$FIXD Function
	$FIXI Function
	$FIXL Function
	$FIXR Function
	$FLT Function
	$FLTR Function
	$HIGH Function
	$IFIX Function
	$INT Function
	$INTR Function
	$LADR Function
	$LEN Function
	$LFIX Function
	$LMAX Function
	$LMIN Function
	$MAX Function
	$MIN Function
	$NUMERIC Function
	$OCCURS Function
	$OFFSET Function
	$OPTIONAL Function
	$OVERFLOW Function
	$PARAM Function
	$POINT Function
	$READCLOCK Function
	$RP Function
	$SCALE Function
	$SPECIAL Function
	$SWITCHES Function
	$TYPE Function
	$UDBL Function
	$USERCODE Function
	$XADR Function

	Privileged Procedures
	System Global Pointers
	'SG'-Equivalenced Simple Variables
	'SG'-Equivalenced Definition Structures
	'SG'-Equivalenced Referral Structures
	'SG'-Equivalenced Simple Pointers
	'SG'-Equivalenced Structure Pointers
	$AXADR Function
	$BOUNDS Function
	$SWITCHES Function
	TARGET Directive

	Compiler Directives
	Directive Lines
	ABORT Directive
	ABSLIST Directive
	ASSERTION Directive
	BEGINCOMPILATION Directive
	CHECK Directive
	CODE Directive
	COLUMNS Directive
	COMPACT Directive
	CPU Directive
	CROSSREF Directive
	DATAPAGES Directive
	DECS Directive
	DEFEXPAND Directive
	DEFINETOG Directive
	DUMPCONS Directive
	ENDIF Directive
	ENV Directive
	ERRORFILE Directive
	ERRORS Directive
	EXTENDSTACK Directive
	EXTENDTALHEAP Directive
	FIXUP Directive
	FMAP Directive
	GMAP Directive
	HEAP Directive
	HIGHPIN Directive
	HIGHREQUESTERS Directive
	ICODE Directive
	IF and ENDIF Directive
	INHIBITXX Directive
	INNERLIST Directive
	INSPECT Directive
	INT32INDEX Directive
	LARGESTACK Directive
	LIBRARY Directive
	LINES Directive
	LIST Directive
	LMAP Directive
	MAP Directive
	OLDFLTSTDFUNC Directive
	OPTIMIZE Directive
	PAGE Directive
	PEP Directive
	PRINTSYM Directive
	RELOCATE Directive
	RESETTOG Directive
	RP Directive
	RUNNAMED Directive
	SAVEABEND Directive
	SAVEGLOBALS Directive
	SEARCH Directive
	SECTION Directive
	SETTOG Directive
	SOURCE Directive
	SQL Directive
	SQLMEM Directive
	STACK Directive
	SUBTYPE Directive
	SUPPRESS Directive
	SYMBOLPAGES Directive
	SYMBOLS Directive
	SYNTAX Directive
	USEGLOBALS Directive
	WARN Directive

	Glossary
	Index

